
 Cs201 (Virtual University) Viva Notes By Afaque Academy
Go to Statement
The go to statement is used to jump the control anywhere (back and forth) in a program.

Break statement
· In C++, break statement is used for the termination of the loop statement.

· When the break statement is encountered inside a loop, the loop is immediately terminated and program control resumes at the next statement following the loop.

· It can be used to terminate a case in the switch statement
Switch Statement

Sometimes, we have multiple conditions and take some action according to each Condition.
The if statement

The if statement can be used to test conditions so that we can alter the flow of a program. In other words: if a specific statement is true, execute some instructions. If not true, execute these instructions.

Continue Statement
With “continue Statement;” it is possible to skip the rest of the commands in the current loop and start from the top again.
Strings

Variables that can store more than a single character are known as strings.
Pointer

A pointer differs in the way that a pointer is a variable that points to another variable. A pointer holds the memory address of that variable. That variable contains a value. Pointers are also called address variables because they contain the addresses of other variables.

Reference and dereference operators

In the example above we used ampersand sign (&). This sign is called the reference operator. If the reference operator is used you will get the “address of” a variable. In the example above we said: ptr_p = &x;. In words: store the address of the variable x in the pointer ptr_p.

We also used the asterisk sign (*) in the cout statement. This sign is called the dereference operator. If the dereference operator is used you will get the “value pointed by” a pointer. So we said: cout << *ptr_p;. In words: print (or put into the stream) the value pointed by ptr_p. (It will print the contents of integer x.)

Note: The asterisk (*) sign in the declaration of the pointer does not mean “value pointed by”, it only means that it is a pointer (it is part of its type compound specifier). It should not be confused with the dereference operator. They are simply two different things represented with the same sign.

So we can say:

& is the reference operator and can be read as “address of”.

* is the dereference operator and can be read as “value pointed by”.

Declaring a variable

So we now know different data types and which rules an identifier must comply. But how do we declare them. Declaring a variable is very easy. First you have to declare the data type. After the data type you place the name of the variable. But remember choose the names wisely. It is easier if a variable name reflects the use of that variable.

(For instance: if you name a float PI, you always know what it means).

Now let’s declare some variables, a variable MyIntegerVariable and MyCharacterVariable:

 int MyIntegerVariable;

int MyCharacterVariable;

It is possible to declare more than one variable at the same time:

 int Variable1, Variable2, Variable3;

int abc, def, ghi;

Signed and unsigned variables

The difference between signed and unsigned variables is that signed variables can be either negative or
positive but unsigned variables can only be positive. By using an unsigned variable you can increase the maximum positive range. When you declare a variable in the normal way it is automatically a signed variable.
To declare an unsigned variable you just put the word unsigned before your variable declaration or signed for a signed variable although there is no reason to declare a variable as signed since they already are.

 unsigned int MyOnlyPositiveVar;

signed int MyNegativeAndPositiveVar;

int MyNegativeAndPositiveVar;
Loops:
The for loop

The “for loop” loops from one number to another number and increases by a specified value each time.
The “for loop” uses the following structure:

 for (Start value; end condition; increase value)

statement(s);
If it is true, the body of the loop is executed. If it is false, the body of the loop does not execute and flow of control jumps to the next statement just after the for loop. .
The while loop

The while loop can be used if you don’t know how many times a loop must run.

The do while loop

The “do while loop” is almost the same as the while loop. The “do while loop” has the following form:

do

{

do something;

}

while (expression);

Do something first and then test if we have to continue. The result is that the loop always runs once.

Structures
Structures are used to group together different data elements (types of variables) under the same name. These data elements, known as members, can have different types and different lengths.

Take look at the syntax of a structure:

struct structure_name {

type member_name1;

type member_name2;

} object_names;

For example you could create a structure “telephone”: which is made up of a char* (that is used to hold the name of the person) and an integer (that is used to hold the telephone number).

Take a look at the example:

struct telephone

{

char *name;

int number;

};

Note: the ; behind the last curly bracket.

Preprocessor Directive:
The preprocessors are the directives, which give instruction to the compiler to preprocess the information before actual compilation starts.

All preprocessor directives begin with #, and only white-space characters may appear before a preprocessor directive on a line. Preprocessor directives are not C++ statements, so they do not end in a semicolon (;).

You already have seen

#include directive in all the examples. This macro is used to include a header file into the source file.

The #define Preprocessor

The #define preprocessor directive creates symbolic constants. The symbolic constant is called a macro and the general form of the directive is:

#define macro-name replacement-text

What is macro in C language?

A macro is a name given to a block of C statements as a pre-processor directive. Being a pre-processor, the block of code is communicated to the compiler before entering into the actual coding (main () function). A macro is defined with the preprocessor directive, #define.

What is a memory leak in C++, and provide an example?

A memory leak occurs when a piece (or pieces) of memory that was previously allocated by a programmer is not properly deallocated by the programmer. Even though that memory is no longer in use by the program, it is still “reserved”, and that piece of memory can not be used by the program until it is properly deallocated by the programmer. That’s why it’s called a memory leak – because it’s like a leaky faucet in which water is being wasted, only in this case it’s computer memory.

What problems can be caused by memory leaks?

The problem caused by a memory leak is that it leaves chunk(s) of memory unavailable for use by the programmer. If a program has a lot of memory that hasn’t been deallocated, then that could really slow down the performance of the program. If there’s no memory left in the program because of memory leaks, then that could of course cause the program to crash.

Dangling pointer
	

	A dangling pointer is a pointer that points to invalid data or to data which is not valid anymore,

for example:

Class *object = new Class();

Class *object2 = object;

delete object;

object = nullptr;

// now object2 points to something which is not valid anymore

1 | Page

