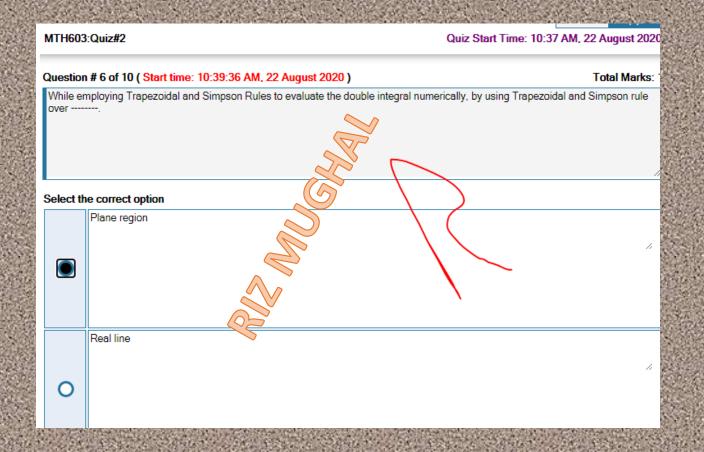

Quiz Master

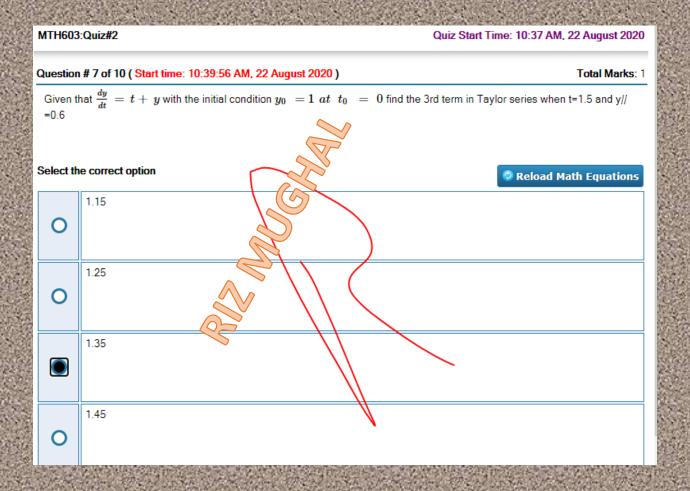
MTH603(LECT 31 TO 38)

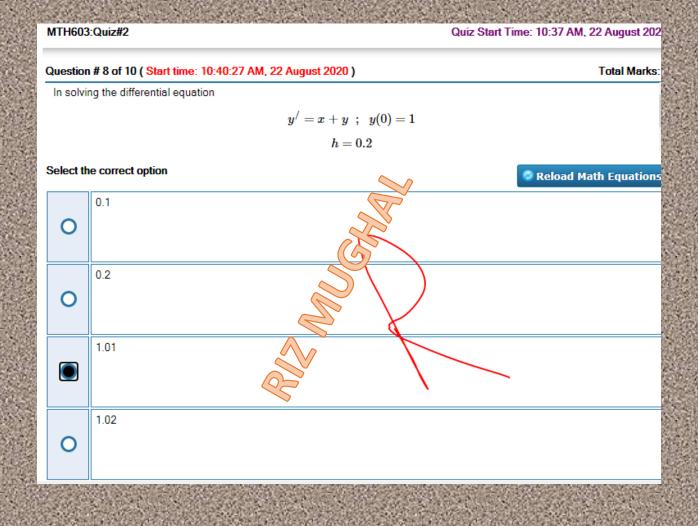
Rizwan Qadeer

All mcqs are 100% correct and specially uploaded for 2020 final exams...for any type of help(specially related to CS619 project) you can contact me. I will quide you properly.

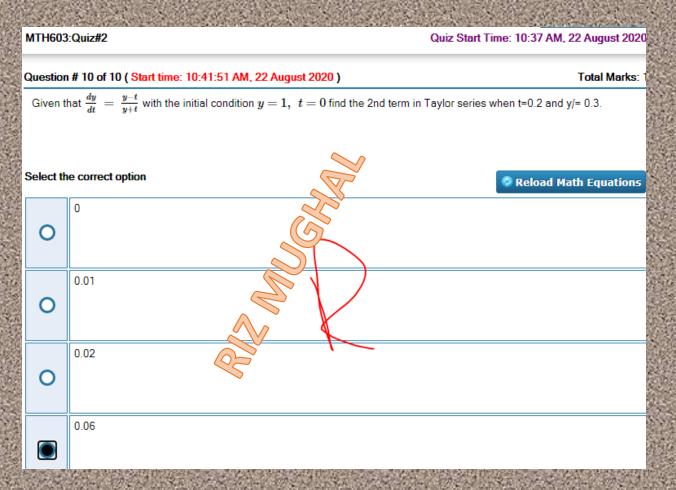
MTH603	3:Quiz#2	Quiz Start Time: 10:37 AM, 22 August 2020
Question	n # 1 of 10 (Start time: 10:37:49 AM, 22 August 2020)	Total Marks:
Given t $0\leqslant t$	that $rac{dy}{dt}=t+\sqrt{y}$ with the initial condition $y_0=1$ at $t \leqslant 0.6$, h = 0.1 is	$t_0=0$ Using Modified Euler's method, for the range
Select th	he correct option	Reload Math Equations
0	1.0	
0	1.2	
0	2.1	
	1.1	

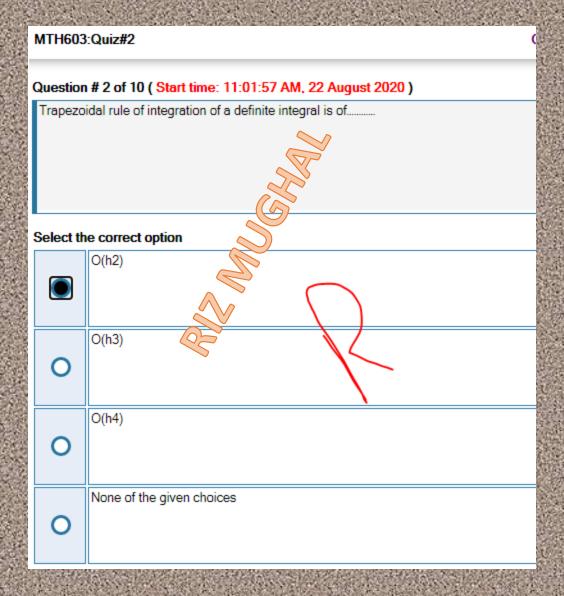



MTH603	:Quiz#2	Quiz Start Time: 10:37 AM, 22 August 2020		
Question	Question # 3 of 10 (Start time: 10:38:36 AM, 22 August 2020) Total Marks: 1			
Given th $0\leqslant t\leqslant$	hat $rac{dy}{dt}=t+\sqrt{y}$ with the initial condition $y_0=1$ at $t_0=0$ Us $\leqslant 0.6$, h = 0.2 is	ing Modified Euler's method, for the range		
Select th	e correct option	Reload Math Equations		
0	1.0			
	1.2			
0	2.1			
0	1.1			


MTH603:Quiz#2 Quiz Start Time: 10:37 AM, 22 August 2020 Question # 4 of 10 (Start time: 10:38:55 AM, 22 August 2020) Given that $\frac{dy}{dt}=1-\sqrt{y}$ with the initial condition $y_0=1$ at $t_0=0$ find the 2nd term of Taylor series when t=0.5 and y/ Select the correct option Reload Math Equations 0.1 0 0.2 0 0.3 0

MTH603	3:Quiz#2	Quiz Start Time: 10:37 AM, 22 August 2020
Question	n # 5 of 10 (Start time: 10:39:14 AM, 22 August 2020)	Total Marks: 1
Simpso	n's rule is a numerical method that approximates the value of a definite integra	l by usingpolynomials.
		h
Select th	ne correct option	
0	Linear	1.
	Quadratic	1.
0	Cubic	1.
0	None of the given choices	//


\



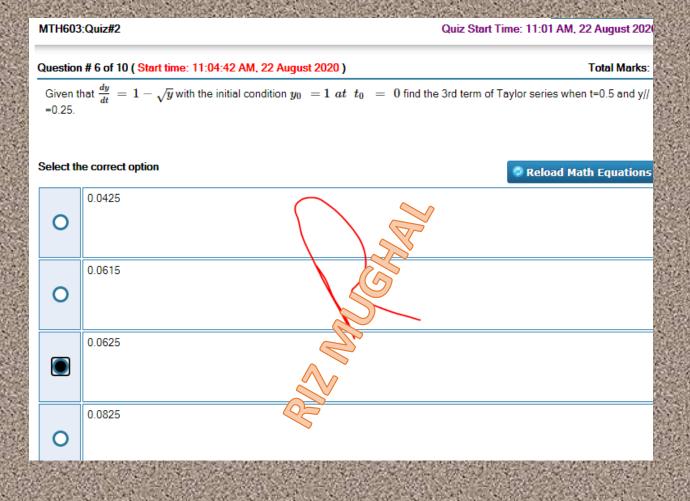
MTH603:Quiz#2 Quiz Start Time: 10:37 AM, 22 August 2020 Question # 9 of 10 (Start time: 10:41:18 AM, 22 August 2020) Total Marks: Given that $\frac{dy}{dt}$ =t+y with the initial condition $y_0=1$ at $t_0=1$ find the 3rd term in Taylor series when t=1.5 and y/ =1 and y// =1.2 Select the correct option Reload Math Equations 0.1 0 0.2 0 0.3 0.4 0

2nd account

MTH603	MTH603:Quiz#2 Quiz Start 1		
Question	n # 1 of 10 (Start time: 11:01:13 AM, 22 August 2020)		
At which $f(x) = -(2$	of the following points the Minimum value of 2nd derivative of function 2/x) in the interval:[1,4] exits?		
Select th	ne correct option		
	At x=1		
0	At x=2		
0	At x=3		
0	At x=4		

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$

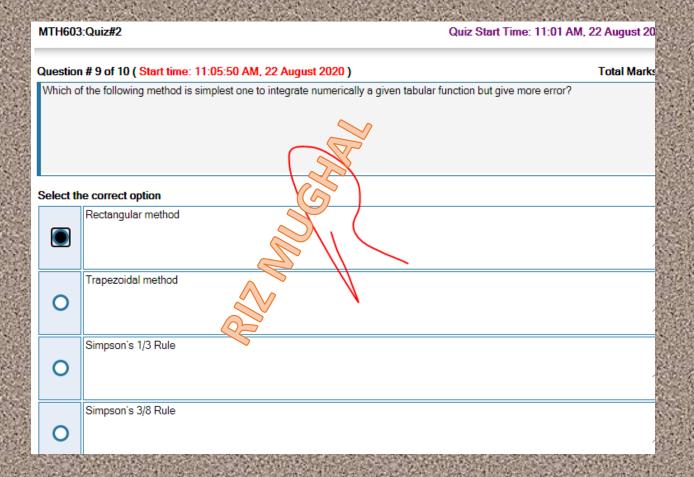
Quiz Start Time: 11:01 AM, 22 August 20 MTH603:Quiz#2 Question # 3 of 10 (Start time: 11:03:34 AM, 22 August 2020) **Total Mark** Given that $\frac{dy}{dt}$ =t+y with the initial condition $y_0=1$ at $t_0=0$ find the 2nd term in Taylor series when t=1, y/ =1.2, and h=0.1. Select the correct option Reload Math Equation 1.3 0 1.2 1.4 1.5

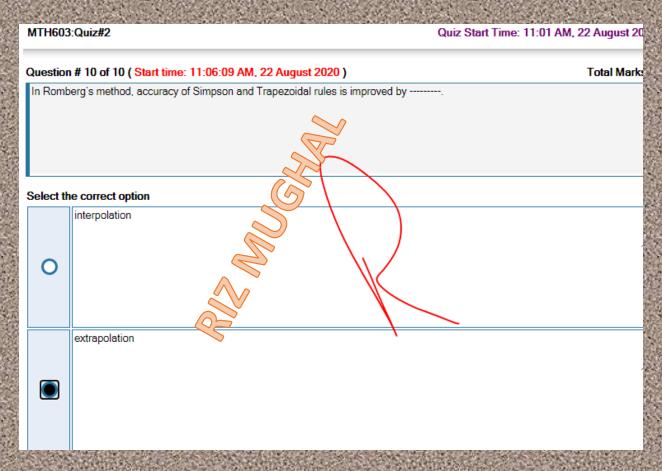

 $\overline{\mathcal{N}}$

MTH603:Quiz#2		Quiz Start Time: 11:01 AM, 22 August 2020			
Question	Question # 4 of 10 (Start time: 11:04:00 AM, 22 August 2020) Total Marks: 1				
Given to y(0.05)	hat $rac{dy}{dt}=rac{y-t}{y+t}$ with the initial condition y=1.01 at t=0.01. Using Euler's r is	method, y at t= 0.04, h=0.05, the value of			
Select th	e correct option	Reload Math Equations			
0	1.023				
0	1.034				
	1.059				
0	1.068				

 \diamond

MTH603	:Quiz#2	Quiz Start Time: 11:01 AM, 22 August 2020
Question	# 5 of 10 (Start time: 11:04:22 AM, 22 August 2020)	Total Marks: 1
Given th	nat $rac{dy}{dt}=t+\sqrt{y}$ with the initial condition $y_0=1$ at $t_0=0$ find the and h=0.1.	e 3rd term in Taylor series when t=1, y/ =0.2,
Select th	e correct option	Reload Math Equations
0	0.1	
0		,
	1	
0	2	


 \diamond



MTH603	:Quiz#2	Quiz Start Time: 11:01 AM, 22 August 2020
Question	# 7 of 10 (Start time: 11:05:05 AM, 22 August 2020)	Total Marks: 1
Simpson	i's rule is a numerical method that approximates the value of a definite integral	by usingpolynomials.
Select th	e correct option	
0	Linear	<i>h</i>
	Quadratic	//
0	Cubic	//
0	None of the given choices	1.

\

MTH603:Quiz#2 Quiz Start Time: 11:01 AM, 22 August 2020 Question # 8 of 10 (Start time: 11:05:26 AM, 22 August 2020) Total Marks: 1 Given that $\frac{dy}{dt}$ = 1 and y// = 1.2 =t+y with the initial condition $y_0=1$ at $t_0=1$ find the 3rd term in Taylor series when t=1.5 and y/ Select the correct option Reload Math Equations 0.1 0 0.2 O 0.3 0.4 0

3rd account

 $\overline{\Diamond}$

MTH60	03:Quiz#2	Quiz Start Time: 03:18 PM, 22 A			
Questic	Question # 1 of 10 (Start time: 03:18:45 PM, 22 August 2020) To				
Simps	on's rule is a numerical method that approximates the val	ue of a definite integral by usingpolynomials.			
Select	the correct option				
	Linear				
0					
	Quadratic				
	Cubic				
0					
	None of the given choices				
0					

 \diamond

MTH603:Quiz#2

Quiz Start Time: 03:18 PM, 22 August 2020

Question # 2 of 10 (Start time: 03:19:13 PM, 22 August 2020)

Total Marks:

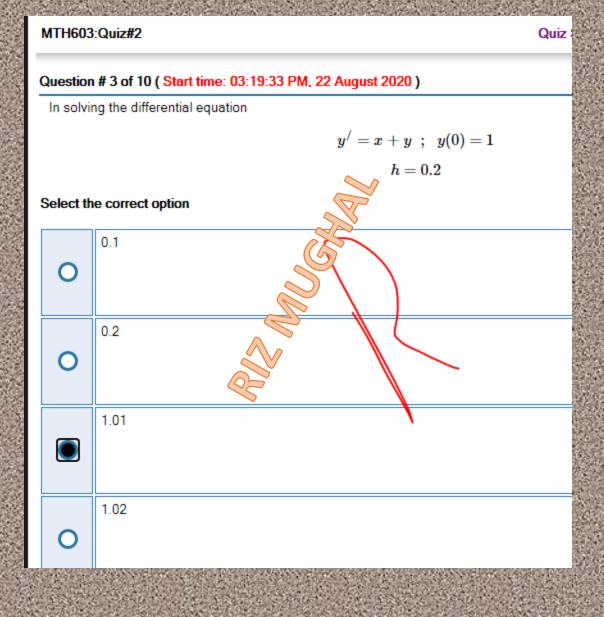
Given that $\frac{dy}{dt} = t + y$ with the initial condition $y_0 = 1$ at $t_0 = 1$ find the 2nd term in Taylor series when t=1.5 and y/=1.2.

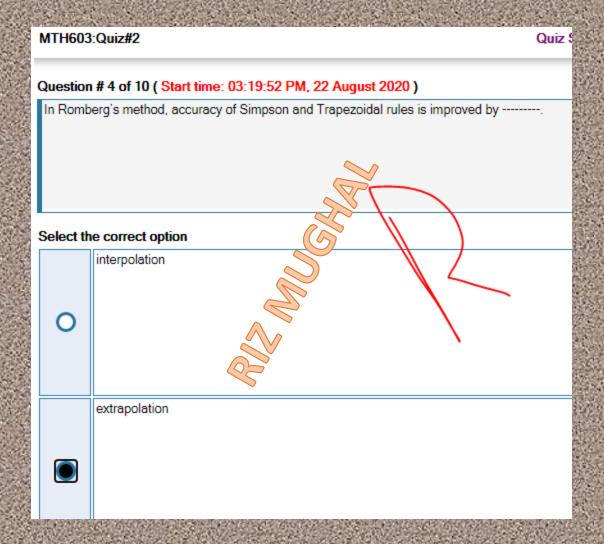
Select the correct option

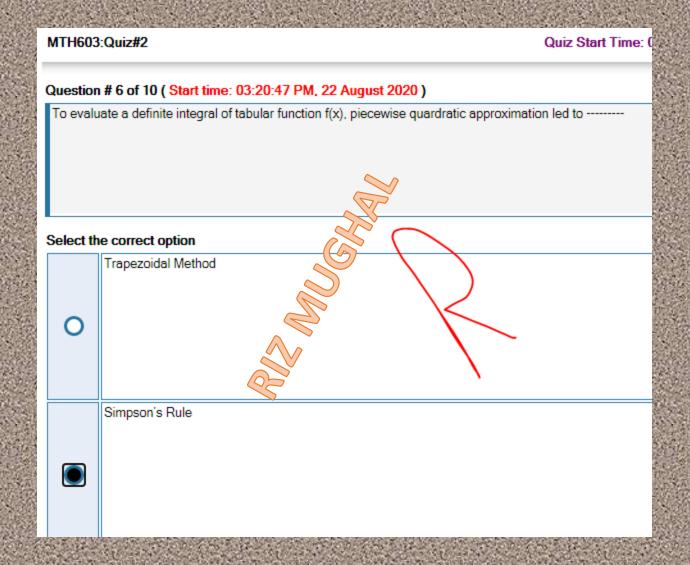
0.5

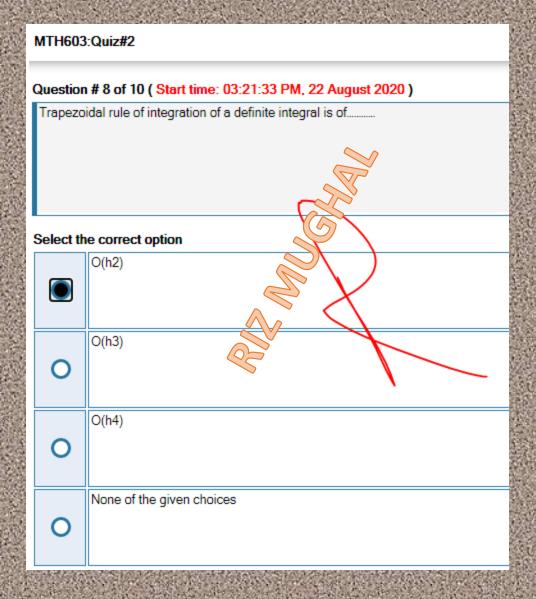
0.6

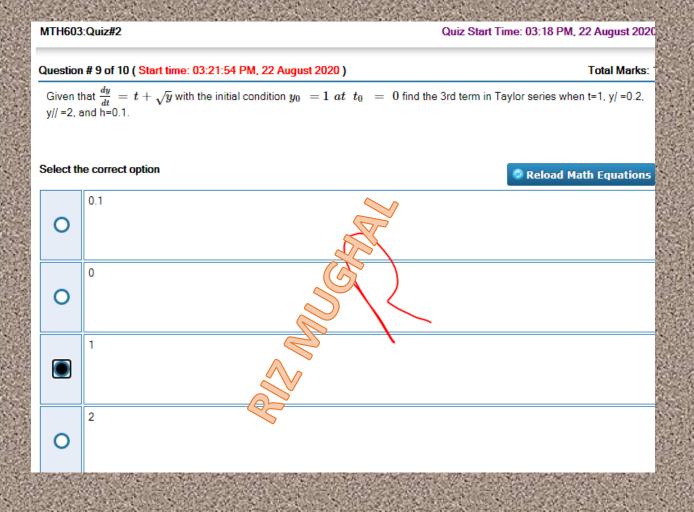
0.7

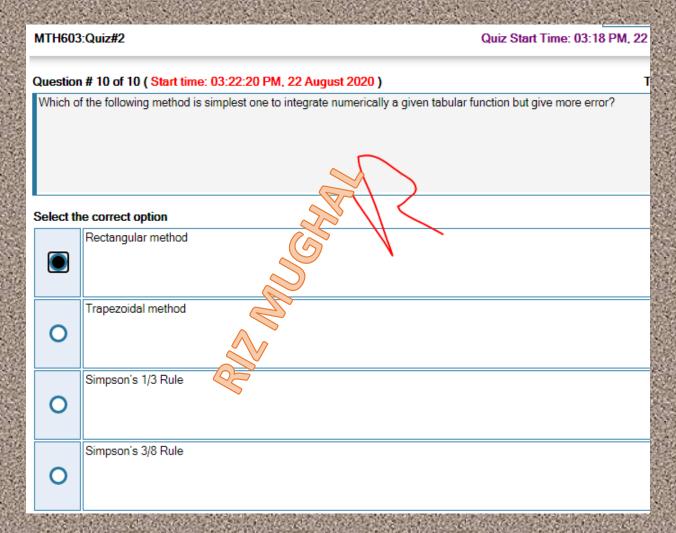

Reload Math Equations





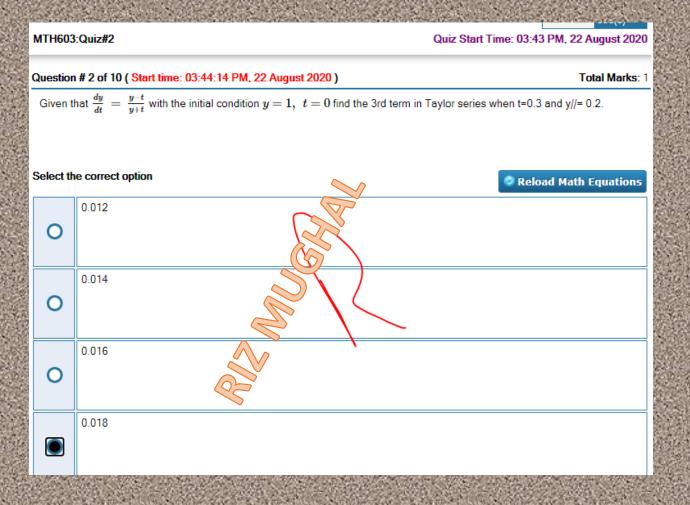



Question # 5 of 10 (Start time: 03:20:15 PM, 22 Augus Given that $\frac{dy}{dt} = \frac{y-t}{y+t}$ with the initial condition $y=1$,	
dt = y+t with the limital condition $y=1$,	
the value of v(0.01)is	h=0.01
; the value of y(0.01)is	
Select the correct option	© Rel
1.1	
0	
1.2	
1.01	
1.02	
	SALTERON SALTERON SAL



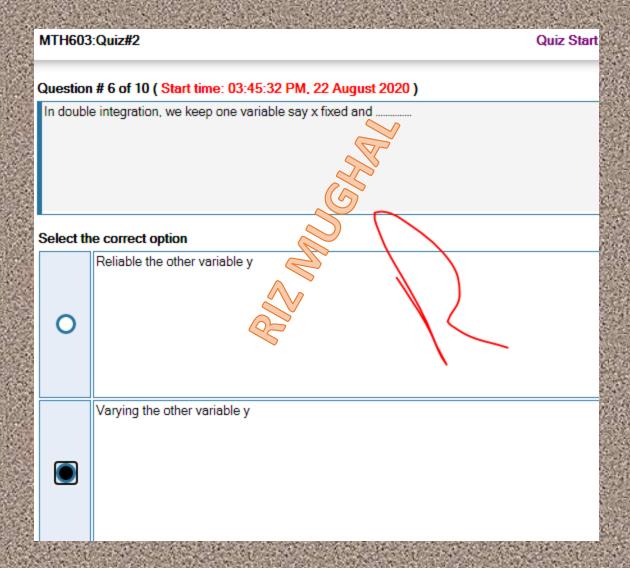
 $\overline{\mathcal{N}}$

MTH60	3:Quiz#2 Qui	z Sta
Questio	on # 7 of 10 (Start time: 03:21:14 PM, 22 August 2020)	
Trapez given fu	oidal and Simpson's integrations are just a linear combination of values of the unction at different values of thevariable.	
Select t	the correct option	
	Dependent	
0		
	Independent	
	Arbitrary	
0		
	None of the given choices	
0		



4th account

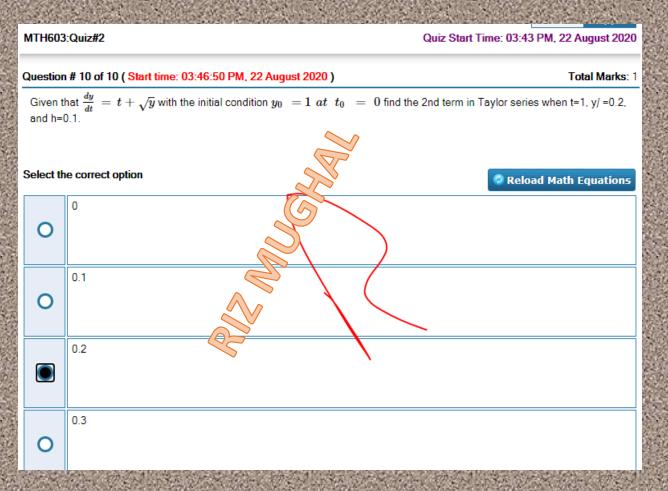
MTH603	:Quiz#2	Quiz Start Time: 03:43 PM, 22 August 202
Question	# 1 of 10 (Start time: 03:43:41 PM, 22 August 2020)	Total Marks:
Given to and h=0	hat $rac{dy}{dt}=t+y$ with the initial condition $y_0=1$ at $t_0=0$ find the 0.1.	2nd term in Taylor series when t=1, y/ =1.2,
Select th	se correct option	Reload Math Equations
0	1.3	
	1.2	
0	1.4	
0	1.5	


MTH603	:Quiz#2	Quiz Start Time: 03:43 PM, 22 August 2020
Question	# 3 of 10 (Start time: 03:44:34 PM, 22 August 2020)	Total Marks: 1
To evalu trapezoio	ate numerically a double integral over a rectangular region bounded by the lines dal rule or Simpson's rule, repeatedly with respect tovariable at a time.	x = a, x =b, y = c, y = d we shall employ either
Select th	e correct option	
	One	/
0	Two	//
0	Three	/
0	None of the given choices	//

\

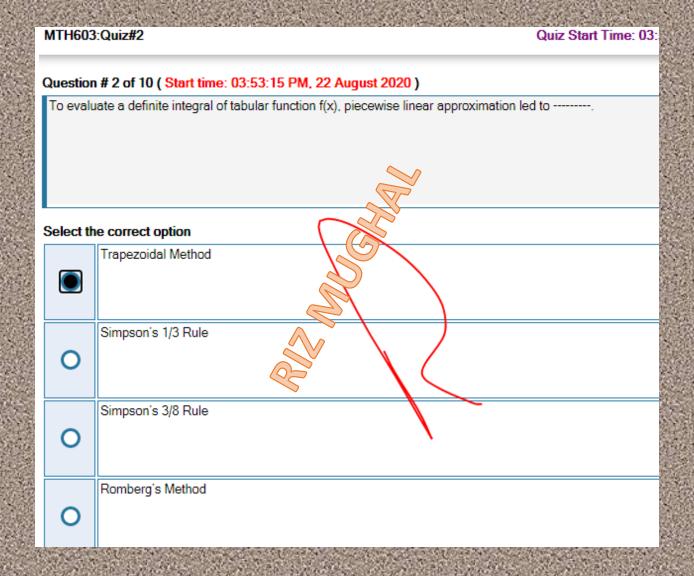
 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{$

MTH603	3:Quiz#2 Quiz Start 1	ime: 03:43 PM, 22 August 202
Question # 5 of 10 (Start time: 03:45:14 PM, 22 August 2020) Total Marks:		
In Trape points.	ezoidal rule, we assume that f(x) is continuous on [a, b] and we divide [a, b] into n subintervals	s of equal length using the
Select the correct option		
0		<i>1</i> .
	n+1	n.
0	n-1	
0	None of the given choices	<i>1</i> ,

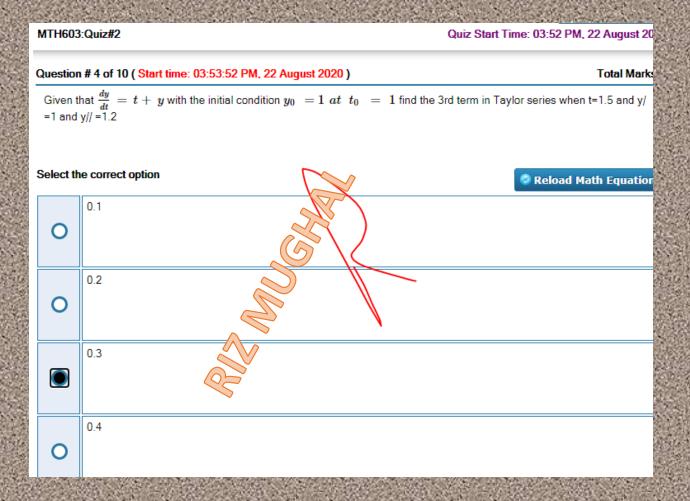

MTH603	:Quiz#2	Quiz Start Time: 03:43 PM
Question	# 7 of 10 (Start time: 03:45:49 PM, 22 August 2020)	
Geomet	rically the definite integral of any continuous function f(x) in the interval [a,b] given	es
Select th	e correct option	
0	Length of segment AB on real line	
0	Volume with dimensions f(x), 'a' and 'b'	•
	Area under f(x) on [a,b]	
0	Area of Trapezoid with dimension of 'a' and 'b'	

 \diamond

MTH603	:Quiz#2 Quiz Start Time: 03:43 PM, 22 August 2				
Question # 8 of 10 (Start time: 03:46:07 PM, 22 August 2020) Total Mar					
In Simpson's rule, we can estimate the integral bythe areas under the parabolic arcs through three successive points.					
Select the correct option					
	Adding				
0	Subtracting				
0	Multiplying				
0	None of the given choices				

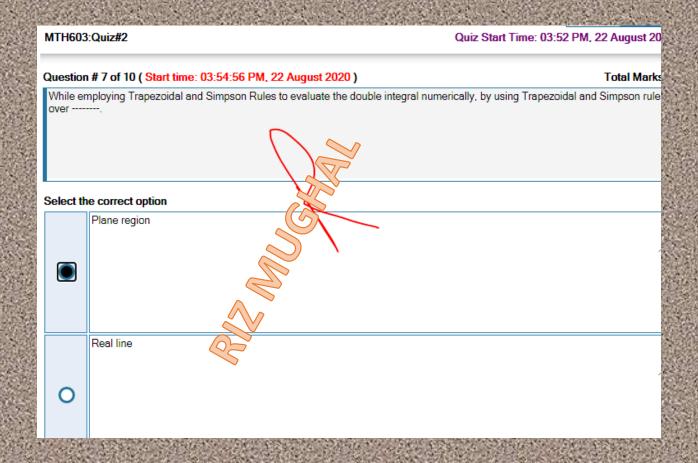

Quiz Start Time: 03:43 PM, 22 August 2020 MTH603:Quiz#2 Question # 9 of 10 (Start time: 03:46:27 PM, 22 August 2020) Total Marks: 1 Given that $\frac{dy}{dt} = 1 - \sqrt{y}$ with the initial condition $y_0 = 1$ at $t_0 = 0$ find the 2nd term of Taylor series when t=0.5 and y/ Select the correct option Reload Math Equations 0.1 0 0.2 0 0.3

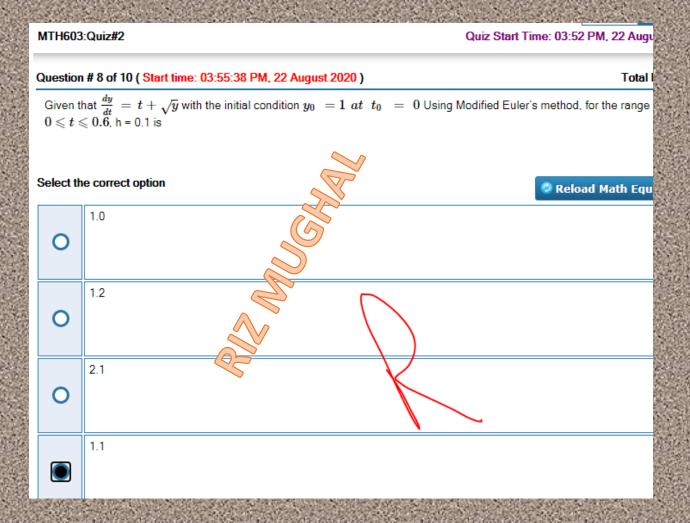
 $\overline{\mathcal{N}}$

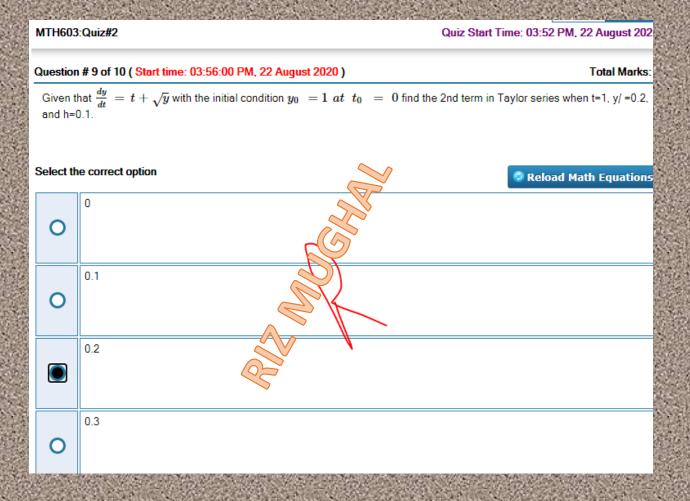


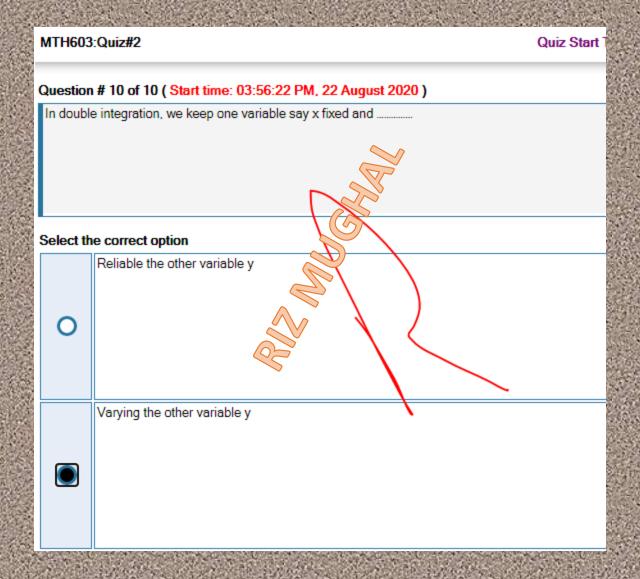
5th account

MTH603:Quiz#2 **Quiz Start Tir** Question # 1 of 10 (Start time: 03:52:54 PM, 22 August 2020) Given that $rac{dy}{dt} \,=\, rac{y-t}{y+t}$ with the initial condition $y=1,\,\,t=0$ Using Euler's method, y at h = 0.01the value of v(0.01) is Select the correct option 1.1 1.2 O 1.01 1.02




MTH603	Quiz Start Time			
Question # 3 of 10 (Start time: 03:53:33 PM, 22 August 2020)				
Geometr	rically the definite integral of any continuous function f(x) in the interval [a,b] gives			
Select the correct option				
0	Length of segment AB on real line			
0	Volume with dimensions f(x), 'a' and 'b'			
	Area under f(x) on [a,b]			
0	Area of Trapezoid with dimension of 'a' and 'b'	-		




MTH603	:Quiz#2	Quiz Start Time: 03:52 PM, 22 August		
Question # 5 of 10 (Start time: 03:54:13 PM, 22 August 2020)		Total Ma		
Given that $\frac{dy}{dt}=\frac{y-t}{y+t}$ with the initial condition $y=1,\ t=0$ find the 2nd term in Taylor series when t=0.2 and y/= 0.3.				
Select the correct option Reload Math Equa				
0				
0	0.01			
0	0.02			
	0.06			

Quiz Start Time: 03:52 PM, 22 August MTH603:Quiz#2 Question # 6 of 10 (Start time: 03:54:37 PM, 22 August 2020) Total Ma Given that $\frac{dy}{dt}=t+\sqrt{y}$ with the initial condition $y_0=1$ at $t_0=0$ Using Modified Euler's method, for the range $0\leqslant t\leqslant 0.6$, h = 0.2 is Select the correct option Reload Math Equation 1.0 0 1.2 2.1 0 1.1

