ASSALAM O ALAIKUM All Dear fellows ALL IN ONE MTH301 Calculus II Midterm solved papers Created BY Ali Shah From Sahiwal BSCS 4th semester alaoudin.bukhari@gmail.com Remember me in your prayers

MIDTERM EXAMINATION

Spring 2010

MTH301- Calculus II (Session - 3)

1. Every real number corresponds to ______ on the co-ordinate line.

Infinite number of points

- > Two points (one positive and one negative)
- A unique point
- \succ None of these

2. There is one-to-one correspondence between the set of points on co-ordinate line and ______.

- Set of real numbers
- Set of integers
- Set of natural numbers
- Set of rational numbers

3. Which of the following is associated to each point of three dimensional space?

- ➢ A real number
- ➢ An ordered pair
- > An ordered triple
- A natural Number

4. All axes are positive in _____octant.

- First
- ➢ Second
- > Fourth
- ➤ Eighth

5. The spherical co-ordinates of a point are $\left(\sqrt{3}, \frac{\pi}{3}, \frac{\pi}{2}\right)$. What are its cylindrical co-ordinates?

$$\succ \left(\frac{\sqrt{3}}{2}, \frac{3}{2}, 0\right)$$
$$\succ \left(\sqrt{3}\cos\frac{\pi}{3}, \sqrt{3}\sin\frac{\pi}{3}, 0\right)$$
$$\triangleright \left(\sqrt{3}\sin\frac{\pi}{3}, \frac{\pi}{2}, \sqrt{3}\cos\frac{\pi}{3}\right)$$
$$\succ \left(\sqrt{3}, \frac{\pi}{3}, 0\right)$$

6. Suppose $f(x, y) = xy - 2y^2$ where $x = t^3 + and y = t$. Which one of the following is true?

$$\frac{df}{dt} = -4t + 2$$

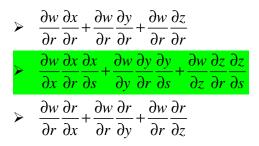
$$\frac{df}{dt} = -16t - t$$

$$\frac{df}{dt} = 18t + 2$$

$$\frac{df}{dt} = -10t^2 + 8t + 1$$

7. Let w = f(x, y, z) and x = g(r s), y = h(r s), z = t(r s) then by chain rule $\frac{\partial w}{\partial r} =$

$$\succ \quad \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r}$$



8. Magnitude of vector \vec{a} is 2, magnitude of vector \vec{b} is 3 and angle between them when placed tail to tail is 45 degrees. What is \vec{a} . \vec{b} ?

\triangleright	4.5
\succ	6.2
\triangleright	5.1
\triangleright	4.2

9. Is the function f(x, y) continuous at origin? If not, why? $f(x, y) = \begin{cases} 0 & \text{if } x \ge 0 \text{ and } y \ge 0 \\ 1 & \text{otherwise} \end{cases}$

- → f(x, y) is continuous at origin
- \succ f(0,0) is not defined
- > f(0,0) is defined but $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist
- > f(0,0) is defined and $\lim_{(x,y)\to(0,0)} f(x,y)$ exist but these two numbers are not equal.

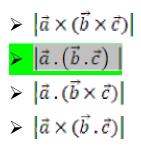
10. Is the function f(x, y) continuous at origin? If not, Why? $f(x, y) = \begin{cases} \frac{3x^2y}{x^2+y^2} & \text{i}f(x, y) \neq 0\\ 0 & \text{i}f(x, y) = 0 \end{cases}$

> f(x, y) is continuous at origin

 \succ f(0,0) is not defined

- > f(0,0) is defined but $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist
- > f(0,0) is defined and $\lim_{(x,y)\to(0,0)} f(x,y)$ exist but these two numbers are not equal.
- 11. Let R be a closed region in two dimensional space. What does the double integral over R calculates?
 - > Area of R
 - Radius of inscribed circle in R.
 - Distance between two endpoints of R.
 - None of these

12. Which of the following formula can be used to find the volume of a parallelepiped with adjacent edges formed by the vectors \vec{a} , \vec{b} and \vec{c} ?



13. Two surfaces are said to be orthogonal at appoint of their intersection if their normals at that point are_____.

- Parallel
- > Perpendicular
- ➢ In opposite direction
- ➢ Same direction

14. By Extreme Value Theorem, if a function f(x, y) is continuous on a closed and bounded set R, then

f(x, y) has both _____ on R.

- Absolute maximum and absolute minimum value
- Relative maximum and relative minimum value
- > Absolute maximum and relative minimum value
- Relative maximum and absolute minimum value

15. Let the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy}, and f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) - f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0)$ if

D > 0 and $f_{xx}(x_0, y_0) < 0$ then f has _____.

- Relative maximum at (x_0, y_0)
- ▶ Relative minimum at (x_0, y_0)
- > Saddle point at (x_0, y_0)
- ➢ No conclusion can be drawn.

16. Let the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy} \text{ and } f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) - f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0)$ if

if D = 0 then _____.

- > f has relative maximum at (x_0, y_0)
- ▶ f has relative minimum at (x_0, y_0)
- ▶ f has saddle point at (x_0, y_0)
- ➢ No conclusion can be drawn.
- 17. If $R = R_1 \cup R_2$ where R_1 and R_2 are no over lapping regions then

$$\iint_{R_{1}} f(x, y) dA + \iint_{R_{2}} f(x, y) dA =$$

$$\iint_{R} f(x, y) dA$$

$$\iint_{R_{1}} f(x, y) dA \cup \iint_{R_{2}} f(x, y) dA$$

$$\iint_{R} f(x, y) dV \cup \iint_{R_{2}} f(x, y) dA$$

$$\iint_{R} f(x, y) dV \cap \iint_{R_{2}} f(x, y) dA$$

18. If
$$R = \{(x \ y,) \ / \mathfrak{Q} \ x \le 2and \le y \le \}$$
 then $\iint_R (6x^2 + 4xy^3) dA =$

$$\int_{1}^{4} \int_{0}^{2} (6x^{2} + 4xy^{3}) dy dx$$

$$\int_{0}^{2} \int_{1}^{4} (6x^{2} + 4xy^{3}) dy dx$$

$$\int_{1}^{4} \int_{0}^{2} (6x^{2} + 4xy^{3}) dy dx$$

$$\int_{2}^{4} \int_{0}^{1} (6x^{2} + 4xy^{3}) dy dx$$

19. If $R = \{(x \ y) \ / \ge x \le 4$ and $\le \emptyset \le \}$ then $\iint_R (4xe^{2y}) dA =$

$$\int_{0}^{1} \int_{2}^{4} (4xe^{2y}) dxdy$$

$$\int_{1}^{4} \int_{0}^{2} (4xe^{2y}) dxdy$$

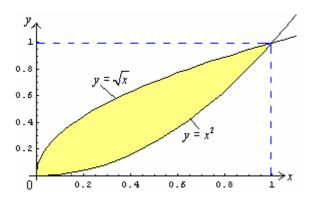
$$\int_{1}^{4} \int_{0}^{2} (4xe^{2y}) dydx$$

20. If $R = \{(x, y) \mid A \le 4$ and $\leq y \le \}$ then $\iint_{R} (3x - 4x\sqrt{xy}) dA =$

21. Suppose that the surface f(x, y, z) has continuous partial derivatives at the point (a,b,c) Write down the equation of tangent plane at this point.

- 22. Evaluate the following double integral $\iint (12xy^2 8x^3) dy dx$.
- 23. Evaluate the following double integral $\iint (3+2x-3y^2) dxdy$
- 24. Let $f(x, y, z) = xy^2 e^z$ Find the gradient of f.

25. Find, Equation of Tangent plane to the surface $f(x, y, z) = x^2 + y^2 + z - 9$ at the point (1, 2, 4). 26. Use the double integral in rectangular co-ordinates to compute area of the region bounded by the curves $y = x^2$ and $y = \sqrt{x}$.



MIDTERM EXAMINATION

Fall 2009

MTH301- Calculus II

_ Let x

Question No: 1 (Marks: 1) - Please choose one

be any point on co-ordinate line. What does the inequality -3 < x < 1 means?

The set of all integers between -3 and 1

The set of all natural numbers between -3 and 1.

The set of all rational numbers between -3 and 1

The set of all real numbers between -3 and 1

Question No: 2 (Marks: 1) - Please choose one

Which of the following number is associated to each point on a co-ordinate line?

An integer

i.

a.

b.

c.

d.

► A real number

A rational number

A natural number

Question No: 3 (Marks: 1) - Please choose one

Which of the following set is the union of set of all rational and irrational numbers?

- . Set of rational numbers
- ▶ Set of integers

▶ Set of real numbers

Empty set.

Question No: 4 (Marks: 1) - Please choose one

 π is an example of -----

▶ Irrational numbers

► Rational numbers

▶ Integers

▶ Natural numbers

Question No: 5 (Marks: 1) - Please choose one

Which of the following is associated to each point on a plane?

. ► A real number

► A natural number

An ordered pair

An ordered triple

Question No: 6 (Marks: 1) - Please choose one

----- planes intersect at right angle to form three dimensional space.

Three

Four

Eight

Twelve

Question No: 7 (Marks: 1) - Please choose one

each point of domain, the function ------

Is defined

Is continuous

Is infinite

Has a limit

Question No: 8 (Marks: 1) - Please choose one

What is the general equation of parabola whose axis of symmetry is parallel to y-axis?

$$y = ax^2 + b \qquad (a \neq 0)$$

At

$$x = ay^{2} + b \qquad (a \neq 0)$$
$$y = ax^{2} + bx + c \qquad (a \neq 0)$$
$$x = ay^{2} + by + c \qquad (a \neq 0)$$

http://vustudents.ning.com

(2, 0, 0)

(0, 0, 2)

 $\left(\sqrt{2}, 0, \sqrt{2}\right)$

Question No: 9 (Marks: 1) - Please choose one

The
$$\left(2, \frac{\pi}{4}, 0\right)$$

spherical co-ordinates $\left(\rho, \theta, \phi\right)$, of a point are $\left(2, \frac{\pi}{4}, 0\right)$. What are the rectangular co-ordinates of this point?
 $\left(0, 0, \sqrt{2}\right)$

Question No: 10 (Marks: 1) - Please choose one

Let $f(x, y) = y^2 x^4 e^x + 2$.

$$\frac{\partial^5 f}{\partial y^3 \partial x^2}$$

Which method is best suited for evaluation of ?

Normal method of finding the higher order mixed partial derivatives

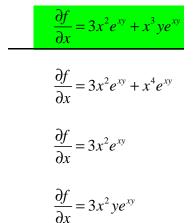
Chain Rule

Laplacian Method

Euler's method for mixed partial derivative

Question No: 11 (Marks: 1) - Please choose one

Suppose $f(x, y) = x^3 e^{xy}$. Which one of the following is correct?



Question No: 12 (Marks: 1) - Please choose one

Suppose $f(x, y) = x^3 e^{xy}$. Which one of the statements is correct?

$$\frac{\partial f}{\partial y} = 3x^3 e^{xy}$$
$$\frac{\partial f}{\partial y} = x^3 e^{xy}$$
$$\frac{\partial f}{\partial y} = x^4 e^{xy}$$

$$\frac{\partial f}{\partial y} = x^3 y e^{xy}$$

Question No: 13 (Marks: 1) - Please choose one

Suppose f(x, y) = 2xy where $x = t^2 + 1$ and y = 3 - t. Which one of the following is true?

$$\frac{df}{dt} = 6t - 4t^2 - 2$$
$$\frac{df}{dt} = 6t - 2$$
$$\frac{df}{dt} = 4t^3 + 6t - 6$$
$$\frac{df}{dt} = -6t^2 + 12t - 2$$

Question No: 14 (Marks: 1) - Please choose one

i, *j* and *k* be unit vectors in the direction of x-axis, y-axis and z-axis respectively. Suppose that $\vec{a} = 2i + 5j - k$. What is the magnitude of vector \vec{a} ? \Box http://vustudents.ning.com

_____ Let

6

Question No: 15 (Marks: 1) - Please choose one

the function f(x, y) continuous at origin? If not, why?

 $f(x, y) = \frac{xy}{x^2 + y^2}$

f(x, y) is continuous at origin

 $\lim_{(x,y)\to(0,0)} f(x, y)$ does not exist

 $f(0, 0) \lim_{\substack{(x, y) \to (0, 0)}} f(x, y)$ exists

exists but these two numbers are not equal.

_____ Is

Question No: 16 (Marks: 1) - Please choose one

____ Let

R be a closed region in two dimensional space. What does the double integral over R calculates?

Area of R.

Radius of inscribed circle in R.

Distance between two endpoints of R.

None of these

Question No: 17 (Marks: 1) - Please choose one

What is the relation between the direction of gradient at any point on the surface to the tangent plane at that point ?

parallel

perpendicular

opposite direction

No relation between them.

Question No: 18 (Marks: 1) - Please choose one

surfaces are said to intersect orthogonally if their normals at every point common to them are ------

_____ Two

perpendicular

parallel

in opposite direction

http://vustudents.ning.com

Question No: 19 (Marks: 1) - Please choose one

 $\frac{1}{\left(f_{xx}, f_{yy}\right)_{\text{has continuous second-order partial derivatives}}} \left(f_{xx}, f_{yy} \text{ and } f_{xy}\right)_{\text{in some}} \left(f_{xx}, f_{yy} \text{ and } f_{xy}\right)_{\text{in some}} D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^{2}(x_0, y_0)$

If
$$D > 0$$
 and $f_{xx}(x_0, y_0) < 0$ then f has ------

Relative maximum at (x_0, y_0)

Relative minimum at (x_0, y_0)

Saddle point at (x_0, y_0)

No conclusion can be drawn.

Question No: 20 (Marks: 1) - Please choose one

Which of the following are direction ratios for the line joining the points (1, 3, 5) and (2, -1, 4)?

3, 2 and 9

1, -4 and -1

2, -3 and 20

0.5, -3 and 5/4

Question No: 21 (Marks: 1) - Please choose one

 $R = R_1 \cup R_2$, where R_1 and R_2 are no overlapping regions then

$$\iint_{R_1} f(x, y) dA + \iint_{R_2} f(x, y) dA =$$

$$\iint_{R} f(x, y) dA$$
$$\iint_{R_{1}} f(x, y) dA \cup \iint_{R_{2}} f(x, y) dA$$

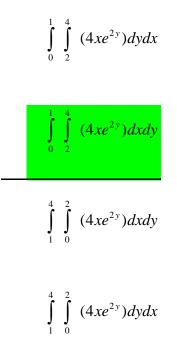
 $\iint_R f(x,y)dV$

_ If

$$\iint_{R_1} f(x, y) dA \cap \iint_{R_2} f(x, y) dA$$

Question No: 22 (Marks: 1) - Please choose one

If
$$R = \{(x, y)/2 \le x \le 4 \text{ and } 0 \le y \le 1\}$$
, then
$$\iint_{R} (4xe^{2y})dA =$$



Question No: 23 (Marks: 1) - Please choose one http://vustudents.ning.com

If
$$R = \{(x, y)/0 \le x \le 2 \text{ and } 0 \le y \le 3\}$$
, then
$$\iint_{R} (1 - ye^{xy}) dA =$$

$$\int_{0}^{2} \int_{0}^{3} (1 - ye^{xy}) dy dx$$
$$\int_{0}^{2} \int_{0}^{3} (1 - ye^{xy}) dx dy$$
$$\int_{2}^{3} \int_{0}^{0} (1 - ye^{xy}) dx dy$$
$$\int_{0}^{2} \int_{2}^{3} (4xe^{2y}) dy dx$$

Question No: 24 (Marks: 1) - Please choose one

Which of the following is geometrical representation of the equation $y = x^2$, in three dimensional space?

Parabola Straight line Half cylinder Cone

Question No: 25 (Marks: 3)

$$\left(\sqrt{3}, \frac{\pi}{3}, \frac{\pi}{2}\right)$$

Consider the point in spherical coordinate system. Find the rectangular coordinates of this point.

http://vustudents.ning.com

Question No: 26 (Marks: 5)

Consider a function $f(x, y) = 4xy - x^4 - y^4$. One of its critical point is (1, 1). Find whether (1, 1) is relative maxima, relative minima or saddle point of f(x, y).

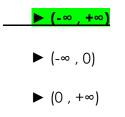
Question No: 27 (Marks: 10)

Find Directional derivative of the function, $f(x, y) = x^2 y - 4y^3$, at the point ^(2, 1) in the direction of vector, $\vec{u} = \frac{\sqrt{3}}{2}i + \frac{1}{2}j$

MIDTERM EXAMINATION Spring 2010 MTH301- Calculus II

Question No: 1 (Marks: 1) - Please choose one

Which of the following is the interval notation of real line?



Question No: 2 (Marks: 1) - Please choose one

What is the general equation of parabola whose axis of symmetry is parallel to y-axis?

$$x = ay^2 + by + c \qquad (a \neq 0)$$

http://vustudents.ning.com

Question No: 3 (Marks: 1) - Please choose one

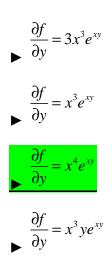
Which of the following is geometrical representation of the equation y = 4, in three dimensional space?

A point on y-axis

- ► Plane parallel to xy-plane
- ► Plane parallel to yz-axis
- ► Plane parallel to xz-plane

Question No: 4 (Marks: 1) - Please choose one

Suppose $f(x, y) = x^3 e^{xy}$. Which one of the statements is correct?



Question No: 5 (Marks: 1) - Please choose one

$$f(x, y) = x^{2}y - y^{3} + \ln x$$

$$\frac{\partial^{2} f}{\partial x^{2}}$$
then
$$= 2xy + \frac{1}{x^{2}}$$

$$2y + \frac{1}{x^{2}}$$

$$2xy - \frac{1}{x^{2}}$$

__ If

Question No: 6 (Marks: 1) - Please choose one

w = f(x, y, z) and x = g(r, s), y = h(r, s), z = t(r, s) then by chain rule

 $\frac{\partial w}{\partial r} =$

 $\frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$ $\frac{\partial w}{\partial r} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial r} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial r} \frac{\partial z}{\partial r}$ $\frac{\partial w}{\partial x} \frac{\partial x}{\partial r} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \frac{\partial z}{\partial s}$ $\frac{\partial w}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial w}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial w}{\partial r} \frac{\partial r}{\partial z}$

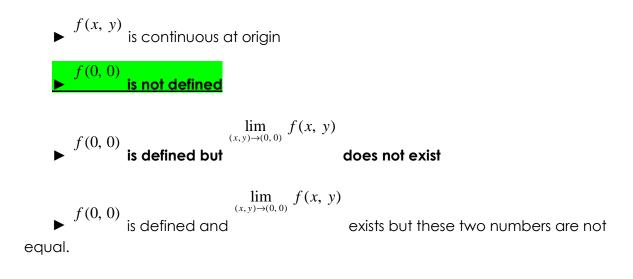
Question No: 7 (Marks: 1) - Please choose one

_____ ls

_ Let

the function f(x, y) continuous at origin? If not, why?

$$f(x, y) = \begin{cases} \frac{3x^2y}{x^2 + y^2} & \text{if } (x, y) \neq 0\\ 0 & \text{if } (x, y) = 0 \end{cases}$$



Question No: 8 (Marks: 1) - Please choose one

R be a closed region in two dimensional space. What does the double integral over R calculates?

- ► Area of R.
- ► Radius of inscribed circle in R.
- ▶ Distance between two endpoints of R.

```
None of these (not sure)
```

http://vustudents.ning.com

Question No: 9 (Marks: 1) - Please choose one

_____ Two

_ Let

surfaces are said to be orthogonal at a point of their intersection if their normals at that point are ------

Parallel

Perpendicular

► In opposite direction

Question No: 10 (Marks: 1) - Please choose one

22

- Two

_ Let

_____ Let

surfaces are said to intersect orthogonally if their normals at every point common to them are -----

- perpendicular
- ▶ parallel
- ▶ in opposite direction

Question No: 11 (Marks: 1) - Please choose one

the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy} \text{ and } f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^{-2}(x_0, y_0)$

If
$$D > 0$$
 and $f_{xx}(x_0, y_0) > 0$ then f has -----

► Relative maximum at (x_0, y_0)

▶ Relative minimum at (x_0, y_0)

- ► Saddle point at (x_0, y_0)
- ► No conclusion can be drawn. http://vustudents.ning.com

Question No: 12 (Marks: 1) - Please choose one

the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy} \text{ and } f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0)$ If D > 0 and $f_{xx}(x_0, y_0) < 0$ then f has ------

▶ Relative maximum at (x_0, y_0)

- ► Relative minimum at (x_0, y_0)
- ► Saddle point at (x_0, y_0)
- ▶ No conclusion can be drawn.

Question No: 13 (Marks: 1) - Please choose one

the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy} \text{ and } f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0)$ Let

_____ Let

- If D < 0 then f has -----
 - Relative maximum at (x_0, y_0)
 - ▶ Relative minimum at (x_0, y_0)
 - ► Saddle point at (x_0, y_0)
 - ► No conclusion can be drawn

Question No: 14 (Marks: 1) - Please choose one

 (x_1, y_1, z_1) and (x_2, y_2, z_2) be any two points in three dimensional space. What does the $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ formula calculates?

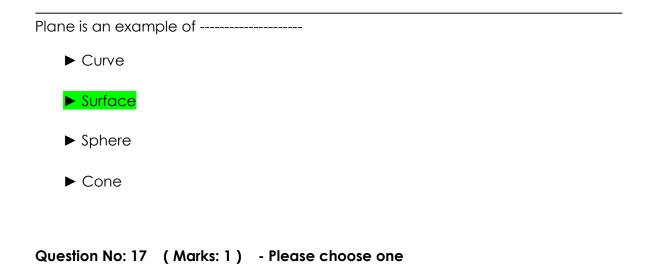
Distance between these two points

- Midpoint of the line joining these two points
- Ratio between these two points

Question No: 15 (Marks: 1) - Please choose one

 $f(x, y) = \sqrt{y-x}$ function is continuous in the region ----- and discontinuous elsewhere.

Question No: 16 (Marks: 1) - Please choose one



 $R = R_1 \cup R_2$, where R_1 and R_2 are no overlapping regions then

_____ The

__ If

$$\iint_{R_{1}} f(x,y)dA + \iint_{R_{2}} f(x,y)dA =$$

$$\iint_{R} f(x,y)dA \cup \iint_{R_{2}} f(x,y)dA$$

$$\iint_{R_{1}} f(x,y)dA \cup \iint_{R_{2}} f(x,y)dA$$

$$\iint_{R} f(x,y)dV$$

$$http://vustudents.ning.com$$

Question No: 18 (Marks: 1) - Please choose one

If
$$R = \{(x, y)/0 \le x \le 2 \text{ and } 1 \le y \le 4\}$$
, then

$$\iint_{R} (6x^{2} + 4xy^{3})dA =$$

$$\int_{1}^{4} \int_{0}^{2} (6x^{2} + 4xy^{3}) dy dx$$

$$\int_{0}^{2} \int_{1}^{4} (6x^{2} + 4xy^{3}) dx dy$$

$$\int_{1}^{4} \int_{0}^{2} (6x^{2} + 4xy^{3}) dx dy$$

$$\int_{2}^{4} \int_{0}^{1} (6x^{2} + 4xy^{3}) dx dy$$

Question No: 19 (Marks: 1) - Please choose one

If $R = \{(x, y)/0 \le x \le 2 \text{ and } 0 \le y \le 3\}$, then $\iint_{R} (1 - ye^{xy}) dA =$

$$\int_{0}^{2} \int_{0}^{3} (1 - ye^{xy}) dy dx$$

$$\int_{0}^{2} \int_{0}^{3} (1 - ye^{xy}) dx dy$$

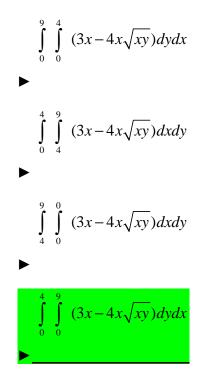
$$\int_{2}^{3} \int_{0}^{0} (1 - ye^{xy}) dx dy$$

$$\int_{0}^{2} \int_{2}^{3} (4xe^{2y}) dy dx$$

Question No: 20 (Marks: 1) - Please choose one

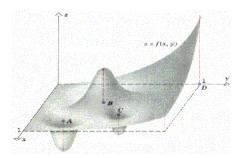
If $R = \{(x, y)/0 \le x \le 4 \text{ and } 0 \le y \le 9\}$, then $\iint_{R} (3x - 4x\sqrt{xy})dA =$

http://vustudents.ning.com



Question No: 21 (Marks: 2)

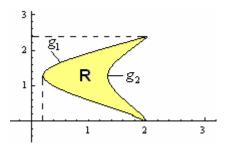
Following is the graph of a function of two variables



In its whole domain, state whether the function has relative maximum value or absolute maximum value at point B. Also, justify your answer

Question No: 22 (Marks: 2)

Let the function f(x, y) is continuous in the region R, where R is bounded by graph of functions g_1 and g_2 (as shown below). http://vustudents.ning.com



In the following equation, replace question mark (?) with the correct value.

$$\iint_{R} f(x, y) \, dA = \int_{2}^{2} \int_{2}^{2} f(x, y) \, \underline{\qquad} ?$$

Question No: 23 (Marks: 3)

Evaluate the following double integral.

$$\iint (3+2x-3y^2) \, dx \, dy$$

Question No: 24 (Marks: 3)

Let $f(x, y, z) = yz^3 - 2x^2$ Find the gradient of f.

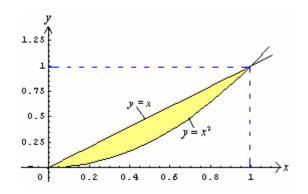
Question No: 25 (Marks: 5)

Find, Equation of Normal line (in parametric form) to the surface $f(x, y, z) = xy + 2yz - xz^2 + 10$ (-5, 5, 1) at the point

Question No: 26 (Marks: 5)

. Use

double integral in rectangular co-ordinates to compute area of the region bounded by the curves y = x and $y = x^2$, in the first quadrant.



MIDTERM EXAMINATION Spring 2010 MTH301- Calculus II (Session - 3)

Question No: 1 (Marks: 1) - Please choose one

Which of the following number is associated to each point on a co-ordinate line?

An integer

A real number

A rational number

A natural number

Question No: 2 (Marks: 1) - Please choose one

If a > 0, then the parabola $y = ax^2 + bx + c$ opens in which of the following direction?

Positive ^{*X*} - direction

Negative
$$x$$
 - direction

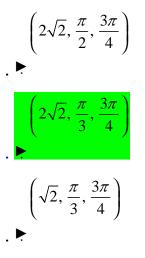
Positive
$$y$$
 - direction

Negative y - direction

Question No: 3 (Marks: 1) - Please choose one

Rectangular co-ordinate of a point is $(1, \sqrt{3}, -2)$. What is its spherical co-ordinate?

$$\left(2\sqrt{2},\frac{\pi}{3},\frac{3\pi}{2}\right)$$



Question No: 4 (Marks: 1) - Please choose one

If a function is not defined at some point, then its limit ----- exist at that point.

. ▶ Always

Never

🕨 May

Question No: 5 (Marks: 1) - Please choose one

Suppose $f(x, y) = x^3 e^{xy}$. Which one of the statements is correct?

$$\frac{\partial f}{\partial y} = 3x^3 e^{xy}$$

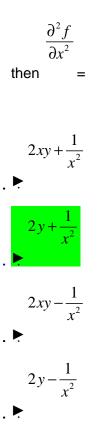
$$\oint \frac{\partial f}{\partial y} = x^3 e^{xy}$$

$$\oint \frac{\partial f}{\partial y} = x^4 e^{xy}$$

 $\frac{\partial f}{\partial y} = x^3 y e^{xy}$

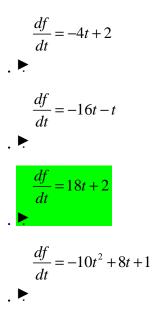
Question No: 6 (Marks: 1) - Please choose one

$$f(x, y) = x^2 y - y^3 + \ln x$$



Question No: 7 (Marks: 1) - Please choose one

Suppose $f(x, y) = xy - 2y^2$ where x = 3t + 1 and y = 2t. Which one of the following is true?



Question No: 8 (Marks: 1) - Please choose one

Is the function f(x, y) continuous at origin? If not, why?

$$f(x, y) = \begin{cases} 0 & If \ x \ge 0 \ and \ y \ge 0 \\ 1 & Otherwise \end{cases}$$

 $f(\mathbf{x}, \mathbf{y})$ is continuous at origin

• f(0, 0) is not defined

 $\lim_{(x,y)\to(0,0)} f(x, y)$ $\stackrel{f(0, 0)}{\blacktriangleright} \text{ is defined but }$ does not exist

 $\lim_{(x,y)\to(0,\,0)}\,f(x,\,y)$

• f(0, 0) is defined and exists but these two numbers are not equal.

Question No: 9 (Marks: 1) - Please choose one

What is the relation between the direction of gradient at any point on the surface to the tangent plane at that point ?

▶ parallel

perpendicular

▶ opposite direction

► No relation between them.

Question No: 10 (Marks: 1) - Please choose one

Two surfaces are said to intersect orthogonally if their normals at every point common to them are -----

perpendicular

parallel

in opposite direction

Question No: 11 (Marks: 1) - Please choose one

By Extreme Value Theorem, if a function f(x, y) is continuous on a closed and bounded set R, then f(x, y) has both ----- on R.

Absolute maximum and absolute minimum value

Relative maximum and relative minimum value

Question No: 12 (Marks: 1) - Please choose one

Let the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy} \text{ and } f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^{2}(x_0, y_0)$

If
$$D > 0$$
 and $f_{xx}(x_0, y_0) < 0$ then f has ------

Relative maximum at (x_0, y_0)

Relative minimum at (x_0, y_0)

Saddle point at (x_0, y_0)

No conclusion can be drawn.

Question No: 13 (Marks: 1) - Please choose one

Let the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy} \text{ and } f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^{2}(x_0, y_0)$

If
$$D = 0$$
 then ------
 f has relative maximum at (x_0, y_0)
 f has relative minimum at (x_0, y_0)
 f has saddle point at (x_0, y_0)
No conclusion can be drawn.

Question No: 14 (Marks: 1) - Please choose one

The function $f(x, y) = \sqrt{y - x}$ is continuous in the region ------ and discontinuous elsewhere. $x \neq y$ $x \leq y$ $x \geq y$

Question No: 15 (Marks: 1) - Please choose one

Plane is an example of -----

Curve

Surface

Sphere

Cone

Question No: 16 (Marks: 1) - Please choose one

If $R = R_1 \cup R_2$, where R_1 and R_2 are no overlapping regions then

$$\iint_{R_1} f(x, y) dA + \iint_{R_2} f(x, y) dA =$$

$$\iint_{R} f(x, y) dA$$

 $\iint_{R_1} f(x, y) dA \cup \iint_{R_2} f(x, y) dA$

$$\iint_{R} f(x, y) dV$$
$$\iint_{R_{1}} f(x, y) dA \cap \iint_{R_{2}} f(x, y) dA$$

Question No: 17 (Marks: 1) - Please choose one

If
$$R = \{(x, y)/0 \le x \le 2 \text{ and } 1 \le y \le 4\}$$
, then

$$\iint_{R} (6x^{2} + 4xy^{3}) dA =$$

$$\int_{1}^{4} \int_{0}^{2} (6x^{2} + 4xy^{3}) dy dx$$
$$\int_{0}^{2} \int_{1}^{4} (6x^{2} + 4xy^{3}) dx dy$$
$$\int_{1}^{4} \int_{0}^{2} (6x^{2} + 4xy^{3}) dx dy$$
$$\int_{2}^{4} \int_{0}^{1} (6x^{2} + 4xy^{3}) dx dy$$

Question No: 18 (Marks: 1) - Please choose one

If
$$R = \{(x, y)/0 \le x \le 2$$
 and $-1 \le y \le 1\}$, then

$$\iint_{R} (x+2y^{2})dA =$$

$$\int_{-1}^{1} \int_{0}^{2} (x+2y^{2}) dy dx$$
$$\int_{0}^{2} \int_{1}^{-1} (x+2y^{2}) dx dy$$
$$\int_{-1}^{1} \int_{0}^{2} (x+2y^{2}) dx dy$$
$$\int_{1}^{2} \int_{-1}^{0} (x+2y^{2}) dx dy$$

Question No: 19 (Marks: 1) - Please choose one

If
$$R = \{(x, y)/0 \le x \le 2 \text{ and } 0 \le y \le 3\}$$
, then
$$\iint_{R} (1 - ye^{xy}) dA =$$

$$\int_{0}^{2} \int_{0}^{3} (1 - ye^{xy}) dy dx$$
$$\int_{0}^{2} \int_{0}^{3} (1 - ye^{xy}) dx dy$$
$$\int_{2}^{3} \int_{0}^{0} (1 - ye^{xy}) dx dy$$

$$\int_{0}^{2}\int_{2}^{3} (4xe^{2y})dydx$$

Question No: 20 (Marks: 1) - Please choose one

If
$$R = \{(x, y)/0 \le x \le 4 \text{ and } 0 \le y \le 9\}$$
, then

$$\iint_{R} (3x - 4x\sqrt{xy})dA =$$

$$\int_{0}^{9} \int_{0}^{4} (3x - 4x\sqrt{xy})dydx$$

$$\int_{0}^{4} \int_{4}^{9} (3x - 4x\sqrt{xy})dxdy$$

$$\int_{4}^{9} \int_{0}^{0} (3x - 4x\sqrt{xy})dxdy$$

$$\int_{0}^{4} \int_{0}^{9} (3x - 4x\sqrt{xy})dydx$$

Question No: 21 (Marks: 2)

Evaluate the following double integral.

$$\iint (2xy + y^3) \, dx \, dy$$

Question No: 22 (Marks: 2)

Let $f(x, y) = 2 + x^2 + \frac{y^2}{4}$ Find the gradient of f

Question No: 23 (Marks: 3)

Evaluate the following double integral.

 $\iint \left(3 + 2x - 3y^2\right) dx \, dy$

Question No: 24 (Marks: 3)

Let $f(x, y, z) = yz^3 - 2x^2$ Find the gradient of f.

Question No: 25 (Marks: 5)

Find Equation of a Tangent plane to the surface $f(x, y, z) = x^2 + 3y + z^3 - 9$ at the point (2, -1, 2)

Question No: 26 (Marks: 5)

Evaluate the iterated integral

$$\int_{2}^{4} \int_{\frac{x}{2}}^{\sqrt{x}} (xy) \, dy \, dx$$

MIDTERM EXAMINATION

MTH301

Suppose $f(x, y) = x^3 e^{xy}$. Which one of the following is correct?

 $\frac{\partial f}{\partial x} = 3x^2 e^{xy} + x^3 y e^{xy}$ $\frac{\partial f}{\partial x} = 3x^2 y e^{xy}$ $\frac{\partial f}{\partial x} = 3x^2 e^{xy} + x^4 e^{xy}$

 $\frac{\partial f}{\partial x} = 3x^2 e^{xy}$

Let R be a closed region in two dimensional space. What does the double integral over R calculates?

Area of R.

Radius of inscribed circle in R. Distance between two endpoints of R. None of these

What is the distance between points (3, 2, 4) and (6, 10, -1)?

 $7\sqrt{2}$ $2\sqrt{6}$ $\sqrt{34}$ $7\sqrt{3}$

----- planes intersect at right angle to form three dimensional space.

<u>Three</u>

4

~

8

12

There is one-to-one correspondence between the set of points on co-ordinate line and -----

Set of integers

Set of natural numbers Set of rational numbers Let the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy} and f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0)$ If D = 0 then ----- f has relative maximum at (x_0, y_0) f has relative minimum at (x_0, y_0) f has saddle point at (x_0, y_0) **No conclusion can be drawn.** If $R = \{(x, y)/0 \le x \le 2 and 0 \le y \le 3\}$, then $\iint_R (1 - ye^{xy}) dA =$

$$\int_{0}^{2} \int_{0}^{3} (1 - ye^{xy}) dy dx$$

$$\int_{0}^{2} \int_{0}^{3} (1 - ye^{xy}) dx dy$$

$$\int_{2}^{3} \int_{0}^{0} (1 - ye^{xy}) dx dy$$

$$\int_{0}^{2} \int_{2}^{3} (4xe^{2y}) dy dx$$

Suppose f(x, y) = 2xy where $x = t^2 + 1$ and y = 3 - t. Which one of the following is true?

 $\frac{df}{dt} = 6t - 4t^2 - 2$

$$\frac{df}{dt} = 6t - 2$$
$$\frac{df}{dt} = 4t^3 + 6t - 6$$

$$\frac{df}{dt} = -6t^2 + 12t - 2$$

Let i, j and k be unit vectors in the direction of x-axis, y-axis and z-axis respectively. Suppose

that $\vec{a} = 2i + 5j - k$. What is the magnitude of vector \vec{a} ?

 $6 \\ 30 \\ \sqrt{30} \\ \sqrt{28}$

A straight line is ------ geometric figure. <u>One-dimensional</u> Two-dimensional

Two-dimensional Three-dimensional Dimensionless

$$If R = \{(x, y)/0 \le x \le 2 \text{ and } 1 \le y \le 4\}, then$$
$$\iint_{R} (6x^{2} + 4xy^{3})dA =$$
$$\int_{1}^{4} \int_{0}^{2} (6x^{2} + 4xy^{3})dydx$$
$$\int_{0}^{2} \int_{1}^{4} (6x^{2} + 4xy^{3})dxdy$$
$$\int_{1}^{4} \int_{0}^{2} (6x^{2} + 4xy^{3})dxdy$$
$$\int_{2}^{4} \int_{0}^{1} (6x^{2} + 4xy^{3})dxdy$$

Which of the following formula can be used to find the Volume of a parallelepiped with adjacent \vec{a} , \vec{b} and \vec{c}_{2}

edges formed by the vectors $\begin{vmatrix} \vec{a} \times (\vec{b} \times \vec{c}) \end{vmatrix}$ $\begin{vmatrix} \vec{a} \cdot (\vec{b} \cdot \vec{c}) \end{vmatrix}$ $\begin{vmatrix} \vec{a} \cdot (\vec{b} \times \vec{c}) \end{vmatrix}$ $\begin{vmatrix} \vec{a} \times (\vec{b} \cdot \vec{c}) \end{vmatrix}$

f(x) The function

 $f(x, y) = \sqrt{y - x}$ is continuous in the region ----- and discontinuous elsewhere.

 $x \neq y$

 $x \le y$

x > y

What is the relation between the direction of gradient at any point on the surface to the tangent plane at that point ?

parallel

perpendicular opposite direction No relation between them.

Suppose $f(x, y) = x^3 e^{xy}$. Which one of the statements is correct? $\frac{\partial f}{\partial y} = 3x^3 e^{xy}$

$$\frac{\partial f}{\partial y} = x^3 e^{xy}$$
$$\frac{\partial f}{\partial y} = x^4 e^{xy}$$
$$\frac{\partial f}{\partial y} = x^3 y e^{xy}$$

Two surfaces are said to intersect orthogonally if their normals at every point common to them are ------

perpendicular parallel in opposite direction Let the function f(x, y) has continuous second-order partial derivatives $(f_{xx}, f_{yy} \text{ and } f_{xy})$ in some circle centered at a critical point (x_0, y_0) and let $D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^{2}(x_0, y_0)$

If D > 0 and $f_{xx}(x_0, y_0) < 0$ then f has ------

Relative maximum at (x_0, y_0)

Relative minimum at (x_0, y_0) Saddle point at (x_0, y_0) No conclusion can be drawn.

If
$$R = \{(x, y)/0 \le x \le 2 \text{ and } -1 \le y \le 1\}$$
, then

$$\iint_{R} (x+2y^{2})dA =$$

$$\int_{-1}^{1} \int_{0}^{2} (x+2y^{2})dydx$$

$$2 = -1$$

$$\int_{0}^{2} \int_{1}^{-1} (x+2y^2) dx dy$$

$$\int_{-1}^{1} \int_{0}^{2} (x+2y^{2})dxdy$$
$$\int_{1}^{2} \int_{-1}^{0} (x+2y^{2})dxdy$$

$$f(x, y, z) = \frac{x^2 y}{z} + xyz$$

If

then what is the value of f(1, 1, 1)?

f(1, 1, 1) = 1f(1, 1, 1) = 2

$$f(1, 1, 1) = 3$$

$$f(1, 1, 1) = 4$$

If $R = \{(x, y)/0 \le x \le 4 \text{ and } 0 \le y \le 9\}, \text{then}$

$$\iint_{R} (3x - 4x\sqrt{xy})dA =$$

$$\int_{0}^{9} \int_{0}^{4} (3x - 4x\sqrt{xy})dydx$$

$$\int_{0}^{9} \int_{0}^{0} (3x - 4x\sqrt{xy})dxdy$$

$$\int_{0}^{9} \int_{0}^{0} (3x - 4x\sqrt{xy})dydx$$

Let $f(x, y) = 2 + x^{2} + \frac{y^{2}}{4}$
Q- Find the gradient of f

2MARKS

Q - Let the function f(x, y) is continuous in the region **R**, where **R** is a rectangle as shown below.complete the following equation

$$\iint_{R} f(x, y) \, dA = \int \int f(x, y) \, \underline{\qquad}$$
2MARKS

Q.Find all critical points of the function

 $f(x, y) = 4xy - x^3 - 2y^2$

$$\int_{1}^{4} \int_{0}^{2} (6x^2 + 4xy^3) dx \, dy$$

Evaluate

Q-Evaluate the following double integral.

$$\iint (3+2x-3y^2) \, dx \, dy$$

3MARKS

$$y = \frac{1}{x^2}$$

Q- Let . If ^x changes from 3 to 3.3, find the approximate change in the value of y using differential dy. 3MARKS

MIDTERM EXAMINATION

MTH301

That all is collected by removing the mistakes of the one paper file, hope it helpful...!

MTH301 Calculus II	
Question No : 1 of 26	Marks: 1 (Budgeted Time 1 Min) 📃
Every real number corresponds to on the co-ordinate line	
Answer (Please select your correct option)	
Infinite number of points	<
	N. N
Two points (one positive and one negative)	8
	×
A unque point	×
O D	
	0
None of these	~
0	
~	

In that the answer is "unique point"

Question No : 2 of 26	Marks: 1 (Budgeted Time 1 Min)		
There is one-to-one correspondence between the set of points or co-ordinate line and		~	
			2
		<u></u>	_
Answer (Please select your correct option)			
Set of real numbers			8
0			
			N
Set of integers			1
0			
			4
Set of natural numbers			~
o			
			2
Set of rational numbers			1
			11

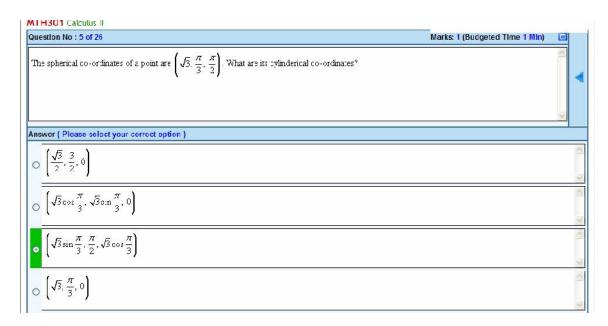
In that the correct answer is the "Set of Real Numbers".

Marks: 1 (Budgeted Time 1 Min)		
	~	
	Y	
		~
		2
		2
		1
		×
		0
	Marks: 1 (Budgeted Time 1 Min)	Marks: 1 (Budgeted Time 1 Min)

In this the exact answer is "an ordered triple".

Q	iestion No : 4 of 26	Marks: 1 (Dudgeted Time 1 Min)		
A	Il axes are positive in cetant.		~	
L			V	
Aı	iswer (Please select your correct option)			
Γ	Fust			~
۲				
				×
	Second			2
0				
				Y
	Forth			
	Eighth			~
0				
				-

It's right



This one is also wrong as the answer is "4th one".because the central point of spherical is pie/3 that should be same in cylindrical so, that's only occur in last one...

Question No : 6 of 26	Marks: 1 (Budgeted Time 1 Min) 🛛 🗖
Suppose $f(x, y) = xy - 2y^2$ where $x = 3t + 1$ and $y = 2t$. Which one of the following is true?	
Answer (Please select your correct option)	
$ \frac{df}{dt} = -4t + 2 $	0
$\bigcirc \frac{df}{dt} = -16t - t$	() ()
$\bigcirc \frac{df}{dt} = 18i + 2$	~
$\bigcirc \frac{df}{dt} = -10t^2 + 8t + 1$	<

That's right

uestion No : 7 of 26	Marks: 1 (Budgeted Time 1 Min)
Let $w = f(x, y, z)$ and $x = g(r, s)$, $y = F(r, s)$, $z = t(r, s)$ then by rhair rule $\frac{\partial w}{\partial r} = -$	3
nswer (Please select your correct option)	<u> </u>
$\frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial r}$	
$\frac{\partial w}{\partial r}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial r}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial r}\frac{\partial z}{\partial r}$	
$\frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\omega w}{\partial z} \frac{\partial z}{\partial s}$	
$\int \frac{\partial w}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial w}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial w}{\partial r} \frac{\partial r}{\partial z}$	

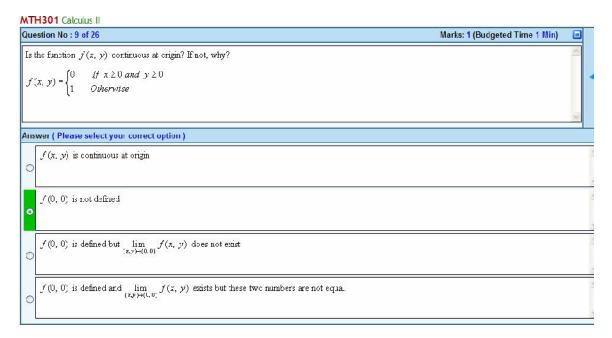
Here's answer is the "2nd" one...!

____ MTH301 Calculus II Question No : 8 of 26 Marks: 1 (Budgeted Time 1 Min) E Magnitude of vector \vec{a} is 2, magnitude of vector \vec{b} is 3 and angle between them when placed tail to tail is 45 degrees. What is \vec{a} . \vec{b} ? -Answer (Please select your correct option) 4.5 0 6.2 ۲ 5.1 0 4.2 0

That can't say exactly guys, its formula is following...!

a.b = |a||b| cosØ

Ø=angle between the vectors



That's correct answer...!

Question No : 10 of 26	Marks: 1 (Budgeted Time 1 Min)	
Is the function $f(x, y)$ continuous at origin? If not, why?		~
$f(x, y) = \begin{cases} \frac{3x^2y}{x^2 + y^2} & \text{if } (x, y) \neq 0\\ 0 & \text{if } (x, y) = 0 \end{cases}$		
$0 \qquad \text{if } (x, y) = 0$		
Annuar (Wasse select your correct ention)		~
Answer (Please select your correct option)		
f(x, y) is continuous at origin		
f(0, 0) is not defined		
•		
$f(0, 0)$ is defined but $\lim_{(x,y)\to(0,0)} f(x, y)$ does not exist		
$\int f(0, 0)$ is defined and $\lim_{(x,y)\to(0,0)} f(x, y)$ exists but these two numbers are not equal.		

But that's wrong the correc one is the 1^{st} ..

MTH301 Calculus II

Question No : 11 of 26	Marks: 1 (Budgeted Time 1 Min) 📃
Let R be a closed region in two cimensional space. What does the double integral over R calculates?	
Answer (Please select your correct option) Area of R	×
Radius of inscribed circle in R	
Distance between two endpoints of R.	
None of these	

That's the first answer, as that was been define in the lecture 22...!

Question No : 12 of 26	Marks: 1 (Budgeted Time 1 Min)	3
Which of the following formula can be used to find the Volume of a parallelepiped with adjacent edges for	med by the vectors \overline{a} , \overline{b} and \overline{c} ?	
Answer (Please select your correct option)		<u>v</u>
$\circ \left \overline{a} \times (\overline{k} \times \overline{c}) \right $		<u></u>
		~
$\circ \ \overline{a} \cdot (\overline{b} \cdot \overline{c})$		<u>_</u>
		×
$\overline{\vec{x} \cdot (\vec{b} \times \vec{c})}$		~
		4
$o \boxed{a \times (b \cdot c)}$		^
		~

Here's the answer is the last one, you can check that on the start of lecture 11th, handout...!

Question No : 13 of 26	Marks: 1 (Budgətəd Timə 1 Min)
Two surfaces are said to be orthogonal at a point of their intersecti	ion if their normals at that point are
Answer (Please select your correct option) Parallel	
o	
© Perpendicular	

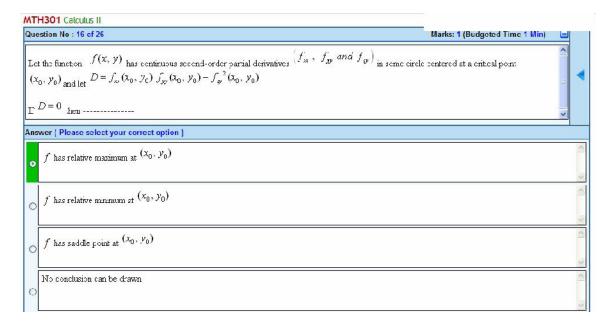
Its answer is the "perpendicular"...!

Question No : 14 of 26	Marks: 1 (Budgeted Time 1 Min)
By Extreme Value Theorem, f a function $f(x,y)$ is continuous on a closed and be	unded set R, then $f(x, y)$ has both on R.
nswer (Please select your correct option)	
Absolute maximum and absolute minimum value	
Relative maximum and relative minimum value	

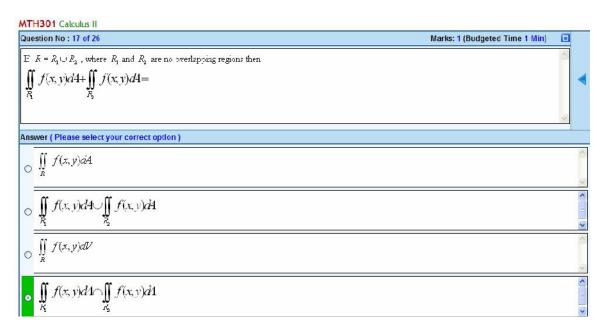
That's right answer...!

MTH301 Calculus II		
Question No : 15 of 26	Marks: 1 (Budgeted Time 1 Min)	
Let the function $f(x, y)$ has continuous second-order partial derivatives $(f_{\infty}, f_{yy} \ ax a' \ f_{\infty})_{n \text{ some circl}}$ $(x_0, y_0)_{\text{ard let}} D = f_{\alpha}(x_0, y_0) \ f_{yy}(x_0, y_0) - f_{\phi}^{-2}(x_0, y_0)$	e centered at a critical point	*
$F D > 0$ and $f_{xx}(x_0, y_0) < 0$ then f_{has}		4
Answer (Please select your correct option)		
Relative maximum at (x_0, y_1)		1
		N
$\bigcirc \text{ Relative minimum at } (x_0, y_0)$		0
		2
\circ Saddle point at (x_0, y_0)		~
		3
No conclusion can be drawn.		\$
		24

This is also right one..!



"No conclusion can be drawn" is the answere...!

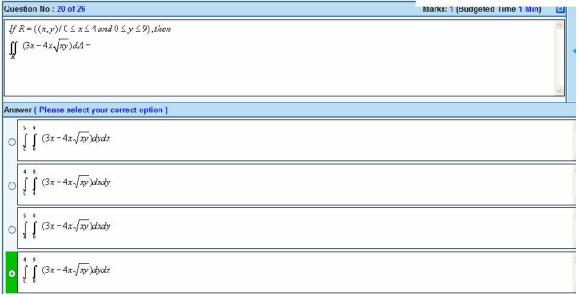


Its answer is the first one option...!

Its answer is the 3rd option

MTH301 Calculus II		
Question No : 19 of 25	Marks: 1 (Budgeted Time 1 Min)	
If $k = \{(x, y)/2 \le x \le 4 \text{ and } y \le 1\}$, then		~
$\iint_{\mathcal{D}} (4\pi e^{2p}) dA =$		•
Answer (Flease select your correct option)		
$\int_{1}^{1} \int_{2}^{4} (4xe^{2y}) dy dx$		~
		~
$\int \int (4\pi e^{2y}) dx dy$		2
		~
$\int \int \int (4\pi e^{2y}) dx dy$		~
		2
$ \int \int \int dx e^{2y} dy dx $		6 D

It's right one ...!



This one's also right...

FH301 Calculus II	
Question No : 21 of 26	Marks: 2 (Budgeted Time 4 Min) 📃
Suppose that the surface $f(x, y, z)$ has continuous partial derivatives at the point (a, b, c) . Write	c down the equation of tangent plane at this point.
Answer (Please <u>click here</u> to Add Answer)	
▲ Ailal ♥ 2 A B C ♥ 2 A B C 12 ♥ B I U E E E E E E E E	

Its equation is

$$f_x(a)(x-x_0) + f_y(b)(y-y_0) + f_z(c)(z-z_0) = 0$$





These both can be solve by the following example the me gonna paste...!

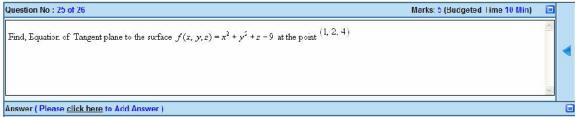
Evaluate the following double integral.

$$\iint \left(3 + 2x - 3y^2\right) \, dx \, \, dy$$

Solution:

$$\iint (3+2x-3y^2) dx dy$$
$$\int (3x+2x^2-3xy^2) dy$$
$$3xy+2x^2y-xy^3$$

didn't got this question dear's...!



You can use the above tangent equation to sove this...!

Use double integral in rectangular co-ordinates to compute area of the region bounded by the curves $y = x^2$ and $y = \sqrt{x}$.	
y = -yx	*

Its answer is the under mentioned...!

as our require is area of the following region

$$V = \iint_{\mathbb{R}} 1 dA = \iint_{\mathbb{R}} dA \text{ we can compute area by keeping } f(x,y) \text{ const}$$
$$= \int_{0}^{1} \int_{x^{2}}^{x} dy dx$$
$$= \int_{0}^{1} [x]_{x^{2}}^{x}$$
$$= \int_{0}^{1} (x - x^{2})$$
$$= \left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{1}$$
$$= \left[\frac{1}{2} - \frac{1}{3}\right]$$
$$= \left[\frac{3 - 2}{6}\right]$$
$$= \frac{1}{6} \text{ that's exactly what we require...!}$$