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Preface

Assembly language programming develops a very basic and low level
understanding of the computer. In higher level languages there is a distance
between the computer and the programmer. This is because higher level
languages are designed to be closer and friendlier to the programmer,
thereby creating distance with the machine. This distance is covered by
translators called compilers and interpreters. The aim of programming in
assembly language is to bypass these intermediates and talk directly with the
computer.

There is a general impression that assembly language programming is a
difficult chore and not everyone is capable enough to understand it. The
reality is in contrast, as assembly language is a very simple subject. The
wrong impression is created because it is very difficult to realize that the real
computer can be so simple. Assembly language programming gives a
freehand exposure to the computer and lets the programmer talk with it in
its language. The only translator that remains between the programmer and
the computer is there to symbolize the computer’s numeric world for the ease
of remembering.

To cover the practical aspects of assembly language programming, IBM PC
based on Intel architecture will be used as an example. However this course
will not be tied to a particular architecture as it is often done. In our view
such an approach does not create versatile assembly language programmers.
The concepts of assembly language that are common across all platforms will
be developed in such a manner as to emphasize the basic low level
understanding of the computer instead of the peculiarities of one particular
architecture. Emphasis will be more on assembly language and less on the
IBM PC.

Before attempting this course you should know basic digital logic
operations of AND, OR, NOT etc. You should know binary numbers and their
arithmetic. Apart from these basic concepts there is nothing much you need
to know before this course. In fact if you are not an expert, you will learn
assembly language quickly, as non-experts see things with simplicity and the
basic beauty of assembly language is that it is exceptionally simple. Do not
ever try to find a complication, as one will not be there. In assembly language
what is written in the program is all that is there, no less and no more.

After successful completion of this course, you will be able to explain all
the basic operations of the computer and in essence understand the
psychology of the computer. Having seen the computer from so close, you
will understand its limitations and its capabilities. Your logic will become fine
grained and this is one of the basic objectives of teaching assembly language
programming.

Then there is the question that why should we learn assembly language
when there are higher level languages one better than the other; C, C++,
Java, to name just a few, with a neat programming environment and a
simple way to write programs. Then why do we need such a freehand with
the computer that may be dangerous at times? The answer to this lies in a
very simple example. Consider a translator translating from English to
Japanese. The problem faced by the translator is that every language has its
own vocabulary and grammar. He may need to translate a word into a
sentence and destroy the beauty of the topic. And given that we do not know
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Japanese, so we cannot verify that our intent was correctly conveyed or not.
Compiler is such a translator, just a lot dumber, and having a scarce
number of words in its target language, it is bound to produce a lot of
garbage and unnecessary stuff as a result of its ignorance of our program
logic. In normal programs such garbage is acceptable and the ease of
programming overrides the loss in efficiency but there are a few situations
where this loss is unbearable.

Think about a four color picture scanned at 300 dots per inch making
90000 pixels per square inch. Now a processing on this picture requires
360000 operations per square inch, one operation for each color of each
pixel. A few extra instructions placed by the translator can cost hours of
extra time. The only way to optimize this is to do it directly in assembly
language. But this doesn’t mean that the whole application has to be written
in assembly language, which is almost never the case. It’s only the
performance critical part that is coded in assembly language to gain the few
extra cycles that matter at that point.

Consider an arch just like the ones in mosques. It cannot be made of big
stones alone as that would make the arch wildly jagged, not like the fine arch
we are used to see. The fine grains of cement are used to smooth it to the
desired level of perfection. This operation of smoothing is optimization. The
core structure is built in a higher level language with the big blocks it
provides and the corners that need optimization are smoothed with the fine
grain of assembly language which allows extreme control.

Another use of assembly language is in a class of time critical systems
called real time systems. Real time systems have time bound responses, with
an upper limit of time on certain operations. For such precise timing
requirement, we must keep the instructions in our total control. In higher
level languages we cannot even tell how many computer instructions were
actually used, but in assembly language we can have precise control over
them. Any reasonable sized application or a serious development effort has
nooks and corners where assembly language is needed. And at these corners
if there is no assembly language, there can be no optimization and when
there is no optimization, there is no beauty. Sometimes a useful application
becomes useless just because of the carelessness of not working on these
jagged corners.

The third major reason for learning assembly language and a major
objective for teaching it is to produce fine grained logic in programmers. Just
like big blocks cannot produce an arch, the big thick grained logic learnt in a
higher level language cannot produce the beauty and fineness assembly
language can deliver. Each and every grain of assembly language has a
meaning; nothing is presumed (e.g. div and mul for input and out put of
decimal number). You have to put together these grains, the minimum
number of them to produce the desired outcome. Just like a “for” loop in a
higher level language is a block construct and has a hundred things hidden
in it, but using the grains of assembly language we do a similar operation
with a number of grains but in the process understand the minute logic
hidden beside that simple “for” construct.

Assembly language cannot be learnt by reading a book or by attending a
course. It is a language that must be tasted and enjoyed. There is no other
way to learn it. You will need to try every example, observe and verify the
things you are told about it, and experiment a lot with the computer. Only
then you will know and become able to appreciate how powerful, versatile,
and simple this language is; the three properties that are hardly ever present
together.

Whether you program in C/C++ or Java, or in any programming paradigm
be it object oriented or declarative, everything has to boil down to the bits
and bytes of assembly language before the computer can even understand it.
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1
Introduction to Assembly
Language

1.1. BASIC COMPUTER ARCHITECTURE

Address, Data, and Control Buses

A computer system comprises of a processor, memory, and I/O devices.
I/O is used for interfacing with the external world, while memory is the
processor’s internal world. Processor is the core in this picture and is
responsible for performing operations. The operation of a computer can be
fairly described with processor and memory only. I/O will be discussed in a
later part of the course. Now the whole working of the computer is
performing an operation by the processor on data, which resides in memory.

The scenario that the processor executes operations and the memory
contains data elements requires a mechanism for the processor to read that
data from the memory. “That data” in the previous sentence much be
rigorously explained to the memory which is a dumb device. Just like a
postman, who must be told the precise address on the letter, to inform him
where the destination is located. Another significant point is that if we only
want to read the data and not write it, then there must be a mechanism to
inform the memory that we are interested in reading data and not writing it.
Key points in the above discussion are:

e There must be a mechanism to inform memory that we want to do the
read operation

o There must be a mechanism to inform memory that we want to read
precisely which element

e There must be a mechanism to transfer that data element from
memory to processor

The group of bits that the processor uses to inform the memory about
which element to read or write is collectively known as the address bus.
Another important bus called the data bus is used to move the data from the
memory to the processor in a read operation and from the processor to the
memory in a write operation. The third group consists of miscellaneous
independent lines used for control purposes. For example, one line of the bus
is used to inform the memory about whether to do the read operation or the
write operation. These lines are collectively known as the control bus.

These three buses are the eyes, nose, and ears of the processor. It uses
them in a synchronized manner to perform a meaningful operation. Although
the programmer specifies the meaningful operation, but to fulfill it the
processor needs the collaboration of other units and peripherals. And that
collaboration is made available using the three buses. This is the very basic
description of a computer and it can be extended on the same lines to I/O
but we are leaving it out just for simplicity for the moment.

The address bus is unidirectional and address always travels from
processor to memory. This is because memory is a dumb device and cannot
predict which element the processor at a particular instant of time needs.
Data moves from both, processor to memory and memory to processor, so
the data bus is bidirectional. Control bus is special and relatively complex,
because different lines comprising it behave differently. Some take
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information from the processor to a peripheral and some take information
from the peripheral to the processor. There can be certain events outside the
processor that are of its interest. To bring information about these events the
data bus cannot be used as it is owned by the processor and will only be
used when the processor grants permission to use it. Therefore certain
processors provide control lines to bring such information to processor’s
notice in the control bus. Knowing these signals in detail is unnecessary but
the general idea of the control bus must be conceived in full.

PROCESSOR < > MEMORY

y

PERIPHERALS

A

We take an example to explain the collaboration of the processor and
memory using the address, control, and data buses. Consider that you want
your uneducated servant to bring a book from the shelf. You order him to
bring the fifth book from top of the shelf. All the data movement operations
are hidden in this one sentence. Such a simple everyday phenomenon seen
from this perspective explains the seemingly complex working of the three
buses. We told the servant to “bring a book” and the one which is “fifth from
top,” precise location even for the servant who is much more intelligent then
our dumb memory. The dumb servant follows the steps one by one and the
book is in your hand as a result. If however you just asked him for a book or
you named the book, your uneducated servant will stand there gazing at you
and the book will never come in your hand.

Even in this simplest of all examples, mathematics is there, “fifth from
top.” Without a number the servant would not be able to locate the book. He
is unable to understand your will. Then you tell him to put it with the
seventh book on the right shelf. Precision is involved and only numbers are
precise in this world. One will always be one and two will always be two. So
we tell in the form of a number on the address bus which cell is needed out
of say the 2000 cells in the whole memory.

A binary number is generated on the address bus, fifth, seventh, eighth,
tenth; the cell which is needed. So the cell number is placed on the address
bus. A memory cell is an n-bit location to store data, normally 8-bit also
called a byte. The number of bits in a cell is called the cell width. The two
dimensions, cell width and number of cells, define the memory completely
just like the width and depth of a well defines it completely. 200 feet deep by
15 feet wide and the well is completely described. Similarly for memory we
define two dimensions. The first dimension defines how many parallel bits
are there in a single memory cell. The memory is called 8-bit or 16-bit for
this reason and this is also the word size of the memory. This need not
match the size of a processor word which has other parameters to define it.
In general the memory cell cannot be wider than the width of the data bus.
Best and simplest operation requires the same size of data bus and memory
cell width.
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As we previously discussed that the control bus carries the intent of the
processor that it wants to read or to write. Memory changes its behavior in
response to this signal from the processor. It defines the direction of data
flow. If processor wants to read but memory wants to write, there will be no
communication or useful flow of information. Both must be synchronized,
like a speaker speaks and the listener listens. If both speak simultaneously
or both listen there will be no communication. This precise synchronization
between the processor and the memory is the responsibility of the control
bus.

Control bus is only the mechanism. The responsibility of sending the
appropriate signals on the control bus to the memory is of the processor.
Since the memory never wants to listen or to speak of itself. Then why is the
control bus bidirectional. Again we take the same example of the servant and
the book further to elaborate this situation. Consider that the servant went
to fetch the book just to find that the drawing room door is locked. Now the
servant can wait there indefinitely keeping us in surprise or come back and
inform us about the situation so that we can act accordingly. The servant
even though he was obedient was unable to fulfill our orders so in all his
obedience, he came back to inform us about the problem. Synchronization is
still important, as a result of our orders either we got the desired cell or we
came to know that the memory is locked for the moment. Such information
cannot be transferred via the address or the data bus. For such situations
when peripherals want to talk to the processor when the processor wasn’t
expecting them to speak, special lines in the control bus are used. The
information in such signals is usually to indicate the incapability of the
peripheral to do something for the moment. For these reasons the control
bus is a bidirectional bus and can carry information from processor to
memory as well as from memory to processor.

1.2. REGISTERS

The basic purpose of a computer is to perform operations, and operations
need operands. Operands are the data on which we want to perform a certain
operation. Consider the addition operation; it involves adding two numbers
to get their sum. We can have precisely one address on the address bus and
consequently precisely one element on the data bus. At the very same instant
the second operand cannot be brought inside the processor. As soon as the
second is selected, the first operand is no longer there. For this reason there
are temporary storage places inside the processor called registers. Now one
operand can be read in a register and added into the other which is read
directly from the memory. Both are made accessible at one instance of time,
one from inside the processor and one from outside on the data bus. The
result can be written to at a distinct location as the operation has completed
and we can access a different memory cell. Sometimes we hold both
operands in registers for the sake of efficiency as what we can do inside the
processor is undoubtedly faster than if we have to go outside and bring the
second operand.

Registers are like a scratch pad ram inside the processor and their
operation is very much like normal memory cells. They have precise locations
and remember what is placed inside them. They are used when we need
more than one data element inside the processor at one time. The concept of
registers will be further elaborated as we progress into writing our first
program.

Memory is a limited resource but the number of memory cells is large.
Registers are relatively very small in number, and are therefore a very scarce
and precious resource. Registers are more than one in number, so we have to
precisely identify or name them. Some manufacturers number their registers
like 1O, r1, r2, others name them like A, B, C, D etc. Naming is useful since
the registers are few in number. This is called the nomenclature of the
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particular architecture. Still other manufacturers name their registers
according to their function like X stands for an index register. This also
informs us that there are special functions of registers as well, some of which
are closely associated to the particular architecture. For example index
registers do not hold data instead they are used to hold the address of data.
There are other functions as well and the whole spectrum of register
functionalities is quite large. However most of the details will become clear as
the registers of the Intel architecture are discussed in detail.

Accumulator

There is a central register in every processor called the accumulator.
Traditionally all mathematical and logical operations are performed on the
accumulator. The word size of a processor is defined by the width of its
accumulator. A 32bit processor has an accumulator of 32 bits.

Pointer, Index, or Base Register

The name varies from manufacturer to manufacturer, but the basic
distinguishing property is that it does not hold data but holds the address of
data. The rationale can be understood by examining a “for” loop in a higher
level language, zeroing elements in an array of ten elements located in
consecutive memory cells. The location to be zeroed changes every iteration.
That is the address where the operation is performed is changing. Index
register is used in such a situation to hold the address of the current array
location. Now the value in the index register cannot be treated as data, but it
is the address of data. In general whenever we need access to a memory
location whose address is not known until runtime we need an index
register. Without this register we would have needed to explicitly code each
iteration separately.

In newer architectures the distinction between accumulator and index
registers has become vague. They have general registers which are more
versatile and can do both functions. They do have some specialized behaviors
but basic operations can be done on all general registers.

Flags Register or Program Status Word

This is a special register in every architecture called the flags register or
the program status word. Like the accumulator it is an 8, 16, or 32 bits
register but unlike the accumulator it is meaningless as a unit, rather the
individual bits carry different meanings. The bits of the accumulator work in
parallel as a unit and each bit mean the same thing. The bits of the flags
register work independently and individually, and combined its value is
meaningless.

An example of a bit commonly present in the flags register is the carry flag.
The carry can be contained in a single bit as in binary arithmetic the carry
can only be zero or one. If a 16bit number is added to a 16bit accumulator,
and the result is of 17 bits the 17th bit is placed in the carry bit of the flags
register. Without this 17th bit the answer is incorrect. More examples of flags
will be discussed when dealing with the Intel specific register set.

Program Counter or Instruction Pointer

Everything must translate into a binary number for our dumb processor to
understand it, be it an operand or an operation itself. Therefore the
instructions themselves must be translated into numbers. For example to
add numbers we understand the word “add.” We translate this word into a
number to make the processor understand it. This number is the actual
instruction for the computer. All the objects, inheritance and encapsulation
constructs in higher level languages translate down to just a number in
assembly language in the end. Addition, multiplication, shifting; all big
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programs are made using these simple building blocks. A number is at the
bottom line since this is the only thing a computer can understand.

A program is defined to be “an ordered set of instructions.” Order in this
definition is a key part. Instructions run one after another, first, second,
third and so on. Instructions have a positional relationship. The whole logic
depends on this positioning. If the computer executes the fifth instructions
after the first and not the second, all our logic is gone. The processor should
ensure this ordering of instructions. A special register exists in every
processor called the program counter or the instruction pointer that ensures
this ordering. “The program counter holds the address of the next instruction
to be executed.” A number is placed in the memory cell pointed to by this
register and that number tells the processor which instruction to execute; for
example OxEA, 255, or 152. For the processor 152 might be the add
instruction. Just this one number tells it that it has to add, where its
operands are, and where to store the result. This number is called the
opcode. The instruction pointer moves from one opcode to the next. This is
how our program executes and progresses. One instruction is picked, its
operands are read and the instruction is executed, then the next instruction
is picked from the new address in instruction pointer and so on.

Remembering 152 for the add operation or 153 for the subtract operation
is difficult. To make a simple way to remember difficult things we associate a
symbol to every number. As when we write “add” everyone understands what
we mean by it. Then we need a small program to convert this “add” of ours to
152 for the processor. Just a simple search and replace operation to
translate all such symbols to their corresponding opcodes. We have mapped
the numeric world of the processor to our symbolic world. “Add” conveys a
meaning to us but the number 152 does not. We can say that add is closer to
the programmer’s thinking. This is the basic motive of adding more and more
translation layers up to higher level languages like C++ and Java and Visual
Basic. These symbols are called instruction mnemonics. Therefore the
mnemonic “add a to b” conveys more information to the reader. The dumb
translator that will convert these mnemonics back to the original opcodes is
a key program to be used throughout this course and is called the assembler.

1.3. INSTRUCTION GROUPS

Usual opcodes in every processor exist for moving data, arithmetic and
logical manipulations etc. However their mnemonics vary depending on the
will of the manufacturer. Some manufacturers name the mnemonics for data
movement instructions as “move,” some call it “load” and “store” and still
other names are present. But the basic set of instructions is similar in every
processor. A grouping of these instructions makes learning a new processor
quick and easy. Just the group an instruction belongs tells a lot about the
instruction.

Data Movement Instructions

These instructions are used to move data from one place to another. These
places can be registers, memory, or even inside peripheral devices. Some
examples are:

mov ax, bx
lad 1234

Arithmetic and Logic Instructions

Arithmetic instructions like addition, subtraction, multiplication, division
and Logical instructions like logical and, logical or, logical xor, or
complement are part of this group. Some examples are:

and ax, 1234
add bx, 0534
add bx, [1200]

Virtual University of Pakistan S




Computer Architecture & Assembly Language Programming | Course Code: CS401

CS401@vu.edu.pk VU

The bracketed form is a complex variation meaning to add the data placed
at address 1200. Addressing data in memory is a detailed topic and is
discussed in the next chapter.

Program Control Instructions

The instruction pointer points to the next instruction and instructions run
one after the other with the help of this register. We can say that the
instructions are tied with one another. In some situations we don’t want to
follow this implied path and want to order the processor to break its flow if
some condition becomes true instead of the spatially placed next instruction.
In certain other cases we want the processor to first execute a separate block
of code and then come back to resume processing where it left.

These are instructions that control the program execution and flow by
playing with the instruction pointer and altering its normal behavior to point
to the next instruction. Some examples are:

cmp ax, O
jne 1234

We are changing the program flow to the instruction at 1234 address if the

condition that we checked becomes true.

Special Instructions

Another group called special instructions works like the special service
commandos. They allow changing specific processor behaviors and are used
to play with it. They are used rarely but are certainly used in any meaningful
program. Some examples are:

cli
sti

Where cli clears the interrupt flag and sti sets it. Without delving deep into
it, consider that the cli instruction instructs the processor to close its ears
from the outside world and never listen to what is happening outside,
possibly to do some very important task at hand, while sti restores normal
behavior. Since these instructions change the processor behavior they are
placed in the special instructions group.

1.4. INTEL IAPX88 ARCHITECTURE

Now we select a specific architecture to discuss these abstract ideas in
concrete form. We will be using IBM PC based on Intel architecture because
of its wide availability, because of free assemblers and debuggers available
for it, and because of its wide use in a variety of domains. However the
concepts discussed will be applicable on any other architecture as well; just
the mnemonics of the particular language will be different.

Technically iAPX88 stands for “Intel Advanced Processor Extensions 88.” It
was a very successful processor also called 8088 and was used in the very
first IBM PC machines. Our discussion will revolve around 8088 in the first
half of the course while in the second half we will use iAPX386 which is very
advanced and powerful processor. 8088 is a 16bit processor with its
accumulator and all registers of 16 bits. 386 on the other hand, is a 32bit
processor. However it is downward compatible with iAPX88 meaning that all
code written for 8088 is valid on the 386. The architecture of a processor
means the organization and functionalities of the registers it contains and
the instructions that are valid on the processor. We will discuss the register
architecture of 8088 in detail below while its instructions are discussed in
the rest of the book at appropriate places.

1.5. HISTORY

Intel did release some 4bit processors in the beginning but the first
meaningful processor was 8080, an 8bit processor. The processor became
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popular due to its simplistic design and versatile architecture. Based on the
experience gained from 8080, an advanced version was released as 8085.
The processor became widely popular in the engineering community again
due to its simple and logical nature.

Intel introduced the first 16bit processor named 8088 at a time when the
concept of personal computer was evolving. With a maximum memory of 64K
on the 8085, the 8088 allowed a whole mega byte. IBM embedded this
processor in their personal computer. The first machines ran at 4.43 MHz; a
blazing speed at that time. This was the right thing at the right moment. No
one expected this to become the biggest success of computing history. IBM
PC XT became so popular and successful due to its open architecture and
easily available information.

The success was unexpected for the developers themselves. As when Intel
introduced the processor it contained a timer tick count which was valid for
five years only. They never anticipated the architecture to stay around for
more than five years but the history took a turn and the architecture is there
at every desk even after 25 years and the tick is to be specially handled every
now and then.

1.6. REGISTER ARCHITECTURE

The iAPX88 architecture consists of 14 registers.

CS SP
DS BP
SS Sl
ES DI
AH AL (AX)
1P BH BL (BX)
CH CL (99
FLAGS DH DL (©X)

General Registers (AX, BX, CX, and DX)

The registers AX, BX, CX, and DX behave as general purpose registers in
Intel architecture and do some specific functions in addition to it. X in their
names stand for extended meaning 16bit registers. For example AX means
we are referring to the extended 16bit “A” register. Its upper and lower byte
are separately accessible as AH (A high byte) and AL (A low byte). All general
purpose registers can be accessed as one 16bit register or as two 8bit
registers. The two registers AH and AL are part of the big whole AX. Any
change in AH or AL is reflected in AX as well. AX is a composite or extended
register formed by gluing together the two parts AH and AL.

The A of AX stands for Accumulator. Even though all general purpose
registers can act as accumulator in most instructions there are some specific
variations which can only work on AX which is why it is named the
accumulator. The B of BX stands for Base because of its role in memory
addressing as discussed in the next chapter. The C of CX stands for Counter
as there are certain instructions that work with an automatic count in the
CX register. The D of DX stands for Destination as it acts as the destination
in I/O operations. The A, B, C, and D are in letter sequence as well as depict
some special functionality of the register.
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Index Registers (Sl and DI)

SI and DI stand for source index and destination index respectively. These
are the index registers of the Intel architecture which hold address of data
and used in memory access. Being an open and flexible architecture, Intel
allows many mathematical and logical operations on these registers as well
like the general registers. The source and destination are named because of
their implied functionality as the source or the destination in a special class
of instructions called the string instructions. However their use is not at all
restricted to string instructions. SI and DI are 16bit and cannot be used as
8bit register pairs like AX, BX, CX, and DX.

Instruction Pointer (IP)

This is the special register containing the address of the next instruction to
be executed. No mathematics or memory access can be done through this
register. It is out of our direct control and is automatically used. Playing with
it is dangerous and needs special care. Program control instructions change
the IP register.

Stack Pointer (SP)

It is a memory pointer and is used indirectly by a set of instructions. This
register will be explored in the discussion of the system stack.

Base Pointer (BP)

It is also a memory pointer containing the address in a special area of
memory called the stack and will be explored alongside SP in the discussion
of the stack.

Flags Register

The flags register as previously discussed is not meaningful as a unit
rather it is bit wise significant and accordingly each bit is named separately.
The bits not named are unused. The Intel FLAGS register has its bits
organized as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LI [ [ JoJofuvfvfs]z] [a] Jr] [c]

The individual flags are explained in the following table.

C | Carry When two 16bit numbers are added the answer can be
17 bits long or when two 8bit numbers are added the
answer can be 9 bits long. This extra bit that won'’t fit
in the target register is placed in the carry flag where it
can be used and tested.

P | Parity Parity is the number of “one” bits in a binary number.
Parity is either odd or even. This information is
normally used in communications to verify the integrity
of data sent from the sender to the receiver.

A | Auxiliary A number in base 16 is called a hex number and can be
Carry represented by 4 bits. The collection of 4 bits is called a
nibble. During addition or subtraction if a carry goes
from one nibble to the next this flag is set. Carry flag is
for the carry from the whole addition while auxiliary
carry is the carry from the first nibble to the second.

Z | Zero Flag The Zero flag is set if the last mathematical or logical
instruction has produced a zero in its destination.
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S | Sign Flag A signed number is represented in its two’s complement
form in the computer. The most significant bit (MSB) of
a negative number in this representation is 1 and for a
positive number it is zero. The sign bit of the last
mathematical or logical operation’s destination is
copied into the sign flag.

T | Trap Flag The trap flag has a special role in debugging which will
be discussed later.

I Interrupt Flag | It tells whether the processor can be interrupted from
outside or not. Sometimes the programmer doesn’t
want a particular task to be interrupted so the
Interrupt flag can be zeroed for this time. The
programmer rather than the processor sets this flag
since the programmer knows when interruption is okay
and when it is not. Interruption can be disabled or
enabled by making this bit zero or one, respectively,
using special instructions.

D | Direction Flag | Specifically related to string instructions, this flag tells
whether the current operation has to be done from
bottom to top of the block (D=0) or from top to bottom
of the block (D=1).

O | Overflow Flag | The overflow flag is set during signed arithmetic, e.g.
addition or subtraction, when the sign of the
destination changes unexpectedly. The actual process
sets the overflow flag whenever the carry into the MSB
is different from the carry out of the MSB

Segment Registers (CS, DS, SS, and ES)

The code segment register, data segment register, stack segment register,
and the extra segment register are special registers related to the Intel
segmented memory model and will be discussed later.

1.7. OUR FIRST PROGRAM

The first program that we will write will only add three numbers. This very
simple program will clarify most of the basic concepts of assembly language.
We will start with writing our algorithm in English and then moving on to
convert it into assembly language.

English Language Version

“Program is an ordered set of instructions for the processor.” Our first
program will be instructions manipulating AX and BX in plain English.
move 5 to ax
move 10 to bx
add bx to ax
move 15 to bx
add bx to ax
Even in this simple reflection of thoughts in English, there are some key
things to observe. One is the concept of destination as every instruction has
a “to destination” part and there is a source before it as well. For example the
second line has a constant 10 as its source and the register BX as its
destination. The key point in giving the first program in English is to convey
that the concepts of assembly language are simple but fine. Try to
understand them considering that all above is everyday English that you
know very well and every concept will eventually be applicable to assembly
language.
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Assembly Language Version

Intel could have made their assembly language exactly identical to our
program in plain English but they have abbreviated a lot of symbols to avoid
unnecessarily lengthy program when the meaning could be conveyed with
less effort. For example Intel has named their move instruction “mov” instead
of “move.” Similarly the Intel order of placing source and destination is
opposite to what we have used in our English program, just a change of
interpretation. So the Intel way of writing things is:

operation destination, source
operation destination
operation source

operation

The later three variations are for instructions that have one or both of their
operands implied or they work on a single or no operand. An implied operand
means that it is always in a particular register say the accumulator, and it
need not be mentioned in the instruction. Now we attempt to write our
program in actual assembly language of the iapx88.

Example 1.1

001 ; a program to add three numbers using registers

002 [org 0x0100]

003 mov ax, 5 ; load first number in ax
004 mov bx, 10 ; load second number in bx
005 add ax, bx ; accumulate sum in ax

006 mov bx, 15 ; load third number in bx
007 add ax, bx ; accumulate sum in ax

008

009 mov ax, 0x4c00 ; terminate program

010 int 0x21

001 To start a comment a semicolon is used and the assembler ignores

everything else on the same line. Comments must be extensively
used in assembly language programs to make them readable.

002 Leave the org directive for now as it will be discussed later.

003 The constant 5 is loaded in one register AX.

004 The constant 10 is loaded in another register BX.

005 Register BX is added to register AX and the result is stored in
register AX. Register AX should contain 15 by now.

006 The constant 15 is loaded in the register BX.

007 Register BX is again added to register AX now producing 15+15=30

in the AX register. So the program has computed 5+10+15=30.

008 Vertical spacing must also be used extensively in assembly language
programs to separate logical blocks of code.

009-010 The ending lines are related more to the operating system than to
assembly language programming. It is a way to inform DOS that our
program has terminated so it can display its command prompt
again. The computer may reboot or behave improperly if this
termination is not present.

Assembler, Linker, and Debugger

We need an assembler to assemble this program and convert this into
executable binary code. The assembler that we will use during this course is
“Netwide Assembler” or NASM. It is a free and open source assembler. And
the tool that will be most used will be the debugger. We will use a free
debugger called “A fullscreen debugger” or AFD. These are the whole set of
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weapons an assembly language programmer needs for any task whatsoever
at hand.

To assemble we will give the following command to the processor assuming
that our input file is named EX01.ASM.

nasm ex0l.asm —o0 ex0l.com —1 ex01l.lIst

This will produce two files EX01.COM that is our executable file and
EXO1.LST that is a special listing file that we will explore now. The listing file
produced for our example above is shown below with comments removed for
neatness.

1

2 [org 0x0100]

3 00000000 B80500 mov ax, 5

4 00000003 BBOAOO mov bx, 10

5 00000006 01D8 add ax, bx

6 00000008 BBOFOO mov bx, 15

7 0000000B 01D8 add ax, bx

8

9 0000000D B8004C mov ax, 0x4c00
10 00000010 CD21 int 0x21

The first column in the above listing is offset of the listed instruction in the
output file. Next column is the opcode into which our instruction was
translated. In this case this opcode is B8. Whenever we move a constant into
AX register the opcode B8 will be used. After it 0500 is appended which is
the immediate operand to this instruction. An immediate operand is an
operand which is placed directly inside the instruction. Now as the AX
register is a word sized register, and one hexadecimal digit takes 4 bits so 4
hexadecimal digits make one word or two bytes. Which of the two bytes
should be placed first in the instruction, the least significant or the most
significant? Similarly for 32bit numbers either the order can be most
significant, less significant, lesser significant, and least significant called the
big-endian order used by Motorola and some other companies or it can be
least significant, more significant, more significant, and most significant
called the little-endian order and is used by Intel. The big-endian have the
argument that it is more natural to read and comprehend while the little-
endian have the argument that this scheme places the less significant value
at a lesser address and more significant value at a higher address.

Because of this the constant 5 in our instruction was converted into 0500
with the least significant byte of 05 first and the most significant byte of 00
afterwards. When read as a word it is 0005 but when written in memory it
will become 0500. As the first instruction is three bytes long, the listing file
shows that the offset of the next instruction in the file is 3. The opcode BB is
for moving a constant into the BX register, and the operand 0AOO is the
number 10 in little-endian byte order. Similarly the offsets and opcodes of
the remaining instructions are shown in order. The last instruction is placed
at offset 0x10 or 16 in decimal. The size of the last instruction is two bytes,
so the size of the complete COM file becomes 18 bytes. This can be verified
from the directory listing, using the DIR command, that the COM file
produced is exactly 18 bytes long.

Now the program is ready to be run inside the debugger. The debugger
shows the values of registers, flags, stack, our code, and one or two areas of
the system memory as data. Debugger allows us to step our program one
instruction at a time and observe its effect on the registers and program
data. The details of using the AFD debugger can be seen from the AFD
manual.

After loading the program in the debugger observe that the first instruction
is now at 0100 instead of absolute zero. This is the effect of the org directive
at the start of our program. The first instruction of a COM file must be at
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offset 0100 (decimal 255) as a requirement. Also observe that the debugger is
showing your program even though it was provided only the COM file and
neither of the listing file or the program source. This is because the
translation from mnemonic to opcode is reversible and the debugger mapped
back from the opcode to the instruction mnemonic. This will become
apparent for instructions that have two mnemonics as the debugger might
not show the one that was written in the source file.

As a result of program execution either registers or memory will change.
Since our program yet doesn’t touch memory the only changes will be in the
registers. Keenly observe the registers AX, BX, and IP change after every
instruction. IP will change after every instruction to point to the next
instruction while AX will accumulate the result of our addition.

1.8. SEGMENTED MEMORY MODEL

Rationale

In earlier processors like 8080 and 8085 the linear memory model was
used to access memory. In linear memory model the whole memory appears
like a single array of data. 8080 and 8085 could access a total memory of
64K using the 16 lines of their address bus. When designing iAPX88 the Intel
designers wanted to remain compatible with 8080 and 8085 however 64K
was too small to continue with, for their new processor. To get the best of
both worlds they introduced the segmented memory model in 8088.

There is also a logical argument in favor of a segmented memory model in
additional to the issue of compatibility discussed above. We have two logical
parts of our program, the code and the data, and actually there is a third
part called the program stack as well, but higher level languages make this
invisible to us. These three logical parts of a program should appear as three
distinct units in memory, but making this division is not possible in the
linear memory model. The segmented memory model does allow this
distinction.

Mechanism

The segmented memory model allows multiple functional windows into the
main memory, a code window, a data window etc. The processor sees code
from the code window and data from the data window. The size of one
window is restricted to 64K. 8085 software fits in just one such window. It
sees code, data, and stack from this one window, so downward compatibility
is attained.

However the maximum memory iAPX88 can access is 1MB which can be
accessed with 20 bits. Compare this with the 64K of 8085 that were accessed
using 16 bits. The idea is that the 64K window just discussed can be moved
anywhere in the whole 1MB. The four segment registers discussed in the
Intel register architecture are used for this purpose. Therefore four windows
can exist at one time. For example one window that is pointed to by the CS
register contains the currently executing code.

To understand the concept, consider the windows of a building. We say
that a particular window is 3 feet above the floor and another one is 20 feet
above the floor. The reference point, the floor is the base of the segment
called the datum point in a graph and all measurement is done from that
datum point considering it to be zero. So CS holds the zero or the base of
code. DS holds the zero of data. Or we can say CS tells how high code from
the floor is, and DS tells how high data from the floor is, while SS tells how
high the stack is. One extra segment ES can be used if we need to access two
distant areas of memory at the same time that both cannot be seen through
the same window. ES also has special role in string instructions. ES is used
as an extra data segment and cannot be used as an extra code or stack
segment.
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Revisiting the concept again, like the datum point of a graph, the segment
registers tell the start of our window which can be opened anywhere in the
megabyte of memory available. The window is of a fixed size of 64KB. Base
and offset are the two key variables in a segmented address. Segment tells
the base while offset is added into it. The registers IP, SP, BP, SI, DI, and BX
all can contain a 16bit offset in them and access memory relative to a
segment base.

The IP register cannot work alone. It needs the CS register to open a 64K
window in the 1MB memory and then IP works to select code from this
window as offsets. IP works only inside this window and cannot go outside of
this 64K in any case. If the window is moved i.e. the CS register is changed,
IP will change its behavior accordingly and start selecting from the new
window. The IP register always works relatively, relative to the segment base
stored in the CS register. IP is a 16bit register capable of accessing only 64K
memory so how the whole megabyte can contain code anywhere. Again the
same concept is there, it can access 64K at one instance of time. As the base
is changed using the CS register, I[P can be made to point anywhere is the
whole megabyte. The process is illustrated with the following diagram.

Physical Address

00000
Segment
Base
A XXXX0
| Offset Paragraph
64K Boundary
FFFFF

Physical Address Calculation

Now for the whole megabyte we need 20 bits while CS and IP are both
16bit registers. We need a mechanism to make a 20bit number out of the two
16bit numbers. Consider that the segment value is stored as a 20 bit number
with the lower four bits zero and the offset value is stored as another 20 bit
number with the upper four bits zeroed. The two are added to produce a
20bit absolute address. A carry if generated is dropped without being stored
anywhere and the phenomenon is called address wraparound. The process is
explained with the help of the following diagram.
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15— 0
16bit Segment Register 0000 Segment Address
15— 0
—|— 0000 16bit Logical Address Offset Address
19-————— 0

20bit Physical Address

Therefore memory is determined by a segment-offset pair and not alone by
any one register which will be an ambiguous reference. Every offset register
is assigned a default segment register to resolve such ambiguity. For example
the program we wrote when loaded into memory had a value of 0100 in IP
register and some value say 1DDD in the CS register. Making both 20 bit
numbers, the segment base is 1DDDO and the offset is 00100 and adding
them we get the physical memory address of 1DEDO where the opcode
B80500 is placed.

Paragraph Boundaries

As the segment value is a 16bit number and four zero bits are appended to
the right to make it a 20bit number, segments can only be defined a 16byte
boundaries called paragraph boundaries. The first possible segment value is
0000 meaning a physical base of 00000 and the next possible value of 0001
means a segment base of 00010 or 16 in decimal. Therefore segments can
only be defined at 16 byte boundaries.

Overlapping Segments

We can also observe that in the case of our program CS, DS, SS, and ES
all had the same value in them. This is called overlapping segments so that
we can see the same memory from any window. This is the structure of a
COM file.

Using partially overlapping segments we can produce a number of
segment, offset pairs that all access the same memory. For example
1DDD:0100 and IDED:0000 both point to the same physical memory. To test
this we can open a data window at 1DED:0000 in the debugger and change
the first three bytes to “90” which is the opcode for NOP (no operation). The
change is immediately visible in the code window which is pointed to by CS
containing 1DDD. Similarly IDCD:0200 also points to the same memory
location. Consider this like a portion of wall that three different people on
three different floors are seeing through their own windows. One of them
painted the wall red; it will be changed for all of them though their
perspective is different. It is the same phenomenon occurring here.

The segment, offset pair is called a logical address, while the 20bit address
is a physical address which is the real thing. Logical addressing is a
mechanism to access the physical memory. As we have seen three different
logical addresses accessed the same physical address.
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00000
1DCDO
1DDDO Offset
Offset 0200
0100 1DEDO
______________________________________ 64K
64K
\ 4
\ 4
FFFFF
EXERCISES
1. How the processor uses the address bus, the data bus, and the

2.

10.

11.

12.

13.

control bus to communicate with the system memory?
Which of the following are unidirectional and which are bidirectional?

a. Address Bus

b. Data Bus

c. Control Bus
What are registers and what are the specific features of the
accumulator, index registers, program counter, and program status
word?
What is the size of the accumulator of a 64bit processor?
What is the difference between an instruction mnemonic and its
opcode?
How are instructions classified into groups?
A combination of 8bits is called a byte. What is the name for 4bits and
for 16bits?
What is the maximum memory 8088 can access?
List down the 14 registers of the 8088 architecture and briefly
describe their uses.
What flags are defined in the 8088 FLAGS register? Describe the
function of the zero flag, the carry flag, the sign flag, and the overflow
flag.
Give the value of the zero flag, the carry flag, the sign flag, and the
overflow flag after each of the following instructions if AX is initialized
with 0x1254 and BX is initialized with OxOFFF.

a. add ax, OXEDAB

b. add ax, bx

c. add bx, OxF001
What is the difference between little endian and big endian formats?
Which format is used by the Intel 8088 microprocessor?
For each of the following words identify the byte that is stored at lower
memory address and the byte that is stored at higher memory address
in a little endian computer.

a. 1234
b. ABFC
c. B100O
d. B800
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14.

15.

16.
17.
18.

19.

20.

21.

What are the contents of memory locations 200, 201, 202, and 203 if
the word 1234 is stored at offset 200 and the word 5678 is stored at
offset 202?
What is the offset at which the first executable instruction of a COM
file must be placed?
Why was segmentation originally introduced in 8088 architecture?
Why a segment start cannot start from the physical address 55555.
Calculate the physical memory address generated by the following
segment offset pairs.

a. 1DDD:0436

b. 1234:7920
c. 74F0:2123
d. 0000:6727
e. FFFF:4336
f. 1080:0100

g. ABO1:FFFF
What are the first and the last physical memory addresses accessible
using the following segment values?

a. 1000
b. OFFF
c. 1002
d. 0001
e. EO000

Write instructions that perform the following operations.

a. Copy BL into CL

b. Copy DX into AX

c. Store 0x12 into AL

d. Store 0x1234 into AX

e. Store OxFFFF into AX
Write a program in assembly language that calculates the square of
six by adding six to the accumulator six times.
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2
Addressing Modes

2.1. DATA DECLARATION

The first instruction of our first assembly language program was “mov ax,
S.” Here MOV was the opcode; AX was the destination operand, while 5 was
the source operand. The value of 5 in this case was stored as part of the
instruction encoding. In the opcode B80500, B8 was the opcode and 0500
was the operand stored immediately afterwards. Such an operand is called
an immediate operand. It is one of the many types of operands available.

Writing programs using just the immediate operand type is difficult. Every
reasonable program needs some data in memory apart from constants.
Constants cannot be changed, i.e. they cannot appear as the destination
operand. In fact placing them as destination is meaningless and illegal
according to assembly language syntax. Only registers or data placed in
memory can be changed. So real data is the one stored in memory, with a
very few constants. So there must be a mechanism in assembly language to
store and retrieve data from memory.

To declare a part of our program as holding data instead of instructions we
need a couple of very basic but special assembler directives. The first
directive is “define byte” written as “db.”

db  somevalue

As a result a cell in memory will be reserved containing the desired value
in it and it can be used in a variety of ways. Now we can add variables
instead of constants. The other directive is “define word” or “dw” with the
same syntax as “db” but reserving a whole word of 16 bits instead of a byte.
There are directives to declare a double or a quad word as well but we will
restrict ourselves to byte and word declarations for now. For single byte we
use db and for two bytes we use dw.

To refer to this variable later in the program, we need the address occupied
by this variable. The assembler is there to help us. We can associate a
symbol with any address that we want to remember and use that symbol in
the rest of the code. The symbol is there for our own comprehension of code.
The assembler will calculate the address of that symbol using our origin
directive and calculating the instruction lengths or data declarations in-
between and replace all references to the symbol with the corresponding
address. This is just like variables in a higher level language, where the
compiler translates them into addresses; just the process is hidden from the
programmer one level further. Such a symbol associated to a point in the
program is called a label and is written as the label name followed by a colon.

2.2. DIRECT ADDRESSING

Now we will rewrite our first program such that the numbers 5, 10, and 15
are stored as memory variables instead of constants and we access them
from there.

Example 2.1

001 ; a program to add three numbers using memory variables
002 [org 0x0100]
003 mov ax, [numl] ; load first number in ax
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004 mov bx, [num2] ; load second number in bx

005 add ax, bx ; accumulate sum in ax

006 mov bx, [num3] ; load third number in bx

007 add ax, bx ; accumulate sum in ax

008 mov [num4], ax ; store sum in num4

009

010 mov ax, 0x4c00 ; terminate program

011 int 0x21

012

013 numi: dw 5

014 numz2: dw 10

015 num3: dw 15

016 num4 : dw O

002 Originate our program at 0100. The first executable instruction
should be placed at this offset.

003 The source operand is changed from constant 5 to [numl]. The
bracket is signaling that the operand is placed in memory at address
numl. The value 5 will be loaded in ax even though we did not
specified it in our program code, rather the value will be picked from
memory. The instruction should be read as “read the contents of
memory location numl in the ax register.” The label numl is a
symbol for us but an address for the processor while the conversion
is done by the assembler.

013 The label num1 is defined as a word and the assembler is requested

to place 5 in that memory location. The colon signals that numl is a
label and not an instruction.

Using the same process to assemble as discussed before we examine the
listing file generated as a result with comments removed.

1

2 [org 0x0100]

3 00000000 A1[1700] mov ax, [numl]
4 00000003 8B1E[1900] mov bx, [num2]
5 00000007 01D8 add ax, bx

6 00000009 8B1E[1BO0O0] mov bx, [num3]
7 0000000D 01D8 add ax, bx

8 0000000F A3[1D00] mov [num4], ax
9
10 00000012 B8004C mov ax, 0x4c00
11 00000015 CD21 int 0x21
12
13 00000017 0500 numl: dw 5
14 00000019 0OAOO num2: dw 10
15 0000001B OFOO num3: dw 15
16 0000001D 0000 num4: dw O

The first instruction of our program has changed from B80500 to A11700.
The opcode B8 is used to move constants into AX, while the opcode Al is
used when moving data into AX from memory. The immediate operand to our
new instruction is 1700 or as a word 0017 (23 decimal) and from the bottom
of the listing file we can observe that this is the offset of numl. The
assembler has calculated the offset of num1 and used it to replace references
to numl in the whole program. Also the value 0500 can be seen at offset
0017 in the file. We can say contents of memory location 0017 are 0005 as a
word. Similarly num2, num3, and num4 are placed at 0019, 001B, and
001D addresses.

When the program is loaded in the debugger, it is loaded at offset 0100,
which displaces all memory accesses in our program. The instruction
A11700 is changed to A11701 meaning that our variable is now placed at
0117 offset. The instruction is shown as mov ax, [0117]. Also the data
window can be used to verify that offset 0117 contains the number 0005.
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Execute the program step by step and examine how the memory is read and
the registers are updated, how the instruction pointer moves forward, and
how the result is saved back in memory. Also observe inside the debugger
code window below the code for termination, that the debugger is
interpreting our data as code and showing it as some meaningless
instructions. This is because the debugger sees everything as code in the
code window and cannot differentiate our declared data from opcodes. It is
our responsibility that we terminate execution before our data is executed as
code.

Also observe that our naming of numl, num2, num3, and num4 is no
longer there inside the debugger. The debugger is only showing the numbers
0117, 0119, 011B, and 011D. Our numerical machine can only work with
numbers. We used symbols for our ease to label or tag certain positions in
our program. The assembler converts these symbols into the appropriate
numbers automatically. Also observe that the effect of “dw” is to place 5 in
two bytes as 0005. Had we used “db” this would have been stored as 05 in
one byte.

Given the fact that the assembler knows only numbers we can write the
same program using a single label. As we know that num?2 is two ahead of
numl, we can use numl+2 instead of num2 and let the assembler calculate
the sum during assembly process.

Example 2.2
001 ; a program to add three numbers accessed using a single label
002 [org 0x0100]
003 mov ax, [numil] ; load fFirst number in ax
004 mov bx, [numl+2] ; load second number in bx
005 add ax, bx ; accumulate sum in ax
006 mov bx, [numl+4] ; load third number in bx
007 add ax, bx ; accumulate sum in ax
008 mov  [numl+6], ax ; store sum at numl+6
009
010 mov ax, 0x4c00 ; terminate program
011 int 0x21
012
013 numl: dw 5
014 dw 10
015 dw 15
016 dw O
004 The second number is read from numl+2. Similarly the third

number is read from numl+4 and the result is accessed at num1+6.

013-016 The labels num?2, num3, and num4 are removed and the data there
will be accessed with reference to num]1.

Every location is accessed with reference to numl in this example. The
expression “numl+2” comprises of constants only and can be evaluated at
the time of assembly. There are no variables involved in this expression. As
we open the program inside the debugger we see a verbatim copy of the
previous program. There is no difference at all since the assembler catered
for the differences during assembly. It calculated 0117+2=0119 while in the
previous it directly knew from the value of num?2 that it has to write 0119,
but the end result is a ditto copy of the previous execution.

Another way to declare the above data and produce exactly same results is
shown in the following example.

Example 2.3

001 ; a program to add three numbers accessed using a single label
002 [org 0x0100]

003 mov ax, [numl] ; load first number in ax
004 mov bx, [numl+2] ; load second number in bx

Virtual University of Pakistan 19




Computer Architecture & Assembly Language Programming | Course Code: CS401

CS401@vu.edu.pk VU
005 add ax, bx ; accumulate sum in ax
006 mov bx, [numl+4] ; load third number in bx
007 add ax, bx ; accumulate sum in ax
008 mov [numl+6], ax ; store sum at numl+6
009
010 mov ax, 0x4c00 ; terminate program
011 int 0x21
012
013 numl: dw 5, 10, 15, O
013 As we do not need to place labels on individual variables we can save

space and declare all data on a single line separated by commas.
This declaration will declare four words in consecutive memory
locations while the address of first one is num1.

The method used to access memory in the above examples is called direct
addressing. In direct addressing the memory address is fixed and is given in
the instruction. The actual data used is placed in memory and now that data
can be used as the destination operand as well. Also the source and
destination operands must have the same size. For example a word defined
memory is read in a word sized register. A last observation is that the data
0500 in memory was corrected to 0005 when read in a register. So registers
contain data in proper order as a word.

A last variation using direct addressing shows that we can directly add a
memory variable and a register instead of adding a register into another that
we were doing till now.

Example 2.4

01 ; a program to add three numbers directly in memory

02 [org 0x0100]

03 mov ax, [numl] ; load first number in ax

04 mov [numl+6], ax ; store first number in result
05 mov ax, [numl+2] ; load second number in ax

06 add [numl+6], ax ; add second number to result
07 mov ax, [numl+4] ; load third number in ax

08 add [numl+6], ax ; add third number to result
09

10 mov ax, 0x4c00 ; terminate program

11 int 0x21

12

13 numl: dw 5, 10, 15, O

We generate the following listing file as a result of the assembly process
described previously. Comments are again removed.

1

2 [org 0x0100]

3 00000000 A1[1900] mov ax, [numl]

4 00000003 A3[1F00] mov [numl+6], ax
5 00000006 A1[1B0OO] mov ax, [numl+2]
6 00000009 0106[1F00] add [numl+6], ax
7 0000000D A1[1D00] mov ax, [numl+4]
8 00000010 0106[1F00] add [numl+6], ax
9

10 00000014 B8004C mov ax, 0x4c00
11 00000017 CD21 int 0x21

12

13 00000019 05000A000F000000 numl: dw 5, 10, 15, O

The opcode of add is changed because the destination is now a memory
location instead of a register. No other significant change is seen in the
listing file. Inside the debugger we observe that few opcodes are longer now
and the location numl is now translating to 0119 instead of 0117. This is
done automatically by the assembler as a result of using labels instead of
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hard coding addresses. During execution we observe that the word data as it
is read into a register is read in correct order. The significant change in this
example is that the destination of addition is memory. Method to access
memory is direct addressing, whether it is the MOV instruction or the ADD
instruction.

The first two instructions of the last program read a number into AX and
placed it at another memory location. A quick thought reveals that the
following might be a possible single instruction to replace the couple.

mov  [numl+6], [numl] ; ILLEGAL

However this form is illegal and not allowed on the Intel architecture. None
of the general operations of mov add, sub etc. allow moving data from
memory to memory. Only register to register, register to memory, memory to
register, constant to memory, and constant to register operations are
allowed. The other register to constant, memory to constant, and memory to
memory are all disallowed. Only string instructions allow moving data from
memory to memory and will be discussed in detail later. As a rule one
instruction can have at most one operand in brackets, otherwise assembler
will give an error.

2.3. SIZE MISMATCH ERRORS

If we change the directive in the last example from DW to DB, the program
will still assemble and debug without errors, however the results will not be
the same as expected. When the first operand is read 0AOS5 will be read in the
register which was actually two operands place in consecutive byte memory
locations. The second number will be read as O00F which is the zero byte of
num4 appended to the 15 of num3. The third number will be junk depending
on the current state of the machine. According to our data declaration the
third number should be at 0114 but it is accessed at 011D calculated with
word offsets. This is a logical error of the program. To keep the declarations
and their access synchronized is the responsibility of the programmer and
not the assembler. The assembler allows the programmer to do everything he
wants to do, and that can possibly run on the processor. The assembler only
keeps us from writing illegal instructions which the processor cannot
execute. This is the difference between a syntax error and a logic error. So
the assembler and debugger have both done what we asked them to do but
the programmer asked them to do the wrong chore.

The programmer is responsible for accessing the data as word if it was
declared as a word and accessing it as a byte if it was declared as a byte. The
word case is shown in lot of previous examples. If however the intent is to
treat it as a byte the following code shows the appropriate way.

Example 2.5

001 ; a program to add three numbers using byte variables

002 [org 0x0100]

003 mov al, [numl] ; load first number in al
004 mov bl, [numl+1] ; load second number in bl
005 add al, bl ; accumulate sum in al

006 mov bl, [numl+2] ; load third number in bl
007 add al, bl ; accumulate sum in al

008 mov [numl+3], al ; store sum at numl+3

009

010 mov ax, 0x4c00 ; terminate program

011 int 0x21

012

013 numl: db 5, 10, 15, O

003 The number is read in AL register which is a byte register since the

memory location read is also of byte size.

005 The second number is now placed at numl+1 instead of num1l+2
because of byte offsets.
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013 To declare data db is used instead of dw so that each data declared
occupies one byte only.

Inside the debugger we observe that the AL register takes appropriate
values and the sum is calculated and stored in num1+3. This time there is
no alignment or synchronization error. The key thing to understand here is
that the processor does not match defines to accesses. It is the programmer’s
responsibility. In general assembly language gives a lot of power to the
programmer but power comes with responsibility. Assembly language
programming is not a difficult task but a responsible one.

In the above examples, the processor knew the size of the data movement
operation from the size of the register involved, for example in “mov ax,
[num1]” memory can be accessed as byte or as word, it has no hard and fast
size, but the AX register tells that this operation has to be a word operation.
Similarly in “mov al, [num1]” the AL register tells that this operation has to
be a byte operation. However in “mov ax, bl” the AX register tells that the
operation has to be a word operation while BL tells that this has to be a byte
operation. The assembler will declare that this is an illegal instruction. A 5Kg
bag cannot fit inside a 1Kg bag and according to Intel a 1Kg cannot also fit in
a 5Kg bag. They must match in size. The instruction “mov [num1l], [num?2]” is
illegal as previously discussed not because of data movement size but
because memory to memory moves are not allowed at all.

The instruction “mov [numl], 5” is legal but there is no way for the
processor to know the data movement size in this operation. The variable
numl can be treated as a byte or as a word and similarly 5 can be treated as
a byte or as a word. Such instructions are declared ambiguous by the
assembler. The assembler has no way to guess the intent of the programmer
as it previously did using the size of the register involved but there is no
register involved this time. And memory is a linear array and label is an
address in it. There is no size associated with a label. Therefore to resolve its
ambiguity we clearly tell our intent to the assembler in one of the following
ways.

mov byte [numl], 5
mov word [numl], 5

2.4. REGISTER INDIRECT ADDRESSING

We have done very elementary data access till now. Assume that the
numbers we had were 100 and not just three. This way of adding them will
cost us 200 instructions. There must be some method to do a task repeatedly
on data placed in consecutive memory cells. The key to this is the need for
some register that can hold the address of data. So that we can change the
address to access some other cell of memory using the same instruction. In
direct addressing mode the memory cell accessed was fixed inside the
instruction. There is another method in which the address can be placed in a
register so that it can be changed. For the following example we will take 10
instead of 100 numbers but the algorithm is extensible to any size.

There are four registers in iAPX88 architecture that can hold address of
data and they are BX, BP, SI, and DI. There are minute differences in their
working which will be discussed later. For the current example, we will use
the BX register and we will take just three numbers and extend the concept
with more numbers in later examples.

Example 2.6

001 ; a program to add three numbers using indirect addressing

002 [org 0x100]

003 mov bx, numl ; point bx to first number
004 mov ax, [bx] ; load first number in ax
005 add bx, 2 ; advance bx to second number
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006 add ax, [bx] ; add second number to ax
007 add bx, 2 ; advance bx to third number
008 add ax, [bx] ; add third number to ax
009 add bx, 2 ; advance bx to result
010 mov [bx], ax ; store sum at numl+6
011
012 mov ax, 0x4c00 ; terminate program
013 int 0x21
014
015 numl: dw 5, 10, 15, O
003 Observe that no square brackets around numl are used this time.

The address is loaded in bx and not the contents. Value of numl is
0005 and the address is 0117. So BX will now contain 0117.

004 Brackets are now used around BX. In iapx88 architecture brackets
can be used around BX, BP, SI, and DI only. In iapx386 more
registers are allowed. The instruction will be read as “move into ax
the contents of the memory location whose address is in bx.” Now
since bx contains the address of numl the contents of numl are
transferred to the ax register. Without square brackets the meaning
of the instruction would have been totally different.

005 This instruction is changing the address. Since we have words not
bytes, we add two to bx so that it points to the next word in memory.
BX now contains 0119 the address of the second word in memory.
This was the mechanism to change addresses that we needed.

Inside the debugger we observe that the first instruction is “mov bx, 011C.”
A constant is moved into BX. This is because we did not use the square
brackets around “num1.” The address of “nhum1” has moved to 011C because
the code size has changed due to changed instructions. In the second
instruction BX points to 011C and the value read in AX is 0005 which can be
verified from the data window. After the addition BX points to O11E
containing 000A, our next word, and so on. This way the BX register points
to our words one after another and we can add them using the same
instruction “mov ax, [bx]” without fixing the address of our data in the
instructions. We can also subtract from BX to point to previous cells. The
address to be accessed is now in total program control.

One thing that we needed in our problem to add hundred numbers was the
capability to change address. The second thing we need is a way to repeat
the same instruction and a way to know that the repetition is done a 100
times, a terminal condition for the repetition. For the task we are introducing
two new instructions that you should read and understand as simple English
language concepts. For simplicity only 10 numbers are added in this
example. The algorithm is extensible to any size.

Example 2.7

001 ; a program to add ten numbers

002 [org 0x0100]

003 mov bx, numl ; point bx to first number
004 mov c¢x, 10 ; load count of numbers in cx
005 mov ax, O ; initialize sum to zero

006

007 11: add ax, [bx] ; add number to ax

008 add bx, 2 ; advance bx to next number
009 sub cx, 1 ; numbers to be added reduced
010 jnz 11 ; if numbers remain add next
011

012 mov [total], ax ; write back sum in memory
013

014 mov ax, 0x4c00 ; terminate program

015 int 0x21

016

017 numl: dw 10, 20, 30, 40, 50, 10, 20, 30, 40, 50
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018 total: dw O
006 Labels can be used on code as well. Just like data labels they

remember the address at which they are used. The assembler does
not differentiate between code labels and data labels. The
programmer is responsible for using a data label as data and a code
label as code. The label 11 in this case is the address of the following
instruction.

009 SUB is the counterpart to ADD with the same rules as that of the
ADD instruction.

010 JNZ stands for “jump if not zero.” NZ is the condition in this
instruction. So the instruction is read as “jump to the location 11 if
the zero flag is not set.” And revisiting the zero flag definition “the
zero flag is set if the last mathematical or logical operation has
produced a zero in its destination.” For example “mov ax, 0” will not
set the zero flag as it is not a mathematical or logical instruction.
However subtraction and addition will set it. Also it is set even when
the destination is not a register. Now consider the subtraction
immediately preceding it. If the CX register becomes zero as a result
of this subtraction the zero flag will be set and the jump will be
taken. And jump to 11, the processor needs to be told each and
everything and the destination is an important part of every jump.
Just like when we ask someone to go, we mention go to this market
or that house. The processor is much more logical than us and
needs the destination in every instruction that asks it to go
somewhere. The processor will load 11 in the IP register and resume
execution from there. The processor will blindly go to the label we
mention even if it contains data and not code.

The CX register is used as a counter in this example, BX contains the
changing address, while AX accumulates the result. We have formed a loop
in assembly language that executes until its condition remains true. Inside
the debugger we can observe that the subtract instruction clears the zero flag
the first nine times and sets it on the tenth time. While the jump instruction
moves execution to address 11 the first nine times and to the following line
the tenth time. The jump instruction breaks program flow.

The JNZ instruction is from the program control group and is a conditional
jump, meaning that if the condition NZ is true (ZF=0) it will jump to the
address mentioned and otherwise it will progress to the next instruction. It is
a selection between two paths. If the condition is true go right and otherwise
go left. Or we can say if the weather is hot, go this way, and if it is cold, go
this way. Conditional jump is the most important instruction, as it gives the
processor decision making capability, so it must be given a careful thought.
Some processors call it branch, probably a more logical name for it, however
the functionality is same. Intel chose to name it “jump.”

An important thing in the above example is that a register is used to
reference memory so this form of access is called register indirect memory
access. We used the BX register for it and the B in BX and BP stands for
base therefore we call register indirect memory access using BX or BP,
“based addressing.” Similarly when SI or DI is used we name the method
“indexed addressing.” They have the same functionality, with minor
differences because of which the two are called base and index. The
differences will be explained later, however for the above example SI or DI
could be used as well, but we would name it indexed addressing instead of
based addressing.
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2.5. REGISTER + OFFSET ADDRESSING

Direct addressing and indirect addressing using a single register are two
basic forms of memory access. Another possibility is to use different
combinations of direct and indirect references. In the above example we used
BX to access different array elements which were placed consecutively in
memory like an array. We can also place in BX only the array index and not
the exact address and form the exact address when we are going to access
the actual memory. This way the same register can be used for accessing
different arrays and also the register can be used for index comparison like
the following example does.

Example 2.8

001 ; a program to add ten numbers using register + offset addressing

002 [org 0x0100]

003 mov bx, O ; initialize array index to zero
004 mov cx, 10 ; load count of numbers in cx
005 mov ax, O ; initialize sum to zero

006

007 11: add ax, [numl+bx] ; add number to ax

008 add bx, 2 ; advance bx to next index

009 sub cx, 1 ; numbers to be added reduced
010 jnz 11 ; If numbers remain add next

011

012 mov [total], ax ; write back sum in memory

013

014 mov ax, 0x4c00 ; terminate program

015 int 0x21

016

017 numi: dw 10, 20, 30, 40, 50, 10, 20, 30, 40, 50

018 total: dw O

003 This time BX is initialized to zero instead of array base

007 The format of memory access has changed. The array base is added

to BX containing array index at the time of memory access.

008 As the array is of words, BX jumps in steps of two, i.e. 0, 2, 4.
Higher level languages do appropriate incrementing themselves and
we always use sequential array indexes. However in assembly
language we always calculate in bytes and therefore we need to take
care of the size of one array element which in this case is two.

Inside the debugger we observe that the memory access instruction is
shown as “mov ax, [011F+bx]|” and the actual memory accessed is the one
whose address is the sum of O11F and the value contained in the BX
register. This form of access is of the register indirect family and is called
base + offset or index + offset depending on whether BX or BP is used or SI
or DI is used.

2.6. SEGMENT ASSOCIATION

All the addressing mechanisms in iAPX88 return a number called effective
address. For example in base + offset addressing, neither the base nor the
offset alone tells the desired cell in memory to be accessed. It is only after the
addition is done that the processor knows which cell to be accessed. This
number which came as the result of addition is called the effective address.
But the effective address is just an offset and is meaningless without a
segment. Only after the segment is known, we can form the physical address
that is needed to access a memory cell.

We discussed the segmented memory model of iAPX88 in reasonable detail
at the end of previous chapter. However during the discussion of addressing
modes we have not seen the effect of segments. Segmentation is there and
it’s all happening relative to a segment base. We saw DS, CS, SS, and ES
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inside the debugger. Everything is relative to its segment base, even though
we have not explicitly explained its functionality. An offset alone is not
complete without a segment. As previously discussed there is a default
segment associated to every register which accesses memory. For example
CS is associated to IP by default; rather it is tied with it. It cannot access
memory in any other segment.

In case of data, there is a bit relaxation and nothing is tied. Rather there is
a default association which can be overridden. In the case of register indirect
memory access, if the register used is one of SI, DI, or BX the default
segment is DS. If however the register used in BP the default segment used is
SS. The stack segment has a very critical and fine use and there is a reason
why BP is attached to SS by default. However these will be discussed in
detail in the chapter on stack. IP is tied to CS while SP is tied to SS. The
association of these registers cannot be changed; they are locked with no
option. Others are not locked and can be changed.

To override the association for one instruction of one of the registers BX,
BP, SI or DI, we use the segment override prefix. For example “mov ax,
[cs:bx]” associates BX with CS for this one instruction. For the next
instruction the default association will come back to act. The processor
places a special byte before the instruction called a prefix, just like prefixes
and suffixes in English language. No prefix is needed or placed for default
association. For example for CS the byte 2E is placed and for ES the byte 26
is placed. Opcode has not changed, but the prefix byte has modified the
default association to association with the desired segment register for this
one instruction.

In all our examples, we never declared a segment or used it explicitly, but
everything seemed to work fine. The important thing to note is that CS, DS,
SS, and ES all had the same value. The value itself is not important but the
fact that all had the same value is important. All four segment windows
exactly overlap. Whatever segment register we use the same physical memory
will be accessed. That is why everything was working without the mention of
a single segment register. This is the formation of COM files in IBM PC. A
single segment contains code, data, and the stack. This format is operating
system dependant, in our case defined by DOS. And our operating system
defines the format of COM files such that all segments have the same value.
Thus the only meaningful thing that remains is the offset.

For example if BX=0100, SI=0200, and CS=1000 and the memory access
under consideration is [cs:bx+si+0x0700], the effective address formed is
bx+si+0700 = 0100 + 0200 + 0700 = 0OAO0O. Now multiplying the segment
value by 16 makes it 10000 and adding the effective address 00AOO forms
the physical address 10A00.

2.7. ADDRESS WRAPAROUND

There are two types of wraparounds. One is within a single segment and
the other is inside the whole physical memory. Segment wraparound occurs
when during the effective address calculation a carry is generated. This carry
is dropped giving the effect that when we try to access beyond the segment
limit, we are actually wrapped around to the first cell in the segment. For
example if BX=9100, DS=1500 and the access is [bx+0x7000] we form the
effective address 9100 + 7000 = 10100. The carry generated is dropped
forming the actual effective address of 0100. Just like a circle when we
reached the end we started again from the beginning. An arc at 370 degrees
is the same as an arc at 10 degrees. We tried to cross the segment boundary
and it pushed us back to the start. This is called segment wraparound. The
physical address in the above example will be 15100.

The same can also happen at the time of physical address calculation. For
example BX=0100, DS=FFFO and the access under consideration is
[bx+0x0100]. The effective address will be 0200 and the physical address will
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be 100100. This is a 21bit answer and cannot be sent on the address bus
which is 20 bits wide. The carry is dropped and just like the segment
wraparound our physical memory has wrapped around at its very top. When
we tried to access beyond limits the actual access is made at the very start.
This second wraparound is a bit different in newer processor with more
address lines but that will be explained in later chapters.

2.8. ADDRESSING MODES SUMMARY

The iAPX88 processor supports seven modes of memory access. Remember
that immediate is not an addressing mode but an operand type. Operands
can be immediate, register, or memory. If the operand is memory one of the
seven addressing modes will be used to access it. The memory access
mechanisms can also be written in the general form “base + index + offset”
and we can define the possible addressing modes by saying that any one,
two, or none can be skipped from the general form to form a legal memory
access.

There are a few common mistakes done in forming a valid memory access.
Part of a register cannot be used to access memory. Like BX is allowed to
hold an address but BL or BH are not. Address is 16bit and must be
contained in a 16bit register. BX-SI is not possible. The only thing that we
can do is addition of a base register with an index register. Any other
operation is disallowed. BS+BP and SI+DI are both disallowed as we cannot
have two base or two index registers in one memory access. One has to be a
base register and the other has to be an index register and that is the reason
of naming them differently.

Direct

A fixed offset is given in brackets and the memory at that offset is
accessed. For example “mov [1234], ax” stores the contents of the AX
registers in two bytes starting at address 1234 in the current data segment.
The instruction “mov [1234], al” stores the contents of the AL register in the
byte at offset 1234.

Based Register Indirect

A base register is used in brackets and the actual address accessed
depends on the value contained in that register. For example “mov [bx], ax”
moves the two byte contents of the AX register to the address contained in
the BX register in the current data segment. The instruction “mov [bp], al”
moves the one byte content of the AL register to the address contained in the
BP register in the current stack segment.

Indexed Register Indirect

An index register is used in brackets and the actual address accessed
depends on the value contained in that register. For example “mov [si], ax”
moves the contents of the AX register to the word starting at address
contained in SI in the current data segment. The instruction “mov [di], ax”
moves the word contained in AX to the offset stored in DI in the current data
segment.

Based Register Indirect + Offset

A base register is used with a constant offset in this addressing mode. The
value contained in the base register is added with the constant offset to get
the effective address. For example “mov [bx+300], ax” stores the word
contained in AX at the offset attained by adding 300 to BX in the current
data segment. The instruction “mov [bp+300], ax” stores the word in AX to
the offset attained by adding 300 to BP in the current stack segment.
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Indexed Register Indirect + Offset

An index register is used with a constant offset in this addressing mode.
The value contained in the index register is added with the constant offset to
get the effective address. For example “mov [si+300], ax” moves the word
contained in AX to the offset attained by adding 300 to SI in the current data
segment and the instruction “mov [di+300], al” moves the byte contained in
AL to the offset attained by adding 300 to DI in the current data segment.

Base + Index

One base and one index register is used in this addressing mode. The
value of the base register and the index register are added together to get the
effective address. For example “mov [bx+si], ax” moves the word contained in
the AX register to offset attained by adding BX and SI in the current data
segment. The instruction “mov [bp+di], al” moves the byte contained in AL to
the offset attained by adding BP and DI in the current stack segment.
Observe that the default segment is based on the base register and not on
the index register. This is why base registers and index registers are named
separately. Other examples are “mov [bx+di], ax” and “mov [bp+si], ax.” This
method can be used to access a two dimensional array such that one
dimension is in a base register and the other is in an index register.

Base + Index + Offset

This is the most complex addressing method and is relatively infrequently
used. A base register, an index register, and a constant offset are all used in
this addressing mode. The values of the base register, the index register, and
the constant offset are all added together to get the effective address. For
example “mov [bx+si+300], ax” moves the word contents of the AX register to
the word in memory starting at offset attained by adding BX, SI, and 300 in
the current data segment. Default segment association is again based on the
base register. It might be used with the array base of a two dimensional array
as the constant offset, one dimension in the base register and the other in
the index register. This way all calculation of location of the desired element
has been delegated to the processor.

EXERCISES

1. What is a label and how does the assembler differentiates between
code labels and data labels?

2. List the seven addressing modes available in the 8088 architecture.

3. Differentiate between effective address and physical address.

4. What is the effective address generated by the following
instructions? Every instruction is independent of others. Initially
BX=0x0100, num1=0x1001, [num1]=0x0000, and SI=0x0100

a. mov ax, [bx+12]
b. mov ax, [bx+numl]
c. mov ax, [numl+bx]
d. mov ax, [bx+si]

S. What is the effective address generated by the following
combinations if they are valid. If not give reason. Initially
BX=0x0100, SI=0x0010, DI=0x0001, BP=0x0200, and SP=0xFFFF

bx-si

bx-bp

bx+10

bx-10

bx+sp

bx+di

6. Identify the problems in the following instructions and correct them
by replacing them with one or two instruction having the same
effect.

MO0 o
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a. mov [02], [ 22]
b. mov [wordvar], 20
Cc. mov bx, al
d. mov ax, [si+di+100]

7. What is the function of segment override prefix and what
changes it brings to the opcode?

8. What are the two types of address wraparound? What
physical address is accessed with [BX+SI] if FFFF is loaded in
BX, SI, and DS.

9. Write instructions to do the following.

a. Copy contents of memory location with offset 0025 in the
current data segment into AX.

b. Copy AX into memory location with offset OFFF in the
current data segment.

c. Move contents of memory location with offset 0010 to
memory location with offset O02F in the current data
segment.

10. Write a program to calculate the square of 20 by using a loop
that adds 20 to the accumulator 20 times.
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3
Branching

3.1. COMPARISON AND CONDITIONS

Conditional jump was introduced in the last chapter to loop for the
addition of a fixed number of array elements. The jump was based on the
zero flag. There are many other conditions possible in a program. For
example an operand can be greater than another operand or it can be
smaller. We use comparisons and boolean expressions extensively in higher
level languages. They must be available is some form in assembly language,
otherwise they could not possibly be made available in a higher level
language. In fact they are available in a very fine and purified form.

The basic root instruction for all comparisons is CMP standing for
compare. The operation of CMP is to subtract the source operand from the
destination operand, updating the flags without changing either the source
or the destination. CMP is one of the key instructions as it introduces the
capability of conditional routing in the processor.

A closer thought reveals that with subtraction we can check many different
conditions. For example if a larger number is subtracted from a smaller
number then borrow is needed. The carry flag plays the role of borrow during
the subtraction operation. And in this condition the carry flag will be set. If
two equal numbers are subtracted the answer is zero and the zero flag will be
set. Every significant relation between the destination and source is evident
from the sign flag, carry flag, zero flag, and the overflow flag. CMP is
meaningless without a conditional jump immediately following it.

Another important distinction at this point is the difference between signed
and unsigned numbers. In unsigned numbers only the magnitude of the
number is important, whereas in signed numbers both the magnitude and
the sign are important. For example -2 is greater than -3 but 2 is smaller
than 3. The sign has affected our comparisons.

Inside the computer signed numbers are represented in two’s complement
notation. In essence a number in this representation is still a number, just
that now our interpretation of this number will be signed. Whether we use
jump above and below or we use jump greater or less will convey our
intention to the processor. The jump above and greater operations at first
sight seem to be doing the same operation, and similarly below and less
operations seem to be similar. However for signed numbers JG and JL will
work properly and for unsigned JA and JB will work properly and not the
other way around.

It is important to note that at the time of comparison, the intent of the
programmer to treat the numbers as signed or unsigned is not clear. The
subtraction in CMP is a normal subtraction. It is only after the comparison,
during the conditional jump operation, that the intent is conveyed. At that
time with a specific combination of flags checked the intent is satisfied.

For example a number 2 is represented in a word as 0002 while the
number -2 is represented as FFFE. In a byte they would be represented as 02
and FE. Now both have the same magnitude however the different sign has
caused very different representation in two’s complement form. Now if the
intent is to use FFFE or decimal 65534 then the same data would be placed
in the word as in case of -2. In fact if -2 and 65534 are compared the
processor will set the zero flag signaling that they are exactly equal. As
regards an unsigned comparison the number 65534 is much greater than 2.
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So if a JA is taken after comparing -2 in the destination with 2 in the source
the jump will be taken. If however JG is used after the same comparison the
jump will not be taken as it will consider the sign and with the sign -2 is
smaller than 2. The key idea is that -2 and 65534 were both stored in
memory in the same form. It was the interpretation that treated it as a signed
or as an unsigned number.

The unsigned comparisons see the numbers as 0O being the smallest and
65535 being the largest with the order that 0 < 1 < 2 ... < 65535. The signed
comparisons see the number -32768 which has the same memory
representation as 32768 as the smallest number and 32767 as the largest
with the order -32768 < -32767 < ... < -1 <0 <1 <2< ..<32767. All the
negative numbers have the same representation as an unsigned number in
the range 32768 ... 65535 however the signed interpretation of the signed
comparisons makes them be treated as negative numbers smaller than zero.

All meaningful situations both for signed and unsigned numbers than
occur after a comparison are detailed in the following table.

DEST = SRC ZF =1 When the source is subtracted
from the destination and both are
equal the result is zero and
therefore the zero flag is set. This
works for both signed and
unsigned numbers.

UDEST < USRC CF=1 When an wunsigned source is
subtracted from an unsigned
destination and the destination is
smaller, borrow is needed which
sets the carry flag.

UDEST < USRC ZF=10RCF-=1 If the zero flag is set, it means
that the source and destination
are equal and if the carry flag is
set it means a borrow was needed
in the subtraction and therefore
the destination is smaller.

I
(@)

UDEST > USRC CF When an wunsigned source is
subtracted from an unsigned
destination no borrow will be
needed either when the operands
are equal or when the destination

is greater than the source.

UDEST > USRC ZF=0ANDCF =0 The wunsigned source and
destination are not equal if the
zero flag is not set and the
destination is not smaller since
no borrow was taken. Therefore
the destination is greater than
the source.

SDEST < SSRC SF = OF When a signed source is
subtracted from a  signed
destination and the answer is
negative with no overflow than
the destination is smaller than
the source. If however there is an
overflow meaning that the sign
has changed unexpectedly, the
meanings are reversed and a
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positive number signals that the
destination is smaller.

SDEST < SSRC ZF =1 OR SF # OF If the zero flag is set, it means
that the source and destination
are equal and if the sign and
overflow flags differ it means that
the destination is smaller as
described above.

SDEST > SSRC SF = OF When a signed source is
subtracted from a  signed
destination and the answer is
positive with no overflow than the
destination is greater than the
source. When an overflow is there
signaling that sign has changed
unexpectedly, we interpret a
negative answer as the signal
that the destination is greater.

SDEST > SSRC ZF = 0 AND SF = OF | If the zero flag is not set, it means
that the signed operands are not
equal and if the sign and overflow
match in addition to this it
means that the destination is
greater than the source.

3.2. CONDITIONAL JUMPS

For every interesting or meaningful situation of flags, a conditional jump is
there. For example JZ and JNZ check the zero flag. If in a comparison both
operands are same, the result of subtraction will be zero and the zero flag
will be set. Thus JZ and JNZ can be used to test equality. That is why there
are renamed versions JE and JNE read as jump if equal or jump if not equal.
They seem more logical in writing but mean exactly the same thing with the
same opcode. Many jumps are renamed with two or three names for the
same jump, so that the appropriate logic can be conveyed in assembly
language programs. This renaming is done by Intel and is a standard for
iAPX88. JC and JNC test the carry flag. For example we may need to test
whether there was an overflow in the last unsigned addition or subtraction.
Carry flag will also be set if two unsigned numbers are subtracted and the
first is smaller than the second. Therefore the renamed versions JB, JNAE,
and JNB, JAE are there standing for jump if below, jump if not above or
equal, jump if not below, and jump if above or equal respectively. The
operation of all jumps can be seen from the following table.

JC Jump if carry CF=1 This jump is taken if
JB Jump if below the last arithmetic
JNAE | Jump if not above or equal operation generated a

carry or required a
borrow. After a CMP it
is taken if the
unsigned source is
smaller than the
unsigned destination.

JNC Jump if not carry CF=0 This jump is taken if
JNB Jump if not below the last arithmetic
JAE Jump if above or equal operation did not
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generated a carry or
required a borrow.
After a CMP it is taken
if the unsigned source
is larger or equal to
the unsigned
destination.

JE
JzZ

Jump if equal
Jump if zero

ZF =1

This jump is taken if
the last arithmetic
operation produced a
zero in its destination.
After a CMP it is taken
if both operands were
equal.

JNE
JNZ

Jump if not equal
Jump if not zero

ZF =0

This jump is taken if
the last arithmetic
operation did not
produce a zero in its
destination. After a
CMP it is taken if both
operands were
different.

JA
JNBE

Jump if above
Jump if not below or equal

ZF = 0 AND
CF=0

This jump is taken
after a CMP if the
unsigned source is
larger than the
unsigned destination.

JNA
JBE

Jump if not above
Jump if not below or equal

ZF =
CF=1

1 OR

This jump is taken
after a CMP if the
unsigned source is
smaller than or equal
to the unsigned
destination.

JL
JNGE

Jump if less
Jump if not greater or equal

SF # OF

This jump is taken
after a CMP if the
signed source is
smaller than  the
signed destination.

JNL
JGE

Jump if not less
Jump if greater or equal

SF = OF

This jump is taken
after a CMP if the
signed source is larger
than or equal to the
signed destination.

JG
JNLE

Jump if greater
Jump if not less or equal

ZF = 0 AND
SF = OF

This jump is taken
after a CMP if the
signed source is larger
than the signed
destination.

JNG
JLE

Jump if not greater
Jump if less or equal

ZF = 1 OR
SF # OF

This jump is taken
after a CMP if the
signed source is
smaller than or equal
to the signed
destination.
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JO Jump if overflow. OF =1 This jump is taken if
the last arithmetic
operation changed the
sign unexpectedly.

1l
(@]

JNO | Jump if not overflow OF This jump is taken if
the last arithmetic
operation did not
change the sign

unexpectedly.

JS Jump if sign SF=1 This jump is taken if
the last arithmetic
operation produced a
negative number in its
destination.

JNS Jump if not sign SF

1
o

This jump is taken if
the last arithmetic
operation produced a
positive number in its
destination.

JP Jump if parity PF=1 This jump is taken if
JPE Jump if even parity the last arithmetic
operation produced a
number in its
destination that has
even parity.

JNP Jump if not parity PF =0 This jump is taken if
JPO Jump if odd parity the last arithmetic
operation produced a
number in its
destination that has
odd parity.

1
(@)

JCXZ | Jump if CX is zero CX This jump is taken if

the CX register is zero.

The CMP instruction sets the flags reflecting the relation of the destination
to the source. This is important as when we say jump if above, then what is
above what. The destination is above the source or the source is above the
destination.

The JA and JB instructions are related to unsigned numbers. That is our
interpretation for the destination and source operands is unsigned. The 16th
bit holds data and not the sign. In the JL and JG instructions standing for
jump if lower and jump if greater respectively, the interpretation is signed.
The 16th bit holds the sign and not the data. The difference between them
will be made clear as an elaborate example will be given to explain the
difference.

One jump is special that it is not dependant on any flag. It is JCXZ, jump
if the CS register is zero. This is because of the special treatment of the CX
register as a counter. This jump is regardless of the zero flag. There is no
counterpart or not form of this instruction.

The adding numbers example of the last chapter can be a little simplified
using the compare instruction on the BX register and eliminating the need
for a separate counter as below.
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Example 3.1

001 ; a program to add ten numbers without a separate counter

002 [org 0x0100]

003 mov bx, O ; initialize array index to zero
004 mov ax, O ; initialize sum to zero

005

006 11: add ax, [numl+bx] ; add number to ax

007 add bx, 2 ; advance bx to next index

008 cmp bx, 20 ; are we beyond the last index
009 jne 11 ; if not add next number

010

011 mov [total], ax ; write back sum in memory

012

013 mov ax, 0x4c00 ; terminate program

014 int 0x21

015

016 numi: dw 10, 20, 30, 40, 50, 10, 20, 30, 40, 50

017 total: dw O

006 The format of memory access is still base + offset.

008 BX is used as the array index as well as the counter. The offset of

11th number will be 20, so as soon as BX becomes 20 just after the
10th number has been added, the addition is stopped.

009 The jump is displayed as JNZ in the debugger even though we have
written JNE in our example. This is because it is a renamed jump
with the same opcode as JNZ and the debugger has no way of
knowing the mnemonic that we used after looking just at the
opcode. Also every code and data reference that we used till now is
seen in the opcode as well. However for the jump instruction we see
an operand of F2 in the opcode and not 0116. This will be discussed
in detail with unconditional jumps. It is actually a short relative
jump and the operand is stored in the form of positive or negative
offset from this instruction.

With conditional branching in hand, there are just a few small things left
in assembly language that fills some gaps. Now there is just imagination and
the skill to conceive programs that can make you write any program.

3.3. UNCONDITIONAL JUMP

Till now we have been placing data at the end of code. There is no such
restriction and we can define data anywhere in the code. Taking the previous
example, if we place data at the start of code instead of at the end and we
load our program in the debugger. We can see our data placed at the start
but the debugger is intending to start execution at our data. The COM file
definition said that the first executable instruction is at offset 0100 but we
have placed data there instead of code. So the debugger will try to interpret
that data as code and showed whatever it could make up out of those
opcodes.

We introduce a new instruction called JMP. It is the unconditional jump
that executes regardless of the state of all flags. So we write an unconditional
jump as the very first instruction of our program and jump to the next
instruction that follows our data declarations. This time 0100 contains a
valid first instruction of our program.

Example 3.2

001 ; a program to add ten numbers without a separate counter

002 [org 0x0100]

003 jmp start ; unconditionally jump over data
004

005 numi: dw 10, 20, 30, 40, 50, 10, 20, 30, 40, 50

006 total: dw O
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007
008 start: mov bx, O ; initialize array index to zero
009 mov ax, O ; initialize sum to zero
010
011 11: add ax, [numl+bx] ; add number to ax
012 add bx, 2 ; advance bx to next index
013 cmp bx, 20 ; are we beyond the last index
014 jne 11 ; If not add next number
015
016 mov [total], ax ; write back sum in memory
017
018 mov ax, 0x4c00 ; terminate program
019 int 0x21
003 JMP jumps over the data declarations to the start label and

execution resumes from there.

3.4. RELATIVE ADDRESSING

Inside the debugger the instruction is shown as JMP 0119 and the location
0119 contains the original first instruction of the logic of our program. This
jump is unconditional, it will always be taken. Now looking at the opcode we
see F21600 where F2 is the opcode and 1600 is the operand to it. 1600 is
0016 in proper word order. 0119 is not given as a parameter rather 0016 is
given.

This is position relative addressing in contrast to absolute addressing. It is
not telling the exact address rather it is telling how much forward or
backward to go from the current position of IP in the current code segment.
So the instruction means to add 0016 to the IP register. At the time of
execution of the first instruction at 0100 IP was pointing to the next
instruction at 0103, so after adding 16 it became 0119, the desired target
location. The mechanism is important to know, however all calculations in
this mechanism are done by the assembler and by the processor. We just use
a label with the JMP instruction and are ensured that the instruction at the
target label will be the one to be executed.

3.5. TYPES OF JUMP

The three types of jump, near, short, and far, differ in the size of
instruction and the range of memory they can jump to with the smallest
short form of two bytes and a range of just 256 bytes to the far form of five
bytes and a range covering the whole memory.

Short Jump
EB Disp
Near Jump
EB Disp Low | Disp High
Far Jump
EB IP Low IP High CS Low CS High
Near Jump

When the relative address stored with the instruction is in 16 bits as in the
last example the jump is called a near jump. Using a near jump we can jump
anywhere within a segment. If we add a large number it will wrap around to
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the lower part. A negative number actually is a large number and works this
way using the wraparound behavior.

Short Jump

If the offset is stored in a single byte as in 75F2 with the opcode 75 and
operand F2, the jump is called a short jump. F2 is added to IP as a signed
byte. If the byte is negative the complement is negated from IP otherwise the
byte is added. Unconditional jumps can be short, near, and far. The far type
is yet to be discussed. Conditional jumps can only be short. A short jump
can go +127 bytes ahead in code and -128 bytes backwards and no more.
This is the limitation of a byte in singed representation.

Far Jump

Far jump is not position relative but is absolute. Both segment and offset
must be given to a far jump. The previous two jumps were used to jump
within a segment. Sometimes we may need to go from one code segment to
another, and near and short jumps cannot take us there. Far jump must be
used and a two byte segment and a two byte offset are given to it. It loads CS
wit the segment part and IP with the offset part. Execution therefore resumes
from that location in physical memory. The three instructions that have a far
form are JMP, CALL, and RET, are related to program control. Far capability
makes intra segment control possible.

3.6. SORTING EXAMPLE

Moving ahead from our example of adding numbers we progress to a
program that can sort a list of numbers using the tools that we have
accumulated till now. Sorting can be ascending or descending like if the
largest number comes at the top, followed by a smaller number and so on till
the smallest number the sort will be called descending. The other order
starting with the smallest number and ending at the largest is called
ascending sort. This is a common problem and many algorithms have been
developed to solve it. One simple algorithm is the bubble sort algorithm.

In this algorithm we compare consecutive numbers. If they are in required
order e.g. if it is a descending sort and the first is larger then the second,
then we leave them as it is and if they are not in order, we swap them. Then
we do the same process for the next two numbers and so on till the last two
are compared and possibly swapped.

A complete iteration is called a pass over the array. We need N passes at
least in the simplest algorithm if N is the number of elements to be sorted. A
finer algorithm is to check if any swap was done in this pass and stop as
soon as a pass goes without a swap. The array is now sorted as every pair of
elements is in order.

For example if our list of numbers is 60, 55, 45, and 58 and we want to
sort them in ascending order, the first comparison will be of 60 and 55 and
as the order will be reversed to 55 and 60. The next comparison will be of 60
and 45 and again the two will be swapped. The next comparison of 60 and 58
will also cause a swap. At the end of first pass the numbers will be in order
of 55, 45, 58, and 60. Observe that the largest number has bubbled down to
the bottom. Just like a bubble at bottom of water. In the next pass 55 and 45
will be swapped. 55 and 58 will not be swapped and 58 and 60 will also not
be swapped. In the next pass there will be no swap as the elements are in
order i.e. 45, 55, 58, and 60. The passes will be stopped as the last pass did
not cause any swap. The application of bubble sort on these numbers is
further explained with the following illustration.
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State of Data Swap Done
Pass 1

60 | 55 | 45 | 58 Yes
55 | 60 | 45 | 58 Yes
55 | 45 | 60 | 58 Yes
Pass 2

55 [ 45 | 58 | 60 Yes
45 | 55 | 58 | 60 No
45 | 55 | 58 | 60 No
Pass 3

45 | 55 | 58 | 60 No
45 [ 55 | 58 | 60 No
45 | 55 | 58 | 60 No

Swap Flag
Off
On
On
On
Off
On
On
On
Off
Off
Off

Off

No more passes since swap flag is Off

Example 3.3
001 ; sorting a list of ten numbers using bubble sort
002 [org 0x0100]
003 jmp start
004
005 data: dw 60, 55, 45, 50, 40, 35, 25, 30, 10, O
006 swap: db 0
007
008 start: mov bx, O initialize array index to zero
009 mov byte [swap], O ; rest swap flag to no swaps
010
011 loopl: mov ax, [datat+bx] load number in ax
012 cmp ax, [data+bx+2] ; compare with next number
013 jbe noswap ; no swap if already in order
014
015 mov dx, [data+bx+2] load second element in dx
016 mov [data+bx+2], ax ; store first number in second
017 mov [data+bx], dx ; store second number in first
018 mov byte [swap], 1 ; flag that a swap has been done
019
020 noswap: add bx, 2 ; advance bx to next index
021 cmp bx, 18 ; are we at last index
022 Jjne loopl if not compare next two
023
024 cmp byte [swap], 1 ; check if a swap has been done
025 je bsort ; If yes make another pass
026
027 mov ax, 0x4c00 ; terminate program
028 int 0x21
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003 The jump instruction is placed to skip over data.
006 The swap flag can be stored in a register but as an example it is

stored in memory and also to extend the concept at a later stage.

011-012 QOne element is read in AX and it is compared with the next element
because memory to memory comparisons are not allowed.

013 If the JBE is changed to JB, not only the unnecessary swap on equal
will be performed, there will be a major algorithmic flaw due to a
logical error as in the case of equal elements the algorithm will never
stop. JBE won’t swap in the case of equal elements.

015-017 The swap is done using DX and AX registers in such a way that the
values are crossed. The code uses the information that one of the
elements is already in the AX register.

021 This time BX is compared with 18 instead of 20 even though the
number of elements is same. This is because we pick an element
and compare it with the next element. When we pick the 9th element
we compare it with the next element and this is the last comparison,
since if we pick the 10th element we will compare it with the 11th
element and there is no 11th element in our case.

024-025 If a swap is done we repeat the whole process for possible more
swaps.

Inside the debugger we observe that the JBE is changed to JNA due to the
same reason as discussed for JNE and JNZ. The passes change the data in
the same manner as we presented in our illustration above. If JBE in the
code is changed to JAE the sort will change from ascending to descending.
For signed numbers we can use JLE and JGE respectively for ascending and
descending sort.

To clarify the difference of signed and unsigned jumps we change the data
array in the last program to include some negative numbers as well. When
JBE will be used on this data, i.e. with unsigned interpretation of the data
and an ascending sort, the negative numbers will come at the end after the
largest positive number. However JLE will bring the negative numbers at the
very start of the list to bring them in proper ascending order according to a
signed interpretation, even though they are large in magnitude. The data
used is shown as below.

data: dw 60, 55, 45, 50, -40, -35, 25, 30, 10, O

This data includes some signed numbers as well. The JBE instruction will
treat this data as an unsigned number and will cater only for the magnitude
ignoring the sign. If the program is loaded in the debugger, the numbers will
appear in their hexadecimal equivalent. The two numbers -40 and -35 are
especially important as they are represented as FFD8 and FFDD. This data is
not telling whether it is signed or unsigned. Our interpretation will decide
whether it is a very large unsigned number or a signed number in two’s
complement form.

If the sorting algorithm is applied on the above data with JBE as the
comparison instruction to sort in ascending order with wunsigned
interpretation, observe the comparisons of the two numbers FFD8 and
FFDD. For example it will decide that FFDD > FFDS8 since the first is larger
in magnitude. At the end of sorting FFDD will be at the end of the list being
declared the largest number and FFD8 will precede it to be the second
largest.

If however the comparison instruction is changed to JLE and sorting is
done on the same data it works similarly except on the two numbers FFDD
and FFDS8. This time JLE declares them to be smaller than every other
number and also declares FFDD < FFDS8. At the end of sorting, FFDD is
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declared to be the smallest number followed by FFD8 and then 0000. This is
in contrast to the last example where JBE was used. This happened because
JLE interpreted our data as signed numbers, and as a signed number FFDD
has its sign bit on signaling that it is a negative number in two’s complement
form which is smaller than 0000 and every positive number. However JBE
did not give any significance to the sign bit and included it in the magnitude.
Therefore it declared the negative numbers to be the largest numbers.

If the required interpretation was of signed numbers the result produced
by JLE is correct and if the required interpretation was of unsigned numbers
the result produced by JBE is correct. This is the very difference between
signed and unsigned integers in higher level languages, where the compiler
takes the responsibility of making the appropriate jump depending on the
type of integer used. But it is only at this level that we can understand the
actual mechanism going on. In assembly language, use of proper jump is the
responsibility of the programmer, to convey the intentions to use the data as
signed or as unsigned.

The remaining possibilities of signed descending sort and unsigned
descending sort can be done on the same lines and are left as an exercise.
Other conditional jumps work in the same manner and can be studied from
the reference at the end. Several will be discussed in more detail when they
are used in subsequent chapters.

EXERCISES

1. Which registers are changed by the CMP instruction?

2. What are the different types of jumps available? Describe position
relative addressing.

3. If AX=8FFF and BX=0FFF and “cmp ax, bx” is executed, which of the
following jumps will be taken? Each part is independent of others. Also
give the value of Z, S, and C flags.

a. jg greater
b. jl smaller
c. ja above
d. jb below

4. Write a program to find the maximum number and the minimum
number from an array of ten numbers.

S. Write a program to search a particular element from an array using
binary search. If the element is found set AX to one and otherwise to
Zero.

6. Write a program to calculate the factorial of a number where factorial
is defined as:

factorial (x)

X*(X-1)*(x-2)*...*1
factorial (0) 1
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Bit Manipulations

4.1. MULTIPLICATION ALGORITHM

With the important capability of decision making in our repertoire we move
on to the discussion of an algorithm, which will help us uncover an
important set of instructions in our processor used for bit manipulations.

Multiplication is a common process that we use, and we were trained to do
in early schooling. Remember multiplying by a digit and then putting a cross
and then multiplying with the next digit and putting two crosses and so on
and summing the intermediate results in the end. Very familiar process but
we never saw the process as an algorithm, and we need to see it as an
algorithm to convey it to the processor.

To highlight the important thing in the algorithm we revise it on two 4bit
binary numbers. The numbers are 1101 i.e. 13 and 0101 i.e. 5. The answer
should be 65 or in binary 01000001. Observe that the answer is twice as
long as the multiplier and the multiplicand. The multiplication is shown in
the following figure.

1101
0101

13
5

01000001 = 65

We take the first digit of the multiplier and multiply it with the
multiplicand. As the digit is one the answer is the multiplicand itself. So we
place the multiplicand below the bar. Before multiplying with the next digit a
cross is placed at the right most place on the next line and the result is
placed shifted one digit left. However since the digit is zero, the result is zero.
Next digit is one, multiplying with which, the answer is 1101. We put two
crosses on the next line at the right most positions and place the result there
shifted two places to the left. The fourth digit is zero, so the answer 0000 is
placed with three crosses to its right.

Observe the beauty of binary base, as no real multiplication is needed at
the digit level. If the digit is O the answer is O and if the digit is 1 the answer
is the multiplicand itself. Also observe that for every next digit in the
multiplier the answer is written shifted one more place to the left. No shifting
for the first digit, once for the second, twice for the third and thrice for the
fourth one. Adding all the intermediate answers the result is 01000001=65
as desired. Crosses are treated as zero in this addition.

Before formulating the algorithm for this problem, we need some more
instructions that can shift a number so that we use this instruction for our
multiplicand shifting and also some way to check the bits of the multiplier
one by one.

4.2. SHIFTING AND ROTATIONS

The set of shifting and rotation instructions is one of the most useful set in
any processor’s instruction set. They simplify really complex tasks to a very
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neat and concise algorithm. The following shifting and rotation operations
are available in our processor.

Shift Logical Right (SHR)

The shift logical right operation inserts a zero from the left and moves
every bit one position to the right and copies the rightmost bit in the carry
flag. Imagine that there is a pipe filled to capacity with eight balls. The pipe is
open from both ends and there is a basket at the right end to hold anything
dropping from there. The operation of shift logical right is to force a white
ball from the left end. The operation is depicted in the following illustration.

0 1/011|11|{0(1]0}0 C

A 4

A 4

White balls represent zero bits while black balls represent one bits. Sixteen
bit shifting is done the same way with a pipe of double capacity.

Shift Logical Left (SHL) / Shift Arithmetic Left (SAL)

The shift logical left operation is the exact opposite of shift logical right. In
this operation the zero bit is inserted from the right and every bit moves one
position to its left with the most significant bit dropping into the carry flag.
Shift arithmetic left is just another name for shift logical left. The operation is
again exemplified with the following illustration of ball and pipes.

C 1/(0(1|11|{0(1]0}0 0

A
A

Shift Arithmetic Right (SAR)

A signed number holds the sign in its most significant bit.