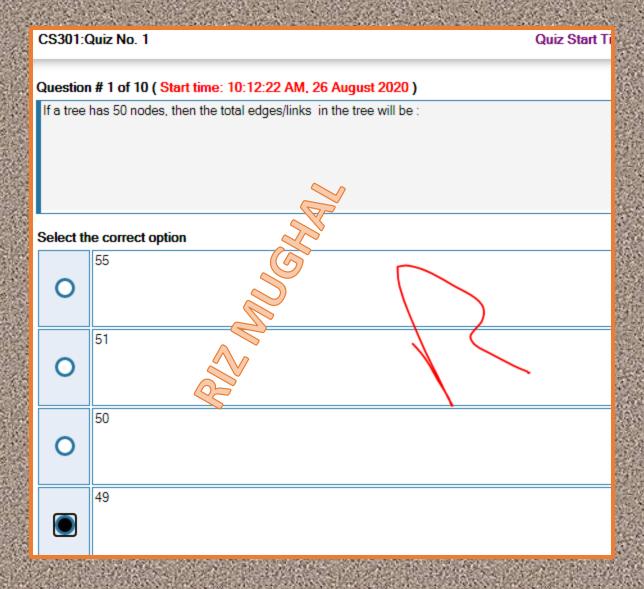


Quiz Master

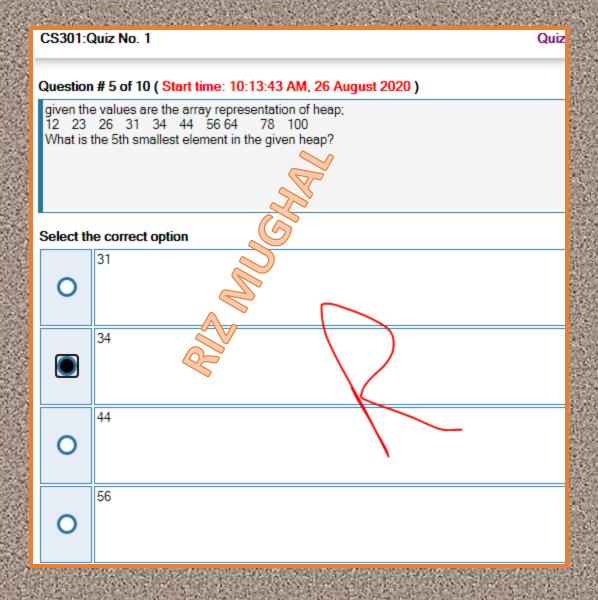

CS301(LECT 31 TO 35)

Rizwan Qadeer

All mcqs are 100% correct. For any type of help(specially related to CS619 project) you can contact me. I will quide you properly.

For more information about CS619 you can visit my Youtube channel

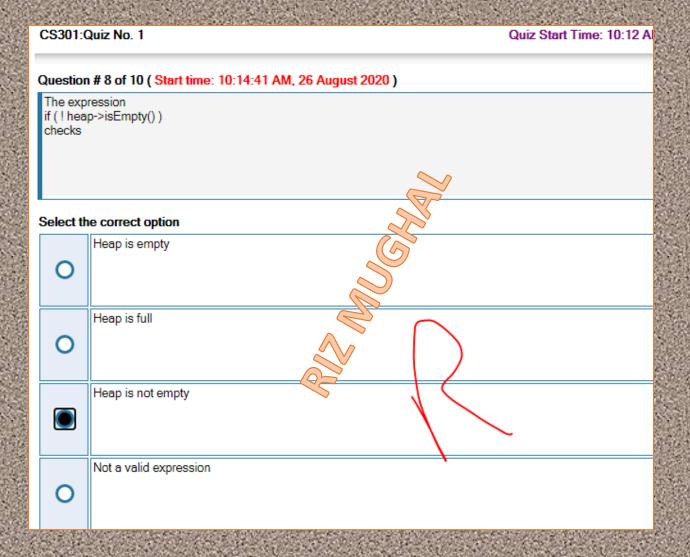
https://www.youtube.com/channel/UCINsFwDi B62SValCcPDZbRQ/playlists



CS301:0	Quiz No. 1	Quiz Start Time: 10:12
Question	# 2 of 10 (Start time: 10:12:42 AM, 26 August 2020)	
The per	colateDown procedure will move the smaller value and bigger value	:
Select th	e correct option	
0	left,right	
0	right,left	
0	down,up	
	up.down	

 $\diamond\diamond\diamond\diamond\diamond\diamond\diamond\diamond\diamond\diamond\diamond\diamond\diamond$

CS301:0	Quiz No. 1	Quiz Start Time: 10:12 AM, 26 August 2020
Question	# 3 of 10 (Start time: 10:13:04 AM, 26 August 2020)	Total Marks: 1
Suppose	there are 100 elements in an equivalence class, so initially there will be 100 t	rees. The collection of these trees is called
Select th	e correct option	I.
0	Cluster	<i>1</i> ,
0	Class	
	Forest	<i>(</i> -
0	Bunch	<i>1</i> ,


CS301:Quiz No. 1	Quiz Start Time: 10:12
Question # 4 of 10 (Start time: 10:13:24 AM, 26 August 202	
For a perfect binary tree of height h, having N nodes, the sum of	heights of nodes is
Select the correct option	
N-h-1	
O N-1	
O N-1+h	
O N - (h - 1)	

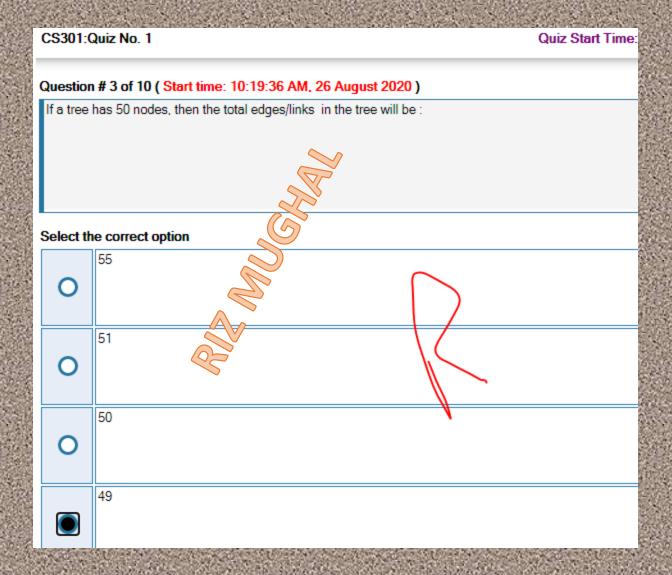
CS301:Quiz No. 1	Quiz Start Time: 10:12
Question # 6 of 10 (Start time: 10:14:01 AM, 26 August 2020)	
Sorting procedure normally takes time.	
Select the correct option	
NLogN V	
O 2N	
N*N*N	
O	

 \odot

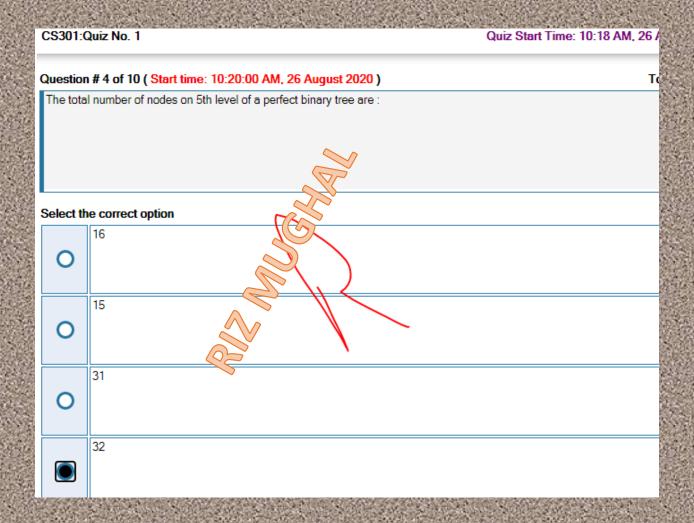
CS301:Quiz No. 1	Quiz Start Time: 10:1	12 AM, 26 A
Question # 7 of 10 (Start time: 10:14:22 AN		To
If there are 100 elements in an equivalence cla	lass then we will have sets initially.	
Select the correct option		
O 50		
100		
0 1000		
0 80		

CS301:	Quiz No. 1	Quiz Start Time: 10:12 AM, 26 Augu
Questio	n # 9 of 10 (Start time: 10:15:00 AM, 26 August 2020)	Total I
	d is boss of ehsan and ehsan is boss of umer then ahmad is also boss of umer over mentioned relation is	г.
Select t	he correct option	
0	Reflexive	
0	Symmetry	
	Transitive	
0	None of given	

CS301:0	Quiz No. 1	Quiz Start Time: 10:12 AM, 26 August
Question	n # 10 of 10 (Start time: 10:15:19 AM, 26 August 2020)	Total Ma
If there a	are 100 elements in a heap, and 100 deleteMin operation are performed, will ge	tlist
Select th	ne correct option	
	Sorted	
0	Unsorted	
0	Nonlinear	
0	None of given	

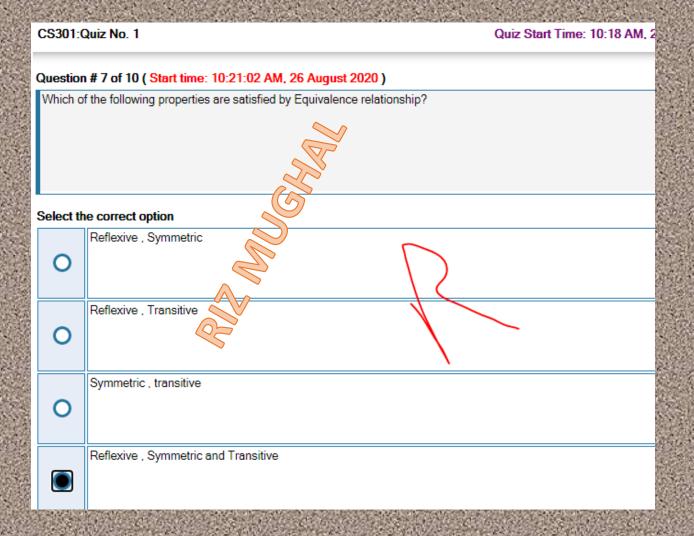

2nd account

CS301:0	Quiz No. 1	Quiz Start Time: 10:18 Al
Question	# 1 of 10 (Start time: 10:18:57 AM, 26 August 2020)	
If a tree	has 20 edges/links, then the total number of nodes in the tree will be :	
Select th	e correct option	
0	19	
0	20	
	21	
0	Can't be determined	


 \Diamond

Question # 2 of 10 (Start time: 10:19:18 AM, 26 August 2020) Which property of equivalence relation is satisfied if we say: Ahmad R(is related to) Ahmad Select the correct option Reflexivity Symmetry All of the above	CS30	1:Quiz No. 1	Quiz Start Time:
Select the correct option Reflexivity Symmetry Transitivity All of the above	NOT YOUR WALLESTON		
Reflexivity Symmetry Transitivity All of the above	Which Ahma	n property of equivalence relation is satisfied if we say: d R(is related to) Ahmad	√ 7
Symmetry Transitivity All of the above	Select	the correct option	7
O Transitivity O All of the above			
All of the above	0		
	0		
	0		

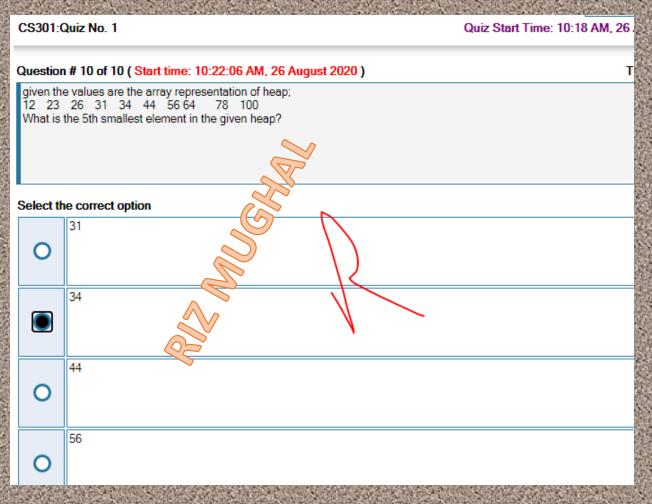
 \Diamond


 \diamond

CS301:0	Quiz No. 1	Quiz Start Time: 10:18 AM, 26 August 2020
Question	# 5 of 10 (Start time: 10:20:21 AM, 26 August 2020) Total Marks: 1
If we wa	nt to find median of 50 elements, then after applying build	Heap method, how many times deleteMin method will be called ?
Select th	e correct option	✓
0	5	
	25	
0	35	11
0	50	

CS301:	Quiz No. 1			Quiz Start Time: 10:18	AM, 26 Aug
Questio	n # 6 of 10 (Start time:	10:20:42 AM, 26 August 2	2020)		Total
Suppos	se there are a set of fruits a	and a set of vegetables. Bot	h sets are	sets.	
)		
Select t	he correct option				
	Disjoint				
0	Subsets				
0	Whole				
0	Equal				

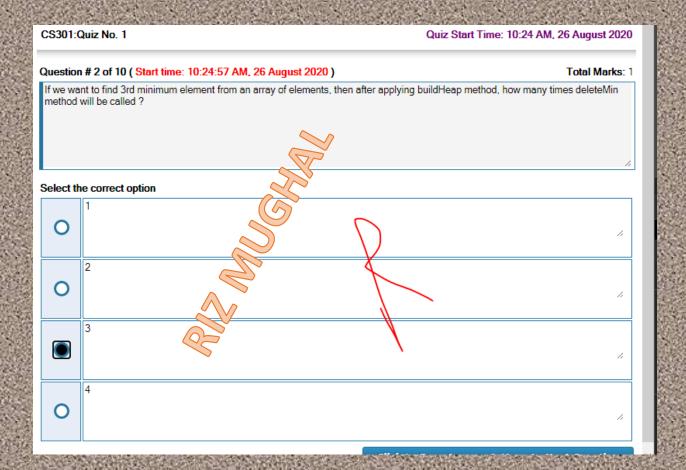
 \diamond

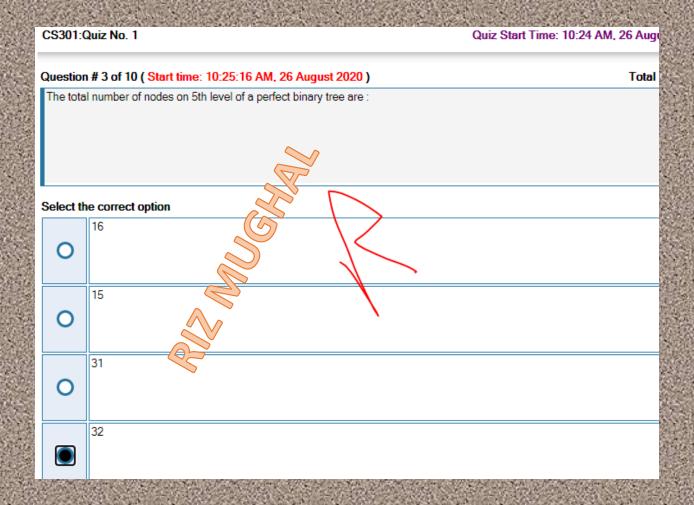

 \diamond

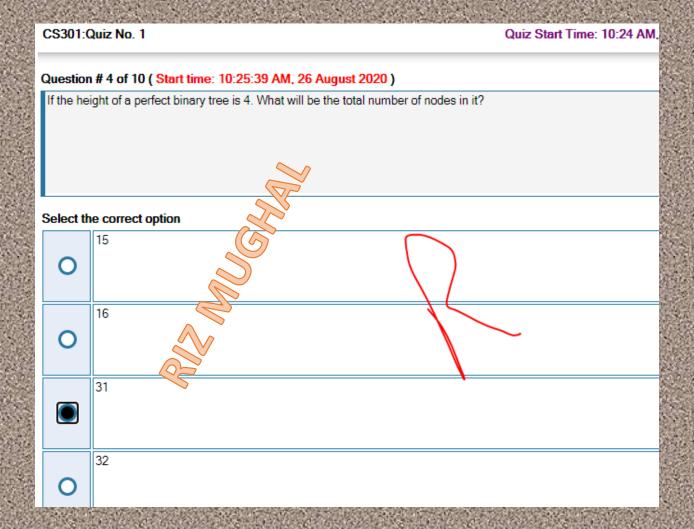
Which of the following heap method lowers the value of key at position 'p' by the amount 'delta'?	CS301:Quiz No. 1		iz Start Time: 10:18 AM, 26 Aug
Select the correct option increaseKey(p,delta) decreaseKey(p,delta) percolateDown(p,delta) remove(p,delta)			Tota Salta '2
o increaseKey(p,delta) decreaseKey(p,delta) percolateDown(p,delta) remove(p,delta)	Thinking the control of the control	So the value of hely disposition p by the difficulty of	
decreaseKey(p,delta) percolateDown(p,delta) remove(p,delta)	Select the correct option		
percolateDown(p,delta) remove(p,delta)			
remove(p,delta)			
9740			

 \Diamond

CS301:0	Quiz No. 1	Quiz Start Time: 10:18 AM, 26 Augus
	# 9 of 10 (Start time: 10:21:48 AM, 26 August 2020)	Total M
given the 12 23 If we per	e values are the array representation of heap; 26 31 34 44 56 64 78 100 form 4 deleteMin operations, the last element deleted is	
Select th	e correct option	
	31	
0	34	
0	44	
0	56	

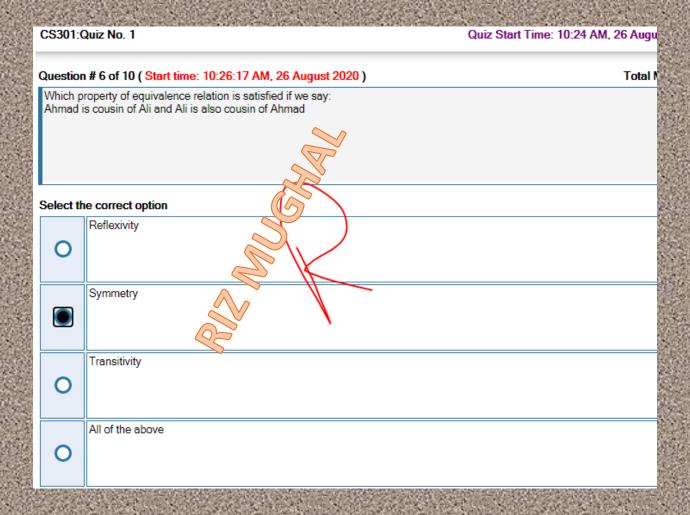

 \diamond

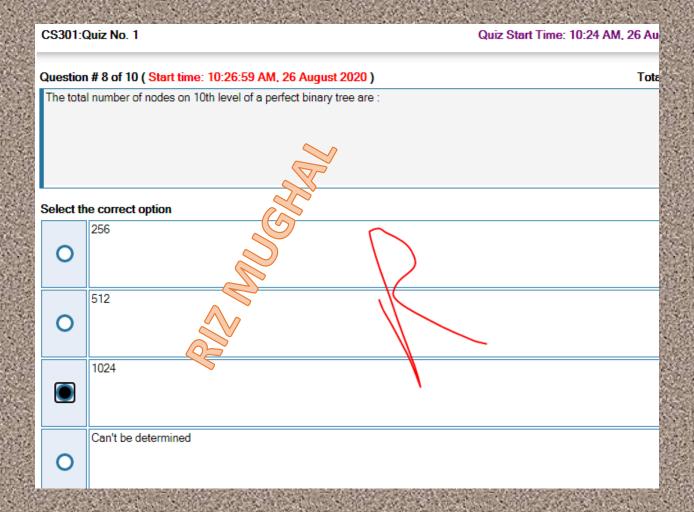


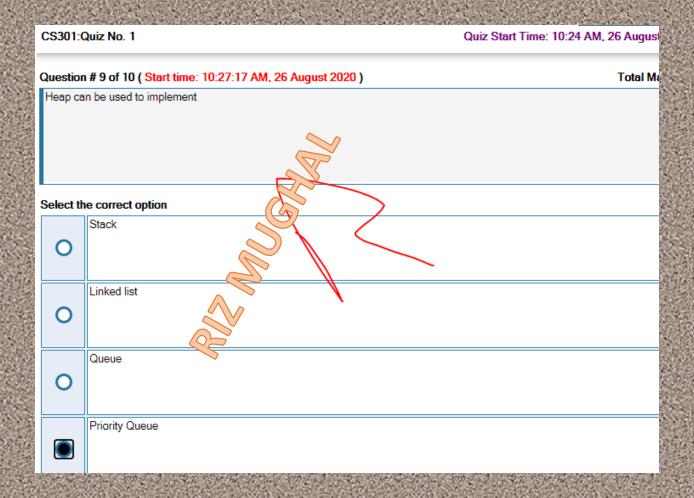

3rd account

CS301:0	Quiz No. 1	Quiz Start Time: 10:24 AM, 26 August 2020
_	# 1 of 10 (Start time: 10:24:39 AM, 26 August 2020)	Total Marks: 1
	d is cousin of Ali and Ali is cousin of Asad then Ahmed is also couse correct option	sin of Asad. This statement has the following property
0	Reflexivity	
0	Symmetry	
	Transitivity	li .
0	All of the above	<i>(,</i>

 \diamond




	uiz No. 1	Quiz Start Time: 10:24 AM, 26 August 20
	# 5 of 10 (Start time: 10:25:58 AM, 26 August 2020)	Total Mark
For a pe	fect binary tree of height h, having N nodes, the sum of heights of nodes is _	·
Select th	e correct option	
	N-h-1	
	N-1	
0	· ·	
	N-1+h	
0		
	N - (h - 1)	
0	·· · · · · · · · · · · · · · · · · · ·	



CS301:Quiz No. 1		Quiz Start Time: 10:24 AM
0.000	Start time: 10:26:36 AM, 26 August 2020)	
For a perfect binary tre	ree of height 4. What will be the sum of heights of	nodes?
Select the correct op	otion	
O 31		
O 30		
O 27		
26		

 \odot

CS301:0	Quiz No. 1	Quiz Start Time: 10:24 AM, 26 A
Question	# 10 of 10 (Start time: 10:27:36 AM, 26 August 2020)	Tot
Which o	ne of the following is NOT the property of equivalence relation?	
Select th	ne correct option	
0	Reflexive	
0	Symmetric	_
0	Transitive	
	Associative	

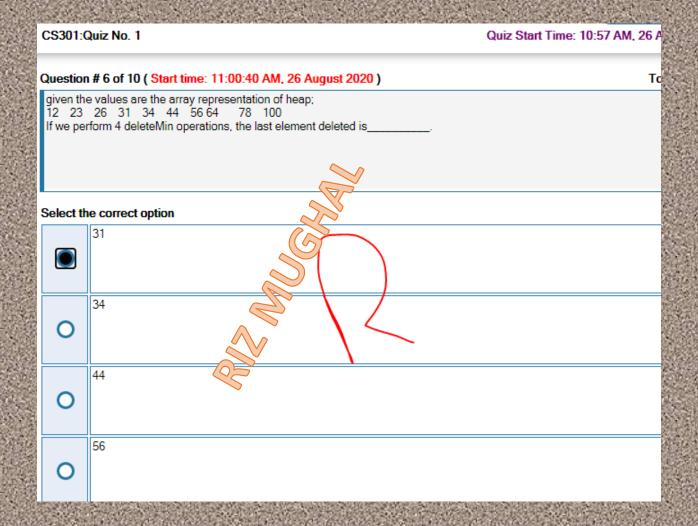
4th account

CS301:0	Quiz No. 1	Quiz Start Time: 10:57 AM, 26 Aug
Question	# 1 of 10 (Start time: 10:57:32 AM, 26 August 2020)	Tota
Which p Ahmad i	roperty of equivalence relation is satisfied if we say: s cousin of Ali and Ali is also cousin of Ahmad	
Select th	e correct option	
0	Reflexivity	
	Symmetry	
0	Transitivity	
0	All of the above	

 \diamond

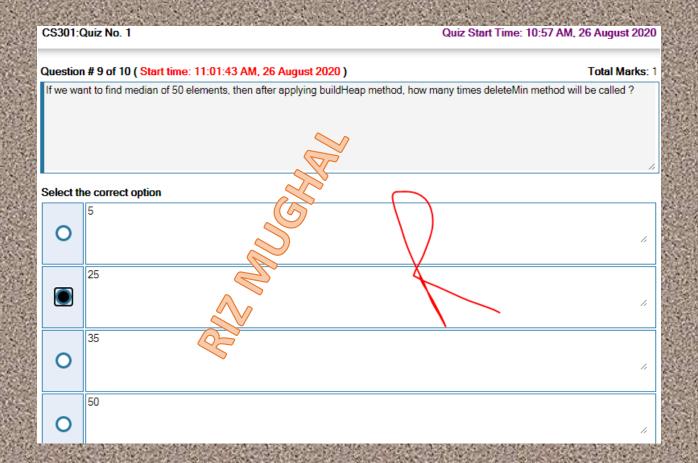
	CS301:0	Quiz No. 1 Q	uiz Start T
,	Question	n # 2 of 10 (Start time: 10:58:01 AM, 26 August 2020)	
	Which of	f the following properties are satisfied by Equivalence relationship?	
	Select th	ne correct option	
		Reflexive , Symmetric	
	0		
		Reflexive , Transitive	
		Symmetric , transitive	
	0		
		Reflexive , Symmetric and Transitive	
	0		

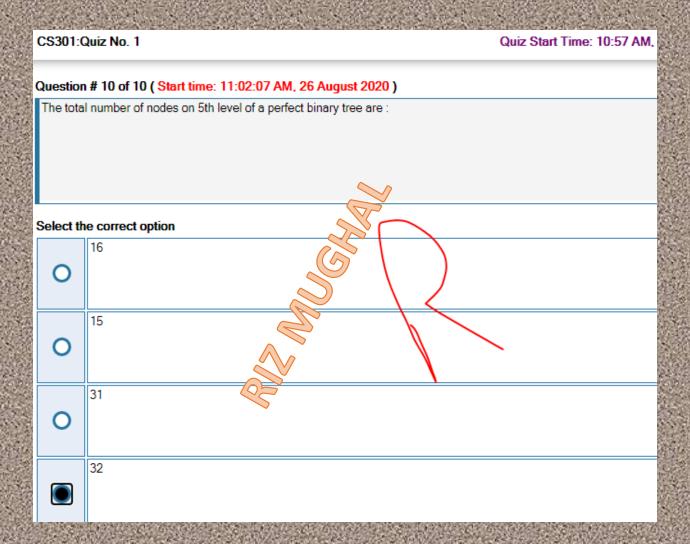
 \diamond


CS301:Quiz No. 1	Quiz Start Time: 10:57 AM
Question # 3 of 10 (Start time: 10:59:39 AM, 26 Augu	ust 2020)
A binary relation R over S is called an equivalence relation	on if it has following property(s)
Select the correct option	
Reflexivity	
OSymmetry	
O Transitivity	
All of the given options	

CS301:0	Quiz No. 1	Quiz Start Time: 10:57 AM, 2
Question	ı # 4 of 10 (Start time: 11:00:06 AM, 26 August 2020)	
For a pe	rfect binary tree of height h, having N nodes, the sum of heights of nodes is	
Select th	ne correct option	
	N-h-1	
0	N-1	
0	N-1+h	
0	N - (h - 1)	

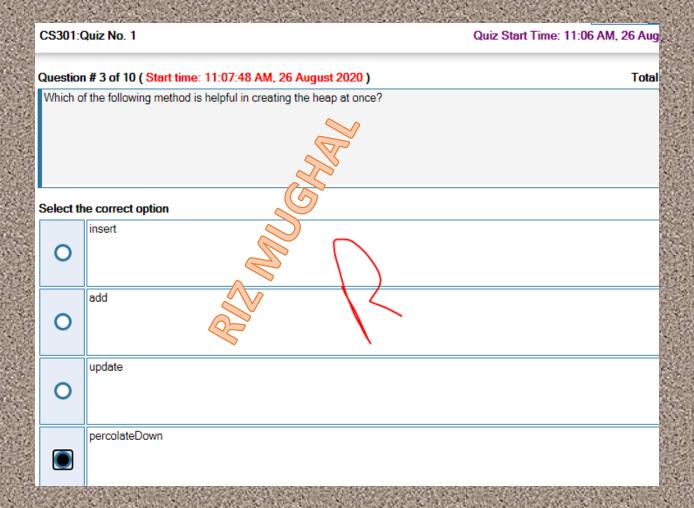
 \diamond

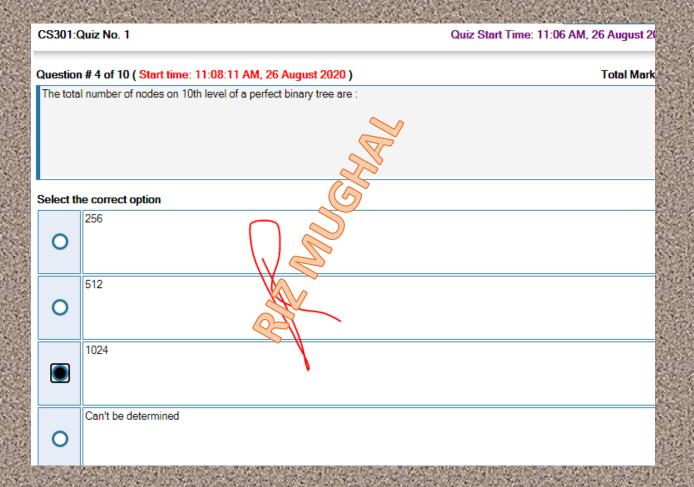

CS301:Quiz No. 1	Quiz Start Time: 10:57 AM, 26 Aug
Question # 5 of 10 (Start time: 11:00:21 AM, 26 A	大型型的工作的工作
Suppose there are a set of fruits and a set of vegetab	les. Both sets are sets.
Select the correct option	
Disjoint	
OSubsets	
O Whole	
O Equal	


 \odot

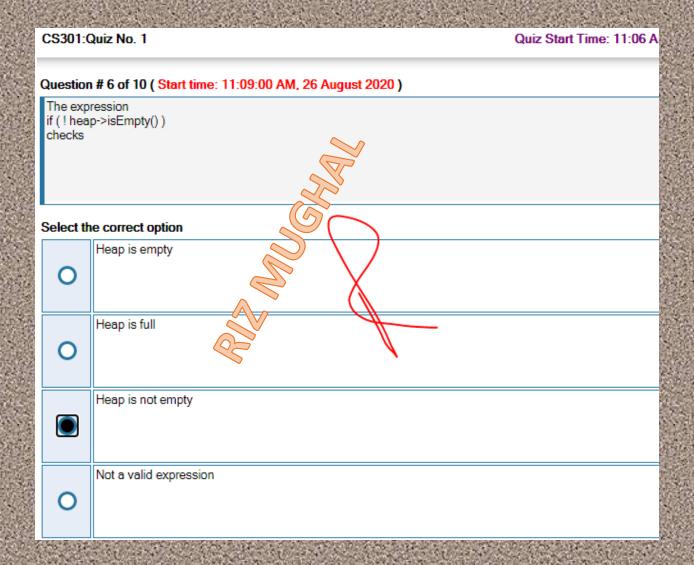
CS301:Quiz No. 1		Quiz Start Time: 10:57 AM, 26 Augus	
Questic	Question # 7 of 10 (Start time: 11:00:59 AM, 26 August 2020) Total M		
Which	of the following heap method lowers the value of key at position 'p' by the ar	nount 'delta'?	
Select	the correct option		
0	increaseKey(p.delta)		
	decreaseKey(p,delta)		
0	percolateDown(p,delta)		
0	remove(p,delta)		

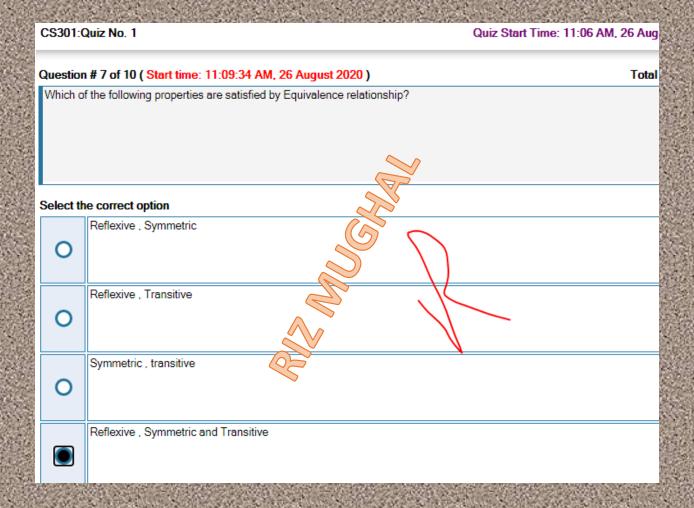
CS301:0	Quiz No. 1	Quiz Start Time: 10:57 AM, 26 August 2020
Question	n # 8 of 10 (Start time: 11:01:21 AM, 26 August 2020)	Total Marks: 1
If we wa method	nt to find 3rd minimum element from an array of elements, will be called ?	then after applying buildHeap method, how many times deleteMin
Select th	ne correct option	
0		
0	2	
	3	/
0	4	

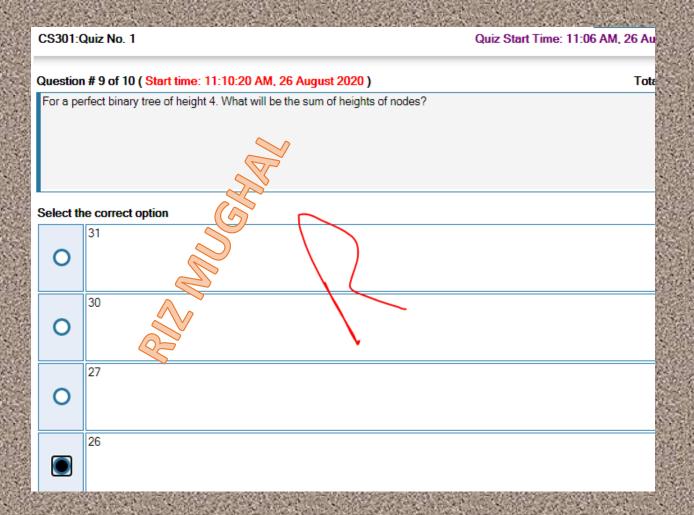



5th account

CS301:	Quiz No. 1	Quiz Start Time: 11:06 AM, 26	
Question # 1 of 10 (Start time: 11:06:58 AM, 26 August 2020) T			
For a pe	For a perfect binary tree of height h, having N nodes, the sum of heights of nodes is		
Select th	e correct option		
	N-h-1		
0	N-1		
	N - 1 + h		
0			
	N - (h - 1)		
0	, (i · ·)		
STATISTICS OF THE N			


 \diamond


CS301:Quiz No. 1	Quiz Start Time: 11:06 AM
Question # 2 of 10 (Start time: 11:07:22 AM, 26 /	August 2020)
given the values are the array representation of heap 12 23 26 31 34 44 56 64 78 100 What is the 5th smallest element in the given heap?	p:
Select the correct option	
O 31	
34	
O 44	
O 56	


CS301:0	Quiz No. 1	Quiz Start Time: 11:06 AM, 26 August 202
Question	n # 5 of 10 (Start time: 11:08:37 AM, 26 August 2020)	Total Marks:
Which of the following heap method lowers the value of key at position 'p' by the amount 'delta'?		
Select th	ne correct option	
0	increaseKey(p,delta)	
	decreaseKey(p,delta)	
0	percolateDown(p,delta)	
0	remove(p,delta)	//

CS301:Quiz No. 1	Quiz Start Time: 11:06 AM, 26 August 20
Question # 8 of 10 (Start time: 11:09:55 AM, 26 August 2020)	Total Mark
given the values are the array representation of heap; 12 23 26 31 34 44 56 64 78 100 If we perform 4 deleteMin operations, the last element deleted is	
Select the correct option	
31	
O 34	
O 44	
O 56	

 \diamond

CS301:Quiz No. 1		Quiz Start Time: 11:06 AM, 26 August 2
Questic	n # 10 of 10 (Start time: 11:10:44 AM, 26 August 2020)	Total Mark
If ahms	d is boss of ehsan and ehsan is boss of umer then ahmad is also boss of umer. ove mentioned relation is	
Select	he correct option	
0	Reflexive	
0	Symmetry	
	Transitive	
0	None of given	

 \diamond