CS302 - Digital Logic & Design o

For short lectures, Search on Youtube:
“Cs302 short lectures By Amir”

Lesson No. 01

AN OVERVIEW & NUMBER SYSTEMS

Analogue versus Digital
Most of the quantities in nature that can be measured are continuous. Examples include

¢ Intensity of light during the day: The intensity of light gradually increases as the sun
rises in the morning; it remains constant throughout the day and then gradually decreases
as the sun sets until it becomes completely dark. The change in the (lightithroughout the
day is gradual and continuous. Even with a sudden change in weather when the sun is
obscured by a cloud the fall in the light intensity although very, sharpyhowever is still
continuous and is not abrupt.

¢ Rise and fall in temperature during a 24-hour period: The temperature also rises and
falls with the passage of time during the day and in the night. The change in temperature is
never abrupt but gradual and continuous.

¢ Velocity of a car travelling from A to B: The velocity of a car travelling from one city to
another varies in a continuous manner. Even‘if.it abruptly accelerates or stops suddenly,
the change in velocity seemingly very sudden®and abrupt is never abrupt in reality. This
can be confirmed by measuring the velocity in‘shorttime intervals of few milliseconds.

The measurable values generally change, over a continuous range having a minimum and
maximum value. The temperature yalues'in a summer month change between 23 °C to 45 °C.
A car can travel at any velocity between,0 to, 120 mph.

Digital representing of quantities
Digital quantities unlike Analogue quantities are not continuous but represent gquantities
measured at discrete intervalspConsider the continuous signal as shown in the figure 1.1.

To represent this signal“digitally the signal is sampled at fixed and equal intervals. The
continuous signal is,sampled/at 15 fixed and equal intervals. Figure 1.2. The set of values (1,
2, 4,7, 18, 34, 25;23,735, 37, 29, 42, 41, 25 and 22) measured at the sampling points
represent the continuous signal. The 15 samples do not exactly represent the original signal
but only approximate_.the original continuous signal. This can be confirmed by plotting the 15
sample points.Figure 1.3. The reconstructed signal from the 15 samples has sharp corners
and edgesin,contrast to the original signal that has smooth curves.

If the number of samples that are collected is reduced by half, the reconstructed signal will
be very different from the original. The reconstructed signal using 7 samples have missing
peak and dip at 34 °C and 23 °C respectively. Figure 1.4. The reason for the difference
between the original and the reconstructed signal is due to under-sampling. A more accurate
representation of the continuous signal is possible if the number of samples and sampling
intervals are increased. If the sampling is increased to infinity the number of values would still
be discrete but they would be very close and closely match the actual signal.

© Copyright Virtual University of Pakistan 1

CS302 - Digital Logic & Design

NN W w AN
o o o a1 o o

temperature °C

iy
a1

9

10 11

12 13 14 15

Figure 1.2 Sampling the Continuous Signal at 15 equal intervals

© Copyright Virtual University of Pakistan

CS302 - Digital Logic & Design

45

40 424 41

35 2\ /
N N N

L / / ¥ 29
(0]
= 25 25 25
=
o 20
g' /‘ 18
8 15 /

10

c /4/ 7

V2/V4
0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

samples

Figure 1.3 Reconstructed Signal by plotting 15 sampled values

45
40

35 \
30 \
25 \

20

temperature °C

15

10

1 3 5 7 9 11 13 15

samples

Figure 1.4 Reconstructed Signal by plotting 7 sampled values

Electronic Processing of Continuous and Digital Quantities
Electronic Processing of the continuous quantities or their Digital representation requires
that the continuous signals or the discrete values be converted and represented in terms of
voltages. There are basically two types of Electronic Processing Systems.
¢ Analogue Electronic Systems: These systems accept and process continuous signals
represented in the form continuous voltage or current signals. The continuous quantities
are converted into continuous voltage or current signals by transducers. The block diagram
describes the processing by an Analogue Electronic System. Figure 1.5.

© Copyright Virtual University of Pakistan 3

CS302 - Digital Logic & Design

o Digital Electronic Systems: These systems accept and process discrete samples
representing the actual continuous signal. Analogue to Digital Converters are used to
sample the continuous voltage signals representing the original signal.

Do the Digital Electronic Systems use voltages to represent the discrete samples of the
continuous signal? This question can be answered by considering a very simple example of a
calculator which is a Digital Electronic System. Assume that a calculator is calibrated to
represents the number 1 by 1 millivolt (mV). Thus the number 39 is represented bygthe
calculator in terms of voltage as 39 mV. Calculators can also represent large numbers such as
6.25 x 108 (as in 1 Coulomb = 6.25 x 10*® electrons). The value in terms of volts is 6.25 x 20
volts! This voltage value can not be practically represented by any electronic circuit. Thus
Digital Systems do not use discrete samples represented as voltage values.

Input
Continuous Qutput
_ Signal (mV) Continuous
Continuous Signal (mV)
Signal
(Temp °C)
Analogué
S Electronic
Transducer System

Figure 1.5 Analogue Electronic System processing continuous quantities

Digital Systems and Digital Values

Digital systems are designed to work with two voltage values. A +5 volts represents a logic
high state or logic 1 state and 0 volts represents a logic low state or logic 0 state. The Digital
Systems which are based on two voltage values or two states can easily represent any two
values. For example,
e The numbers ‘0’ and ‘1’
The state of a switch ‘on’ or ‘off’
The colour ‘black’ and ‘white’
The temperature ‘hot’ and ‘cold’
An object ‘moving’ or ‘stationary’

Representing two values or two states is not very practical, as many naturally occurring
phenomenons have values or state that are more than two. For example, numbers have
widely varying ranges, a colour palette might have 64 different shades of the colour red, the
temperature of boiling water at room temperature varies from 30 °C to 100 °C. Digital Systems
are based on the Binary Number system which allows more than two or multiple values to be
represented very conveniently.

Binary Number System

© Copyright Virtual University of Pakistan 4

CS302 - Digital Logic & Design

The Binary Number System unlike the Decimal number system is based on two values.
Each digit or bit in Binary Number system can represent only two values, a ‘0’ and a ‘1’. A
single digit of the Decimal Number system represents 10 values, 0, 1, 2 to 9. The Binary
Number System can be used to represent more than two values by combining binary digits or
bits. In a Decimal Number System a single digit can represent 10 different values (0 to 9),
representing more than 10 values requires a combination of two digits which allows up_to 100
values to be represented (0 to 99). A Combination of Binary Numbers is used,to represent
different quantities.

e Represent Colours: A palette of four colours red, blue, green and/yellow can be
represented by a combination of two digital values 00, 01, 10 and 11 respectively:

e Representing Temperature: An analogue value such as 39°C canibe represented in a
digital format by a combination of Os and 1s. Thus 39 is 1001 1&,in digital form.

Any quantity such as the intensity of light, temperature, velogity, celour etc. can be
represented through digital values. The number of digits (Os and 1s) that represents a quantity
is proportional to the range of values that are to be represented. For example, to represent a
palette of eight colours a combination of three digits is used. Representing a temperature
range of 0° C to 100° C requires a combination of up to'seven digits.

Digital Systems uses the Binary Number System to represent two or multiple values,
stores and processes the binary values in terms of.5 valts and 0 volts. Thus the number 39
represented in binary as 100111 is storethelectranically,in as +5 v, Ov, Ov, +5 v, +5 vand +5 v.

Advantages of working in the Digital Domain
Handling information digitally offersyseveral advantages. Some of the merits of a digital

system are spelled out. Details of some these aspects will be discussed and studied in the

Digital Logic Design course. Other aspects will be covered in several other courses.

e Storing and processing data in the digital domain is more efficient: Computers are
very efficient in processing massive amounts of information and data. Computers process
information that is represented digitally in the form of Binary Numbers. A Digital CD stores
large number of video andyaudio’ clips. Sam number of audio and video clips if stored in
analogue form will require a number of video and audio cassettes.

¢ Transmission of data in the digital form is more efficient and reliable: Modern
information transmission techniques are relying more on digital transmission due to its
reliability‘as it isiless prone to errors. Even if errors occur during the transmission methods
exist which“allew for quick detection and correction of errors.

¢ | Detecting and Correcting errors in digital data is easier: Coding Theory is an area
which deals with implementing digital codes that allow for detection and correction of multi-
biterrors. In the Digital Logic Design course a simple method to detect single bit errors
asing the Parity bit will be considered.

¢ Data can be easily and precisely reproduced: The picture quality and the sound quality
of digital videos are far more superior to those of analogue videos. The reason being that
the digital video stored as digital numbers can be exactly reproduced where as analogue
video is stored as a continuous signal can not be reproduced with exact precision.

¢ Digital systems are easy to design and implement: Digital Systems are based on two-
state Binary Number System. Consequently the Digital Circuitry is based on the two-
voltage states, performing very simple operations. Complex Microprocessors are
implemented using simple digital circuits. Several simple Digital Systems will be discussed
in the Digital Logic course.

© Copyright Virtual University of Pakistan 5

CS302 - Digital Logic & Design

o Digital circuits occupy small sp ace: Digital circuits are based on two logical states.
Electronic circuitry that implements the two states is very simple. Due to the simplicity of
the circuitry it can be easily implemented in a very small area. The PC motherboard having
an area of approximately 1 sq.ft has most of the circuitry of a powerful computer. A
memory chip small enough to be held in the palm of a hand is able to store an entire
collection of books.

Information Processing by a Digital System
A Digital system such as a computer not only handles numbers but all kinds of information:

¢ Numbers: A computer is able to store and process all types of numbers, integers, fractions
etc. and is able to perform different kinds of arithmetic operations on the numbers.

e Text: A computer in a news reporting room is used to write and edit news reports. A
Mathematician uses a computer to write mathematical equations explaining the dissipation
of heat by a heat sink. The computer is able to store and process text'and symbols.

¢ Drawings, Diagrams and Pictures: A computer can store very canveniently complex
engineering drawings and diagrams. It allows real life still pictures or videos to be
processed and edited.

e Music and Sound: Musicians and Composers uses\ia £omputer to work on a new
compositions. Computers understand spoken commands,

A Digital System (computer) is capable of handling different types of information, which is
represented in the form of Binary Numbers. The differentitypes of information use different
standards and binary formats. For example, {camputers use the Binary number system to
represent numbers. Characters used in writing text,are represented through yet another
standard known as ASCIl which allows “alphabets, punctuation marks and numbers to be
represented through a combination of Os and 1s:

Digital Components and their internal working

Digital system process bhinary, infarmation electronically through specialized circuits
designed for handling digital infermationyThese circuits as mentioned earlier operate with two
voltage values of +5 volts and¢0 volts. These specialized electronic circuits are known as Logic
Gates and are considered to be the Basic Building Blocks of any Digital circuit.

The commonly used Logic Gates are the AND gate, the OR gate and the Inverter or NOT
Gate. Other gatesithatare frequently used include NOR, NAND, XOR and XNOR. Each of
these gates isidesigned to'perform a unigue operation on the input information which is known
as a logical or Boolean-operation.

Large and complex digital system such as a computer is built using combinations of these
basic Logic Gates: These basic building blocks are available in the form of Integrated Circuit or
ICs. These \gates are implemented using standard CMOS and TTL technologies that
determine the operational characteristics of the gates such as the power dissipation,
operational voltages (3.3v or 5 v), frequency response etc.

© Copyright Virtual University of Pakistan 6

CS302 - Digital Logic & Design

> D>

AND Gate OR Gate NOT Gate
NAND Gate NOR Gate XOR Gate XNOR\Gate

Figure 1.6 Symbolic representations of logic gates.

Combinational Logic Circuits and Functional Devices

The logic gates which form the basic building blocksgofia digital*system are designed to
perform simple logic operations. A single logic gate iSinot of much use unless it is connected
with other gates to collectively act upon the input data. Different gates are combined to build a
circuit that is capable of performing some useful operation like adding three numbers. Such
circuits are known as Combinational Logic Circuits or Combinational Circuits. An Adder
Combinational Circuit that is able to add two'single bit binary numbers and give a single bit
Sum and Carry output is shown. Figure 1.7.

Implementing large digital systemiby connecting together logic gates is very tedious and

time consuming; the circuit implemented-accupies large space, are power hungry, slow and
are difficult to troubleshoot.

A P
B e

B
Figure 1.7 1-bit Full-Adder Combinational Circuit

Digital circuits to perform specific functions are available as Integrated Circuits for use.
Implementing a Digital system in terms of these dedicated functional units makes the system
more economical and reliable. Thus an adder circuit does not have to be implemented by
connecting various gates, a standard Adder IC is available that can be readily used. Other

© Copyright Virtual University of Pakistan 7

CS302 - Digital Logic & Design

commonly used combinational functional devices are Comparators, Decoders, Encoders,
Multiplexers and Demultiplexers.

Sequential logic and implementation

Digital systems are used in vast variety of industrial applications and house hold electronic
gadgets. Many of these digital circuits generate an output that is not only dependent on the
current input but also some previously saved information which is used by the digital gircuit.
Consider the example of a digital counter which is used by many digital applications where a
count value or the time of the day has to be displayed. The digital counter which_counts
downwards from 10 to O is initialized to the value 10. When the counter receives an/external
signal in the form of a pulse the counter decrements the count value to 9. QOn‘receiving
successive pulses the counter decrements the currently stored count value by¢one, until the
counter has been decremented to 0. On reaching the count value zere, the counter could
switch off a washing machine, a microwave oven or switch on an air-conditioning,system.

The counter stores or remembers the previous count value. The new count value is
determined by the previously stored count value and the new input whichiit receives in the
form of a pulse (a binary 1). The diagram of the counter cireuitdS“shown in the figure. Figure
1.8.

Digital circuits that generate a new output on the basis ofr some previously stored
information and the new input are known as Sequentiahcircuits. Sequential circuits are a
combination of Combinational circuits and a mmemory\element which is able to store some
previous information. Sequential circuits are a verypimportant part of digital systems. Most
digital systems have sequential logic in addition\to the ecombinational logic. An example of
sequential circuits is counters such as the down-counter which generates a new decremented
output value based on the previous stored value and an external input. The storage element or
the memory element which is an essential part of a sequential circuit is implemented a flip-flop
using a very simple digital circuit known as a flip-flop.

Hplipinl v Output
Clock Inputs | Com-blna.uon-al E
- Logic Circuit Count

Previous Memory

Count

Value Element

A

Figure 1.8 A Counter Sequential Circuit

Programmable Logic Devices (PLDs)
The modern trend in implementing specialized dedicated digital systems is through
configurable hardware; hardware which can be programmed by the end user. A digital

© Copyright Virtual University of Pakistan 8

CS302 - Digital Logic & Design

controller for a washing machine can be implemented by connecting together pieces of
combinational and sequential functional units. These implementations are reliable however
they occupy considerable space. The implementation time also increases. A general purpose
circuit that can be programmed to perform a certain task like controlling a washing machine
reduces the implementation cost and time.

Cost is incurred on implementing a digital controller for a washing machine whichgequires
that an inventory of all its components such as its logic circuits, functional devices and the
counter circuits be maintained. The implementation time is significantly high as_all the cireuit
components have to be placed on a circuit board and connected together. If there'is a change
in the controller circuit the entire circuit board has to be redesigned. A PED based washing
machine controller does not require a large inventory of components to be 'maintained. Most of
the functionality of the controller circuit is implemented within a_single PLD,integrated circuit
thereby considerably reducing the circuit size. Changes in the controllerndesign can be readily
implemented by programming the PLD.

Programmable Logic Devices can be used to implement Combinational and Sequential
Digital Circuits.

Memory

Memory plays a very important role in Digital systems. A research article being edited by a
scientist on a computer is stored electronically,in\the digital memory whilst changes are being
made to the document. Once thedocument has be finalized and stored on some media for
subsequent printing the memory can-be reused to work on some other document. Memory
also needs to store information permanently even when the electrical power is turned off.
Permanent memories usually contain essential information required for operating the digital
system. This important informationiis provided by the manufacturer of a digital system.

Memory is organized to allow large amounts of data storage and quick access. Memory
(ROM) which permanently stores data allows data to be read only. The Memory does not allow
writing of data. Volatile memory (RAM) does not store information permanently. If the power
supplied to the . RAM"circuitry is turned off, the contents of the RAM are permanently lost and
can not beyrecovered when power is restored. RAM allows reading and writing of data. Both
RAM and ROM arelan essential part of a digital system.

Analogue to Digital and Digital to Analogue conversion and Interfacing

Real-world quantities as mention earlier are continuous in nature and have widely varying
rangess Processing of real-world information can be efficiently and reliably done in the digital
domain. This requires real-world quantities to be read and converted into equivalent digital
values which can be processed by a digital system. In most cases the processed output needs
to_be converted back into real-world quantities. Thus two conversions are required, one from
the real-world to the digital domain and then back from the digital domain to the real-world.

Modern digitally controlled industrial units extensively use Analogue to Digital (A/D) and
Digital to Analogue (D/A) converters to covert quantities represented as an analogue voltage
into an equivalent digital representation and vice versa. Consider the example of an industrial
controller that controls a chemical reaction vessel which is being heated to expedite the
chemical reaction. Figure 1.9. Temperature of the vessel is monitored to control the chemical
reaction. As the temperature of the vessel rises the heat has to be reduced by a proportional

© Copyright Virtual University of Pakistan 9

CS302 - Digital Logic & Design

level. An electronic temperature sensor (transducer) converts the temperature into an
equivalent voltage value. This voltage value is continuous and proportion to the temperature.
The voltage representing the temperature is converted into a digital representation which is fed
to a digital controller that generates a digital value corresponding to the desired amount of
heat. The digitized output representing the heat is converted back to a voltage value which is
continuous and is used to control a valve that regulates the heat. An A/D converter converts
the analogue voltage value representing the temperature into a corresponding digital value far
processing. A D/A converter converts back the digital heat value to its corresponding
continuous value for regulating the heater.

Digital
Controller
A/D D/A
Converter Converter
Transducer
Vessel
[Heatef

Figure 1.9 Digitally Controlled Industrial Heater Unit

A/D and D/A converters are an important aspect of digital systems. These devices serve
as a bridge between the realgandadigital, world allow the two to communicate and interact
together.

Number Systems and Codes

Decimal Number System

The decimal number system has ten unique digits 0, 1, 2, 3... 9. Using these single digits,
ten different values can be represented. Values greater than ten can be represented by using
the same digits in different combinations. Thus ten is represented by the number 10, two
hundred, seventy five is represented by 275 etc. Thus same set of nhumbers 0,1 2... 9 are
repeated in a Specific order to represent larger numbers.

The decimal number system is a positional number system as the position of a digit
represents its true magnitude. For example, 2 is less than 7, however 2 in 275 represents 200,
whereas 7 represents 70. The left most digit has the highest weight and the right most digit
has the lowest weight. 275 can be written in the form of an expression in terms of the base
value of the number system and weights.

2x102+7x10*+5x10°=200+70+5 =275

where, 10 represents the base or radix
102, 10%, 10° represent the weights 100, 10 and 1 of the numbers 2, 7 and 5

© Copyright Virtual University of Pakistan 1

CS302 - Digital Logic & Design

Fractions in Decimal Number System

In a Decimal Number System the fraction part is separated from the Integer part by a
decimal point. The Integer part of a humber is written on the left hand side of the decimal
point. The Fraction part is written on the right side of the decimal point. The digits of the
Integer part on the left hand side of the decimal point have weights 10° 10!, 10° etc.
respectively starting from the digit to the immediate left of the decimal point and moving away
from the decimal point towards the most significant digit on the left hand side. Eractiens in
decimal number system are also represented in terms of the base value of the number, system
and weights. The weights of the fraction part are represented by 10?1, 1072, 103 ete. The
weights decrease by a factor of 10 moving right of the decimal point. Thednumber 382.91 in
terms of the base number and weights is represented as

3x10°+8x10*+2x10°+9x10*+1x10%=300+80+2+0.9+0:01 = 382.91

Caveman number system

A number system discovered by archaeologists in a prehistoric cave indicates that the
caveman used a number system that has 5 distinctgshapesyy, A, >, Q and 1. Furthermore it
has been determined that the symbols > to 1 represents the decimal equivalents 0 to 5
respectively.

Centuries ago a caveman returning after ‘aysuceessful hunting expedition records his
successful hunt on the cave wall by carving out the.humbers A1. What does the number A1
represent? The table 1.1 indicates that the Caveman numbers At represents decimal number
9.

Decimal Number | Caveman Number®| Decimal Number | Caveman Number
0 Y 10 >y
1 A 11 >A
2 > 12 >>
3 Q 13 >0
4 { 14 >1
5 AY 15 Q>
6 AA 16 QA
7 A> 17 Q>
8 AQ 18 Q0
9 At 19 Q1
20 1
Table 1.1 Decimal equivalents of the Caveman Numbers

The Caveman is using a Base-5 number system. A Base-5 number system has five
unique symbols representing numbers 0 to 4. To represent numbers larger than 4, a
combination of 2, 3, 4 or more combinations of Caveman numbers are used. Therefore, to
represent the decimal number 5, a two number combination of the Caveman number system is
used. The most significant digit is A which is equivalent to decimal 1. The least significant digit
is > which is equivalent to decimal 0. The five combinations of Caveman numbers having the
most significant digit A, represent decimal values 5 to 9 respectively. This is similar to the
Decimal Number system, where a 2-digit combination of numbers is used to represent values

© Copyright Virtual University of Pakistan 11

CS302 - Digital Logic & Design

greater than 9. The most significant digit is set to 1 and the least significant digit varies from O
to 9 to represent the next 10 values after the largest single decimal number digit 9.

The Caveman number A1 can be written in expression form based on the Base value 5
and weights 5°, 5%, 52 etc.

=AX5'+1x5°=Ax5+1x1

Replacing the Caveman numbers A and 1 with equivalent decimal values in the expression
yields

=Ax5'+1x5°=1x5+4x1=9
The number AQ1Y in decimal is represented in expression form as
AX53+Qx5%2+1x5 '+ Yy x5°=Ax125+Qx25+1x5+Y x1
Replacing the Caveman numbers with equivalent decimal valuesdnthe expression yields
=(1)x125+ (3)x25+ (4) x5+ (0) x 1 =125 +75+20 +0.= 220
Binary Number System
The Caveman Number system is a hypothetical number system introduced to explain
that number system other than the Decimal Number, system can exist and can be used to
represent and count numbers. Digital systems use a Binary number system. Binary as the

name indicates is a Base-2 number system having only two numbers 0 and 1. The Binary digit
0 or 1 is known as a ‘Bit’. Table 1.2

Decimal Number | Binary,Number Decimal Number | Binary Number
0 0 10 1010
1 1 11 1011
2 10 12 1100
3 11 13 1101
4 100 14 1110
5 101 15 1111
6 110 16 10000
7 121 17 10001
8 1000 18 10010
9 1001 19 10011
20 10100
Table 1.2 Decimal equivalents of Binary Number System

Counting in Binary Number system is similar to counting in Decimal or Caveman
Number systems. In a decimal Number system a value larger than 9 has to be represented by
2, 3, 4 or more digits. In the Caveman Number System a value larger than 4 has to be
represented by 2, 3, 4 or more digits of the Caveman Number System. Similarly, in the Binary
Number System a Binary number larger than 1 has to be represented by 2, 3, 4 or more binary
digits.

© Copyright Virtual University of Pakistan 1

CS302 - Digital Logic & Design

Any binary number comprising of Binary 0 and 1 can be easily represented in terms of
its decimal equivalent by writing the Binary Number in the form of an expression using the
Base value 2 and weights 2°, 21, 22 etc.

The number 10011, (the subscript 2 indicates that the number is a binary number and
not a decimal number ten thousand and eleven) can be rewritten in terms of the expression

10011, = (1 x2) +(0x2%)+ (0x2%) + (1 x2Y) + (1 x 29
=(1x16)+(O0x8)+(O0Ox4)+(1x2)+(1x1)
=16+0+0+2+1
=19

Fractions in Binary Number System

In a Decimal number system the Integer part and the Fractionfpartof a number are
separated by a decimal point. In a Binary Number System the Integer part and the Fraction
part of a Binary Number can be similarly represented separated by a‘'decimal point. The Binary
number 1011.101, has an Integer part represented by 10417and a fraction part 101 separated
by a decimal point. The subscript 2 indicates that the:numberis a binary number and not a
decimal number. The Binary number 1011.101, canbe written in terms of an expression using
the Base value 2 and weights 23, 22, 21, 2°, 24,22 and23.

1011101, =(1x2)+ (0x2) + (1 x2H) + (Lx 29+ (1 x2Y) + (0x2?) + (1 x 23)
=(1x8)+0Ox4)+(1x2)+(1Ax1)+(@Ax1/2)+(0x1/4)+ (1x1/8)
=8+0+2+1+05+0+0.125
=11.625

Computers do handle numbers such as 11.625 that have an integer part and a fraction
part. However, it does not use.the binary representation 1011.101. Such numbers are
represented and used in‘EFloating-Point Numbers notation which will be discussed latter.

© Copyright Virtual University of Pakistan 13

CS302 - Digital Logic & Design

For short lectures, Search on Youtube:
“Cs302 short lectures By Amir”

Lesson No. 02

NUMBER SYSTEMS

Binary to Decimal conversion

Most real world quantities are represented in Decimal Number System. Digital Systems
on the other hand are based on the Binary Number System. Therefore, when converting from
the Digital Domain to the real-world, Binary numbers have to be represented in terms of their
Decimal equivalents.

The method used to convert from Binary to Decimal is the Sum=of-Weights method.
The Sum-of-Weights method has been used to represent the Caveman numbers AT, AQ1>
and the Binary numbers 10011 and 1011.101 in the first lecture.

1. Sum-of-Weights Method

Sum-of-weights as the name indicates sums the weights of the Binary Digits (bits) of a
Binary Number which is to be represented in Decimal. The Sum-of-Weights method can be
used to convert a Binary number of any magnitude to its equivalent Decimal representation.

In the Sum-of-Weights method an extended expression is‘written in terms of the Binary
Base Number 2 and the weights of the Binary. number<to be converted. The weights
correspond to each of the binary bits which are:multiplied by the corresponding binary value.
Binary bits having the value 0 do not contribute any. valuetowards the final sum expression.

The Binary number 10110, is therefore written in the form of an expression having
weights 2°, 21, 22, 23 and 2* corresponding to the bits 0, 1, 1, 0 and 1 respectively. Weights 2°
and 23 do not contribute in the, final. sum as the binary bits corresponding to these weights
have the value O.

10110, =1x2+0x22+1x2%+1x2'+0x2°
=16+0+4+2+0
=22

2. Sum-of-non-zero terms

In the Sum-of-Weights method, the Binary bits 0 do not contribute towards the final
sum representing the decimal equivalent. Secondly, the weight of each binary bit increases by
a factor of 2 starting with a weight of 1 for the least significant bit. For example, the Binary
number 10110zhas weights 2°=1, 21=2, 22=4, 23=8 and 2*=16 corresponding to the bits 0, 1,
1; 0 and 1 respectively.

The Sum-of-non-zero terms method is a quicker method to determine decimal
equivalents of binary numbers without resorting to writing an expression. In the Sum-of-non-
zero terms method the weights of non-zero binary bits are summed, as the weights of zero
binary bits do not contribute towards the final sum representing the decimal equivalent.

The weights of binary bits starting from the right most least significant bit is 1, The next
significant bit on the left has the weight 2, followed by 4, 8, 16, 32 etc. corresponding to higher
significant bits. In binary number system the weights of successive bits increase by an order of
2 towards the left side and decrease by an order of 2 towards the right side. Thus a binary
number can be quickly converted into its decimal equivalent by adding weights of non-zero

© Copyright Virtual University of Pakistan 1

CS302 - Digital Logic & Design

terms which increase by a factor of 2. Binary numbers having an integer and a fraction part
can similarly be converted into their decimal equivalents by applying the same method.

N

>

© Copyright Virtual University of Pakistan 15

CS302 - Digital Logic & Design

A quicker method is to add the weights of non-zero terms. Thus for the numbers
o 10011,=16+2+1=19
o 1011.101,=8+2+1+%+1/8=11+5/8 =11.625

Decimal to Binary conversion

Conversion from Decimal to Binary number system is also essential to represent real-world
guantities in terms of Binary values. The Sum-of-weights and repeated division by 2 methods
are used to convert a Decimal number to equivalent Binary.

1. Sum-of-Weights

The Sum-of-weights method used to convert Binary numbers into their Decimal
equivalent is based on adding binary weights of the binary number bits. Converting back from
the decimal number to the original Binary number requires finding the highest weight included
in the sum representing the decimal equivalent. A Binary 1 is marked,to represent the bit
which contributed its weight in the Sum representing the decimal\equivalent. The weight is
subtracted from the sum decimal equivalent. The next highest weight included in the sum term
is found. A binary 1 is marked to represent the bit which contributed its weight in the sum term
and the weight is subtracted from the sum term. This process is repeated until the sum term
becomes equal to zero. The binary 1s and Os represent the hinary bits that contributed their
weight and bits that did not contribute any weight respectively.

The process of determining Binary equivalent offa Decimal number 392 and 411 is
illustrated in a tabular form. Table 2.1.

Sum Term | Highest Binary Sum Term
Weight Number = Sum Term — Highest Weight
411 256 100000000 155
155 128 110000000 27
27 16 110010000 11
11 8 110011000 3
3 2 110011010 1
1 1 110011011 0
Table 2.1a Converting Decimal to Binary using Sum-of-Weights Method
Sum Term | Highest Binary Sum Term
Weight Number = Sum Term — Highest Weight
392 256 100000000 136
136 128 110000000 8
8 8 110001000 0
Table 2.1b Converting Decimal to Binary using Sum-of-Weights Method

The Sum of weights method requires mental arithmetic and is a quick way of
converting small decimal numbers into binary. With practice large Decimal numbers can be
converted into Binary equivalents.

2. Repeated Division-by-2
Repeated Division-by-2 method allows decimal numbers of any magnitude to be
converted into binary. In this method the Decimal number to be converted into its Binary

© Copyright Virtual University of Pakistan 1

CS302 - Digital Logic & Design

equivalent is repeatedly divided by 2. The divisor is selected as 2 because the decimal number
is being converted into Binary a Base-2 Number system. Repeated division method can be
used to convert decimal number into any Number system by repeated division by the Base-
Number. For example, the decimal number can be converted into the Caveman Number
system by repeatedly dividing by 5, the Base number of the Caveman Number System. The
Repeated Division method will be used in latter lectures to convert decimal into Hexadecimal
and Octal Number Systems.

In the Repeated-Division method the Decimal number to be converted is divided by the
Base Number, in this particular case 2. A quotient value and a remainder value is generated,
both values are noted done. The remainder value in all subsequent divisions would/be eithera
0 or a 1. The quotient value obtained as a result of division by 2 is divided again by 2. The new
quotient and remainder values are again noted down. In each step of the repeated division
method the remainder values are noted down and the quotient values are repeatedly divided
by the base number. The process of repeated division stops when the quotient value’becomes
zero. The remainders that have been noted in consecutive steps are written out to indicate the
Binary equivalent of the Original Decimal Number.

Number | Quotient after division Remainder after division
392 196 0
196 98 0
98 49 0
49 24 1
24 12 0
12 6 0
6 3 0
3 1 1
1 0 1

Table 2.2 Converting Decimal.ta Binary using Repeated Division by 2 Method

The process of determining, the Binary equivalent of a Decimal number 392 is
illustrated in a tabular form. Table 2.2» Reading the numbers in the Remainder column from
bottom to top 110001000 gives the.binary equivalent of the decimal number 392

Converting Decimal fractions to Binary

Two methods are used to Convert Decimal fractions to Binary. The Sum-of-Weights
method, which has beeh described and used to convert Decimal Integers into Binary
Equivalents,isfapplied to convert Decimal fractions into Binary fractions. This method requires
mentakarithmetic and is suitable for small numbers. The conversion of Decimal fraction 0.625
into Binary equivalent is illustrated in a tabular form. Table 2.3

Sum Term | Highest Binary Sum Term

Weight Number = Sum Term — Highest Weight
0.625 0.500 0.100 0.125
0.125 0.125 0.101 0

Table 2.3 Converting Decimal to Binary using Sum-of-Weights Method

Repeated Multiplication-by-2 Method
An alternate to the Sum-of-Weights method used to convert Decimal fractions to
equivalent Binary fractions is the repeated multiplication by 2 method. In this method the

© Copyright Virtual University of Pakistan 17

CS302 - Digital Logic & Design

number to be converted is repeatedly multiplied by the Base Number to which the number is
being converted to, in this case 2. A new number having an Integer part and a Fraction part is
generated after each multiplication. The Integer part is noted down and the fraction part is
again multiplied with the Base number 2. The process is repeated until the fraction term
becomes equal to zero.

Repeated Multiplication-by-2 method allows decimal fractions of any magnitude, to be easily
converted into binary. The conversion of Decimal fraction 0.625 into Binary equivalentiusing
the Repeated Multiplication-by-2 method is illustrated in a tabular form. Table 2.4, Reading the
Integer column from top to bottom and placing a decimal point in the left most pesitionigives
0.101 the binary equivalent of decimal fraction 0.625

Number | Integer part after | Fraction part after
multiplication multiplication

0.625 1 0.25

0.25 0 0.5

0.5 1 0.0

Table 2.4 Converting Decimal to Binary using repeatedsMultiplication-by-2 Method

Binary Arithmetic
Digital systems use the Binary aumber'systemyto represent numbers. Therefore these
systems should be capable of performing standard arithmetic operations on binary numbers.

1. Binary Addition

Binary Addition is identical to Decimal Addition. By adding two binary bits a Sum bit
and a Carry bit are generated. The only difference between the two additions is the range of
numbers used. In Binary Addition, four possibilities exist when two single bits are added
together. The four possible input combinations of two single bit binary numbers and their
corresponding Sum and"Carry Outputs are specified in table 2.5.

First Number Second Number | Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 2.5 Addition of two Single Bit Binary Numbers

Thefirst three additions give a result 0, 1 and 1 respectively which can be represented
by a single binary digit (bit). The fourth addition results in the number 2, which can be
represented in binary as 10,. Thus two digits (bits) are required. This is similar to the addition
of9 + 3 in decimal. The answer is 12 which can not be represented by a single digit, thus two
digits are required. The number 2 is the sum part and 1 is the carry part.

Any number of binary numbers having any number of digits can be added together.
Thus the number 1011, 110, 1000 and 11 can be added together. Most significant digits (bits)
of second and fourth numbers are assumed to be zero.

© Copyright Virtual University of Pakistan 1

CS302 - Digital Logic & Design

Carry 1 10 1 Decimal
Equivalent

15t Number 1 0 1 1 (11)

2"Y Number 1 1 0 (06)

3 Number 1 0 0 0 (08)

4" Number 1 1 (03)

Result 1 1 1 0 0 (28)

Table 2.6 Adding multiple binary numbers of different sizes

2. Binary Subtraction

Binary Subtraction is identical to Decimal Subtraction. The only difference between the
two is the range of numbers. Subtracting two single bit binary humbers results in a difference
bit and a borrow bit. The four possible input combinations offtwofsingle bit binary numbers and
their corresponding Difference and Borrow Outputs are specified in table 2.7. It is assumed
that the second number is subtracted from the first number.

First Number Second Number | Difference Borrow
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Table 2.7 Subtraction of two Single Bit Binary Numbers

The second subtraction subtractsyl from O for which a Borrow is required to make the
first digit equal to 2. The Difference, is 1. This is similar to decimal subtraction when 17 is
subtracted from 21. The first'digit 7 jcan not be subtracted from 1, therefore 10 is borrowed
from the next significant digit. Berrowing a 10 allows subtraction of 7 from 11 resulting in a
Difference of 4.

3. Binary Multiplication

Binary Multiplication is similar to the Decimal multiplication except for the range of
numbers. Four possible combinations of two single bit binary humbers and their products are
listed in table 2.8.

First Number Second Product
Number
0 0 0
0 1 0
1 0 0
1 1 1
Table 2.8 Multiplication of two Single Bit Binary Numbers

Multiplying two binary numbers such as 1101 x 101 is performed by a shift and add
operation. The binary multiplication shifts and adds partial product terms.

© Copyright Virtual University of Pakistan 19

CS302 - Digital Logic & Design

1101

x_101

1101 1% product term
0000 2" product term
1101 3 product term
1000001

4. Binary Multiplication by shifting left

Binary Multiplication can be performed by shifting the binary number towards left. A left
shift by a single bit is equivalent to multiplication by 2. A left shift by two bits is equivalent to
multiplication by 4. Generally, the multiplication factor is determined hy 2" where n is the
number of bit shifts.

00011 (3) original binary number

00110 (6) binary number shifted left by 1 bit
01100 (12) binary number shifted left by 2 bits
11000 (24) binary number shifted left by 3 bits

5. Binary Division
Division in binary follows the same procedure as in the division of decimal numbers. An
example illustrates the division of binary numbers. Figure 2.1.

_10
1011101
101
011
000
11
Figure 2.1 Binary Division

6. Binary Division by Shifting right

Binary Division can be performed by shifting the binary number towards right. A right
shift by a single bit is equivalent to division by 2. A right shift by two bits is equivalent to
division by 4. Generally, the division factor is determined by 2" where n is the number of bit
shifts.

10100 (20) original binary number
01010 (10) binary number shifted right by 1 bit
00101 (5) binary number shifted right by 2 bits

Signed and Unsigned Binary Numbers

Digital systems not only handle positive numbers but both positive and negative
numbers. In the decimal number system positive humbers are identified by the + sign and
negative numbers are represented by the — sign.

In a digital system which uses the Binary number system, the positive and negative
signs can not be represented as + and -. As mentioned in the Overview all forms of numbers,
text, punctuation marks etc. are represented in the form of 1s and 0s. Thus the positive and
negative signs are also presented in terms of binary 0 and 1.

© Copyright Virtual University of Pakistan 2

CS302 - Digital Logic & Design

To handle positive and negative binary numbers, the digital system sets aside the most
significant digit (bit) to represent the sign
¢ MSB setto 1 indicates a negative number
¢ MSB set to 0 indicates a positive number

Thus +13 and -13 are represented as 01101land 11101 respectively. The bits 1101
represent the number 13 and the MSBs 0 and 1 represent positive and negativegsigns
respectively. Thus binary numbers having the MSB signifying the Sign bit are treatedyas
Signed Binary Numbers. This representation is known as the Signed-Magnitude
representation.

Digital systems also handle binary numbers which are assumed to be)positive, and
therefore do not have the most significant sign bit. Such numbers aresknown asyUnsigned
numbers. Digital system thus have to handle two different types of binary'numbers, signed and
unsigned. Thus 11101, represents -13 in signed binary and 29 in unsigned binary. How should
a Digital System treat a binary number? Should it consider it as a signed orwunsigned number?
A digital system on its own can not decide how to handle a binary number. The digital system
has to be notified beforehand to deal with a certain binary/representation as signed or
unsigned.

1’s & 2’s complement

Informing the digital system how to treat a binary number’is not very efficient. A better
way is to represent negative signed numbers,in their 2’s complement form. Using 2’s
Complement form to represent signed numbers,\allows direct manipulation of positive as well
as negative numbers without having to werry about setting the most significant sign bit to
indicate positive and negative numbers.

A 2's complement of a number is obtained by first taking the 1’'s complement of a
number and then adding a 1 to change the 1’s complement to 2’s complement. 1’s
complement of a number is obtained by simply inverting all its bits. Obtaining the 2’s
complement of 13 is described in the example below.

01101 The number 13

10010 1’s complement of 13 is obtained by inverting all the five bits.

+ 1

10011 2’'s complement of 13 is obtained by adding a 1 to its 1’s complement.

Infa 2’ssc€omplement number system all negative numbers are represented in their 2’s
complement form and all positive numbers are represented in their actual form. Negative
numbers can be.readily identified by their MSBs which are set to 1. Thus in a 2’s complement
representation +13 is represented as 01101 and -13 is represented as 10011.

Bydhaving numbers represented in their 2’s complement form addition and subtraction
operations can easily be performed without having to worry about the sign bits. Thus +13
added to -13 should result in a zero value. This can be verified by directly adding the +13 and -
13 in their 2’'s complement forms.

01101
10011
100000

© Copyright Virtual University of Pakistan 21

CS302 - Digital Logic & Design

The most significant carry bit is discarded; retaining only the first 5 bits proves that
adding +13 and -13 results in a zero value. Similarly it can be shown that adding the numbers
+7 and -13 results in -6.

10011 (-13)
00111 (+7)
11010 (-6)

The binary 2’s complement number 11010 has its most significant bit set to 1“indicating
that the number is negative. The actual magnitude of the negative number is determined by
taking the 2's complement of 11010.

11010 Original number
00101 1’s complement of Original number
+1
00110 2’s complement of Original number is equal to 6.

Addition and Subtraction Operations with Signed¢Binary

An additional benefit of using 2’s complement representation for signed numbers is that
both add and subtract operations can be performediby addition. In the above example 13 was
subtracted from 7 by adding 2’s complement of ~13te. 2’s'complement of +7. Four cases of
adding and subtracting numbers using the 2’s.complement representation are shown below.

¢ Both numbers are positive

0101 +5
0010 +2
0111 +7
¢ Both numbers are negative
1011 -5
1110 2
11001 =7 the carry generated from the msb is discarded
¢ One number is positive and its magnitude is larger than the negative number
0101 +5
1110 -2
10011 +3 the carry generated from the msb is discarded

e One number is positive and its magnitude is smaller than the negative number

1011 -5
0010 +2
1101 -3

The four examples show that add and subtract operations can be carried out by an
adder circuit if numbers are represented in their 2’'s complement form. A separate circuit to
perform subtractions is not required.

Range of Sighed and Unsigned Binary numbers
Three different types of Binary representations have been discussed. The Unsigned
Binary representation can only represent positive binary numbers. The Sign-Magnitude can

© Copyright Virtual University of Pakistan 2

CS302 - Digital Logic & Design

represent both positive and negative numbers. The 2’s complement signed representation also
allows positive and negative numbers to be handled.

Each of the three binary number representations can represent certain range of binary
numbers determined by the total number of bits used.

The maximum range of values that can be represented in any number system depends
upon the number of digits assigned to represent the value. A 5-digit car odometer can only.
count up to 99,999 and then it rolls back to 00000. Similarly an 8-digit calculator can @nly
handle integer numbers of the magnitude 99,999,999. A calculator that reserves the maost
significant digit to write + or — can only handle a maximum range of integer numbers from -
9,999,999 to +9,999,999.

A 3-bit unsigned binary number can have values ranging betweens00 and111. Adding
100 and 111 unsigned numbers results in 1011, this result is considered'to bewout of range as
4 bits are required. Similarly a 4-bit sign magnitude number can handle a number range
between -7 and +7. -8 can not be represented as 5-bits are required '11000. A 4-bit 2's
complement based signed number range is between -8 to +7.

The table 2.9 shows the range of values that can be ‘represented by the three Binary
representations using 4-bits.

Decimal Sign-Magnitude | 2’s complement | Unsigned form
Number form form

-8 1000

-7 1111 1001

-6 1110 1020

-5 1101 1011

-4 1100 1100

-3 1011 1101

-2 1020 1110

-1 1001 1111

0 0000 0000 000

1 00041 0001 001

2 0010 0010 010

3 0011 0011 011

4 0100 0100 100

5 0101 0101 101

6 0110 0110 110

7 0111 0111 111

Table 2.9 Range of values represented by 4-bit Binary representations

o Signed Magnitude representation can represent positive and negative numbers in the
range (2"*-1) and -(2™*-1) where n represents the number of bits.

¢ 2’'s complement signed representation can represent positive and negative numbers in the
range (2"*-1) and -(2™') where n represents the number of bits.

¢ The unsigned representation can represent positive numbers in the range 0 to 2"-1, where
n represents the number of bits.

© Copyright Virtual University of Pakistan 23

CS302 - Digital Logic & Design

For short lectures, Search on Youtube:
“Cs302 short lectures By Amir”

Lesson No. 03

NUMBER SYSTEMS

Range of Numbers and Overflow

When arithmetic operation such as Addition, Subtraction, Multiplication and Division
are performed on numbers the results generated may exceed the range of values specified by
the Binary representations. The values that exceed the specified range can not be correctly
represented and are considered as Overflow values.

For example, a 3-bit Unsigned representation can correctlyarepresentiUnsigned Binary
values in the range 0 to 23-1 (0 to 7). Adding 3-bit Unsigned 010 (2) to anether 3-bit Unsigned
111 (7) results in 1001 (9) which exceeds the 3-bit unsigned range and is considered to be an
Overflow. Similarly, 1011 (-5) and 1100 (-4) values represented in 4-bit 2’s complement form
when added together result in 10111 (-9) which exceeds_the 4-bit 2's complement range of
values (2*1-1) and -(2*?) (7 to -8) and is considered as,an Overflow.

Determining Overflow Conditions for 2’s Complement'Numbers

The Overflow condition can be easily{determined,when two numbers represented in 2’s
Complement form are added together. Consider the four examples described below. All
numbers are represented in 4-bit 2’s Complemented farm.

¢ Both numbers are positive

0101 +5
0100 +4
1001 -7

The result indicates a negative humber as the maost significant bit is a 1. The answer is
incorrect as the result should be positive. The result indicates -7. The correct answer +9
can not be represented using 4-bit 2’s complemented form, thus an Overflow has occurred.

¢ Both numbers are negative

1012)
1100 -4
10111 +7

The carry generated is discarded. The result indicates a positive number as the most
sighificant bit is a 0. The answer is incorrect as the result should be negative. The result
indicates +7. The correct answer -9 can not be represented using 4-bit 2’'s complement
form, thus an Overflow has occurred.

¢ One number is positive and its magnitude is larger than the negative number

0101 +5
1100 -4
10001 +1

The carry generated is discarded. The result is correct.

e One number is Eositive and its magnitude is smaller than the negative number
© Copyright Virtual University of Pakistan 2

CS302 - Digital Logic & Design

1011 -5
0100 +4
1111 -1

>

© Copyright Virtual University of Pakistan

25

CS302 - Digital Logic & Design

The result is correct. As 1111 represents -1.

Analysis of the four addition operation indicates that Overflow conditions can be
determined by looking at the most significant sign bits of the two numbers to be added
together and the most significant sign bits of the sum result. In the first two examples where an
Overflow has occurred the sign bits of both the numbers are the same indicating both numbers
to be positive or negative respectively. The sign bit of the sum term in both cases is opposite
to the signs of the two numbers being added together which can never be. Thus the erroneous
sign bits indicate the Overflow conditions.

Floating-Point Numbers

Modern computers can handle large binary numbers such as 64-bit unsigned number,
the maximum decimal number that can be represented using the 64<bit unsigned
representation is 2%-1 which is nearly equal to1.84 x 10%°.

How does a computer handle numbers larger than 2%-1 or 1.84 X 10%* decimal?
Secondly, numbers used routinely are not only integer numbers but numbers such as 3.14
which have an integer part and a fraction part. Thirdly, how can very smalllnumbers such as
1.84 x 10°*° can be represented in Digital Systems?

The floating-point number system, based on scientific notation is capable of
representing very large and very small numbers without having to increase the number of bits.
Numbers having an integer part and a fraction part are also easily represented using the
Floating-Point representation.

Floating point numbers are definedyusing certain standards. The ANSI/IEEE Standard
754 defines a 32-bit Single-Precision FloatingyPaint format for binary numbers. The 32-bit
Single-Precision F.P. format is shown in Figure 3.1:

| S | Exponent ["Mantissa |

¢ The single Sign (S) bitrepresents the sign of the number (0=positive 1=negative)
e The Exponent (E) 8 bits represent the exponent
¢ The Mantissa‘23/bits represent the magnitude of the number

Figure 3.1 Single-Precision 32-bit Floating Point Number Format

Decimal Number Floating-Point Format

To helpgunderstand how numbers are represented in the 32-bit Single Precision
Floating Point format. Consider a similar 15 digit Decimal Number format to represent very
large and very small decimal numbers. The 15-digit floating point format to represent decimal
numbers.is shown in Figure 3.2.

[S[E[E[MIMIM[M|M|M|M[M[M[M[M]|M]

e The Sign (S) 1 digit represents the sign of the number (+/-)
e The Exponent (E) 2 digits represent the exponent
¢ The Mantissa 12 digits represent the magnitude of the number

© Copyright Virtual University of Pakistan 2

CS302 - Digital Logic & Design

Figure 3.2 15-digit Decimal Floating Point Number Format

The number 6918.3125 can be written as 6.9183125 x 103,

o 69183125 represents the magnitude of the number (mantissa)

e 3 represents the exponent

e The decimal point is moved to the extreme left of the number (normalized) so that the
magnitude is represented by a fraction part.

The number 0.69183125 x 10* is represented in decimal f.p. notation as

[(+]ofaf6fof1]8[3[1]2[5][0f0]0]0]

e Using this 15 digit (including the sign digit) notation the dargest number that can be
represented is 0.999,999,999,999 x 10%

Representing Negative Exponent Values
The 15-digit decimal floating-point format does nat allow negative exponents to be
represented. There are two options available

¢ Increase the Exponent field by one digit to allow for the sign to represent positive and
negative exponents. The total number of@digits,increasesto 16.

¢ Used a Biased Exponent scheme. Instead)of writing the exponent value directly add the
value 50 to the exponent and write the result in*the exponent field. Using this biased
scheme the maximum positive_exponent value that can be represented is 49 (49 + 50 =
99). The smallest exponent that'can be represented is -50 (-50 + 50 = 0).

After allowing positive and negative ‘exponent values to be represented, the range of
positive and negative decimal numbers that can be represented using the decimal f.p. notation
is 0.999,999,999,999 x 10%°to 0.999,999,999,999 x 10%°

Representing Zero and Infinity Values
How should. thes\number Zefo and the value Infinity be represented using the 15-digit
decimal floating point,format?

¢ The number-zero can be represented by setting al the Mantissa digits to 0. The Biased
exponentfield canbe set to any number and the sign field can be set to + or —
¢ [The number infinity can not be represented.

The_solution to represent infinity is to set aside a biased exponent value to represent
infinity:“There are two options available

o Allow numbers having the maximum and minimum exponent values to be 48 and -49
instead of 49 and -50. Thus the Biased exponent values would range between 98 (50 + 48
=98) and 01 (-49 + 50 = 1). The biased exponent value 00 can be used to represent the
number zero whatever the value of the mantissa. The biased exponent value 99 can be
used to represent the number infinity what ever the value of mantissa.

o Allow numbers having the maximum and minimum exponent values to be 49 and -48
instead of 49 and -50 and selecting 49 as the biased number. Thus the Biased exponent
values would range between 98 (49 + 49 = 98) and 01 (-48 + 49 = 1). The biased exponent
value 00 can be used to represent the number zero whatever the value of the mantissa.

© Copyright Virtual University of Pakistan 27

CS302 - Digital Logic & Design

The biased exponent value 99 can be used to represent the number infinity what ever the
value of mantissa. This approach is perhaps better as the range of maximum positive
exponent remains 49 and the range of values having a negative exponent have been
reduced to -48.

Representing a Decimal fraction number in 32-bit Single-Precision Floating Point format
The 32-bit Single Precision Floating Point format represents the Exponent value,as @&
Biased Number, reserving the exponent values 0 and 255 to represent the value zeroand
infinity respectively. The range of exponent value is from +127 to -126.
The step wise representation of a decimal number 6918.3125 in 32-bit Floating Peint
format
¢ Convert Decimal number into equivalent Binary representation: Binary equivalent of
Decimal number 6918.3125 is 1101100000110.0101
e Normalizing the binary number: 1.1011000001100101 x 2*2
¢ Representing the exponent in Biased 127: exponent is 12 + 127 =139 =10001011

| 0 [10001011 | 10110000011001010000000 |

e The Mantissa is 10110000011001010000000 insteadyof,110110000011001010000000 as
all binary numbers that are normalized always have a leading 1. In the f.p. format the
leading 1 is not written, however it is taken intofaccountin,all calculations. The leading 1
which is not written is known as a hidden 1.

Arithmetic Operations on Floating Point Numbers
Arithmetic operations can be direetly “performed on floating point numbers by
manipulating the mantissa and exponent parts ofithe floating point numbers.

Two floating point numbers can be added by adding together their mantissas ensuring
that the exponent parts of bothwthe aumbers are the same. If the exponents of the two floating
point humbers that are to be added together are not the same than decimal point has to be
adjusted for one of the floating'point.number to make both the exponents equal. Similarly, two
floating point numbers having, the same €xponents can be subtracted by subtracting their
corresponding mantissas. ‘Ifiithe exponents of the two numbers to be subtracted are not equal,
then decimal point is adjusted to make the two exponents equal.

Multiplication®is“performed by multiplying the mantissas together and adding their
correspondingrexponents. Division is performed by dividing the mantissa parts and subtracting
the corresponding_exponénts. The examples illustrate arithmetic operations on floating point
numbers.

723 <4represented in f.p. as exponent2 mantissa 7.23

+ 1347 represented inf.p. as exponent2 mantissa 1.34
857/ Adding together the mantissa part results in

exponent2 mantissa 8.57

723 represented in f.p. as exponent2 mantissa 7.23
+ 2015 represented inf.p. as exponent3 mantissa 2.015
2738 Adjusting the decimal point of the first number
exponent3 mantissa 0.723
Adding together the mantissa pert results in
exponent3 mantissa 2.738

© Copyright Virtual University of Pakistan 2

CS302 - Digital Logic & Design

723 represented in f.p. as exponent2 mantissa 7.23

- 134 represented inf.p. as exponent2 mantissa 1.34
589 Subtracting together the mantissa part results in

exponent2 mantissa 5.89

2015 represented inf.p. as exponent3 mantissa 2.015
- 723 represented in f.p. as exponent2 mantissa 7.23
1292 Adjusting the decimal point of the second number
exponent3 mantissa 0.723
Subtracting the mantissa pert results in
exponent3 mantissa 1.292

723 represented inf.p. as exponent2 mantissa 7.23
x 34 representedinf.p. as exponentl mantissa 3.4
24582 Multiplying the mantissa parts and adding the exponents‘results in
exponent4 mantissa 24.582

697 represented inf.p. as exponent2 mantissa6.97
+ 41 represented inf.p. as exponent1l , mantissa 4.1
17 Dividing the mantissa part and subtractingthe exponents results in

exponentill ““mantissa 1.7

64-bit Double-Precision Floating Point format

The 32-bit Single precisiondfloating) pointirepresentation can represent largest positive
or negative number of the order of 2%2% and the smallest positive or negative number of the
order of 21?5, To represent numbers larger than 22" and numbers smaller than 2126, 64- bit
Double Precision floating point fokmat is used.

The 64-bit Double-Precision format sets aside 11 bits to represent the exponent as
Biased-1023 and a mantissa ofib2 bits. A single bit, the most significant bit, is set aside for the
sign.

Hexadecimal Numbers

Representing'even small number such as 6918 requires a long binary string
(11011000001 10).of 0s and 1s. Larger decimal numbers would require lengthier binary strings.
Writing,sueh loeng string is tedious and prone to errors.

The Hexadecimal number system is a base 16 number system and therefore has 16
digits and ishused primarily to represent binary strings in a compact manner. Hexadecimal
number system is not used by a Digital System. The Hexadecimal number system is for our
convenience to long binary strings in a short and concise form. Each Hexadecimal Number
digitecan represent a 4-bit Binary Number. The Binary Numbers and the Hexadecimal
equivalents are listed in Table 3.1

Decimal Binary Hexadecimal | Decimal | Binary Hexadecimal
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

© Copyright Virtual University of Pakistan 29

CS302 - Digital Logic & Design

Table 3.1 Hexadecimal Equivalents of Decimal and Binary Numbers

Counting in Hexadecimal

Counting in Hexadecimal is similar to the other number systems already discussed.
The maximum value represented by a single Hexadecimal digit is F which is equivalent to
decimal 15. The next higher value decimal 16 is represented by a combination of two
Hexadecimal digits 1016 or 10 H. The subscript 16 indicates that the number is Hexadecimal
10 and not decimal 10. Hexadecimal Numbers are also identified by appending the character
H after the number. The Hexadecimal Numbers for Decimal numbers 16 to 39 are Jisted in
Table 3.2.

Decimal Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal
16 10 24 18 32 20
17 11 25 19 33 21
18 12 26 1A 34 22
19 13 27 1B 35 23
20 14 28 1C 36 24
21 15 29 1D 37 25
22 16 30 1E 38 26
23 17 31 1F 39 27
Table 3.2 Counting using Hexadecimal Numbers

Binary to Hexadecimal Conversion

Converting Binary to Hexadecimal isha very simple operation. The Binary string is
divided into small groups of 4-bits starting from theyleast significant bit. Each 4-bit binary group
is replaced by its Hexadecimal equivalent.

11010110101110010110 “Binary,Number
1101 0110 1011 1001 01104Dividing inte groups of 4-bits
D 6 B 9 6(Replacing each group by its Hexadecimal equivalent

Thus 11010110101110020110is represented in Hexadecimal by D6B96

Binary strings which, cananot be exactly divided into a whole number of 4-bit groups are
assumed te'have 0’s appended in the most significant bits to complete a group.

1101100000110 Binary Number
11011 0000 0110 Dividing into groups of 4-bits
0001 10410000 0110 Appending three Os to complete the group
1 B 0 6 Replacing each group by its Hexadecimal equivalent

Hexadecimal to Binary Conversion
Converting from Hexadecimal back to binary is also very simple. Each digit of the
Hexadecimal number is replaced by an equivalent binary string of 4-bits.

FD13 Hexadecimal Number
1111 1101 0001 0011 Replacing each Hexadecimal digit by its 4-bit binary equivalent

Decimal to Hexadecimal Conversion

© Copyright Virtual University of Pakistan 3

CS302 - Digital Logic & Design

There are two methods to convert from Decimal to Hexadecimal. The first method is
the Indirect Method and the second method is the Repeated Division Method.

1. Indirect Method

A decimal number can be converted into its Hexadecimal equivalent indirectly by first
converting the decimal number into its binary equivalent and then converting the binary to
Hexadecimal.

2. Repeated Division-by-16 Method

The Repeated Division Method has been discussed earlier and used to ‘cenvert
Decimal Numbers to Binary by repeatedly dividing the Decimal Numberfby 2. Aidecimal
number can be directly converted into Hexadecimal by using repeated division)The decimal
number is continuously divided by 16 (base value of the Hexadecimal number, system).

The conversion of Decimal 2096 to Hexadecimal using the Repeated Division-by-16
Method is illustrated in Table 3.3. The hexadecimal equivalent of 20961 is 8301s.

Number | Quotient after division Remainder after division
2096 131 0
131 8 3
8 0 8
Table 3.3 Hexadecimal Equivalent of\Becimal Numbers using Repeated Division

Hexadecimal to Decimal Conversion
Converting Hexadecimal Numbers ‘to Decimal is done using two Methods. The first
Method is the Indirect Method and the second method is the Sum-of-Weights method.

1. Indirect Method
The indirect methed of‘cenverting Hexadecimal number to decimal number is to first
convert Hexadecimal number. to Binary and then Binary to Decimal.

2. Sum-of-Weights Method
A Hexadecimahnumber can be directly converted into Decimal by using the sum of
weights methed. The conversion steps using the Sum-of-Weights method are shown.

CAO02 Hexadecimal number

C xA46°+A x 16>+ 0 x 16 + 2 x 16° Writing the number in an expression

(C'x4096) + (Ax 256)+ (0x16) + (2x 1)

(120%:4096) + (10 x 256) + (0 x 16) + (2 x 1) Replacing Hexadecimal values with
Decimal equivalents

49152 + 2560 + 0 + 2 Summing the Weights

51714 Decimal equivalent

Hexadecimal Addition and Subtraction

Numbers represented in Hexadecimal can be added and subtracted directly without
having to convert them into decimal or binary equivalents. The rules of Addition and
Subtraction that are used to add and subtract numbers in Decimal or Binary number systems
apply to Hexadecimal Addition and Subtraction. Hexadecimal Addition and Subtractions allows
large Binary numbers to be quickly added and subtracted.

© Copyright Virtual University of Pakistan 31

CS302 - Digital Logic & Design

1. Hexadecimal Addition

a|yp > e

~N|jm O

2. Hexadecimal Subtraction

~N s e
m|jO @+~

>

© Copyright Virtual University of Pakistan 3

CS302 - Digital Logic & Design

Lesson No. 04
NUMBER SYSTEM DE

Octal Numbers

Octal Number system also provides a convenient way to represent long string of binary
numbers. The Octal number is a base 8 number system with digits ranging from O to 7. Octal
number system was prevalent in earlier digital systems and is not used in modern digital
systems especially when the Hexadecimal number is available. Each Octal Number digit can
represent a 3-bit Binary Number. The Binary Numbers and the Octal equivalents arelisted, in
Table 4.1

Decimal Binary Octal
000
001
010
011
100
101
110

111

N[OOI WN PO
N0 DWW NFO

Table 4.1 Octal Equivalents of‘Decimaltand Binary Numbers

Counting in Octal Number System

Counting in Octal is similar to counting in any other Number system. The maximum
value represented by a single Octal digit is 7. For representing larger values a combination of
two or more Octal digits has to be used. Thus decimal 8 is represented by a combination of
10s. The subscript 8 indicates thesnumber is Octal 10 and not decimal ten. The Octal Numbers
for Decimal numbers 8.to0 30,are listed in Table 4.2

Decimal Octal Decimal Octal Decimal Octal
8 10 16 20 24 30
9 11 17 21 25 31
10 12 18 22 26 32
11 13 19 23 27 33
12 14 20 24 28 34
13 15 21 25 29 35
14 16 22 26 30 36
15 17 23 27 31 37
Table 4.2 Counting using Octal Numbers

Binary to Octal Conversion
Converting Binary to Octal is a very simple. The Binary string is divided into small
groups of 3-bits starting from the least significant bit. Each 3-bit binary group is replaced by its
Octal equivalent.
111010110101110010110
111 010 110 101 110 010 110
7 2 6 5 6 2 6

Binary Number
Dividing into groups of 3-bits
Replacing each group by its Octal equivalent

Thus 111010110101110010110 is represented in Octal by 7265626

© Copyright Virtual University of Pakistan 33

CS302 - Digital Logic & Design

Binary strings which can not be exactly divided into a whole number of 3-bit groups are
assumed to have 0’s appended in the most significant bits to complete a group.

1101100000110 Binary Number
1101 100 000 110 Dividing into groups of 3-bits
001 101 100 000 110 Appending three 0s to complete the group
1 5 4 0 6 Replacing each group by its Octal equivalent

Octal to Binary Conversion
Converting from Octal back to binary is also very simple. Each digit offthe Octal
number is replaced by an equivalent binary string of 3-bits
1726 Octal Number
001 111 010 110 Replacing each Octal digit by its 3-bit binary equivalent

Decimal to Octal Conversion
There are two methods to convert from Decimal to Octal. The first method is the
Indirect Method and the second method is the Repeated DivisiondMethod.

1. Indirect Method

A decimal number can be converted intg its, Octal equivalent indirectly by first
converting the decimal number into its binary equivalentyand-then converting the binary to
Octal.

2. Repeated Division-by-8 Method

The Repeated Division Method has been discussed earlier and used to convert
Decimal Numbers to Binary and Hexadecimal by repeatedly dividing the Decimal Number by 2
and 16 respectively. A decimal number can be directly converted into Octal by using repeated
division. The decimal number is continuously divided by 8 (base value of the Octal number
system).

The conversion of Decimal 2075 to/Octal using the Repeated Division-by-8 Method is
illustrated in Table 4.3. ThéOctal equivalent of 207510 is 4033s.

Number | Quotient after division Remainder after division
2075 259 3
259 32 3
8 4 0
4 0 4
Table 4.3 Octal Equivalent of Decimal Numbers using Repeated Division

Octal to Decimal Conversion
Converting Octal Numbers to Decimal is done using two Methods. The first Method is
the Indirect Method and the second method is the Sum-of-Weights method.

1. Indirect Method
The indirect method of converting Octal number to decimal number is to first convert
Octal number to Binary and then Binary to Decimal.

© Copyright Virtual University of Pakistan 3

CS302 - Digital Logic & Design

2. Sum-of-Weights Method
An Octal number can be directly converted into Decimal by using the sum of weights
method. The conversion steps using the Sum-of-Weights method are shown.

4033 Octal number
4x8+0x8°+3x8+3x8° Writing the number in an expression
(4x512)+(0x64)+(3x8)+(3x1)

2048 +0+24 +3 Summing the Weights

2075 Decimal equivalent

Octal Addition and Subtraction

Numbers represented in Octal can be added and subtracted direetly without having to
convert them into decimal or binary equivalents. The rules of Addition and Subtraction that are
used to add and subtract numbers in Decimal or Binary number-systemsyapply to Octal
Addition and Subtraction. Octal Addition and Subtractions allows large Binary numbers to be
quickly added and subtracted.

1. Octal Addition

Carry

Number 1
Number 2
Sum 1

(624 N2 5NN il ol

g~ o
~N|d o
Wl N

3. Octal Subtraction

Borrow

Number 1
Number 2
Difference 1

~

=

ul

o|lv o -

Rlvw o
()

Working with different Binary representations
There are different ways of representing numbers in binary. Four ways of representing
binary numbers haye been already discussed.
Unsigned binary
Signed-Maghnitude form
2’'s Complement.form
Floating point notation

The different representations help in processing of numbers. For example 2’s
complement based sighed numbers help in handling positive and negative numbers. Floating
pointanotations help in handling numbers having an integer and a fraction part. Digital systems
generally allow processing of multiple data values that are of the same type. For example, one
number represented using unsigned binary can not be used to perform arithmetic operations
with another number represented using signed notation. Therefore before a digital system like
a computer is able to process data it has to be explicitly informed the types of data and the
manner in which they have been represented within the machine.

When computer Programs are written, usually as a first step of the program different
variables and their data types are declared and defined. During program execution when ever
a particular variable is accessed by the Computer it knows exactly the data type and the type
of operations that can be performed on it.

© Copyright Virtual University of Pakistan 35

CS302 - Digital Logic & Design

Alternate forms of Binary representations

There are many different ways to represent binary numbers, other than the 4
representation that we have discussed. Many of these alternate representations are used to
support specific applications and requirements. Biased Code or Excess Code is used by
floating point numbers to represent positive and negative exponent values.

In many applications in which Digital Systems are used, the Digital systems intefact
with the real world. For example, a digital controller controls a motor which positions a_solar
panel to point towards the sun to extract maximum solar energy. The controller peeds, to
accurately know the angle at which the panel is pointing; this can be determined, by the
position of the shaft of the motor with respect to some reference point. The shaift position has
to be encoded in some suitable format to be of use to the controller. A shaft encoder, based on
the Gray Code is used to read the angular position of the motor shaft.

The angular position of the motor shaft can be displayed on a 7-segment display panel
in terms of Decimal Numbers. BCD Code is used to display decimal digits on 7-Segment
Display Panels.

The Excess Code

Consider the decimal number range +7 to -8. These positive and negative decimal
numbers can be represented by the 2’s complement representation. The magnitude of positive
and negative numbers can not be easily compared as the positive and negative numbers
represented in 2’s complement form are not represented on a uniformly increasing scale.

The decimal number range +7 to -8 is represented using an Excess-8 code that
assigns 0000 to -8 the lowest number in the range and 1111 to +7 the highest number in the
range. Excess-8 code is obtained by adding a number to the lowest number -8 in the range
such that the result is zero. The, number is 8. The number 8 is added to all the remaining
decimal numbers from -7 up toghe highestnumber +7. The Excess-8 represented is presented
in Table 4.4.

Decimal 2’s Excess-8 Decimal 2’s Excess-8
Complement Complement
0 0000 1000 -8 1000 0000
1 0002 1001 -7 1001 0001
2 0010 1010 -6 1010 0010
3 0011 1011 -5 1011 0011
4 0100 1100 -4 1100 0100
5 0101 1101 -3 1101 0101
6 0110 1110 -2 1110 0110
7 0111 1111 -1 1111 0111

Figure 4.4 Excess-8 Code Representation of decimal numbers in the range 7 to -8

The BCD Code
Binary Coded Decimal (BCD) code is used to represent decimal digits in binary. BCD
code is a 4-bit binary code; the first 10 combinations represent the decimal digits O to 9. The

© Copyright Virtual University of Pakistan 3

CS302 - Digital Logic & Design

remaining six 4-bit combinations 1010, 1011, 1100, 1101, 1110 and 1111 are considered to be
invalid and do not exist.

The BCD code representing the decimal digits O to 9 is shown in Table 4.4

Decimal BCD Decimal BCD
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

Table 4.4 BCD representation of Decimal digits O to 9

To write 17, two BCD code for 1 and 7 are used 0001 and 0111. The two digits are
considered to be separate. The conventional method of representing decimal 17 using
unsigned binary is 10001. A telephone keypad having, the digits 0 to 9 generates BCD codes
for the keys pressed.

Most digital systems display a count value or the, timeyin decimal on 7-segment LED display
panels. Since the numbers displayed are in\decimal, ‘therefore the BCD Code is used to
display the decimal numbers. Consider a,2-digit 7-segment display that can display a count
value from 0 to 99. To display the two decimal, digits two separate BCD codes are applied at
the two 7-segment display circuit inputs.

BCD Addition
Multi-digit BCD aumbers can be added together.

23 0010 0011
45 0100 0101
68 0110 1000

The two 2-digit BCD numbers are added and generate a result in BCD. In the example the
leastsignificant digits'3 and 5 add up to 8 which is a valid BCD representation. Similarly the
maQst significant digits 2 and 4 add up to 6 which also is a valid BCD representation.

Consider the next example where the least significant numbers add up to a number
greaternthan 9 for which there is no valid BCD code

23 0010 0011
48 0100 1000
71 0110 1011

For BCD numbers that add up to an invalid BCD number or generate a carry the number 6
(0110) is added to the invalid number. If a carry results, it is added to the next most significant
digit. Thus

© Copyright Virtual University of Pakistan 37

CS302 - Digital Logic & Design

0011
1000
1011 11 is generated which is an invalid BCD number
0110 6 is added
1 0001

A carry is generated which is added to the result of the next most significant digits

The answer is 0111 0001

The Gray Code

The Gray code does not have any weights assigneddo its'bitipositions. The Gray Code
is not a positional code. The Gray code is different fromathe unsigned binary code as
successive values of Gray code differ by only one, bit.»Tablen4.5 shows the Gray Code
representation of Decimal numbers O to 9.

Decimal Gray Binary
0 0000 0000
1 0001 0001
2 0011 0010
3 0020 0011
4 0110 0100
5 0111 0101
6 0101 0110
7 0100 0111
8 1100 1000
9 1101 1001
Table 4.5 Gray Code representation of Decimal values

The bits in'bold change in successive values of Gray code representation

© Copyright Virtual University of Pakistan 3

CS302 - Digital Logic & Design

Gray Code Application

@ @,
O?BA <%<>BA

Binary Gray Code

Figure 4.1 Binary and Gray Code based,Shaft Encoders

The diagram shows a disk connected {o the shaft ef a rotating machine. The shaded
areas on the disk indicate conducting areadat ajsvoltage of"+5 volts. The non-shaded areas
indicate a non-conducting area. Three stationary brushes A, B and C touch the surface of the
rotating disk. The three brushes are cofinected'to three LED lamps through wires. As the disk
rotates the brushes come in contact with theyconducting area and the insulated area. The
three LEDs display the position of the,rotating shaft in terms of 3-bit numbers. Thus if the disk
on the right rotates in the anti-clockwise direction by 45° the Brush A comes in contact with the
conducting strip at 5 volts, which_turns on the'LED indicating Binary 001.

If the disk continuous. its ‘rotation, after a rotation of another 45° brush B comes in
contact with the conducting striptand brush A comes in contact with the non-conducting strip.
Thus LED connected ta brush B lights up indicating binary 010. Thus at any instant of time, the
LEDs indicate the angular position of the rotating shaft.

Assume,that the three brushes A, B and C are not aligned properly and Brush B is
slightly ahead of brushes A and C. Now if the disk rotates 90° from its start position. Brush A
wouldsbe in contactwith the conducting strip, Brush B due to its misalignment would also be in
contact with the'eanducting strip and brush C would be in contact with the insulated strip. Thus
when_the disk rotates the LEDs will show a 001, followed by a 011 for a short duration when
the disk rotates from 90° to 91° and then to 010. Thus due to misalignment the count value
jumpedifrom 1 to 3 and then back to 2.

Consider the disk shown on the right. The conducting and non-conducting strips follow
asGray Code pattern 000, 001, 011, 010, 110, 111, 101 and 100 representing decimal 0, 1, 2,
3, 4,5, 6 and 7. Now even if the brushes are misaligned, the LEDs would always display the
correct count value. Thus a Gray Code based shaft encoder allows angular position of the
shaft to be determined even when the brushes are misaligned.

Alphanumeric Codes

All the representation studied so far allow decimal numbers to be represented in
binary. Digital systems also process text information as in editing of documents. Thus each
letter of the alphabet, upper case and lower case, along with the punctuation marks should

© Copyright Virtual University of Pakistan 39

CS302 - Digital Logic & Design

have a representation. Numbers are also written in textual form such as 2nd June 2003. The
ASCII Code is a universally accepted code that allows 128 characters and symbols to be
represented.

ASCII Code

The ASCII Code (American Standard Code for Information Interchange) is a 7-bit code
representing 128 unique codes which represent the alphabet characters A to Z in lower, case
and upper case, the decimal numbers 0 to 9, punctuation marks and control characters.

ASCII codes 011 0000 (30h) to 011 1001 (39h) represents numbers 0 to 9

ASCII codes 110 0001 (61h) to 111 1010 (7Ah) represent lower case alphabetsfato, z
ASCII codes 100 0001 (41h) to 101 1010 (5Ah) represent upper case alphabéts A t0'Z
ASCII codes 000 0000 (0Oh) to 001 1111 (1Fh) represent the 32 Controheharacters.

Extended ASCII Code

The 7-bit ASCII code only has 128 unique codes which are not enough to represent
some graphical characters displayed on Computer screens. An_8-bit code Extended ASCII
code gives 256 unique codes. The extended 128 unique ‘codes represent graphic symbols
which have become an unofficial standard as vendors use_their ownjinterpretation of these
graphic codes.

Parity Method

Binary information which can be textior numbers‘is processed, stored and transmitted.
Although digital systems are extremely reliabletbut\still there is a possibility that one bit gets
corrupted. That is, a 1 changes to 0 or O changes to'1. Many systems use a parity bit to detect
errors. A single parity based error detection scheme is not very practically efficient and more
elaborate and robust schemes, have been designed and implemented to detect and correct
multiple bit errors. However, the,use“of a parity bit does help in understanding the basic
concept of error detection.

Consider that the 8=bit Extended ASCII Code is used to transmit text messages from
one location to another, remote,location. An extra bit is appended with the 8 data bits making a
total of nine bits. The 8-hits comprise the information that is to be stored or transmitted and the
extra parity bityis ‘@ppendedto check for any errors that might occur during the storage or
transmission of the infarmation. Two schemes are used, Even Parity or Odd Parity essentially
the two schemes areidentical except for a very minor difference.

Even Parity Method

Thetinformation 10001101 is to be transmitted to a remote location. A parity bit error
detection method is adopted to indicate if the information has been corrupted when it reaches
the ‘othersend. In the Even Parity method the number of 1s is counted in the information and
depending upon the number of 1s in the message the appended parity bit is either setto 0 or 1
to make the total number of 1s to be even (Even Parity)

The 8-bit data 10001101 has even number of 1s, therefore the parity bit which is
appended is set to 0. The 9-bit message is 100011010. The parity bit is indicated in Bold.
Suppose the message received at the other end of the wire shows the bits to be 101011010,
the underlined bit has changed from 0 tol. Before transmitting the message, the users at both
ends of the wire have agreed that they would be sending and receiving messages using even

© Copyright Virtual University of Pakistan 4

CS302 - Digital Logic & Design

parity. Thus the receiver on receiving the 9-bit message does a quick parity check. The total
number of bits including the parity bit should add up to an even number. However, in this case
the numbers of 1 in the message add up to 5 which indicates that a bit has been corrupted.
There is no way that the receiver can know the location of the corrupted bit in the message.
The only solution is to request the sender to retransmit the message. If two bits get corrupted
during the transmission, 101001010 then the total number of 1s remains the same and the
receiver would not be able to detect an error. If 3-bits get corrupted, 101000010 the user
would still be able to detect that an error has occurred, however there is no way to determine if
a single bit or 3-bit, or 5-bit or 7-bit error has occurred.

Odd parity is identical except that both the sender and receiver agreeto send
information using the Odd parity and the parity bit is set or cleared so that the tatal number of
1s in the message including the Parity bit sums up to an Odd Number.

© Copyright Virtual University of Pakistan 41

CS302 - Digital Logic & Design

Lesson No. 05
L | ATE

The Digital Systems should be able to process or perform operations on the humbers
that are represented in the Binary Number System. The simplest operations that come to mind
are the arithmetic operations like add and subtract. There are many more operations and
functions that Digital Systems are able to perform.

Digital Logic Gates provide the basic building blocks; these Logic Gates perform
different operations on the Binary information. These Logic Gates are used in different
combinations to implement large complex systems. Digital Logic Gates are represented and
identified by unique symbols. These symbols are used in circuit diagrams to describe the
function of a digital circuit.

Digital Logic Gates function is represented by a function table or a truth table that
describes all the Logic gate outputs for every possible combination of inputs. As the logic
Gates operate on binary values therefore these function tables describes, the relationship
between the input and output in terms of binary values. The, function of a Logic Gate is also
described in terms of an expression.

Logic Gates are practically used in circuits where the inputs to the Logic Gates vary in
time. Timing diagrams are used to describe the respense,of the Logie Gates in a certain period
of time with respect to the changing input. Timing, diagramsygraphically show the actual
performance (behavior) of the logic gate to thesehanging inputs for a predetermined period of
time or sequence of input signals.

The three fundamental Gates are the AND, OR and NOT Gates.

AND Gate

The AND Gate performs a logical multiplication function. An AND Gate has multiple
inputs and a single output. Most commonly used AND Gates are two input AND gates. An
AND Gate is represented by the 'symbals. shown in Figure 5.1

Figure 5.1 Symbolic representation of AND Gate

The multiplication function performed by the AND Gate is shown in the function table
forfa two inputhAND Gate. Figure 5.2. The function table for a 3, 4 or multiple input AND Gate
is similar. The output is 1 when all the inputs are at logic level 1. For all other input
combinations the output is zero.

Logical AND Operation
Inputs Output
A B F
0 0 0
0 1 0
1 0 0
1 1 1

Figure 5.2 Function Table of an AND Gate

© Copyright Virtual University of Pakistan 4

CS302 - Digital Logic & Design

The expression describing the operation of a two inputs AND Gate is F = A.B
The ‘. is an AND Operator and the expression represents an AND operation between inputs A
and B. Expression for multiple input AND Gates is F= A.B.C.---N, where N is the total
number of inputs.

The timing diagram of the two input AND gate with the input varying overa period of 7
time intervals is shown in the diagram. Figure 5.3.

: rasd

Figure 5.3 Timing diagramyof operation of an AND gate

An important use of an AND gate intaddition to the multiplication operation is its use to
disable or enable a device. Figlre 5.4. A Counter device counts from 0 to 100. The counter
device increments its current count value to the next when it receives a pulse at its clock input.
To allow the Counter devicette, count continuously from 0 to 100, continuous pulses are
applied at the clock input-of,the Counter Device. The continuous pulses are shown as Clock
pulses.

The counter can be stopped from counting by stopping the clock pulses from reaching
the clock input of.the Counter Device. A 2-input AND gate is connected to the Counter Clock
input. The ¢lock pulses are applied at the Input A of the AND Gate. Input B of the AND Gate is
connected to anyEnable/Disable signal. When the Counter Device is stopped from counting the
enable/disable signal ay Input B is set to 0.

ThefFunction Table, figure 5.2, indicates that when ever an input of the AND gate is set
to Oghe output also becomes 0. Thus by applying the disable signal 0 at Input B, the output of
the gate becomes zero and therefore clock signals are prevented from reaching the Counter
device. To allow the Counter Device to count, the enable/disable signal at input B of the AND
gate is set to 1. The Function Table of the AND gate indicates that when an Input of the AND
gate is 1, the output follows the input signal applied at the input A of the AND Gate. Thus the
clock signal at Output of the AND gate follows the clock signal at Input A of the AND Gate.

© Copyright Virtual University of Pakistan 43

CS302 - Digital Logic & Design

Clock Pulses e
NN
A R t E,
B ENB

] Disable

Enable

Figure 5.4 Enabling a Counter using an AND Gate

OR Gate

The OR Gate performs a Boolean add function. An OR Gate has multiple inputs and a
single output. Most commonly used OR Gates are two input OR gates. An OR Gate is
represented by symbols as shown in figure 5.5.

Figure 5.5 Symbolic representation of OR Gate

The addition function performed by the OR Gate is shown in the function table for a two
input OR Gate. Figure 5.6. The function table for a 3, 4 or multiple input OR Gate is similar.
The output is 1 when any one input is at logic level 1. The output is 0 when all inputs are zero.

The expression describing the operation of the two inputs OR Gate is F=A+B. The
‘+’ is an OR Operatonandthe expression represents an OR operation between inputs A and B.

Expression‘for multiple‘input OR Gates is F = A+B+ C+......N, where N is the total number of
inputs.

Logical OR
Operation
Inputs Output
A B F
0 0 0
0 1 1
1 0 1
1 1 1

Figure 5.6 Function Table of an OR Gate

© Copyright Virtual University of Pakistan 4

CS302 - Digital Logic & Design

The timing diagram of the two input OR gate with the input varying over a period of 7
time intervals is shown in the diagram 5.7.

o) L

i L

Figure 5.7 Timing diagram of operation ef an OR gate

The OR Gate is used in applications wherethe,output signal is a 1 when any one input
is a 1. An example of such an application‘is anjalarmg€ircuit for car door locks shown in
diagram, figure 5.8. Four circuits are cennected to each of the four doors of a car. The door
circuit generates a 1 when the door is open‘and ‘a0 when it is closed. The four outputs of each
of the four door circuits are conneected to the four inputs of an OR Gate. The output of the OR
gate is connected to an Alarm.

Front left door

Rear left door

Alarm

Front right door

Rear right'door
Figure 5.8 Car door Alarm System based on a 4-input OR Gate

\When,any one or more doors are open the inputs of the OR Gate have a 1. The output
of the OR gate is a 1, according to the Function Table of an OR Gate, figure 5.6, which
enables thefAlarm.

NOT Gate

NOT Gate is also known as an Inverter. The name indicates that the NOT Gate should
be performing an inversion function. The Not Gate has a single input and a single output. The
NOT Gate is represented by the symbol shown in Figure 5.9.

— e

Figure 5.9 NOT Gate

© Copyright Virtual University of Pakistan 45

CS302 - Digital Logic & Design

The input signal applied across the single input of the OR gate is inverted and is
available at the output. The function of the NOT Gates is described by the Function Table or
the Truth Table represented in Figure 5.10.

Logical NOT
Operation
Input Output
A F
0 1
1 0

Figure 5.10 Function Table of a NOT Gate

The expression describing the behavior Qa NOT gate in terms of theflnput and Output
shown in the Function Table, Figure 5.10 is F=A where A indicates invert of A

The timing diagram of a NOT gate with the input varying “over a period of 7 time
intervals and its corresponding output is shown in the Figures.11.

Figure 5:214 “Timing diagram of operation of a NOT gate

The NOT Gate istuséd in circuits to generate the 1’s Complement of a number by
inverting allits” bits. “Figure 5.12. It is also used to invert an incoming signal ‘1’ as per
requirements of@nother circuit which requires the signal to be ‘0’.

1 1 0 0 1 O 1 O

Figure 5.12 A 1’s Complement Circuit using 8 NOT Gates

© Copyright Virtual University of Pakistan 4

CS302 - Digital Logic & Design

In addition to the three Fundamental Gates which perform AND, OR and NOT operations, two
other important gates that are commonly used in Digital Logic are the NAND and NOR Gates.
These two gates do not perform any new functions. The NAND Gate performs an AND-NOT
function and the NOR gate performs the OR-NOT function.

AND & OR Gate alternate symbols

The AND gate and the OR gate can also be represented by alternate symbols. The two
fundamental symbols, the AND Gate symbol and the OR gate symbol complement each other.
Thus a gate can be represented by its complementary symbol. The inputs and_outputs of the
complementary symbol are inverted by placing or removing bubbles. Figure 5.13.

o > O ow)

Figure 5.13 Alternate Symbolic representation of AND & OR gates

The AND gate is represented by its complementanaOR gate symbol, the two inputs
and the output are inverted by placing bubbles.“The OR, gate is represented by its
complementary AND gate symbol, the two inputsdand the output are inverted by placing
bubbles.

NAND Gate
The NAND Gate performs a function that is)equivalent to the function performed by the
combination of an AND gate and a NOT gate. Figure 5.14

A NAND Gate has multiple inputs and a single output. Most commonly used NAND
Gates are two input NAND gates: A NAND gate is represented by the symbols shown in figure
5.15, the NOT gate connectedyat the output of the AND gate is represented by a circle, in
Digital Logic terminologyra ‘bubble™.

Figure 5.14 NAND Gate function

Figure 5.15 Symbolic representation of NAND Gate

The function performed by the NAND Gate is described by the Function Table for a two
input NAND Gate. Figure 5.16. The function table for a 3, 4 or multiple input NAND Gate is

© Copyright Virtual University of Pakistan 47

CS302 - Digital Logic & Design

similar. The output is O when all inputs are 1s. For all other combinations of inputs the output
logic level is 1.

Logical NAND
Operation
Inputs Output
A B F
0 0 1
0 1 1
1 0 1
1 1 0

Figure 5.16 Function Table of a NAND Gate

The expression describing the operation of the two inputs NAND Gate is F :,ﬁ,

Expression for multiple input NAND Gates is F = A.B.C.....I\, where N is the total number of
inputs.

The timing diagram of the two input NAND gate with‘the input varying over a period of
7 time intervals is shown in the diagram. Figure 5.17:

NAND Gate as a Universal Gate
The NAND gate is also used as a Universal Gate as the NAND Gate can be used in a
combination to perform the function of a AND, OR and NOT gates.

1. NOT Gate Implementation

A NOT gate can be implemented using ‘a NAND gate by connecting both the inputs of the
NAND gate together. By connectingthe,two inputs together, the input combinations where the
inputs are dissimilar becomeredundant. The Function Table of the 2-input NAND Gate
reduces to that of the NOT gate. Figure 5.18

. - L

<:to—b<:(1—><:(—><—¥—>2 3 <=§4—><:ts—><=§6—>

R

Figure 5.17 Timing diagram of operation of a NAND gate

© Copyright Virtual University of Pakistan 4

CS302 - Digital Logic & Design

Logical NAND
Operation

Inputs Output
F —E}
1
1
1 *>%
0

P ool
R OoOPr olw

Figure 5.18 Implementing a NOT Gate using a NAND gate

2. AND Gate Implementation

A NAND Gate performs the AND-NOT function. Removing the NOT gate at the output
of the NAND gate results in an AND gate. The effectiof the NOT gate at the output of the
NAND gate can be cancelled by connecting adNOT gate abithe output of the NAND Gate. The
two NOT gates cancel each other out. A NOT Gate implemented using a NAND gate (2) is
connected to the output of a NAND gate (1). Figure 5.19.

ED\REDs

Figure 5.19 Implementing an AND Gate using two NAND gates

3. OR Gate Implementation

An OR Gate can be implemented using a combination of three NAND gates. The
implementation is based on the alternate symbolic representation of the OR gate. The OR
gate is represented as an AND gate with bubbles at the inputs and outputs. Figure 5.13. The
two bubbles atgthe input can be replaced by two NOT gates (1) & (2) implemented using two
NAND gates” If ‘the two bubbles are removed from the two inputs, the AND gate with the
bubblerat the'outputrepresents a NAND gate (3). Figure 5.20

- | 1
- | 2

Figure 5.20 Implementing an OR Gate using three NAND gates

4

o
w

NOR Gate
The NOR Gate performs a function that is equivalent to the function performed by a
combination of an OR gate and a NOT gate. Figure 5.21

© Copyright Virtual University of Pakistan 49

CS302 - Digital Logic & Design

Figure 5.21 NOR Gate function

A NOR Gate has multiple inputs and a single output. Most commonly used NOR:sGates
are two input NOR gates. A NOR gate is represented by the symbols shown in figure 5.22the
NOT gate connected at the output of the OR gate is represented by a circle.

o >=1

_ 0

Figure 5.22 Symbolic representation of NOR,Gate

The function performed by the NOR Gate is described bythe Function Table for a two
input NOR Gate. Figure 5.23. The function table for as3, 4 0r multiple input NOR Gate is
similar. The output is 1 when all inputs are 0s. For all\other,combinations of inputs the output
logic level is 0.

Logical NOR
Operation
Inputs Output
A B F
0 0 1
0 1 0
1 0 0
1 1 0

Figure 5.23 Function Table of a NOR Gate

Thegexpression, describing the operation of the two inputs NOR Gate is F=A+B.

Expression for_multiple input NOR Gates is F = A +B+ C +..... N, where N is the total number
of inputs.

Thediming diagram of the two input NOR gate with the input varying over a period of 7
time intervals is shown in the diagram. Figure 5.24.

© Copyright Virtual University of Pakistan 5

CS302 - Digital Logic & Design

A
B

— Pt \
E

Figure 5.24 Timing diagram of operation of a NO'R gate
é\\

>

© Copyright Virtual University of Pakistan 51

CS302 - Digital Logic & Design

Lesson No. 06
L | ATE PERATIONAL CHARACTERISTI

NOR Gate as a Universal Gate
The NOR gate is also used as a Universal Gate as the NOR Gate can be used in a
combination to perform the function of a AND, OR and NOT gates.

4. NOT Gate Implementation

A NOT gate can be implemented using a NOR gate by connecting both the inputs of
the NOR gate together. By connecting the two inputs together, the combinations with
dissimilar inputs become redundant. The Function Table of the 2-input NOR Gatefreduces to
that of the NOT gate. Figure 6.1

Logical NOR
Operation

Inputs Output i;
F

Figure 6.1 Implementing a NOT Gate using a NOR gate

Rk oolX
R OoOPR olw
coOo0or

5. OR Gate Implementation

A NOR Gate performs the OR-NOT function. Removing the NOT gate at the output of
the NOR gate results in an OR gatenThe effect of the NOT gate at the output of the NOR gate
can be cancelled by connecting a NOT gate at the output of the NOR Gate. The two NOT
gates cancel each other out. A NOT Gate implemented using a NOR gate (2) is connected to
the output of a NOR gate (1). Figure 6.2.

) 2

Figure 6.2 Implementing an OR Gate using two NOR gates

6. AND Gate Implementation

An AND Gate can be implemented using a combination of three NOR gates. The
implementation is based on the alternate symbolic representation of the AND gate. The AND
gate is represented as an OR gate with bubbles at the inputs and outputs. Figure 5.13. The
two bubbles at the input can be replaced by two NOT gates (1) & (2) implemented using two
NOR gates. If the two bubbles are removed from the two inputs, the OR gate with the bubble
at the output represents a NOR gate (3). Figure 6.3

© Copyright Virtual University of Pakistan 5

CS302 - Digital Logic & Design

3@%@

Figure 6.3 Implementing an OR Gate using three NOR gates

NAND-NOR Universal Gates

NAND and NOR gates are known as Universal Gates as they can be used to
implement any of the three fundamental gates, AND, OR and NOT. The NAND Universal Gate
can also be used to implement a NOR gate. Similarly, a NOR gate can'be used to implement a
NAND gate.

1. NAND gate Implementation using NOR gates

The AND gate implementation using three NOR gates isyshown in figure 6.3. A NAND
gate implementation requires addition of an inverter (NOT) gate at the output. The NOT gate is
implemented using a NOR gate. Figure 6.4¢{NOR,gates 1, 2 and 3 implement the AND gate.
NOR gate 4 implements the NOT gate connected at'the output of the NAND gate.

e

Figure 6.4 Implementing a NAND Gate using four NOR gates

2. NOR gate Implementation using NAND gates

The OR gate implementation using three AND gates is shown in figure 5.20. A NOR
gate implementation requires addition of an inverter (NOT) gate at the output. The NOT gate is
implemented using a NAND gate. Figure 6.5. NAND gates 1, 2 and 3 implement the OR gate.
NAND gate 4 implements the NOT gate connected at the output of the NOR gate.

o
SEDS D

al

Figure 6.5 Implementing a NOR Gate using four NAND gates

© Copyright Virtual University of Pakistan 53

CS302 - Digital Logic & Design

NAND and NOR Gate Applications

The output of a NAND is 0 when all inputs to the NAND gate are 1s. This property of
the NAND gate can be used to activate an operation when any of the inputs to the NAND gate
are deactivated. A NOR gate on the other hand generates an output of 1 when all inputs to
NOR gate are deactivated. The output is deactivated when any input is activated.

A warehouse is used to store industrial chemicals. Toxic fumes produced bygthe
chemicals are removed from the ware house and dispersed in the atmosphere through three
exhaust fans. The three exhaust fans should be continuously working to remove the
dangerous toxic fumes. If any one or more fans fail an alarm should be activated to'signal the
failure of one or more exhaust fans.

An electronic circuit connected to each fan generates a 1 to indicate a working fan. If
the fan fails the circuit generates a 0 output. The outputs of the three fans are connected to the
three inputs of a NAND gate. When all fans are working the input to the 3-input NAND gate is
111 and the corresponding output is a 0. When any one fan fails the output of NAND gate
becomes 1 activating an alarm connected to the output of the,NANDIgate. Figure 6.6

| | ﬁ} ALARM
EN a

Figure 6.6 A NAND gate based exhaust fan failure detection system

A Washing Machine has threeisensors to check for washing machine lid open, washing
tub filled to minimum level andsweight of ¢cloths and water in the tub. If the lid of the Washing
machine is open or the water is below the minimum level or the washing machine has been
overloaded the appropriate,sensor generates an output of 1. The outputs of the three sensors
are connected to the inputs, of ‘a 3-input NOR gate. During the normal operation of the
Washing Machineall the, sensors output a 0. The corresponding output of the NOR gate is a 1.
If an erroneous conditionis.detected by any one or more sensors, the corresponding sensor
output(s) isfsetto 1, setting the NOR gate output to a 0. The NOR gate output is connected to
the main switchwhich switches off the washing machine. Figure 6.7.

g

Switch

S I

Figure 6.7 A NOR gate based Washing Machine Controller

© Copyright Virtual University of Pakistan 5

CS302 - Digital Logic & Design

Exclusive-OR and Exclusive-NOR Gates
The XOR and XNOR gates are frequently used in Digital Logic. These two additional
gates are used to detect dissimilar and similar inputs respectively.

1. Exclusive-OR Gate

The Exclusive-OR Gate or XOR Gate performs a function that is equivalent to the
combination of NOT, AND and OR gates. XOR gates are extensively used, in-digital
applications; therefore XOR gates are available as basic components. Most commonly used
XOR Gates have two inputs. The XOR gate is represented by symbol shown in figure 6.8:

Figure 6.8 Symbolic representation of XOR Gate

The function performed by the XOR gate is represented by the Function Table for a
two input XOR Gate. Figure 6.9. The function_tabledfor-a,3, 4 or multiple input XOR Gate is
similar. The output of an XOR gate is 1 when the inputs are dissimilar and a 0 when all the
inputs are the same.

Logical XOR
Operation
Inputs Output
F

Rk OOol>
o o

0
1
1
0

Figure 6.9 Function Table of an XOR Gate

The expression describing the operation of the two inputs XOR Gate is F= A@B . The
@® 1S an /XOR operator and the expression for multiple input XOR Gates is
F=A@®&B®C®...N, where N is the total number of inputs.

The timing diagram of the two input XOR gate with the input varying over a period of 7
time intervals is shown in the diagram. Figure 6.10.

© Copyright Virtual University of Pakistan 55

CS302 - Digital Logic & Design

Figure 6.10 Timing diagram of operation of a XOR gate

2. Exclusive-NOR Gate

The Exclusive-NOR Gate or XNOR Gate performs a function that is equivalent to the
combination of NOT, AND and OR gates. XNOR gate” is extensively used in digital
applications; therefore XNOR gates are available as, basic' camponents. Most commonly used
XNOR Gates have two inputs. The XNOR gate is represented byssymbol shown in figure 6.11.

Figure 6.11 Symbolic representation of XNOR Gate

The function performed by the XNOR Gate is represented by the Function Table for a
two input XNOR Gate. Figure 6:12°“The function table for a 3, 4 or multiple input XNOR Gate
is similar. The output of an XNOR gate is 1 when the all the inputs are same and a 0 when the
inputs are dissimilar.

Logical XNOR
Operation
Inputs Output

A B F
0 0 1
0 1 0
1 0 0
1 1 1

Figure 6.12 Function Table of an XNOR Gate
The expression describing the operation of the two inputs XNOR Gate is F= A ®B.

The expression for multiple input XNOR Gates is F=A®B® C®......N, where N is the total
number of inputs.

The timing diagram of the two input XNOR gate with the input varying over a period of
7 time intervals is shown in the diagram. Figure 6.13.

© Copyright Virtual University of Pakistan 5

CS302 - Digital Logic & Design

: L

E0 E1 EZ E3 E4 ES EG

N \

Figure 6.13 Timing diagram of operation of a XNOR gate

XOR and XNOR Gate Applications

XOR and XNOR gates are used to detect dissimilanand similar inputs. This property of
XOR and XNOR gates is used to detect odd and even number of 1s in a Parity Detection
Circuit.

Consider the three XOR gate logie circuit which is used to detect odd number of 1’s in
a 4-bit binary input combination. Figure 6.14

o
D

Figurex6.14 XOR gate based Odd number of 1s detector

A 4-bit"binary number 0000 applied at the inputs A, B, C and D respectively of XOR
gates Land 2. The output of XOR Gates 1 and 2 is 0 and 0. The output of XOR gate 3 is also
zero. Similarly, a binary number 0011 applied at the inputs A, B, C and D respectively. The
output@f XOR gate 1 with inputs 00 is 0. The output of XOR gate 2 with inputs 11 is 0. The
output of gate 3 is 0. Thus the output indicates that the binary number 0011 does not have odd
number of 1’'s. Consider the binary number 1011 applied at the inputs A, B, C and D
respectively. The output of XOR gate 1 with inputs 10 is 1. The output of XOR gate 2 with
inputs 11 is 0. The output of gate 3 is 1. Thus the output indicates that the binary number 1011
has odd number of 1’s

The logic circuit based on two XOR and a single XNOR gate which is used to detect
even number of 1’s in a 4-bit binary input combination. Figure 6.15

© Copyright Virtual University of Pakistan 57

CS302 - Digital Logic & Design

c %
D
Figure 6.15 XOR-XNOR gate based Even number of 1s detector

A 4-bit binary number 0000 applied at the inputs A, B, C and D respectively-'of XOR
gates 1 and 2. The output of XOR Gates 1 and 2 is 0 and 0. The output of XNOR gate 3is a 1.
Similarly, a binary number 0011 applied at the inputs A, B, C and D respectively. The output of
XOR gate 1 with inputs 00 is 0. The output of XOR gate 2 with inputs 11 is 0. The output of
XNOR gate 3 is also a 1. Thus the output indicates that the binary,number 0011 has even
number of 1’'s. Consider the binary number 1011 applied“at the “inputs A, B, C and D
respectively. The output of XOR gate 1 with inputs 20 is' 1. Thexoutput of XOR gate 2 with
inputs 11 is 0. The output of XNOR gate 3 is 0 because,of dissimilar inputs. Thus the output
indicates that the binary number 1011 does not have ‘even‘number of 1’s.

Digital Circuits and Operational Characteristics

The Logic Gates discussed provide the basic building blocks for implementing the large
digital systems. The logic gates discussed so far has been described in terms of the functions
they perform. Practical implementation of digital systems by using the logic gates in
combination requires some additienal infermation. For example, theoretically the output of an
Inverter can be connected to ghe inputs of ‘@an unlimited number of AND Gates. However, the
practical limitation to the cireuit shown isCthat the total current sourced by the Inverter is
distributed amongst the 100ANDyGates. The Inverter is not able to provide the total current
required by the ten AND gatesy, The current sunk by each AND gate is not enough to drive the
AND gate circuitry:thustits behavior is unpredictable resulting in unpredictable behavior of the
system.

The binary I'and 0 are represented by +5V and 0 V. What if the output of an AND Gate
is +3-V2,Does this autput voltage level represent a binary 1 or 07 If the output of the AND Gate
isconnected torthe input of an Inverter, what would be the response of the Inverter? Another
important aspect is the frequency of the input signal. Electronic circuits operate at certain
frequencies. If the frequency of the input signal increases beyond the operational specification
of theyeireuit, the circuit will not be able to respond fast enough resulting in unpredictable
behavior.

Digital circuits that depend upon battery for their power should consume low power to
allow the device to function for longer periods of time before replacing or recharging the
battery. Thus the digital system should be implemented keeping in view the power
requirements of the application.

© Copyright Virtual University of Pakistan 5

CS302 - Digital Logic & Design

TTL/CMOS NOT Gate Operation

Logic Gates are implemented using transistors. These transistors are connected in
various combinations to form a switching circuit. The transistor itself is configured to work like
a switch. On the application of a bias voltage the transistor is switched on and by removing the
bias voltage the transistor is turned off. Different technologies are used to manufacture the
Logic Gates based on the transistors. The performance or the Operational characteristics of a
Logic Gate are determined by the transistors and the technologies used to implement the
switching transistors. Certain technologies allow transistor and thereby the Logic Gates to
operate at high frequencies. Other technologies allow transistors to operate with low voltages,
consuming minimal power, similarly certain other implementation technologies allow very
dense logic circuits to be manufactured.

The Inversion function of the NOT gate is performed by.the switching Circuit shown
in figure 6.16. The Bipolar Junction Transistor (BJT) based NOT showmyen theyleft is switched
on when a Voltage is applied at the base of the BJT. The transistor when switched on short
circuits the Vcc, the output voltage is therefore 0 volts. When the BJT base pin is connected to
0 volts, the transistor is switched off. The Vo is at potential Veg, = 5 Volts. The actual
implementation is different.

+V +V
cC Piype DD
MOSFEL
j }7
»
}7
V
Vo!p Vi/D olp
+V E
[t
Vio NPN =
Transistor N-Type
MOSFET

Figure 6.16 BJT & CMOS based NOT Gate Implementation

The CMOS based implementation, shown on the right, uses a P-type and a N-type
MOSFETS. When the input is connected to +V, the P-type MOSFET is switched off and the N-
type MOSFET is switched on. The Vg is at ground potential. When the input is connected to
ground,, the'P-type and N-type MOSFETs are switched on and off respectively. The Vo is at
potential Vpp = 5 Volts.

Integrated Circuit Technologies

The practical implementation of the Logic gates is through the Integrated Circuits (IC)
technologies. The logic gates implemented through these technologies are available to be
connected and practical implementation of a digital circuit. Different types of Integrated Circuit
technologies are used to implement the digital circuits. These technologies differ in terms of
the circuit density, power consumptions, frequency response etc.

¢ CMOS: Complementary Metal-Oxide Semiconductor

© Copyright Virtual University of Pakistan 59

CS302 - Digital Logic & Design

* The most extensively used technology, characterized by low power consumption,
switching speed which is slower but comparable to TTL. Has higher chip density than
TTL. Due to high input impedance is easily damaged due to accumulated static charge
e TTL: Transistor-Transistor Logic
» Extensively used technology, characterized by fast switching speed and high power
consumption
» Offers a wide variety of gates, devices, arithmetic units etc.
¢ ECL: Emitter-Coupled Logic
» Used in specialized applications where switching speed is of prime importance such as
high speed transmission, high speed memories and high speed arithmetic units.
e PMOS: p-channel and NMOS: n-channel MOS transistor
* PMOS and NMOS technologies are used in LSI requiring high chip density. Large
memaories and microprocessors are implemented using these technelogies
*» These ICs have very low power consumption.
e E2CMOS: a combination of CMOS and NMOS technologies
» Used to implement Programmable Logic Devices

Types of IC Logic Gates

The most common form of logic Gate ICs are listed. To identify;and use the Integrated
Circuits or ICs in implementing logic circuits, some sert of identification code has to be used
which is printed on the IC package.

Logic Gates are identified by the codest The prefix 74is used to identify a commercial
version of the device from the military version, device identified by the prefix 54. Military
versions are designed to withstand harsh and, severe environmental conditions. The XX part of
the code identifies the switching speed of the gate.

74XX00 Quad 2-input NAND Gate
74XX02 Quad 2-input NOR Gate
74XX04 Hex Inverter

74XX08 Quad 2-input AND Gate
74XX10 Triple 3-input NAND Gate
74XX11 Triple 3-input AND Gate
74XX20 Dual 4-input NAND Gate
74XX21 Dual 2-input AND Gate
74XX27 Triple 3-input NOR Gate
74XX30 Single 8-input NAND Gate
74XX32 Quad 2-input OR Gate
74XX86 Quad 2-input XOR Gate
74XX133 Single 13-input NAND Gate

O OO O OO O OO Oo0OOoO OO0 O0

The/Integrated Circuit packages of the seven gates that have been discussed so far
are shewn:. Figure 6.17. The 7408 14-pin chip has 4 or Quad, 2-input AND gates. The input
pins and the output pins of each of the four gates are shown. To use any one or all four gates
the appropriate pins are connected. Pins 7 and 14 are connected to ground and Supply
voltage respectively.

The 7432 14-pin IC package has 4 or Quad, 2-input OR Gates. Connections to the OR
gates are identical to those of the 7408 AND gate IC. The 7404 14-pin chip has 6 or hex,
inverters. The input and output connections of each of the 6 NOT gates are shown. Pins 7 and
14 are used for ground and supply voltage respectively.

© Copyright Virtual University of Pakistan 6

CS302 - Digital Logic & Design

The 7400, Quad, 2-input NAND Gate IC, the 7402, Quad, 2-input NOR Gate IC, the
7486, Quad, 2-input XOR Gate IC and the 74266, Quad, 2-input XNOR Gate IC are similar.

[any

4 13 12 11 10

]

[Jo

D

o
]

Y 3

el

Ty L

o[}
~

4
7400
Four 2-Input NAND Gate

14 13 12 11 10

1 1]]

[Jo
[Joo

14 13 1

N

1

[N

10

[Jo
[o

/'
4

&
G

U U U U U AU
1 2 3 4 5 6 7
7402
Four 2-Input NOR,Gate
14 13 12 11\ 410 9 8
] []

4
J

/
E

YTy
7404

Hex Inverters

=

4 13 12 11 10

 Joo

]

EpN

9}
E
§

[]
D
e
L W

L QoM F D
7432

Four 24nput OR Gate

14 13 1 10

j i

[N
N
=

[Jo

N
Eie

o

Uit
74266

Four 2-Input XNOR Gate

~C]

NU T U
7408

Four 2-Input AND Gate

N
N

1

w

12

[y
=

1

o

[Jo
[Joo

7
7

~L]
NS

:

L
o]

g

~C]

7486
Four 2-Input XOR Gate

Figure 6.17 Commonly used Integrated Circuit Logic Gates

© Copyright Virtual University of Pakistan 61

CS302 - Digital Logic & Design

Performance Characteristics and Parameters

A number of performance characteristics and parameters determine the suitability of a

particular IC technology for a particular application. The important parameters that are
considered whilst designing Digital Logic Circuits are mentioned briefly.

DC Supply Voltage:

o The supply voltage at which the Gate operates

Noise Margin:

o The maximum and minimum voltages that represent binary 0 and 1 respectively. These
voltage ranges determine the suitability of a gate to work in noisy environmgnts:

Power Dissipation:

o Gates consume power during their operation. The power dissipation varies with the
frequency at which these gates operate.

Frequency Response and Propagation Delay:

o Gates do not instantaneously switch to a new output state after the inputs are changed.
The delay between the input and output limits the frequency at which the inputs to a
logic gate can be changed and the logic circuit can operate.

Fan-Out:

o The number of gates that can be connected tothe output ofia single gate.

© Copyright Virtual University of Pakistan 6

CS302 - Digital Logic & Design

For short lectures, Search on Youtube:
“Cs302 short lectures By Amir”

Lesson No. 07

DIGITAL CIRCUITS AND OPERATIONAL CHARACTERISTICS

1. DC Supply Voltage

TTL based devices work with a dc supply of +5 Volts. TTL offers fast switching speed,
immunity from damage due to electrostatic discharges. Power consumption is higher than
CMOS. The TTL family has six different types of devices characterized by different power
dissipation and switching speeds. The series of TTL chips are:

74 Standard TTL

74S Schottky TTL

T4AS Advanced Schottky TTL

74LS Low-Power Schottky TTL

T4ALS Advanced Low-Power Schottky TTL
T4F Fast TTL

The Standard, the Schottky, the Advanced Schottky, the Low-Power Schottky, the
Advanced Low-Power Schottky and the FAST, TTk, seriessare characterized by their switching
speed and power dissipation. The Standard TTL isithe slowest and consumes more power
and the Advanced low power Schottky “has the fastest switching speed and low power
requirements.

CMOS technology is the dominant technology today and used in large scale ICs and
microprocessors. CMOS technology is characterized by low power dissipation with slow
switching speeds. There are two categories of CMOS in terms of the dc supply voltage. The
3.3 v CMOS series is tharacterized by fast switching speeds and very low power dissipation
as compared to the 5 v CMOS series.

¢ +5V CMOS
o 74HC and 74HCT High-Speed
o 74AC.and 74ACT Advanced CMOS
o 74AHC andyZ4AHCT Advanced High Speed
¢ 3.3VCMOS
o 714LEN Low voltage CMOS
o 74LVC Low-voltage CMOS
o 4l4ALVC Advanced Low voltage CMOS

2. Logic Levels and Noise Margin

The TTL and CMOS circuit operating at +5 or 3.3 Volts respectively are designed to
accept voltages in a certain range as logic 1 and 0. The input and output logic levels for CMOS
and TTL are shown in the figure 7.1. The V4 and V. indicate the acceptable voltage ranges for
the input logic high and low respectively. Similarly Von and Vo, indicate the acceptable output
voltage range for logic high and low respectively.

© Copyright Virtual University of Pakistan 63

CS302 - Digital Logic & Design

+5V TTL
5w v
Von Logic 1
Vin Logic 1
2.4 v Vonmin
2 VVIH(mln]
not nat
allowed allowed
0.8 v Viiman
Vi Logic 0 : 0.4 v Vo imen
Vo Logic O
O v v
+5 VvV CMOS
Sv 5w
Vou Logic 1
4.4 v Vo
V| Logic 1 Y ok
+3.3 CMOS
=5 Vit 33 33w
7 Mon Logic 1
nat ot AU Logic 1
allowed et 2.4 v MYouminm
2% Miiming
15 % MV iman s not
allowed allowed
0.8 v Vi,
Vi Logic O v VL max)
0083 v Viygnay Y| LogicO 0.4v VYo iman
VoL Logic O Vo Logic O
awv av Qv av

Figuré 7.1 Logic Levels for TTL and CMOS Series

a) TTL Logic Levels
At theginput ofiany TTL logic gate logic high ‘1’ or a logic low ‘0’ signal is applied.
* Vi is the input voltagerrange of Logic high signal with a range of 2 to 5 volts.
* Viuminy IS the ' minimum acceptable input range for a logic high signal. (2 volts)
* Vimis the input voltage range of Logic low signal with a range of 0 to 0.8 volts.
* (Viymax Is thegmaximum acceptable input range for a logic low signal. (0.8 volts)

The output of any TTL logic gate can be at logic high ‘1’ or logic low ‘O’.

+ Vanisithe output voltage range of Logic high signal with a range of 2.4 to 5 volts.
* Vonmin is the minimum acceptable output range for a logic high signal. (2.4 volts)
* VoL is the output voltage range of Logic low signal with a range of 0 to 0.4 volts.

* Vormay IS the maximum acceptable output range for a logic low signal. (0.4 volts)

b) CMOS 5 Volt series Logic Levels
At the input of any CMOS 5 volt series logic gate logic high ‘1’ or a logic low ‘0’ signal is
applied.

© Copyright Virtual University of Pakistan 6

CS302 - Digital Logic & Design

* Vs the input voltage range of Logic high signal with a range of 3.5 to 5 volts.
* Vimin) IS the minimum acceptable input range for a logic high signal. (3.5 volts)
* Vi is the input voltage range of Logic low signal with a range of 0 to 1.5 volts.

* Vimax is the maximum acceptable input range for a logic low signal. (1.5 volts)

The output of any CMOS 5 volt series logic gate can be at logic high ‘1’ or logic low ‘0’
* Von is the output voltage range of Logic high signal with a range of 4.4 to 5 valts.
* Voumin is the minimum acceptable output range for a logic high signal.(4.4 volts)
* VoL is the output voltage range of Logic low signal with a range of 0 to 0.33 valts.
* Voumay is the maximum acceptable output range for a logic low signal. (0.33 volts)

c) CMOS 3.3 Volt series Logic Levels
At the input of any CMOS 3.3 volt series logic gate a lagic_high “I>or alogic low ‘0’
signal is applied.
* Vi is the input voltage range of Logic high signal with a range of\2 10 3.3 Volts.
* Viymin is the minimum acceptable input range for a logic high signal. (2 volts)
+ Vi is the input voltage range of Logic low signal with a range of 0'te 0.8 volts.
* Vimax is the maximum acceptable input range fona logiclow signal. (0.8 volts)

The output of any CMOS 3.3 volt series logic gate can beat logic high ‘1’ or logic low ‘0’
* Von is the output voltage range of Logic high signalhwith“arange of 2.4 to 3.3 volts

* Vonmin is the minimum acceptable outputtangefor alogic high signal. (2.4 volts).

* VoL is the output voltage range of Lagic lowsignalwith a range of 0 to 0.4 volts.

* Vormax IS the maximum acceptable outputyrange for a logic low signal. (0.4 volts).

The valid output voltages representing logic high and low are confined to certain
voltage ranges. For example, low-power 3:3 volt CMOS chips output logic high voltage ranges
between 2.4-3.3 volts and logicflow ranges between 0-0.4 volts. Output voltages that are not
within the specified ranges can cause logic circuits to malfunction.

A low-power 3.3v"CMOS AND gate will accept a voltage of 2.1 volts as a valid logic
high input. However, a voltage,of 1.9 volts is unacceptable as an input between 0.8-2.0 volts
will give unpredictable results; therefore input voltages within this range is not allowed.

Wiresyin‘electronic circuits pick up noise from adjacent conductors. Noise is unwanted
voltage, that'is indueed in the circuit due to high-frequency electromagnetic radiation. The
unwanted noisexcan affect the performance of a logic gate and the digital circuit.

Effect of Noise on the Operation of a CMOS AND Gate

A CMOS 5 volt series AND gate is shown. Figure 7.2. Input A of the AND gate is
permanently connected to logic high of +5 volts. Input B of the AND gate is connected to the
output of some other gate. The signal at input B of the AND gate can vary between logic 0 and
logic 1.

Consider that the input B is at logic High state with Viy = 4.2 volts which is within the
valid CMOS Vi voltage range of 5 to 3.5 volts. A voltage generated due to some external
noise (shown by the zigzag line) rides on the 4.2 volt signal. A sharp dip in the input voltage
due to the noise brings the input voltage down to 3 volts for a very short duration. The 3 volt
input is below the minimum input voltage limit of 3.5 volts for logic high input voltage and within

© Copyright Virtual University of Pakistan 65

CS302 - Digital Logic & Design

the not allowed voltage range. This dip in the voltage even for a short duration will result in an
output of logic low for a short interval of time.

H
A
VIN B
V= 4.2v
V =3.5v

IH(min)

Figure 7.2 Effect 8Noise on CMOS AND gate

Effect of Noise on the Operation of a CMOS AND Gate circuit

Two CMOS 5 volt series AND gates are connected together, Figure 7.3 The first AND
gate has both its inputs connected to logic high, therefore the‘output ofithe gate is guaranteed
to be logic high. The logic high voltage output of the first AND gate is assumed to be 4.6 volts
well within the valid Von range of 5-4.4 volts. Assume the“same noise signal (as described
earlier) is added to the output signal of the first AND gate.

H

. L
- D,
s Ve

Vormin = 44V
\Y

V =09V [
NH

Noise Margin High Hmin) = 39V

Figure.7.3 | » Effect of Noise b¥a TM®S AND gate circuit

The'sharp dip“due,to noise brings the Von voltage down to 3.4 volts with reference to
the Von of 4.6 volts3.4 volts is lower than the Viumin Of 3.5 volts required by the input of the
second AND'gate, the circuit will thus malfunction.

Since Vonmin) iS guaranteed to be at 4.4 volts therefore a noise signal being added to
volts can bring Vou voltage down to a minimum of 3.5 volts which is the acceptable
minimum range for V. Anything below 3.5 will cause the second gate to
malfunction. Thus the second AND gate can tolerate a maximum variation of 0.9
volts for its logic high input or has a ‘Noise Margin’ of 0.9 volts.

Noise Margin
Noise margin is a measure of the circuit’'s immunity to noise. The high-level and low-
level noise margins are represented by Van and Vi respectively.

© Copyright Virtual University of Pakistan 6

CS302 - Digital Logic & Design

o V\u= VOH(min) - VIH(min)
o V= VIL(max) - VOL(max)

CMOS 5 volt series Noise Margins

®* Vnu = Voumin) — ViHming = 4.4-3.5=09 v

* Vn = Vigmay — Vormay = 1.5-0.33=1.17 v
CMOS 3.3 volt series Noise Margins

®* Vnu = Voumin) — ViHming =2.4—-2.0=04v

®* Vn = Vigmay — Voumay =0.8-0.4=04v
TTL 5 volt Noise Margins

®* Vnu = Voumin) — ViHming = 2.4-2.0=04v

* Vn = Vigmay — Voumay =0.8-0.4=04v

The CMOS 5 volts and the 3.3 volts series can not be mixed.

For CMOS 5 volt series the high-level noise margin is 0.9 volts. That is, the logic high
output of the gate would never be below 4.4 volts. Even_if,it is below 4.4 volts due to some
external noise, the input will consider any voltage above 3.5 volts to be logic high. So CMOS 5
volt series gates can withstand noisy signals ridingyon, logic highiinputs up to a noise margin of
0.9 volts. Similarly, low-level noise margin is 1.47 volts (1.5-0.33).

The Vwn high-level and V. low-level naise margins for TTL 5 volt and CMOS 3.3 series
are 0.4 volts and 0.4 volts respectively' Therefare in noisy environments, CMOS 5 volt series
based digital system perform better.

3. Power Dissipation

Logic Gates and Logic, circuits consume varying amount of power during their
operation. Ideally, logic gates and logic circuit should consume minimal power. Advantages of
low power consumptiof,areyeircuits that can be run from batteries instead of mains power
supplies. Thus portable_devices“that run on batteries use Integrated circuits that have low
power dissipation. Secondlyylow power consumption means less heat is dissipated by the
logic devices; this .means that’logic gates can be tightly packed to reduce the circuit size
without having to worry“about dissipating the access heat generated by the logic devices.
Microprocessors, for example generate considerable heat which has to be dissipated by
mounting small fans.

Generally, the Power dissipation of TTL devices remains constant throughout their
operation. CMOS device on the other hand dissipate varying amount power depending upon
the frequency of operation.

a) Power Dissipation of TTL Devices

When a TTL logic gate output is in a logic high state it draws out a current from the dc
power supply. It is said to be sourcing current. The high current is designated by Icch, typical
value for lccn is 1.5 mA when Vee = 5 V. When a TTL logic gate output is in a logic low state it
sinks a current designated by lcc. = 3.0 mA when Vcc = 5 V. The figure 7.4 shows an AND
gate connected to output a logic high ‘1°. It thus draws a current Iccx from the voltage supply
Vcc.

© Copyright Virtual University of Pakistan 67

CS302 - Digital Logic & Design

U 0 0o u
1 2 3 4 5
7408 =

Four 2-Input AND Gate

o[}
]

Figure 7.4 Power dissipation of a TTL AND gate

When any one of the AND gate input is connected to low, the output.becomes low and
it sinks current Icc.. An AND Gate which has one of its input connected to a clock which
continuously changes from logic high to low sets the AND gate outputito high and low
respectively for every one half of the clock cycle. Thus the AND\gate sources and sinks
currents lcch and lccy respectively.

The power dissipated by a gate is Vcc X lcc. $he power ‘dissipated would be different
for a gate having a logic high output and logic low output. The average power dissipated is
determined, based on a 50% duty cycle, that is, the\gateyis pulsed and its output switches
between high and low for every one half of the €yele.

Po = Vec(leen + leel)/2

Power Dissipation in TTL circuits is constant over its range of operating frequencies.
For example, the power dissipation of a LS TTL gate is a constant 2.2 mW.

b) Power Dissipation of CMOS Devices

The transistors used in CMOS logic present a capacitive load instead of the resistive
load in TTL based logic. Eachtime a)CMOS logic gate switches between low and high, current
has to be supplied to the capacitivefload. The typical supply current is 5 mA for a duration of
20-30 nsec. As the frequencyyof operation increases, there would be more of these current
spikes occurring“pér second, ‘thus the average current drawn from the voltage source
increases.

Power Dissipation in CMOS circuits is frequency dependent. It is extremely low under
static (dc) conditions and increases as the frequency increases. Total Dynamic Power
dissipation of a CM@S circuit is

Ppo =Pt + PL

whereyPyis the internal power dissipation of the gate
P. is the external power dissipation due to the external capacitive load

Pp = CPD.VDDZ.f + CL.VDDz.f

Pp = (CPD+ CL).VDDZ.f

where Cpp is the internal power dissipation capacitance
C. is the external load dissipation capacitance
Vpp is the supply voltage
f is the transition frequency of the output signal

© Copyright Virtual University of Pakistan 6

CS302 - Digital Logic & Design

The power dissipation of a HCMOS gate is 2.75 yW under static conditions and 170 yW at100
KHz.

4. Propagation Delay

When ever a signal passes through a gate it experiences a delay. That is, a signal
applied to the input of a gate does not result in an instantaneous response. The output of a
gate is delayed with respect to the input. The delay in the output is known as the Propagation
Delay.

The Propagation Delay of a gate limits the frequencies at which the/gate, camywork.
Higher the Propagation Delay lower is the frequency at which the gate cammoperatex Smaller
the Propagation Delay higher the frequency at which the gate can operate."A Gate with a
Propagation Delay of 3 nsec is faster than a gate with a 10 nsec delay.

There are two Propagation Delay times specified for Logic Gates. Figure 7.5

* tpuL The time between a specified reference point on the input pulse and a corresponding
reference point on the resulting output pulse, with the output changing from high level to
low level.

* tpy The time between a specified reference peint ‘@n the input pulse and a corresponding
reference point on the resulting output pulse, with the,output changing from low level to
high level.

1 oy,

———— H
Output *50% b

PLH

N

H
Output #950% \

L
toLn tonL

Figure 7.5 Propagation delay of an NOT & AND gates

© Copyright Virtual University of Pakistan 67

CS302 - Digital Logic & Design

The output of the NOT gate changes from high to low after a delay of time specified by
trHL after the input changes from low to high. The output of the NOT gate changes from low to
high after a delay of time specified by ten after the input changes from high to low. The delay
time is measured at the 50% transition mark.

The input B of the AND gate is permanently connected to logic high, where as input A
varies between High and Low. The output of the AND gate changes from low to high after a
delay of time specified by tp 4 after the input changes from low to high. The output of the AND
gate changes from high to low after a delay of time specified by tpn. after the input/changes
from high to low. The delay time is measured at the 50% transition mark. Generally,.the trgu
and terL propagation delay times are same.

The effect of Propagation Delay on the operation of a digital circuit‘can,be ‘explained
with the help of an example. Consider a Cricket Stadium, entry to the Cricket Stadium is
through three gates, each manned by a security guard who allows the' spectator into the
stadium after checking the ticket. Assume that the security guards at Gates A, B and C take 1,
1.5 and 2 minutes respectively to check the ticket and allow thé spectator into the stadium.
Assuming equal number of spectators queuing up at the three gates, the queue at gate C after
30 minutes is the longest as the guard at Gate C has the [ongest'Propagation Delay.

5. Speed-Power Product (SPP)

An important parameter is the Speed-Poewer Productywhich is used as a measure of
performance of a logic circuit taking into account,the propagation delay and the power
dissipation.

The SPP = tpPp expressed in Joules (J), the unit of energy. Lower the SP product better is the
performance.

6. Fan-Out and Loading

The fan-out of a logic gate'is. the maximum numbers of inputs of the same series in an
IC family that can be connected to a gate’s output and still maintain the output voltage levels
within the specified limitsy, Fan-out/ parameter is associated with TTL technology. CMOS
circuits have very high.impedance therefore fan-out of CMOS circuits is very high but depends
upon the frequency because of capacitance effects.

Fan-out'is specified in terms of unit loads. A unit load for a logic gate equals one input
to a like circuit«Consider a 7400 NAND gate. The output current at logic high is lon = 400 PA.
The input current at'logic high is In = 40 yA. Thus a gate at logic high can source current to
another-gate cennected to its output.

Similarly, the output current at logic low is lo. = 16 mA. The input current at logic low is
. = 2.6 mA. Thus a gate output at logic low can sink current from another gate connected to
its output.

Unit Loads = lon/lin = loc/li. = 400 pA/40 pA =16 mA/1.6 mA =10

© Copyright Virtual University of Pakistan 68

CS302 - Digital Logic & Design

| Load - =

Driver > L_

Figure 7.6 AND Gate Sourcing and Sinking Current

As more gates (Loads) are connected to the driving gate the leading en the driving
gate increases. The total current sourced by the driving gate, increases. As'the current
increases the internal voltage drop increases causing the output voltage Vomto decrease. If
excessive number of gates are connected the output voltage Vou dropsibelow the Vormin
reducing the High-level noise margin, thus compromising the circuit operation. Also as the
source current increases the power dissipation increases. Figure 7.7.

+5v

B s
Driver
VOH

Figure 7.7 AND Gate Sourcing Current

The total sink cufrent alsotincreases with each load gate that is added. As the sink
current increases the' internal voltage drop of the driving gate increases causing Voo to
increase. If excessive number of loads are connected, VoL exceeds Vormay and the Low noise
margin is reduced.

+5v +5v +5v

J
i VoL

Figure 7.8 AND Gate Sinking Current

CMOS loading is different from TTL loading as the type of transistors used in CMOS
circuits presents a capacitive load to the driving gate. When the output of the driving gate is
high the input capacitance of the load gate is charging and when the output of the driver gate

© Copyright Virtual University of Pakistan 69

CS302 - Digital Logic & Design

is low the load gate is discharging. When more load gates are added the input capacitance
increases as input capacitances are being connected in parallel. With the increase in the
capacitance, charging and discharging time increases, reducing the maximum frequency at

which the gate can operate.

+5v

Figure 7.9

+thv

| Ly Load - T
: — L
Driver 1)]
Figure 7.9 CMOS AND Gate Sourcing and Sinking Current

The fan-out of a CMOS gate depends upon the maximum frequency of operation.

Fewer the load gates, greater the maximum frequency of operation:

Different TTL series are characterized by switching,speed and ‘power consumption as

shown in the table. Table 7.1
| 74 | 74S | 74LS [74AS | 7T4ALS | 74F
Performance Rating
Propagation Delay (ns) 9 3 9.5 1.7 4 3
Power Dissipation (mW) 10 20 2 8 1.2 6
Speed-Power product (pJ) 90 60 19 13.6 4.8 18
Max. Clock Rate (MHZz) 35 125 45 200 70 100
Fan-out (same series) 10 20 20 40 20 33
| 74HC | 74AC | 74AHC

Performance Rating

Propagation Delay (ns) 18 5 3.7

Power Dissipation (mW) Static 0.00275 | 0.0055 0.00275

Power Dissipation (mW) Dynamic 100KHz | 0.0625 | 0.08 0.0625

Speed-Power product (pJ) at 100KHz 1.125 0.4 0.23

Max. Clock Rate (MHZz) 50 160 170

| 74LV [74LVC | 74ALVC

Performance Rating

Propagation Delay (ns) 9 4.3 3

Power Dissipation (mW) Static 0.0016 | 0.0008 0.0008

Max. Clock Rate (MHz) 90 100 150

Table 7.1

Operational Characteristics of TTL and CMOS families

© Copyright Virtual University of Pakistan

70

CS302 - Digital Logic & Design

Lesson No. 08
B LEAN ALGEBRA AND LOGI IMPLIEICATION

Any digital circuit no matter how complex can be described by Boolean Expressions.
Boolean algebra is the mathematics of Digital Systems. Knowledge of Boolean algebra is
indispensable to the study and analysis of logic gates. AND, OR, NOT, NAND and NOR,gates
perform simple Boolean operations and Boolean expressions represent the gBoolean
operations performed by the logic gates.

e AND gate F=AB

e OR gate F=A+B
¢ NOT gate F=A

« NAND gate F-=AB

e NOR gate F=A+B

Boolean expressions which represent Boolean functions help in two ways. The function
and operation of a Logic Circuit can be determined by Boolean expressions without
implementing the Logic Circuit. Secondly, Logic circuits gan'be very large and complex. Such
large circuits having many gates can be simplifiedvand implemented using fewer gates.
Determining a simpler Logic circuit having fewer gates which is identical to the original logic
circuit in terms of the function it performs can be easily done by evaluating and simplifying
Boolean expressions.

Boolean Algebra expressions are\written in terms of variables and literals using laws,
rules and theorems of Boolean Algebra. ‘Simplification of Boolean expressions is also based
on the Boolean laws, rules and theiorems,

Boolean Algebra Definitions
1. Variable

A variable is a symbol‘usually an uppercase letter used to represent a logical quantity.
A variable can have a 0 or 1 value.

2. Complement
A complementiis the inverse of a variable and is indicated by a bar over the variable.

Complementfof variable X is X.lfX=0then X=1andif X=1then X=0.

3. Literal
A Literal is a variable or the complement of a variable.

BooledansAddition

Boolean Addition operation is performed by an OR gate. In Boolean algebra the
expression defining Boolean Addition is a sum term which is the sum of literals.

A+B,A+§,K+§+C

e Asumtermis 1 when any one literal is a 1
e A sum term is 0 when all literals are a 0.

© Copyright Virtual University of Pakistan 71

CS302 - Digital Logic & Design

Boolean Multiplication
Boolean Multiplication operation is performed by an AND gate. In Boolean algebra the
expression defining Boolean Multiplication is a product term which is the product of literals.

AB, AB, ABC

e A product term is 1 when all literal terms are a 1
e A product term is 0 when any one literal is a 0.

Laws of Boolean Algebra
The basic laws of Boolean Algebra are the same as ordinary algebra and holditrue for
any number of variables.
1. Commutative Law for addition and multiplication
2. Associative Law for addition and multiplication
3. Distributive Law

Commutative Law for Addition and Multiplication
Commutative Law for Addition A+B=B+A
Commutative Law for Multiplication AB=B.A

BN
LN A"

Figure 8.1 Implementation of Commutative Laws

In terms of implementation,</the Boolean Addition and Multiplication of two or more
literals is the same no, matternhow they are ordered at the input of an OR and AND Gates
respectively. Commutative law”for Addition and Multiplication holds true for n number of
literals.

2. Associative Law for Addition and Multiplication
e Associative Law for Addition A+B+C)=(A+B)+C
e Associative Law for MultiplicationA.(B.C) = (A.B).C

A A+(B+C)
A+B
B
B
(A+B)+C
B+C C
C

© Copyright Virtual University of Pakistan 72

CS302 - Digital Logic & Design

A
A > A(BC) — g
B |
B (AB).C
B.C c | ¥
-~

Figure 8.2 Implementation of Associative Laws

In terms of implementation, the Associative ordering of literals for Bgolean Addition and
Multiplication is the same at the input of an OR and AND gates. Commutative law,for Addition
and Multiplication holds true for n number of literals. The additionwef literals}B and C followed
by the addition of literal A with the result of B+C is the same ‘as adding literals A and B
followed by the addition of literal C.

The multiplication of literals B and C followed by the multiplication of the result of B.C
with literal A is the same as multiplying literals A and\B followed by the multiplication of literal
C.

3. Distributive Law

e Distributive Law A.B+C)=AB+AC
A A(BiC) A
AB
B
B
B+C A | AB+AC
C AC
C
Figure'8.3 Implementation of Distributive Law

Distributive, law holds true for any number of literals. Adding literals B and C followed
by muiltiplyingithe result with literal A is the same as multiplying literal A with literal B and
adding the resultito the product of literals A and C.

Rules of Boolean Algebra
Rules of Boolean Algebra can be proved by replacing the literals with Boolean values 0

and'l,

A+0=A
A+1=1
A.O0O=0
Al=A
A+A=A
A+ A=1
AA=A
.ALA=0

® N UHwNE

© Copyright Virtual University of Pakistan 73

CS302 - Digital Logic & Design

(1 + B) where (1+B) according to Rule 2 is equal to 1

11.A+ AB=A+B
=AB+1)+ AB according to Rule 2 (B+1) =1
=AB+A+ AB
= B(A+A) +A accordingto Rule6 A+ A=1
=B+A

12. (A+B).(A+C) = A+B.C
= AA+AC+AB+BC applying the Distributive Law
= A(1+C+B) +BC according to Rule 2 (1+B+C) =1
= A+BC

Demorgan’s Theorems

Demorgan’s First Theorem states: The complement of a_product of variables is equal
to the sum of the complements of the variables.

AB=A+B

Demorgan;s Second Theorem states: The complement of sum of variables is equal to
the product of the complements of the variables.

A+B=AB

Demorgan’s two theorems prove the equivalency of the NAND and negative-OR gates
and the NOR and negative-AND gates respectively. Figure 8.4

R SR Y

B
A - o
D A+B - AB
Figure 8.4 Implementation of Demorgan’s Theorems

o

Uj(g g)>

B

Demorgan s Theorems can be applied to expressions having any number of variables
o XYZ=X+Y+Z

e X+Y+Z=XYZ

© Copyright Virtual University of Pakistan 74

CS302 - Digital Logic & Design

Demorgan’s Theorem can be applied to a combination of other variables
(A+B.C).(AC+B)=(A+B.C)+(A.C+B)

=A(B.C)+(AC).B

=A.(B+C)+(A+C).B

« =AB+AC+AB+BC

« =AB+AC+BC

Boolean Analysis of Logic Circuits

Boolean algebra provides a concise way to represent the operation of‘alogic circuit.
The complete function of the logic circuit can be determinedaby evaluating the Boolean
expression using different input combinations.

A
- AB

B

AB+C

EAB +C)D
D

Figure 8.5 Boolean expression representing a Logic Circuit

The expression (AB+E)D can be derived from the circuit by starting from the left
hand, input side of the Logic Cireuit..The AND gate provides the output AB. The OR gate adds

the product term AB and the eomplement C to result in (AB + C)term. The AND gate on the
right hand side af, the, circuit performs a multiplication operation between the term

(AB+ (_3) and the literahD resulting in (AB+C)D.

There are four variables, therefore the function table or truth table for the logic circuit
has 16 passiblejinput combinations. The expression can be evaluated by trying out the 16
combinations., Alternately, the input combinations A, B, C and D that set the output of the

expression (AB + E)D to 1 can be easily determined.

From the expression, the output is a 1 if both variable D = 1 and term (AB + 6) =1.
The term (AB + C) =1 only if AB=1 or C=0.
Thus expression (AB + E)D =1 if D=1 AND (C=0 OR AB=1)

© Copyright Virtual University of Pakistan 75

CS302 - Digital Logic & Design

Inputs
A

@]
=
—
©
c
—

Rl R R R Rk ko|lo|o|o|o|ololo
PP RPRPPRPOOOOR IR REP P OOOIOIWm
ook k|lolojk|k o|or|rlololo
R OO OO ORFROIFLOIFO|Ig
Rlo|r|olo|lolr|olo|o|r|o|o|o|~|olm

Table 8.1 Function table for, expression, (AB + (_I)D

In the function table the input conditions for ‘variables A;'B, C and D that satisfy the
condition D=1 AND C=0 are 0001, 0101, 1001¢ The condition)D=1 AND AB=1 are satisfied by
input combination 1111. The condition D=1 AND (C=0.OR AB=1) is satisfied by the input
combination 1101.

Simplification using Boolean Algebra

Many times a Boolean expression has to be simplified using laws, rules and theorems
of Boolean Algebra. The simplifieds xpression results in fewer variables and a simpler circuit.
Consider the Boolean expressiomAB +A(B+C) + B(B+C) and the Logic Circuit represented by
the expression. Figure 8.6. The simplification of the expression results in an expression B +
AC represented by a simpler ¢ircuit having fewer gates. Figure 8.7

= AB + A(B+C) + B(B+C)

=AB + AB + AC +BB +BC using Distributive Law
=AB+AC+B +BC BB = B using rule 7
=AB+AC+B (B+BC) = B using rule 10

=B+ AC (B+AB) = B using rule 10

A
} AB+A(B+C)+B(B+C)
=) >
)
B

Figure 8.6 Logic Circuit represented by Boolean expression AB + A(B+C) + B(B+C)

B,
C

© Copyright Virtual University of Pakistan 76

CS302 - Digital Logic & Design

B B+AC

C

Figure 8.7 Simplified Logic Circuit represented by Boolean expregssion B+AC

Standard Form of Boolean Expressions
All Boolean expressions can be converted into and representéd,in ‘one of the two
standard forms

e Sum-of-Products form
e Product-of-Sums form

1. Sum of Product form
When two or more product terms are summed by Boolean addition, the result is a
Sum-of-Product or SOP expression.

e AB+ABC
e ABC+CDE+ BCD
e AB+ABC+AC
The Domain of @an"SOP expression is the set of variables contained in the expression,

both complemented and un-complemented. A SOP expression can have a single variable term
such as A. A SOP{expression can not have a term of more than one variable having an over

bar extending over the entire term, such as AE +C.
2. Product of Sums form

When two or more sum terms are multiplied by Boolean multiplication, the result is a
Product-of-Sum or POS expression.

e (A+B)A+B+C)
e (A+B+C)(C+D+E)B+C+D)
e (A+B)(A+B+C)A+C)
The Domain of a POS expression is the set of variables contained in the expression,

both complemented and un-complemented. A POS expression can have a single variable term
such as A. A POS expression can not have a term of more than one variable having an over

bar extending over the entire term such as (A +B)(A + B+ O).

© Copyright Virtual University of Pakistan 77

CS302 - Digital Logic & Design

Implementation of an SOP and POS expression

A SOP expression can be implemented by an AND-OR combination of gates. The
product terms are implemented by an AND gate and the SOP expression is implemented by
OR gate connected to the outputs of the AND gates. Figure 8.8

B+AC+AD

A
5
B

A
o

Figure 8.8 SOP Implementation of Boolean expression B+AC+AD
A POS expression can be implemented by an OR-AND c¢ombination of gates. The sum
terms are implemented by OR gates and the POS expression is implemented by AND gate
connected to the outputs of the OR gates.

(A+B)(B%C+D)(A+C)

> vy
@) o >

0

Figure 8.9 POS Implementation of Boolean expression (A+B)(B+C+D)(A+C)

Conversion of a general expression to SOP form
Any logical expressioncan be converted into SOP form by applying techniques of
Boolean Algebra

e AB+B(CD+EF) =AB+BCD + BEF
e (A+B)YB+C+D)=AB+AC+AD+B+BC+BD=AC+AD+B

o/ (A+B)+CZ(A+B)C=(A+B)C=AC+BC

© Copyright Virtual University of Pakistan 78

CS302 - Digital Logic & Design

Lesson No. 09
B LEAN ALGEBRA AND L | IMPLIFICATION

Boolean Analysis of Logic Circuits, evaluating of Boolean expressions, representing
the operation of Logic circuits and Boolean expressions in terms of Function tables and
representing Boolean expressions in SOP and POS forms are inter-related. Boolean laws,
rules and theorems are used to readily change from one form of representation to the other.

Two examples are considered which illustrate the analysis, simplification “and
representation of Logic Circuits and Boolean expressions. In both the examples,a Boolean
expression representing the Logic Circuit is developed, the Boolean expregssion is evaluated
and a function table is implemented that represents the Boolean expression and, the function
of the Logic Circuit. Each Boolean expression is also simplifiedginto SOPor POS form, the
simplified expression is presented in a function table format. The original and the simplified
expressions are verified to show identical functions.

Example 1
1. Finding the Boolean Expression

A

B .| >3§
|
|
4

O

CD

o

Figure 9.1 Logic Circuit represented by Boolean expression A.B + A.B.C.D

The circuit‘can be represented by a Boolean Expression. Starting from the left hand
side
e " Output of NOT gate 1 isB
e Output of NOT gate 2 is A

e Output of two input AND gate 3 is AB (product of A and B
e Output of two input AND gate 4 is C.D (product of C and D)

e Output of three input NAND gate 5 is AB.CD NOT(product ofA_, B and CD)
e Output of two input NOR gate 6 is AB+ A:E:C.D NOT(sum of A.B and KE.C.D)

2. Evaluating the Expression

Considering that X—=AB andY=AB.CD. The expressionA.E?+A:E:C.D can be

represented by X + Y .

© Copyright Virtual University of Pakistan 79

CS302 - Digital Logic & Design

The output of the logic circuitis 1 when X=0and Y =0
e X=0NOR Y=0 Output =1
e X=0NOR Y=1 Output=0
e X=1NOR Y=0 Output=0
e X=1NOR Y=1 Output=0

X=A.B =0 when any literal is zero. That is, A =0 or B =0 (B=1)
Y=A.B.C.D =0whenAB.C.D=1
A.B.C.D = 1 when all literals are one. That is A =1 (A=0), B=1 (B=0), C=1 and D=1

The expression output is 1 for the input conditions
(A=0 OR B=1) AND (A=0 AND B=0 AND C=1 AND D=1)
That is, A=0, B=0, C=1and D=1.

3. Putting the Results in Truth Table Format

Input Output
A B © D F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 011 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Table 9.1 Truth Table representing function of Logic Circuit (fig. 9.1)

4. Simplification of Boolean Expression

The A.§+A_\.I§.C_D expression can be simplified by applying Demorgan’s second
theoremA +B = AB.

- (AB+AB.CD =(AB).(AB.C.D)
Apply Demorgan’s first theorem to the first term and Rule 9 to the second term

© Copyright Virtual University of Pakistan 80

CS302 - Digital Logic & Design

- (A+B).(AB.CD)

= (A+B).(A.B.C.D)

Using the Distributive Law

= (AAB.CD)+ABB.CD
Applying Rule 8 to the second term

=AB.C.D
expression =1 when all literals are one

that is A =1 AND B =1 AND C=1 AND D=1
or A=0 AND B=0 AND C=1 AND D=1

5. Putting the result in Truth Table format

Input Output
A B C D F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 011 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0
Table 9.2 Truth Table representing function of simplified expression

6. Implgnlenting Logic Circuit from Simplified Boolean expression
F=AB.CD

The_expression F represents a product term having four literals. Product term is implemented
using AND gates. Since, the product has four literals therefore a 4-input AND gate is used.

Theliterals A and B are implemented using NOT gates.

A 3 L
B 4 — y
C 1
D —

© Copyright Virtual University of Pakistan 81

CS302 - Digital Logic & Design

Figure 9.2 Simplified Logic Circuit

Example 2
1. Finding the Boolean Expression

g—>aA— . ABC
s I -
07% c 3@&5.0).(@@
D) ° C+D

Figure 9.3 Logic Circuit represented by Boolean expression (K B.E).(C_Z +D)

The circuit can be represented by a Boolean Expression. Starting from the left hand
side
e OQutput of NOT gate 1 is E
e Output of NOT gate 2 isC

e Output of three input AND gate 4 is AB.C (product of A, B and C_)
e Output of two input OR gate 5 is C D (sumof CandD) B
e Output of NAND gate 6 is (A.B.€).(C+D) NOT(product of A.B.C and C+D)

2. Evaluating the Expression
Considering that X=AB.C. and Y =C+D. The expression (A.B.C).(C+D) can be

represented by X.Yx

The output ofithe logie,circuitis 1 when X=0 or Y=0
e X=0 NAND Y=0.Output =1

e X=0 NANDY=1OQutput=1

e X=LINAND Y=0Output=1

e [X=1 NAND¥Y=1 Output=0

X= E.B.E =0 when any literal is zero. That is, Kzg (A=1) or B =0 or C=0 (C=1)
Y=C + D =0 when both literals are zero. That is C =0 (C=1) and D=0

The expression output is 1 for the input conditions
(A=1 OR B=0 OR C=1) OR (C=1 AND D=0)

© Copyright Virtual University of Pakistan 82

CS302 - Digital Logic & Design

3. Putting the Results in Truth Table Format

Input
A

@]
c
—
O
=
—

OO

o

[ellell Jl Sllellell i Hlellelle)

R olr|lo|r|lo|k

e

N R = ====l==]=]
Rk ko|lolookr kikikrolooom
L == e L

e =f=)
Klo| o

Table 9.2 Truth Table‘representing function of Logic Circuit (fig. 9.3)

The truth table shows that the variable D has no effect on the output of the circuit. The truth
table reduces to a three variable truth table. Table 9.3

4. Simplification of Boolean Expression

The (KB.E).((_3+D) expression can be simplified by applying Demorgan’s first
theorem AE:K+ g

= (AB:C).(C%D) NA B.C) + (C+ D)

Input Output
A B © F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Table 9.3 Alternate Truth Table representing function of Logic Circuit (fig. 9.3)

Apply Demorgan’s first and second theorems to the first and second terms respectively

© Copyright Virtual University of Pakistan 83

CS302 - Digital Logic & Design

Applying Rule9

= (A+B+C)+(C.D)

= A+B+ C(1+ 5)

= A+B+C

expression =1 when any one literal is one

that is A=1 OR B=1 OR C=1
or A=1 ORB=00OR C=1

5. Putting the result in Truth Table format

Input Output
A B © F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 01 1
1 1 0 1
1 1 1 1
Table 9.4 Truth Table representing function of simplified expression

6. Impleme_nting Logic Circuit fram Simplified Boolean expression
F=A+B+C

The expression Fyrepresents a sum term having three literals. Sum term is implemented using

OR gates. Since, thessum-has'three literals therefore a 3-input OR gate is used. The literal Bis
implemented using NOT gate.

A

3 7
C

Figure 9.4 Simplified Logic Circuit

Standard SOP form
A standard SOP form has product terms that have all the variables in the domain of the

expression. The SOP expression AC+BC is not a standard SOP as the domain of the
expression has variables A, B and C.

© Copyright Virtual University of Pakistan 84

CS302 - Digital Logic & Design

A non-standard SOP is converted into a standard SOP by using the rule A + A=1

AEJLBE _ o
=AC(B+B)+(A+A)BC

= ABC + ABC + ABC + ABC
= ABC + ABC + ABC

Standard POS form
A standard POS form has sum terms that have all the variables in the domain of the

expression. The POS expression (A+B+C)(A+B+ 5)(A +B+ C+D)is not a standard
POS as the domain of the expression has variables A, B, C and D.

A non-standard POS is converted into a standard POS by using the rule AA =0

(A+I§+C)(A+B+5)(A+§+C_I+D)
:(A+I§+C+[_))(A+I§+C+D)(A+B+C_I+5)(A+B+C+IS)(A+I§+6+D)

Converting to Standard SOP and POS forms
There are several reasons for converting, SOP and POS forms into standard SOP and
POS forms respectively.

Any logic circuit can be implemented by using either the SOP, AND-OR combination of
gates or POS, OR-AND combination of gates. It is very simple to convert from standard SOP
to standard POS or vice versa.. This helps in selecting an implementation that requires the
minimum number of gatesgSecondly, the simplification of general Boolean expression by
applying the laws, rules and theorems does not always result in the simplest form as the ability
to apply all the rules depends,on ones experience and knowledge of all the rules.

A simpler mappihg-method uses Karnaugh maps to simplify general expressions.
Mapping of all the terms in a SOP form expression and the sum terms in a POS form can be
easily donejifrstandard forms of SOP and POS expressions are used. Karnaugh maps will be
discussed latter in the chapter.

Lastly, the PLDs are implemented having a general purpose structure based on AND-
OR arrays. A function represented by an expression in Standard SOP form can be readily
programmed.

Minterms and Maxterms
The Product terms in the Standard SOP form are known as Minterms and the Sum
terms in the Standard POS form are known as Maxterms.

A B C Minterms Maxterms
0 0 0 AB.C A+B+C
0 0 1 AB.C A+B+C
0 1 0 AB.C A+B+C

© Copyright Virtual University of Pakistan 85

CS302 - Digital Logic & Design

0 1 1 AB.C A+B+C

1 0 0 AB.C A+B+C

1 0 1 AB.C A+B+C

1 1 0 AB.C A+B+C

1 1 1 A.B.C A+B+C
Table 9.5 Table of Minterms and Maxterms

Binary representation of a standard Product term or Minterm
A standard product term is equal to one for only one combination of variable values.
For all other variable values the standard product term is equal to zero.

For the expression ABC + ABC + ABC

ABC =1 ifA=1, B=1and C=0

ABC =1 if A=1, B=0 and C=0

ABC =1 if A=0, B=1 and C=0

An SOP expression is equal to 1 when one or more product termsyin the expression are equal
to 1.

Binary representation of a standard Sum term or Maxterm
A standard sum term is equal to zero for only one combination of variable values. For
all other variable values the standard sum term is equal to one.

Forth_e expreision B . _ o
(A+B+C+D)A+B+C+D)(A+B+C+D)(A+B+C+D)(A+B+C+D)

(A+B+C+D)=0 if A=0, B=1, C=0 and D=1

(A +B+C+D)=0 if A=0, B€1, C=0 and D=0
(A+B+C+D)=0 if A=0, B=0, C=1 and D=1
(A+B+C+D) =0 iftA=0, B=0, C=0 and D=1
(A+B+C+D)=0 . if A29;B=1, C=1 and D=0

A POS expression is equal to O when one or more product terms in the expression are equal
to 0.

Converting Standard SOP into Standard POS

The binary values of the product terms in a given standard SOP expression are not
present in the equivalent standard POS expression. Also, the binary values that are not
represented in the SOP expression are present in the equivalent POS expression.

ABC + ABC + ABC + ABC + ABC has the binary values 000, 010,011,101 and 111

Canonical Sum= ¥, , -(0,2,3,5,7) =ABC + ABC + ABC + ABC + ABC
The missing binary values are 001, 100 and 110.

The POS expression is (A+ B+ E)(ZHL B+ C)(Z+ B+ C)

© Copyright Virtual University of Pakistan 86

CS302 - Digital Logic & Design

Canonical Product = [],5(1,4,6)

Verifying POS expressign is_equivalent to SOP expression
(A+B+C)(A+B+C)(A+B+C)

:(A.K+ A.B+A.C+KB+B.B+B.C+Z.E+B.E+C.E).(K+I§+ C)
:(A.B+A.C+K.B+B+B.C+K.E+B.E).(K+§+ C)
:(A.C+B+K.E).(K+I§+ C)

:A.E.C +AB.C +ACC+ A__B iB.I§+ B.C+AAC+AB.C+AC.C

=AB.C+AC+AB+B.C+AC+AB.C
Converting into standard SOP

=AB.C+ A.C(B +§) +K.B(C +E) +B.C(A + K) + KE(B + BT) +ABC

=AB.C+AB.C+ABC+ABC+ABC+ABC+ABC+ABC+ABC+AB.C
Simplifies to

=ABC + ABC + ABC + ABC + ABC

Therefore 2(0,2,3,5,7)= 11(1,4,6)

Boolean Expressions and Truth Tables

All standard Boolean expressions can be easily converted into truth table format using
binary values for each term in the expression. Standard SOP or POS expressions can also be
determined from a truth table.

Converting SOP expression to,Truth Table format

A truth table is a list of pessible input variable combinations and their corresponding
output values. An SOP, expression having a domain of 2 variables will have a truth table
having 4 combinations of inputs and\corresponding output values.

To convert an. SOP expression in a Truth table format, a truth table having input
combinations proportionalste’ the domain of variables in the SOP expression is written. Next
the SOP expression isywritten in a standard SOP form. In the last step all the sum terms
present in‘the standard SOP expression are marked as 1 in the output.

AB + BC has a domain of three variables thus a truth table having 8 input and output
combinations is required. The SOP_expression is converted into standard SOP expression
AB(C +C)# BC(A+A) =ABC+ ABC+ABC+ ABC = ABC+ABC+ABC + ABC
MarKing the outputs in the truth table as 1 for sum terms that are present in the standard SOP.

Input Output
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1

© Copyright Virtual University of Pakistan 87

CS302 - Digital Logic & Design

Table 9.6 Mapping SOP expression to Truth Table

Canonical Sum F= Y,5c(3,4,5,7) =AB.C+AB.C+AB.C+AB.C

Converting POS expression to Truth Table format

An POS expression having a domain of 2 variables will have, a truth table having 4
combinations of inputs and corresponding output values.le convert a’POS expression in a
Truth table format, a truth table having input combinations proportional to the domain of
variables in the POS expression is written. Next the \POS, expression is written in a standard
POS form. In the last step all the product terms present in‘the standard POS expression are
marked as 0 in the output.

(A+ |§)(B+E) has a domain of three variables thus a truth table having 8 input and
output combinations is required. The POS expression is converted into standard POS
expreision_ _ B _ - o _
(A+B+CC)(AA+B+C)=(A+B+C)(A+B+C)(A+B+C)(A+B+C)

Marking the outputs in the truth_table ast0 for product terms that are present in the standard
POS

Input Output
A B © F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Table 9.7 Mapping POS expression to Truth Table

Canonical Product F=[T,g¢(1,2,3,5) = (A+B+C)(A+B+C)(A+B+C)(A+B+C)

© Copyright Virtual University of Pakistan 88

CS302 - Digital Logic & Design

Lesson No. 10
KARNAUGH MAP & B LEAN EXPRESSION SIMPLIFICATION

Simplifying Boolean Expressions using the laws, rules and theorems do not guarantee
the simplest form of expression as sometimes simplification of certain terms is not so obvious
or the person doesn’'t have the necessary experience in applying the laws and rules. The
Karnaugh Map provides a systematic method for simplifying Boolean expressions,

A Karnaugh Map is organized in the form of an array. Adjacent cells of the array can be
grouped together to result in simplification of a given expression. Karnaugh Maps canibe used
to simplify expressions of 2, 3, 4 and 5 variables.

The 3-variable Karnaugh Map

Figure 10.1 Column and Row based 3-variable Karnaugh Maps

e A 3-variable K-Map has an array of 8 cells. The 8 cells'can be arranged in 2 columns and 4
rows representing the column form ofithe Karnaugh Map.

o Alternately, the 8 cells can be organizediin 2 rows and 4 columns representing the row
form of the Karnaugh map.

¢ Any of the two forms of the Karnaugh Map can be used to simplify Boolean expressions.
The simplified expressions using either of the two K-maps are identical.

e Considering first the column based 3-variable Karnuagh map. The binary values 00, 01, 11
and 10 in the left most column of the K-map represent the binary values of variables A and
B. The binary values 0 and 1 in the top row of the K-map represent the binary values of
variable C.

¢ The 3-variable K-Map based on the row representation is considered next. The binary
values 0 and 1 initheleftsmost column of the K-map represent the binary values of variable
A. The binary values 00, 01, 11 and 10 in the top row of the K-map represent the binary
values of variables B and C

¢ The numbers in the cells represent the Minterms or Maxterms of an expression that is to
be represented using the K-map. The cell marked O for example, represents the minterm 0
or«the maxterm O having binary value of variables A, B and C equal to 000. Similarly cell
marked 5 represents the minterm 5 or the maxterm 5 having binary values of variables A,
B and'C equal to 101.

The 4-variable Karnaugh Map

Figure 10.2 4-variable Karnaugh Map

© Copyright Virtual University of Pakistan 89

CS302 - Digital Logic & Design

e A 4-variable K-Map has an array of 16 cells

e The numbers in the cells represent the Minterms and Maxterms of an expression that is to
be represented using the K-map.

e The 4-variable K-Map has a square format with four rows and four columns of cells.

e The binary values 00, 01, 11 and 10 in the left most column of the K-map represent the
binary values of variables A and B. The binary values 00, 01, 11 and 10 in the top row of
the K-map represents the binary values of variables C and D

e The 16 cells marked with numbers 0 to 15 represent the cells 0 to 15 corresponding to the
minterms 0 to 15 or the maxterms 0 to 15 in a 4 variable Boolean expression.

e The cell marked 6 for example, represents the minterm 6 or the maxterm 6 having binary
value of variables A, B, C and D equal to 0110. Similarly cell marked 13 represents the
minterm 13 or the maxterm 13 having binary values of variables A, B, C and D equal to
1101.

Grouping and Adjacent Cells
Karnaugh Map Array is considered to be wrapped around_were all sides are adjacent
to each other. Groups of 2, 4, 8, 16, 32 etc. adjacent cells arexformedaAdjacent cells can be
® row wise
e column wise
o four corner cells
e row-column groups of 4, 8, 16, 32 etc

Groups are formed on the basis of 1s (Minterms) or 0s (maxterms). A group is selected
to have maximum number of cells of Minterms or\Maxterms, keeping in view that the size of
the group should be a power of 2. The idea is topform minimal number of largest groups that
uniquely cover all the cells, thereby ensuring that all'minterms or maxterms are included.

Mapping a standard SOP Expression
The first step in simplification of Boolean expressions is to map the expressions to the
Karnaugh maps. For a Standard SOP expression, a 1 is placed in the cell corresponding to the
product term (Minterm) presentiin the expression. The cells that are not filled with 1s have 0s.
The Standard SOP “expression having a Domain of three variables

ABE+ AI§5+ ABE isamapped to a 3-Variable Karnaugh Map. The product terms or the
Minterms are 2, 4 and 6. Fhé expression is mapped on a K-Map by placing a 1 at Minterm
cells 2, 4 and 6 and placing 0 at remaining cells.

=)

O |o(o|Oo
-
o
o
[EEN

Figure 10.3 Mapping the expression ABC + ABC + ABC to a 3-variable K-Map

The Standard SOP expression having a domain of four variables

AB.C.D+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD is mapped to a 4-
variable Karnaugh Map. The product terms or the Minterms are 1, 4, 5, 6, 8, 13 and 14. The

© Copyright Virtual University of Pakistan 90

CS302 - Digital Logic & Design

expression is mapped on a K-Map by placing a 1 at Minterm cells 1, 4, 5, 6, 8, 13 and 14 and
placing 0 at remaining cells.

Llo|lr|o
Ok k(K
o|lo|lo|o
o|lr|r|o

Figure 10.4 Mapping the 7 term SOP expression to a 4-variable'K-Map

Mapping a non-standard SOP Expression

In many practical cases, SOP expressions are not in a standardyfermat. To map them
to K-maps they have to be either converted into Standard SOP expressions or they can be
directly mapped.

Example 1

The expressionA+BE is a non-standard, SOP, expression having a domain of 3
variables. If the expression is converted into a Standard SOP, expression then there will be four
product terms having the variable A . Similarly, there would be two product terms having the

variable combinationBC. Two of the product terms ABC are identical. The expression

A +|35 can be directly mapped to a K-map,without first converting the expression to the
standard form.

The term A is mapped first. A ‘1’ is marked in cells where the variable A is present.

19 L 1 01|11
| 1

Figure 10.5 Mapping the expression A to a 3-variable K-Map

Consider the mapping of the term BC.A1’is marked in cells where the variable BC is
present. The cells are marked with 1. One of the cells ABC has already been marked when
mapping the terms containing variable A .

=

==
o
o
o
[

Figure 10.6 Mapping the expression BC to a 3-variable K-Map

© Copyright Virtual University of Pakistan 91

CS302 - Digital Logic & Design

The K-map shows that if the non-standard SOP expression A + BE is converted into a
standard SOP expression it would have five product terms as represented by the K-map cells.

Example 2
The expression AT+6 is a non-Standard SOP expression having a domain of 3
variables. It is mapped directly to a 3-variable K-map. The term Ais mapped first by marking
cells having A with “1".

1 1 1 1
0 0

o|F|F

O |O|F|F
o
o

0
Figure 10.7 Mapping the expression A to a 3-variable K-Map

The term C is mapped next. A ‘1’ is marked in cells where the term C is present.

1 1
1 1 1 1 1 1
1 0 1 0 0 1
1 0

Figure 10.8 Mapping the expression C to a 3-variable K-Map

Mapping of non-standardySOP“expressions having a domain of 4 variables is similar.

Consider the expression D + AC + BC . The\terms D , AC and BC are mapped one after the
other by marking cells with.‘1’s where these'terms are present.

S
S

o|lo|O|O
o|lo|Oo|O

1 1
Figure 10.9a Mapping the expression D to a 4-variable K-Map

==
i

S
o|lo|o|o

Figure 10.9b Mapping the expression AC to a 4-variable K-Map

© Copyright Virtual University of Pakistan 92

CS302 - Digital Logic & Design

R, O|O

RlR R
N
olrk|r|o

Figure 10.9c Mapping the expression BC to a 4-variable KéMap

Simplification of SOP expressions using the Karnaugh Map

SOP expressions can be very easily simplified using the 'K-Map method. In the first
step of the simplification process, the SOP expression is mapped on the K-map. In the next
step, groups of 1s are formed starting with the largest group.of 1s. The group should be of size
2, 4, 8, 16 etc. having adjacent 1s. Multiple (unique)groups ef 1s are formed. All the groups
formed can either be separate groups or they could share common 1s each having at least a
single 1 that is not common to any other groupsA single 1that is not adjacent to any other 1 is
considered as a group having only a single cell.

In the next step minimal product terms ‘are determined. Each group, including a group
having a single cell, represents a product term. having variables that occur in only one form
either complemented or un-complemented.

A 3-variable K-map yields

e A product term of three variables for a group of 1 cell

A product term of twe variables\for a group of 2 cell

A product term of one variablexfor a group of 4 cell

A group of 8 cells yields awalue of 1 for the expression.

A 4-variable K-mapyields
e A product term of four variables for a group of 1 cell

o A product termof three variables for a group of 2 cell

o _A'productterm of two variables for a group of 4 cell

¢ [A produet term of one variable for a group of 8 cell

o “Argroup of 16 cells yields a value of 1 for the expression.
Example 1 & 2

0 1) BCHEOIED,
IFA (1)l oo o
%

0

=)

=

Figure 10.10 Simplification of SOP expression using a 3-variable K-Map

© Copyright Virtual University of Pakistan 93

CS302 - Digital Logic & Design

An SOP expression having 5 minterms is mapped to a 3-variable column based K-
map. Three groups of two cells each are formed.

e The first group of 1s comprising of cells 2 and 6 forms the product term BC
e The second group of 1s comprising of cells 5 and 7 forms the product term AC

» The third group of 1s comprising of cells 1 and 5 forms the product term BC B
The five term SOP expression simplifies to a 3 term SOP expression B.C + A.C +B.C

An SOP expression having 4 minterms is mapped to a 3-variable row based K-map.
Two groups of 2 cells each and a third group of single cell are formed.

e The single cell group comprising of cell 4 forms the product term ABC

e The second group of 1s comprising of cells 1 and 3 forms the product term AC
e The third group of 1s comprising of cells 2 and 3 forms the product term AB
The four term SOP simplifies to a 3 term SOP expression AB.C+AC+AB

Example 3& 4

0 0
CREY o DD
o T

Figure 10.11 Simplification of SOP expression using a 3-variable K-Map

An SOP expression having 5 minterms is mapped to a 3-variable column based K-
map. One group of 4 cells and another group of 2 cell are formed.
e The first group of 1s comprisingeof cells 2, 3, 6 and 7 forms the product term B
e The second group of 1s comprising oficells 5 and 7 forms the product term AC
The five term SOP simplifies to a 2 term SOP expression B + AC

An SOP expression having®® minterms is mapped to a 3-variable row based K-map.
Three groups of 2 cellsieach are formed.

e The first group.of,1s comprising of cell 4 and 5 forms the product term AB
¢ The second group of Ls comprising of cells 3 and 7 forms the product term B.C

e The third group of 1s comprising of cells 2 and 3 forms the product term AB
The fivesterm SOP simplifies to a 3 term SOP expression A.B +B.C + A.B

Example 5
1 V1] o
o | o TN
\L [1
W] 1 HiT70

Figure 10.12 Simplification of SOP expression using a 4-variable K-Map

© Copyright Virtual University of Pakistan 94

CS302 - Digital Logic & Design

An SOP expression having 11 minterms is mapped to a 4-variable based K-map.
Three groups of 4 cells each are formed.

e The first group of 1s comprising of cells 8, 9, 12 and 13 forms the product term A.C
e The second group of 1s comprising of cells 1, 3, 9 and 11 forms the product term B.D
e The third group of 1s comprising of cells 6, 7, 14 and 15 forms the product term B.C

The eleven term SOP expression has simplified to a 3 term expression A.C+B.D +B.C

Example 6
An SOP expression having 8 minterms is mapped to a 4-variable based K-map: One
group of two cells and two groups of four cells are formed.

e The first group of 1s comprising of cells 8 and 12 forms the product term A.CD
e The second group of 1s comprising of cells 3, 7, 11 and 15 formns,the product term C.D
e The third group of 1s comprising of cells 6, 7, 14 and 15 forms the product term B.C

The eight term SOP expression has simplified to a 3 term expression ACD+CD+B.C

o | o,]/\] o
0 |20 411 1h\e
Y RENIEN IV
\1/ %0 0

A

Figure 10.13 Simplification offSOP expression using a 4-variable K-Map

Example 7

An SOP expression havihg 9 minterms is mapped to a 4-variable based K-map. Two
group of two cells and two groups of four cells are formed.
The first group of 1s'cemprising of corner cells 0, 2, 8 and 10 forms the product term B.D
The second group of 1s'¢emprising of cells 2, 3, 10 and 11 forms the product term B.C
The third group of 1s comprising‘of cells 13 and 15 forms the product term A.B.D

The fourth group of 1s‘eomprising of cells 2 and 6 forms the product term A.C.D
The nine, term SOPR, expression has simplified to a 4 term SOP expression

B.D+B.C +A.B.D®AL.D

1| d | 1|)T

0] 0 \1/
1 0

1 |] 1 Ne

Y

Figure 10.14 Simplification of SOP expression using a 4-variable K-Map

Mapping Directly from Function Table
Practically, when a digital circuit is to be implemented to perform some operation, its
function is first defined using a function table. The information in the function table is directly

© Copyright Virtual University of Pakistan 95

CS302 - Digital Logic & Design

mapped to a K-map of appropriate variables which is then simplified. The simplified expression
obtained from the K-map is directly implemented using logic Gates.

Consider a logical circuit that accepts 4-bit binary numbers representing decimal
numbers 0 to 15. The circuit checks the four bit binary equivalent of the decimal number. If the
number is odd and it is a prime number the function outputs a one. Before designing the logic
circuit a function table is implemented with all the input output combinations. The function, table
for the odd prime number checker is shown. Table 10.1 The output is a 1 for inputs 1, 3, 5, 7,
11 and 13.

Input Output | Input Output
A B C D F A B C D F

o|o|o|o|o|o|o|o
R|R|R|~|lo|lololo
N == ==)
R|lo|lk|o|r|o|r|lo
R|lo|lk|o|r|o|r|lo
L I
NI =l=1=1=)
Kk glo|—||olo
R|lo|r|o|rielr|o
o|lo|r|o|lr|olofe

Table 10.1 Function Table for Odd-Prime Checker Circuit

The 4 variable Function Table, Table 10.1 canybe directly mapped to a 4 variable K-
map by marking the K-map cells with 1s caorresponding to the minterms marked as 1s in the
function table. Figure 10.14. Simplifying the ‘expression using the K-map results in

AD+B.C.D+B.CD. The expression can be directly implemented using logic gates.

/T /
\D\T 1)
\T/+0
0 |/1\

Figure 10:14 Simplification of expression using a 4-variable K-Map

OO0 |D
oO|lO|O0O|O

Don’t care Conditions

Function Tables represent the function by listing all the possible inputs and marking the
corresponding outputs with 1s and Os. Thus a circuit having four inputs can be described by a
4-variable function table having 16 possible input combinations. For each of the 16 possible
input,conditions the corresponding output bits are marked as 1s and Os depending upon the
minterms or maxterms. It is however, possible that out of the 16 possible input combinations,
three input combinations never occur. Since these three input combinations never occur so
should their corresponding outputs be marked as Os or 1s? Since these inputs never care
therefore we don’t need to worry about the output of these input states. They are considered to
be don’t care conditions.

Don’t care conditions are marked as x in the output column of the function table
corresponding to the don’t care conditions. When the function table is mapped to the

© Copyright Virtual University of Pakistan 96

CS302 - Digital Logic & Design

corresponding K-map, the don’t care conditions are marked as x. However during the grouping
process for simplification of the SOP expression the x outputs can be considered as 0 or 1. By
assigning a 0 or 1 to the cells marked with X, the final expression can be significantly
simplified.

Reconsider the last example of the Odd-Prime Number checker circuit. Assuming that
only the first ten input (0 to 9) states can occur and the last 6 inputs never occur, Thesgfunction
table for the conditions that never occur is shown. Table 10.2

Input Output | Input Output
A B C D F A B C D F

o|lo|o|o|o|o|o|o
RlR|r|~|lo|lololo
N N = =1 =]=)
R|lo|r|o|lr|o|r|o
R|lo|r|o|lr|o|r|o
I I L
Bl |~ |olololo
R |o|lolr| oo
R|lolr|o|lHlo| o
x|x|x|x|x|x|olo

The function table can be directly mapped(to ay4 variable K-map. Figure 10.15. The cells
marked with x are considered to be 0s. Thus the function expression is simplified to A.D

1)

O | X |[Of O
P
X |IX | O|O

0

Figure 10.15 " Simplification of expression with Don’t care states

If the Odd-Parity Checker Circuit checks for numbers between 0 and 8, and states 9 to
15 never loccur then the Boolean expression representing the function reduces to a single
literal D _Figure 10.46¢ The cells 9, 10, 11, 13, 14 and 15 marked as ‘X’ as they represent the
don’t care states,are considered as 1’s to form a group of 8 cells. Remaining cells marked with
‘X’lare considered as 0’s and are not involved in grouping.

olA Y] o
0o |[1 1) 0
0 \(/>< X

Figure 10.16 Simplification of expression with Don’t care states

Consider the K-map considered earlier in Example 6. Figure 10.13. Assume that the
input conditions A.B.C.D, AB.C.Dand AB.C.D never occur so they are marked as X in the K-

© Copyright Virtual University of Pakistan 97

CS302 - Digital Logic & Design

map cells corresponding to the minterms that never occur. Redefining the groups using x as 0
or 1 results in a simpler expression C+ A.D instead of A.B.C+ C.D +B.C. Figure 10.17.

AB\CD| 00 [01 [11 [10
00 | o | x [[1)] «x
0L o | o [/ A4 K
O o Na]] o) \
w0 [\ o [\1/Tx
A4
AB\CD| 00 [01 [11 [10
0 o x [A]X
0L oo 1] 1)
11]ofl1] 1
10 1] 0|\t

Figure 10.17 Simplified expression b ifico ting the don’t care states

>

© Copyright Virtual University of Pakistan 98

CS302 - Digital Logic & Design

Lesson No. 11
KARNAUGH MAP & B LEAN EXPRESSION SIMPLIFICATION

Mapping a Standard POS Expression

For a Standard POS expression, a 0 is placed in the cell corresponding to the product
term (maxterm) present in the expression. The cells are not filled with Os have 1s. The
Standard POS expression having a Domain of three variables

(A+B +_C).(A + B+ C)IA +B+ C).(A:' B+ C) uses a 3-Variable Karnaugh Map, The,sum
terms or the Maxterms are 1, 2, 5 and 7. The expression can be representeddy,a K-Map by

placing a 0 at Maxterm locations 1, 2, 5 and 7 and placing 1 at remaining places.“Any ‘of the
two K-maps can be used. Figure 11.1.

1 0
0] 1 1|0 |ad 0
110 1] 0| 0, 1
1 0

Figure 11.1 Mapping a Standard POS expression

Karnaugh Map simplification of POS expressions

POS expressions can be easily simplified byause of the K-Map in a manner similar to
the method adopted for simplifying SOPR. expressions. ‘After the POS expression is mapped on
the K-map, groups of 0Os are marked instead ofids\based on the rules for forming groups used
for simplifying SOP.

In the next step minimal sum terms\are determined. Each group, including a group
having a single cell, represents a sum term having variables that occur in only one form either
complemented or un-complemented.

A 3-variable K-map yields

¢ A sum term of three variables for a group of 1 cell

¢ A sum term of two variables for a group of 2 cell

¢ A sum term of one variable for a group of 4 cell

o A group of 8 cells yields a value of 0 for the expression.
A 4-variable K-map yields

e A sum term of‘four'variables for a group of 1 cell

o AA'sum term ef three variables for a group of 2 cell

¢ | A sumterm of two variables for a group of 4 cell

o “A'sum term of one variable for a group of 8 cell

e A group of 16 cells yields a value of O for the expression.
Example 1 & 2

\o/| 1 111
QI

—

=
o
=

1
1

Figure 11.2 Simplification of POS expression using a 3-variable K-Map

© Copyright Virtual University of Pakistan 99

CS302 - Digital Logic & Design

A POS expression having 3 Maxterms is mapped to a 3-variable column based K-map.
A single group of two cells and a group of one cell are formed.

e The first group of Os comprising of cells 0 and 4 forms the sum term (B + C)
e The second group comprising of cell 3 forms the sum term (A +B + C)
The three term POS expression simplifies to a 2 term POS expression (B+ C).(A+B+C).

A POS expression having 4 Maxterms is mapped to a 3-variable column based K-map:
Two groups of 2 cells each and a third group of single cell are formed.

e The single cell group comprising of cell 0 forms the sum term (A +B+C)
e The second group of Os comprising of cells 5 and 7 forms the sum term (A + C)

e The third group of Os comprising of cells 6 and 7 forms the sum term (A +B)

The four term POS expression simplifies to a 3 term | \POS “expression
(A+B+C).(A+C).(A+B).

Example 3& 4

T e
1

1
(0y] 1

Figure 11.3 Simplification of POS expression using a 3-variable K-Map

A POS expression having 3 Maxterms is mapped to a 3-variable column based K-map.
Two groups of two cells are formed.

e The first group of Os comprisingof cells © and 1 forms the sum term (A +B)
e The second group of Os camprisingyof cells 0 and 4 forms the sum term (B + C)
The three term POS expression simplifies to a 2 terms POS expression (A + B).(B + C)

A POS expressien having 3 Maxterms is mapped to a 3-variable column based K-map.
One group of 2 cells and‘another group of single cell are formed.

e The firsti@roup of Qs comprising of cell 0 and 1 forms the sum term (A +B)
e The secondsgroup comprising of cell 6 forms the sum term (A +B + C)
Thegthrée term_POS expression simplifies to a 2 term POS expression (A +B).(A + B + C)

Example 5
([1] 1 Y
i NO | 1] 1
T | 1 1 1
11| 1 [(0)

© Copyright Virtual University of Pakistan 100

CS302 - Digital Logic & Design

Figure 11.4 Simplification of POS expression using a 4-variable K-Map

A POS expression having 5 Maxterms is mapped to a 4-variable column based K-map.
Three groups of two cells are formed.

e The first group of Os comprising of cells 4 and 5 forms the sum term (A + B+ C)

e The second group of Os comprising of cells 0 and 4 forms the sum term (A + C + D)

e The third group of Os comprising of cells 2 and 10 forms the sum term (B + C+ P))

The five term POS expression has reduced to a 3 term POS_ expression
(A+B+C).(A+C+D).(B+C+D)

Example 6

o [yl 1 [/
NO [1 | 1
1 [{o]|lerd 2
1 [\oALTE(OT

Figure 11.5 Simplification of POS expressionwsing a 4-variable K-Map

A POS expression having 8 Maxterms_is.mapped to a 4-variable column based K-map.
Two groups of 4 cells and one group of two cells,are formed.

e The first group of Os comprising ofieells 0, 1, 4 and 5 forms the sum term (A +C)
e The second group of 0s comprising of cells 1, 5, 9 and 13 forms the sum term (C + D)

e The third group of Os comprising of cells 2 and 10 forms the sum term (B + (_I+ D)
The eight term “POSWy.expression has reduced to a 3 term POS

expression (A + C).(C #D)(B + C+D).

Example 7

CAERE
2 [0 |
1
1

1 [(9)
0

1
Figure 11.6 Simplification of POS expression using a 4-variable K-Map

K=

A POS expression having 6 Maxterms is mapped to a 4-variable column based K-map.
Three groups of 2 cells and one group of a single cell are formed.

e The first group of Os comprising of cells 4 and 5 forms the sum term (A + B+ C)
e The second group of Os comprising of cells 5 and 7 forms the sum term (A +B + D)

e The third group of Os comprising of cells 1 and 9 forms the sum term (B+C+ 5)

© Copyright Virtual University of Pakistan 10

CS302 - Digital Logic & Design

e The fourth group comprising of cell 14 forms the sum term (Z+ I§+ C_2+ D)
The six term POS expression has reduced to a 4 term POS

expression (A +B+C).(A+B+D).(B+C+D).(A+B+C+D)

Converting between POS and SOP using the K-map

Converting between the two forms of standard expressions is very simple. If the 1s
mapped on the K-map are grouped together they form the product terms of the SOP
expression. Similarly, if the 0s mapped on the K-map are grouped together they form the sum
terms of the POS expression

Consider the POS expression (A +I§+C).(A +B+ II_)).(B +C+ 5).(K+ B+C+ D)

1 (o) | 1| 1 1 [ot |(ay

09 [9 | 1 o] o [Lo [\1)
1>ﬁ—‘1(0\ ﬁ\l
1 | T 0

=

A
179 T

Figure 11.7 Converting between SOP‘and POSwsing K-map

An equivalent SOP expression can be obtained by‘grouping the 1s together.
BD +BC + ABC + ABD + ACD

Five-Variable Karnaugh Map

A K-map for 5 variables can be constructed by using two 4-variable K-maps. Figure
11.8. The cells 0 to 15 lie in the 4-variable.map A=0 and cells 16 to 31 lie in the 4-variable map
A=1.

The two, 4-variable maps areyconsidered to be lying on top of each other. Thus a two
dimensional map is formed. Rules for grouping of 0Os and 1s remain unchanged. In a 2-
dimensional map, the groupsiof adjacent Os or 1s can also span both the maps. In a 5-variable
Karnaugh map groupsof.2, 4,'8)16 and 32 can be formed.

Figure 11.8 5-variable Karnaugh Map using A=0 and A=1 maps

Mapping, Grouping and Simplification using 5-variable Karnaugh maps is identical to
those of 3 and 4 variable Karnaugh maps.

© Copyright Virtual University of Pakistan 102

CS302 - Digital Logic & Design

Simplification of 5-Variable Karnaugh Map

o|lo|o|o
k===
=l
L|lo|lo|lo
Rl |olo

o|lo|r|r
olo|r|r
ROk |k

Figure 11.9 5-variable Karnaugh Map Simplification

The 5-variable Karnaugh map is mapped with Minterms in‘plane A=0 and A=1
respectively. Consider the groups that are formed.

e Starting with A=0 map. The cells 1 and 5 form agroup of,two cells. These two cells along
with cells 17 and 21 in map A=1 from a group. of 4xcells. This group of 4 cells represents

the term BDE
¢ The cell 2 in map A=0. Cell 2 does not farm asgroup, with"any adjacent cells. Therefore it is

a group of single cell having the product term ABEDE
e The cells 10 and 11 in map A=0. These,twa cellsform a group of four with adjacent cells

26 and 27 in map A=1. Therefare the group of 4 cells represents the product term BCD
o Tthe cells 11 and 14 in map A=0"and ‘cells 26 and 30 in map A=1represent a group of 4

cells representing the product term BDE

Now considering the map A=1.

e The 4 cells 16, 17, 20-and 21wrepresent the product term ABD _
e The cell 25 along with cellh27 in map A=1 represent the product term ABCE

Functions having multiplefoutputs

In ,the discussions on Boolean expressions and Function Tables that represent
Boolean functionsyit has been assumed that Logic Circuits have multiple inputs and single
output.“Practical Logic circuits however, have multiple inputs and multiple outputs. Circuits
having a_single output or multiple outputs are treated in the same manner.

Circuits having multiple outputs are represented by multiple function tables one for
each_ output or a single function table having multiple output columns. The example of a BCD
to 7:Segment Decoder circuit which has 4 inputs and 7 outputs is considered to explain
functions having multiple outputs.

7-Segment Display

The 7-segment display digit is shown. Figure 11.10. 7-Segment Display is used to
display the decimal numbers 0 to 9. A 7-segment display digit has 7 segments a, b, ¢, d, e, f
and g that are turned on/off by a digital circuit depending upon the number that is to be
displayed.

© Copyright Virtual University of Pakistan 10

CS302 - Digital Logic & Design

N____ 7 Digit Segments
0 a,bcdef
f b 1 b, c
9 2 a,b,dedg
> 3 a,b,cdg
4 b,c fg
e ¢ 5 a, c,dfg
6 a, cdefg
Q 7 a, b, c
8 a,b,cdedaqg
9 a, b, dfg

Figure 11.10 7-Segment Display

Different set of segments have to be turned on to display different digits. For example,
to display the digit 3, segments a, b, ¢, d and g have to betturned en. To display the digit 7,
segments a, b and c have to be turned on. The table indicates'the segments that are turned on
for each digit.

The circuit that turns on the appropriate segmentstoe, display a digit is known as a BCD
to 7-Sement Decoder. The input to the BCD¢te, 7-Segment,decoder circuit is a 4-bit BCD
number between 0 and 9. The seven output lines ofythesdecoder connect to the 7 segments.
Figure 11.11.

7-segment

output

4-bit . — N_Aa7
NN —a
5CD jogic | —

input Circuit E

d

Figure 11.11 BCD to 7-Segment Decoder

To implement the decoder circuit having 4 inputs and 7 outputs, function tables have to
be drawn which represent the output status of each output line for all combinations of inputs.
For example, the segment a is turned on when the 4-bit input is 0, 2, 3, 5, 6, 7, 8 and 9.
Similarly, the segment b is turned on for 0, 2, 3, 4, 7, 8 and 9 combinations of inputs. Thus
seven expressions, one for each segment has to be be determined before the decoder circuit
can be implemented.

Seven function tables are required to represent the input/output combinations for each
segment. The seven function tables for segments a, b, ¢, d, e, f and g are shown. Figure
11.12a-g. To determine the seven expressions for each of the seven outputs, seven 4-variable
Karnaugh maps are used. The Karnaugh maps and the simplified expressions are shown.
Figure 11.13a-g. An alternate way of representing the seven Function tables is to have a
single function table with the four columns representing the 4-bit input BCD number and seven

© Copyright Virtual University of Pakistan 104

CS302 - Digital Logic & Design

output columns each representing one of the seven segments a, b, ¢, d, e, fand g
respectively.

expressions for the seven segments.

Since the 4-bit input to the decoder circuit can have 16 possible input combinations,
therefore each of the seven Function tables have sixteen input combinations. However, the
last 6 input combinations are don’t care as these combinations never occur because the input
to the circuit is a 4-bit BCD number. The don’t care states help in simplifying,the 88Boolean

Input Output | Input Output
A D Seg.a | A Seg. a
0 0 0 0 1 1 0 0 0 1
0 0 0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 1 0 X
0 0 1 1 1 1 0 1 1 X
0 1 0 0 0 ye 1 0 0 X
0 1 0 1 1 1 1 0 1 X
0 1 1 0 1 1 1 1 0 X
0 1 1 1 1 1 1 1 1 X

Figure 11.12a Function Table for Segment a

Input Output | Input Output
A D Seg.b | A Seg. b

0 0 0 0 1 1 0 0 0 1

0 0 0 1 1 1 0 0 1 1

0 0 1 0 1 1 0 1 0 X

0 0 1 1 1 1 0 1 1 X

0 1 0 0 1 1 1 0 0 X

0 1 0 1 0 1 1 0 1 X

0 1 1 0 0 1 1 1 0 X

0 1 1 1 1 1 1 1 1 X

Figure 11.12b Function Table for Segment b

Input Output | Input Output
A D Seg.c | A Seg. c

0 0 0 0 1 1 0 0 0 1

0 0 0 1 1 1 0 0 1 1

0 0 1 0 0 1 0 1 0 X

0 0 1 1 1 1 0 1 1 X

0 1 0 0 1 1 1 0 0 X

0 1 0 1 1 1 1 0 1 X

0 1 1 0 1 1 1 1 0 X

0 1 1 1 1 1 1 1 1 X

© Copyright Virtual University of Pakistan 10

CS302 - Digital Logic & Design

Figure 11.12c

Function Table for Segment c

Input Output | Input Output
A D d A B C D d
0 0 0 0 1 1 0 0 0 1
0 0 0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 1 0 X
0 0 1 1 1 1 0 1 1 X
0 1 0 0 0 1 1 0 0 X
0 1 0 1 1 1 1 0 1 X
0 1 1 0 1 1 1 1 0 X
0 1 1 1 0 1 1 1 1 X
Figure 11.12d Function Tablefor Segment d
Input Output | Input Output
A D Seg.e | A B C D Seg. e
0 0 0 0 1 1 0 0 0 1
0 0 0 1 0 1 0 0 1 0
0 0 1 0 1 1 0 1 0 X
0 0 1 1 0 1 0 1 1 X
0 1 0 0 0 1 1 0 0 X
0 1 0 1 0 1 1 0 1 X
0 1 1 0 1 1 1 1 0 X
0 1 1 1 0 1 1 1 1 X
Figure21.12e Function Table for Segment e
Input Output | Input Output
A D Seg.f | A B C D Seg. f
0 0 0 0 1 1 0 0 0 1
0 0 0 1 0 1 0 0 1 1
0 0 1 0 0 1 0 1 0 X
0 0 1 1 0 1 0 1 1 X
0 1 0 0 1 1 1 0 0 X
0 1 0 1 1 1 1 0 1 X
0 1 1 0 1 1 1 1 0 X
0 1 1 1 0 1 1 1 1 X
Figure 11.12f Function Table for Segment f
© Copyright Virtual University of Pakistan 106

CS302 - Digital Logic & Design

Input Output | Input Output
A B C D Seg.g | A C D Seg. g
0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 1 0 X
0 0 1 1 1 1 0 1 1 X
0 1 0 0 1 1 1 0 0 X
0 1 0 1 1 1 1 0 1 X
0 1 1 0 1 1 1 1 0 X
0 1 1 1 0 1 1 1 1 X
Figure 11.12¢g Function Table for Segment g
1] o 1\ [1A[1 [[1}] 1
0 [/1 [[1Y 1 [1] o [[1]] o
] O x [x [
IR DIEEIYIES
a=A+C+BD+BD b=B+CD+CD
ATV TY~0 VENIENIE Sy
L1 (1) 1] v o Hattoe 1]
X~ %71 x PNAAEEIEN
NN A X L1 [x W
c=C+D+B d=A+BD+BC+CD+BCD
1ol 0 | 0 [1) Nl o]o]O
0o o |[1] Ny |0 |
X 9 | x || x| =i AN
1 0 X \\x[\ Q 1 X
2=BBD+CD f=B+CD+BC+BD
0 | o [Q_|/D
A 0 || 1
(<1 <) x | x
=T | £ D
- \4
g=A+BC+CD+BC
© Copyright Virtual University of Pakistan 10

CS302 - Digital Logic & Design

Figure 11.13a-g Karnaugh Maps and Simplified Boolean Expressions for Display Segments

N

>

© Copyright Virtual University of Pakistan 108

CS302 - Digital Logic & Design

Lesson No. 12
COMPARATOR
A comparator circuit compares two numbers and sets one of its three outputs to 1
indicating the result of the comparison operation. A Comparator circuit has multiple inputs and
three outputs.

A 2-bit Comparator circuit compares two 2-bit numbers A and B. The comparator circuit
has three outputs. It sets the A>B output to 1 if A>B. It sets the A=B output to 1 if A=B and
sets A<B output to 1 if A < B.

e The output A>B is set to 1 when the input combinations are 01 00, 10 00,°20 01,21 00, 11
01 and 11 10

e The output A=B is set to 1 when the input combinations are 0000, 01 01,10 10 and 11 11

e The output A<B is set to 1 when the input combinations are 00.01,700,10, 00 11, 01 10, 01
11and 10 11

The circuit has 4-bit input, 2-bits represent A and 2-bits represent B and a 3-bit output
representing A>B, A=B and A<B. To represent the\function, of a Comparator circuit, three
function tables are required for each of the three outputs. A single function table is drawn with
three outputs. Table 12.1.

Input Output

As Ao =31 Bo A>B A=B A<B
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
i 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0

Table 12.1 Function Table of a Comparator Circuit

Each of the three outputs, A>B, A=B and A<B are mapped separately using three 4-
variable Karnaugh maps. The Karnuagh Maps and the simplified expressions for the three
outputs are shown. Figure 12.1

© Copyright Virtual University of Pakistan 10

CS302 - Digital Logic & Design

A9\ ON[0 | ©
o) o [0
T 1] o0 1
111010

(A >B) = AB,+A,B,By+ A/AB,

(00 (10
(o) | 0
0 0| o
ol o] 10
ol o] o1

(A =B) = A,A,B,By+ A,AB,B, + A,AB,B, + A ABB,

Nt
0 | o
0.l | 1| o
(A <B) = AB,+A,AjBy+ AB,B,

40
0
0

o0 |Oo

Figure 12.1a-c Simplified Boolean expressions for the A>B, A=B and A<B outputs

Quine-McCluskey Simplification Method

Karnuagh map method “becomes difficult to manage when numbers of variables
exceed 4. Even with a4-varaiable K-map, grouping of 1s or 0s depends on the ability of the
user to detect optimum groeups. Some times some redundant groups are included which adds
a product term>or asum term which is not required and thus the expression is not the
simplified/versions

Consider the two 4-variable K-map with the groups of 1s shown. Figure 12.2.

[L0 0

o [(1 0
0 | oA1|| 1

0
0 By

/1 [FINNLY Q>§£ S

N AR 0| o0

s S— 7

Figure 12.2 4-Variable Karnaugh Maps with redundant terms

© Copyright Virtual University of Pakistan 110

CS302 - Digital Logic & Design

In the 4-variable K-map on the left, 6 groups of 4 cells each are formed. The 6 groups

form the six terms AB,AC,AD, BC,CD and BD. Out of these six terms three terms are
redundant and therefore they are introducing three extra product terms which are not required.

The essential terms that are required are AC, BCandBD.

In the first K-map the group of 1s formed by cells 9, 11, 13 and 15, the group formed by
cells 12, 13, 14 and 15 and the group formed by cells 3, 7, 11 and 15 are redundant.

In the 4-variable K-map on the right, 5 groups are formed. The 5 groupsiform the five

terms ABE, ACD, KBC, ACDand BD. Out of these five groups the largest group.of 4 cells
is redundant and therefore it is introducing an extra product term which,is notirequired. The

essential terms that are required are ABC_Z, ACD, ABC and ACD4

In both the Karnaugh maps, finding the redundant terms.is¢not very obvious. The
Quine-McCluskey approach of simplifying Boolean expression istbased on an exhaustive
search where each minterm is compared with every other minterm in, order to remove single
variables. The exhaustive search is continued untilhonly afew terms remain which do not
share any common variable that can be eliminated. From these, remaining terms the minimal
product terms are selected that represent the simplified form of Boolean expression.

Quine-McCluskey is a program based methed that'is able to carry out the exhaustive
search for removing shared variables.¢The Quine-MeCluskey method is a two step method
which comprises of finding Prime Implicants and ‘selecting a minimal set of Prime Implicants.

¢ Find Prime Implicants: Find by an exhaustive search all the terms that are candidates for
inclusion in the simplified function. These terms are known as Prime Implicants.

e Selecting Minimal Set of Prime Implicants: Choose from amongst the Prime Implicants
those that give expression withithe least number of literals.

The Quine-McCluskey is explained with the help of two examples, each of which uses
a slightly different variation \of the exhaustive search method. The methods describe the
algorithms of the QuineaMcCluskey method. The two expressions that are simplified using
Quine-McCluskey are based on the two set of Minterms mapped to the 4-variable Karnaugh
maps showndn figure 12.2

Example 1

A‘function is defined in Canonical Sum form 2,gcp (1,3,6,7,8,9,11,12,13,14,15) . As the
first step of4he Quine McCluskey method to find the Prime Implicants through an exhaustive
search, all'the Minterms are listed in a tabular form. Table 12.2.

© Copyright Virtual University of Pakistan 11

CS302 - Digital Logic & Design

Minterm | A B C D Minterm | A B C D used
1 0 0 0 1 1 0 0 0 1 v
3 0 0 1 1 8 1 0 0 0 v
6 0 1 1 0 3 0 0 1 1 v
7 0 1 1 1 6 0 1 1 0 v
8 1 0 0 0 9 1 0 0 1 v
9 1 10 |0 |1 12 1 [1 [0 o [V
11 1 0 1 1 7 0 1 1 1 vz
12 1 1 0 0 11 1 0 1 1 v
15 1 1 1 1 15 1 1 1 1 7
Table 12.2 Table of Minterms Table 12.3 Rearranged Minterms

The Table of Minterms is reorganized and the Minterms are arrangéd in‘groups of
minterms having 0, 1, 2, 3 and 4 1s. This is done to allow different minterms to be easily
compared and allow for elimination of single variables. The rearranged Minterm table is shown
in table 12.3. Four group of Minterms are formed.
¢ Minterms 1 and 8 have only single 1s
¢ Minterms 3, 6, 9 and 12 have two 1s each
e Minterms 7, 11, 13 and 14 have three 1s each
¢ Minterm 15 has 4 1s.

An extra column is added to the table of minterms which istused to mark the terms that are
compared together to eliminate a variable. All\pairs,of. minterms which can be compared
together to eliminate a variable are markedas used.

When comparing minterms the rule is to‘eompare each minterm in one group with each
minterm in the other group. Thus in this,example, minterms 1 and 8 in group having single 1s
are compared with each of the 4 minterms 3, 6, 9 and 12 in the group having minterms of 2 1s
each. Similarly, each of the 4 minterms 3; 6, 9 and 12 are compared with each of the minterms
in the next group having 3 1s, that.is, minterms 7, 11, 13 and 14. Finally, each of the minterms
7,11, 13 and 14 are compared'withithe minterm 15 in the last group having all 1s or 4 1s.

A B C D used

o

1,3
1,9
3,9
8,12
3,7
3,11
6,7
6,14
9,11
9,13
12,13
12,14
7,15
11,15
13,15
14,15

oO|o|o

Rir|ol ! k-

o|' |o]k|r|:!

o|r|k|o|:

o|lo|! |r|r|r|r|lo|lolo]:

S E

N

L IR =1

SNENENAN ENEVENEVENEVENEN ENENENEN

I
|
N E

Table 12.4 Compared Minterms, Single variable removed

© Copyright Virtual University of Pakistan 112

CS302 - Digital Logic & Design

The results of the comparisons between two minterms are represented in a separate
table. Table 12.4. The first column lists the minterms that have been compared together to
eliminate common variables. So terms 1 and 3 forms a single term eliminating variable C,
forming the product term ABD . The comparison terms 1 and 3 are marked as used in table
12.3. Similarly, terms 1 and 9 form a single term eliminating variable A, forming the product

term BCD . Both these terms are marked as used in table 12.3. Similarly, terms<, 9 eliminate
variable D, terms 8, 12 eliminate variable B, terms 3, 7 eliminate variable B and so on. All
these terms are marked as used in table 12.3.

As a result of comparison a total of 16, three variable productfterms are“formed,
eliminating a single variable from each term. All the 16 terms are represented in table 12.4. All
the minterms in table 12.3 are shown to be used.

The exhaustive search for finding prime implicants has ‘net completed. The three
variable terms in table 12.4 are compared to eliminate another single variable. All terms that
combine to eliminate a variable are represented in table 12.5.

A B . D used
1,3,9,11 - 0 - 1
8,9,12,13 1 - 0 -
3,7,11,15 - - 1 1
6,7,14,15 - 1 1 -
9,11,13,15 4.1 - - 1
12,13,14,15 |1 1 - -
Table 12.5 Compared Minterms, Two variable removed

Thus terms 1,3 and terms: 9,11 in table 12.4 form the product term BD eliminating
variable A. Whilst comparing terms in table 12.4, a pair of terms which are different in a single
variable are used. The terms 1,3 and 9,11 are different in a single variable A only. All terms in
table 12.4 which form,a simpler product term eliminating a single variable are marked as used
in table 12.4.

In table,12.5there are 6 product terms of two variables each. If the terms in table 12.5
are compared, none of them form pairs to eliminate a variable, thus all the 6 terms are marked
as'net'used. An unmarked term represents a Prime Implicant. The exhaustive search for
Prime Implicants has been completed. No more terms can be eliminated therefore the

terms BD : AE, CD ,BC,AD and AB are considered to be Prime Implicants.

In the second step of Quine-McCluskey method the essential and minimal Prime
Implicants are found. The Prime Implicants found in the first step are listed in left most column
of the table. Table 12.6. All the original minterms are listed in the top row.

© Copyright Virtual University of Pakistan 11

CS302 - Digital Logic & Design

1 3 6 7 8 9 11 |12 | 13 | 14 | 15
BD (X) X X | x
AC)] x x | x
CD X X X X
BC WJ] x X | x
AD X | X X X
AB X | x| x| x

Table 12.6 Table of Prime Implicants

In each cell an x is marked indicating that the Prime Implicant listed in the left column

covers the minterm mentioned in the top row. Thus the Prime Implicant BD covers the
minterms 1, 3, 9 and 11. In other words minterms 1, 3, 9 and 11 all have the preduct terms

BD. The table 12.6 can be directly implemented from table 12.5.

Circles are marked in cells having x, which represent minterms covered by only a
single Prime Impicant. Thus the minterms 1, 6 and 8 are covered by-only the Prime Implicants

BD, AC and BC respectively. These three Prime Implicants i, fact are the three essential
Prime Implicants that cover all the minterms. The simplified expression therefore has the terms

BD, AC and BC . The Prime Implicants CD , AD and ABjare“redundant product terms which
are not required. The simplified expression is 8D+ AC.+BC

Example 2
A function is defined in Canonical Sum form as >,g5.p(1,5,6,7,11,12,13,15) . The

Minterms along with variables ABCD are written in a tabular form. Each minterm is
represented in terms of its binary value. Table 12.7.

Minterm | A B C D Minterm | A B C D Used
1 0 0 0 1 1 0 0 0 1 v

5 0 1 0 1 5 0 1 0 1 v

6 0 1 1 0 6 0 1 1 0 4

7 0 1 1 1 12 1 1 0 0 4

11 L 0 1 1 7 0 1 1 1 v

12 1 1 0 0 11 1 0 1 1 v

13 1 1 0 1 13 1 1 0 1 v

15 1 1471 J1 15 1 [1 J1 J1 [V
Table 12.7 Table of Minterms Table 12.8 Rearranged Minterms

The table of minterms is reorganized in terms of groups of minterms having 0, 1, 2, 3
and 4 1s.
¢ Minterms 1 has a single 1
e Minterms 5, 6 and 12 have two 1s each
e Minterms 7, 11 and 13 have three 1s each
¢ Minterm 15 has 4 1s.

© Copyright Virtual University of Pakistan 114

CS302 - Digital Logic & Design

An extra column is added to the table of minterms which indicates which minterms have been
compared together to eliminate a variable. Table 12.8. All pairs of minterms which can be
compared together to eliminate a variable are marked as used.

When comparing minterms the rule is to compare each minterm in one group with each
minterm in the other group. Thus, in this example, minterm 1 in group having single,1s is
compared with each of the 3 minterms 5, 6 and 12 in the group having mintermsof 2 4S each.
Similarly, each of the 3 minterms 5, 6 and 12 are compared with each of the 3 minterms:in the
next group having 3 1s, that is, minterms 7, 11 and 13. Finally, each of the 3 minterms 711
and 13 are compared with the minterm 15 in the last group having all 1s or 4 1s.

The results of the comparisons between two minterms are represented in a separate
table. Table 12.9. The first column lists the minterms that have been eempared together to
eliminate common variables. The second column shows the variable in“terms ‘of its binary
value. So terms 1 and 5 form a single term eliminating variable“By.forming the product

term ACD. Variables A, B, C and D have binary values 8, 4, 2 and 1 respectively.

Minterms | Variable | used
removed

15 4

5,7 2 v
5,13 8 v
6,7 1

12,13 1

7,15 8 v
11,15 4

13,15 2 v

Table 12.9 Compared Minterms, Single variable eliminated

The comparison terms 1%and 5 are marked as used in table 12.8. Similarly terms 5 and

7 form a single term eliminating variable C, forming the product term ABD . Both these terms
are marked as used lin table 12.8¢ Similarly, terms 5, 13 eliminate variable A, terms 6, 7
eliminate variable D,iterms:12, 13 eliminate variable D and so on.

As“afresult of/ comparison a total of 8, three variable product terms are formed,
eliminating ‘a'single‘variable from each term. All the 8 terms are represented in table 12.9.
The exhaustive search for finding Prime Implicants has not completed.

Terms 5,7 and 13, 15 compare to form a product term BD eliminating variable A. The
terms 5;77and 13,15 are marked as used in table 12.9. Similarly, terms 5,13 and 7,15 compare
to form an identical product term BD eliminating variable A. Both the terms 5,13 and 7, 15 are
marked as used in table 12.9. To speed up the comparison process terms having the same
missing or removed variables are compared. However, the comparison should eliminate only a
single variable. Thus in table 12.9 terms 1,5 and terms 11,15 have their B variable eliminated.

Considering that 1,5 represents the product term ACD and terms 11, 15 represent the product
term ACD can not be compared as two variables are different. Terms 5,7 and 13,15 can be
compared as in both the product terms the variable C is missing and by comparing the two
product terms removes variable A.

© Copyright Virtual University of Pakistan 11

CS302 - Digital Logic & Design

Minterms | Term used
removed
5,7,13,15 | 2,8
Table 12.10 Minterms compared, two variables removed

No more comparisons of terms and elimination of variables take place. Thus the Prime
Implicants have been found. There are 4 prime implicants in table 3 and another prime
implicant in table 12.10. The five prime implicants are represented by product

terms ACD, ABC , ABC, ACD and BD.

In the second step of Quine-McCluskey method the essential and minimal“Rrime
implicants are found. The Prime Implicants found in the first step are listeghin left most column
of the table. Table 12.11. All the original minterms are listed in the top row. In“eaeh _cell an x is
marked indicating that the Prime Implicant listed in the left column covers the minterm
mentioned in the top row.

The Prime Implicant ACD covers the minterms 1 and‘5, Ifi other words minterms 1 and

5 all have the product terms ACD . The table 12.11 can be directly, implemented from table
12.9 and 12.10.

Circles are marked in cells having x, mhich ‘represent minterms covered by only a
single Prime Impicant. Thus the minterms 1,6, 24 and 12 are covered by only the Prime

Implicants ACD, ABC , ABCand ACD respectively. These 4 implicants in fact are the three
essential Prime Implicants that cover all*“the‘minterms. The simplified expression is

ACD + ABC + ABC + ACD

1 5 6 7 11 |12 | 13 | 15
ACD [(X)| X
ABC (X)| x
ABC (] x

ACD (x) X
BD X X X | X
Table 12.11 Table of Prime Implicants

Comparator Circuit

A 2-bit Comparator circuit that compares two 2-bit numbers A and B and activates one
of its three outputs A>B, A=B and A<B depending upon the magnitudes of the numbers A and
B has been discussed earlier. The function outputs of the three outputs A>B, A=B and A<B
can easily be represented using truth tables which can then be written in a simplified Boolean
expression form after simplifying the three function expressions using 4-variable Karnaugh
maps.

A comparator circuit that compares two 3-bit numbers A and B instead of the 2-bit
numbers has an input of 6-bits, which represents an input combination of 64. Writing a truth
table and simplifying the three expressions using the 6-variable Karnaugh maps becomes

© Copyright Virtual University of Pakistan 116

CS302 - Digital Logic & Design

unmanageable. A program based Quine-McCluskey method can easily handle expression of 6
variables represented in the Canonical form 2 ,gcper(8,16,17,24,.........)

Odd-Prime Number Detector

A circuit that detects Odd Prime numbers between O and 9 has been considered
earlier. The circuit is to be improved to detect Odd Prime numbers for a decimal number range
represented by 5-bit binary numbers or in terms of decimal numbers between the decimal
number range 0 to 31. Writing out a function table to represent the 32 input combinations and
their corresponding outputs, and then simplifying the function expression using a“5-varaibale
K-map can take up considerable amount of time.

Quine-McCluskey method can be used to easily simplify the 5-variable Boolean
expression represented in Canonical Sum form as >, gcpe(1,3,5,7,11,13,17,19,23,29,31) . The

minterms 1, 3, 5, 7, 11, 13, 17, 19, 23, 29 and 31 represent the 5-bit input combinations
(decimal numbers) which are Odd and Prime numbers.

© Copyright Virtual University of Pakistan 11

CS302 - Digital Logic & Design

Lesson No. 13

ODD-PRIME NUMBER DETECTOR
The table of minterms is represented. Table 13.1

Minterm | A B C D E
1 0 0 0 0 1
3 0 0 0 1 1
5 0 0 1 0 1
7 0 0 1 1 1
11 0 1 0 1 1
13 0 1 1 0 1
17 1 0 0 0 1
19 1 0 0 1 1
23 1 0 1 1 1
29 1 1 1 0 1
31 1 1 1 1 1

Table 13.1 Table of Minterms representing Odd-Prime Numbers

The table of minterms is reorganized in terms_of greups ef minterms having 0, 1, 2, 3
and 4 1s. Table 13.2
¢ Minterms 1 has a single 1s
Minterms 3, 5 and 17 have two 1s each
Minterms 7, 11, 13 and 19 have three 1s each
Minterm 23 and 29 have 4 1s
Minterm 31 has 5 1s

w0
D
o

Minterm
1
3
5
17
>
11
13
19
23
29
31

Table 13.2 Reorganized Minterms representing Odd-Prime Numbers

ikl (=l ol plie] felie)ie)] ialiv)
L L R I
N AYANRNANENAN ANENANENI=

RlRrlr|ololalrio|olo| >
N R I = =l
Rlo|lr|r|olr|r|o|lo|lr|lolg

=
=

In the first step of Quine-McCluskey method minterms are compared to eliminate single
variables. Minterm 1 is compared with minterms 3, 5 and 17 in the next group. Similarly, each
of the 3 minterms 3, 5 and 17 are compared with each of the minterms in the next group
having 3 1s, that is, minterms 7, 11, 13 and 19. Minterms 7, 11, 13 and 19 are compared with
each of the minterms in the next group having 4 1s, that is, minterms 23 and 29. Finally, each
of the two minterms 23 and 29 are compared with the minterm 31 in the last group having all
1sor51s.

© Copyright Virtual University of Pakistan 118

CS302 - Digital Logic & Design

The results of the comparisons between minterms are represented in a separate table.
Table13.3. The first column lists the minterms that have been compared together to eliminate
common variables. Terms 1 and 3 form a single term eliminating variable D, forming the

product term ABCE . The comparison terms 1 and 3 are marked as used in table 13.2.
Similarly, terms 1 and 5 from a single term eliminating variable C, forming the product

term ABDE . Both these terms are marked as used in table 13.2. Similarly, termsf£1, 17
eliminate variable A, terms 3, 7 eliminate variable C, terms 3, 11 eliminate variable B and so
on.

Minterms | Variable | used
removed

1,3 2 v

15 4 4

1,17 16 4

3,7 4 4

3,11 8

3,19 16 v/

5,7 2 v

5,13 8

17,19 2 4

7,23 16 v

13,29 16

19, 23 4 4

23,3k 8

29,31 2

Table 13.3 Table of minterms, Single variable eliminated

As a result of comparison \a total of 14, four variable product terms are formed,
eliminating a single variable from each term. All the 14 terms are represented in table 13.3.
The exhaustive search for finding“Prime Implicants has not completed. The results of the
comparisons between, twopterms in table 13.3 are represented in a separate table. Table 13.4.

Minterms

Variable
removed

used

1,3,5,7

2,4

1,3,17,19

2,16

3,7,19,23

4,16

Table 13.4 Table of minterms, Two variable eliminated
The first column lists the terms that have been compared together to eliminate
common variables. So terms, 1, 3, 5 and 7 form a single term eliminating variables C and D,
forming the product term ABE . The comparison terms 1,3 and 5,7 are marked as used in table
13.3. Similarly terms, 1, 3, 17 and 19 from a single term eliminating variable A and D, forming

the product term BCE. Both these terms are marked as used in table 13.3. All the product
terms in table 13.3 are compared to eliminate common variables. No more comparisons of
terms and elimination of variables take place, thus the Prime Implicants have been found.

© Copyright Virtual University of Pakistan 11

CS302 - Digital Logic & Design

There are 3 Prime Implicants in table 13.4 and 5 Prime Impllcant in table 13.3. The
eight Prime Implicants are represented by product terms ACDE ,ACDE, BCDE, ACDE,
ABCE, ABE, BCEand BDE.

In the second step of Quine-McCluskey method the essential and minimal Prime
Implicants are found. The Prime Implicants found in the first step are listed in left most column
of the table. 13.5. All the original minterms are listed in the top row. In each cell an x is marked
indicating that the Prime Implicant listed in the left column covers the minterm mentioned in

the top row. Thus the Prime Implicant ACDE covers the minterms 3 and 11. In othér words

minterms 3 and 11 all have the product terms ACDE. The table 13.5 can/be directly
implemented from table 13.3 and 13.4.

1 |3 |5 |7 |11]13 |17 (19|23 |29 |31
ACDE X (x)
ACDE X X
BCDE X X
ACDE X X
ABCE X | X
ABE X | X | x| X
BCE | X | X QW [
BDE X X X | X

Table 13.5 Table of Prime Implicants

Circles are marked in cells having x, which represent minterms covered by only a
single prime impicant. Thus the minterms 11 and 17 are covered by only the Prime Implicants

ACDE and BCE respectively. These implicants do not cover all the minterms. The other
essential implicants that have minimum number of variables and which cover all the remaining

minterms are BC5E ACDE and ABE. The simplified expression is

ACDE+BCDE+ACDE+ABE+BCE _The function can also be represented by the

expression _ACDE + ACDE + ABCE + BCE + BDE . In both cases the number of product terms
is the same with same number of variables.

Combinational Logic

Individual gates AND, OR and NOT, NAND and NOR Universal Gates and XOR and
XNOR gates perform unique functions. These gates in their individual capacity can not
perform any useful function. The Logic Gates have to be connected together in different
combinations to form Logic Circuits that are able to perform some useful operation like
addition , comparison etc. These combinations of gates which results in a circuit used to
perform some function are known as Combinational Logic.

The function of any Digital Logic circuit is represented by Boolean expressions. In the
examples discussed earlier, Boolean expressions for various functions have been determined.
Two forms of representing functions through Boolean expressions are the SOP and POS

© Copyright Virtual University of Pakistan 120

CS302 - Digital Logic & Design

expressions. These two types of Boolean expressions are implemented using a combination of
gates to form Combinational Logic Circuits.

Combinational Circuit Implementation based on SOP form

A standard way to express a Boolean expression is the SOP form. The expression has
several product terms which are summed together through a single OR gate. The product
terms can have variables and their complemented form. A SOP expression is implemented by
using a combinational circuit made up of many AND gates and a single OR gate (AND-OR
gate combination). The inputs to the AND gates can be in the complemented form or the un-
complemented form, requiring the use of NOT gates.

—

—>— ||

il ElD

1]

>

|| }§:>
B

]

level
Figure 13.14" General, Combination al Logic Circuit based on SOP form

The diagramy, shows the general architecture of the SOP Implementation. The
implementationtis based on three levels of gates. SOP expression is implemented by the AND-
OR combination of gates. The AND gates produce the product terms. Outputs of all the AND
gatesrare connectedto a single multiple input OR gate for sum of products. The product terms
comprise_of literals in their complemented form and un-complemented form which are
implemented by NOT gates connected to the inputs of the AND gates.

Combinational Circuit Implementation based on POS form

A standard way to express a Boolean expression is the POS form. The expression has
several sum terms which are multiplied together through a single AND gate. The sum terms
can have variables and their complemented form. A POS expression is implemented by using
a combinational circuit made up of many OR gates and a single AND gate (OR-AND gate
combination). The inputs to the OR gates can be in the complemented form or the un-
complemented form, requiring the use of NOT gates.

© Copyright Virtual University of Pakistan 12

CS302 - Digital Logic & Design

— >

— >

i B

||) >

> N

~|3 > 17
>

| omoas

level
Figure 13.2 General, Combination al Logic Circuit based on POS form

The diagram shows the general architecture of, the® POS Implementation. The
implementation is based on three levels of gatesaROS expression is implemented by the OR-
AND combination of gates. The OR gates produce thexsum terms. Outputs of all the OR gates
are connected to a single multiple input AND, gate for product of sum terms. The sum terms
comprise of literals in their complemented form\ and un-complemented form which are
implemented by NOT gates connected to the inputs'of the OR gates.

Design and Implementation of Combinational Circuits

The design and implementation ofia.combinational circuit starts by defining the function
of the Combinational circuit. The function of\a combinational circuit is defined by a truth table
or a function table. Once the function tablefis defined the combinational circuit can be directly
implemented from the function tables

Direct implementation/of a combinational circuit from the function table results in a
circuit whichsises” maximum number of gates organized at three levels. This increases the
cost, the fsize ofthe ‘circuit and the power requirement of the Combinational circuit. The
propagation.delay of the circuit is of the order of three gates. Therefore, before implementing
the eircuit the expression is simplified using the manual method by applying rules, laws and
theorems of Boolean Algebra or by the Karnaugh map method or the Quine-McCluskey
method if the number of variables exceeds 4.

Implementation of an Adjacent 1s Detector Circuit

A circuit that checks an input number and determines if it has two adjacent 1s is
considered to explain the entire process of design and implementation of a typical
Combinational Logic Circuit. The Adjacent 1s detector circuit is implemented using the
standard SOP and POS forms of Boolean expressions. The circuit is also implemented using
the simplified Boolean expressions. The alternate form of implementing the circuit using only
NAND or NOR gates is also discussed.

© Copyright Virtual University of Pakistan 122

CS302 - Digital Logic & Design

1. SOP based Implementation of the Adjacent 1s Detector Circuit

The Adjacent 1s Detector accepts 4-bit inputs. If two adjacent 1s are detected in the
input, the output is set to high. The operation of the Adjacent 1s Detector is represented by the
function table. Table 13.6. In the function table, for the input combinations 0011, 0110, 0111,
1011, 1100, 1101, 1110 and 1111 the output function is a 1.

Input Output | Input Output
A F A

o|o|o|o|o|o|o|o

Rl lOo|lOo|o|o|m
R OlOolr IR oo
RO Ol ol o|O
Rl O|lor|lo|lo|o

e e L i L i

RR|RROlOolololm
R R O|Q ool
k=l =l =l =]}
RlR R olo|olm

Table 13.6 Function Table of Adjacent 1s Detector

Implementing the circuit directly from the funetion table based on the SOP form
requires 8 AND gates for the 8 product terms (minterms) with an 8-input OR gate. Figure 13.3.
The total gate count is
e One 8 input OR gate
o Eight 4 input AND gates
e Ten NOT gates

The expression can be simplified using a Karnaugh map, figure 13.4, and then the
simplified expression can belimplemented to reduce the gate count. The simplified expression
isAB + CD+BC . The circuit implemented using the expression AB + CD + BC has reduced
to 3 input OR gate and 2 inpub AND gates. Figure 13.5

© Copyright Virtual University of Pakistan 12

CS302 - Digital Logic & Design

}
*

L

WW@WW

$
*

Figure 13.3 SOP Implementation of Adjacent 1s Detector

ol 00 AL O

0 o yrl] 1N
1 | 1N L1

o | o|\1/TO

Figure 13.4 Simplification of Adjacent 1s Detector SOP Boolean Expression

o x>

o0

=
%;ED F
-

Figure 13.5 Simplified SOP based Adjacent 1s Detector

The simplified Adjacent 1s Detector circuit uses only four gates reducing the cost, the
size of the circuit and the power requirement. The propagation delay of the circuit is of the
order of two gates.

The simplified Adjacent 1s Detector circuit can be implemented using only NAND
Gates. The AND-OR combinational circuit can be easily replaced by a NAND based
implementation without changing the number of gates. Figure 13.6.

© Copyright Virtual University of Pakistan 124

CS302 - Digital Logic & Design

e s

Figure 13.6 NAND based Adjacent 1s Detector

o0 wr
o0 wr

Bubbles representing NOT gates are placed at the output of theqsthree AND gates.
Converting the three AND gates to NAND gates. To balance out the three,NOT gates added at
the outputs of the three AND gates, three bubbles representing, three NOT gates are also
placed at the three inputs of the OR gate. The Resulting OR gate'symbel with three bubbles at
the three inputs is an alternate symbol for a three input NAND gate.

Implementing Combinational Logic Circuits using only NAND gates helps in reducing
the circuit size and cost as the Integrated Circuit packages‘multiple gates in a single package.
If, for example, the 3-input NAND gate in the circuit*had been,a 2-input NAND gate, only a
single IC package (74LS00) would have been required. For. the circuit shown in figure 13.5 two
separate IC packages (74LS08 and 74LS32).are required.

2. POS based Implementation of the Adjacent 1s Detector Circuit

A combinational Adjacent 1s Detector circuit can be implemented, based on the POS
form. It was discussed earlier{that it is very easy to switch between SOP and the POS
representations using the information in a function table or the information mapped to a
Karnaugh Map. Referring, to“the Function Table for the Adjacent 1s Detector. Table 13.6 a
POS based Adjacent ls#Detector circuit can be easily implemented by using the Sum terms
(Maxterms). The POS based eircuit'for this particular case has 8 sum terms which require 8
OR gates and a single 8=input AND gate. Figure 13.7. The total gate count is
e One 8 input AND gate
o Eight 4 input OR gates
e Ten NOT gates

Both, the SOP based circuit discussed earlier and the POS based circuit give identical
outputs for identical set of input combinations. One practical purpose of using either the SOP
or the POS’based implementation is to reduce the size of the circuit and have a simpler circuit.
In the example of Adjacent 1s Detector circuit both the SOP and POS based implementations
have equal number of minterms (8) and maxterms (8) thus both implementation use exactly
thefsame number of gates (19). In many cases, the function describing the operation of a
combinational circuit has minterms which are either less than or more than the number of
maxterms. Thus it is wiser to choose the implementation form that uses the least number of
minterms or maxterms to achieve a combinational circuit that uses the least number of gates.

© Copyright Virtual University of Pakistan 12

CS302 - Digital Logic & Design

oO0Ow x>
23
1

Figure 13.7 POS Implementation of Adjacent 1s Detector

The POS expression can be simplified using a Karnaugh map. Figure 13.8, the simplified
expression can be implemented to reduce the,gate\.count."The simplified expression is

(A+C)(B+C)(B+D)
W[} | 1o
0| 1| 1
1 1 1 1
0 0 1 0

Figure13.8 . Simplification of Adjacent 1s Detector POS Boolean Expression

ow O»»

Figure 13.9 Simplified POS based Adjacent 1s Detector

© Copyright Virtual University of Pakistan 126

CS302 - Digital Logic & Design

The simplified Adjacent 1s Detector circuit uses only four gates reducing the cost, the
size of the circuit and the power requirement. The propagation delay of the circuit is of the
order of two gates.

The simplified Adjacent 1s Detector circuit can be implemented using only NOR Gates.
The OR-AND combinational circuit can be easily replaced by a NOR based implementation
without changing the number of gates. Figure 13.10.

ow O»
o0 wr

Figure 13.10 NOR based Adjacent 1s Detector

Bubbles representing NOT gates are placed at the output of the three OR gates,
converting the three OR gates to NOR gates. To balance”gut the three NOT gates added at
the outputs of the three OR gates, three bubbles representing three NOT gates are also
placed at the three inputs of the AND gate. The Resulting’ AND gate symbol with three bubbles
at the three inputs is an alternate symbol for a three input NOR gate.

Operation of Adjacent 1s detector Circuit

The operation of a Combinational, Lagic ‘Circuit can be verified by applying varying set
of signals at the input of the circuitsand comparing the output of the combinational circuit with
the corresponding outputs in the Function Table. If the varying set of inputs and the
corresponding outputs are plotted over a“period of time, the timing diagram thus obtained,
describes the operation of the cifeuit. Figure 13.11

Figure 13.11 Timing Diagram of the Adjacent 1s Detector

© Copyright Virtual University of Pakistan 12

CS302 - Digital Logic & Design

To prove that the SOP and POS based Adjacent 1s Detector combinational circuits
synthesized from the Function table. Table 13.6 are identical, the timing diagram, figure 13.11
is based on the operation of the POS based simplified circuit. Figure 13.9

The timing diagram is for time intervals tO to t8. A, B, C and D are the inputs to the
circuit which are shown changing with time. The timing signals 1, 2 and 3 represent the
outputs of the OR gates 1, 2 and 3. The timing signal F represents the output of the circulit.

At interval tO the input ABCD to the circuit is 0000, the outputs of the three OR gates is
0, 0 and 0 and the circuit output is also 0. At the interval t3 the input ABCD to the circuitiis
0011, the outputs of OR gates 1, 2 and 3 are 111. The output F is also a 1, which indicates
adjacent 1s. At interval t6 the input ABCD to the circuit is 0110, the outputs of OR\gates 1, 2
and 3 are 111. The output F is again 1 indicating adjacent 1s.

The operation of the circuit which is based on the POS simplified expression also
proves that a POS based expression determined from the truth table and K-map results in a
circuit which operates in an identical manner to that of a SOR,based eircuit.

Active low/high Inputs and Outputs

The circuits discussed so far have their output set to‘when‘teo indicate an active state.
For example, the output of the BCD to 7-Segment Decoder ¢ircuit has its seven segment
outputs set to 1 to indicate a segment that has been selected. Similarly, the Comparator
circuit’'s three outputs are normally at binary 0. Theyappropriate output is set to 1 to indicate
the relationship between the two numbefs. The\Odd-Prime Number detector circuit output
normally is set at 0. It is activated to 1 to indicate, an Odd-Prime number. The Adjacent 1s
Detector circuit also sets its output to active 1 to indicate detection of Adjacent 1s. All the four
circuits have an active-high output. Thatis, normally the output is at logic 0. The output is set
to 1 to indicate an active state.

Combinational circuitsg€anyhave an active-high output or an active-low output. An
active-high or active-low output doesn’t effect the operation of the combinational circuit in any
manner. To convert a cir€uit having an active-high output to active low-output requires the
inversion of the circuit.outputhby connecting a NOT gate. Symbolically, a bubble is added to
the circuit outputiyThus,circuits’ having a bubble at their outputs are considered to have an
active-low output.

Circuits can also have active-high or active-low inputs. The operation of the circuits
having an active-high input is not any different from that of an active-low input circuit. Active-
low input circuits are activated on a logic O input. Circuits having an active-low input have
bubbles connected to circuits inputs. The four circuits discussed so far have active-high inputs.

The four logic gates AND, OR, NAND and NOR can be described in terms of their input
and output logic levels. The AND gate doesn’t have any bubbles at its inputs or output. The
AND gate performs AND operation on two active high inputs to result in an active high output.
The OR gate also doesn’t have any bubbles at its inputs and output. OR gate performs OR
operation on two active high inputs to result in an active high output. The NAND and NOR
gates have a bubble at their outputs. Their operation can be described in terms of AND and
OR gates. NAND gate performs AND operation on two active high inputs resulting in an active
low output. The NOR gate performs OR operation on two active high inputs to result in an
active low output

© Copyright Virtual University of Pakistan 128

CS302 - Digital Logic & Design

To help understand active-low input, consider the active-high input and active-high
output SOP circuit. Fig. 13.5 which is converted into an active-low input and output circuit by
connecting NOT gates at the circuit inputs and outputs. Figure 13.12. The circuit operation is
verified with the help of a timing diagram. Figure 13.13.

A
IRSERE
C —e—C

D] 2 F

Figure 13.12 SOP based active-low input andieutput Adjacent 1s Detector

P | |

Figure 13.13 Timing Diagram of the active-low input/output Adjacent 1s Detector

The timing diagram describes the operation of the circuit for the intervals t0 to t8. The
timing signals A, B, C and D represent the active-low inputs applied at the inputs. The timing
signals 1, 2 and 3 represent the outputs of the NOR gates 1, 2 and 3 respectively, shown in
their alternate symbolic form. The timing signal F represents the active-low output.

© Copyright Virtual University of Pakistan 12

CS302 - Digital Logic & Design

At interval tO the active-low input at inputs ABCD is 0000 which actually represents
1111. The active-low output F is O which indicates that adjacent 1s have been detected.
Similarly at intervals t1 to t4, the active-low inputs ABCD 0001, 0010, 0011 and 0100 actually
represent the numbers 1110, 1101, 1100 and 1011, the output is O indicating that adjacent 1s
have been detected.

Implementation of an Odd-Parity Generator Circuit

Consider the second example of a circuit to generate odd parity. The circuit checks,an
8-bit number and generates a parity bit to fulfil the Odd-Parity condition. The 8-bit data and the
parity bit are communicated to the receiver circuit. The receiver circuit checks the 8-bit'data
and the parity bit to determine if an error has occurred.

The first step in implementing any circuit is to represent its operation in terms,of a Truth
or Function table. The function table for an 8-bit data as input has 28ghas 256 input
combinations, which becomes unmanageable. Therefore, for the sake of simplicity‘a”4-bit data
with odd parity is assumed. The receiver circuit is also based on the 4-bit data.

© Copyright Virtual University of Pakistan 130

CS302 - Digital Logic & Design

Lesson No. 14
IMPLEMENTATION OF AN ODD-PARITY GENERATOR CIRCUIT
The first step in implementing any circuit is to represent its operation in terms of a Truth
or Function table. The function table for an 8-bit data as input has 28 has 256 input
combinations, which becomes unmanageable. Therefore, for the sake of simplicity a 4-bit data
with odd parity is assumed. The receiver circuit is also based on the 4-bit data. The function
table for the 4-bit data is shown. Figure 14.1

Input Output | Input Output
D3 D, D: Do P Ds D, D: Do P
0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 1 1
0 0 1 0 0 1 0 1 0 1
0 0 1 1 1 1 0 1 1 0
0 1 0 0 0 1 1 0 0 1
0 1 0 1 1 1 1 0 1 0
0 1 1 0 1 1 1 1 0 0
0 1 1 1 0 1 1 1 1 1

Table 14.1 Function Table of an Odd-Parity Generator Circuit

The function table represents the 16 possible combinations of 4 data bits. The 4 data
bits are represented by variables D3, D2,'D1 and DO.“TFhe output P represents the state of the
Parity bit. Since Odd-Parity is being used therefore the 4-bit data and the parity bit should add
up to give odd number of 1s. The fungtion‘table shows the Parity bit set to 1 when the 16, 4-bit
data input combinations have no 1s or ankeven number of 1s.

The information in the function table is mapped directly to a four variable K-map to
simplify the Boolean expression represented by the Odd-Parity generator function. None of the
1s mapped in the K-map are,adjacent to each other thus the function mapped to the K-map
can not be simplified. Figure 14.1

ORI
0 W] o[
(W] o [(D] 0
o [(D] o[

Figure 14.1 Karnaugh map of the Odd-Parity Generator Function

=

However, using the Rules of Boolean algebra, applying Demorgan’s theorems and
knowing the function table of XOR and XNOR gates the Boolean expression can be simplified.
Simplifying the expression based on SOP form results in

ABCD + ABCD + ABCD + ABCD + ABCD +ABCD + ABCD + ABCD

= AB(CD +CD) + AB(CD + CD) + AB(CD + CD) + AB(CD + CD)
- KE?(EB +CD)+ AB(CD + -CD)+ AB(CD + CD) + AB(CD +CD)
= (CD +CD)(AB + AB) + (CD + CD)(AB + AB)

- (C®D)(A®B)+ (C®D)(A®B)

© Copyright Virtual University of Pakistan 13

CS302 - Digital Logic & Design

= (A®B)®(C®D)

o0 w>r

Figure 14.2 Odd-Parity Generator Circuit

The parity generator circuit shown checks the 4-bit number, generates a parity bit
which along with the 4-bit data is transmitted. The receiver calculates the parity bit of the
received 4-bit data and compares it with the parity sent. If the received and calculated parity
bits are the same, then no error has occurred. An XOR gate is used to detectparity errors.
Table 14.2

Input Output
Received Calculated Error Output
Parity Bit Parity Bit

0 0 0

0 1 i

1 0 1

1 1 0

Table 14.2 Detecting Error at Receiver End

Operation of Odd-Parity Generator Circuit

The timing diagram shows the operation of the Odd-Parity generator circuit. Figure
14.3. The A, B, C and D timing diagrams represent the changing 4-bit data values. During time
interval t0 the 4-bit data value is 0000, during time interval t1, the data value changes to 0001.
Similarly during time intervals42, t3;t4 up to t8 the data values change to 0010, 0011, 0100
and 1000 respectively. During interval t0ithe output of the two XOR gates is 0 and 0, therefore
the output of the XNOR gate is 1. At,interval t1, the outputs of the two XOR gates is 1 and 0,
therefore the output of the XNOR gate'is 0.The output P can similarly be traced for intervals t2
to t8.

Figure 14.3 Timing Diagram of Odd-Parity Generator Circuit

© Copyright Virtual University of Pakistan 132

CS302 - Digital Logic & Design

XOR and XNOR Gates

XOR and XNOR gates are used to implement the Odd-Parity Generator Circuit. An
XNOR is also used to check for single bit errors at the Receiver end. Both, the XOR and
XNOR gates perform simple comparison functions. The XOR gate detects dissimilar inputs,
where as the XNOR gate looks for similar inputs. Both, the gates can be considered as
functional devices as each gate performs a simple specific function.

The XOR and XNOR gates are implemented using a combination of NOT, AND and
OR gates. Since the function performed by the XOR and XNOR gate is commanly used in
digital circuits therefore XOR and XNOR gates are available in Integrated¢@ircuit form which
can be readily used instead of implementing an XOR and XNOR circuitdased‘on NOT-AND-
OR combination of gates.

The function table for the Parity Error detector circuit is identical to the truth table of an

XOR gate. Boolean expression representing the function of an XOR'gate is KB + A|§ which is
implemented using a combination NOT, AND and OR gates,

A

Figure 14.3 Implementation of XOR Gate

The XNOR gatelis alse,implemented using a combination of NOT, AND and OR gates.

The function of the XNOR gate is represented in term of Boolean expression as AB + AB.
Figure 14.4

A
B

Figure 14.4 Implementation of XNOR Gate

Combinational Function Devices

Digital circuits are formed by the combination of Logic Gates. Most Combinational
circuits perform standard and useful functions such as addition, comparison, decoding and
encoding, multiplexing and de-multiplexing, selection and enabling of devices and many more
operations. Implementation of these standard functional devices through combination of gates
takes up considerable space, therefore these functional devices are implemented as MSI or
Medium Scale Integrated Chips.

© Copyright Virtual University of Pakistan 13

CS302 - Digital Logic & Design

The simplest of these functional devices can be considered to be the NAND and NOR
gates which perform the AND-NOT and OR-NOT functions. The XOR and XNOR Gates are
also a combination of NOT-AND-OR gates which perform functions to detect dissimilar and
similar inputs.

Half Adder and Full Adder

A single bit binary adder circuit basically adds two bits and a carry bit, generated by the
addition of the least significant bits. The output of the single bit adder circuit generates a sum
bit and a carry bit. A single digit binary adder circuit therefore has three inputs, one
representing single bit number A, the other representing the single bit number B and/the third
bit represents the single bit carry. The single bit binary adder has two bit output. \One "hit
represents the Sum between numbers A and B. The other bit representsqthe carry bit
generated due to addition.

In Digital logic terminology the adder which has been described is«nowm as a full
adder. An adder circuit that only has two bit input representing the two single bit numbers A
and B and does not have the carry bit input from the least significant digit is regarded as a
half-adder. The block diagrams represent a Half-Adder and aFulifAdder. Figure 14.5.

1. Half-Adder
A Half-Adder can be fully described in terms of its Function table, its Sum and Carry

Out Boolean Expressions and the circuit Implementation.

Input Bits
Output Bits

Input Bits
Output Bits

out

Half-Adder Full-Adder
Figure 14,5 Block diagrams of Half-Adder and Full-Adder

Half-Adder Function Table
The Half-Adder has a 2-bit input and a 2-bit output. The function table of the Half-Adder

has two input columns representing the two single bit numbers A and B. The function table
also has two output columns representing the Sum bit and Carry Out bit. Table 14.3

Input Output

A B Sum Carry Out
0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 14.3 Half-Adder Function Table

© Copyright Virtual University of Pakistan 134

CS302 - Digital Logic & Design

Half-Adder Sum & Carry Out Boolean Expressions

The Sum and Carry Out expressions of the Half-Adder can be determined from the
function table. The Half-Adder Sum and Carry Out outputs are defined by the expressions
Sum=AB+AB=A®B
CarryOut = AB

Half-Adder Logic Circuit
The Half-Adder Logic Circuit can be directly implemented from the Sum and €arryxOut
Boolean expressions. Figure 14.6

}7 Cout

Figure 14.6 Half-Adder Logic Circuit

2. Full-Adder
A Full-Adder can be fully described in terms of its Function table, its Sum and Carry
Out Boolean Expressions and the circuit Implementation.

Full-Adder Function Table

The Full-Adder has a 3-bit input and a 2-bit output. The function table of the Full-Adder
has three input columns representing the two single bit numbers A, B and the Carry In bit. The
function table also has two output columns representing the Sum bit and Carry Out bit. Table
14.4

Input Output

A B Carry In(C) | Sum | Carry Out
0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 14.4 Full-Adder Function Table

Full-Adder Sum & Carry Out Boolean Expressions
The Sum and Carry Out expressions of the Full-Adder can be determined from the
function table. The Full-Adder Sum and Carry Out outputs are defined by the expressions

Sum = ABC + ABC + ABC + ABC
Sum = A(BC +BC) + A(BC + BC)
Sum=AB®C)+AB®C)

© Copyright Virtual University of Pakistan 13

CS302 - Digital Logic & Design

Sum=A®Ba®C

CarryOut = ABC + ABC + ABC + ABC
CarryOut = C(AB + AB) + AB(C + C)
CarryOut=C(A®B)+AB

Full-Adder Logic Circuit
The Full-Adder Logic Circuit can be directly implemented from the Sum and Carry @ut
Boolean expressions. Figure 14.7

A ——
B —

z
Cin_’u

out

Figure 14.7o, Full-Adder Logic Circuit

Forming a Full-Adder using Half-Adders
A 1-bit Full-Adder canedeimplemented by combining together two Half-Adders. Figure

14.8

% z
A—A z A z z
B |
Cout Cuut Com
Cin
Half-Adder Half-Adder

Figurel4.8 Implementing a Full-Adder using two Half-Adders

e The Sum output of the first Half-Adder is (A @ B)
e The Carry Out of the first Half-Adder is AB
e The Sum output of the second Half-Adderis (A®B)®C,,=(A®B&C,,)

© Copyright Virtual University of Pakistan 136

CS302 - Digital Logic & Design

e The Carry Out of the second Half-Adder is (A & B)C,,
e The output of the OR gate is AB + (A @ B)C,,

Parallel Binary Adders

Single bit Full or Half Adders do not perform any useful function. To add two 4-bit
numbers a 4-bit adder is required. Four single bit Full-Adders are connected together to form a
4-bit Parallel Adder capable of adding two 4-bit binary numbers. Figure 14.9.

The two 4-bit numbers A and B are applied at the circuit inputs®Ap.z and Bo-s
respectively. The 4-bit Sum output of the Parallel Adder is available at outputs S¢.s.Ehe Carry
In to the circuit is set to 0. (Cin=0). The Carry is available at Cou:.

B, A, B, A, B, A, 0 BynA,
o0 W > o0 @ > o0 W > 0 o r
™ ™M 04 ™M
(@] (@] @] (@]
2 ™ 2 ™ 2 M 2 ™
C S S S S

out 3 2 1 0

Figure 14.9 , 4-bit Parallel,Binary Adder

Carry Propagation

Parallel Binary Adders can be implemented by connecting the required number of 1-bit
full adders in a configuration represented in‘figure 14.9. However, there is a practical limitation
to the number of 1-bit Full-Adders that can be connected in parallel. In the 4-bit Parallel Adder,
the Most significant bit adder,which adds bits As, B; and the Carry bit Cs, can not proceed until
it receives the Carry fromithe next least significant 1-bit adder which adds bits Az, B2. The A;
B bit adder can not proceed unless.it receives the carry input C, from the A;, B; adder. The
A1, B1 adder in tern depends'op Ao Bo adder to provide the carry input. Thus the carry has to
propagate through‘€ach Full-adder before it reaches the last or most significant full adder.

Assume “that each gate has a propagation delay of 10 nsec. A 1-bit Full Adder
generates a‘Carry out after 30 nsec. For a 4-bit Parallel Adder Full-adder the Carry out from
the' most significant adder would be after 120 nsec. The delay can increase to prohibitive
levels_ifi8-bit,\16-bit or 64-bit parallel adders are implemented. 64-bit parallel adders are used
by computers.

Look-Ahead Carry Circuits

To overcome the problem of carry propagation or carry ripple, Look-Ahead carry
generator circuits are used. These circuits look at the bits to be added and decide if a higher
order carry is to be generated. The Look-Ahead Carry Circuits although increase the circuitry
but they provide a practical solution to the prohibitive delays that are caused by the ripple carry
in parallel adders.

Consider the Full-Adder Circuit. 14.10. The output (A @ B) at output P of the XOR gate

and the output AB at output G of the AND gate is available simultaneously after one gate
delay. If the G output of the AND gate is 1, the Carry Out has to be a 1 no matter what is the

© Copyright Virtual University of Pakistan 13

CS302 - Digital Logic & Design

other input of the Carry Out OR gate. The Sum and Carry Out can be expressed in terms of P
and G gate outputs.

e The P output is called the Carry Propagate.

e The G output is called the Carry Generate

Figure 14.10 Full-Adder with Carry Generate and Carry Propagate

Carry Outputs in terms of Carry Propagate and Carry Generate
The Sum and Carry Out Boolean expressions ¢an be rewritten in terms of P, Carry
Propagate and G, Carry Generate terms.

Sum=P®C
CarryOut=CP+G

Writing the expressions for the four Carry Out terms Ci, C,, Csz and Ca in terms of Carry
Propagate P and Carry Generate)G.

o C=CP,+G,
e C,=CP,+G, =P,(CPRep+GH+G, =G, +P,G, +P,P,C,
o C,=0G,+P,GppP.P,G, +P,P,P,C,
e C,=CP=*6G, =P, (G, +P,G, +P,P,C))+G, =G, +P,G, +P,P,G, + P,P,P,C,
e C,=G,+PsG, +P,P,G, +P,P,P,G, +P,P,P,P,C,
wheregP, = A, ®B4 and G, = A B,
The'Look-Ahead Carry Generator Circuit is shown. Figure 14.11. The inputs to the

Look-Ahead/Carry Generator Circuit are the Carry Propagate terms Po, P1, P2 and P; and Carry
Generatetterms Gy, G1, Gz and Gs.

The Carry Propagate Po, P1, P2 and P; and Carry Generate terms Gi, Gz, Gs and Ga
are generated by the XOR and AND gates after one gate delay.

The Outputs of the Look-Ahead Carry Generator Circuit are C;, Cz, C3 and Cy4. The
output C; is generated by the circuit represented by the expression C, =C,P, +G, which

© Copyright Virtual University of Pakistan 138

CS302 - Digital Logic & Design

requires an AND gate to generate the product term C,P, and a second level two input OR

gate to sum the terms C,P,and G,. Thus C; is available after two gate delays.
CO

Ao
Bo
P, s,

Co

Look-Ahead 1
Carry
Generator

Ag
Bs P3
%3

Cs
\ Ca

I:)O
By
Pl
By
PZ
By
Ps
S

Figure 14.11 Look-Ahead Carry Generator

Similarly, the, output/C, is generated by the circuit represented by the expression
C, =G, +P,Gg+ P,P;€, which requires a 2-input and 3-input AND gates to generate the
product terms P,Ggand P,P,C, respectively. A second level three input OR gate is required to
sum the three terms. Thus C; is also available after two gate delays.

The Joutput Cs; is generated by the circuit represented by the
expression'C, = G, + P,G, + P,P,G, + P,P,P,C, . The expression is implemented by a
conibination of three AND gates having 2, 3 and 4 inputs respectively and a single 4-input OR
gate. Again two levels of gates is used, Cs is available after a gate delay of two.

Finally, the output C, is generated by the circuit represented by the
expression C,= G; + P,G, + P,P,G, + P,P,P,G, + P,P,P,P,C,. To implement the expression
two levels of 2, 3, 4 and 5 input AND gates and a single 5 input OR gate is used. C4 is
available after a gate delay of two.

Thus for Carry outputs C;, C,, C3 and Cs the delay is of the order of two after the
Propagate Carry and Generate Carry terms become available.

© Copyright Virtual University of Pakistan 13

CS302 - Digital Logic & Design

MSI Adders

4-bit parallel Adders are available as Medium Scale Integrated Circuits. These circuits

use the Look-Ahead Carry Circuitry to remove the carry ripple. The two ICS are 74LS83A and
74L.S283. Both the devices are functionally identical, however they are not pin compatible.
These devices are packaged as 16-pin devices. The division of the 16 pins is

4 pins for the 4-bit input A

4 pins for the 4-bit input B

4 pins for the 4-bit output Sum
1 pin for Carry In

1 pin for Carry Out

1 pin for Circuit Power Supply
1 pin for Circuit GND

The 74LS83A or the 74LS283 can be cascaded together_to form 8-bit, 12-bit or 16-bit

Parallel Adders. Figure 14.12 The Carry Out pin of one IC isicannected to the Carry In pin of

the other IC.
A(8-11) B (8-11) A@4T7 B@T) A (0-3)y” B (0-3)
C12 =
R 7415283 c8 7415283 c4 7415283 g 0
Sum (8-11) Sum (4-7) Sum (0-3)
Figure 14.12 12-bit Parallel Adder using three 74LS283 ICs

© Copyright Virtual University of Pakistan 140

CS302 - Digital Logic & Design

Lesson No. 15
BCD ADDER
BCD binary numbers represent Decimal digits O to 9. A 4-bit BCD code is used to
represent the ten numbers 0 to 9. Since the 4-bit Code allows 16 possibilities, therefore the
first 10 4-bit combinations are considered to be valid BCD combinations. The latter six
combinations are invalid and do not occur.

BCD Code has applications in Decimal Number display Systems such as Counters and
Digital Clocks. BCD Numbers can be added together using BCD Addition. BCD Addition, is
similar to normal Binary Addition except for the case when sum of two BCD digits exceeds 9 or
a Carry is generated. When the Sum of two BCD numbers exceeds 9 or a«Carry is generated
a 6 is added to convert the invalid number into a valid number. The carrysgenerated by adding
a 6 to the invalid BDC digit is passed on to the next BCD digit.

Addition of two BCD digits requires two 4-bit Parallel Adder Circuits."One 4-bit Parallel
Adder adds the two BCD digits. A BCD Adder uses a circuit which checks the result at the
output of the first adder circuit to determine if the result has exceeded 9 or a Carry has been
generated. If the circuit determines any of the two efror gonditions the circuit adds a 6 to the
original result using the second Adder circuit. The putput of the'second Adder gives the correct
BCD output. If the circuit finds the result of the first’Adder circuit to be a valid BCD number
(between 0 and 9 and no Carry has been generated), the cCireuit adds a zero to the valid BCD
result using the second Adder. The output of the secondsAdder gives the same result. Figure
151

ABCD BBCD
Coli 1384-bit Adder «Cp=0

® Invalid BCD

: Detector Circuit

¢
o
(O

SBCD

out2 4| 2nd 4_hit Adder . C.=0

U

SBCD

Figure 15.1 4-Bit BCD Adder

© Copyright Virtual University of Pakistan 14

CS302 - Digital Logic & Design

The circuit that checks if the output of the first Adder has exceeded 9 is a simple
combinational circuit with the function table specified. Table 15.1

Input Output | Input Output
S3 Sn S So F Sz S S1 So F
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 1 0 1 0 1
0 0 1 1 0 1 0 1 1 1
0 1 0 0 0 1 1 0 0 1
0 1 0 1 0 1 1 0 1 1
0 1 1 0 0 1 1 1 0 1
0 1 1 1 0 1 1 1 1 1

Table 15.1 Function Table of Invalid BCD Number detector

o

0

0
| 0 _[@0
i Vs

0 0 1 1
Figure 15.2 Mapping of Invalid BCD Number detector function

=

The Boolean expression for the InvalidgaB€D Number Detector obtained from the
Karnaugh Map which maps the function table is S;S, + S;S;, = S;(S, +S;)

The Invalid BCD Number is represented by two error conditions, either the BCD number is one
of the invalid numbers or a Carry. outthas'been generated. Therefore the complete expression

for determining an incorrect BCD'autput isC,, + S;(S,+S;) . Figure 15.3

b Sl

3

-

O'w nwm

out1

Figure 15.3 The Invalid BCD Detector Circuit

Conneetion of Invalid BCD Detector Circuit to second Adder

Adding of 6 when error conditions are detected and adding a zero when error
conditions are not detected is implemented by connecting the output of the Invalid BCD
Number Detector circuit to bits B; and B. of the Adder. Bits By and B; are permanently
connected to 0. Figure 15.4. When an error condition is detected the output of the circuit is set
to logic 1, setting bits B; and B, to 1 and the 2" Adder input B to 0110. When the error
condition is not detected the circuit output is 0 and the 2" Adder input B is set to 0000.

© Copyright Virtual University of Pakistan 142

CS302 - Digital Logic & Design

C " 83 2810

) o

T
GO

A B
input input

2 4-bit Adder

Figure 15.4 Using the Second Addet.to Add 6'or O

2-digit BCD Adder

Two singe digit BCD Adders can be cascaded together to form a 2-digit BCD Adder.
Four, 4-bit 74LS283 MSI chips are used. Tw@\741.5283s,are required to directly add the two 2-
digit BCD numbers and the remaining two 74LS283s are required to add a six to the result if
any of the two digits add up to invalid ‘BCD ‘digits“or generate a Carry. Two invalid BCD
detector circuits are used. Figure 15.5

. Cin4 . Cin: 0
15t MSD 4-hit Adder: 1t LSD 4-bit Adder [*
Cout8 Cout4

j\ Invalid BCD ®™ | Invalid BCD

4 Detector Circuit ::) Detector Circuit

S 0
A7 0 S
¥4 C, =0 0% 1124

Coug 2" MSD 4-bit Adder | Colal 2" LSD 4-bit Adder "

- S 3

S Sos

4-7

Figure 15.5 2-Digit BCD Adder

Consider two examples. In the first example, 2-digit BCD number 99 is added with
another 2-digit BCD number 99. The answer should be 198 a 3-digit BCD number. Table 15.2.
In the second example, 2-digit BCD number 99 is added with another 2-digit BCD number 66.
The answer should be 165. Table 15.3

© Copyright Virtual University of Pakistan 14

CS302 - Digital Logic & Design

Carry 15t MSD Adder 15t LSD Adder
A(0-3) |1001 |A(0-3) | 1001
B(0-3) | 1001 |B(0-3) | 1001

Cin4 1 Cin 0
S(0-3) 0011 S(0-3) 0010
Cout8 1 Cout4 1
Ckt.o/lp |1 Ckt.olp |1

2"9SD Adder | 2™ LSD Adder
A(0-3) | 0011 |A(0-3) |0010
B(0-3) | 0110 |B(0-3) | 0110
Cin 0 Cin 0

1 S(0-3) | 1001 |S(0-3) | 1000

Table 15.2 Adding BCD numbers 99 and, 99

Carry 15t MSD Adder 15t LSD Adder
A(0-3) | 1001 |A(0-3) | 1001
B(0-3) |0110 (B(0-3) [\0110

Cin4 1 Cin 0
S(0-3) 0000 S(0-3) 1111
Cout8 1 Cout4 0
Ckt.olp |1 Ckt.o/p |1

2" LSD Adder 2"4 LSD Adder
A(0-3) |0000 |A(0-3) |1111
B(0-3) | 0110 |B(0-3) | 0110
Cin 0 Cin 0

1 S(0-3) 0110 |S(0-3) |o0101

Table 15.3 / Adding BCD numbers 99 and 66

Subtraction

Subtraction in Digital Systems is performed by taking the 2’s complement of the
number to be subtracted (subtrahend) and adding it to the minuend. The example shows the
subtraction ofs6_represented in 2's complement form from nine also represented in its 2’s
complementiform. Since 9 is a positive number therefore its 2’'s complement representation is
the,.same. Neglecting the carry bit, the 4-bit number represents decimal 4.

9 1001
- 5 1011
4 10100

The 2’s complement of any number is obtained by taking the 1’s complement of a
number and then adding a 1 to the 1’'s complement. The two step process to represent a
negative number in its 2’s complement form is shown

The number 5 0101

© Copyright Virtual University of Pakistan 144

CS302 - Digital Logic & Design

Invert all bits to result in 1’s complement

1’s complement of 5 is 1010
il
2’'s complement of 5 is 1011

An Adder can be used to perform subtraction operations if the minuend is presented in
its 1’s complemented form at the input of the adder circuit. The binary 1 that is added to the 1’s
complement of a number to convert it into 2's complement is applied at the Carry In of the

Adder Circuit. Figure 15.6

1001 1010
A(0-3) B (0-3)
Cout 4-bit Parallel Cin=1
Adder
Sum (0-3)

Figure 15.6 4-bit Subtraction Circuit

The Adder circuit adds the number 9 (1004), 1’s.complement of 5 (1010) and the Carry
In which is set to 1.

A 4-bit Adder/Subtracter Unit
An Adder can be connectedyto perform Additions and Subtractions by applying the un-

complemented and complemented datayat one of the two inputs of the Adder respectively. The
Carry In input has also to be connected to 0tor 1 respectively. Figure 15.7

Add=0
Subtract =1

Couwt </ 4-bit Parallel Adder -

So
Figure 25.7 4-bit Adder/Subtracter Unit

© Copyright Virtual University of Pakistan 14

CS302 - Digital Logic & Design

The AND gate and OR gate implementation connected at the B input of the 4-bit Adder
is used to allow Complemented or Un-Complemented B input to be connected to the Adder
input. Adding of two 4-bit numbers A and B can be performed by selecting the Add/Subtract =
0. The AND gates marked U (un-complemented) are enabled allowing Bo.3 to be passed on to
the OR gates and the B input of the Adder. Subtraction is performed by selecting the
Add/Subtract = 1. The AND gates marked C (complemented) are enabled allowing
complemented Bo.; to be passed on to the OR gates and the B input of the Adder. The,Carry
In is also set to 1 when Add/Subtract is set to 1.

An 8-bit Adder/Subtracter Unit

Two 4-bit 74LS283 chips can be cascaded together to form an 8-bit Parallel Adder
Unit. Each of the two 74LS283 ICs is connected to the 1’s Complement circuitry that allows
either the un-complemented form for addition or the complemented formyfor subtragtion to be
applied at the B inputs of the two 74LS283s. Figure 15.8

The 8-bit Adder/Subtracter Circuit is similar to the 4-bit Adder/Subtracter Circuit. Two
sets of AND-OR based circuit that allows complemented and un-complemented B input to be
applied at the B inputs of the two 4-bit Adders. The Add/Subtract'function select input are tied
together. The Carry In of the 1% 4-bit Adder circuit is connected to the, Add/Subtract function
select input. The Carry Out of the 1%t 4-bit Adder circuit is‘eédhnected to the Carry In of the 2™
4-bit Adder circuit.

Subtract =1

< 2144 bitParallelfAdder |« 15'4-bit Parallel Adder =
Out

S, S S5 S, S;S, S, S,
Figure 15.8 8-bit Adder/Subtracter Circuit

Consider two number A=103 and B=67 which are first added and then subtracted using the 8-
bit Adder/Subtracter Circuit. Table 15.4 and Table 15.5

© Copyright Virtual University of Pakistan 146

CS302 - Digital Logic & Design

Adding 103 and 67

Carry 2" MS Adder 15t LS Adder
A4-7) 0110 A(0-3) 0111
B(4-7) 0100 B(0-3) 0011
Cin 0 Cin 0
0 S(4-7) 1010 S(0-3) 1010
Table 15.4 Adding 103 and 67
Subtracting 103 and 67
Carry 2" MS Adder 15t LS Adder
A(4-7) 0110 A(0-3) 0111
B(4-7) | 1011 B(0-3) | 1100
Cin 1 Cin 1
1 S(4-7) 0010 S(0-3) 0100
Table 15.5 Subtracting,103 and 67

Arithmetic and Logic Unit (ALU)

Microprocessors have Arithmetic and Logic Units, a combinational circuit that can
perform any of the arithmetic operations and logic operations on two input values. The

operation to be performed is selected by set of inputs known as function select inputs.

Three commercially. available 4-bit ALUS are

Input

S2

]

o

Function

0

F=0000

F=B-A-1+Cn,

F=A-B-1+Cn,

F=A+B+Ci,

F=A®B

F=A+B

F=A.B

= ==)

R kolo|r|rlololn

Rl okl o|r|lolrloln

F=1111

© Copyright Virtual University of Pakistan

There are differentyMSI"ALLUs available that have two 4-bit inputs a 4-bit output and
three to five function selectiinputs that allows up to 32 different functions to be performed.

74XX181: The 4-bit AU has five function select inputs allowing it to perform 32 different
Arithmetic and Logic,operations.
74XX381: They4d-bit ALU only has three function select inputs allowing only 8 different
arithmetic'and logic functions. Table 15.6
74XX382: The 4-bit ALU is similar to the 74XX381, the only difference is that 74XX 381
provides group-carry look-ahead outputs and 74XX382 provides ripple carry and overflow

14

CS302 - Digital Logic & Design

Table 15.6 Function Table of 74XX381 4-bit ALU

Implementing 16-bit ALU

16-bit ALU can be implemented by cascading together four 4-bit ALUs. These 4-bit
ALUs have built in Look-Ahead Carry Generator circuits that eliminate the delay caused by
carry bit propagating through the Parallel Adder circuit within the 4-bit ALU circut. However,
when a number of such units are cascaded together to implement large 16-bit and 32-bit ALU,
the carry propagating between one unit to the next gets delayed due to the Carry rippling
through multiple 4-bit units. For large 32-bit ALUs, the Carry propagates through 8, 4=bit‘units
delaying the Carry out from the last most significant unit by a factor of 8. The 74XX181 and
74XX381 circumvent the problem by having Group-Carry Look-Ahead.

Group-Carry Look-Ahead

The Look-Ahead Carry Generator discussed earlier and used by the 74LS283 Adder
provides Carry’s C4, C,, C3 and C4 simultaneously after a gate delay of two. Carry’s C4, C, and
Cs are used internally, where as C4 provides the Cou from the, 74£S283. Referring to the Look-
Ahead Carry Generator Circuit the C;, C,, C3 and C4 terms are generated on the basis of Py,
P1, P2 and P3 the four Carry Propagate terms and Go, Gi1, G2 and,Gs the four Carry Generate
terms. Figure 15.9

AO - 1 PD
By — 1
P S,
GD
I CD
A — P,
B, — 14 P
1 S“
GI
| Look-Ahead | C,
Carry
Adls— P, | Generator
B, =% P
2 Sz
LS | G,
L CZ
Ay —— Py
B, T Py
Sﬁ
63 j>7
Cﬂ

‘ C,

Figure 15.9 Look-Ahead Carry Generator

These terms are used to generate Group-Carry Look-Ahead outputs that can be used
to cascade together multiple units eliminating the problem of rippling carry. The G and P
output pins of the 74XX381 provide the group-carry look-ahead outputs that allow multiple
ALUs to be cascaded together. The active-low outputs G and P are represented by the
Boolean expressions. Figure 15.10

© Copyright Virtual University of Pakistan 148

CS302 - Digital Logic & Design

—1s0 G
5
Sls P
s2 74X381
—s2
—cin
A4
[AO
B4
BO
A5
[A1
B5
B1
A6
A2
B6
B2
A7
A3

79

© Copyright Virtual University of Pakistan

14

CS302 - Digital Logic & Design

Lesson No. 16

16-BIT ALU
Consider the four ALUs connected to form a 16-bit ALU without the Look-Ahead Carry
circuit. Figure 16.1. The ALU1 will only generate an output and a Carry Out 8 when it has
received an input at Carry In 4. Similarly, ALU2 will only generate an output and a Carry Out
12 when it has received Carry In 8. Finally, the Carry Out 16 is generated only when ALU3 has
received Carry In 12. Thus the Carry instead of rippling through the 4-bits of the individual ALY
circuit has to propagate through four ALU units. The last ALU unit has to wait until it receives

the Carry propagating through each of the three units.
&Zﬁﬁwﬁ}&ii)7<}maiJ7<}

ALU3 ALU2 ALU1 ALUO

c:;uuel & Cout12 & Couts & CoutAi v

A\

1N

Figure 16.1 Carry Propagation Delay between 4-bit ALU units

The delay caused by the Carry Propagating through the four units is eliminated by the
Group Carry terms used by the 381 ALUs. Figure 16.2. InSteadhof the Carry Out each ALU
generates Group-Carry Generate and Propagate terms,which indicate if the most significant
Carry is generated by the 4-bit ALU or otherwise. The \Group Carry terms are connected to the
Look-Ahead Carry Generator which generates, the “Cary“bits C1, C2 and C3 which are
connected to Cin4, Cin8 and Cin12 respectively.\Thus,Carry no longer propagates through the
ALU units.

L AN AN WL,

| 4Cint2 | Cin8 ey | S0

ALU3 ARU?2 ALU1 ALUO

=l

G3P3 G2P2 G1P1 GO PQ
Look-Ahead

Carry Generator
C3 Cc2 c1 G P

Fhv v
i

Figure 16.2 Carry Propagation Delay eliminated by using Group Carry

The G output is activated if the 4-bit unit generates a Carry Out irrespective of Carry In.
The P output is activated if the 4-bit unit generates a Carry Out if the Carry In is active. The
Look-Ahead circuit implemented earlier is based on Logic Gates, where the Look-Ahead Carry

© Copyright Virtual University of Pakistan 150

CS302 - Digital Logic & Design

Generator circuit has Po, P1, P> and Ps; Carry Propagate and Go, Gi, G2 and Gz Carry
Propagate Inputs and C1, C,, Cs and C4 Carry Out outputs. The 74XX182 is the MSI version of
the Look-Ahead Carry Generator, which provides identical inputs and outputs except for the C4
output which is available in the form of P and G output pins to allow a second level Cascading.
The connection of four 74XX381 4-bit ALUs and a 74XX182 to implement a 16-bit ALU is
shown. Figure 16.3

The inputs A, B and the output F of the four, 4-bit ALUs 0, 1, 2 and 3 are cennected to
appropriate bits of the 16-bit inputs A, B and output F respectively. Thus bits_A(0-3), B(0-3)
and F(0-3) are connected to inputs and output of ALUO, bits A(4-7), B(4-7) and\F(4-7) are
connected to inputs and output of ALU1, bits A(8-11), B(8-11) and F(8-11)"are connected to
inputs and output of ALU2 and bits A(12-15), B(12-15) and F(12-15) are 'connected to inputs
and output of ALU3. The Group-Carry Generate and Propagate outputs of the four ALUs are
connected to the inputs of Look-Ahead Carry generator 74X182 respectively. The Carry
outputs C1, C2 and C3 from the Look-Ahead Carry generator circuit.are generated after a gate
delay of 2 and are connected to the Carry in pins of ALUS 1, 2 and 3 respectively.

© Copyright Virtual University of Pakistan 15

CS302 - Digital Logic & Design

GO G O—
6
——————QPo P O—
74X182
— () G1
P1
G2 c1|¢
Cc8
EE———e c2
C12
—O P3 co
RYAAYAAYARYERERYE \
Co ® ®
™ e
S(0-2) o—11 ,\ ’VVV\—.
B(0-15) ._fV\.o.r'\ ’VVV\—’\.
S0 S0
S0 ¢ 0— S0 G
S1 PO S1 2
s1 P O——- S1 [57
"i < 74X381 s2 $ 74X381
IV \Vg Vg NN PSS IV Ve Vg O P
A0 Fo A8 F8
PP ao Fo T —Hnr FO
BO F1 B8 F9
&—r0 F1 04 —— B0 F1
Al F2 A9 F10
o P—am F2 [S5\ SN} F2
B1 F3 B9 F11
¢ P—r1 F3 & N—m1 F3—@
J W Vg NI PV P g (Vg aclipvt
B2 B10
P Wg eI et & —82
A3 ALUO ALl ALU2
P g Vg el PV PP
B3 B11
P W el Y @83
g NV N T
Y N TP N/ TV
S0 S0
S0 co—PT— S0 c o— 1P
s1 p1 s1 P3
s1 P O—P—- s1 pO——
s, 74X381 2| 74X381
] Scin —~PP——-/cin
A4 F4 AL2 F12
[% A0 Fo [A0 FO
B4 F5 B12 F13
@ — &0 F1 [S0 F1
A5 F6 A13 F14
oN—m F2 [¥4 AL F2
B5 F7 B13 F15
¢ — 81 F3 ¢ Bl F3
A6 Al4
[%4 A2 [%4 A2
B6 B14
B2 B2
i ALUL L wis| ALU3
s & g
F(0-15)
P WY N\ °

Comparators

Figure 16.3 16-bit ALU

© Copyright Virtual University of Pakistan

152

CS302 - Digital Logic & Design

The basic function of a Comparator is to compare two binary quantities and to
determine if the two quantities are equal. If the quantities are not equal then it has to
determine which of the two quantities is greater than the other. Many Integrated Circuit

Comparators have three outputs to indicate A=B, A>B and A<B.

Earlier, simplified Boolean expressions for a 2-bit Comparator circuit were determined
that compares two 2-bit numbers and sets one of its three outputs to indicate /A=By/A>B or
A<B. The Booleans expressions representing the three outputs are presented.gTheithree

Combinational Circuits implementing the three outputs are also shown. Figure 16.4

(A >B) = AB, + A;B,B, + A/ABy

A

1

Ay

B,

B;{?

i

LU

Figure 16.4a Implementation of A>B

(A =B) = A,A,B,B, + A,A,B,B, + A,A,B,B, + A A,B,B,
1 44>—‘>o7

<>_[>07

=

™S
L

[

T

L A=B

I

Figure 16.4b Implementation of A=B

(A <B) = AB, + A AB,+ A.B,B,

© Copyright Virtual University of Pakistan

15

CS302 - Digital Logic & Design

-
oy B I
By

Figure 16.4c

Implementation of A<B

The 2-bit Comparator discussed earlier is considered to be a Parallel Comparatonas all
the bits are compared simultaneously. External Logic has to be used to €ascade tagether two
such Comparators to form a 4-bit Comparator.

The 4-bit numbers compared by the Cascaded implementation are represented in table

16.1.
A B Comparator M Comparator L
1101 | 0111 A>B
0110 |1011 A<B
0011 | 0010 A=B A>B
0100 | 0101 A=B A<B
1001 | 1001 A=B A=B
Table 16.1 Comparison of numbers by Cascaded 4-bit Comparator
Ay A>B
A, | » A>B
Corrzlpl;rtator =B
By— M A<B
B, A<B
N | AR
Ay 2V oot - A-B
Comparator L\;}
By — L A<B
L T

Figure 36.5 Implementation of 4-bit Comparator by Cascading two 2-bit Comparators

The two most significant bits of 4-bit numbers A and B are compared by the Most
Significant 2-bit Comparator M and the least significant two bits are compared by the Least
Significant 2-bit Comparator L. Figure 16.5 If the two most significant bits of number A are
greater than the two most significant bits of number B, (A=1101 and B =0111) the Most
Significant Comparator indicates A>B and there is no need to compare the remaining two least
significant bits. Similarly, if the two most significant bits of numbers A and B (A=0110 and
B=1011) are compared by the Most Significant Comparator and the comparator sets its A<B

© Copyright Virtual University of Pakistan 154

CS302 - Digital Logic & Design

then there is no need to compare the remaining two least significant bits. However, if the two
most significant bits of numbers A and B indicates A=B then least significant two bits have to
be compared to determine if A>B (A=0011 B=0010), A<B (A=0100 B=0101) or A=B (A=1001
B=1001). Thus the A=B output of the Most Significant 2-bit Comparator is used to enable three
AND gates. The output of only one AND gate is set to 1 depending upon the output of the
Least Significant 2-bit Comparator.

An alternate method of implementing Comparators which allows the Comparatorsito be
easily cascaded without the need for extra logic gates by Iterative Circuit based Comparators.

Iterative Circuit based Comparator

An lterative circuit is implemented using identical modules,eachyof which has Primary
Inputs and Outputs and Cascading Inputs and Outputs. The Cascading inputs of the least
significant module are connected to fixed logic inputs and the Cascading outputs are
connected to the Cascading inputs of the next significant module.\A 2-bit Iterative Circuit
based Comparator is shown. Figure 16.6.

AO - Module 0
By ¢
R
1 e J
A1 PN Module 1
B,
—e A=B

Figure'26.6a/ Iterative Circuit Implementation of A=B function

The, Cascadinginput of Module 0 is connected to logic 1. If input A is equal to input By,
the XNOR: gate output in Module 0 is a 1 which is passed on to Module 1 through its
Cascading input. The output A=B is 1 when input A; is equal to Bi. If either Aq # Bo or A1 # B
the output’A=B is 0. The Equality Comparing circuit can be expanded to 4-bits by Cascading
twoModules/connecting their respective Cascading inputs and outputs.

In the Iterative Circuit for A>B, the Cascading input of Module 0 is connected to Logic
0. The output of Module 0 is 1 when A¢>Bo. The Cascading output of Module 0 is connected to
the Cascading input of Module 1. The output A>B of Module 1 is 1 if A;=B; and Cascading
input'is 1, or if A1>Ba.

© Copyright Virtual University of Pakistan 15

CS302 - Digital Logic & Design

Module 0
™
L
A,
B, *
0 [
Module 1
i
1 o
—A>B
B, *

Figure 16.6b Iterative Circuit Implementation‘ef A>B function

Similar Iterative Circuit for A<B, allows multiple xmodules to be Cascaded together to
form multi-bit A<B unit.

MSI 4-bit Comparator

MSI 74HCS85 4-bit Iterative Circuit based Comparator allows multiple 74HC85s to be
cascaded together to form Comparators N x 4-bit Comparators. Three 74HC85s cascaded
together forms a 12-bit Comparator circuit.\Figure 16.7.

Three Comparators @re cascaded, together. Comparator 1 compares the least
significant bits 0 to 3, Comparator 2 compares bits 4 to 7 and Comparator 3 compares the
most significant bits 8 to 11. The respective input bits are shown connected to the three
comparators through 4hick lines. The Cascading inputs of Comparator 1 are permanently
connected to Ground andxt5volts. A<B in and A>B in are connected to ground and A=B in is
connected A0~ +5 Volts. The cascading outputs of Comparator 1 are connected to the
respective cascading inputs of comparator 2. Similarly, the cascading outputs of Comparator 1
are connected to the cascading inputs of Comparator 3. The final output of the 12-bit
Comparator circuitis available at the cascading outputs of Comparator 3.

© Copyright Virtual University of Pakistan 156

CS302 - Digital Logic & Design

0 __laein AsBoutl——— lA<Bin ABoutl—— A<Bin As<B out——————
+
5v ——A=Bin A=B out A=B in A=B out A=B in A=B out————
0 74X85 74XBS 74XB5
—— A=Bin A=B out A=Bin A=B out A=B in A=Bout———
AU A AY
A0 AQ AQ
BO B4 BS
B0 B0 o ——— Bl
Al A5 A9
o — a1 a1 [2 Al
B1 B5 BY
@ —B1 @ —B1 @ —B1
AL Ab AU
[24 Az [24 Az [24 A2
B2 B6 B10
@ —— B2 B2 B2
A3 Comparator1 A7 Comparator2 Al1 Comparatord
[Y4 A3 @ P——Has ¢ —az
B3 B7 B11
@ — &2 @ —E3 B3
A(C-11)
o o ®
B(C-11) e o
Figure 16.7 12-bit Comparator
Decoders

A Decoder has multiple inputs and multiple outputs. The Decoder device accepts as an
input a multi-bit code and activates one or more of its outputs to indicate the presence of the
multi-bit code. There are different variations of Decoder devices.

Basic Decoder

Consider an electronic door lock which unlocks the door when a 4-bit code 1011 is
entered. The door is locked when another 4-bit combination 1001 is entered. The lock and
unlock circuit is implemented using a combination of NOT and AND gates. Figure 16.8

Ae -
ANy
PY MUV [
4%} Un-Lock
4.
> 1
]

Figure 16.8 Electronic Door Lock

The circuit is configured to activate the Lock output when the Door Lock code 1011 is
applied at inputs ABCD. The Un-Lock output is activated when the Door Un-Lock code 1001 is
applied at the inputs ABCD. The circuit is a Decoder circuit. It detects the Code 1011 and
activates the Lock output. Similarly, it detects the 1001 code and activates the Un-Lock output.
Two different outputs are activated to indicate the presence of two unique 4-bit binary codes.

© Copyright Virtual University of Pakistan 15

CS302 - Digital Logic & Design

The decoder circuit can be expanded to have more Lock and Un-Lock outputs to Lock and Un-
Lock different doors in a building.

Applications of decoders
Decoders have two major uses in Computer Systems.

1. Selection of Peripheral Devices

Computers have different internal and external devices like the Hard Disk, CD Drive,
Modem, Printer etc. Each of these different devices is selected by specifying different codes."A
decoder similar to the Electronic Door Lock/Unlock circuit is used to uniquely select, or
deselect the appropriate devices.

2. Instruction Decoder

Computer programs are based on instructions which are decode by the Computer
Hardware and implemented. The codes 1100010, 1100011, 1110000 and 1000102 represent
Add two numbers, Subtract two numbers, Clear the result and Store the'result instructions.
These instruction codes are decoded by an Instruction Decoder to generate signals that
control different logic circuits like the ALU and memory to perform’these operations.

Binary Decoder

The simplest and most commonly used Decoders are the n-to-2" Decoders. These
Decoders have n inputs and 2" outputs Each, n-bit input selects 1 out of 2" output code.

A 2-to-4 Decoder is represented by the function table. Table16.2. The 2-to-4 Binary
Decoder circuit is shown. Figure 16.9

Input Output

|1 |o Oo 01 02 OS
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Table 1622 Function Table of a 2-to-4 Binary Decoder

jou
:}01
joz
303

© Copyright Virtual University of Pakistan 158

CS302 - Digital Logic & Design

Figure 16.9 2-to-4 Decoder
The 2 to 4 Decoder output Og is activated to Logic 1 when the input is 00. Similarly for
inputs 01, 10 and 11 the outputs O, O, and O3 are respectively activated.

MSI Decoder

The 74LS139 MSI chip has dual 2-to-4 Decoders. The function table, table 16.3, and
the gate—level circuit diagram for the 2-to-4 Decoder is shown. Figurel6.10.Fhe " gircuit
diagram is slightly different form the one described in figure 16.9.

Input Output

G B A Y3 Y2 Y1 YO

1 X X 1 1 1 1

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1
Table 16.3 Function Table of 74L.S139, 2-t0-4 Decoder

The 74LS139 has active-low outputs,\thus,the output which is activated is at logic 0
where as the outputs that ate are not selected are at,logic 1. A third active-low input G is the
enable input, which when set to 0 enables all, NAND gates. Setting the G input to 1 disables all
NAND gates and all four outputs are at logic 1 the in-active state.

Extra NOT gates are placed at thetinputs A and B. Without the two extra NOT gates at
Inputs A and B, each of the two inputs present a unit load of three (a NOT gate and two NAND
gates). By having the extra NOT 'gates each input presents a single unit load.

YO

Y1

Y2

Y3

JUUL

Figure 16.10 74LS139, 2-to-4 Decoder

© Copyright Virtual University of Pakistan 15

CS302 - Digital Logic & Design

Lesson No. 17
THE 74XX1 -TO-8 DECODER
The 3-t0-8, 74XX138 Decoder is also commonly used in logical circuits. Similar, to the
2-t0-4 Decoder, the 3-t0-8 Decoder has active-low outputs and three extra NOT gates
connected at the three inputs to reduce the four unit load to a single unit load. The 3-t0-8
Decoder has three enable inputs, one of the three enable inputs is active-high and the
remaining two are active-low. All three enable inputs have to be activated for the Decoder te
work. The function table of the 3-t0-8 decoder is presented. Table 17.1

Inputs Outputs

Gl 1 G2A |G2B|C |B |A | Y7 | Y6 |Y5|Y4|Y3|Y2|Yl]| YO
0 X X X X [X 1 1 1 1 1 1 1 1
X 1 X X X [X 1 1 1 1 1 1 1 1
X X 1 X X [X 1 1 1 1 1 1 1 I
1 0 0 0 0 0 1 1 1 1 1 1 1 0
1 0 0 0 0 1 1 1 1 1 1 1 0 1
1 0 0 0 i 0 1 1 1 1 1 0 1 1
1 0 0 0 i 1 1 1 1 1 0 1 1 1
1 0 0 i 0 0 1 1 1 0 1 1 1 1
1 0 0 i 0 1 1 1 0 1 1 1 1 1
1 0 0 i i 0 1 0 1 1 1 1 1 1
1 0 0 i i 1 0 1 1 1 1 1 1 1

Table 17.1 Function&able of 74S138, 3-to-8 Decoder

+5V
6
G1 Yo

15
Di
4 1
——— . c2a i o—
5 3
e Qo Y2 o—
12
Y3 0o—
A) YA va3—
B—N—e9 2 B vsdg
3
fo I, . | N Ve N PN o
7
D —‘e Y1 o—
p
enable
VT G1 Yo
T G2A Y1

6
4
8
5
(|7—O G28 v2
]
1
2
3

P e R R e

Y7

Figure 17.1 4-to-16 Decoder using two 74LS139, 3-to-8 Decoder

© Copyright Virtual University of Pakistan 160

CS302 - Digital Logic & Design

The three enable inputs serve to implement to larger Decoders such as 4-t0-16 and 5-t0-32 by
cascading two or four 3-to-8 Decoders respectively. The connection of two 3-t0-8 Decoders is
shown. Figure 17.1

The A, B and C inputs are connected directly to the A, B and C inputs of the two 3-t0-8
Decoders. The D input is connected to the active-low and active-high enable inputs G2A and
G1 of the two decoders respectively. The enable input selects/deselects bothe the decoders
simultaneously. G1 and G2B enable inputs of the two Decoders are connected 0 +5v. and
Ground respectively. When the D input is 0, the upper decoder is selected and when'D,input is
1, the lower decoder is selected. The A, B and C inputs serve to select the appropriate output
of either the upper or lower decoder.

Implementing Standard SOP and POS Boolean expressions

The function table of 3-t0-8 Decoder is a table of maxterms:“Fer_example, when the
input A, B, C is 0, 0 and 0 the YO output is activated indicating thefsumiterm or maxterm
A+B+C. Similarly, the A, B and C inputs 1, 0 and 1 activate the Y5 output indicating the
presence of A + B + C sum term. The POS Boolean expression represented by the 3-variable

Karnaugh Map, figure 17.2, can be implemented by the 3-t0-8 Decoder which uses an AND
gate to implement the product of sum terms. Figure,17.3

0 0 0 1
1 0 0 1

Figure 17.2 Karnaugh Mapwef\Boolean expression [],sc(0,1,3,5,7)

+5V
6 15
Gl Y
G2A Y1
5
G2B Y2
Y3

Vs ﬁT

-
N

1

-
N
=

D

A Y4 O—
2 10 —
B B Y5
3 9
c Y6 (O—
7
Y7 o————

Figure 17.3 Implementation of Boolean expression [,z (0,1,3,5,7)

The 3-to-8 Decoder can also be used to Implement SOP expression by connecting the
outputs of the Decoder to the input of a NAND gate. Figure 17.4. The alternate symbol for the
three input NAND gate is the three input OR gate with bubbles at the inputs. The three
bubbles cancel out the three bubbles connected at the outputs Y2, Y4 and Y6 representing the
three minterms or product terms.

© Copyright Virtual University of Pakistan 16

CS302 - Digital Logic & Design

+5V
6
el
G2A
5
F G2B

Yo

Y1

Y2

Y3

Y4

Y5

Y&

Y7

Ts

e

o

e

S

™77

Figure 17.4

BCD to 7-Segment Decoder

Implementation of Boolean expression 2 ¢ (2,4,6)

BCD to 7-Segmnet Decoder is a specific type of decoder that is used to convert a 4-bit
BCD Code to a 7-Segment Code. The BCD to 7-Segment Decoder unlike the Binary Decoders
activates multiple but unique set of outputs for each 4-bit BCD input combination.

Earlier, the seven expressions for activating each of,the'seven segments were defined.
Each of the seven Boolean expressions can le implemented using a combination of NOT-
AND-OR gates. The implementations for segments a, b and g are shown. Figure 17.5a-c

oOowm>

Figure 17:5a

[wigR::)

|

Figure 17.5b

a=A+C+BD+BD

Implementation of Segment a output

b=B+CD+CD

Implementation of Segment b output

© Copyright Virtual University of Pakistan 162

CS302 - Digital Logic & Design

B.iw
C S — |

D g:A+BC_:+CI5+I§C

Figure 17.5¢ Implementation of Segment g output

MSI Seven-Segment Decoder

The 7-Segment Decoder circuit is available in MSI form, 74LS47.3Ehe IC has 4-bit BCD
input ABCD and 7-bit active-low outputs for segments a, b, c, d, e, f and g. " The Decoder also
has three extra active-low inputs.
e LT:Lamp test
e RBI: Ripple Blanking Input
e BI/RBO: Blanking Input/Ripple Blanking Output

When a low is applied to the LT dnputhand the BI/RBO is high, all of the seven
segments in the display are turned on to testithat'no segments are burned out. The Ripple
Blanking Input and The Blanking Input/Ripple Blanking>Outputs are used to prevent display of
leading and trailing zeros.

BCD-to-Decimal Decoder

The operation of the BCD-to-Decimal Decoder is the same as a Binary 4-t0-16
decoder, the only difference being that the BCD-to-Decimal Decoder has ten output pins
instead of sixteen and the input is a valid BCD number. Thus invalid BCD codes 1010, 1011,
1100, 1101, 1110 and 1111 applied at the input of the Decoder do not activate any of the ten
outputs. The commercially available, MSI, BCD-to-Decimal Decoder is the 74LS42, which has
active-high inputs and'active-low outputs.

Encoder

An Encoder functional device performs an operation which is the opposite of the
Decoder function. The Encoder accepts an active level at one of its inputs and at its output
generates a BCD or Binary output representing the selected input. There are various types of
Encoders that are used in Combinational Logic Circuits.

Binary Encoder
The simplest of the Encoders are the 2"-to-n Encoders. The functional table and the
circuit diagram of an 8-to-3 Binary Encoder are shown in table 17.2 and figure 17.6

respectively.

Input Output

lo Iy I> I3 l4 Is ls l7 o7} O: Oo
X 0 0 0 0 0 0 0 0 0 0
X 1 0 0 0 0 0 0 0 0 1
X 0 1 0 0 0 0 0 0 1 0
X 0 0 1 0 0 0 0 0 1 1

© Copyright Virtual University of Pakistan 16

CS302 - Digital Logic & Design

x| X| X| X<
o|o|o|lo
o|o|o|lo
o|lo|o|lo
o|lo|o|r
o|lo|r|o
o|lr|olo
rlo|lo|lo
R R
NI =1l=]
Rlo|l—|o

Table 17.2 Function Table of an 8-to-3 Encoder

Il
.7

IZ N1

|

3 N1

l, O1
® g RN g Y

I5
*—0

|6.—r_r'

|7.——f, 02

Figure 17:6y, 8-t0-3 Encoder

The inputs and the outputs of the\8-to-3 Encoder are shown to be active-high. The Iy is
shown to be unconnected to any gate or\output. Thus, if all inputs are inactive low, or the Io
input is high the output is 000. The apprepriate 3-bit output combination is activated for every
input that is asserted by conngetingiit to logic high. The Binary encoder has a drawback when
more than one input is activated.)Consider that the inputs I and Is are activated
simultaneously by applyingilogicyl.at the two inputs. This results in the outputs 011 and 110
for the two inputs respectivelyaThus all three output pins are at logic 1.

Priority Enceders

Priority Encodersemove the problem highlighted earlier with simple Binary Encoders.
Priority Encoders have necessary logic to activate the outputs corresponding to the highest
Prioritysinput when multiple inputs are asserted simultaneously.

Boolean expressions for the three outputs O,, O; and Og of an 8-t0-3 Priority Encoder
are\can be written in terms of variables.

O,=A,+A; +A; +A,
O, =A +A; +A; +A,
O, =A;+A; +A; + A
where
A, =1,

© Copyright Virtual University of Pakistan 164

CS302 - Digital Logic & Design

A5: |7|6|5
A4 = |7|e|5|4

Oy =l + Ll + 11l Ll + 11l Ll

Oy = by + I lgls + 1 1 L + 1 gl L 15 1

=1+ by (lgls +Tglslly + lIsl 1) = 1+ 1gls + Jo [ehls 5 Tl 15Tyl

=1+ 1 (s by + 1Ll L) =1 15 (g + 1 (Ll Rl LY =1 + 1 (I + 1y +1,151,1,)

=1+ 1o (g + 1, (1 +11,L)) =1+ 1 (I + 1, (5 BE) 21 + g + Ll + 11,11,

The MSI, 74XX148 8-input Priarity has a circuit implemented based on the Boolean
expression for outputs Op, O1 and O,. The function table of the 8-inpuy Priority Encoder is
presented. Table 17.3

Inputs Outputs

E1l |10 11 12 13 14 15 16 17 A2 | A1 | A0 | GS | EO
1 X X X X X X X X 1 1 1 1 1
0 X X X X X X X 0 0 0 0 0 1
0 X X X X X X 0 1 0 0 1 0 1
0 X X X X X 0 1 1 0 1 0 0 1
0 X X X X 0 1 1 1 0 1 1 0 1
0 X X X 0 1 1 1 1 1 0 0 0 1
0 X X 0 1 1 1 1 1 1 0 1 0 1
0 X 0 1 1 1 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 17.3 Function Table of an 8-Input Priority Encoder

Cascading Priority Encoders

The 74XX148 Priority Encoder has active-low inputs and active-low outputs. The
Encoder also has an active-low enable input E1 which enables or disables the outputs. The
Group Select GS active-low output is asserted when any one of the inputs is asserted. The

© Copyright Virtual University of Pakistan 16

CS302 - Digital Logic & Design

Enable output EO signal is used to cascade multiple Encoders to form larger Encoders. The
EO output is connected to the El input of the Encoder which handles lower priority inputs. Two
8-input are shown connected together to form a 16-input Priority Encoder. Figure 17.7

‘GND

El

1

o

G80—

s ds bz

7
6
5
4
3
2
1
0

o b ds 5

de b b do dr bo do b

7 o—
[}
4
2
1
4]

EQO—

Figure 17.7 8-input Priority Encoders connected tofermal6-input Priority Encoder

Decimal-to-BCD Encoder

The Decimal-to-BCD Encoder has ten inputs, for the decimal digits O to 9 and four
outputs corresponding to the 4-bit BCD output. The 74LS147 is a Decimal-to-BCD Priority
Encoder which has active-low input and outputs. The Decimal-to-BCD Priority Encoder is used
as a keypad encoder. A telephone keypad has digits 0 to 9. The keypad is connected to the
encoder through pull-up resistors 4hat ensure that the inputs to the encoder are logic high
when none of the keypad keys is pressed:When ever a key is pressed the appropriate input of
the encoder is connected toflogichlow and at the output the corresponding BCD code is
generated. Figure 17.8

Keypad
l 0
J_ 1
l T4HT147
2
l 3
l’ 4 10—
1] b BCD Output
l 8 4 D—
J— J_ 7 8 O—
8
J_ 9

© Copyright Virtual University of Pakistan 166

CS302 - Digital Logic & Design

Figure 17.8 Keypad Encoder

Multiplexer

Multiplexer is a digital switch that has several inputs and a single output. The
Multiplexer also has select inputs that allow any one of the multiple inputs can be selected to
be connected to the output. Multiplexers are also known as Data Selectors. The main use of
the Multiplexer is to select data from multiple sources and to route it to a single Destination. In
a computer, the ALU combinational circuit has two inputs to allow arithmetic opgrations to be
performed on two quantities. The two quantities are usually stored in different set of registers.
The inputs of the two multiplexers are connected to the output of each of the multiple‘registers.
The outputs of the two multiplexers are connected to the two inputs of fthetALUs: The
Multiplexers are used to route the contents of any two registers to the ALU inputs.

Multiplexers are available in different configurations. They4-to-1 Multiplexer circuit is
shown. Figure 17.9, the function table of the Multiplexer is presented. Table 17.4

IO
L/
y——p——
4 2
I —
Iy u.sa;}

Figure 17.9 4-to-1 Multiplexer

Select Inputs Output
S1 So z
0 0 lo
0 1 l1
1 0 I
1 1 I3

Table 17.4 Function table of 1-to-4 Multiplexer

When the Select input are set to 00, the first AND gate at the top is enabled allowing
the logic high or low applied at input lo to be routed through the OR gate to the output Z.
Similarly, when the Select input is set to 10 the third gate is enabled allowing the logic value
applied at the input I, to be routed through the OR gate to the output Z.

© Copyright Virtual University of Pakistan 16

CS302 - Digital Logic & Design

1. Dual 4-Input Multiplexer

Commercial available 4-input Multiplexer is the 74XX153 IC which has two 4-input
multiplexers. The two select inputs of the two 4-input multiplexers are common, however each
multiplexer has a separate enable input which allows the two multiplexers to be separately
controlled. The circuit diagram of the dual 4-input multiplexers is shown. Figure 17.10

g ot

16—
1C0 T

*
2
2

c1 1N jﬁ 1y
L |

ic2 X

1C3 T }

6 B

2co MIHG

2c1 gy D_Ii}zv
. ‘)_1

202 oY

2C3 }

Figure 17.10 Dual, 4-input Multiplexer

Both the 4-input Multiplexers have active-high inputs and outputs. The first Multiplexer
has the inputsylC0, 1C1, 1C2 and 1C3 and the output 1Y. The multiplexer has an active-low
enable signal defined by 1G. The select inputs are defined by A and B which are both active-
high. Two extra NOT gates are connected at the select inputs to reduce the unit load from 5
eachito_one. Similar to the 4-input Multiplexer discussed earlier, the select input lines enable
one of the four AND gates and allow the corresponding input logic value to be routed to the
output through the OR gate. The second 4-input Multiplexer is identical it has active-high
inputs defined by 2C0, 2C1, 2C2 and 2C3 and an active-high output defined by 2Y. The
multiplexer has an independent active-low enable signal that enables/disables the four AND
gates. The select inputs A and B controlling the first multiplexer also control the second
multiplexer.

© Copyright Virtual University of Pakistan 168

CS302 - Digital Logic & Design

Lesson No. 18
a) 2-INPUT 4-BIT MULTIPILEXER
The MSI, 74X157 is a 2-input, 4-bit Multiplexer. This multiplexer has two sets of 4-bit
inputs. It also has 4-bit outputs. The single select input line allows the first set of four inputs or
the second set of 4-inputs to be connected to the output. Thus four-bits of data from two
sources are routed to the output. The function table and the circuit of the multiplexer are
shown. table 18.1, figure 18.1

The multiplexer has two sets of 4-bit active-high inputs 1A, 2A, 3A, 4A and 1B, 2B, 3B,
4B respectively. The multiplexer has 4-bit active-high outputs 1Y, 2Y, 3Y 4Y. The single select
input allows either the 4-bit input A or the 4-bit input B to be connected tosthe 4-bitoutput Y.
The G active-low pin enables or disables the Multiplexer.

Inputs Outputs
G S 1y 2Y 3Y 4Y
1 X 0 0 0 0
0 0 1A 2A 3A 4A
0 1 1B 2B 3B 4B
Table 18.1 Function table of 2-Input 4-Bit Multiplexer
G——9—
S v
et
1A —— % —
1Y
& N—
B 1
2A—P
o
2B— M
SA— PP
3y
& N—
3B—1
4A—
4Y
4B

Figure 18.1 2-input 4-bit Multiplexer

© Copyright Virtual University of Pakistan 16

CS302 - Digital Logic & Design

Expanding Multiplexers
Multiplexers have to be connected together to form larger multiplexer to fulfil specific
application requirements.

1. 8-Input Multiplexer

A single dual, 4-input multiplexer 74X153 can be connected to form an 8-input
multiplexer. The circuit diagram and the function table are shown in fig. 18.2 and table 18.2
respectively. The two active-low enable inputs of the two 4-input multiplexers are connected
together using a NOT gate to form the C input of the 8-input multiplexer. When C is set to 0,
the first multiplexer is selected allowing its inputs 1CO, 1C1, 1C2 and 1C3 to be (selected
through select inputs A and B. When C is set to 1, the second multiplexer is selected allowing
its inputs and outputs to be used. The two outputs are connected through an OR@ate.

B P Out1

FAXK1S]

Out?

o |= [o [o | [o |» |-

%G 26

Figure 18.2 8-to-1 Multiplexer using two 4-to-1 Multiplexers

Input Output
C B A F

0 0 0 1CO

0 0 1 1C1

0 1 0 1C2

0 1 1 1C3

1 0 0 2C0

1 0 1 2C1

1 1 0 2C2

1 1 1 2C3

Table 18.2 Function Table of a 8-to-1 Multiplexer

2. 16-Input Multiplexer

Two 74XX153 Dual, 4-input multiplexer can be connected to form a 16-input
multiplexer. The circuit diagram and the function table of the 16 input multiplexer are shown in
Figure 18.3 and table 18.3 respectively.

© Copyright Virtual University of Pakistan 170

CS302 - Digital Logic & Design

The select inputs A and B of the two dual, 4-input multiplexers are connected together
which allows selection of any one input out of the four set of 4-bit inputs. The four active-low
multiplexer enable inputs which allow selection of any one of the four multiplexers are
connected to the active-low outputs of a 2-t0-4 decoder. The decoder inputs C and D enable
one out of the four multiplexers. The four outputs are connected together through a 4-input
OR gate. The G enable input of the decoder when set to 1 disables the decoder and the
multiplexers.

B P Out1

TAXK1SE

‘Oﬁ “‘ ‘Oﬂ ‘U! ‘b ‘U ‘N ‘-‘

2
aca 2| O
2¢1
202
3 4e o
F
IV I V8 I s
L —\
9
— ol BA e ous
- ut;
—e1
11 TAXKAST
L ——1c2
12
—{1C3
13
C —A vo [o— ——2c0 g o
- ut4
D—1s yio— ——zc1
7405138 15
G —de Y20 —aca
16
Yaj —23 4s g

Figure 18.3 16-input Multiplexer

3. 2-Input, 8-bit Multiplexer

Two 2-input, 4-bit multiplexers 74X157 can be connected to implement a 2-input, 8-bit
multiplexers, The€ircuit diagram is shown in figure 18.4. The select S inputs of the two
multipleéxers ‘are connected together so that the 4-bit inputs A of both the multiplexers are
selected simultaneously when S is set to logic low. Similarly, by setting the S input to logic-
high the'Binputs of both the multiplexers are selected. The active-low enable inputs G of both
the multiplexers are also connected together so that both the multiplexers are enabled and
disabled simultaneously by setting the G input to 0 or 1 respectively.

Inputs Output

G D C B A F

1 X X X X 0

0 0 0 0 0 1CO (M1)
0 0 0 0 1 1C1 (M1)
0 0 0 1 0 1C2 (M1)
0 0 0 1 1 1C3 (M1)

© Copyright Virtual University of Pakistan 17

CS302 - Digital Logic & Design

2C0 (M1)
2C1 (M1)
2C2 (M1)
2C3 (M1)
1CO (M2)
1C1 (M2)
1C2 (M2)
1C3 (M2)
2C0 (M2)
2C1 (M2)
2C2 (M2)
2C3 (M2)

o|lo|o|o|o|o|o|o|o|o|o|o
RR R R R R R Rololoo
Rk R kolo|loolr ik k-
Rk o|lo|rrlololr oo
= == = ==

Table 18.3 Function Table of 16-bit Multiplex

® |
Al
aa 8
BO
— B
a1
ALY
B1
— B
v v
s VAL
B2 ¥1
—l38 wh—
A3 ¥z
i W=
B3 ¥a
—am 15 av =
A4
1A s
B4
— B
A5
G—~— <9 —oa
B5
— .
AL
laa v Y4
BS ¥s
— 3 v
A7 G
2 laa sy
B7 ¥
—lam 15 av|

Figure 18.4 2-Input, 8-bit Multiplexer
Applications of Multiplexers
Multiplexersfare used in a wide variety of applications. Their primary use is to route
data from multiple sources to a single destination. Other than its use as a Data router, a
parallel to serial converter, logic function generator and used for operation sequencing.

1. Data Routing

A two digit 7-Segment display uses two 7-Segments Display digits connected to two
BCD to 7-Segment display circuits. To display the number 29 the BCD number 0010
representing the MSD is applied at the inputs of the BCD to 7-Segment display circuit
connected to the MSD 7-Segment Display Digit. Similarly, the BCD input 1001 representing
the numbers 9 is applied at the inputs of the LSD display circuit. The circuit uses two BCD to
7-Segment decoder circuits to decode each of the two BCD inputs to the respective 7-

© Copyright Virtual University of Pakistan 172

CS302 - Digital Logic & Design

Segment display outputs. Figure 18.5. The display circuit can be implemented using a single
BCD to 7-Segment IC and a Multiplexer.

o1 a—

4-bit o 2 BCD b] 7-segment

BCD 7-Set;ment output

input &4 Decoder C a a
[SN 41—

" GLC e[L’
MSD z—\

9 — | d d
® S a
4bit &———— 2 4 PR Uy
BCD 7-Segment
input o — 4 Decoder ¢

LSD

Figure 18.5 2-Digit Decimal Display Circuit

To fully understand the working of the alternate circuit it is essential to understand the
working ofithe 7-Segment Display Digit. 7-Segment Display Digits are implemented using 7
LEDs_(Light EmittingsDiodes) connected in the form of number 8. To turn on a LED, its Anode
is gonnected to,+5 volts and its Cathode is connected to Ground or O volts. 7-Segment
displayssare of two types, the Common Anode type and the Common Cathode type.

a. Common Anode 7-Segment Display

The Common Anode 7-Segment Display has positive end of each of the seven display
segments (LEDs) connected together. To display any segment the Common Anode of the
display has to be connected to +5 volts and the other end of each segment has to be
connected to 0 volts. Figure 18.6a

b. Common Cathode 7-Segment Display

The Common Cathode 7-Segment Display has negative end of each of the seven
display segments (LEDs) connected together. To display any segment the Common Cathode
of the display has to be connected to 0 volts and the other end of each segment has to be
connected to +5 volts. Figure 18.6b.

© Copyright Virtual University of Pakistan 17

CS302 - Digital Logic & Design

Common Anode Common Cathode

L1

Q@ -~ 0O o0 oo

L1

Q@ +~0 Q0o

t £

Figure 18.6 Common Anode and Common Cathode 7-SegmentiRisplays

Lo
Lo

The alternate 2-digit display circuit based on a multiplexer and a'B€D to 7-Segment
Decoder is shown in figure 18.7. The BCD numbers of the two digits to_be displayed are
applied at the inputs A and B of the multiplexer. The 4-bit output of the Multiplexer is
connected to the 4-bit input of the BCD to 7-Segment Decoder/Circuit., The 7-Segment output
of the Decoder is connected to the 7 segments of both the,Cammon ‘Cathode Displays. The
MSD/LSD input is connected to the select input of the Multiplexer, the Common Cathode of
the MSD and the Common Cathode of the LSD throughia NOI _gate. The MSD is applied at
Input A, and the LSD at input B. To Display the MSD'the MSD/LSD input is set to 0. The BCD
number at Input A of the multiplexer is selected“and reutedthrough the BCD to 7-Segment
Decoder to both the two 7-Segment Displays. ‘Sinceithe MSD/LSD input is O therefore the
MSD display is selected and the MSD is“displayed. The MSD/LSD input is switched to 1,
which selects the BCD at input B which is routed through the Multiplexer to the 7-Segment
Decoder and ultimately to the 7-segment displays. Since the MSD/LSD is set to 1, the
Common Cathode of the LSD is connected to zero, thus the number at input B of the
multiplexer is displayed on thedkSDddisplay. The MSD/LSD input is rapidly switched between 0
and 1 to allow both the digits to_be,seen‘on\the 2-digit display. This circuit can be expanded to
incorporate any number of digits.

ﬁ 1A 1Y 1 a —
= 1B 2-bit 2y 2 BgD b — MSD LSD
] 4&%";‘ 7-Segment a a
2A 3Y 4 Decoder L
— 1B 4y 8 d —
fl)_allb f|] g ljb
p— 3A e —
—1 3B f— el,—Ce|}—\|C
d
—an 9 | \J d
p
— 48 5
L 4
MSD=0

LSD=1 DQ

© Copyright Virtual University of Pakistan 174

CS302 - Digital Logic & Design

Figure 18.7 2-Digit Decimal Display using a Multiplexer

2. Parallel to Series Conversion

In a Digital System, Binary data is used and represented in parallel. Parallel data is a
set of multiple bits. For example, a nibble is a parallel set of 4-bits, a byte is a parallel set of 8
bits. When two binary numbers are added, the two numbers are represented in parallel and
the parallel adder works and generates a sum term which is also in parallel.

Transmission of information to remote locations through a piece of wire_requires that
the parallel information (data) be converted into serial form. In a serial data‘representation,
data is represented by a sequence of single bits. An 8-bit parallel data can,be trapsmitted
through a single piece of wire 1-bit at a time. Transmitting 8-bits simultaneously (in parallel
form) requires 8 separate wires for the 8-bits. Laying of 8 wires across two remote locations for
data transfer is expensive and is therefore not practical. All communieation systems set up
across remote locations use serial transmission.

An 8-bit parallel data can be converted into serial data by using an 8-to-1 multiplexer
such as 74X151 which has 8 inputs and a single, outputy, The 8-bit data which is to be
transmitted serially is applied at the 8 inputs lo-; of the'multiplexer. A three bit counter which
counts from O to 7 is connected to the three select inputs Sy, S: and S,. The counter is
connected to a clock which sends a clock pulse to the ecounter every 1 millisecond. Initially, the
counter is reset to 000, the lp input is selected and'the data’at input | is routed to the output of
the multiplexer. On receiving the clockesignaltafter“®, millisecond the counter increments its
count from 000 to 001 which selects I; inputief the multiplexer and routes the data present at
the input to the output. Similarlyat the\next“clock pulse the counter increments to 010,
selecting |, input and routing the data‘toythe\output. Thus after 8 milliseconds the parallel data
is routed to the output 1-bit at a time. Thetoutput of the multiplexer is connected to the wire
through which the serial data is transmitted. Figure 18.8

\ V¥

N§ EN N Serial Transmission Line
0
R
—— |1
1 74X151
JE—— |2
o]
J—— |3
0
— 14 AD
1
— Al
Q
— s A2
1
JE—— |7
Counter
c2
—»clock Cl—-
co
Figure 18.8a Parallel to Serial Conversion

© Copyright Virtual University of Pakistan 17

CS302 - Digital Logic & Design

Cco

C1

c2

Figure 18.8b Timing diagram of the Parallel to Serial Conversion Circuit

3. Logic Function Generator

Multiplexers can be used to implement a logic, function“directly from the function table
without the need for simplification. The select inputs of the multiplexer are used as the function
variables. The inputs of the multiplexer are connected,to logic 1 and 0 to represent the missing
and available terms. The three variable funetion table andits 8-to-1 multiplexer based function
implementation is shown in figure 18.9

Lo
EN

;
—h Y Input Output
2 A B C Y

1 74X151 0 0 0 1
" 0 0 1 1
- |3 0 l 0 1
i AQ 0 1 1 0

1 1 0 0 0
1" Al 1 0 1 1
2 A2 1 1 0 0
1, 1 1 1 1

ABC
Figure 18.9 Logic Function Generator based on 3-variable logic function table

4. Operation Sequencing

Many industrial applications have processes that run in a sequence. A paint
manufacturing plant might have a four step process to manufacture paint. Each of the four
steps runs in a sequence one after the other. The second step can not start before the first
step has completed. Similarly, the third and fourth step of the paint manufacturing process can
not proceed unless steps two and three have completed. It is not necessary that each of the
manufacturing steps is of the same duration. Each manufacturing step can have different time

© Copyright Virtual University of Pakistan 176

CS302 - Digital Logic & Design

duration and can be variable depending upon the quantity of paint manufactured or other
parameters. Normally, the end of each step in the manufacturing process is indicated by a
signal which is actuated by some machine which has completed its part of the manufacturing
process. On receiving the signal the next step of the manufacturing process is initiated.

The entire sequence of operations is controlled by a Multiplexer and a Decoder gircuit.
Figure 18.10. The manufacturing processes are started by resetting the 2-bit counter to 00.
The counter output is connected to the select input of the Multiplexer and the inputs.ef the
Decoder which selects the Multiplexer input 10 is and activates the Decoder outputiY0.“The
Decoder output is connected to initiate the first process. When the proceSs ‘cempletes it
indicates the completion of the process by setting its output to logic 1. The eutput of Process 1
is connected to 10 input of the Multiplexer. When Process 1 sets its output to 1 to indicate its
completion, the logic 1 is routed by the Multiplexer to the clock input of the, 2-it counter. The
counter on receiving logic 1 increments its count to 01, which selects 1Iuinput of the Multiplexer
and the Y1 output of the Decoder. The input to Process 1 is deactivated and Process 2 is
activated by Y1. On completion of Process 2 its output is set to logic 1, which is routed by the
multiplexer to the clock input of the 2-bit counter which increments.to the next count. This
continues until Process 4 signals its completion afterawhich‘the Decoder and the Multiplexer is
deselected completing the manufacturing process.

reset co

Mo 10
2-bit «— M 4-to-1 1 I—
Counter MUX 2 —Tv P
Clock input Output 13— TV
VARV
Process
1
N—=i Do Y0
P 2- 104 Process
Decoder: 2
Y3
Process
3
Process
4
Figure 18.10 Control of Manufacturing process through Operation Sequencing

© Copyright Virtual University of Pakistan 17

CS302 - Digital Logic & Design

Lesson No. 19
DEMULTIPLEXER
A Multiplexer has several inputs. It selects one of the inputs and routes the data at the
selected input to the single output. Demultiplexer has an opposite function to that of the
Multiplexer. It has a single input and several outputs. The Demultiplexer selects one of the
several outputs and routes the data at the single input to the selected output. A demultiplexer
is also known as a Data Distributor.

The circuit diagram of a 1-to-4 line Demultiplexer is shown. Figure 19.1. The circuitiif
compared to that of the 2-to-4 Decoder. The Decoder enable input is used/as the
Demultiplexer data input. A Demultiplexer is not available commercially. A Demultiplexer-is
available as a Decoder/Demultiplexer chip which can be configured to operatehas a
Demultiplexer or a Decoder.

The circuit of the 1-to-4 Demultiplexer is similar to the 2-to-4 Binary” Decoder
described earlier figure 16.9. The only difference between the two is the addition of the Data
Input line, which is used as enable line in the 2-to-4 Decoder circuit figure 16.10. Assuming the
select inputs I, and lp are set to 1 and 0 respectively. The Ogoutputiis set to 1 if the Data input
is 1 oritis setto O if the Data input is 0.

Figure 19.1 1-to-4 Demultiplexer

Applications of Demultiplexer

Demultiplexer is used to connect a single source to multiple destinations. One use of
the Demultiplexer is at the output of the ALU circuit. The output of the ALU has to be stored in
one of the multiple registers or storage units. The Data input of the Demultiplexer is connected
to'the output of the ALU. Each output of the Demultiplexer is connected to each of the multiple
registersaBYy selecting the appropriate output data from the ALU is routed to the appropriate
register for storage.

The second use of the Demultiplexer is the reconstruction of Parallel Data from the
incoming serial data stream. Serial data arrives at the Data input of the Demultiplexer at fixed
time intervals. A counter attached to the Select inputs of the Demultiplexer routes the incoming
serial bits to successive outputs where each bit is stored. When all the bits have been stored,
data can be read out in parallel. Figure 19.2

© Copyright Virtual University of Pakistan 178

CS302 - Digital Logic & Design

Lo
EN

Serial | "
Transmission | ° |
Line D1 —
D2 —oF
03—
AD D4 —
Al D5 ——
A2 D6 ——
D7 ——
Register
Counter
c2|—
— P clock cl —]
co

Figure 19.2 Demultiplexer as a Serial to Parallel Converter

Programmable Logic Devices

Programmable Logic Devices are used in many applications to replace the Logic gates
and MSI chips. PLDs save circuit space and reduce and save the cost of components in a
Digital Circuit. PLDS consists of Arrays of AND gates and OR gates that can be programmed
to perform specific functions.

Programmable Arraysfof AND Gates and OR Gates

The array is essentiallypa grid of conductors that forms rows and columns with a fuse
connecting each columnyconductor with each row conductor. The fuses can be blown to
disconnect a particulancolumn from a particular row. The OR gate array consists of the grid
and OR gates. Similarly the AND gate array consists of the grid and AND Gates. Figure 19.3

Each column conductor in the grid represents a single variable or its complement. A
grid, ofsseveral column conductors represents several variables and their complements. Each
OR and AND gate in the array is connected to each of the variables through horizontal
conducters. When all the fuses are intact, all variables are present at the inputs of all the OR
and{AND gates. The OR and AND gates can be configured to have specified literals
connected to their inputs by blowing away appropriate fuses which are blown through
pragramming. A programmed OR array has sum terms at the output of its OR gates. Similarly
a programmed AND array has product terms at its output. Figure 19.4

© Copyright Virtual University of Pakistan 17

CS302 - Digital Logic & Design

>
> |

J—— Fusible Link

A e
A A
ST

Figure 19.3a OR Gate Arra
4
n

A A
SN
X1
} X2
} X3

Figure 19.3b AND Gate Array

© Copyright Virtual University of Pakistan 180

CS302 - Digital Logic & Design

o

i°

1SS

. :D

Figure 19.4a Programmed OR Gate Array

5"

}As
}AB
}AB

Figure 19.4b Programmed AND Gate Array

o

I

I

1 1L 1

o

An alternate implementation of the grid is with no fuses, the grid column and row
conductors are not connected to each other. A specific column conductor can be connected to
a row conductor by shorting the column and row conductors. Both the methods in which a fuse
is blown to disconnect a column from a row and the shorting method in which a column is
connected to a row can only be done once. Thus when an array has been configured to
perform a function it can not be reprogrammed.

Programmable Logic Devices have an array of AND gates and an array of OR gates
either or both of which can be programmed. There are different types of PLDs, they are

© Copyright Virtual University of Pakistan 18

CS302 - Digital Logic & Design

classified according to their architecture which allows either both the arrays to be programmed
or only one of the two arrays.

1. Programmable Read-Only Memory (PROM)

The PROM consists of a fixed non-programmable AND array configured as a decoder
and a programmable OR array. Figure 19.5. The PROM is used as a storage device which
stores information at addressable locations. It has limited applications and is not used as a
logic device. PROM architecture and details are discussed in latter lectures.

2. Programmable Logic Array (PLA)

The PLA consists of a programmable AND array and a programmable OR array,
Figure 19.6. It has been designed to overcome the limitations of a PROM. PLA is also known
as a Field-Programmable Logic Array as it can be programmed by theguser and not by the
manufacturer.

lnputl | > > - sm. Output1
.
Input2 [~ Fixed Programmablé <= B> Output 2
AND array OR array
Inputn [——[> Outputm
Figure 1925, 'Block diagram of a PROM
Input 1| > > [~ Output1
Input 2 D Programmable Programmable 4D Output 2
AND array OR array
; %D Output m
Inputn| > >

Figure 19.6 Block diagram of a PLA

3. Programmable Array Logic (PAL)

The PAL has been designed to overcome the longer delays and the complex circuitry
associated with the PLA due to two programmable arrays. The PAL has programmable AND
array and a fixed OR array. Figure 19.7

© Copyright Virtual University of Pakistan 182

CS302 - Digital Logic & Design

lnput1[> N [~ Output1
R
Input 2 D—’ Programmable Fixed [> Output 2
AND array OR array
' and output logic
lnputn|[> > —{ Outputm

Figure 19.7 Block diagram of a PAL

4. Generic Array Logic (GAL)

The GAL has a reprogrammable AND array and a fixed OR array with programmable
output logic. Figure 19.8. The main difference between GAL and PAL are the reprogrammable
AND array which can be programmed again and againj unlike, PAL AND array which can be
programmed once. GAL uses E2CMOS technology Wwhich is”Electrically Erasable CMOS
instead of Bipolar technology and fusible links. The, other, difference is the programmable
outputs.

Input 1 [~ > [~ Outputl
e
Input2 |~ Programmable Fixed ~—— > Output2
AND array OR array |
‘ and
| Programmable 3
output logic
Inputn | S5+ Ly [~ Outputm

Figure 19.8 Block diagram of a GAL

All"the four PLD devices use AND arrays followed by OR arrays. Therefore they all
allow‘implementation of Sum-of-Product Boolean expressions.

PAL/Circuit and Programming
A simplified PAL structure is shown where the AND array has been programmed to
generate three product terms which are added together by the OR array. Figure 19.9

© Copyright Virtual University of Pakistan 18

CS302 - Digital Logic & Design

"
"

.
1 1L 1l

"

AB+AB+AB

IS

)L

Figure 19.9 PAL programmed to implementan SOP function

o

Input Lines

Input Buffers A A B

®© |

Single Line with slash represents

* multiple AND gates inputs
B —‘ > L J /
] L

\ SIS
2

L
2
\ Fuse Intact

(Connection)

Fuse Blown
(no Connection)

Figure 19.10 Simplified diagram of programmed PAL

PALs have many inputs and multiple outputs connected through a large number of
AND gates and OR gates. Drawing the circuit diagram of a PAL having multiple gates each
having multiple inputs becomes difficult. PALs have Buffers at the inputs which produce the
actual variable and its complement. The multiple input lines to an AND gate array are
represented by a single line with a slash indicating the number of inputs. The cross indicates

© Copyright Virtual University of Pakistan 184

CS302 - Digital Logic & Design

the fuses that are intact showing a connection between the vertical line and horizontal line of
the AND array. Figure 19.10

PAL Outputs
PALs typically have 8 or more inputs to the AND array and 8 or less outputs from the
fixed OR array. Some PALs have combined inputs and outputs that can be programmed as
either inputs or outputs. PAL output logic can be configured according to the applicatien of the
PAL. The modified block diagram representing a PAL showing the output of the, ORArray
connected to output logic which allows the outputs to be configured is shown in figure 19.11.
The three types of outputs are
e Combinational Output used for an SOP function and is available asfan, active-high or
active-low output. Figure 19.12a
¢ Combinational Input/Output is used when the output is conneeted back to the input of the
PAL or if the output pin is used as an input only. Figure 19.12b
¢ Programmable polarity output is used to either select the output function-or its complement
by programming an XOR gate at the output. Figure 19.12c

Input 1 [> . o cil;t;zt [~ Output1
>
Input2 [> Programmable Fixedy, |— OUtp.Ut — > Output 2
AND array ORarray Logic
Output
Input n [— Logic > Output m

Figure 19:21 Bloek diagram of a PAL with programmable outputs

From AND

Output
gate array

Figure 19.12a Combinational Output with active-low output

The output of the OR gate from the OR gate Array is shown to be connected to a tri-
state buffer input. The tri-state buffer can be activated or deactivated through the control line
shewn connected to its side. The Combinational Output for an SOP function is implemented by
activating the tri-state buffer which allows the output of the OR gate to be inverted by the tri-
state buffer and passed to the output of the PAL device. An active-high output can be obtained
if the PAL device has active-high output tri-state buffers.

© Copyright Virtual University of Pakistan 18

CS302 - Digital Logic & Design

From AND Input /
gate array Output

Figure 19.12b Combinational Input/Output with active-low output

The Combinational input/output function is used when the output of.the OR"gate has to
be connected back to the input of the AND Gate. As shown in the figure the“Qutput of the tri-
state buffer is connected to the input of an inverting and non-inverting bufferavhichallows the
inverted and non-inverted outputs of the OR gate to be connected to the input of the AND gate
array. Secondly, by deactivating the tri-state buffer connected at the output of the OR Gate,
the output pin is configured as an input pin. External signails, cannected to the output pin are
passed to the input of the AND array.

From AND Input /
gate array < > Output

\

Figure 19.42c Pragrammed Polarity output

The Programmed Polarity,output has the output of the OR gate connected through an
XOR gate to the tri-state buffer. The XOR gate allows the output of the OR gate to be set to
active-high or activeslowaWhen'the second input of the XOR gate is connected to ground, the
output of theX©R"gate isthe same as the output of the OR gate. When the fuse of the XOR
gate inputfis blown to setthe input to logic high, the output of the XOR gate is opposite of the
OR gate output:

PAL Identification

PALs come in different configurations they are identified by unique number. The
numbers begin with the prefix PAL followed by two digits that indicate the number of inputs
followed by a letter L active-low, H active-high or P programmable polarity followed by a single
or two digits that indicate the number of outputs. In addition to the standard number there may
be suffixes which specify the speed, package type and temperature range. Figure 19.13

© Copyright Virtual University of Pakistan 186

CS302 - Digital Logic & Design

/'

Programmable array Logic

N

Eight Outputs

Ten Inputs Active Low output

Figure 19.13 Standard PAL Numbering

PLA Circuit and Programming

5
YRVAVAY

(1 1 [
.es
PI[P2 P3] p4] P5] P6 N
S
SR

Figure 19.14 A 4 x 3 PLA Device

Programmable Logic Array as mentioned earlier has a programmable AND and OR
arrays. A PLA can be programmed to implement any Sum-of-Product logic expressions,
limited by the parameters of the PLA device. The limitations are
¢ Number of inputs (n)
¢ Number of outputs (m)

© Copyright Virtual University of Pakistan 18

CS302 - Digital Logic & Design

¢ Number of product terms (p)

Such a device is described as an n x m PLA device with p product terms. The simplified
diagram of a PLA 4 x 3 device is shown in the figure 19.14. The four inputs I1, 12, 13 and 14 are
shown connected through input buffers to the input of the AND gate array. The Input buffers
provide the un-complemented and complemented input signals. Each of the 6 AND gates
which provide six product terms P1, P2, P3, P4 P5 and P6 have 8 inputs. The outputs of,each
of the six AND gates are connected to the input of the OR gate array. Each of the three¢OR
gates six inputs. Each OR gate can thus perform a sum operation on six product terms.

The PLA allows both its AND Gate array and the OR gate array to be programmed
independently. The 4 x 3 PLA programmed with three separate functions is show infigure
19.15. The product terms generated are

P1=1112.14
P2 =I1.12.13
P3=11I12.13.4
P4 =I1I13.14
P5=12.14

P6 =ILI12.13.14

The first OR gate sums product terms P1, P2, P3yand P5, the fuses for these product terms
are seen to be intact. The second OR gate sums the‘product terms P2, P4 and P6. The third
OR gate sums the product terms P1, P3, P4and P6. The three sum-of-product terms are

O1= L1214+ 11213+ 11121314+ 12.14
02 =ILI213+I11314 +11.12.13.14
O3 =I11214 + 11121314 + 111314 + 1121314

© Copyright Virtual University of Pakistan 188

CS302 - Digital Logic & Design

N

|
YRVAVAY

OO0 X
: m
4 |) > o

i 19.15 Programmed 4 x 3 PLA Device

>

© Copyright Virtual University of Pakistan 18

CS302 - Digital Logic & Design

Lesson No. 20
IMPLEMENTIN NSTANT 0S AND 1
The PLA can be programmed to give an output of constant O or 1. Figure 20.1. All the
four inputs and their complements are shown connected to the first AND gate. The product
term generated by the AND gate is 0. P1= 0. The P1 product term is connected to the input of
first OR gate. Thus the output of OR gate is 0. The inputs to the second AND gate are
disconnected, thus the product term generated by the AND gate isa 1. P2=1. The P2 termis
connected to the input of the second OR gate, therefore the output of the second OR gateds a
1. No product term is connected to the input of the third OR gate, therefore the output.of the
third OR gate is O.

5
YRVAVAY

01

02

03

Y

Figure 20.1 4 x 3 PLA Device programmed for 0, 1 and 0 output

Implementing Odd-Prime Number Function

The Odd-Prime Number generator can be implemented by programming the 4 x 3 PLA.
Due to the limitations of the PLA which only has six product term (six AND gates), only the first
six Odd-Prime numbers 1, 3, 5, 7, 11 and 13 can be detected. Additional two outputs are
programmed to detect Odd-Prime multiples of 15 and 39 respectively. The six product terms
represented by P1, P2, P3, P4, P5 and P6 are minterms 1, 3, 5, 7, 11 and 13. The first OR
gate sums the six minterms (product terms) to give an output of 1 when any one of the first six
Odd-Prime numbers is applied at the inputs 11, 12, 13 and 14 of the PLA respectively. The
second OR gate sums the minterms 1, 3 and 5. Thus the output of the second OR gate isa 1

© Copyright Virtual University of Pakistan 190

CS302 - Digital Logic & Design

when any of the three minterms is applied at the PLA inputs. Similarly, the third OR gate sums
the minterms 1, 3 and 13 and the output is set to logic 1 when any one of the three inputs are
detected at the input of the PLA. Figure 20.2.

|
VEVAVEY

o1

02

03

(7Y

Figure,20.2 "4 x 3 PLA Device programmed to Detect Odd-Prime Numbers

GAL Operation

The GAL has a reprogrammable AND gate array and a fixed OR array. GAL can be
reprogrammed as instead of fuses E2CMOS logic is used which can be programmed to
connect a column with a row. The E2CMOS logic at each column—row intersection is known as
a cell. Figure 20.3. The E2CMOS cell in the ‘on’ state connects the column with the row and a
cell'in the ‘off’ state disconnects the column and row. Appropriate cells are programmed to the
‘on’ state to allow appropriate literals to be connected to the AND gates which generate
product terms. The simplified GAL structure shows the implementation of an SOP function.
Figure 20.4

© Copyright Virtual University of Pakistan 19

CS302 - Digital Logic & Design

A A B B

¢— E2CMOS | e E?’CMOS | &— E2CMOS | — E2CMOS

i i i l
+— EZCMOS | o— E?CMOS | ¢— E2CMOS | o— ECMOS }
: \ i i

o—| E2CMOS | e— E2CMOS | ¢— E2CMOS | o— E2CMOS

s ! s i
o— E2CMOS | | E2CMOS | &— E2CMOS | o— E2CMOS j@
I l l I X

o— E2CMOS | e— E?CMOS | o—| E2CMOS | — E2CMOS

\ : \ \
+— E2CMOS | o— E?CMOS | +— E2CMOS | $2iE2CMOS }
: It . I

A 4 L 4 L 4

Figure 20.3 " Simplified E2CMOS array structure of GAL

A typical Gal has eight.er more'inputs to the reprogrammable AND array and 8 or more
input/outputs from its ‘Output LogiesMacro Cells’ OLMCs. The OLMCs can be programmed to
Combinational Logic ©r Registered Logic. Combinational Logic is used for combinational
circuits, where as Registered Logic is based on Sequential circuits. Figure 20.5

© Copyright Virtual University of Pakistan 192

CS302 - Digital Logic & Design

B

I

AB + AB + AB

> Input/
Output 1

—<> Input/
Output 2

A A B B
&~ ON |® OFF |® OFF |%7 OFF
i . i \
— OFF | OFF | OFF |* ON
i \ i l
— OFF | ON |® OFF |® OFF
i \ : \
& OFF | OFF |4 ON |® OFF
s \ : \
& ON |[* OFF |® OFF |*\ OFF
! : ! \
e~ OFF | OFF || ON |& OFF
\ \ i \
Figuren20.4 “%GAL implementation of an SOP function
Input 1 [5 7
1 OLMC
Input2, >—— E2CMOS |
Programmable
' AND array OLMC
Inputn| > » OLMC
Figure 20.5 Block diagram of a GAL

© Copyright Virtual University of Pakistan 19

CS302 - Digital Logic & Design

GALs are also available in a variety of configurations. GALs are identified by a prefix
GAL followed by a 2-digt number indicating the number of inputs which is followed by V
indicating variable output configuration followed by a number which indicates the number of
outputs. Figure 20.6

—_—— e i —— ———y

GAL16VS

T ’&\

Generic array Logic Eight Outputs

Sixteen Inputs Variable output Configuration

Figure 20.6 Standard GAL Numbering

Programming of PLDs

PLDs are programmed with the help of computer which runs the programming
software. The computer is connected to a programmer socket in which the PLD is inserted for
programming. PLDs can also be programmed when they are installed on a circuit board.

The programming of a PLD device involvesntering the logic function in the form of a
Boolean equation, truth table or a state diagram. Any errors during the entry process are
corrected. The software compiler processes theyinformationtin the input file and translates it
into a suitable format. The complier also minimizesythe logic. The minimized logic is then
tested by using a set of hypothetical inputs, known as‘test vectors. The testing verifies the
design of the logic circuit before committing it'taythe, PLD. If any flaws are detected during the
testing process the design must be debugged and submitted for recompilation. Once the
design has been finalized a documentation file is produced along with a fuse map file which is
downloaded to the programmer which pregrams the PLD device inserted in the programmer
socket.

PLDs have In-System. Programming (ISP) capability that allows the PLDs to be
programmed after they have been_installed on a circuit board. A standard 4-wire interface is
used for programming,the In=System PLD. ISP capability allows systems to be upgraded by
reprogramming the,PLD.

The GAL22V10

The GAL22V10 is a popular GAL device having twelve inputs and ten inputs/outputs.
The device is available as low-voltage 3.3v version. It is also available as an ISP version. The
device has temy@LMCs that can be programmed to different output modes. The ten OLMCs
receive different number of inputs from the programmable AND gate array. Figure 20.7. Of the
ten,OLMCs, two have eight inputs, two have ten inputs, two have twelve inputs, two have
fourteen.and two have sixteen inputs. Each OLMC can be programmed for active-high, active-
low output or it can be programmed as an input.

The circuit diagram of an OLMC is shown in figure 20.8. The OLMC consists of a flip-
flop which is a sequential logic device which stores the information at the output of the OR
gate. Flip-flops will be discussed latter. The output and the complemented output of the flip-
flop are connected to the two inputs of the 4-to-1 MUX. The remaining two inputs of the MUX
are connected to the OR gate output and its complemented output. The output of the MUX is
connected to the output through a tri-state buffer. The output is also connected to the input of

© Copyright Virtual University of Pakistan 194

CS302 - Digital Logic & Design

a 2-to-1 MUX. The other input of the 2-to-1 MUX is connected to the complemented output of
the flip-flop. The output of the 2-to-1 MUX and its complemented output is connected to the
input of the AND array. The select inputs So and S select the appropriate 4-to-1 MUX input to
be routed to the output or the input. The S1 select input of the 2-to-1 MUX is used to route the
appropriate input to the input of the AND array. The select bits So and S1 are programmed in a
dedicated group of cells in the array which are separate from the logic array cells.

I/CLK ENE Input/Output
e[- =
OoLMmC
g '— g —
Input 11
H - ENE {>Q Input/Output
10 »

Input 4— S —
[[4
D—|;Z —— ENE Input/Output
Input OoLMC
>— R

O]]
i ENE Input/Output
Input #»1

Input [[] ENE {}O Input/Output
! oLMmC
| , nc B Il PR
Input E2EMOS

Programmable [11 Input/Output
— put/Outpu
H AND Array ENB

5>

Input 47 I

[[]

D—|;Z — ENB{}Q Input/Output

14 I

Input OoLMC
e e = -«

[1] Input/Output

Inpu>t > WT OLMC »

Input —— ENE {>® Input/Output
e — >
< b— e i E—
Input

[] Input/Output
ENB
7 > &O

Figure 20.7 Block diagram of the GAL22V10

© Copyright Virtual University of Pakistan 19

CS302 - Digital Logic & Design

ENB

3
l{e]
2
From §> ‘ L% ’—Q
BET 1

programmable
array D Q o Tri-state
Buffer
|5‘ |sc
CLR Q 1-to-4
Fliplflop Multiplexer
1-to-2
Multiplexer
To o

programmable

ey :

51‘

Figure 20.8 Circuit Diagram of OLMC

The four OLMC configurations are

¢ Combination Mode with active-low output

¢ Combinational Mode with active-high output
e Registered Mode with active-low output

¢ Registered Mode with active-high output

OLMC Combinational Mode

When the select inputs Sp and Siare set to O“and 1 respectively, the 4-to-1 MUX
selects the OR gate output and the output isaetive-low because of the inversion by the tri-
state buffer. When the select inputs are set to 17and 1 respectively, the MUX selects the
complement of the OR gate output. The output of the OLMC is active-high due to double
inversion.

Tri-State Buffers

Tri-State Buffer is a NOT gate with a control line that disconnects the output from the
input. When the control line is high the buffer operates like a NOT gate and when the control
line is low the output is disconnected from the output and high impedance is seen at the
output. Tri-state buffers are used to disconnect the outputs of devices which are connected or
share a common output lineFigure 20.9

Tri-State
Control
Input Output
Figure 20.9a Tri-State Buffer

© Copyright Virtual University of Pakistan 196

CS302 - Digital Logic & Design

High High

High Low Low High

Figure 20.9b Tri-State Buffer operating as a NOT gate

Low
. High
,I,-Llfvl:, Impedence

Figure 20.9c Tri-State Buffer in.High-lmpedence State

Referring to the OLMC logic circuit. Figure 20.8::\When the control input to the tri-state
buffer is set to low, the output of the buffer is 'set to*high impedance disconnecting the OLMC
from the output pin. The output pin is used as,an input pin.

The GAL22V10 Array

Input Lines

Resetto all OLMCs

44

44

44

44

44

44

Input/Output
oLmc

a4

a4

44

44

T

Figure 20.10 Detailed Connection to the first OLMC of GAL22V10

The GAL22V10 has 22 inputs organized as 44 lines, one for each input and its
complement. Each AND gate has 44 inputs connected to the 44 input lines. Detailed

© Copyright Virtual University of Pakistan 19

CS302 - Digital Logic & Design

connection of the first OLMC to the AND array is shown in figure 20.8. The vertical lines in
groups of four represent the inputs. Thus the first group of four vertical lines represents the
input from the GAL input pin and the input from the OLMC. The horizontal lines represent the
product terms. The first OLMC has ten input product terms. Out of the ten product terms, eight
product terms are connected to the OR gate in the first OLMC. Out of the remaining two
product terms, the first product term is used to control the tri-state buffer and the other is used
for reset in the Registered mode for all OLMCs.

Each OLMC ORs the product term to give a single sum of product term. The GAL has
ten such OLMCs therefore a total of ten Sum-of-Product terms can be implemented.

Programming the GAL22V10
Figure 20.11 shown the programmed GAL for the Boolean expression

X = ABCDEF + ABCDEF + ABCDEF + ABCDEF + ABCDEF + ABCDEF + ABCREF

Input Lines

Reset to@l OLMCs

44

44

44

44

44

44

Input/Output

oLme
44 Pfoduct Term Lings

44

44

44

D—DSA

Input

TS

Figure 20.11 GAL22V10 programmed for Boolean Function

In the figure 20.9.the GAL has been programmed for a six variable Boolean function.
The six variables are connected at the six inputs of the GA device. The figure shows the
connection detail for the first variable A. The first group of four vertical lines represents the

vafiable A anduits complement A . The remaining two lines in the group are not used receive
the un-complemented and complemented output from the OLMC. Similarly, the second group
of'four vertical lines are connected to the second input pin of the GAL which is connected to a
signalirepresenting variable B. The next four sets of four vertical lines represent input pins 3,
4, 5 and 6 which are connected to variables C, D, E and F. The Boolean expression that is
implemented has seven product terms. The first OLMC has eight input product terms, thus it
can be used to program the Boolean expression. The output of the first AND gate generates
the first product term of the Boolean expression. Similarly, the 2" to 7" AND gates generate
the remaining six product terms respectively. The eight input OR gate (not shown) in the
OLMC block generates the sum of product terms. The last group of vertical lines is used to
control the tri-state buffer connected at the output of the OLMC. The diagram shows that it has

© Copyright Virtual University of Pakistan 198

CS302 - Digital Logic & Design

been set to high to allow the tri-state buffer connect the OLMC output to the output pin of the
GAL.

,QWURGXFWLRQ WR $%(/

$%(/ ZKLFK LV DQ DFURQ\P IRU $GYDQFHG %RROHDQ ([SUHVVLRQ /DQJXDJH LV D KDUGZDUH
GHVFULSWLRQ ODQJXDJH XVHG IRU LPSOHPHQWLQJ ORJLF GHVLIQV XVLQJ 3/V $%(/ LV D GHYLFH
LQGHSHQGHQW ODQJXDJH DQG FDQ EH XVHG WR SURJUDP DQ\ WASH RI 3/'

$%(/ LV UXQ RQ D FRPSXWHU FRQQHFWHG WR D 3/' SURJUDPPHU ZKLFK SURJUDPV WKH 3/.

$%(/ SURYLGHV WKUHH GLIIHUHQW WH[W EDVHG PHWKRGV IRU GHVFULELQJ DQG HQWHULQJ D ORJLE GHVLIQ
7KH WKUHH PHWKRGV DUH

T %RROHDQ (TXDWLRQV

T TUXWK 7DEOHV

1 6WDWH 'LDJUDPV

TKH %RROHDQ (TXDWLRQV DQG WKH 7UXWK 7DEOH PHWKRG DUH XVHG IRU &RPELQDWLRQDO /RILF &LUFXLWV
7KH 6WDWH 'LDJUDP LV XVHG VSHFLILFDOO\ IRU 6HTXHQWLDO /RILF FLUFXLWVA/KH9%RROHDQ: (TXDWLRQV DQG
WKH 7UXWK 7DEOH PHWKRG FDQ DOVR EH XVHG IRU GHVFULELQJ DQG HQWHULQJ 6HTXHQWEDO /RILF &LUFXLWV

© Copyright Virtual University of Pakistan 19

CS302 - Digital Logic & Design

Lesson No. 21

THE GAL16V8

This device has eight inputs, two special function input pins and eight pins that can be
used as inputs or output. The architecture of the GAL16V8 is similar to that of a PAL and it is
designed to be programmed in one of the three available modes to emulate most of the
existing PALs, thus replacing the PAL. The three modes in which PALs are programmed are
e Simple
o Complex
o Registered
The simple and complex modes are associated with the Combinational Logic whereas the
Registered mode is associated with Sequential Logic.

The GAL16V8 has eight OLMCs each connected to eightgproduct terms. Each product
term is implemented using a 32-bit input AND gate. The 32%\inputsycomprise of the 16
complemented and un-complemented inputs of the 8 input pins and 16°'complemented and un-
complemented inputs of the 8 input/output pins that can be configured as input pins.

OLMC for GAL16V8
The OLMC of the GAL16VS8 is similar to the OLMC of the GAL22V10 with some
enhancements. The main aspects of the GAL16V8 OLMC are

Tri-state Buffer and OLMC output pin
The tri-state buffer connecting¢the output ofithe OLMC circuit to the output pin is
controlled through four different sources: Theitri-state buffer control input can be connected in
four different ways.
1. Connected to V. The output is always enabled.
2. Connected to GND. The output is disabled and the output pin is configured as an input pin.
3. Connected to the external pin (11) which can be connected to V.. or GND. The tri-state
buffer is therefore cantrolled externally by applying an appropriate signal at the pin.
4. Connected to the output of‘ane of the eight AND gates connected to the OLMC. Thus the
tri-state buffer is controlled by a logical expression.

The feedback fromithe ©LMC to the AND Gate array input
The OLMC cambe configured to provide a feedback input signal to the AND gate array
input. There are three possibilities.

1. Connecting the feedback signal line to the output of the OLMC. This allows the output of
the OLMC to,be connected back to the AND gate array input. This allows implementation
of Sequential Logic circuits.

2. Connecting the feedback signal line to the output of the adjacent OLMC. This also allows
implementation of Sequential Logic circuits.

3. Connecting the feedback signal line to a flip-flop. This allows implementation of
synchronized Sequential circuits.

The output of the Sum of Product term

The OR gate used to implement the Sum-of-Product term has its output connected to
the output pin thorough the tri-state buffer. The tri-state buffer is also connected to the output
from the flip-flop. Thus either of the two inputs to the tri-state buffer can be selected. The
output of the OR gate can also be programmed for output polarity by configuring the XOR gate
connected at the output of the OR gate.

© Copyright Virtual University of Pakistan 200

CS302 - Digital Logic & Design

Simple Mode
In the Simple Mode the OLMC is configured as dedicated active combinational output
or as dedicated input (limited to six). Three possible combinations of the Simple Mode are
e Combinational Output. Figure 21.1
e Combinational Output with feedback to AND Array. Fig 21.2
e Dedicated input. Fig 21.3

Vce

XOR
input

Figure 21.1 Combinational Output
In the Combinational Output the OLMC is configuredto give an, output which is either
active-low or active-high. The active-state of the output is determined by the XOR input. The

tri-state buffer control pin is set to logic high by connecting itito Vc»The Sum-of-Product term
generated by the OR gate has eight product terms.

Ve

XOR
input

Figure 21.2 “3Combinational Output with feedback to AND array

The Combinationah,Output with feedback to AND array is similar. The tri-state control
pin is set teflogic highi(V.), the XOR gate input determines the active-state of the output. The
signal at the outputyis also connected to the input of the AND array through the buffer which
provides inverting and non-inverting outputs. The feedback capability is limited to six OLMCs
as theyhave a physical connection from the tri-state buffer output to the AND gate array input.
OLMCs connected to input/output pins 15 and 16 do not have the feedback path therefore
they can not be programmed with Combinational output with feedback.

© Copyright Virtual University of Pakistan 201

CS302 - Digital Logic & Design

GND

Figure 21.3 Dedicated Input

In the Dedicated Input configuration the tri-state buffer _is configured“in the high
impedance state by setting the control pin of the tri-state buffer ta lowi(GND). Thus the output
pin is connected to an input signal which is passed to the input of the JAND Array in its
complemented and un-complemented form by the buffer.

Complex Mode

In this mode the OLMCs can be configured in‘two ways. In the complex Mode the tri-
state control is formed by a logical expression, thisfleaves seven product terms that can be
used to form a sum-of product expression. Two possible cambinations of the Complex Mode
are
e Combinational Output. Fig. 21.4
¢ Combinational Input/Output. Fig. 21.5

XOR
input

Figure 21.4 Combinational Output

The tri-sate,buffer is enabled by connecting the control input of the buffer to the output
of one of the AND gate. Thus the tri-state buffer is controlled by programming a product term.
Similarly,the, Combinational Input/Output Mode is also implemented by connecting the tri-state
bufferfeontral input to the output of the AND gate. OLMCs which have the feedback path
connecting.the output to the input of the AND gate array can be used in this mode.

XOR
input

—=<

Figure 21.5 Combinational Input/Output

© Copyright Virtual University of Pakistan 202

CS302 - Digital Logic & Design

Introduction to ABEL

ABEL which is an acronym for Advanced Boolean Expression Language is a hardware
description language used for implementing logic designs using PLDs. ABEL is a device-
independent language and can be used to program any type of PLD. ABEL is run on a
computer connected to a PLD programmer which programs the PLD.

ABEL provides three different text-based methods for describing and entering a lagic
design. The three methods are
¢ Boolean Equations
e Truth Tables
e State Diagrams

The Boolean Equations and the Truth Table method are used for. Combinational Logic
Circuits. The State Diagram is used specifically for Sequential Logic circuits. The Boolean
Equations and the Truth Table method can also be used for describing and entering
Sequential Logic Circuits.

Boolean Operations and Boolean Notations
The NOT, AND, OR and XOR operations have, special symbols in ABEL as shown in
table 21.1

Logic Operation ABEL Symbol
NOT !
AND &
OR #
XOR $
Table 21.1 ABEL Symbols for logic operations

The standard Boolean notations‘in terms of ABEL notations are defined in table 20.2.
The operators !, &, # and $ hayve preeedence in the order given in table.

Boolean Notation ABEL Notation
A IA
A.B A&B
A+B A#B
A®B A$B
Table 21.2 Boolean and equivalent ABEL Notations

3. Boolean Equations

One of the ABEL entry methods uses logic equations. In ABEL any letter or
combination of letters and numbers can be used to identify variables. ABEL however is case-
sensitive, thus variable ‘A’ is treated separately from variable ‘a’. All ABEL equations must end
with ;’. Figure 21.6

Boolean expression F = AB + AC + BD
ABEL expression F=A&B#A&C#IB &!D;

Figure 21.6 ABEL representation of Boolean expression

© Copyright Virtual University of Pakistan 203

CS302 - Digital Logic & Design

Multiple Inputs and Outputs

In some cases, multiple input and output variables can be grouped as a set to simplify
an equation. Fig 21.7. Thus Do, D1 and D; input or output variables can be defined by a single
variable D using the ABEL notation D = [DO, D1, D2];

A 4-input 4-bit Multiplexer is represented by the function table 21.3. The Boolean
expressions representing the operation of the MUX are shown in figure 21.7.

Select Inputs Outputs

S1 So Y3 Yo Y1 Yo
0 0 Az Az A1 Ao
0 1 Bs B> B: Bg
1 0 Cs C> Cy Co
1 1 D3 D2 D1 DO

Table 21.3 Truth Table of 4-input 4-bit MUX

Y,=A.S,S,+B,S,S,+ C:S, S, + D;S,S,
Y,=A,S,S, +B,S,S, + C,S,S, +D,S,S,
Y,=A,S,S,+B,S,S, +C,S, S, + D,S,S,
Yo=A,S,S,+ByS,S, + CS, S, + DS, S,

Figure 21.7 Boolean expressions representing a 4-input 4-bit MUX
The ABEL notations representing theyeperation ofthe MUX are shown in figure 21.8.

Y3=A3&!S1&!SO#B3&!S1& SO#C3&S1&!S0O#D3& S1 & SO;
Y2=A2&!S1&!SO#B2&!S1&S0#C2& S1&!S0#D2 & S1 & SO;
Y1=A1&!S1&!SO#Bl &4S1 & S0#C1& S1&!S0#D1& S1 & SO;
YO=A0&!S1&!SO#B0&!ST&S0# CO0&S1&!S0#DO0 & S1 & SO;

Figure'21.8 |ABEl<£notations representing a 4-input 4-bit MUX

The four ABELgotations can be represented by a single notation if variables A3, A2, Al and
A0 are defined as)a set A. Similarly, sets B, C and D can be defined. Figure 21.9

A =2[A3, A2, A1, A0J;

B =[B3; B2, B1, BO];

€ =[C3, C2/C1, COJ;

D = [D8pD2, D1, DO];

Y =1¥3, Y2, Y1, YO];

S =[S1, SO0];

The ABEL notation representing the MUX is

Y=(S==0)&A#(S==1)&B#(S==2)&C#(S==3)&D;
The ‘= =’ is a relational operator

Figure 21.9 ABEL representation of multiple inputs and outputs

© Copyright Virtual University of Pakistan 204

CS302 - Digital Logic & Design

4. Truth Table

ABEL accepts a logical design described in the form of a Truth Table. Truth Tables are
sometimes more convenient in describing certain logic circuits. The ABEL Truth Table format
includes a header and the truth table entries.

TRUTH_TABLE ([A, B, C, D] — [X1, X2])

A, B, C and D are the inputs and XI and X2 are the outputs.
The truth table of an XOR gate is represented by the ABEL Truth Table notation. Figure 21.10:

TRUTH_TABLE ([A, B] — [X])
[0, 0] — [O];
[0, 1] — [1];
[1, 0] — [1];
[1, 1] — [O];

Figure 21.10 ABEL representation of the Truth table of an,XOR gate
The 2-bit Comparator logic circuit can be described .in terms ofythe truth table using ABEL
notations. Fig 21.11

TRUTH_TABLE ([Al, A0, B1, BO] — [G, E, L])

[0, 0, 0, 0] — [0, 1, OJ;
[0,0,0,1] — [0, 0, 1];
[0, 0, 1,0] — [0, 0, 1];
[0,0,1,1] — [0, 0, 1];
[0, 1,0, 0] — [1, 0, O];
[0, 1,0, 1] — [0, 1, 0];
[0, 1, 1,0] — [0, 0, 1];
[0,1, 1,1 — [0, 0, 1];
[1,0,0,0] — [1, 0, O]
[1,0,0,1] —[1,0, 0]
[1,0,1,0] — [0, 1, 0]
[1,0,1,1] — [0, 0, 1];
[1,1,0,0] —[1,0,0]
[1,1,0,1] —[1,0, 0]
[1,1,1,0] —[1,0,0]
[1,1,1,1] — [0, 1,0l

Figure 21.11 ABEL representation of the Truth table of a 2-bit Comparator
The ABELmotation can be rewritten by defining a set. Fig 21.12
INPUT = [A1, A0, B1, BO];

TRUTH_TABLE (INPUT — [G, E, L])

0 —10,1,0[
1 —[0,0,1]

w N

© Copyright Virtual University of Pakistan 205

CS302 - Digital Logic & Design

—[1,0, 0]
— [0, 1, 0];
— [0, 0, 1];
0,0, 1]
—1,0,0[
—1,0,0[
10 — [0, 1, O];
11 [0, 0, 1;
12 - [1,0, 0];
13 - [1, 0, O];
14 — 1,0, O];
15—]0, 1, Q];

©O©oo~NOOA~

Figure 21.12 ABEL representation of a Truth Table of a 2-bit Comparatorusing a set
Test Vectors
Once the Logic circuit design has been entered its operation’is verified by using ‘test
vectors’. A ‘test vector specifies the inputs and the corresponding, outputs. The software
simulates the operation of the logic circuit by applying the test vector and checking the
outputs. Test vectors are essentially the same as Truth:Tables: Figure 21.13

TEST_VECTORS ([Al, A0, B1, B0] —[@E, L])
[0,0,0, 0]~ [0,'4, O];
[0,0, 0;%¢] =[O, O, 1];
[0,0,4, 0] =]o0, 0, 1];

, 1,1] — [0, 0, 1];

,]—>[1 0, 0];

[0, 1, 0];

[0, O, 1];

[0, 0O, 1];

[1, 0, O];

—_

—_

L A

PrRrOORPROORRPROD

PR ORORORORS

[0n0
[0, 1,
[0, 1
[0, 1
[0, 1
[1,0
[1, 0,
[1,0
[1,0
[1, 1
[1, 1
[1, 1
[1, 1

Figure 21.13 Test Vector of a 2-bit Comparator

INPUT = [AL, A0, B1, BO];
TEST_VECTORS (INPUT — [G, E, L])
10, 1, 0];
10,0, 1];
10,0, 1];
10,0, 1];
—1,0,0]
1[0, 1, 0];

— 10,0, 1J;

- 10,0, 1];

~NoOO O WNEO

© Copyright Virtual University of Pakistan 206

CS302 - Digital Logic & Design

8 —[1,0,0]
9 —[1,0,0]
10 — [0, 1, O];
11 — [0, 0, 1];
12 —[1, 0, O];
13 —[1, 0, O];
14 —[1, 0, O];
15 — [0, 1, O];

Figure 21.14 Test Vector of a 2-bit Comparator using a set

The ABEL Input File
When an Input (source) file is created in ABEL a module is created whichyhas three
sections. The three sections are

4. Declarations

The declaration section generally includes the device declaration, pin declarations and
set declarations. Figure 21.15. Device declaration is used te,specifyathe PLD device that is to
be programmed. The device is referred to as the target device.

Decoder device ‘P22V10’;
AO, Al, A2, A3, PIN 1, 2, 3, 4,
INPUT =[A1, AO, B1, BOJ;
Figure 21.25, "ABEL Input declarations

The ‘Decoder’ is a description which'can be‘anything defined by the user
The ‘device’ is a reservedkeyword which can be in lower or upper case.
The ‘P22V10’ is the deyice name. It should be in the format shown.

‘PIN” is a keyword which‘can‘be in lower or upper case.
Pin declaration” defines, the relationship between the variables and the corresponding pin
numbers of thePLD.

INPUT" defines.a set made up of set elements Al, A0, B1 and BO. In subsequent ABEL
notations the set INPUT’ can be used instead of set variables.

5. Logic Descriptions
Logic descriptions include the three methods of describing a logic circuit. Two methods
the Boolean equation and the Truth Table method already have been discussed.

6. Test Vectors
The Test Vector format has been described. The Test vector description is used to
simulate the logic circuit and verify its operation.

© Copyright Virtual University of Pakistan 207

CS302 - Digital Logic & Design

The Documentation file
After an input file is processed by ABEL a documentation file is generated which
provides a hardcopy of the final reduced equations, a JEDEC file and a device pin diagram.

The JEDEC file
The JEDEC file is downloaded to the PLD programmer to program the approp iate PLD

device. \

>

© Copyright Virtual University of Pakistan 208

CS302 - Digital Logic & Design

Lesson No. 22
ABEL INPUT FILE OF A QUAD 1-OF-4 MUX
A Quad 1-of-4 MUX has four Multiplexers, each Multiplexer has four inputs and a
single output. Each multiplexer has two select inputs to select one of the four inputs. The two
select inputs are common to all the four multiplexers. The function table of the Quad 1-of-4
MUX is shown in table 22.1.

Select Inputs Outputs

S1 So Dout Cout Bout Aout
0 0 Do Co Bo Ao
0 1 Dj_ Cj_ Bj_ A]_
1 0 D, C: B> Az
1 1 D3 Cs Bs As

Table 22.1 Truth table of a Quad 1-of-4 Multiplexer

Module quad_10f4_mux

Title ‘Quad 1 of 4 multiplexer in a GAL20V8’
mux device ‘P20V8’;
A0, Al, A2, A3 pin1, 2,3, 4;
BO, B1, B2, B3 pin5, 6,7, 8;
C0o,C1,C2,C3 pin 9, 10,42313;
Do, D1, D2, D3 pin 14, 15,26, 1%;
Aout, Bout, Cout, Dout pin 21,20, 19, 18;
SO, S1 pin 22, 23;
Equations

Aout =1S1 & ISO & A0 #IS1 & SO & A1 # S1&!S0 & A2 # S1 & SO & A3,
Bout =1S1 & !S0 & BO #!S1 & SO & B1 # S1&!S0 & B2 # S1 & SO & B3;
Cout=1S1&!S0& CO#!S1& S0 & C1# S1&!S0& C2# S1 & SO & C3;
Dout=1S1 &!S0 & DO #!S1 & SO & D1 # S1&!S0 & D2 # S1 & SO & D3;

Test_vectors
([S1, SO, A0, A1, 'A29A3,B0, BT, B2, B3, CO, C1, C2, C3, DO, D1, D2, D3] —
[Aout, Bout, Cout, ‘Dout])

‘SSAAAABBBBCCCCDDD D outputs
0123012

‘010,12 30/1 23 3 ABCD
[0,0, 1, 0,40, 0,0, 1, 0,0, 0, 0, 1,0, 0, 0,0, 1] —» [1, O, O, O];
[0,4, 1, 0,/0, 0,0, 1, 0,0, 0, 0, 1,0, 0, 0,0, 1] —» [0, 1, O, O];
[1,00,.0, 0, 0,0, 1, 0,0, 0, 0, 1,0, 0, 0,0, 1] —» [0, O, 1, O];
[1,1, 1, 0, 0, 0,0, 1, 0,0, 0, 0, 1,0, 0, 0,0, 1] — [0, O, O, 1J;
0,0, 1,1, 1,01, 1, 0,1, 1,0, 1,1, 0, 1,1, 1] —» [1, 1, 1, O];
01,1, 1,1, 01,1, 01,1, 0, 1,1, 0, 1,1, 1] —» [1, 1, 0, 1J;
[1,0,1, 1,1, 01,1, 0,1, 1,0, 1,1, 0, 1,1, 1] —» [1, 0, 1, 1]
[1,1,1, 1,1, 01, 1,01, 1,0, 1,1, 0, 1,1, 1] —» [0, 1, 1, 1]
END

Figure 22.1 ABEL Input file for the Quad 1-of-4 MUX

© Copyright Virtual University of Pakistan 209

CS302 - Digital Logic & Design

Implementation of Quad MUX

The Quad Multiplexer has 16 inputs, 4 inputs for each Multiplexer. Each multiplexer
has a single output, therefore a total of 4 outputs are required. To select an appropriate
multiplexer input there are two select input lines connected to all the four multiplexers. The
Quad Multiplexer has a total of 22 pins through which the device is operated. The GAL16V8
device can not be used as it does not enough pins to implement the quad multiplexer. The
GAL20V8 PLD is used for the implementation of the Quad 1-of-4 Multiplexer. Thesdevice has
12 inputs, 2 special function inputs and 8 input/output pins. Four input/output pins of the GAL
device are configured as inputs to support the fourth multiplexer inputs D1, D2/and D3 and the
select input SO.

Each Multiplexer output Aout , Bout, Cout and Dout isyrepresented by a Sum-of-
product Boolean expression, each having four product terms. Refer to'figure 22.16. Thus each
of the four OLMCs which are connected to the four output pins, have four product terms
connected to the inputs of the OR gates. The implementation of the multiplexer function Aout
is shown in figure 22.2.

Input Lines

Al AQ A2 S1 A3 SO BO B: B2 D3 B3 D2 co Dpd C1 D Cc2 C3

32

oLmc

32

vog

32

32

32

PR B

32

‘g
FAN

Figure 22.2 Implementation of 1-of-4 Multiplexer

Sequential Circuits

The combinational digital circuits have no storage element; therefore combinational
circuits handle only instantaneous inputs. The outputs of the combinational circuits also can
not be stored. The absence of a memory element restricts the use of digital combinational
circuits to certain application areas. The use of a memory element which is capable of storing
digital inputs and outputs is an important part of all practical digital circuits.

Consider an ALU which performs Arithmetic and Logical operations. An ALU can not
perform its operations unless it is connected to memory elements that store the inputs applied
at the inputs of the ALU and outputs from the ALU. Consider an ALU that performs addition
operation on a set of numbers, 2, 3, 4 and 5. The ALU can add two numbers at a time;

© Copyright Virtual University of Pakistan 210

CS302 - Digital Logic & Design

therefore the ALU has to add the four numbers two at a time. The four numbers have to be
stored temporarily, the partial results after adding two numbers also need to be stored. To add
the four numbers, the first two numbers 2 and 3 stored in two separate memory elements are
added together, the result (5) has to be added to the next number 4. The result (5) is
temporarily stored in one of the two memory elements used to store the numbers 2 and 3. The
result (5) is added to the third number 4 to provide another partial sum result 9 which has to be
stored and then added with the fourth number 5.

In a parallel-to-serial conversion of byte data using a multiplexer and the conversion
from serial-to-parallel using a demultiplexer, memory elements are required that store(the byte
data at the input of the multiplexer for conversion into serial information and another memaory
element at the output of the demultiplexer for conversion back to parallel.

The counter circuit used in digital circuits count to the next valuetbecause of the
memory element which stores and remembers the previous count value. A¢countér can not
operate without a memory element.

Digital circuits that use memory elements for their operatiomyare known as Sequential
circuits. Thus Sequential circuits are implemented by combining combinational circuits with
memory elements.

Latches and Flip-Flops

A latch is a temporary storage device that has two stable states. A latch output can
change from one state to the other by applying appropriate inputs. A latch normally has two
inputs, the binary input combinations at the latch input allows the latch to change its state. A

latch has two outputs Q and its complement Q_ The latch is said to be in logic high state when

Q=1 and (5=0 and it is in the logic low: state when Q=0 and 6=1. When the latch is set to a

certain state it retains its state unless the, inputs are changed to set the latch to a new state.
Thus a latch is a memory element which,is able to retain the information stored in it.

The NAND gate based S-R (Set-Reset) Latch

An S-R Latch is implemented by connecting two NAND gates together. The output of
each NAND gate is connected to the input of the other NAND gate. The unconnected inputs of
the two NAND gates are the Set S and Reset R inputs. The outputs of the two NAND gates

are the Q andgits complement 6 . The circuit diagram of the NAND based S-R latch is shown in
figure 22.3

S 1

i oo

Figure 22.3 NAND based S-R Latch

© Copyright Virtual University of Pakistan 211

CS302 - Digital Logic & Design

The S-R latch has two inputs, therefore four different combinations of inputs can be

applied to control the operation of the S-R latch. The four possible input combinations are

Inputs S=0 & R=0

Assume that the outputs Q and 6 are set at logic 1 and logic O respectively. Sifice both
the inputs S and R are logic low, therefore both the Q and (_) outputs are setito 1.The
inputs S =0 and R = 0 are never applied as these inputs result in invalid output states,as Q
and 6 should be complements of each other.

Assume that the outputs Q and 6 are set at logic 0 and logic 1 respectively.>Since both
the inputs S and R are logic low, therefore both the Q and 6 outputs are set to 1. The
inputs S =0 and R = 0 are never applied as these inputs result ininvalid output states as Q
and 6 should be complements of each other.

The input combination S=0 and R=0 is considered tQ,be invalid as it results in an

invalid output of Q=1 and Q=1.

2.

Inputs S=0 & R=1

Consider that the outputs Q and 6 have,1 and 0O logic states. The Set input S = 0 sets the
output Q to 1. The Q input and, the R, inputs to gate 2 are both at logic 1, therefore the
output 5 is set to 0.

Consider that initially the Q and 6 outputs are at logic state 0 and 1 respectively. The Set
input S = 0 sets the output Q'to 1. The Q input and the R inputs to gate 2 are both at logic
1, therefore the output, Q isiset to 0.

Thus what ever the initial outputs, setting S to 0 and R to 1 sets the Q and 6 outputs

to 1 and O respectively.

Inputs S=1 & R=0
Initially, thexQ .and Q outputs are at 1 and O respectively. The Reset input R=0 sets the

output(jto 1. The inputs of gate 1, Q_and S are both at logic 1, therefore the output Q is
set to O.

Initially, if the Q and 5 outputs are at logic 0 and 1 respectively, setting R to 0 sets 6 to 1.
The inputs of gate 1, Q_ and S are both at logic 1, therefore the output Q is set to 0.

Thus, what ever the outputs, setting S to 1 and R to 0 sets the Q and 6 outputs to 0

and 1 respectively.

4.

Inputs S=1 & R=1

© Copyright Virtual University of Pakistan 212

CS302 - Digital Logic & Design

a. Initially, the Q and C_) outputs are at 1 and O respectively. The inputs of gate 2, Q and R
are both at logic 1, therefore the output 6 is set to 0. The inputs of gate 1, (jand Sare0
and 1 respectively, therefore the output is set to 1.

b. Initially, the Q and (5 outputs are at 0 and 1 respectively. The inputs of gate 2 , Q and R

are at logic 0 and 1 respectively, therefore the output 6 is set to 1. The inputs of gate 1,
(3 and S are both at logic 1 respectively, therefore the output is set to O.

Thus, with S and R inputs both set to logic 1, the previous output state is maintained:, If
initially, the Q and Q are at logic 1 and O respectively, setting S=1 and R=1 maintains the,same

outputs. Similarly, if initially Q and (Sare at logic 0 and 1 respectively, setting S=2, and R=1
maintains the same outputs.

A truth-table shows the operation of the S-R NAND based latch. Table 22.2. The
Output Q1 represents the Q output of NAND gate 1 at time interval t+1.Wheniinputs are S =1
and R = 1 the next state output Qw1 remains the same as the previous state output Q:. When
inputs are S = 0 and R = 1 the output Q is set to 1. When inputs are S =1 and R = 0 the output
Qis setto 0. Inputs S =0 and R = 0 are not applied as, they placeithe latch in an invalid state.
The NAND gate based S-R latch has active-low inputs.

Input Output
S R Q1

0 0 invalid
0 1 1

1 0 0

1 1 Q:

Table 22.2, Truth-Table of NAND based S-R Latch
The NOR gate based S-R (Set-Reset) Latch
A NOR based S-R latch is implemented using NOR gates instead of NAND gates.

Connections are identical to that of the NAND based latch. The S and R inputs have been
switched./(Figure22.2.

R Q

s Lo e

Figure 22.4 NOR based S-R Latch

© Copyright Virtual University of Pakistan 213

CS302 - Digital Logic & Design

The S-R NOR based latch has two inputs, therefore four different combinations of

inputs can be applied to control the operation of the S-R latch. The four possible input
combinations are

1.
a.

Inputs S=0 & R=0

Assume that the outputs Q and (_3 are set at logic 1 and logic 0 respectively.<TheR and 6
inputs at gate 1 are both at logic 0, therefore the Q output is set to logic 1. The,S and Q
inputs at gate 2 are at logic 0 and 1 respectively, therefore the output C_Q is setto logic O.
Assume that the outputs Q and (3 are set at logic 0 and logic 1 respectively. The'S and Q
inputs at gate 2 are both at logic 0, therefore the (5 output is set to logie, 1. The R and Q_
inputs at gate 1 are at logic 0 and 1 respectively, therefore the output,Q is'set to logic O.

Thus, with S and R inputs both set to logic 0, the previous output state is maintained. If

initially, the Q and (3are at logic 1 and 0 respectively, setting S=0 and R=0 maintains the same

outputs. Similarly, if initially Q and (Sare at logic 0 and/1 respectively, setting S=0 and R=0
maintains the same outputs.

2.

Inputs S=0 & R=1

Consider that the outputs Q and 6 have 1'and O'logic states. The Reset input R = 1 sets
the output Q to 0. The Q input and the Stinputs to gate 2 are both at logic 0, therefore the
output 5 is setto 1.

Consider that initially the Q and 6 outputs are at logic state 0 and 1 respectively. The
Reset input R = 1 sets the output Q to 0. The Q input and the S inputs to gate 2 are both at
logic 0, therefore thé output 6 is set to 1.

Thus what ever the initial outputs, setting S to 0 and R to 1 sets the Q and 6 outputs

to 0 and 1 respectively.

Inputs S=1 & R=0
Initially; the Q ‘and Q outputs are at 1 and O respectively. The Set input S=1 sets the

output(gto 0:“The inputs of gate 1, Q_and R are both at logic 0, therefore the output Q is
setto 1. _ _
Initially;"if the Q and Q outputs are at logic 0 and 1 respectively, setting S to 1 sets Q to 0.

The inputs of gate 1, Q_ and R are both at logic 0, therefore the output Q is set to 1.

Thus, what ever the outputs, setting S to 1 and R to 0 sets the Q and 6 outputs to 1

and 0 respectively.

4.
a.

Inputs S=1 & R=1
Initially, the Q and Q outputs are at 1 and 0 respectively. Since both the inputs S and R
are logic 1, therefore both the Q and 6 outputs are setto 0. The inputs S=1and R=1

© Copyright Virtual University of Pakistan 214

CS302 - Digital Logic & Design

are never applied as these inputs result in invalid output states as Q and Q_ should be
complements of eacD other.
b. Initially, the Q and Q outputs are at 0 and 1 respectively. Since both the inputs S and R

are logic 1, therefore both the Q and 6 outputs are setto 0. The inputs S=1and R=1

are never applied as these inputs result in invalid output states as Q and Q_ should be
complements of each other.

The input combination S=1 and R=1 is considered to be invalid as it results in, an
invalid output of Q=0 and Q=0.

The truth table of the NOR gate based latch is shown. Table 22.3{ When inputs are S =
0 and R = 0 the next state output Qw1 remains the same as the previous state output Q:. When
inputs are S = 0 and R = 1 the output Q is set to 0. When inputs are S = 1 and'R = 0'the output
Qissetto l. Inputs S =1 and R =1 are not applied as they place the latchiin an invalid state.
The NOR gate based S-R latch has active-high inputs.

Input Output
S R Qt+1

0 0 Q

0 1 0

1 0 1

1 1 invalid

Table 22.3 Truth-Table of NOR based S-R Latch

Comparing the operation,of‘the, NOR based and NAND based S-R latches. The NAND
based latch has active-low inputs, where‘as NOR based latch has active-high inputs. Both the
S-R latches are set to logic L whenithe setinput is activated and the reset input is inactive.
Both the latches are set_o logic 0 when“the reset input is activated and the set input is
inactive. The latches maintain, thefoutput state when both the set and reset inputs are inactive.
For both the latches both the 'set and reset inputs can not be activated simultaneously as this
leads to invalid output states.The Logic symbols of the two latches are shown in figure 22.5.

S Active-high Q S G Active-low Q
Input Input
S-R S-R
Latch . Latch .
R% o—0Q R—O o—Q

Figure 22.5 NOR based Active-High and NAND based Active-Low S-R Latches

S-R Latch Timing Diagrams

The operation of the active-high and active-low input latches can be understood with
the help of timing diagrams. Figure 22.6 shows the timing diagrams of the active high and
active-low input latches respectively. In the timing diagram of the NAND based S-R flip-flop,

© Copyright Virtual University of Pakistan 215

CS302 - Digital Logic & Design

the inputs S=0 and R=0 are not applied as it results in an invalid output state. Similarly, in the
timing diagram of the NOR based S-R flip-flop, the inputs S=1 and R=1 are not applied as it
results in an invalid output state.

S

A

10 12

Figure 22.6a Timing diagram of an active-low input S-R latch

10 12

Figure'22.6b Timing diagram of an active-high input S-R latch

© Copyright Virtual University of Pakistan 216

CS302 - Digital Logic & Design

© Copyright Virtual University of Pakistan

217

	1 1 0 0 1 0 1 0
	0 0 1 1 0 1 0 1
	F  A  B .
	F  A  B .
	F  A
	F  A  B
	A  B , A  B , A  B  C
	A.B  A  B
	A  B  A.B
	 X.Y.Z  X  Y  Z
	 X  Y  Z  X.Y.Z
	 (A  B.C).(A.C  B)  (A  B.C)  (A.C  B)
	  A.(B.C)  (A.C).B
	  A.B  A.C  A.B  B.C
	(AB  C)D

	(AB  C)D
	 AB  ABC  AC
	 (A  B)(A  B  C)
	 (A  B  C)(C  D  E)(B  C  D)
	 AB  B(CD  EF)  AB  BCD  BEF
	 (A  B)  C  (A  B)C  (A  B)C  AC  BC
	A.B.C.D
	A.B
	A.B.C.D)
	X  A.B
	A.B  A.B.C.D
	= (A.B).(A.B.C.D)
	= (A  B).(A.B.C.D)
	= (A.A.B.C.D)  A.B.B.C.D
	F  A.B.C.D
	X  A.B.C
	(A.B.C).(C  D)
	(A.B.C).(C  D) (1)
	A.B  A  B .
	= (A.B.C).(C  D) = (A.B.C)  (C  D)
	= (A  B  C)  (C.D)
	= (A  B  C)  (C.D) (1)
	= A  B  C(1  D)
	F  A  B  C
	AC  BC
	AC  BC (1)
	 ABC  ABC  ABC  ABC
	 ABC  ABC  ABC
	(A  B  C)(A  B  D)(A  B  C  D)
	(A  B  C)(A  B  D)(A  B  C  D) (1)
	A,B,C (0,2,3,5,7) = ABC  ABC  ABC  ABC  ABC
	(A  B  C)(A  B  C)(A  B  C)
	= (A.A  A.B  A.C  A.B  B.B  B.C  A.C  B.C  C.C).(A  B  C)
	= (A.C  B  A.C).(A  B  C)
	= A.B.C  A.C  A.B  B.C  A.C  A.B.C
	= A.B.C  A.C(B  B)  A.B(C  C)  B.C(A  A)  A.C(B  B)  A.B.C
	= A.B.C  A.B.C  A.B.C  A.B.C  A.B.C  A.B.C  A.B.C  A.B.C  A.B.C  A.B.C
	= ABC  ABC  ABC  ABC  ABC
	= A.B.C  A.B.C  A.B.C  A.B.C
	(A  B)(B  C)
	(A  B  CC)(AA  B  C)  (A  B  C)(A  B  C)(A  B  C)(A  B  C)
	ABC  ABC  ABC
	A.B.C.D  A.B.C.D  A.B.C.D  A.B.C.D  A.B.C.D  A.B.C.D  A.B.C.D
	A  BC
	ABC
	A  BC (1)
	A.B.C  A.C  A.B
	A.B (1)
	B.D  B.C  A.B.D  A.C.D
	A.D
	A.B.C.D (1)
	(A  B  C).(A  C).(A  B) .
	(A  B  C).(A  C  D).(B  C  D)
	BD  BC  ABC  ABD  ACD
	ABD

	e c
	a  A  C  BD  BD b  B  CD  CD
	c  C  D  B d  A  BD  BC  CD  BCD
	ABC ,
	ABC
	BD  AC  BC
	ACD  ABC  ABC  ACD
	ACDE
	ACDE (1)
	(A  C)(B  C)(B  D)
	 AB(CD  CD)  AB(CD  CD)  AB(CD  CD)  AB(CD  CD)
	 (CD  CD)(AB  AB)  (CD  CD)(AB  AB)
	 (A  B)  (C  D)
	AB  AB
	AB  AB .
	CarryOut  AB
	Sum  A(BC  BC)  A(BC  BC)
	Sum  A(B  C)  A(B  C)
	CarryOut  ABC  ABC  ABC  ABC CarryOut  C(AB  AB)  AB(C  C) CarryOut  C(A  B)  AB
	Sum  P  C
	Cout
	Cin=1
	4-bit Parallel Adder

	a  A  C  BD  BD
	b  B  CD  CD
	g  A  BC  CD  BC
	Input 1 Output 1
	Input n
	Input 1 Output 1 (1)
	Input n (1)
	Input 1 Output 1 (2)
	Input n (2)
	Input 1 Output 1 (3)
	Input n (3)
	X X
	X X X
	X
	Input 1
	Output 1
	Input n (4)
	Active Low output
	P1  I1.I2.I4 P2  I1.I2.I3 P3  I1.I2.I3.I4
	P5  I2.I4
	O1  I1.I2.I4  I1.I2.I3  I1.I2.I3.I4  I2.I4 O2  I1.I2.I3  I1.I3.I4  I1.I2.I3.I4
	AB
	Input 1
	Input n
	Input/ Output 2
	Variable output Configuration
	X  ABCDEF  ABCDEF  ABCDEF  ABCDEF  ABCDEF  ABCDEF  ABCDEF

	R Q
	S Q S Q
	Q
	S
	Q (1)

