

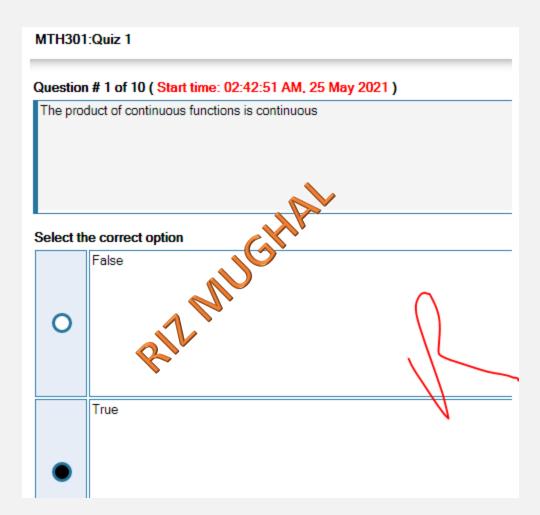
MTH301 QUIZ(1)

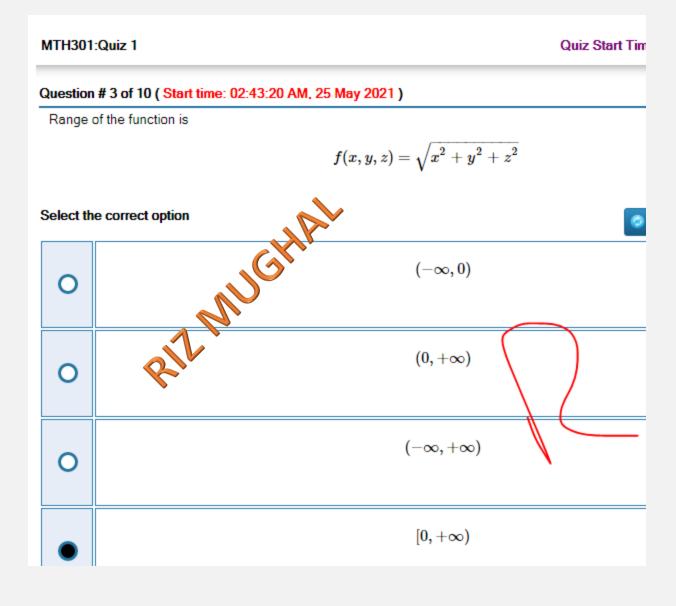
Lecture: 5 to 10

RIZ MUGHAL SQA ENGINEER:

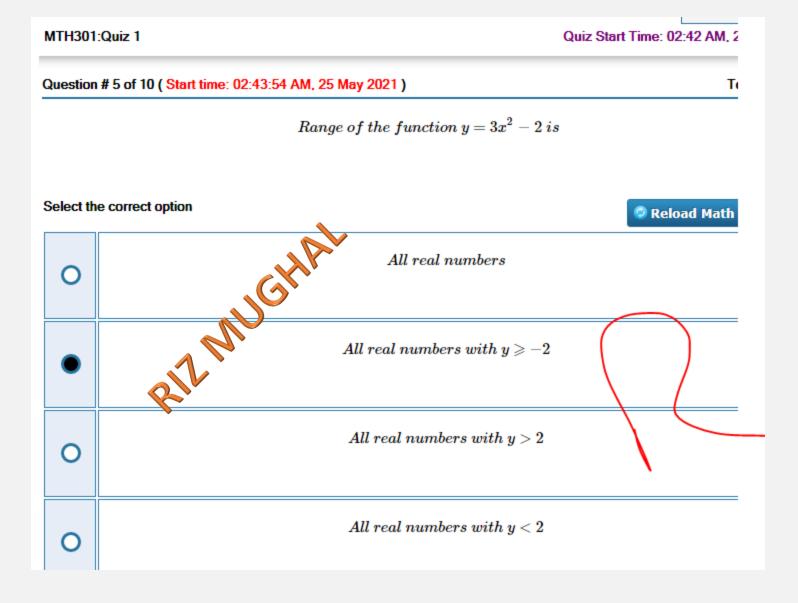
I'm providing 100% correct quiz solution.

You can visit my YouTube channel for more quiz solution, also final year project including project assignments, and viva.


YOUTUBE:


https://www.youtube.com/channel/UCINsFwDiB62SVal CcPDZbRQ/playlists

FILE LINK


HTTPS://VUSIALKOT.COM/

FACEBOOK: https://www.facebook.com/groups/923887914750307

MTH30	1:Quiz 1 Qu	uiz Star
Questio	n # 4 of 10 (Start time: 02:43:38 AM, 25 May 2021)	
If the p	artial derivative (w.r.t 'x' or 'y') at any point on the surface:	
is Infini	z=f(x,y)ity, then tangent plane at that point will be perpendicular to	
Select tl	he correct option	
	YZ-plane	
0		
	XZ-plane	
0		
•	1:Quiz 1 Quiz 1 artial derivative (w.r.t 'x' or 'y') at any point on the surface: $z = f(x,y)$ ity, then tangent plane at that point will be perpendicular to he correct option YZ-plane XZ-plane Any arbitrary plane	
	Any arbitrary plane	
0		

ΓH301:Quiz 1	Quiz Start Time: 02:42 AM, 25 May 202
nestion # 6 of 10 (Start time: 02:44:14 AM, 25 May 2021)	Total Marks:
the partial derivative (w.r.t 'x' or 'y') at any point on the surface: "z= ane.	ef(x,y)" is zero, then tangent plane at that point will beto XY-
ect the correct option	
o perpendicular parallel	

		~ 4	_		
	нч		-	11117	- 1
IV		v		uiz	- 1

Quiz Start Time: 02:42 AM, 25 May 202

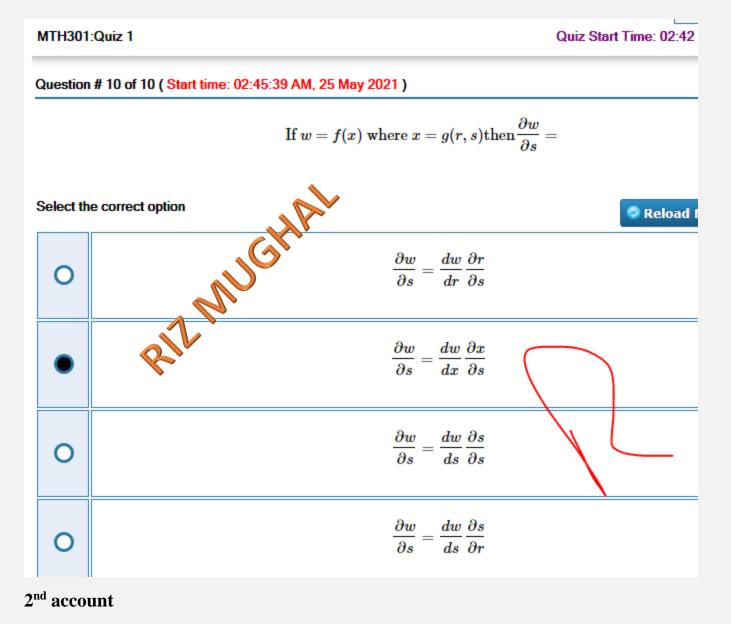
Question # 7 of 10 (Start time: 02:44:29 AM, 25 May 2021)

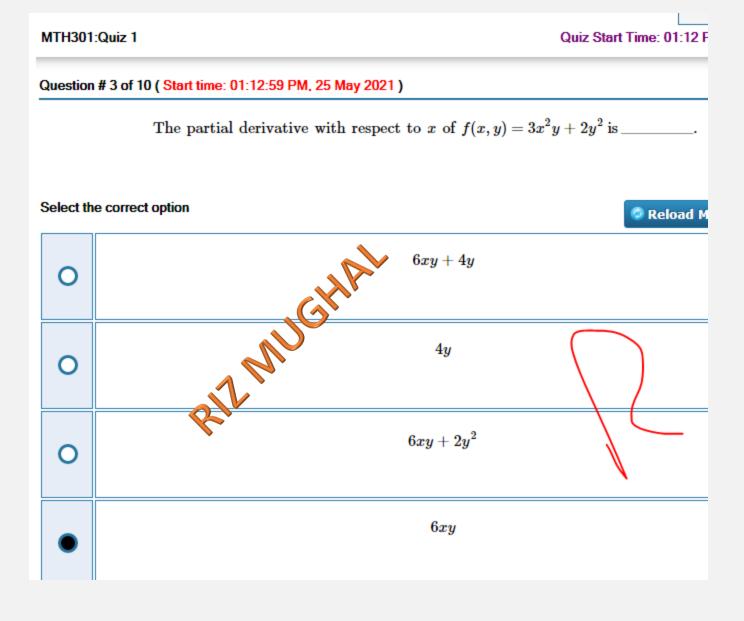
Total Marks:

 $To \ find \ the \ limit \ of \ f(x,y) = \frac{x^2+y}{x^2} \ at \ (0,0) \ if \ we \ approach \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ value \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ (0,0) \ through \ the \ line \ x-axis, \ we \ get \ the \ (0,0) \ through \ th$

Select the correct option

None of these





МТН30	1:Quiz 1	Quiz Starl
Questio	n # 9 of 10 (Start time: 02:45:17 AM, 25 May 2021)	
Two ve	ctors A and B are if and only if their scalar product is equal	to zero.
Select t	he correct option	
0	parallel	
0	equal	
•	I:Quiz 1 In # 9 of 10 (Start time: 02:45:17 AM, 25 May 2021) It cors A and B are	
0	opposite	

e partial derivative (w.r.t 'x' or 'y') at any point on the surface: "z=f(x,y)" is zero, then tangent plane at that point will beto XY-ne. Sect the correct option perpendicular	per partial derivative (w.r.t 'x' or 'y') at any point on the surface: "z=f(x,y)" is zero, then tangent plane at that point will beto XY-ne.	TH301:Quiz 1	Quiz Start Time: 01:12 PM, 25 May 202
perpendicular parallel	perct the correct option perpendicular parallel	estion # 2 of 10 (Start time: 01:12:45 PM, 25 May 2021)	Total Marks:
perpendicular parallel	perpendicular parallel parallel		y)" is zero, then tangent plane at that point will beto XY-
parallel	parallel	ect the correct option perpendicular	
		o all Musi	
		parallel	

Question # 4 of 10 (Start time: 01:13:16 PM, 25 May 2021)

Total N

If f and its partial derivatives of the first, second and third orders are continuous on an open set, then at each point of the set is ______.

Select the correct option

Reload Math Equa

0

$$rac{\partial^3 f}{\partial y^2 \, \partial x} = rac{\partial^3 f}{\partial x \, \partial y^2}$$

0

$$rac{\partial^3 f}{\partial y^2 \ \partial x} = rac{\partial^3 f}{\partial y \ \partial x \ \partial y}$$

$$rac{\partial^3 f}{\partial y^2 \, \partial x} = rac{\partial^3 f}{\partial y \, \partial x \, \partial y} = rac{\partial^3 f}{\partial x \, \partial y^2}$$

0

$$\frac{\partial^3 f}{\partial y \, \partial x \, \partial y}$$

Question # 5 of 10 (Start time: 01:13:38 PM, 25 May 2021)

Total Marks: 1

$$\text{If} \lim_{(x,y,z) \to (x_0,y_0,z_0)} f(x,y,z) = L_1 \quad and \quad \lim_{(x,y,z) \to (x_0,y_0,z_0)} g(x,y,z) = L_2$$

Select the correct option

Reload Math Equations

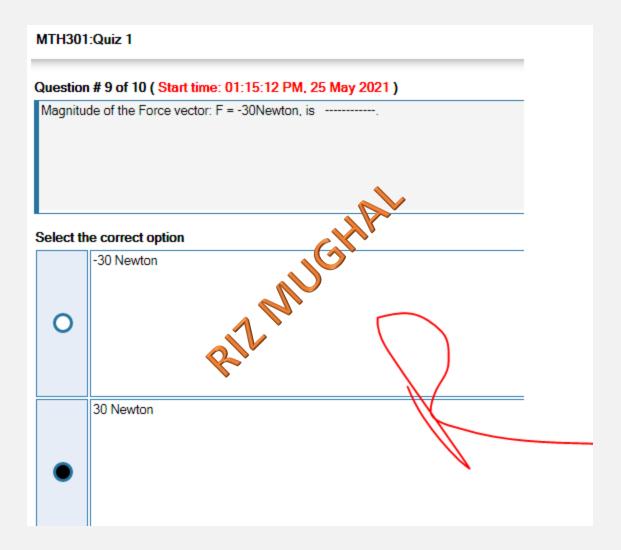
o MI

$$\lim_{(x,y,z) o(x_0,y_0,z_0)}rac{f(x,y,z)}{g(x,y,z)}=rac{L_1}{L_2}\quad;L_2\leqslant 0$$

o Riv

$$\lim_{(x,y,z) o(x_0,y_0,z_0)}rac{f(x,y,z)}{g(x,y,z)}=rac{L_1}{L_2}\;\;;L_2\,=0$$

$$\lim_{(x,y,z) o(x_0,y_0,z_0)}rac{f(x,y,z)}{g(x,y,z)}=rac{L_1}{L_2}\;\;;L_2\,\geqslant 0$$



$$\lim_{(x,y,z) o(x_0,y_0,z_0)}rac{f(x,y,z)}{g(x,y,z)}=rac{L_1}{L_2}\;\;;L_2
eq 0$$

MTH301:Quiz 1 Quiz Start Time: 01:12 PM, 25 May Question # 6 of 10 (Start time: 01:14:25 PM, 25 May 2021) Total Ma If $f(x,y) = yx^2 + 2$, then $\frac{\partial^2 f}{\partial y^2}$ is Select the correct option Reload Math Equa 2xy0 x^2 0 2y0 0

MTH30	1:Quiz 1	Quiz Start Time: 01:12 PM
Questio	n # 7 of 10 (Start time: 01:14:45 PM, 25 May 2021))
The cho	ain rule can be taken as the derivative of the outer function	Quiz Start Time: 01:12 PM.) ion and multiplying it times the derivative of the
Select t	he correct option	
0	composite function	
•	the inner function	
0	real valued function	
0	single valued function	

	EQUIZ 1	
Question	n # 8 of 10 (Start time: 01:14:59 PM, 25 May 2021)	
Two vec	tors are opposite vectors if they have	
Select th	ne correct option	
0	(c) opposite direction	
•	(d) Both (a) and (c).	
0	(b) opposite magnitude	
0	(a) same magnitude	
0	I:Quiz 1 If # 8 of 10 (Start time: 01:14:59 PM, 25 May 2021) Itors are opposite vectors if they have In the correct option Iterative (c) opposite direction Iterative (d) Both (a) and (c). Iterative (b) opposite magnitude Iterative (a) same magnitude	

MTH301	:Quiz 1	Quiz Start Tir
Question	n # 10 of 10 (Start time: 01:15:23 PM, 25 May 2021)	
Two vec	ctors A and B are if and only if their scalar product is equal to zero.	
Select th	ne correct option	
•	perpendicular	
0	equal	_
0	parallel	
0	opposite	

3rd account

MTH301:Quiz 1

Quiz Start Time: (

Question # 1 of 10 (Start time: 01:19:03 PM, 25 May 2021)

Which of the following should be the scalar multiple (λ) such that force : $F_1 = 20N$ and $F_2 = -60N$ satisfy the

Select the correct option

$$\lambda = -1/3$$

 $\lambda = -3$

 $\lambda = 3$

 $\lambda = 1/3$

MTH30	1:Quiz 1
Questio	1:Quiz 1 n # 2 of 10 (Start time: 01:19:57 PM, 25 May 2021) vector has magnitude equal to zero and direction. he correct option no downward upward
A zero	vector has magnitude equal to zero and direction.
Select t	the correct option
	no no
	downward
0	
_	arbitrary
•	
	upward
0	

MTH301:Quiz 1

Quiz Start Time: 01:1

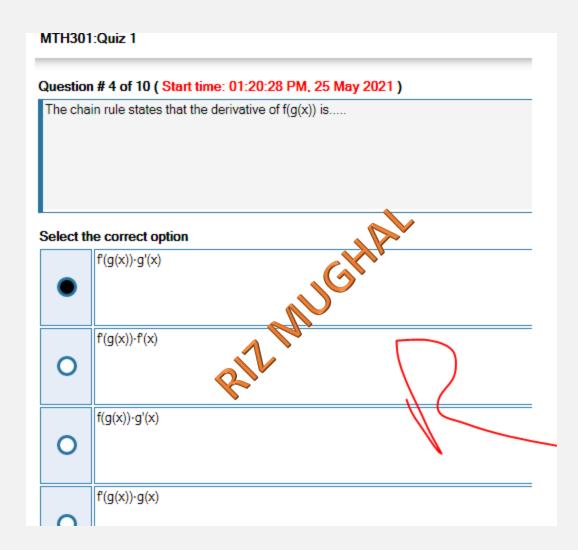
Question # 3 of 10 (Start time: 01:20:14 PM, 25 May 2021)

$$\text{If } w = f(x,y) \text{ where } x = g(r,s) \text{then} \frac{\partial w}{\partial s} =$$

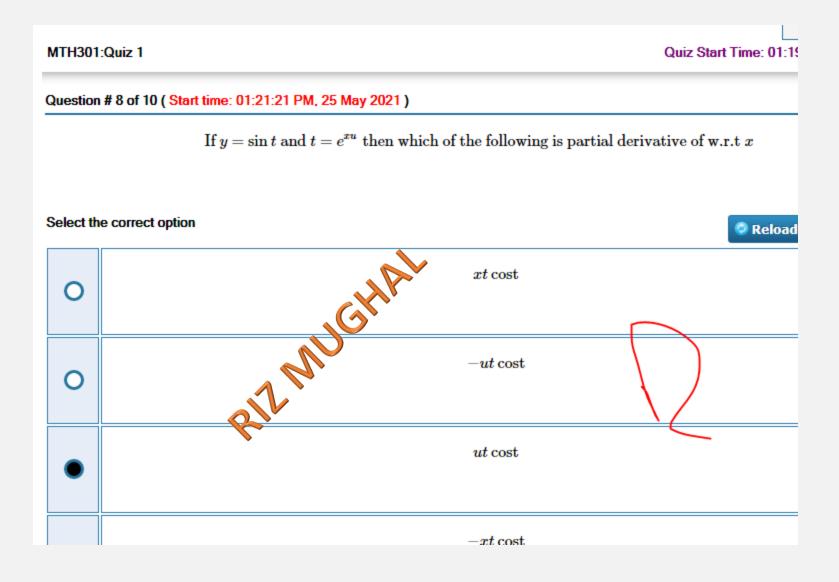
Select the correct option

Reloac

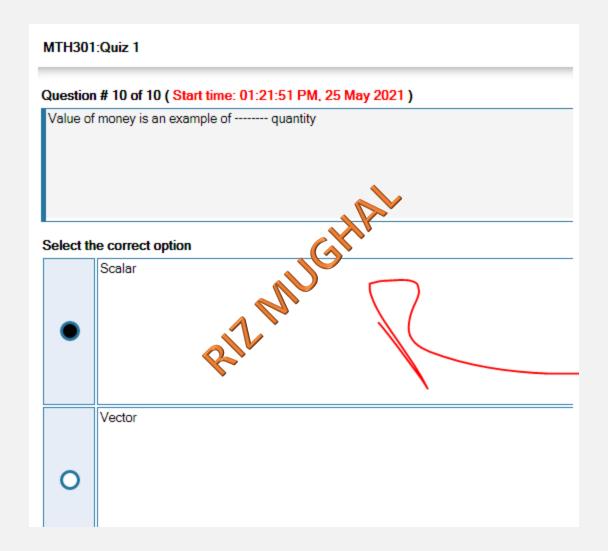
$$\frac{\partial w}{\partial s} = \frac{dw}{dx}\frac{\partial x}{\partial s} + \frac{dw}{dr}\frac{\partial r}{\partial s}$$



 $rac{\partial w}{\partial s} = rac{dw}{ds} rac{\partial s}{\partial r} + rac{dw}{dy} rac{\partial y}{\partial s}$



$$rac{\partial w}{\partial s} = rac{dw}{ds}rac{\partial s}{\partial s} - rac{dw}{dy}rac{\partial y}{\partial s}$$


$$rac{\partial w}{\partial s} = rac{dw}{dr}rac{\partial r}{\partial s} - rac{dw}{dr}rac{\partial r}{\partial s}$$

the partial derivative (w.r.t 'x' or 'y') at any point on the surface: "z=f(x,y)" is zero, then tangent plane at that point will beto XY-plane.	If the partial derivative (w.r.t 'x' or 'y') at any point on the surface: "z=f(x,y)" is zero, then tangent plane at that point will beto XY-plane. Select the correct option perpendicular	MTH301:	I:Quiz 1 Quiz Start Tim	ne: 01:19 PM, 25
elect the correct option perpendicular O	Select the correct option perpendicular O	Question	n # 7 of 10 (Start time: 01:21:09 PM, 25 May 2021)	Tol
O perpendicular	O perpendicular	f the par	rtial derivative (w.r.t x or y) at any point on the surface: z=t(x,y) is zero, then tangent plane at that point will be	to XY-plane.
		elect the	ne correct option	
parallel	parallel		perpendicular	_
		•	parallel	

MTH301:Quiz 1 Quiz Start Time: 01:19 PM, 25 May Question # 9 of 10 (Start time: 01:21:35 PM, 25 May 2021) Total Ma To find the limit of $f(x,y) = \frac{x^2 + y}{x^2}$ at (0,0) if we approach (0,0) through the line x - axis, we get the value Select the correct option Reload Math Equat None of these 0

Thank you for watching ©
Share with your fellows
rizwanqadeer848@gmail.com