ASSALAM O ALAIKUM all fellows ALL IN ONE Mega File MTH101 Midterm PAPERS, MCQz & subjective Created BY Farhan & Ali BS (cs) 3rd sem Hackers Group Mandi Bahauddin Remember us in your prayers

Mindhacker124@gmail.com Hearthacker124@gmail.com

MIDTERM EXAMINATION Fall 2009

MTH101 - Calculus And Analytical Geometry (Session - 5)

Ref No: 1087754

Time: 60 min

Marks: 42

Student Info					
StudentID:	BC090400057				
Center:	OPKST				
ExamDate:	12/17/2009 12:00:00 AM				

For Teacher's Use Only

Q	1	2	3	4	5	6	7	8	Total
No.									
Mark s									
Q No.	9	10	11	12	13	14	15	16	
Mark s									
Q No.	17	18	19	20	21	22	23	24	
Mark s									
Q No.	25	26	27						
Mark s									

Question No: 1 (Marks: 1) - Please choose one

If f is a twice differentiable function at a stationary point x_0 and $f''(x_0) < 0$ then f has relative At x_0

- ► Minima
 - ▶ Maxima
- ▶ None of these

Note: Maxima (If Maxima refers to local maximum)

Question No: 2 (Marks: 1) - Please choose one

A line $x = x_0$ is called ------ for the graph of a function f if $f(x) \to +\infty$ or $f(x) \to -\infty$ as x approaches x_0 from the right or from the left

- ► Horizontal asymptotes
- ▶ None of these
- ▶ Vertical asymptotes

Question No: 3 (Marks: 1) - Please choose one

A line $y = y_0$ is called a for the graph f if $\lim_{x \to +\infty} f(x) = y_0$ or $\lim_{x \to -\infty} f(x) = y_0$

- ► Vertical asymptotes
- ► Horizontal asymptotes
- ▶ None of these

Question No: 4 (Marks: 1) - Please choose one

According to Power-Rule of differentiation, if $f^{(x)=x^n}$ where $f^{(x)}$ where $f^{(x)}$ is a real number, then

$$\frac{d}{dx}[x^n] = \sum_{n=1}^{\infty} x^{n-1}$$

$$(n-1)x^{n+}$$

Question No: 5 (Marks: 1) - Please choose one

 $y = \frac{1}{1-x} \qquad \frac{dy}{dx} =$ then

$$\begin{array}{c|c} -1 \\ \hline & \frac{1}{(1-x)^2} \\ \hline & \frac{-1}{(1-x)^2} \end{array}$$

▶ 1

Question No: 6 (Marks: 1) - Please choose one

If

$$xy = 4$$
 then

Question No: 7 (Marks: 1) - Please choose one

If

2x-y=-3 then

- **▶** -3

Question No: 8 (Marks: 1) - Please choose one

$$\frac{d}{dx}[\sec x] = \underline{\hspace{1cm}}$$

$$\begin{array}{c}
\frac{1}{1+\sin^2 x} \\
-\sin x
\end{array}$$

$$\frac{\sin x}{1+\sin^2 x}$$

$$\begin{array}{c}
\frac{1}{1-\sin^2 x} \\
\bullet
\end{array}$$

$$\frac{\sin x}{1-\sin^2 x}$$

Question No: 9 (Marks: 1) - Please choose one

30⁰ = _____

 $\frac{\pi}{2}$

Question No: 10 (Marks: 1) - Please choose one

Consider a function h(x) and a constant c then

$$\frac{d}{dx}\big((c)\left\{h(x)\right\}\big) = \underline{\hspace{1cm}}$$

Question No: 11 (Marks: 1) - Please choose one

 $\frac{d}{dx}[\csc x] = \underline{\hspace{1cm}}$

$$\frac{1}{1+\cos^2 x}$$

$$\frac{-\cos x}{1-\cos^2 x}$$

$$\frac{-\cos x}{1-\cos^2 x}$$

$$\frac{1}{1-\cos^2 x}$$

Question No: 12 (Marks: 1) - Please choose one

Chain rule is a rule for differentiating _____ of functions.

- ► Product
- ► Sum
- ▶ Difference

▶ Composition

Question No: 13 (Marks: 1) - Please choose one

 $\frac{d}{dx}[x^n] = nx^{n-1}$

The power rule,

holds if n is _____

- ► An integer
- ► A rational number
- ► An irrational number
- ► All of the above

Question No: 14 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denote points in that interval. If $f(x_1) < f(x_2)$ whenever $f(x_1) < f(x_2)$ whenever then which of the following statement is correct?

- ightharpoonup f is an increasing function.
- ightharpoonup f is a decreasing function.
- ightharpoonup f is a constant function.

Question No: 15 (Marks: 1) - Please choose one

If

f''(x)>0 on an open interval (a,b), then which of the following statement is correct?

- ightharpoonup f is concave up on (a, b).
- ightharpoonup f is concave down on (a, b).
- ightharpoonup f is linear on (a, b).

f''(x) < 0 on an open interval (a,b) then which of the following statement is correct?

- \blacktriangleright f is concave up on (a, b).
- ightharpoonup f is concave down on (a, b)
- \blacktriangleright f is linear on (a, b).

Question No: 17 (Marks: 1) - Please choose one

If x > 0 then $\frac{d}{dx}[\ln x] = \underline{\hspace{1cm}}$

- **1**
- > x
- $\frac{1}{x}$
 - $\int \ln \frac{1}{x}$

Question No: 18 (Marks: 1) - Please choose one

If b > 0 then $\frac{d}{dx}[b^x] = \underline{\hspace{1cm}}$

- **▶** 0
- $\searrow xb^{x-1}$
- ightharpoonup $\ln b$
- $b^x \ln b$

Question No: 19 (Marks: 1) - Please choose one

Let $y = (x^3 + 2x)^{37}$. Which of the following is correct?

$$\frac{dy}{dx} = (37)(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = 111x^2(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{38}$$

Question No: 20 (Marks: 1) - Please choose one

What is the base of natural logarithm?

▶ 2.71

▶ 10

► Any real number

Question No: 21 (Marks: 1) - Please choose one

Let x_0 be critical points of the function f . Those critical points for which $^{f'(x_0)=0}$ are called _____ of f

- ► Local points
- ► End points
- ► Stationary points

Question No: 22 (Marks: 1) - Please choose one

 $\log_b a^r = \underline{\hspace{1cm}}$

$$a \log_b r$$

$$r\log_b a$$

$$\frac{\log_b a}{\log_b r}$$

Question No: 23 (Marks: 1) - Please choose one

$$\log_b \frac{1}{c} = \underline{\hspace{1cm}}$$

$$ightharpoonup \log_b c$$

$$1-\log_b c$$

$$-\log_b c$$

$$\rightarrow 1 + \log_b c$$

Question No: 24 (Marks: 1) - Please choose one

$$\log_b \frac{1}{t} = \underline{\hspace{1cm}}$$

$$ightharpoonup \log_b t$$

$$1-\log_b t$$

$$1 + \log_b t$$

Question No: 25 (Marks: 3)

 $f(x) = x^4 - 8 x^2$, determine all relative extrema for the function. Using First Derivative Test.

Solution:

If

$$f = x^4 - 8x^2$$

$$f = 4x^3 - 16x^1$$

$$f = 0$$

$$4x^3 - 16x = 0$$

$$x(4x^2 - 16) = 0$$

$$x = 0$$

$$4x^2 - 16 = 0$$

$$x^2 = \frac{16}{4}$$

$$x^2 = 4$$

$$x = \pm 2$$

Re *lactive* extreama $(0, \pm 2)$Ans

Question No: 26 (Marks: 5)

Differentiate $y = x^{-2}(4+3x^{-3})$

$$y = x^{-2}(4 + 3x^{-3})$$

Solution:

$$y = 4x^{-2} + 3x^{-3}.x^{-2}$$

$$=4x^{-2}+3x^{-5}$$

$$\frac{dy}{dx} = 4\frac{d}{dx}(x^{-2}) + 3\frac{d}{dx}(x^{-5})$$

$$=4(-2)x^{-2-1}+3\frac{d}{dx}-5x^{-5-1}$$

$$= -8x^{-3} + (-15x^{-6})$$

$$\frac{dy}{dx} = -8x^{-3} - 15x^{-6} \dots \text{Ans}$$

Question No: 27 (Marks: 10)

Determine the intervals in which the graph of the function $f(x) = \frac{1}{x}$

is concave upward or downward.

Solution:

$$f(x) = \frac{1}{x}$$

$$f(x) = -\frac{1}{x^2}$$

X

F(x)	-1	-0.25	-0.11	-0.625	

Conclusion:

```
f^{(x)} is increasing when x is from (0,\infty) so,
It is concave up.
f^{(x)} is decreasing when x is from (-\infty,0) so,
It is concave down
```

ASSALAM O ALAIKUM all fellows ALL IN ONE Mega File MTH101 Midterm PAPERS, MCQz & subjective Created BY Farhan & Ali BS (cs) 3rd sem Hackers Group Mandi Bahauddin Remember us in your prayers

Mindhacker124@gmail.com Hearthacker124@gmail.com

MIDTERM EXAMINATION

Fall 2008 MTH101 - Calculus And Analytical Geometry

Time: 60 min

Marks: 38

For Teacher's Use Only

Q	1	2	3	4	5	6	7	8	Total
No.									
Mark									
S									
Q No.	9	10	11	12	13	14	15	16	
Mark s									
Q No.	17	18	19	20	21				
Mark s									

Question No: 1 (Marks: 1) - Please choose one

The average velocity of a body is $V_{\it ave}$

$$\frac{d_1 - d_0}{t_1 - t_0}$$

$$\frac{t_1 - t_0}{f(t_0) - f(t_1)}$$

$$\lim_{t_1 \to t_0} \frac{f(t_0) - f(t_1)}{t_1 - t_0}$$

► None of these

Question No: 2 (Marks: 1) - Please choose one

Consider two functions $f(x) = x^3 and g(x) = (x+9)$ then $fog(x) = x^3 and g(x) = x^3 and g(x)$

$$(x+9)^3$$

- x+3
- $\rightarrow x+9$
- ▶ None of these

Question No: 3 (Marks: 1) - Please choose one

Consider two function $f(x) = x^2 and g(x) = \sqrt{x}$ then $fog(x) = \frac{fog(x)}{1 + x^2}$

- *x*
- \rightarrow x^2
- \rightarrow \sqrt{x}
- ▶ None of these

Question No: 4 (Marks: 1) - Please choose one

Consider two functions $f(x) = 3\sqrt{x}$ and $g(x) = \sqrt{x}$ what is true about these functions

$$f(x).g(x) = 3x$$

$$f(x)/g(x) = 3x$$

f(z(z)) = 2z

f(g(x)) = 3x

▶ None of these -correct

Question No: 5 (Marks: 1) - Please choose one

The centre and the radius of the circle $(x+5)^2+(y-3)^2=16$ is

- **►** (-5,3) ,4
- **►** (5,-3),16
- **►** (5,-3),4

▶ None of these

Question No: 6 (Marks: 1) - Please choose one

The graph $x = y^2$ is symmetric about

- ➤ X-axis
- ▶ Y-axis
- ► Origin
 - ▶ None of these

Question No: 7 (Marks: 1) - Please choose one

The chain rule is used for two function f and g, if we have ---- of these functions

- ► Product
- ► Sum
- ► Composition
- ▶ None of these

Question No: 8 (Marks: 1) - Please choose one

function f is differentiable function if it is differentiable on the interval

 $\qquad \qquad (-\infty,\infty)$

- (a, ∞) where a is any negative integer
- $(0,\infty)$
- ▶ None of these

Question No: 9 (Marks: 1) - Please choose one

function is said to be continuous function if the function is continuous on the interval

$$(-\infty, +\infty)$$

- $(-\infty,0)$
- ▶ None of these

Question No: 10 (Marks: 1) - Please choose one

$$\lim_{x\to 0} \frac{\sin x}{x}$$

► 1/2

Question No: 11 (Marks: 1) - Please choose one

For any polynomial $P(x) = c_0 + c_1 x + \dots + c_n x^n$ and any real number a $\lim_{x \to a} P(x) = c_0 + c_1 a + \dots + c_n a^n =$

- P(a)
- P(a+1)
- P(a-1)
 - $\frac{1}{P(a)}$

Question No: 12 (Marks: 1) - Please choose one

The no of x and y intercepts for the equation y=1/x

- ightharpoonup Two x intercepts
- ► Two y intercepts
- ► No x and no y intercepts
- ▶ None of these

Question No: 13 (Marks: 1) - Please choose one

line is called a tangent line to the circle if it meets the circle at precisely

- ▶ One point
- ► Two points
- ► Infinite points
- ▶ None of these

Question No: 14 (Marks: 1) - Please choose one

If f is a twice differentiable function at a stationary point x_0 and $^{f\, ''\! (x_0)\, <\, 0}$ then f has relative At x_0

- ► Minima
- ▶ Maxima
- ▶ None of these

Question No: 15 (Marks: 1) - Please choose one

If

the $\lim_{x \to a} f(x) = L$ then the inequality $(L - \varepsilon) < f(x) < L + \varepsilon$ holds in any subset of the interval

- $(a-\delta,a) \cup (a,a+\delta)$ $(a-1,a) \cup (a,a+1)$
- $(a-\varepsilon,a)\cup(a,a+\varepsilon)$
- ▶ None of these

Question No: 16 (Marks: 1) - Please choose one

$$\lim_{x\to 5} \frac{\sqrt{x+4}}{x^2+2} =$$

- ► Limit doesn't exist

Question No: 17 (Marks: 2)

Show that $f(x)=x^2-3x+1$ is a continuous function.

 $\lim_{x \to +\infty} = (x^2 - 3x + 1) = +\infty$

And

 $\lim = (x^2 - 3x + 1) = +\infty$

Question No: 18 (Marks: 2)

Find the range of function f defined by $f(x) = x^2 + 5$

Question No: 19 (Marks: 3)

 $y = (\cos x)^{6x}$

Differentiate:

Question No: 20 (Marks: 5)

Differentiate w.r.t. x by chain rule $y = \cos^2(x^3)$

ASSALAM O ALAIKUM all fellows
ALL IN ONE Mega File
MTH101 Midterm PAPERS,
MCQz & subjective
Created BY Farhan & Ali
BS (cs) 3rd sem
Hackers Group
Mandi Bahauddin
Remember us in your prayers

Mindhacker124@gmail.com Hearthacker124@gmail.com

MIDTERM EXAMINATION
Fall 2009
MTH101- Calculus And Analytical Geometry

Question No: 1 (Marks: 1) - Please choose one

If f is a twice differentiable function at a stationary point x_0 and $f''(x_0)>0$ then f has relative At

► Maxima

▶ None of these

Question No: 2 (Marks: 1) - Please choose one

If f is a twice differentiable function at a stationary point x_0 and $f''(x_0) < 0$ then f has relative At x_0

- ► Minima
 - ▶ Maxima
- ▶ None of these

Question No: 3 (Marks: 1) - Please choose one

A line $x = x_0$ is called ----- for the graph of a function f if $f(x) \to +\infty$ or $f(x) \to -\infty$ as x approaches x_0 from the right or from the left

- ► Horizontal asymptotes
- ▶ None of these
 - ▶ Vertical asymptotes

Question No: 4 (Marks: 1) - Please choose one

If

$$f(x) = 3x^8 + 2x + 1$$
 then $f'(x) =$

$$\rightarrow$$
 3 $x^7 + 2$

$$24x^7 + 2$$

$$\rightarrow$$
 3 $x^9 + 2x^2$

$$24x^{7} + 2$$

$$3x^{9} + 2x^{2}$$

$$24x^{9} + 2x^{2}$$

Question No: 5 (Marks: 1) - Please choose one

$$y = \frac{1}{1-x} \qquad \frac{dy}{dx} =$$
then

$$\frac{1}{\left(1-x\right)^2}$$

$$\qquad \qquad \boxed{ \frac{1}{\left(1-x\right)^2} }$$

Question No: 6 (Marks: 1) - Please choose one

If

$$\frac{dy}{dx} =$$
then

$$x^2 + y^2 = 9$$
 then $\frac{dy}{dx}$

Question No: 8 (Marks: 1) - Please choose one

$$\frac{d}{dx}[\sec x] = \underline{\hspace{1cm}}$$

$$\begin{array}{c}
\frac{1}{1+\sin^2 x} \\
-\sin x \\
\frac{-\sin x}{1+\sin^2 x}
\end{array}$$

$$\frac{\sin x}{1-\sin^2 x}$$

Question No: 9 (Marks: 1) - Please choose one

30⁰ = _____

Question No: 10 (Marks: 1) - Please choose one

Suppose that f and g are differentiable functions of g then

$$\frac{d}{dx}[f][g] =$$

$$\begin{array}{c|c} & \underline{[f'][g] - [f][g']} \\ & & g^2 \\ & & [f'][g'] \\ & & & [f'][g] + [f][g'] \\ & & & & [f'][g] - [f][g'] \\ \end{array}$$

Question No: 11 (Marks: 1) - Please choose one

Suppose that f and g are differentiable functions of x then $\frac{d}{dx} \left[\frac{f}{g} \right] =$

$$\frac{[g][f'] - [f][g']}{g^{2}}$$

$$\frac{[g'][f] - [f'][g]}{g^{2}}$$

$$\frac{[g][f'] - [f][g']}{f^{2}}$$

$$\frac{[g'][f] - [f'][g]}{f^{2}}$$

$$f^{2}$$

Question No: 12 (Marks: 1) - Please choose one

If a function g is differentiable at a point x and a function f is differentiable at a point g(x), then the _____ is differentiable at point x.

Composition	on $(f \circ g)$		
Quotient	(f/g)		
► Product	•		
► Sum (f			
Question No: 13	(Marks: 1)	- Please choose	one
Chain rule is a rule functions.	for differention	ting	of
► Product			
► Sum			
▶ Difference			
► Compositi	on		
· Compositi			
Question No: 14	(Marks: 1)	- Please choose	one
$\frac{d}{dx}$	$[x^n] = nx^{n-1}$		
The power rule,	holds if	n is	-
•	► An integer		
► A rational nu	ımber		
► An irrationa	l number		
► All of the	above		
Question No: 15	(Marks: 1)	- Please choose	one

Let a function f be defined on an interval, and let x_1 and x_2

denote points in that interval. If $f(x_1) < f(x_2)$ whenever then which of the following statement is correct?

- ▶ f is an increasing function.
- ightharpoonup f is a decreasing function.
- ightharpoonup f is a constant function.

Question No: 16 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denote points in that interval. If $f(x_1) > f(x_2)$ whenever $f(x_1) < f(x_2)$ whenever then which of the following statement is correct?

- ightharpoonup f is an increasing function.
 - ▶ f is a decreasing function.
- ightharpoonup f is a constant function.

Question No: 17 (Marks: 1) - Please choose one

If

f''(x)>0 on an open interval (a,b), then which of the following statement is correct?

- ightharpoonup f is concave up on (a, b)
- ightharpoonup f is concave down on (a, b).
- \blacktriangleright f is linear on (a, b).

Question No: 18 (Marks: 1) - Please choose one

If x > 0 then $\frac{d}{dx}[\ln x] = \underline{\hspace{1cm}}$

- **1**
- > x
- $\frac{1}{x}$
- ln -

Question No: 19 (Marks: 1) - Please choose one

Let $y = (x^3 + 2x)^{37}$. Which of the following is correct?

$$\frac{dy}{dx} = (37)(x^3 + 2x)^{36}$$

 $\frac{dy}{dx} = 111x^2(x^3 + 2x)^{36}$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{38}$$

Question No: 20 (Marks: 1) - Please choose one

What is the base of natural logarithm?

▶ 10

- **▶** 5
- ► Any real number

Question No: 21 (Marks: 1) - Please choose one

_____If

we have $x^2 + y^2 = 1$ then $\frac{dy}{dx} =$ _____

$$\frac{-x}{-x}$$

 $\frac{x}{y}$

$$\frac{-y}{x}$$

► None of these

Question No: 22 (Marks: 1) - Please choose one

 $\log_b a^r = \underline{\hspace{1cm}}$

$$a\log_b r$$

 $r\log_b a$

$$\frac{\log_b a}{\log_b r}$$

Question No: 23 (Marks: 1) - Please choose one

$$\log_b \frac{1}{c} = \underline{\hspace{1cm}}$$

$$\log_b \log_b n$$

$$1-\log_b a$$

$$-\log_b a$$

$$\rightarrow 1 + \log_b c$$

Question No: 24 (Marks: 1) - Please choose one

$$\log_b \frac{1}{t} = \underline{\hspace{1cm}}$$

$$ightharpoonup \log_b t$$

$$1-\log_b t$$

$$1 + \log_b t$$

$$-\log_b t$$

Question No: 25 (Marks: 3)

Differentiate:
$$y = x^{\sqrt{x}} e^{5x+6}$$

Question No: 26 (Marks: 5)

Differentiate $y = (x^3 + 7x - 1)(5x + 2)$

Question No: 27 (Marks: 10)

The derivative of a continuous function is given .Find all critical points and determine whether a relative maximum, relative minimum or neither occur there

$$f'(x) = 2Sin^3x - Sin^2x \quad ; \quad 0 < x < 2\pi$$

ASSALAM O ALAIKUM all fellows
ALL IN ONE Mega File
MTH101 Midterm PAPERS,
MCQz & subjective
Created BY Farhan & Ali
BS (cs) 3rd sem
Hackers Group
Mandi Bahauddin
Remember us in your prayers

Mindhacker124@gmail.com

Hearthacker124@gmail.com

MIDTERM EXAMINATION

Spring 2010

MTH101- Calculus And Analytical Geometry

Time: 60 min Marks: 40

Question No: 1 (Marks: 1) - Please choose one $30^{\circ} =$

Question No: 2 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denotes two distinct points in that interval. If $f(x_1) = f(x_2)$ for all points x_1 and x_2 then which of the following statement is correct?

- ightharpoonup f is a decreasing function
- ightharpoonup f is an increasing function
 - ightharpoonup f is a constant function

Question No: 3 (Marks: 1) - Please choose one

Tan(x) is continuous every where except at points

$$\pm \frac{k\pi}{2}(k = 1, 3, 5, ...)$$

$$\pm \frac{k\pi}{2}(k = 2, 4, 6, ...)$$

$$\pm \frac{k\pi}{2}(k = 1, 2, 3, 4, 5, 6, ...)$$

Question No: 4 (Marks: 1) - Please choose one

 $\lim_{x\to\infty} \left(-2x\right) =$

- - ▶ Does not exist

Question No: 5 (Marks: 1) - Please choose one

Suppose that f and g are differentiable functions of g then $\frac{d}{dx}[f][g] =$

$$\begin{array}{c|c} & \underline{[f'][g] - [f][g']} \\ & & g^2 \\ & & [f'][g'] \\ & & & [f'][g] + [f][g'] \\ & & & & [f'][g] - [f][g'] \\ & & & & & \end{array}$$

Question No: 6 (Marks: 1) - Please choose one

The solution set of the inequality $|x+4| \ge 2$ is

- $\qquad \qquad \bullet \qquad ^{(-\infty,-6]}U[2,+\infty)$
- None of these
- $(-\infty, 6]U[-2, +\infty)$
- $(-\infty, -6] U[-2, +\infty)$

Question No: 7 (Marks: 1) - Please choose one

A line is called a tangent line to the circle if it meets the circle at precisely

- ▶ One point
- ► Two points
- ► Infinite points

Question No: 8 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denote points in that interval. If $f(x_1) < f(x_2)$ whenever $f(x_1) < f(x_2)$

then which of the following statement is correct?

- ▶ f is an increasing function.
- ightharpoonup f is a decreasing function.
- \blacktriangleright f is a constant function.

Question No: 9 (Marks: 1) - Please choose one

If

 $f(x) = 3x^8 + 2x + 1$ then f'(x) =

- $> 3x^7 + 2$
- $24x^7 + 2$
- $3x^9 + 2x^2$

Question No: 10 (Marks: 1) - Please choose one

 $^{\pi}$ is anumber

- ► Integer
- ► Rational
 - ▶ Irrational
- ► Natural

Question No: 11 (Marks: 1) - Please choose one

The set ${x:a \le x \le b}$ can be written in the form of interval

- ► (a,b)
- ► (a,b]
 - ▶ [a,b]

Question No: 12 (Marks: 1) - Please choose one

Suppose that f and g are differentiable functions of x then $\frac{d}{dx} \left[\frac{f}{g} \right] =$

$$\frac{[g][f']-[f][g']}{g^2}$$

$$\frac{[g'][f] - [f'][g]}{g^2}$$

$$\frac{[g][f']-[f][g']}{f^2}$$

$$f^2$$

Question No: 13 (Marks: 1) - Please choose one The graph $x=y^2$ is symmetric about -----axis

- ▶ Y-axis
- ► Origin

Question No: 14 (Marks: 1) - Please choose one

 $\lim_{x \to -7} \frac{x^2 - 49}{x + 7}$

▶ 0

∞

► Limit does not exis

Question No: 15 (Marks: 1) - Please choose one

Chain rule is a rule for differentiating _____ of functions.

- ► Product
- ► Sum
- ► Difference
 - Composition

Question No: 16 (Marks: 1) - Please choose one

$$\lim_{x \to a} f(x) = \dots \text{where } f(x) = k$$

The

(k is a constant)

- ▶ k+2
- ► k+1
 - ▶ k

Question No: 17 (Marks: 1) - Please choose one

For any number $\varepsilon>0$ if we can find an open interval (x_0,x_1) on the x-axis containing the point "a" such that (x_0,x_1) for each x in (x_0,x_1) except the possible x = a then we say $\lim_{x\to a} f(x) =$

 $ightharpoonup L-\varepsilon$

 $L + \varepsilon$

L+1

Question No: 18 (Marks: 1) - Please choose one

If

$$2x-y=-3$$
 then

$$\frac{dy}{dx} =$$

▶ -2

▶ 0

▶ -3

Question No: 19 (Marks: 1) - Please choose one

The graph of the equation $y=x^2-4x+5$ will represent

▶ Parabola

- ► Straight line
- ▶ two straight lines
- ► Ellipse

Question No: 20 (Marks: 1) - Please choose one

The equation of line of the form $y-y_1=m(x-x_1)$ is known as

- ► Point-slope form
- ► Two points form
- ► Intercepts form
- ► Slope intercept form

Question No: 21 (Marks: 2)

If $y = 5\cos(x^2 + 1)$ Find dy/dx by using "The chain rule".

Question No: 22 (Marks: 2)

 $\lim_{x\to 1} (x+5) = 6$ Prove that , using the definition of limit.

Question No: 23 (Marks: 3)

Find an equation of the tangent line to the curve

$$y = \frac{2}{x^2 + x}$$
 at the point where $x = 1$

Question No: 24 (Marks: 3)

$$\lim_{x\to 0}\frac{\sin(5x)}{3x}$$

Compute

Question No: 25 (Marks: 5)

Find all critical points of $f(x)=x^4-4x^3+4x^2$

ALL IN ONE Mega File
MTH101 Midterm PAPERS,
MCQz & subjective
Created BY Farhan & Ali
BS (cs) 3rd sem
Hackers Group

Mandi Bahauddin Remember us in your prayers

Mindhacker124@gmail.com Hearthacker124@gmail.com

Question No: 1 (Marks: 1) - Please choose one

The set $\{..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$ is know as set of

- ► Natural numbers
- ➤ Integers
- ► Whole numbers
- ▶ None of these

Question No: 2 (Marks: 1) - Please choose one

$$h(x) = \frac{1}{(x-2)(x-4)}$$

The domain of the function

$$(-\infty, 2) \cup \{2, 4\} \cup \{4, \infty)$$

► All of these are incorrect

Question No: 3 (Marks: 1) - Please choose one

If the $\lim_{x \to a} f(x) = L$ then the inequality $(L - \varepsilon) < f(x) < L + \varepsilon$ holds in any subset of the interval

$$(a-\delta,a)\cup(a,a+\delta)$$

$$(a-1,a)\cup(a,a+1)$$

$$(a-1,a) \cup (a,a+1)$$

$$(a-\varepsilon,a) \cup (a,a+\varepsilon)$$

None of these

Question No: 4 (Marks: 1) - Please choose one

 $L - \varepsilon < f(x) < L + \varepsilon$ Can be written as

$$|f(x)-L| < \varepsilon$$

$$|f(x)-L| > \varepsilon$$

$$|f(x)-L| < \varepsilon+1$$

$$|f(x)-L|>\varepsilon$$

$$|f(x)-L|<\varepsilon+1$$

▶ None of these

Question No: 5 (Marks: 1) - Please choose one

If a function satisfies the conditions

f(c) is defined $\lim_{x \to c^{+}} f(x)$ Exists $\lim_{x \to c^{+}} f(x) = f(c)$

Then the function is said to be

- ► Continuous at c
- ► Continuous from left at c
- ► Continuous from right at c
- ▶ None of these

Question No: 6 (Marks: 1) - Please choose one

$$\frac{d}{dx}[sex] = ----$$

$$\frac{\sin x}{1-\sin^2 x}$$

$$\frac{-\sin x}{1-\sin^2 x}$$

$$\frac{1}{1-\sin^2 x}$$

▶ None of these

Question No: 7 (Marks: 1) - Please choose one

 $\log_b ac = ----$

- $\log_b a + \log_b c$
- $\log_a b + \log_c b$
- $\log_{a+c} b$
- ▶ None of these

Question No: 8 (Marks: 1) - Please choose one

 $\log_b a^r = ----$

- $a \log_b r$
- $r\log_b a$
- $b\log_a r$
- ▶ None of these

Question No: 9 (Marks: 1) - Please choose one

f''(x) < 0 on an open interval (a,b) then f is ----- on (a,b)

If

► None of these

- ► Concave up
 - ► Concave down
- ► Closed

Question No: 10 (Marks: 1) - Please choose one

If f is a twice differentiable function at a stationary point x_0 and x_0 then f has relative At

- ▶ Minima
- ▶ Maxima
- ▶ None of these

Question No: 11 (Marks: 1) - Please choose one

line is called a tangent line to the circle if it meets the circle at precisely

- ▶ One point
- ► Two points
- ► Infinite points
- ► None of these

Question No: 12 (Marks: 1) - Please choose one

The equation $(x+4)^2 + (y-1)^2 = 6$ represents a circle having center at and radius

$$(-4,1),\sqrt{6}$$

- $(-4,-1),\sqrt{6}$
- ▶ None of these

Question No: 13 (Marks: 1) - Please choose one

 $\lim_{x \to a} f(x)$ where f(x) = k

The $x \to a$ (k is a constant) is equal to

- ▶ k+2
- ▶ k+1
- 🕨 k
 - ▶ kf

Question No: 14 (Marks: 1) - Please choose one

For any polynomial $P(x) = c_0 + c_1 x + \dots + c_n x^n$ and any real number a $\lim P(x) = c_0 + c_1 a + \dots + c_n a^n =$

- P(a)
- P(a+1)
- P(a-1)
 - $\frac{1}{P(a)}$

ightharpoons

Question No: 15 (Marks: 1) - Please choose one

Polynomials are always Function

- ► Continuous
- **▶** Discontinuous

Question No: 16 (Marks: 1) - Please choose one

$$\frac{D}{Dx}[dh(x)] = ----$$

where d is a constant

▶ None of these

Question No: 17 (Marks: 1) - Please choose one

The graph $x = y^2$ is symmetric about

- ➤ X-axis
- ▶ Y-axis
- ► Origin
- ► None of these

Question No: 18 (Marks: 1) - Please choose one

Consider two function $f(x) = 3\sqrt{x}$ and $g(x) = \sqrt{x}$ what is true about these functions

$$f(x) \cdot g(x) = 3x$$

$$f(x) / g(x) = 3x$$

f(g(x)) = 3x

▶ None of these

Question No: 19 (Marks: 1) - Please choose one

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

The formula the function f is called With respect to x of

- Derivative
- ► Slope
- ▶ Tangent
- ▶ None of these

Question No: 20 (Marks: 1) - Please choose one

$$\frac{d}{dx}(\frac{f}{g})$$

Suppose that $\int_{0}^{f \text{ and } g} dx$ are differentiable function of x then

$$\frac{g.f'-f.g'}{g^2}$$

$$\frac{g.f'+f.g'}{g^2}$$

$$\frac{g.f'-f.g'}{g^2}$$

$$\frac{g.f'+f.g'}{g^2}$$

$$\frac{g.f'-f.g'}{g}$$

▶ None of these

ASSALAM O ALAIKUM all fellows
ALL IN ONE Mega File
MTH101 Midterm PAPERS,
MCQz & subjective
Created BY Farhan & Ali
BS (cs) 3rd sem
Hackers Group
Mandi Bahauddin
Remember us in your prayers

Mindhacker124@gmail.com Hearthacker124@gmail.com

Question No: 1 (Marks: 1) - Please choose one

Consider two function $f(x) = x^2 and g(x) = \sqrt{x}$ then $fog(x) = \frac{fog(x)}{1 + \frac{1}{2}}$

 x^2

 $ightharpoonup \sqrt{x}$

▶ None of these

Question No: 2 (Marks: 1) - Please choose one

	$\frac{(x^2-4)}{(x-2)}$
Natural domain of	
$(-\infty,2)U(2)$ $(-\infty,2)$ $(-\infty,0)$?,+∞)
► None of th	
Question No: 3	(Marks: 1) - Please choose one
The solution of th	he inequality $ x-3 < 3$ is
 ► (-1, 7) ► (1, 7) ► (1,-7) ► None of 	[:] these
Question No: 4	(Marks: 1) - Please choose one
	y depends on another quantity x in such a way that x determines exactly one value of y , we say that of x
▶ relation	
none of the	050

▶ not function

► function

Question No: 5 (Marks: 1) - Please choose one

The set of all points in the coordinate plane which are at a fixed distance away from a given fixed point represents

- ► Parabola
- ► Straight line
 - ► Circle
- ► None of these

Question No: 6 (Marks: 1) - Please choose one

Let L₁ and L₂ be non vertical lines with slopes m₁ and m_{2, respectively} both the lines are perpendicular if and only if

$$m1(-m2) = 1$$

$$m1 = -\frac{1}{m2}$$

► All of these

Question No: 7 (Marks: 1) - Please choose one

The equation $(x+4)^2 + (y-1)^2 = 6$ represents a circle having center at and radius

$$(-4,1),\sqrt{6}$$
 $(-4,1),6$

$$(-4,1),6$$

$$(-4,-1),\sqrt{6}$$

► None of these

Question No: 8 (Marks: 1) - Please choose one

The base of the natural logarithm is

- **▶** 2.71
- ▶ 10
- **▶** 5
- ▶ None of these

Question No: 9 (Marks: 1) - Please choose one

$$\frac{d}{dx}[f(g(x))] =$$

- ▶ None of these

Question No: 10 (Marks: 1) - Please choose one

$$\frac{dy}{dx} =$$

y=f(g(h(x))) and u=g(h(x)) and v=h(x) then

$$\frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$$

If

$$\frac{dy}{du} + \frac{du}{dv} + \frac{dv}{dx}$$

$$\frac{dy}{dx} \cdot \frac{du}{dv} \cdot \frac{dv}{du}$$

► None of these

Question No: 11 (Marks: 1) - Please choose one

The tan(x) is discontinuous at the points where

$$\triangleright$$
 Cos(x) =0

$$\triangleright$$
 Sin(x) =0

$$ightharpoonup$$
 Tan(x) =0

▶ None of these

Question No: 12 (Marks: 1) - Please choose one

$$\lim_{x\to 0}\frac{\sin x}{x}$$

Equals to

Question No: 13 (Marks: 1) - Please choose one	
Both $Sin(x)$ and $Cos(x)$ have the same limit and function value at $x=0$ both are	S0
 Continuous ▶ Discontinuous ▶ Linear ▶ None of these 	
Question No: 14 (Marks: 1) - Please choose one	
For a function f(x) to be continuous on interval (a,b) the function must be continuous At all point in (a,b) Only at a and b At mid point of a and b None of these	
Question No: 15 (Marks: 1) - Please choose one	π
is called	
 ➤ An integer ➤ A rational number ➤ An irrational number ➤ A natural number 	

._____

Question No: 16 (Marks: 1) - Please choose one

The graph of the equation $y=x^2-4x+5$ will represent

- ▶ Parabola
- ► Ellipse
- ► Straight line
- ► Two straight line

ASSALAM O ALAIKUM all fellows
ALL IN ONE Mega File
MTH101 Midterm PAPERS,
MCQz & subjective
Created BY Farhan & Ali
BS (cs) 3rd sem
Hackers Group
Mandi Bahauddin
Remember us in your prayers

Mindhacker124@gmail.com Hearthacker124@gmail.com Remember us

HackerzzZzzZz