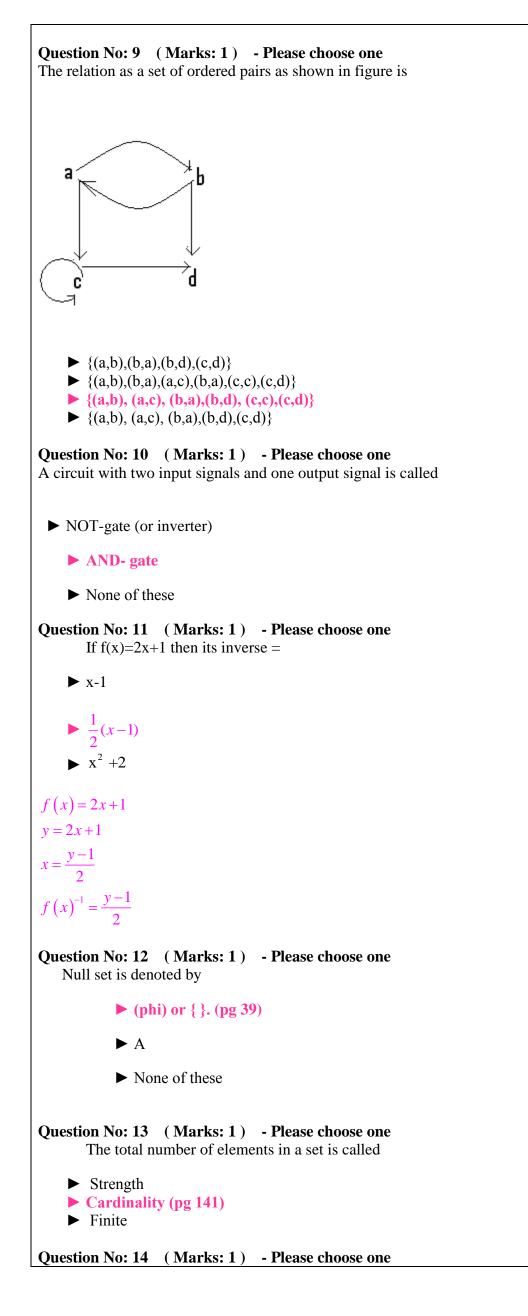


0040	

moaaz.pk@gmail.com

Moaaz siddiq



.

MTH202 Discrete Mathematics

Question No. 1: If p= It	is raining q = She will g	go to college	
"It is raining and she will not go to college" will be denoted by			
$p \wedge \sim q$	$p \land q$	$\Box \sim (p \land q)$	$\Box \sim p \wedge q$
Question No. 2:			
The negation of "Today is Frid Today is Saturday	<u> </u>	y 🔲 Today is Thursday	None of given
Question No. 3: The converse of the conditiona $q \rightarrow p$	l statement $p \rightarrow q$ is	$\Box \sim p \rightarrow \sim q$	None of these
Question No. 4: Contra-positive of given statement "If it is raining, I will take an umbrella" is I will not take an umbrella if it is not raining. (Pg 19) I will take an umbrella if it is not raining. It is not raining or I will take an umbrella. None of these.			
Question No. 5: A statement is also referred to Proposition (pg 4)	as a Conclusion	Order	None of these
Question No. 6: The statement "It is not raining if and only if roads are dry" is logically equivalent to If roads are dry then it is not raining. Roads are dry if and only if it is not raining If it is not raining then roads are dry.			
Question No. 7: The statement $\sim (\sim p) = p$ Des Commutative Law	cribes Implication Laws	Double negative law	Equivalence
Question No. 8: An arrangement of rows and columns that specifies the truth value of a compound proposition for all possible truth values of its constituent propositions is called			
Truth Table	Venn diagram	False Table	None of these
Question No. 9:			
An argument is if the co	nclusion is true when all	the premises are true.	
Valid (Pg 25) these	Invalid	False	None of
Question No. 10: The row in the truth table of an argument where all premises are true is called			
Valid row	Invalid row	Critical row (Pg 27	None of

Question No. 11: The statement $p \rightarrow q \equiv (p \land \sim q) \rightarrow c$ describes \square Commutative Law \square Implication Laws \square Exportation Law \square Reductio ad absurdum			
Question No. 12:			
$p \leftrightarrow q$ is logically equivalent to $(p \rightarrow q) \land (q \rightarrow p)$ [] TRUE [] FALSE			
Question No. 13: According to biconditional 1+1=3 if and only if sky is yellow. TRUE (Pg 20) FALSE			
Question No. 14: A statement that is always true regardless of the truth values of the statement variables called Tautology. TRUE (Pg 10) FALSE			
Question No. 15:			
If p and q are statement variables, then the conjunction of p and q is "p and q" denoted as " $p \lor q$ ".			
TRUE FALSE			
Question No: 3 (Marks: 1) - Please choose one For two sets A,B			
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ is called			
 Distributivity of intersection over union Distributivity of union over intersection None of these Distributivity Law 			
Question No: 6 (Marks: 1) - Please choose one Check whether			
$36 \equiv 1 \pmod{5}$ 36 Modulus5 = 1 remainder			
33 [≡] 3 (mod10) 33 Modulus10 = 3 remainder			
 Both are equivalent Second one is equivalent but first one is not First one is equivalent but second one is not 			
Question No: 7 (Marks: 1) - Please choose one A binary relation R is called Partial order relation if			
 It is Reflexive and transitive It is symmetric and transitive It is reflexive, symmetric and transitive It is reflexive, anti-symmetric and transitive (Pg 92) 			
Question No: 8 (Marks: 1) - Please choose one The order pairs which are not present in a relation, must be present in			
 Inverse of that relation Composition of relations Complementary relation of that relation (pg 97) 			
► Complementary relation of that relation (pg 97)			

If f(x) = x+1 and $g(x) = -2x^2 + 1$ then $(2f - 1g)x = 2x^2 - x$ 3x+2 $2x^2 + 2x + 1$ = (2f - 1g)x = 2f(x) - g(x) $= 2.(x+1) - (-2x^2 + 1)$ $= 2x^2 + 2x + 1$

Question No: 15 (Marks: 1) - Please choose one Let

```
a_0 = 1, a_1 = -2 \text{ and } a_2 = 3
then \sum_{j=0}^{2} a_j =
```

-6
2
8

Question No: 16 (Marks: 1) - Please choose one Which of the given statement is incorrect?

- ► The process of defining an object in terms of smaller versions of itself is called recursion. (Pg 159)
- A recursive definition has two parts: Base and Recursion.
- ► Functions cannot be defined recursively (Pg 159)
- Sets can be defined recursively. (Pg 165)

Question No: 17 (Marks: 1) - Please choose one

The operations of intersection and union on sets are commutative

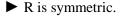
► True (Pg 42)

- ► False
- ► Depends on the sets given

Question No: 18 (Marks: 1) - Please choose one

The power set of a set A is the set of all subsets of A, denoted P(A).

```
► False
```


► True (Pg 68)

Question No: 19 (Marks: 1) - Please choose one What is the output state of an OR gate if the inputs are 0 and 1?

Question No: 20 (Marks: 1) - **Please choose one** The product of the positive integers from 1 to n is called

- Multiplication
 n factorial
- ► Geometric sequence

Question No: 6 (Marks: 1) - Please choose one Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ then

- ► R is anti symmetric.
- ► R is transitive.
- ► R is reflexive.
- ► All given options are true

Question No: 7 (Marks: 1) - Please choose one The inverse of given relation $R = \{(1,1), (1,2), (1,4), (3,4), (4,1)\}$ is $\blacktriangleright \{(1,1), (2,1), (4,1), (2,3)\}$ $\blacktriangleright \{(1,1), (1,2), (4,1), (4,3), (1,4)\}$

 $\blacktriangleright \{(1,1),(2,1),(4,1),(4,3),(1,4)\} (Pg 95)$

Question No: 11 (Marks: 1) - Please choose one $(A \cap B)^c = (A^c \cap B^c)$ True

► False

Question No: 13 (Marks: 1) - Please choose one Let g be the functions defined by g(x)=3x+2 then gog(x) =

- ► $9x^2 + 4$ ► 6x+4► 9x+8 g(g(x)) = g(3x+2)= 3(3x+2)+2
- =9x+6+2=9x+8

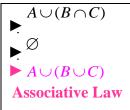
Question No: 16 (Marks: 1) - Please choose one

The Common fraction for the recurring decimal 0.81 is $\frac{81}{100}$ $\frac{81}{98}$ $\frac{9}{11}$ (Pg 157)

Question No: 17 (Marks: 1) - Please choose one

A collection of rules indicating how to form new set objects from those already known to be in the set is called

Base
Restriction
Recursion (Pg159)


Question No: 19 (Marks: 1) - Please choose one The statement of the form $p^{\vee} \sim p$ is:

```
► Tautology (Pg 10)
```

- Contradiction
- ► Fallacy

►

Question No: 20 (Marks: 1) - Please choose one Let A,B,C be the subsets of a universal set U. $(A \cup B) \cup C$ Then is equal to: $A \cap (B \cup C)$

Question: If $R = \{ (a, a), (b, b), (c, c) \}$ is a relation on the set $A = \{a, b, c\}$ Then R is

- Symmetric only.
- Symmetric and reflexive only.
- ➢ Reflexive only.
- > Equivalence relation. (Pg 85)

Question: The negation of the implication "If P is a square then P is a rectangle" is

- If P is not a square then P is not a rectangle
- P is not a square and P is a rectangle
- > P is a square and P is not a rectangle.
- \succ None of the above

Question: Identify the false statement

- > 0 ∈ Ø
- \succ {∅}{∅} ⊆
- ▶ If A and B are two sets A B and BA then A = B. \subseteq
- > Two sets are disjoint if their intersection is empty set.
- \blacktriangleright A \Box A^c = U

Question: Let A be a set containing 3 elements then the total number of relations from A to A is

- ▶ 2*9
- ▶ 2^9
- ≻ n*n
- ≽ 2n

Question: Let A = {1,2,3} and B = {2,3,4,5} then

- \blacktriangleright A = B.
- \succ A is a subset of B.
- > A is improper subset of B.
- **Both 2 and 3.**

Question: Which of the following is not a Proposition?

- ➤ x >11.
- > Sun rounds about the Earth
- ▶ 11+7=18
- \succ None of above.

Question: F={x∈R | x131 + 29 x 12 -3=0}

- > finite
- ➢ infinite
- \succ (c) none of above

Question: Let A has the same cardinality as B if and only if ,there is a------ correspondence between sets A and B

- one-one
- > onto
- (c) Both (a) and (b) (Pg 141)

Question: Let A={0,1,2,3,4,5}and we define functions f: A \rightarrow A and then g: A \rightarrow A f (3)=3, f (4)=2, f (5)=2, f (2)=5, f (1)=2 g (1)=4, g (3)=3, g (5)=3, g (2)=1 then fog(5) and gof(2) \succ (a) fog(5) = gof(2) \succ (b) fog(5) gof(2)

- (c) $\log(3) = gof(1)$
- (d) None of the above

fog(5) = fg(5)= f(3) = 3 gof(2) = gf(2)= g(5) = 3 Question: Choose the correct answer: If f and g are two one-to-one functions, then the

If f and g are two one-to-one functions, then their composition of gof is

onto
one-to-one (Pg 134)

(c) bijective

Question: If 1=1 then 2=2, the conditional statement is

- > True
- ➤ False
- \succ None of other.

```
If 1^3 + 2^3 + 3^3 + ... + n^3 =
```

Then,

```
\frac{\left[\frac{n(n+1)}{2}\right]^2}{\frac{n(n+1)(2n+1)}{6}}
\frac{n(n+1)}{2}
```

None of these

Question: A set Z has n elements. How many functions are from Z to Z?

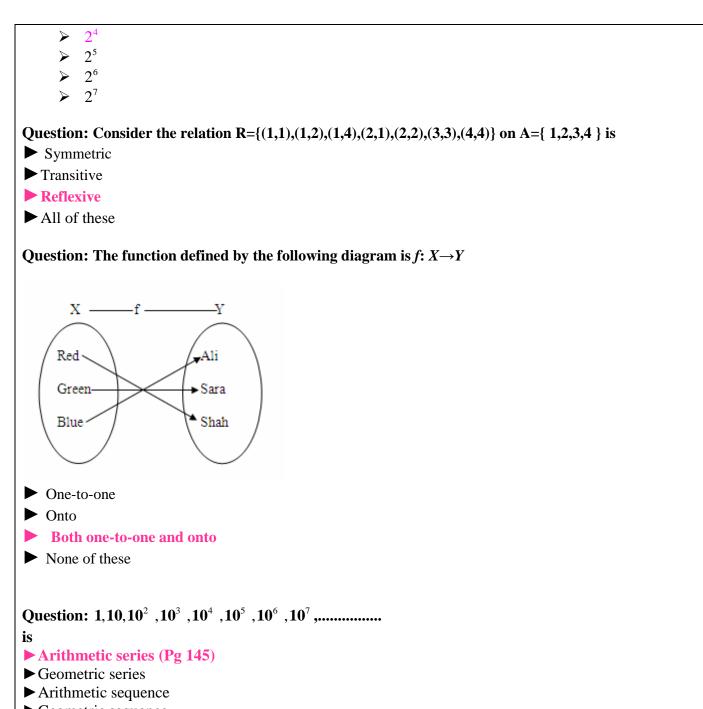
- ≻ 2n
- ≻ n×n
- > nn
- \succ None of the other

Question: Compute the summation

 $\sum_{i=0}^{2} \left(i^2 + 2 \right)$

- ⊳ 5
- > 3
- > 0
- None of these.

Question: Let $S = \{n \in \mathbb{Z} / n = (-1)_k, \text{ for some integer } k\}$


- \succ S={1}
- \succ S={-1}
- ► S={-1,1}
- \succ None of the other

```
Question: If p=T,q=T,r=F
Then
((\sim p) \land r) \rightarrow (q \land r))
Must be
\succ F
```

- ≻ T
- ≽ qVr

```
\succ None of these.
```

Question: If A={a,b,c,d} then the number of elements of power set P(A) are

► Geometric sequence

Question: Negations for the given statement "The train is late or my watch is fast" is

▶ The train is not late or my watch is not fast.

- ► The train is not late and my watch is not fast.
- The train is not late or my watch is fast
- ► None of these.

Question:

Let R be the relation from $A = \{a_1, a_2, a_3\}$ (Elements of A are ordered by their subscript) to itself given by the matrix representation. Then R is

 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

- Reflexive and Symmetric.
- Symmetric and Transitive.

▶ Irreflexive and Symmetric.

► Irreflexive and Anti- Symmetric.

If out of 35 people each person like Discrete Mathematics or Data Structures ,25 like Discrete Mathematics, and 20 like Data structures then the number of people who like

both Discrete and Data Structures is.....

5
15
10
None of these.

Question: Inverse of a function may not be a function

- True (Pg 124)
- ➤ False

Question No: 1 (Marks: 1) - Please choose one

The inverse of given relation $R = \{(1,1), (1,2), (1,4), (3,4), (4,1)\}$ is

- ► {(1,1),(2,1),(4,1),(2,3)}
- ► {(1,1),(1,2),(4,1),(4,3),(1,4)}
- $\blacktriangleright \{(1,1),(2,1),(4,1),(4,3),(1,4)\}$

Question No: 2 (Marks: 1) - Please choose one Symmetric and antisymmetric are

- ► Negative of each other
- ► Both are same
- ► Not negative of each other (Pg 90)

Question No: 3 (Marks: 1) - Please choose one Let A = {a, b, c} and

 $\mathbf{R} = \{(\mathbf{a}, \mathbf{c}), (\mathbf{b}, \mathbf{b}), (\mathbf{c}, \mathbf{a})\}$ be a relation on A. Is R

- ► Transitive
- ► Reflexive
- **Symmetric**
- ► Transitive and Reflexive

Question: In Boolean addition 1+1=

2
1 (Pg 99)
0

- Question No: 8 (Marks: 1) Please choose one The same element can never appear twice in a set
 - TrueFalse

Question No: 9 (Marks: 1) - Please choose one

```
If f(x)=2x+1, g(x)=x^2 -1 then fg(x)=

x^2 -1

2x^2 -1

2x^3 -1
```

```
fg(x) = f(x^{2} - 1)f(x^{2} - 1) = 2(x^{2} - 1) + 1= 2x^{2} - 2 + 1= 2x^{2} - 1
```

Question No: 13 (Marks: 1) - Please choose one If a set contains exactly *m* distinct elements where *m* denotes some non negative integer then the set is .

- ► Finite
- ► Infinite
- ► None of these

Question No: 14 (Marks: 1) - Please choose one If f(4) = 1 and g(1) = 4 then fog(1) =

5 3 1 4 fog(1) = fg(1) = f(4) = 1

Question No: 15 (Marks: 1) - Please choose one If $(A \cup B) = A$, then $(A \cap B) = B$

- TrueFalse
- ► Cannot be determined

```
Question No: 16 (Marks: 1) - Please choose one
The total number of elements in a set is called
```

- Strength
- Cardinality
- ► Finite

Question No: 17 (Marks: 1) - Please choose one If f(x) = x and g(x)=-2x then (f+g)x =

- 3x $2x^{2}$
- ► -x

Question No: 19 (Marks: 1) - Please choose one

Which term of the sequence 4,1,-2,... is -77

▶ 26
▶ 27
▶ 28

 2^{5}

```
Question No: 13 (Marks: 1) - Please choose one

Let g be the functions defined by

g(x)=3x+2 then gog(x) =

9x^2+4

6x+4

9x+8

gg(x)

=3(3x+2)+2

=9x+6+2

=9x+8
```