

LMS handling service are available

PAID

Assignment, QUIZ, GDBZ and GRAND QUIZ SERVICE are available

0304-1659294

MUHAMMAD JUNAID

0304-1659294 Bc190202640@vu.edu.pk

AL-JUNAID INSTITUTE GROUP CS402 GRAND QUIZ

Sr.N	MCQS	ANSWE
0		R
1.	Which of the following steps replaces multiple incoming transition edges with a single one proving Kleene's theorem part II?	Step 3
2.	Let FA1 accepts many strings and FA2 accepts no strings, then FA1+FA2 will be equal to:	FA1
3.	Let L be the language of all strings, defined over $\sum =(0,1)$, ending in 10. Which of the following strings are indistinguishable w.r.t L with z being 0?	(010,101)
4.	If r1=(aa+bb)and r2=(a+b) then the language (aa+bb)(a+b) will bhe generated by	(r)(r2)
5.	Introducing a new start state in the case of multiple states is step no of proving Kleen's theorem part II.	1
6.	The language having even numbers of a's and even number of b's defined over S={a,b} is called	EVEN-EVEN
7.	In NFA having no transition at a certain state, FA can be built by introducing :	Empty state
8.	For every three regular expression R, S, and T. the language denoted by R(S U T) and (RS)U(RT) are the	Same
9.	Which of the following string belongs to the language of the regular expression (aa*b)?	aabaab
10.	If L1' and L2' are regular languages, then L1, L2 will be	Regular
11.	Suppose the language L1 has 2 L2 has 2 states. If we have a machine M that accepts $L1 \cap L2$. Then the total number of states in M is equal to	4

	12.	If L is a regular language, then (L')' U L will be:	L
	13.	In Mealy machine, the output depends on	Present state
			and Present
			output
	14.	Strings x,y,z belongs to Σ^* such that $xz \in L$ but	Distinguishabl
		$yz \notin L$ where $L \subseteq \sum^*$ are:	e
	15.	Melay machine to increase the output string in	Incrementing
		magnitude by 1 is called:	machine
	16.	Suppose we have FA3 (which is to FA1+FA2)	It corresponds
		then the final state of FA3 will be declared final	to any of the
		if:	final states of
			FA1 or FA2
	17.	If we have the finite language and the number of	n+1
		states in the FA is n then the maximum number	
		of letter in each word of the language that will be	
	10	accepted by the given FA will be:	A • • /• 1
	18.	Which of the following state is introduced while	An initial
		developing NFA for the closure of FA?	state which
			should be
	10	Longth of EVEN EVEN longuage is	Fuer
_	$\frac{19}{20}$	If EA1 corresponde to (a) b)* then EA1 must	Even
	20.	If FAT corresponds to $(a+b)^{+}$ then FAT must	Every
_	21	In EA initial stage is represented by :	Drawing an
	21.	In TA, initial stage is represented by .	arrowhead
			before the
			state
\vdash	22	Which one of the following machine is	Mealv
		represented as a pictorial representation with	machine
		states and directed edges labeled by an input	
		letter along with an output character?	
	23.	Length of machine "AbBAbcd" defined over	Five
		$\sum = (Ab,B,c,d)$ is	
	24.	An FA is a collection of:	Finite states,
			finite
			transition and
			finite input

		letter
25.	Given the language L={ab, aa, baa}, which of the following strings are in L*? i) abaabaaabaa ii) aaaabaaaa	1,2 & 4
	iii)baaaaabaaab iv)baaaaabaa	
26.	In the context to make NFA for the concentration of FA1 and FA2 (FA1 accepting null string) which of the following option is correct?	Final states in both FAs
27.	Every is a as well, but the converse may not be true.	FA, TG
28.	NFA with null string has initial state(s).	One
29.	While finding RE corresponding to a TG, we connect the new start state with the old start state by transition.	Null
30.	If S=(x). then S* will be	{^,x,xx,xxx,x xxx}
31.	The minimum length of string (except null string) of a language that starts and ends in the same letter will be:	2
32.	If S={ab, bb}, then S* will not contain	bbba
33.	Which of the following machine has only one initial state?	Moore machine
34.	Which of the following diagram is very rigid in order to express any language?	FA
35.	Let L be the language of all strings, defined over $\sum =(0,1)$, ending in 111. Which of the following strings are indistinguishable w.r.t L with z being	111,101
36.	Mealy machine can have final states.	Zero
37.	In Moore machine, output is produced over the change of:	States
38.	Lets we have two regular expressions R1 = $\{xx+yy\}$ and R2= $\{x+y\}$. Which one of the following is the correct regular expression for the union of R1 and R2?	(xx+yy)+ (x+y)

39.	FA corresponding to an NFA can be built by	No transition
	introducing a state corresponding to the	at certain state
	combination of states, for a letter having	
40.	The situation there is no way to leave after entry	Davey john
	is called	locker
41.	Which one of the following word is not accepted	Abbaab
	by the given regular expression?	
42.	According to the theory of automata, there are	Two
	types of languages.	
43.	Which of the following word is not accepted by	Baabaabba
	the given regular expression?	
44.	Regular languages are closed under the following	Union,
	operations.	Concentration
		, Closure
45.	There can be more than FA for a certain	One, one
	language but forFA there is only one	
	language associated with it.	
46.	There is no compulsion that each state must have	Transition
	an on outdoing edge for every input variable in:	graph
47.	FA is also called	DFA
48.	If r1 and r2 are regular expressions then (r1*r2)	RE (Regular
	is	expression)
49.	Which of the following is the minimal number of	1
	states for a finite automaton accepting the	
	language of all strings defined over any alphabet	
50		•
50.	Keeping view language of all strings ending with	A
	a for which symbol we will take a loop on the	
51	Which of the following statements is true about	Transition of
51.	NEA with Null String?	null string is
	NI'A with Null String?	allowed in
		any stage
52	Which one of the following diagrams expresses	GTG
52.	languages more simply?	
53.	The language of all strings defined over alphabet	a and ^

	set={a,b} that does not end with 'a' actually end	
5.4	Willi. Let $S = (aa bb)$, then S^* will have the	A
54.	Let S-{aa, bb}, then S' will have the	
55.	Formal is also known as	Syntactic
		language
56.	There may be more than one transition for a	Non-
	certain letter on a state in:	Deterministic
		finite
		automata
57.	A loop at a state is supposed to be	Incoming
	while converting Moore machine into an	
	equivalent Maley machine.	
58.	FA of EVEN language shows null string	initial state is
	when .	final as well
59.	Which of the following statement is true about	Transitions
	GTG?	are based on
		regular
		expressions
60.	Which of the following machine has only one	Moore
	initial state and no final state?	machine
61.	In GTG, there can be more than one :	Start state and
011		final state
62	GTG for the expression $(aa+aba)*$ may have	1
02.	minimum number of states	1
63	In regular expression, the operator, '*' stands for	Iteration
6 <i>1</i>	If we have only one state having no transition for	
04.	input latters, then it is an example of:	
65	Input fetters, then it is an example of. If A and P are regular languages $l(A'UP')$ is:	Dogular
66	If A and B are regular languages, !(A U B) is.	DEA
00.	A with n states must accept least one	DFA
(7	string of length greater than n.	A 1 1
6/.	If r1 is a regular expression then (r1)* is	Also a regular
(0)		expression
68.	Which of the following is the bypass and state	4
	elimination step in the context of Kleene's	
	theorem part II proof?	
69.	Which of the following is free of non-	FA

	determinism?	
70.	There is no question of accepting any language	Moore
	in:	machine
71.	A string will be accepted by an NFA if there	atleast
	existone successful path.	
72.	Kleene's theorem part I expresses the	FA and TG
	relationship between	
73.	Keeping in view the discussion by Martin, how	7
	any states are required to recognize the language	
	of all strings of length 2 or more defined over	
	$\sum = \{a, b\}$ with 'b' being the second letter from	
	right?	
74.	FA and are same excepts that has	NFA,FA
	unique symbol for each transition.	
75.	Subtraction of binary number is possible through.	Both
		complementin
		g and
		incrementing
		machine
76.	Null strings can be specified on edges in:	Transition
		graph
77.	What is false about the PLAINDROME	FA can be
	LANGUAGE?	build for it
78.	While finding RE corresponding to a TG, if TG	Introduce the
	has more than one start state then.	new start state
79.	All possible combination of string of a language	Kleene star
	including null string is referred as.	closure of a
		language
80.	N! will be equal to:	n*(n-1)!
81.	Every NFA can be considered to be a as	TG
	well, but the converse may not be true.	
82.	In proving Kleene theorem II, if three statuses	Concentration
	are connected then middle state is removed bt	
	connecting first and third and writing	
	corresponding RE in:	
83.	In there must be transition for all the	FA
	letters of the string.	

84.	For a given Moore Machine, the input string is	Length of
	'101010', thus the output string would be of	input string+1
	length:	
85.	The FA can be drawn for the regular expression	1
	(a+b)* with minimum state(s).	
86.	Which of the following does not contribute while	^
	finding out the length of strings?	
87.	The language of all strings defined over alphabet	Infinite
	set = $\{x,y\}$ that ends with same letters will have	
	the maximum length of:	
88.	Considering FA1 and FA2 having 2 states each.	More than 3
	Now FA1+FA2 can have maximum	
	number of states.	
89.	Which one of the following is RE for the	a(a+b)*
	language defined over $\sum = \{a,b\}$ having all the	
	words starting with a?	
90.	An can be considered to be an	NFA
	intermediate structure between finite automaton	
	and transition graph.	
91.	In order to make NFA for the union of FA1 and	Initial states
	FA2, the new initial state should be liked to:	of both FAs
92.	We cannot construct an NFA for the language of	Palindromes
	defined over alphabet set{a,b}.	
93.	The CFG is said to be ambiguous if there exist at	More then one
	least one word of its language that can be	/ Different
	generated by the production trees	
94.	What do automata mean?	something
		that works
		automatically
		/ "something
		are done
0.5		automatically
95.	According to theory of automata there	2
96.	The Minimum length of the string (except bull	1
	string) of a language that starts and ends in the	
	same letters will be:	

AL-	JUNAID INSTITUTE (GROUP
97.	If S= {ab,bb} then S* will not contain	Bbba
98.	Which of the following machines has only one initial state and no final state?	More machine
99.	Which of the following diagram is very rigid in order to express any language ?	FA
100.	If S={a},then S+will be	{a,aa ,aaa , aaaa}
101.	Let L be the language of the all string defined over over $\sum i [0,1]$ ending in10. Which of the following string are indistinguishable with respect to L with z being 11?	010,101
102.	Melay machine can havefinal state	Zero
103.	Given the Language L = {ab, aa,baa},which of the following string are in L*? 1) Abaabaaaabaa 2) Aaaabaaaa 3) Baaaaabaaaaab 4) baaaaabaa	1, 2 and 4
104.	If L1 and L2 are regular Language $L1 \cap (L2 \cup L1)$ will be	Regular
105.	In Mealy Machine the out put depends on	Present State and present output
106.	There is no question of accepting any language in.	Moore Machine
107.	The state where there is no way to leave after entry is called	Davey john Locker
108.	FA corresponding to an NFA can be built by introducing an empty state for a letter having	No transaction at certain state
109.	Which of the following diagram express language more simply?	GTG
110.	Automata is the plural of	Automation
111.	If A and B are regular Language $!(A \cup B)$ is	Regular
112.	In NFA having no transition at certain state FA can be built by introducing.	Empty state

113.	Consuming FA1 and FA2 having 2 STATES	2
	each. Now FAI+FA2 can have	3
	maximumnumber of state	More then 3
		None of the
		given
114.	In an FA when there is no path starting from	Accept all
	initial state and ending state in final state then	string
	that FA	
115.	According to theory of automation there	Two
	aretype if language	
116.	In Moore machine if the length of input string is	10
	9 then the length of output string will be.	
117.	When ODD language is expressed by an FA, then	One
	it will have minimum state	
118.	[(a+b)(a+b)]*.given RE contact generate the	Bbbbbb
	string	
119.	Which of the following state is true about GTG?	Transection
	\cap	are based on
		regular
		expression
120.	Everyis aas will, but the converts	FA,TG
	may not be true.	
121.	Which of the following machine is represented as	Mealy
	a pictorial representation with states and directed	Machine
	edges labeled by an input letter along with an	
	output character?	
122.	The recursive method for defining a language has	Three
	steps	
123.	Consider the following RE.	Aa
	A(a+b)b*	
	All of the following word are accepted	
	except	
124.	Which of the following regular expression	1 and 2
	represented same language?	
	1. (a+ab)*	
	2. $2(ba+a)^*$	
	3. A*(aa*b)*	

	4. (a*b)*	
125.	For every there regular expression R,S and T the	Same
	Language denoted by $R(S \cup T)$ and $(RS) \cup (RT)$ are	
	the	
126.	Alphabet S={a,bc,cc} hasnumber of letters.	Three
127.	Ancan be considered to be an intermediate	NFA
	structure between Finite automation and	
	Transition Graph.	
128.	Two FAs are said to be equivalent if they	Accept same
		language
129.	There may be more then one transition for a	Finite
	certain letter on a state in	Automata
130.	can also help in proving Kleene Theorem	NFA
101		
131.	Kleene Theorem Part II expression the	TG and RE
120	relationship between	
132.	FA corresponding to an NFA can be built by	No transition
122	Introducing an empty state for a letter having.	at certain state
133.	FA is also called	DFA
134.	If two Res generated same language then these	Equivalent RE
	Res are called	
135.	We cannot an NFA for the language of	Palindromes
	defend over alphabet set{a,b}	
136.	Kleene Theorem Part II expression the	RE and FA
107	relationship between	T A 1 1
137.	Let FA3 an FA corresponding to FA1 FA2 then	FAI only
	the initial state of FA3 must correspond to the	
120	Initial state of	Determeinistie
138.	Every FA should be	Deterministic
139.	The minimum length of string (except null string)	1
	of a language that starts and ends in the different	
	letter will be:	
140.	Which of the following will be the final state of	Final states of
	FA3 obtained from the union of FA1 and FA2?	FAI or FA2
141.	In concatenation we accept the initial state of	We need just
	FA2 automatically after the final state of FA1	one initial

	because of:	state
142.	Let FA1 accepts many strings and FA2 accepts none then FA1+FA2 will be equal to:	FA2-FA1
143.	The language {a ab aba bab} is	Regular
144.	Decomposing a string into its valid units is referred as:	Tokenizing
145.	Let FA3 be an FA corresponding to FA1+FA2, then the initial state of FA3 Must corresponds to the initial state of	FA1 or FA2
146.	If FA1 corresponds to (a+b)* then FA1 must accept string/strings. Select correct option: No Odd length	EVERY
147.	A regular language can be:	irregular infinite non- deterministic None of the given options
148.	N into its valid units is referred as:	Tokenizing
149.	The strings of FA2 are accepted first before the strings of FA1	Palindromes
150.	There a language for which only FA can be built but not the RE.	Be may
151.	Kleene's Theorem part I expresses the relationship between	FA and TG