

MTH202 QUIZ(1)

Lecture: 10 to 15

RIZ MUGHAL SQA ENGINEER:

I'm providing 100% correct quiz solution.

You can visit my YouTube channel for more quiz solution, also final year project including project assignments, and viva.

YOUTUBE:

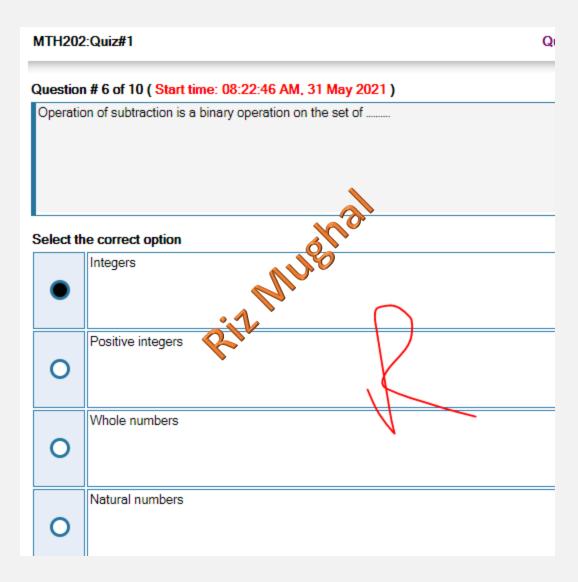
https://www.youtube.com/channel/UCINsFwDiB62SValCcP DZbRQ/playlists

FILE LINKE

VUSIALKOT.COM

FACEBOOK:

https://www.facebook.com/groups/923887914750307


MTH20	2:Quiz#1	(
Questio	n # 1 of 10 (Start time: 08:21:29 AM, 31 May 2021)	
Range	of function \[f(x) = \{e^x}\] is	
Select t	he correct option	
0	Set of Real number	
0	Set of negative Real number.	
•	2: Quiz#1 n # 1 of 10 (Start time: 08:21:29 AM, 31 May 2021) of function \[\lf(x) = \{e^xx}\\ \right\] is he correct option Set of Real number Set of negative Real number. Set of positive Real numbers	
0	Set of integers	

MTH20	D2:Quiz#1 Quiz S
Questio	12-Quiz#1 Quiz S on # 2 of 10 (Start time: 08:21:51 AM, 31 May 2021) osite Relation symbolically written as the correct option SoR = {(a,c) a eA, c eC, 3 be B, (a,b) eR and (b,c) eS} None of the above SoR = {(a,c) a eA, c eC, 3 b eB, (a,b) eR and (b,c) eS} SoR = {(a,c) a eA, c eC, 3 b eB, (a,b) eR and (b,c) eS}
Compo	osite Relation symbolically written as
Select t	the correct option
	SoR = $\{(a,c) a \in A, c \in C, \exists b \notin B, (a,b) \in R \text{ and } (b,c) \in S\}$
0	
	None of the above
0	
	SoR = $\{(a,c) a \in A, c \in C, \exists b \in B, (a,b) \in R \text{ and } (b,c) \in S\}$
•	
	SoR = $\{(a,c) a \in A, c \in C, \exists b \in B, (a,b) \in R \text{ and } (b,c) \notin S\}$
0	

MTH202	2:Quiz#1	
Questio	n # 3 of 10 (Start time: 08:22:08 AM, 31 May 2021)	
If x ≡ 1	7 (mod 5) Which of the following integers are valid solution for x?	
Select t	he correct option	
	-44	
0	2: Quiz#1 n # 3 of 10 (Start time: 08:22:08 AM, 31 May 2021) 7 (mod 5) Which of the following integers are valid solution for x? he correct option 44 12	
	8	
0		
	4	=
0		
		_
	12	

MTH20	2:Quiz#1			
Questio	n # 4 of 10 (Start time: 08:22:20	AM, 31 May 2021)		
Range is	of the relation {(0,1),(3,22),(90,34)}			
		No.		
Select t	ne correct option	NA	_	
0	{0,3,90}	4.		
	Ri		_	
	{0,1,3}	\ (
	{1.22,34}	`		
			_	
	{0,1,3,22,90,34}			

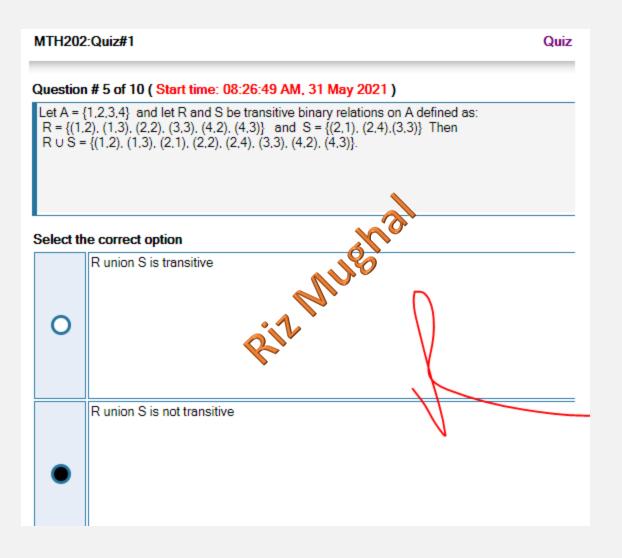
итн20	2:Quiz#1	Quiz Start Time: 08:21 AM, 31 Ma
)uestio	n # 5 of 10 (Start time: 08:22:33 AM, 31 May 2021)	Total N
Let A = transitiv	2:Quiz#1 n # 5 of 10 (Start time: 08:22:33 AM, 31 May 2021) {0, 1, 2} and R = {(0,2), (1,1), (2,0)} be a relation on A. Then which of ve? he correct option (2,0) and (2,2) (0,0) and (0,2) (0,0) and (0,2)	he following ordered pairs are needed to make it
elect t	he correct option	
0	(2,0) and (2,2)	
0	(2,0) and (0,2)	
•	(0,0) and (2,2)	
0	(0,0) and (0,2)	

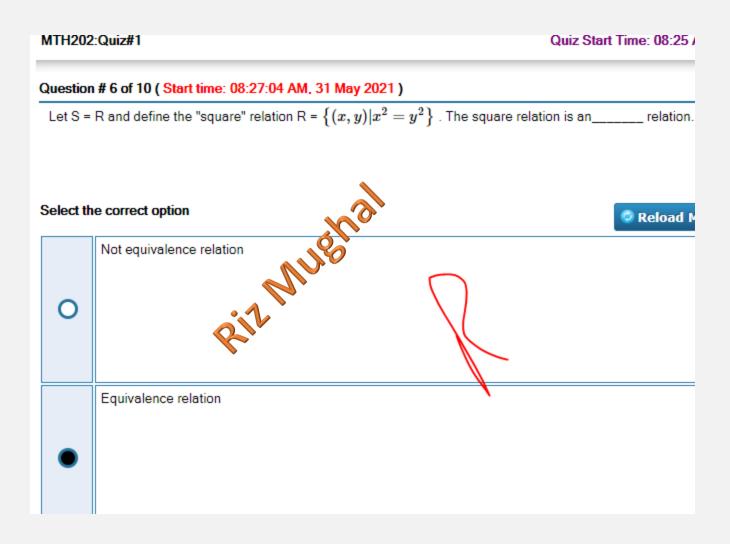
MTH202:Q	uiz#1		Quiz Start Time: 08:21 A	
Question #	7 of 10 (Start time: 08:23:01 AM, 31 May 2021)		
Let S = R	and define the "square" relation R = $ig\{(x,y) x^2=1\}$	$=y^2ig\}$. The square relation	on is an relation.	
Select the o	correct option		Reload Ma	
E	quivalence relation			
	oil.			
N	ot equivalence relation	1		
0				
	uiz#1 7 of 10 (Start time: 08:23:01 AM, 31 May 2021 and define the "square" relation $\mathbb{R} = \{(x,y) x^2 = x\}$ correct option equivalence relation			

MTH202:Quiz#1		
Question # 8 of 10	(Start time: 08:23:16 AM, 31 May 2021)	
The logic gate NOT	is a uniary operation on {0,1}.	
Select the correct of	option	
True	Mollin	
	<i>a.</i> /	
	211	
False	1	
O		

MTH202:Quiz#1 Question # 9 of 10 (Start time: 08:23:31 AM, 31 May 2021) Let A = (1, 2), then P(A)= [{{}}, {{}}, {{}}, {{}}, {{}}, {{}}, {{}}) [{{}}, {{}}, {{}}, {{}}, {{}}, {{}}) [{{}}, {{}}, {{}}, {{}}, {{}}, {{}}) [{{}}, {{}}, {{}}, {{}}, {{}}, {{}}) [{{}}, {{}}, {{}}, {{}}, {{}}, {{}}, {{}}) [{{}}, {{}}, {{}}, {{}}, {{}}, {{}}) [{{}}, {{}}, {{}}, {{}}, {{}}, {{}}, {{}}) [{{}}, {{}, {},	
Let A = {1, 2}, then P(A)=	
Select the correct option	
O ((1, (2), (1, 2))	

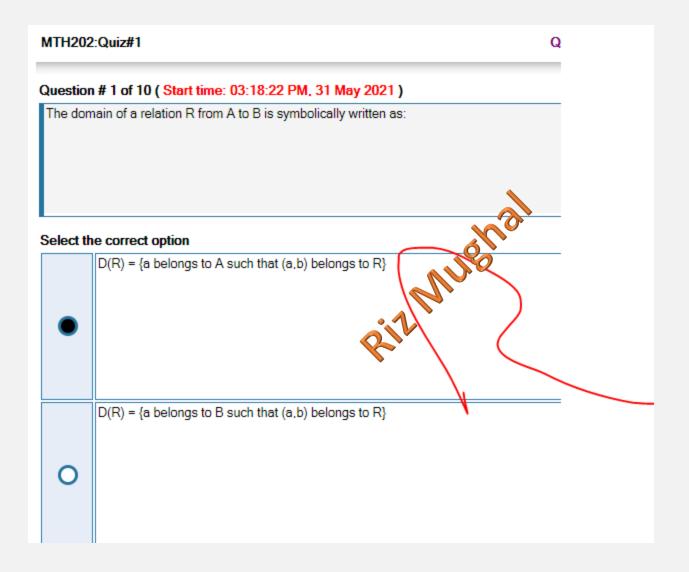
MTH202	2:Quiz#1	Quiz Start Time: 08:21 AM, 31 N
Question	n # 10 of 10 (Start time: 08:23:43 AM, 31 May 2021)	Total
If a relat	tion R is reflexive, anti symmetric and transitive then which of the follo	
Select th	ne correct option	
•	inverse relation will be irreflexive.	
0	inverse relation will be transitive.	
0	inverse relation will be anti symmetric.	
0	inverse relation will be reflexive.	

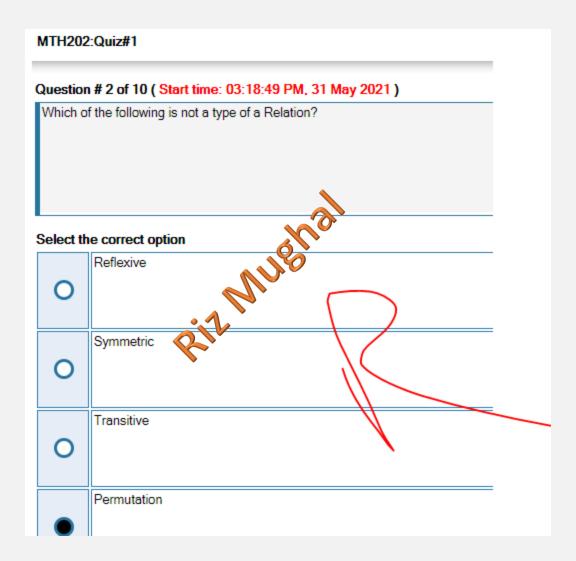

2nd account

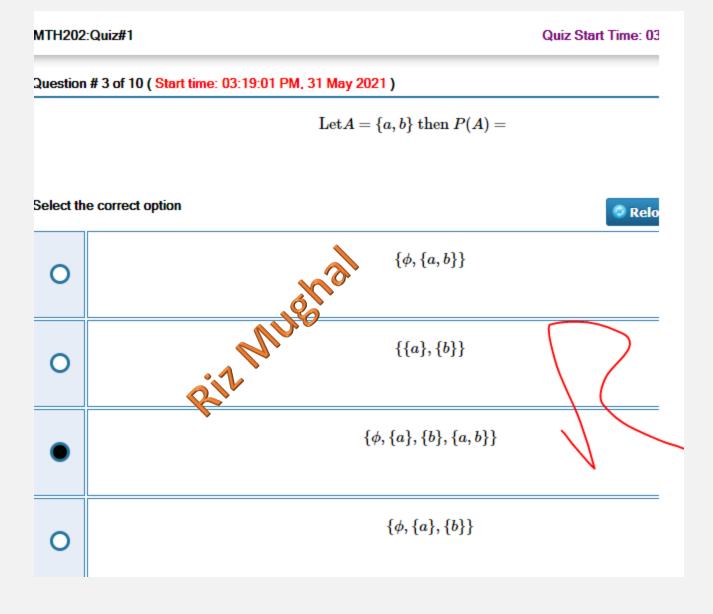

MTH20	2:Quiz#1 Quiz Sta	
Questio	22. Quiz#1 Quiz Stand # 1 of 10 (Stand time: 08:25:39 AM, 31 May 2021) Per a binary relation on a set AR is anti-symmetric iff	
Let R b	be a binary relation on a set A.R is anti-symmetric iff	
Select t	the correct option	
	a, beati (a,b) ex and (b,a) ex then a + b	
	a, b ∉A if (a,b) ∈R and (b,a) ∈R then a ≠ b	
0		
	a, h, c Δ if (a, h), c R and (b, a), c R then a = h	
	a, b extit (a,b) extitud a b	
	· · · · · · · · · · · · · · · · · · ·	
	None of the above	
0		

MTH20	2:Quiz#1	
Questio	on # 3 of 10 (Start time: 08:26:15 AM, 31 May 2021)	
The inv	rerse relation R^(-1) from B to A is defined as	
Select t	he correct option	
0	$R^{-1} = \{(b,a) \in B \times A \mid (b,a) \in R\}$	
•	$R^{(-1)} = \{(b,a) \in B \times A \mid (a,b) \in R\}$	
	$R^{-1} = \{(b,a) \notin B \times A \mid (a,b) \in R\}$	
O		
0	None of the above	

MTH20	2:Quiz#1 Quiz Start T	ime
Questio	on # 4 of 10 (Start time: 08:26:28 AM, 31 May 2021)	
Which (2: Quiz Start T In # 4 of 10 (Start time: 08:26:28 AM, 31 May 2021) of the following is always true for the matrix representation of a symmetric relation? The correct option Matrix is equal to its transpose. Matrix has always 0 in its diagonal entries Matrix has always 1 in its diagonal entries	
Select t	the correct option	
•	Matrix is equal to its transpose.	
0	Matrix has always 0 in its diagonal entries	
0	Matrix is singular	
0	Matrix has always 1 in its diagonal entries	


MTH202:Qu	iz#1		
Question # 7	of 10 (Start time: 08:27:18 Al	M. 31 May 2021)	
If x = -10 (m	od 15) Which of the following int	egers are valid solution for x ?	
Select the co	orrect option	No.	
0		%	
3	· il		
0	B.		
7		-	
0			
5			

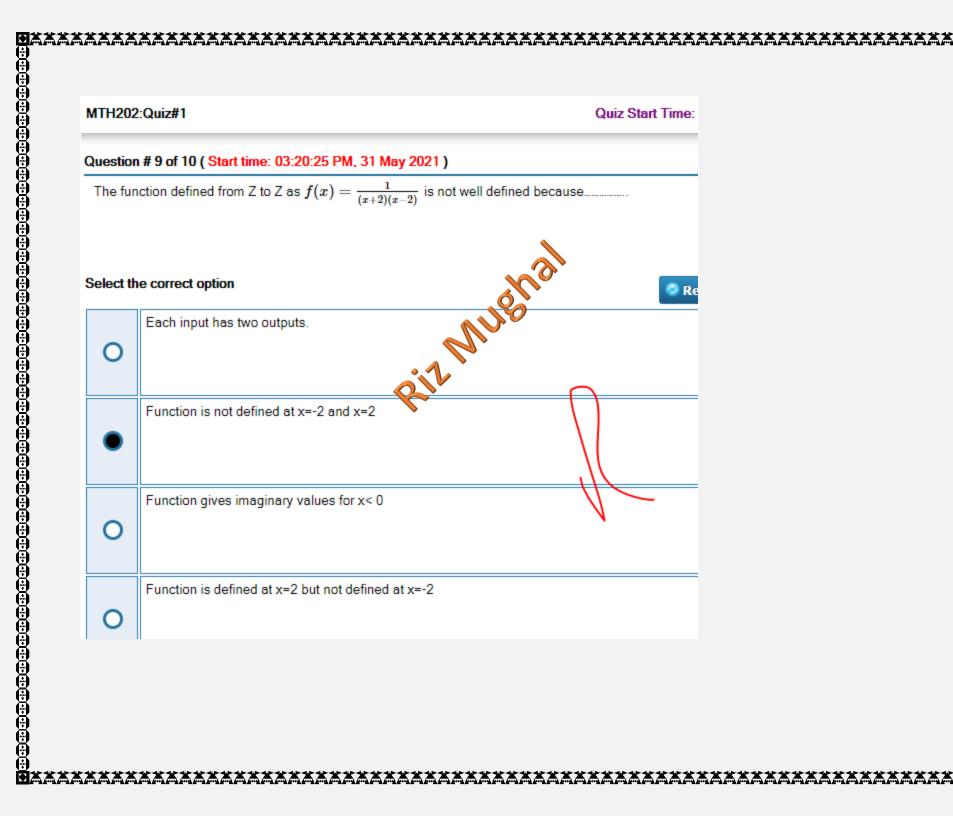

MTH202	Quiz#1 # 8 of 10 (Start time: 08:27:33 AM, 31 May 2021) a binary relation on a set A. If R is anti symmetric then e correct option Inverse of R is symmetric	
Question	# 8 of 10 (Start time: 08:27:33 AM, 31 May 2021)	
Let R be	a binary relation on a set A. If R is anti symmetric then	
Select the	e correct option	
	Inverse of R is symmetric	
0		
	oit \	
	Toward (Direction and Inc.)	
	Inverse of R is anti symmetric	
•		


MTH202	2:Quiz#1	Qı
Questio	2:Quiz#1 n # 9 of 10 (Start time: 08:27:47 AM, 31 May 2021) , 2 , 3} is a set and R = {(1, 2), (2, 2), (2, 1)} is a relation on A, R is ne correct option None of these Transitive Symmetric	
If A={1	, 2 , 3} is a set and R = $\{(1 , 2) , (2 , 2) , (2 , 1)\}$ is a relation on A, R is	
Select t	ne correct option	
	None of these	
	Transitive	
0	oit \/	
		_
	Reflexive	
	Symmetric	
	II	

MTH202	2:Quiz#1	Quiz Start Time: 08:25 AM, 31 May 20
Question	n # 10 of 10 (Start time: 08:28:02 AM, 31 May 2021)	Total Mark
Let A = { Then R	{0,1} and B = {1}.Let R and S be two binary relations on Cartesian product of A intersection S =	and B such that R={(0,1)} and S ={(1,1)}.
Select th	ne correct option	
0	(1.1)	}
0	{1,1}	
•	empty	
0	{(0.1)}	

3rd account

MTH20	2:Quiz#1	
Questio	2:Quiz#1 n # 4 of 10 (Start time: 03:19:18 PM, 31 May 2021) {4.5.6} then The relation R={(4.5).(5.4).(6.5).(5.6)} is he correct option R is Reflexive R is Symmetric R is Anti symmetric	
Let A =	{4,5,6} then The relation R={(4,5),(5,4),(6,5),(5,6)} is	
Select t	he correct option	
	R is Reflexive	
0	oil \	
	R is Transitive	
0		
	R is Symmetric	
	R is Anti symmetric	
0		


MTH202	2:Quiz#1		
Questio	n # 5 of 10 (Start time: 03:19:31 PM, 3	1 May 2021)	
Let A = R = {(1,	{1,2,3} and B = {0,1,2} and C = {a,b} 0),(1,2),(3,1),(3,2)}		
S = {(0,	o).(1.a).(2.b)} site of R and S =		
Select ti	he correct option	NO.	
	{(1.a).(1.b).(2.a).(3.b)}	18	
0	4		
	{(1.a).(2.a).(3.a)}		
0		\\	
	{(1.b).(3.a).(3.b)}		
		•	
	{(1,b),(1,a),(3,a),(3,b)}		
0			

MTH20	2:Quiz#1	Quiz Start Time:
Questio	n # 6 of 10 (Start time: 03:19:45 PM, 31 May 2021)	
Let R b	2:Quiz#1 n # 6 of 10 (Start time: 03:19:45 PM, 31 May 2021) e the universal relation on a set A then which one of the following statement ne correct option R is reflexive, symmetric and transitive. R is not symmetric R is not transitive	about R is true?
Select t	he correct option	
•	R is reflexive, symmetric and transitive.	
0	R is not symmetric	
0	R is not transitive	
0	R is not reflexive	

MTH202	::Quiz#1	Quiz Start Time: 03
	# 7 of 10 (Start time: 03:20:00 PM, 31 May 2021)	
If A cont	e correct option	B are
Select th	e correct option	
0		
0	6	
•	64	
0	32	

TH202-Quiz#1 estion # 8 of 10 (Start time: 03-20-13 PM, 31 May 2021) et A = (1,2,3,4) and define the following relations on A Then = (1,5), (1,4), (2,5), (2,4), (3,1), (3,4)) is lect the correct option R is reflexive R is irreflexive None of the above	MTH202	2:Quiz#1	
at A = {1,2,3,4} and define the following relations on A Then = {(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)} is lect the correct option R is reflexive R is both reflexive and irreflexive R is irreflexive	Questio	n # 8 of 10 (Start time: 03:20:13 PM, 31 May 2021)	
R is reflexive R is both reflexive and irreflexive R is irreflexive	Let A = R = {(1,	{1,2,3,4} and define the following relations on A Then 3), (1,4), (2,3), (2,4), (3,1), (3,4)} is	
lect the correct option R is reflexive R is both reflexive and irreflexive R is irreflexive			
R is reflexive R is both reflexive and irreflexive R is irreflexive			
R is both reflexive R is irreflexive	Select to	R is reflexive	
R is both reflexive and irreflexive R is irreflexive	0		
R is irreflexive	0	R is both reflexive and irreflexive	
		R is irreflexive	
None of the above		None of the above	
O	0		

MTH202:Quiz#1	Quiz Start Time:
Question # 9 of 10 (Start time: 03:20:25 PM, 31 May 2021)	
The function defined from Z to Z as $f(x)=rac{1}{(x+2)(x-2)}$ is not well defined because.	
Select the correct option	🥏 Re
Each input has two outputs	

MTH202:	Quiz#1	Quiz Start
Question	# 10 of 10 (Start time: 03:20:39 PM, 31 May 2021)	
Let X = {2 R = {(2,4)	Quiz#1 # 10 of 10 (Start time: 03:20:39 PM, 31 May 2021) 2.4.5) and Y={1,2,4} and R be a relation from X to Y defined by . (4.1). (a.2)}. For what value of a the relation R is a function? e correct option 1	
Select the	e correct option	
0	4 giz M	
•	5	
0	1	
0	2	

Thank you for watching ©
Share with your fellows
Rizwanqadeer848@gmail.com