CS-702 Advanced Algorithms Analysis and Design

Advanced Algorithms Analysis and Design

Table of Contents

Chapter 1. Model of Computation
Lecture No 1: Introduction of AlgOrithms ... 03

Chapter 2: Mathematical Tools

Lecture No 2: Fundamentals of AIgorithms ... 08
Lecture No 3: Logic and Proving TeChNIQUEScoiviiiiiiiii e, 13
Lecture No 4: Mathematical INdUCLION........ ..., 19
Lecture No 5: Strong Mathematical InduCtion.............coiiiiiiiii e 25

Chapter 3: Recursion

Lecture NO 6: FIDONACCT SEQUENCES.........eei i e e eaeas 29
Lecture NO 7: Recurrence Relations |..........ccooiiiiiiiii e 39
Lecture No 8: Recurrence Relations ll...........ooiiiii i, 49
Lecture No 9: Algorithms Analysis TeChNIQUESciiiiiiiiiii e 55

Chapter 4. Asymptotic Notations
Lecture No 10: Time Complexity of Algorithms...........cooiii e, 67
Lecture No 11: Relations over ASymptotic NOtations.ouvuiiiiiiiiiiiiiieeeeee 76

Chapter 5: Brute Force Approach, Divide and Conquer

Lecture No 12: Design of Algorithms using Brute Force Approach................ocooiiiinnin. 83
Lecture No 13: Design of Algorithms using Brute Force, Divide & Conquer Approaches....91
Lecture No 14: Design of Algorithms using Divide & Conquer Approaches..................... 95

Chapter 6: Dynamic Programming

Lecture No 15: Chain Matrix Multiplication using Brute Force................ccooiiiiinnn. 106
Lecture No 16: Chain Matrix Multiplication using Dynamic Programming...................... 113
Lecture No 17: Assembly-Line Scheduling Problem ... 119
Lecture No 18: 2-Line Assembly Scheduling Problem..............coiiiiiiii, 126
Lecture No 19: 0-1 Knapsack Problem using Dynamic Programming............c.c..eeeenen... 133
Lecture No 20: Optimal Weight Triangulation |.............cooiiiiiiii e 142
Lecture No 21: Optimal Weight Triangulation ... 152
Lecture NO 22: ReVIEW LECHUrEeS 1-21. i e 159
Mid-Term 2015 EXam QUeESTIONS 166
Lecture No 23: Longest CommON SUDSEQUENCE.c.uuiuiieiee et 167
Lecture No 24: Optimal Binary Search Trees.o 177

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Chapter 7: Greedy Algorithms
Lecture No 25: Greedy AlQOrthm. e 181
Lecture NO 26: HUFfMaN CodiNg.......c.ooiriiiii e 190

Chapter 8: Graph Theoretic Algorithms

Lecture No 27: Huffman Coding Problem and Graph Theory.............cccooiiiiiiiiiinnnnn. 197
Lecture No 28: Breadth First SEarchcooiiiiii e 207
Lecture NO 29: Depth First SEArCh.o 217
Lecture No 30: White Path Theorem. ... 225
Lecture No 31: Backtracking and Branch & Bound Algorithms ... 233
Lecture No 32: Minimal Spanning Tree Problem............coiiiiiiii e 236
Lecture No 33: Single-Source Shortest Path............ccoiiiiiiiiii e, 249
Lecture No 34: Bellman-Ford Algorithm. ... 258
Lecture No 35: Dijkstra’s Algorithm 264
Lecture No 36: All Pairs Shortest Paths..........ooiiiiiii e, 272
Lecture No 37: Floyd-Warshall Algorithm & Johnson’s Algorithm.........................l 278

Chapter 9: Number Theoretic Algorithms

Lecture No 38: Number Theoretic Algorithms., 290
Lecture No 39: Theorems and AlgOrithmsS.o e 300
Lecture No 40: Chinese Remainder TheOrem.iiieiii i 310

Chapter 10: Further Topics

Lecture NO 41: RSA CryploSY S ettt a e aeaee e 317
Lecture NO 42: String MatChING.uet i eees 322
Lecture No 43: Polynomials and Fast Fourier Transform..............ccooooiiiiiiiiiiiiiieeenn . 331
Lecture NO 44: NP COMPIEIENESS. ... ui i e 340
Lecture NO 45: REVIEW LECHUIE.ot et e e 350
Final-Term 2015 EXam QUESTIONSiiiiiiii et e e 358

Presented By:

Dr. Nazir Ahmad Zafar

Virtual University of Pakistan

Published by: Safi Khan
www.vumultan.com

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

http://www.vumultan.com/

CS-702 Advanced Algorithms Analysis and Design

Lecture No 1

Introduction of Algorithms
(What, Why and Where)

Major objective of this course is:
« Design and analysis of modern

algorithms
» Different variants
* Accuracy
« Efficiency

» Comparing efficiencies

Major objective of this course is:
» Design and analysis of modern
algorithms
+ Different variants

Motivation thinking new algorithms
Advanced designing techniques
Real world problems will be taken as
examples

To create feelings about usefulness
of this course

Motivation thinking new algorithms
Advanced designing techniques
Real world problems will be taken as

« Accuracy examples
» Efficiency To create feelings about usefulness
» Comparing efficiencies of this course

Expected Results
On successful completion, students will be able to
» Argue and prove correctness of algorithms
» Derive and solve mathematical models of problems
» Reasoning when an algorithm calls certain approach
* Analyze average and worst-case running times
» Integrating approaches in dynamic and greedy algos.
» Use of graph theory in problems solving
» Advanced topics such as
« Computational geometry, number theory etc.
» Several other algorithms such as
« String matching, NP completeness, approximate algorithms etc.

In this lecture we will cover the following
+ What is Algorithm?
» Designing Techniques
* Model of Computation
» Algorithms as a technology
» Algorithms and other technologies
» Importance of algorithms
» Difference in Users and Developers
* Kinds of problems solved by algorithms
» Conclusion

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WA ¢s-702 Advanced Algorithms Analysis and Design

What is Algorithm?

* A computer algorithm is a detailed step-by-step method for solving a problem by using a
computer.

» An algorithm is a sequence of unambiguous instructions for solving a problem in a finite
amount of time.

« An Algorithm is well defined computational procedure that takes some value, or set of
values, as input and produces some value, or set of values as output.

* More generally, an Algorithm is any well defined computational procedure that takes
collection of elements as input and produces a collection of elements as output.

v

Popular Algorithms, Factors of Dependence

* Most basic and popular algorithms are
— Sorting algorithms
— Searching algorithms

Which algorithm is best?
+ Mainly, it depends upon various factors, for example in case of sorting
— The number of items to be sorted
— The extent to which the items are already sorted
— Possible restrictions on the item values
— The kind of storage device to be used etc.

One Problem, Many Algorithms

Problem
« The statement of the problem specifies, in general terms, the desired input/output
relationship.
Algorithm
» The algorithm describes a specific computational procedure for achieving input/output
relationship.
Example

+ One might need to sort a sequence of numbers into non-decreasing order.

Algorithms
» Various algorithms e.g. merge sort, quick sort, heap sorts etc.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Important Designing Techniques
» Brute Force
— Straightforward, naive approach
— Mostly expensive
» Divide-and-Conquer
— Divide into smaller sub-problems
» lterative Improvement
— Improve one change at a time
» Decrease-and-Conquer
— Decrease instance size
» Transform-and-Conquer
— Modify problem first and then solve it
» Space and Time Tradeoffs
— Use more space now to save time later

Some of the Important Designing Techniques
» Greedy Approach
— Locally optimal decisions, can not change once made.
— Efficient
— Easy to implement
The solution is expected to be optimal
Every problem may not have greedy solution
+ Dynamic programming
— Decompose into sub-problems like divide and conquer
— Sub-problems are dependant
— Record results of smaller sub-problems
— Re-use it for further occurrence
— Mostly reduces complexity exponential to polynomial

Problem Solving Phases

* Analysis
— How does system work?
— Breaking a system down to known components
— How components (processes) relate to each other
— Breaking a process down to known functions

» Synthesis
— Building tools
— Building functions with supporting tools
— Composing functions to form a process
— How components should be put together?
— Final solution

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

BN ¢s-702 Advanced Algorithms Analysis and Design

Problem Solving Process

* Problem + Analysis
+ Strategy — Correctness
» Algorithm — Time & Space
— Input — Optimality
— Output » Implementation
— Steps » Verification

Model of Computation (Assumptions)
» Design assumption
— Level of abstraction which meets our requirements
— Neither more nor less e.g. [0, 1] infinite continuous interval
* Analysis independent of the variations in
— Machine
— Operating system
— Programming languages
— Compiler etc.
» Low-level details will not be considered
» Our model will be an abstraction of a standard generic single-processor machine, called
a random access machine or RAM.
* A RAM s assumed to be an idealized machine
— Infinitely large random-access memory
— Instructions execute sequentially
» Every instruction is in fact a basic operation on two values in the machines memory
which takes unit time.
» These might be characters or integers.
» Example of basic operations include
— Assigning a value to a variable
— Arithmetic operation (+, -, X, /) on integers
— Performing any comparison e.g. a<b
— Boolean operations
— Accessing an element of an array.
» Intheoretical analysis, computational complexity
— Estimated in asymptotic sense, i.e.
— Estimating for large inputs
» Big O, Omega, Theta etc. notations are used to compute the complexity
+ Asymptotic notations are used because different implementations of algorithm may differ
in efficiency
» Efficiencies of two given algorithm are related
— By a constant multiplicative factor
— Called hidden constant.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Drawbacks in Model of Computation
First poor assumption
» We assumed that each basic operation takes constant time, i.e. model allows
— Adding
— Multiplying
— Comparing etc.

+ two number of any length in constant time
« Addition of two numbers takes a unit time!

— Not good because numbers may be arbitrarily
« Addition and multiplication both take unit time!
— Again very bad assumption

Model of Computation not so Bad
Finally what about Our Model?
« But with all these weaknesses, our model is not so bad because we have to give the
— Comparison not the absolute analysis of any algorithm.
— We have to deal with large inputs not with the small size
* Model seems to work well describing computational power of modern nonparallel
machines
Can we do Exact Measure of Efficiency ?
« Exact, not asymptotic, measure of efficiency can be sometimes computed but it usually
requires certain assumptions concerning implementation

Summary: Computational Model
» Analysis will be performed with respect to this computational model for comparison of
algorithms
« We will give asymptotic analysis not detailed comparison i.e. for large inputs
* We will use generic uniprocessor random-access machine (RAM) in analysis
— All memory equally expensive to access
— No concurrent operations
— All reasonable instructions take unit time, except, of course, function calls
Conclusion
+ What, Why and Where Algorithms?
» Designing Techniques
» Problem solving Phases and Procedure
* Model of computations
— Major assumptions at design and analysis level
— Merits and demerits, justification of assumptions taken
* We proved that algorithm is a technology
+ Compared algorithmic technology with others
» Discussed importance of algorithms
— In almost all areas of computer science and engineering
— Algorithms make difference in users and developers

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

BN ©s-702 Advanced Algorithms Analysis and Design

Lecture No 2
Mathematical Tools for Design and Analysis of Algorithms
(Fundamentals of Algorithms)

Introduction to Algorithms
Designing Techniques
Algorithm is a Technology
Model of Computation
Even we have supercomputers, it requires algorithm
Algorithms makes difference in users and modeler
Some of the applications areas of algorithms

— Management and manipulation of data

— Electronic commerce

— Manufacturing and other commercial settings

— Shortest paths etc.

A Sequence of Mathematical Tools

Sets « Relation
Sequences » Functions
Order pairs » Operators over above structures
Cross Product e Conclusion
A set is well defined collection of objects, which are
— unordered
— distinct
— same type

— with common properties

Notation:

Elements of set are listed between a pair of curly braces
S1 ={R,R,R,B,G}={R, B, G}={B, G, R}

Empty Set

S3 ={} =, has not elements, called empty set
Three ways to represent a set

» Descriptive Form

« Tabular form

» Set Builder Form (Set Comprehension)

Example
» Descriptive Form S = set of all prime numbers
» Tabular form {2,3,5,..}

Set Builder Form {x:N| (Vie {2 3,..., x1} e = (i/X)) x}

Set Comprehension
Some More Examples

ogkhwNE

{X:s|pex}={x:s|p}=all xin s that satisfy p
{x:Z|x*=xex}={0, 1}
{X:N|[x=0mod2ex}={0,2,4,...}
{X:N|[x=1mod2ex}={1,3,5 ...}
{x:Z|x=20Ax<6ex}={0,1,2,3,4,5, 6}
{x:Z|x20Ax<6ex}={0,1,4, ..., 25, 36}
{x:N|x=1mod2ex’}={1,27,125,...}

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WEN ¢s-702 Advanced Algorithms Analysis and Design

All collections are not sets
* The prime numbers Primes=={2,3,5,7,...}
» The four oceans of the world Oceans == {Atlantic, Arctic, Indian, Pacific}
» The passwords that may be generated using eight lower-case letters, when repetition is
allowed
» Hard working students in MSCS class session 2007-09 at Virtual University
» Intelligent students in your class
» Kind teachers at VU

Operators over Sets
Membership Operator

« If an element e is a member of set S then itis denoted ase e Sandreadeisin S. Let S
is sub-collection of X

X = aset
ScX
Now
e : XX P X— Bool
e(x,8)==1 ifxisinS
0 if xisnotinS
Subset:
If each element of A is also in B, then A is said to be a subset of B, A < B and B is superset of
A, BoA.
Let X = auniversal set, Ac X,Bc X, Now
< : PX x PX — Bool
c (A B)==1, fvx: X, xeA=>xeB
0 ifax:X,xeA =>x¢B
Intersection
N PX XxPX > PX
NAB)=={x:X|xeAandx € B ex}
Union

v PX xPX — PX
UAB)=={x:X|xeAorxeBex}
Set Difference
\:PX XPX - PX
\(A,B)=={x:X|xeAbutx ¢ B ex}

Cardinality and Power Set of a given Set
« Aset, S, isfinite if there is an integer n such that the elements of S can be placed in a

one-to-one correspondence with {1, 2, 3, ..., n}, and we say that cardinality is n. We
write as: |S|=n

Power Set
« How many distinct subsets does a finite set on n elements have? There are 2" subsets.
» How many distinct subsets of cardinality k does a finite set of n elements have?

There are n n!
C(nk)="C, =| |=———
k) (n-k)Ik!

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Partitioning of a set
A partition of a set A is a set of non-empty subsets of A such that every element x in A exactly
belong to one of these subsets.
Equivalently, set P of subsets of A, is a partition of A
1. If no element of P is empty
2. The union of the elements of P is equal to A. We say the elements of P cover A.
3. The intersection of any two elements of P is empty. That means the elements of P are
pair wise disjoints

Mathematical Way of Defining Partitioning

A partition P of a set A is a collection {A(, A, . . ., A} such that following are satisfied
1. VA, € P,Ai?f@,
2. AnA=0,Vije{l,2,...,nfandi=#]
3. A=AfUAU.. . UA,

Example: Partitioning of Z Modulo 4

{x:Z|x=0mod4}={..-8,-4,0,4,8,...}=[0]
x:Z|x=1mod4}={..-7,-3,1,5,9,...}=[1]
{x:Z|x=2mod4}={..-6,-2,2,6,10,...}=[2]
{x:Z|x=3mod4}={..-5-1,3,7,11,...}=[3]

X:Z|x=4mod4}={ ..-8 4048, ... }=[4

Sequence
» Itis sometimes necessary to record the order in which objects are arranged, e.g.,
« Data may be indexed by an ordered collection of keys
» Messages may be stored in order of arrival
» Tasks may be performed in order of importance.
» Names can be sorted in order of alphabets etc.
Definition
» A group of elements in a specified order is called a sequence.
« A seguence can have repeated elements.

Sequence

Notation: Sequence is defined by listing elements in order, enclosed in parentheses. e.g.
S=(a,b,¢), T=(b,c,a),U=(a, a b,c)

Sequence is a set
S={1,a)(2b), (3 c)}={B.0) (2 b) (1, a)}

Permutation: If all elements of a finite sequence are distinct, that sequence is said to be a

permutation of the finite set consisting of the same elements.

No. of Permutations: If a set has n elements, then there are n! distinct permutations over it.

Operators over Sequences
» Operators are for manipulations
Concatenation
* (a,b,c)1(d,a)=(a,b,c,d a)
Other operators
» Extraction of information: (a, b, c,d,a)(2)=b
» Filter Operator: {a, d} "1 (a,b,c,d,a)=(a, d, a)
Note:
* We can think how resulting theory of sequences falls within our existing theory of sets
» And how operators in set theory can be used in case of sequences

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Tuples and Cross Product
« Atuple is afinite sequence.
» Ordered pair (X, y), triple (x, y, z), quintuple
» Ak-tuple is a tuple of k elements.

Construction to ordered pairs
» The cross product of two sets, say Aand B,isAxB={(x,y) | xe A,y € B}
|AxB|=]|AlB]
» Some times, A and B are of same set, e.g., Z x Z, where Z denotes set of Integers

Binary Relations
Definition: If X and Y are two non-empty sets, then
XOY={xy|xeXandy e Y}

Example: If X ={a, b}, Y ={0,1} Then
XY ={(@,0), (a, 1), (b, 0), (b, 1)}

Definition: A subset of X [1 Y is a relation over X [1Y

Example: Compute all relations over X (1Y, where

X ={a, b}, Y ={0,1}

R =", Ry ={(a 0)}, Rs = {(a, 1)}

R4 ={(b, 0)}, Rs = {(b, 1)}, Rs ={(a, 0), (b, O)},
There will be 2* = 16 number of relations

Definition: XY == [I(X 1Y)

Example: If X = {a, b}, Y ={0,1} Then

X 1Y ={(@,0), (a, 1), (b, 0), (b, 1)} and

X Y = {Rla R21 R31 R4a R51 RGI R71 R81 RQ: R10: Rlll RlZl R131 Rl41 RlSl Rlﬁ}

Lemma 1: if #X =m, #Y = nthen# (X [Y)=2m*"
Algorithm: All binary relations, cardinality of it

Equivalence Relation
Arelation Rc X x X, is
+ Reflexive: (x,X) e R,V x e X
¢+ Symmetric: (X,Y) e R=(y,X) e R, VX, yeX
+ Transitive: (X,y) e RA(Y,2) e R=(X,2) e R
» Equivalence: If reflexive, symmetric and transitive

Applications: Order Pairs in Terms of String
Definition
» Arelation R over X, Y, Z is some subset of X x Y x Z and so on
Example 1
« If X ={0, 1}, then construct set of all strings of length 2 and 3
« Setoflength 2 =% x X ={0,1} x {0,1} = {(0,0), (0,1), (1,0), (1,1)} = {00, 01, 10, 11}
+ Setoflength3=%2xXxZX={0, 1} x{0, 1} x {0,1}
={(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (2,0,1), (1,1,0), (1,1,1)}
= {000, 010, 100, 110, 001, 011, 101, 111}

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example 2

« If £ ={0, 1}, then construct set of all strings of length < 3

+ Construction={} UZUZXZUZXEIXZX

Similarly we can construct collection of all sets of length n

Partial Function

Definition: a partial function is a relation that
maps each element of X to at most one
element of

Y. X[1Y denotes the set of all partial
functions.

Function

Definition: if each element of X is related to
unique element of Y then partial function is
a total function denoted by X ' Y.

Is Algorithm a Function?
Not good algorithms

Conclusion

X

XoY=={f|fM XerYand
GYyDMFOE y2IM Oy =y, e xM X, yy,y2M Y}

L

X RY =={f|f M XY anddomf=X}

X

?

~X

—

oS f ~ oaek,
s N < i
Inputy __\— ., output; \I
Input / rase > oulput, /

inputy 7 \ouput,
Input, f 7 output, Y
,,L— e — __','_ Y \
Input; =] ‘ output; '
72—""-——- N /

Input, 7 —soutput,

» We started with sets and built other structures e.g.

« Sequences, Relations, Functions, etc.

« We discussed operators over above structures
» All these tools are fundaments of mathematics
« Sets play key role in algorithms design and analysis

« Finally proving correctness of algorithms, we required logic.

« Our next lecture will be on proving techniques

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No 3
Logic and Proving Techniques

Today Covered
Tools used for proving algorithms
» Propositional Logic
» Predicate Logic
» Proofs using
* Truth Tables + Contradiction
» Logical Equivalences * Rule of Inference
« Counter Example
» Probability as Analysis Tool
« Series and Summation etc.

Propositional and Predicate Logic

Logical Connectives
» Proposition: Simplest statements also called atomic formula
» Propositions may be connected based on atomic formula.
» Logical connectives, in descending order of operator precedence

Symbol Name Pronunciation
- negation not
A conjunction and
Vv disjunction or
=% implication implies
g equivalence if and only if

Negation, Conjunction and Disjunction
Negation
Conjunction
» The conjunction p A q is true only if p and g both are true otherwise false
» The conjunction follows the commutative property, i.e.pAq =qAp
Disjunction
* The disjunction p v q is false if both p and g are false otherwise true
» The disjunction follows the commutative property as well,i.e.pv g =qvp

Implication
+ The p is antecedent and q is consequent
* The antecedent is stronger than consequent.
« Commutative property does not hold, i.e. (p = q) #(qQ=p)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

p q P=q q=p —pvq
t t t t

t f f t f

 § t t f 1

f f t t t

Bi-implication

The equivalence p < gmeansp=9&q=p
Commutative property does hold, i.e.

(p=a0a) =(q<=n)

p q p=q | dq=p |p=>9&q=p
t t t t t
t f £ t f
f t t f f
f f t t t

Predicates and Quantifiers
Predicate: P(x)=x<5
Example: V x: N | xX*=x ex <2
For all quantifier
« VX, P(X)is true < P(x) is true for all x.
Existential Quantifier
« 3 X, P(X) is true < P(x) is true for some value of x.
Logical Equivalences
« VX, P(x) is logically equivalent to — (3 x, =P(x))
« 3 X, P(x) is logically equivalent to —(V x, =P(x))
VX (P(X) = Q(x)) means Vx, —=P(x) v Q(x)

Proving Techniques
Proof using Truth Table: (pAg=r1) = (pP=>(@Q=>7r))

pla|r PArg=1 =@=(@=1)
t |t]t T 1T @ @ &
AR AR P ' R ® F
t | £ |3 T 9 T 0
t | £ | f f 2 2 € 5
flt]t F 9 ¥ 2 %
flt]|f f ® & T f
| £ % fF 9 T * %
| & | £ % % % 3

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

De Morgan’s Laws

1. —I(p/\C]_) — =P

P q |pAq|—-(PAQ | =P | —-q | —PV—Q

by |ty | et et
Fh | | Fh |
h|Fh ||
- =+ | = | =
= =+ | |
oo Ll | A]y
= | = | = |

2. =(pvq ==pA—q

p q |pvq|—-(pPVvad|—-p | —q| -PA—Q

Pty] ey | —t
=ty b Ny | et
.| O T o
il el el
Sl e N el
il L el

Proof using Counter Example, Contraposition
Counter Example
To prove V x (A(x) = B(x)) is false, we show some object x for which A(x) is true and
B(x) is false.
Proof
- (VX (A(X) = B(X) <
3 X, =(A(X) = B(X))
3 X, =(—-A(X) v B(X))
3 x, AX) A =B(X))

Contraposition
+ Toprove A= B, we show (- B) = (= A)
« Xis divisible by 4 = x is divisible by 2 <
« Xis not divisible by 2 = x is not divisible by 4 <

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Proof by Contradiction
Contradiction
« Toprove A= B,

Steps in Proof
»+ We assume A and to prove that B
» On contrary suppose that — B and
» Then prove B, it will be contradiction

Further analysis
+ A=B < (AA-B)=B Contradiction
- A=B < (A A-B) is false
* Assuming (A A —B) is true,
and discover a contradiction (such as A A —A),
then conclude (A A —B) is false, and so A = B.

Problem: Proof by Contradiction
Prove:
[B A (B = C)] = C, by contradiction

Proof:
Suppose [B A (B = C)], to prove C
On contrary, assume —C
—CA[BA(B= Q)] must be true
= -CA[BA(=-BvQC)]
= -CA[(BA-=B)v(BAaACQC)
= -CAlfv(BAaACQ)
= --CABAC=-CACAB=fAB=f
= False, Contradiction = C

Rules of Inference
« Avrrule of inference is a general pattern that allows us to draw some new conclusion from
a set of given statements. If we know P then we can conclude Q.

Modus ponens
If {B A (B = C)} then {C}, example in last slide

Proof:
Suppose B A (B = C) then
B
B=C

Rules of Inference
Syllogism
If{A= B A B = C}then {A = C}

Proof
+ SupposeA=BAB=C, ToproveA=C
- B
- C

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Rule of cases

If {B= C A —B = C} then {C}
B, true, implies C true

— B, true, implies C true

Two Valued Boolean Logic

1. Boolean values = B = {0, 1}, there are two binary operations:
e + =o0r =v
. .= and = A
2. Closure properties:
* VX YyeB,x+tyeB
* VX YyeB,x.yeB
3. Identity element:
e X+0=0+x=x
* X:-1=1.x=X
4. Commutative:
* X+y=y+Xx
5. Distributive:
- X (ytz)=(x-y)+(x-2)
© Xt(y-z2)=(xty) (x+2)
6. Complement:
e« VXxeB,3 X eBsuchthat
x+x =1 x-x=0

Tautologies and Truth Table
Tautology:
» Any statement which is always true is called a tautology

Example
+ Show [B A (B = C)] = C is a tautology:

Proof
BCB=C)BAB=>C) BAB=C)=C
00 1 0 1
01 1 0 1
10 0 0 1
11 1 1 1
» For every assignment for B and C, the statement is True, hence the above statement is

a tautology.

Probability as Analysis Tool
Elementary events
» Suppose that in a given situation an event, or an experiment, may have any one, and
only one, of k outcomes, s;, S», ..., Sk. Assume that all these outcomes are mutually
exclusive.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Universe
The set of all elementary events is called the universe of discourse and is denoted
U= {Sl, So, ..., Sk}.

Probability of an outcome s;
» Associate a real number Pr(s;), such that
O0<Pr(s)<1 forl<i<k;
Pr(sy) + Pr(sy) + ... + Pr(sy) =1

Event
e LetScU. Then Sis called an event, and

Pr(S)=) Pr(s,)

5;€8

Sure event Impossible event
e U={sy, sy ...} ifS=U c S=0,Pr(¥)=0

Pr(S) =) Pr(s,)=1

Arithmetic and Geometric Series

Z’_ n(n+l)

iiz _n(n+1)2n+1) 21 +3n’ +n
P 6 6

Zz =Pl i _ _11)

i=1

N0l — 27 iizf =(k—1)2"" +2
2

Conclusion
» Propositional Logic
» Predicate Logic
» We have discussed various techniques of proving
« Truth Tables
* Logical Equivalence
+ Counter Example
+ Contraposition
+ Contradiction
* Rule of Inference
» Probability can be used for average cost analysis
» Series and summation are very helpful in simplification

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No 4
Mathematical Induction
Proving, Validation & Verification

Today Covered
In this lecture, we will cover the following

» What is Mathematical Induction? » Strong Mathematical Induction
» Why is Mathematical Induction Valid » Proving Problems using Strong
? Induction
» Proving problems using Induction + Conclusion
» Proving hard problems using
Induction

What is Mathematical Induction?
» Mathematical induction is a powerful, yet straight-forward method of proving statements
whose domain is a subset of the set of integers.

+ Usually, a statement that is proven by induction is based on the set of natural numbers.
» This statement can often be thought of as a function of a number n, wheren=1, 2, 3,. ..
» Proof by induction involves three main steps

Proving the base of induction

Forming the induction hypothesis

Proving that the induction hypothesis holds true for all numbers in the domain.

Let P(n) be the predicate defined for any positive integers n, and let nq be a fixed integer.
Suppose the following two statements are true
1. P(no) is true.

2. For any positive integers k, k > ny, if P(k) is true then P(k+1)is true.

If both of the above statements are true then the statement:
Vv n e N, such that n > ny, P(n) is also true

Steps in Proving by Induction
Claim: P(n) is true for alln € Z*, for n > ng
1. Basis
— Show formula is true when n = ng
2. Inductive hypothesis
— Assume formula is true for an arbitrary n = k where, k € Z" and k > ng
3. To Prove Claim
— Show that formula is then true for k+1
Note: In fact we have to prove
1) P(ny) and 2) P(k) = P(k+1)
Mathematical Way of Expressing Induction
+ Basis step.
Show that proposition P(1) is true.
* Inductive step.
Show that for every positive integer n, the implication P(n) —» P(n+1) is true.
P(n) for a fixed n is called inductive hypothesis.

[P(1) A V'n, (P(n) - P(ntl))] - Vn, Pn)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Well Ordering and Modus Ponens Principal
Definition (Well-Ordering Principle)
» The Well-ordering Principle is the following statement
“every nonempty set of positive integers contains a least element”
* In a mathematical way we can define this Principle as:
thereisain Ssuchthata<bforallbin Si.e.
Jae S,suchthata<b,VbeS
* And we say that set S is well-ordered with respect to <.
* Modus Ponens Principal
pP=q
p
Hence,q

Why Mathematical Induction is Valid?
* Let us suppose that P(1) is true, and that
vn (P(n) —» P(n+1)) is also true.
» Claim: ¥n P(n) is true
— Assume proposition ¥ n, P(n) is false, i. e, there are some positive integers for
which P(n) is false.

— Let S be the set of those n’s. By well-ordering property, S has a least element,
suppose, k.

— As 1¢S, so 1<k, so k-1 is a positive

— Since k-1 <k, hence k-1¢ S. So P(k-1) is true.
— By modus ponens, P((k-1) + 1) = P(K) is true.
— Contradiction, hence vn, P(n)

Another Reason for Validity?
Basis Step
First suppose that we have a proof of P(0).

Inductive Hypothesis
vk >0, P(k) = Pk +1)

How it is proved V n > 0?
P(0) = P(1)
P(1) = P(2)
P(2) = P(3)

Iterating gives a proof of V n, P(n). This is another way of proving validity of mathematical
Induction.

Proof by Induction

Example 1
« Prove that n>>n + 100 In>11

Solution
Let P(n) * n®>n+ 100 n>11
1. P(11)* 11°>11+100 (] 121 > 111, true

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

2. Suppose predicate is true for n =k, i.e.
P(k) * k?>k + 100, true k>11
3. Now it can be proved that
P(k+1) * (k+1)%> (k+1) + 100,
U k*+2k+1>k+1+100 [k®+k =100 (by 1 and 2)
Hence P(k) = P(K+1)

Validity of Proof
Example 1
« Prove that n®>n + 100 n>11

Solution
Initially, base case
Solution set = {11}

By, P(k) = P(K+1) * P(11) = P(12), taking k = 11
Solution set = {11, 12}

Similarly, P(12) = P(13), taking k = 12
Solution set = {11, 12, 13}

And, P(13) = P(14), taking k = 13
Solution set = {11, 12, 13, 14}
And so on

Another Easy Example
Example 2
Use Mathematical Induction to prove that sum of the first n odd positive integers is n’.
Proof
+ Let P(n) denote the proposition that
ﬁ Qi-D=n
. i=1
« Basis step : P(1) is true , since 1 = 12
« Inductive step : Let P(k) is true for a positive integer k, i.e., 1+3+5+...+(2k-1) = k*
« Note that: 1+3+5+...+(2k-1)+(2k+1) = k*+2k+1= (k+1)* = P(k+1) true, by induction, P(n)
is true for alln € Z*

Another Proof

n n

> Ri-D=2)i-n=n(n+)—n=n’

=l i=1

Proving Inequalities
Example 3
+ Use mathematical Induction to prove that the inequality
n<2'forallneZz
Proof
« Let P(n) be the proposition that n < 2"
« Basis step : P(1) is true since 1 < 2*.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

* Inductive step:
« Assume that P(n) is true for a positive integer n =k,
ie., k<2
* Now consider for P(k+1) :
Since, k + 1 <2+ 1 <2X+ 2¢= 2.2 =2k*?
~ P(k+1) is true.

It proves that P(n) is true for alln € Z".

Example 4: Harmonic Numbers

The harmonic numbers H,, k=1, 2, 3, ..., are

L. 1 1
H -1+—+—+..+—

definedby =~ 2 3 &

n
H,>1+—
Use mathematical induction to show that - 2
whenever n is a nonnegative integer.
Proof

Let P(n) be the proposition that 2 =1+7/2

Basis step :

P(0) is true, since, M =Hi=1=1+0/2=1

Inductive step

, >
Assume that P(k) is true for some Kk, B2 kil
Example 4: Harmonic Numbers
Now consider
H2M:1+l+l+---+i,+ kl + :_1 e lk -
2 3 2° 2F+1 2F+2 27 =2 427
1 1 1
:H’z+,_—+,.—+"'+ 1
2541 2742 25
2(1+E)+ 71 + ;,1 ot 11
27 241 2F+2 2=
k 1 1 1
>A+)+——rt ottt ——
(2) 25 +2F 2% 42° 2" +2°
k 2t ko1 k+1
R T) FRAILS A
2 2°+2 2 2 2 ~P(k+1) is true.

Hence the statement is true for alln € Z*.

Strong Mathematical Induction

+ Let P(n) be a predicate defined for integers n, and a and b are fixed integers with a < b.
» Suppose the following statements are true:

1. P(a), P(a+ 1), ..., P(b) are all true

(basis step)
2. For any integer k > b,
if P(i) is true for all integers i with a i <Kk,
then P(k) is true. (inductive step)

« Then P(n) is true for all integers n = a.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example 1: Divisibility by a Prime

Theorem:
» Foranyinteger n 2 2, nis divisible by a prime.
Proof
(by strong mathematical induction):
» Basis step:
The statement is true for n = 2. This is because 2|2 and 2 is a prime number.

Inductive step:
Assume the statement is true for all i with 2 <i <k (inductive hypothesis) ;
To show that it is true for k .

Example 1: Divisibility by a Prime

« Weknowthat Vie Z, with 2 <i<Kk, P(i), i.e.iis divisible by a prime number. (2)

* Now we show P(K), i.e., k is divisible by a prime.
Take two cases:
Case 1: k is prime.
Then k is divisible by itself. And nothing to prove
Case 2: k is composite.
Then k = a-b, where 2 <a<kand 2 <b <k
Based on (1), pja for some prime p. 2)
Based on Case 2, alk 3)
By transitivity, pla and alk = p|k
Thus, P(n) is true by strong induction.

Example 2: Another Example in Number Theory
If n € Z, n>1, then n can be written as product of primes.

Proof :

Let P(n) = n can be written as the product of primes.

Basis : P(2) is true, since 2 is the first prime number

Inductive : Assume that the statement is true for n =k, i.e.
P(2), P(3), ..., P(k) can be written as product of primes.

Prove that: true for n = k, i.e. P(k + 1) is product of primes.
Case 1: k + 1is prime, then nothing to prove
Case 2 : k + 1 is composite, then
k+1=xy, where 2<x<y < k+1

Inductive hypothesis, a and b are product of primes.
Hence P(k+1) can be written as product of primes.

Any Amount Limited Coins: More Steps in Basis

Statement

Show that any amount in cents = 8 cents can be obtained using 3 cents and 5 cents coins only.
Proof

We have to prove that, amount=3.m+5.n, m>0,n>0

Basis Step

This time check for a five particular values:

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

8=13 +15
9=33
10=25
11=23+15
12 =43

Now we generalize it?

Any Amount Limited Coins : More Steps in Basis
Let P(n) be the statement that:
“n cents can be obtained using 3 and 5 cents”.

Inductive Hypothesis
We want to show that

P(k) is true = P(k+1), V k=8
There are two cases now

Case 1
P(K) is true and k cents contain at least one 5 coin.
Case 2
P(k) true, k cents do not contain any coin of 5 cent.
Case 1
» P(K) is true and k cents contain at least one 5 coin.
» Since P(k) is true k>8
Hence k can be expressed as
k=3.m+5.n m>0andn>1

k+1=3.m+5n+1

k+1=3.m+5(n-1)+1+5

k+1=3.(m+2)+5.(n-1), m>2andn>0
Hence the statement is true forn=k + 1

Case 2
» P(k) is true and k cents do not contain any coin of 5 cent. fork>8
Hence k can be expressed as
k=3m m>3

k+1=3.(m-3)+9+1

k+1=3.(m-3)+25

k+1=3.m+ 5.n m>0andn=2
« Hence the statementis true forn=k + 1
* Hence P(k + 1) is true

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No 5
Strong Mathematical Induction
(Proving, Validation and Verification, etc.)

Today Covered
» Generalization of Demargon’s Laws
» Strong Mathematical Induction
» Converting problems to be proved using strong mathematical induction
» Proving Problems using Strong Induction
» Fibonacci Problem and its Sequence
» Construction of Mathematical Model
» Explicit Formula Computing Fibonacci Numbers
* Recursive Algorithms
» Conclusion

Proof: Generalized Demargon’s Law by Induction

Prove M A, :UXJ when n>2, i.e., (AlmA2 NNA, :Eugu...ux)
j=t

=1
Proof
Basis step: Since, (Ai NA, =EUE) trueforn=2
Induction step: Assume the result is true n = k and then prove for n = k+1.

k+1 k

jr:\lAjzjr:\lAijM

k J—
= J(DlAJ UAk+l

k — ——
= -UlAJ' U A, (byinduction hypothesig
J=

k+1
=1

Postage Ticket: Again More Steps in Basis
Prove that postage ticket of amount > 12 cents can be formed using only 4 cent and 5 cent

stamps.
Proof
Let P(n) = n cents can be formed using only 4 and 5 cent
P(n)=n=4s + 5t s>0,andt>0 vnx12

Basis : P(12) is true, since 12 =4 x 3;

P(13) is true, since 13=4x 2+ 5 x 1;

P(14) is true, since 14 =4 x 1 + 5 x 2;

P(15) is true, since 15 =5 x 3;
Inductive : Assume P(12), P(13), ..., P(k) are true.
Now prove for P(k + 1) (k-3>12)
Suppose k-3=4xs+5xt.
Thenk+1=4x(s+1)+5xt. trueforn=Kk+ 1.
By Strong Induction, P(n) is true if n € Z and n >12.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Proving a Property of a Sequence
Proposition:
Suppose ay, a, ay, ... is defined as follows:
=1 a= 2, ay = 3,
ay = a1+ axo + a3 for all integers k = 3.

Then a, < 2" for all integers n20. P(n)
Proof (by strong induction)
Basis step:
The statement is true
forn=0:a,=1<1=2° P(0)
forn=1:a,=2<2=2" P(1)
forn=2:a,=3<4=2° P(2)

Inductive step: _
For any k > 2, assume P(i) is true for alliwith 0 <i<k, i.e.,a;<2' forall0<i<k

(1)
Show that
P(k) is true: a, < 2 (2)
Now consider
Ax= A1t a2t a3

< K14 k24 k3 based on (1)
2%+ 20+ .+ 294 274 2
=2 1<2¢

Thus, P(n) is true by strong mathematical induction.
Hence it proves the result

Existence of Binary Integer Representation

Theorem
Given any positive integer n, there exists a unique representation of n in the form:
n=c.2"+c.1.2 + ... +c.2' + ¢
» Where r is non-negative integer
* c¢.=1,and¢=0o0rl, Vj=0,1,2,...,r-1

Proof (by strong induction)
Let P(n) be the statement that n can be written in the form
n=c.2"+c1.2 + ... +c.2' + ¢
Basis step:
Ifn=1,thenn=c.2"=cy, wherer=0, andcyg=1
Hence the statement is true for n =1, i.e. P(1) is true

Inductive Hypothesis:
Let us suppose that statement is true for all i, 1 <i <Kk,
i=c.2+ .2V + .. +c.2 + ¢
* c.=1l,andc=0o0rl, vj=0,1,2,...,r-1
Show that
Now we prove that statement is true for k

Case 1
Suppose k is even, k/2 is an integer and k/2 < k, hence
ki2=c.2"+c1.2"0+ ... +c.2t + ¢

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

n=>0.

n?

Let Mx):ﬁ, and f _ —f of

where r is non-negative integer and

¢.=1l,andc=0o0rl, Vj=0,1,2,...,r-1
k=2.c.2"+2.c1.2" + ... +2.c.2" +2.¢co
k=c.2" +¢1.2"+ ...+ C.2%+ co.2%, true

which is the required form
Case 2
Letk = 3, is odd, (k-1)/2 is an integer and 1 < (k-1)/2 <k,
(k-1)/2=c.2"+ c.i.2™ + ...+ 2t + ¢
where r is non-negative integer and

¢.=1l,andc=0o0r1, Vj=0,1,2,...,r-1
Now, k—1=c.2" +c.1.2"+ ...+ .22+ co.2"
And, k=c.2" +¢.1.2"+ ...+ c.22+co.2' + 1, true

» Hence by strong mathematical induction, P(n) is true

Uniqueness
Now we prove that n has a unique representation
n=c.2"+c..27+ ... +c.2 + ¢
» Where r is non-negative integer
* c¢.=1,andcg=0o0rl1, vj=0,1,2,...,r-1
On contrary, suppose that n has two different representations, i.e.
n=c.2"+c.1.27 + ... +c.2' + ¢ (1) and

n=0b.2"+b..2 + ...+ b.2" + by (2)
Now subtract (2) from (1) we get

0= (br' Cr)zr + (br—l' Cr—l)-zr-1 oot (bO' CO) =
b,=c¢, b.1=Crq, ..., by=cr.and by=cq , proved

More Complicated Example
Problem

letQu)zgly,mme:gomnzo

n

» Find an expression for f, and prove it by induction.
Solution

Since f, = Ziand f.., =T, of, therefore

1 1 2—X
f.(X)=f, of (X)=Ff = =
0=ho R =R,)= 5 =5
2—X
2—X 1 3-2X
And,f, (x)=f,of (X) =f = -
T O i gt
3-2x
3-2X
And, f,(x) =f; o f,(X) :fo(4_3X)
B 1 _ 4-3x
-, 3-2x 5-4x
4 —3x

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

n—(n-1)x

a0 =T D)
B 1 ~ (n+1)—-nx
o N=(=Dx (n+2)~(n+1)x
(n+1)—nx

Now generalized function is
n+1)—nx
£, 00 = — D
(n+2)—(n+1)x
Now we prove this guess by mathematical Induction
Basis case: taken =0

f, zzi, which is true

Inductive hypothesis: assume that statement is true n =Kk
F(x) = (k+1)—kx
(k+2)—(k+1)x
Claim: Now we have to prove that statementistrue n=k + 1
f ()= (k+1+D)—(k+D)x (k+2)—(k+D)x
it (k+1+2)—(K+1+Dx (k+3)—(k +2)x
By definition:

fir () =1, (

(K+1)—kx | 1
(k+2)—(k+1)x)_2_ (k+1) —kx
(k+2)—(k +1)x
(k+2)—(k+1)x
(k +3)— (k +2)x

Aftersimplification, f, ., (X) =

, proved.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No 6
Fibonacci Sequences
Natural Models

Today Covered
In this lecture we will cover the following:

Fibonacci Problem and its Sequence

Construction of Mathematical Model

Explicit Formula Computing Fibonacci Numbers

Recursive Algorithms

Generalizations of Rabbits Problem and Constructing its Mathematical Models
Applications of Fibonacci Sequences

Fibonacci Sequence

By studying Fibonacci numbers and constructing Fibonacci sequence we can imagine
how mathematics is connected to apparently unrelated things in this universe.

Even though these numbers were introduced in 1202 in Fibonacci’s book Liber abaci,
but these numbers and sequence are still fascinating and mysterious to people of today.
Fibonacci, who was born Leonardo da Pisa gave a problem in his book whose solution
was the Fibonacci sequence as we will discuss it today.

Statement:

Start with a pair of rabbits, one male and one female, born on January 1.

Assume that all months are of equal length and that rabbits begin to produce two months
after their own birth.

After reaching age of two months, each pair produces another mixed pair, one male and
one female, and then another mixed pair each month, and no rabbit dies.

How many pairs of rabbits will there be after one year?

Answer: The Fibonacci Sequence! 0, 1, 1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, . ..

Construction of Mathematical Model

end of month 1

end of month 2

end of month 3

end of month 4

? -\\u
T and of month 5
i end of month 6
FE=8 (g

nd of month 7

F7=13 end of month 12

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» Total pairs at level k = Total pairs at level k-1 + Total pairs born at level k Q)
+ Since
Total pairs born at level k = Total pairs at level k-2 2)

* Hence by equation (1) and (2)
Total pairs at level k = Total pairs at level k-1 + Total pairs at level k-2

* Now let us denote
F« = Total pairs at level k

« Now our recursive mathematical model will become
Fr = Fa + Fe

Computing Values using Mathematical Model
Since Fk = Fk—l + Fk_2 FQ =0, F]_: 1

« F=F +F=1+0=1
« Fi=F+F=1+1=2

. F4:F3+F2=2+1:3

. F5:F4+F3=3+2:5

. F6:F5+F4=5+3:8

. F7:F5+F5=8+5:13

.« Fs=F,+Fe=13+8=21

.« Fo=Fg+F=21+13=34

. F]_O:F9+F8=34+21:55

. F11:F10+F9: 55+ 34 =89

® F12:F11+F10:89+55=144...

Explicit Formula Computing Fibonacci Numbers

Theorem:
The fibonacci sequence Fo,Fy, F»,.... Satisfies the recurrence relation

F.=F,+F, Vk>2
withinitial condition F,=F =1
Find the explicit formula for this sequence.

Solution:
The given fibonacci sequence

F=R.+FR.

Let t“ is solution to this, then characteristic equation
t?-t-1=0

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Fibonacci Sequence

(o 1+v1+4
2
1+\/§
t, =
2

=T

For some real C and D fibonacci sequence satisfies the relation

=FK=C+D
=C+D=0 (1)

Now n=1

F :C[Hf}L D(l—«/ﬁ]

1-+5

1+£-C+T-D:1 (2) ~F=1

=
2

1+«/§
2

F, :C(“Z\EJ +D[¥J vn>0

n=0

o

o]

~+Fy =0

2

Solving (1)and (2)simultaneously weget

C= % D= %
Hence
()5S

After simplifying we get

N

" 5
which is
Let ® =

1

1+«/§
2

called th

1+«/§

2
1

T 1(1-45Y
NG

e explicit formula for the Fibonacci sequence recurrence relation.

and & = (#j then

F=—o"-—o"

J5

NG

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Verification of the Explicit Formula

Example: Compute F3

Since F, _ Lo Lo whereo :[Hz\/gjand b = (1 \/_jthen

NEIEN
1 (1+3.1245+3.15+5/5) 1 (1-3.124/5+3.1.5-5./5
Now,F, =— i
V5 8 V5 8
F = (1+315+3.15+5J5)-—_(1-315+3.15-5/5
8~/5 :) 8.J§<)
F=—t (1+315+315+5/5-1+31.5-3.15+5/5)=
8./5
Recursive Algorithm Computing Fibonacci Numbers
Fibo-R(n)
if n=0
then 0 Terminating conditions
if n=1
then 1
else Fibo-R(n-1) + Fibo-R(n-2) Recursive calls

Running Time of Recursive Fibonacci Algorithm

» Least Cost: To find an asymptotic bound of computational cost of this algorithm, we can
use a simple trick to solve this recurrence containing big oh expressions

« Simply drop the big O from the recurrence, solve the recurrence, and put the O back.
Our recurrence

Tm - O® if n<2
()= T(n-)+T(h-2) n=2

will be refined to

if n<2
()= T(n D+T(n-2) n>2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Construction of Mathematical Model

FO=0

end of month 1

end of month 2

end of month 3

end of month 4

T end of month 5

F5=5

end of month 6
F&E=8 O

‘ f i é nd of month 7

F7=13 end of month 12

Running Time of Recursive Fibonacci Algorithm
» Guess that F,; is the least cost to solve this recurrence. Why this guess?
v n>0,T(n)>Fyy
then F,.; will be minimum cost for this recurrence
» We prove it by mathematical induction
Base Case
There are two base cases
Forn=0, T(0O)=1and F; =1, hence T(0) > F,
Forn=1, T(1)=1andF,=1, hence T(1) > F,

* Inductive Hypothesis
— Let us suppose that statement is true some k > 1 T(K) > Fysr , fork =0, 1, 2,. ..

andk>1
 Now we show that statement is true for k + 1

« Now, T(k+1)=T(k) + T(k-1) By definition on T(n)

T(k+1)=T(k) + T(k -1) = Fysq + F¢ = Frip Assumption

Tk + 1) > Fysz
» Hence the statement is true for k + 1.
» We can now say with certainty that running time of this recursive Fibonacci algorithm is

at least Q(Fp+1).
* Now we have proved that
T(n)>Fpy,n>0 (2)

+ We already proved in solution to recursive relation that

1 . B 1++/5 e 1-+5
EcI) (o)) whereCD_(5 JandCD—(T) 2

F =

1
J5

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

t can be easily verified that F, > ®"/5 > (3/2)"

From the equations (1) and (2), T(n) > F,.1 > F, > (3/2)"

Hence we can conclude that running time of our recursive Fibonacci Algorithm is:
T(n) =Q (3/2)"

Golden Ratio

+ W say that two quantities, x and y, (X <y), are in the golden ratio if the ratio between the
sum, x + Yy, of these quantities and the larger one, y, is the same as the ratio between

X+
the larger one, y, and the smaller one x. X*y_y ~1.62
y X
» Mathematicians have studied the golden ratio because of its unique and interesting
properties.

@]
L)
m
(o]
[~
L]
w
(g7
vl
0‘..-
]
B
(s
g
-

Drawback in Recursive Algorithms
Recursion Tree

F(n)
F(n-1) F(n-2)
[Fin2) F(n-3) F(n-3) F(n-4)
FO] [F) FA) F0)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Generalization of Rabbits Problem

Statement:

Start with a pair of rabbits, one male and one female, born on January 1.

Assume that all months are of equal length and that rabbits begin to produce two months

after their own birth.

After reaching age of two months, each pair produces two other mixed pairs, two male
and two female, and then two other mixed pair each month, and no rabbit dies.
How many pairs of rabbits will there be after one year?

Answer: Generalization of Fibonacci Sequence! 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, . ..

Construction of Mathematical Model

F6 =21

Total pairs at level k =
Total pairs at level k-1 + Total pairs born at level k
Since
Total pairs born at level k =
2 x Total pairs at level k-2
By (1) and (2), Total pairs at level k =
Total pairs at level k-1 + 2 x Total pairs at level k-2
Now let us denote
F« = Total pairs at level k
Our recursive mathematical model:
Fo=F + 2.F
General Model (m pairs production): F, = Fy + m.Fy,

1)

)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Generalization

* Recursive mathematical model
(one pair production)
Fr=Fu +Fe

* Recursive mathematical model
(two pairs production)
Fe=F1+ 2.k

* Recursive mathematical model
(m pairs production)
Fe=Fei + mFe,

Computing Values using Mathematical Model

Since Fy=Fy;1 +2.F; Fo=0,F=1
s F=F1+2F=1+0=1
* F3=F+2F=1+2=3
* F4=F3+2F=3+2=5
e Fs=F4+2F=5+6=11
* Fe=Fs+F=11+10=21
* Fr=Fe+Fs=21+22=43
e Fg=F;+F=43+42=85
* Fy=Fs+F,=85+86=171
* Fi=Fy+Fg=171+170 =341
o Fy3=Fy+ Fo=341 + 342 = 683
* Fip=Fi1 +Fp=683+682=1365...

Another Generalization of Rabbits Problem
Statement:
+ Start with a different kind of pair of rabbits, one male and one female, born on January 1.
« Assume all months are of equal length and that rabbits begin to produce three months
after their own birth.
» After reaching age of three months, each pair produces another mixed pairs, one male
and other female, and then another mixed pair each month, and no rabbit dies.
How many pairs of rabbits will there be after one year?

Answer: Generalization of Fibonacci Sequence!
0,1,1,1,23,4,6,9, 13,19, 28,41, 60, . ..

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Construction of Mathematical Model

F10=18

Total pairs at level k =

Total pairs at level k-1 + Total pairs born at level k
Since

Total pairs born at level k = Total pairs at level k-3
By (1) and (2)

Total pairs at level k =

Total pairs at level k-1 + Total pairs at level k-3
Now let us denote

F« = Total pairs at level k

This time mathematical model: Fo=F+ Fes

Computing Values using Mathematical Model
Since Fr=F.4 + Fk.3 FO =0,F=F=1

Fa=Fa+F=1+0=1
Fa=Fa+Fi=1+1=2
Fs=F,+F,=2+1=3
Fo=Fs+F;=3+1=4
Fr=Fe+F=4+2=6
Fe=F;+F=6+3=9
Fo=Fg+Fe=9+4=13
Fo=Fs+F=13+6=19
Fii1=Fio+Fs=19+9=28
Fio=Fu+Fe=28+13=41...

(1)
(2)

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

More Generalization

Recursive mathematical model
(one pair, production after three months)
Fre = Fe1 + Fys

Recursive mathematical model
(two pairs, production after three months)
Fe=Fe1+ 2.Fs

Recursive mathematical model
(m pairs, production after three months)
Fe=Fea + mFes

Recursive mathematical model
(m pairs, production after n months)
Fre = Fea + mF,

Applications of Fibonacci Sequences
Fibonacci sequences

Are used in trend analysis
By some pseudorandom number generators
The number of petals is a Fibonacci number.
Many plants show the Fibonacci numbers in the arrangements of the leaves around the
stems.
Seen in arrangement of seeds on flower heads
Consecutive Fibonacci numbers give worst case behavior when used as inputs in
Euclid’s algorithm.
As n approaches infinity, the ratio F(n+1)/F(n) approaches the golden ratio:
® =1.6180339887498948482...

Applications of Fibonacci Sequences
Fibonacci sequences

The Greeks felt that rectangles whose sides are in the golden ratio are most pleasing
The Fibonacci number F(n+1) gives the number of ways for 2 x 1 dominoes to cover a 2
x n checkerboard.

Sum of the first n Fibonacci numbers is F(n+2)-1.

The shallow diagonals of Pascal’s triangle sum to Fibonacci numbers.

Except n = 4, if F(n) is prime, then n is prime.

Equivalently, if n not prime, then F(n) is not prime.

ged(F(n), F(m)) = F(gcd(n, m))

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Today

Lecture No 7
Recurrence Relations
Mathematical Models, Analysis Techniques

Covered
What is Recursion?

Recursive Mathematical Models
Solving Recurrence Relations
First Order Linear Homogenous Recurrence Relations, with Constant Coefficients
Second Order Linear Homogenous Recurrence Relations, Constant Coefficients
— Characteristics of Second Order Recurrences
— Solution to Second order with distinct roots
— Solution to Second order with repeated roots
General Homogenous Recurrences
— Characteristics and solution

What is Recursion?

Merits

Sometimes problems are too difficult or too complex to solve because these are too big.
A problem can be broken down into sub-problems and find a way to solve these sub-
problems

Then build up to a solution to the entire problem.

This is the idea behind recursion

Recursive algorithms break down problem in pieces which you either already know the
answer, or can be solved applying same algorithm to each piece

And finally combine the results of these sub-problems to find the final solution

More concisely, a recursive function or definition is defined in terms of itself.

Recursion is a computer algorithm that calls itself in a steps having a termination
condition.

The successive repetitions are processed up to the critical step where the condition is
met.

In recursive algorithms, each repetition is processed from the last one called to the first.
Recursion is a wonderful technique for dealing with many problems where problems and
sub-problems have same mechanism to solve it.

and Demerits of Recursion

Recursive solutions are much easier to conceive of and code than their iterative
counterparts.

Every problem is not solvable using this approach

What kinds of problems are solved with recursion?

Generally, problems which are defined in terms of themselves are usually good
candidates for recursive techniques.

Example

Finding factorial of a number is an easiest example one can think using recursion

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WG ¢s-702 Advanced Algorithms Analysis and Design

Recursive Mathematical Model

» Since n! can be computed as: Bl = 5*4*3*2*].
« If we have a close look at this, we notice that
5! = 5*%41,

* Now if denote F(n) = n! then it can be written as
F(n) = n.F(n-1)
+ Assume 0! =1i.e. F(0) = 1, and solve till termination
F(n) = n.F(n-1) = n.(n-1).F(n-2) = n.(n-1).(n-2).F(n-3)

F(n) = n.(n-1).(n-2). . . ?;..1..F(0) =n.(n-1).(n-2)...2.1.1

1 ifn=0
F(n) = .
n.F(n-1) otherwise

Solving Recurrence
» The indispensable last step when analyzing an algorithm is often to solve a recurrence
equation.
« With little experience recurrence equation can be solved by intelligent guesswork.
» However, there exist a powerful techniques that can be use to solve certain classes of
recurrence almost automatically.
« This is a main topic of this lecture, techniques solving recurrence equations of form:
— First order linear homogenous recurrences
— Second order linear homogenous recurrences
— Higher order recurrences

First Order Linear Homogenous Recurrence Relations with Constant Coefficients
(FOLHRRCC)

Definition and Examples of FOLHRRCC

Definition
a, =Aa_, Vk21

where Ais a real numbersand A =0

a, =23, No

a, =24, , Yes
1

c,=k=c,, No
2

B =8y 4 8y No

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Solving First Order Recurrences
Solve the recurrence: b, =ab,, ifby=c

Solution
e by=aby
. bk = a.(a. bk.z) = az. bk.2
« by=a%(a. bs) = a’ bs

« be=a" b=2a“ by

« bc=akc

« Now the explicit formula is c.a“ which is a geometric sequence.
* Hence first order recurrence is nothing but G.S.

Example

- Solve the recurrence: b, =5b, , if by =3
Solution

. bk = 5.bk.1

. bk = 5(5 bk_z) = 52. bk_z
. bk = 52(5 bk_g) = 53. bk_g

* by =5" byy=5" by =53

» Now the solution sequence becomes

- 35°35%35%35°%35%..,35...
« 3,15,75, 375, .. .geometric sequence

Second Order Linear Homogenous Recurrence Relations with Constant Coefficients
Definition and Examples of SOLHRRCC

Definition :

a=Aa ,+B-a ., Vk=2

where Aand B are real numbers with B =0

a, =3a,_,+2a,, Yes

b,=b_,+b _,+b No
1 3

C,=—C.,—=C Yes

k 2 k-1 7 k-2
Some More Examples
d =d>,+d_,-d,_, No
e,=2¢, Yes
f=2f_+1 No
0= k1 T Ok Yes

h,=Dh,+(k-Dh_, No

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Theorem: Let A and B are real numbers. A recurrence of the form
a, =Aa, _, +Ba,,

is satisfied by the sequence

Lt,t%,.. 10120

wheret is a non - zeroreal no, if and only if t satisfies the
equation: t°—At—B=0

Proof: Let us suppose that the sequence

1t,t2,...,t",...,where,t #0

Satisfies the recurrence relation

a, =Aa, _ +Ba,,

It mean each form of sequence is equal to A times the previous form plus B times the form
before it
Hence

t“ = At“" 4+ Bt*?

since t0=t?%0

Dividing both sides by t*~?
t*~At-B=0

Conversely suppose that t* — At—B =0
=t* = At 4+ Bt*?

Hence 1,t,t%,t%...,t"... satisfies the above recurrence relation

Characteristic Equation
Definition: Given a second order linear homogeneous recurrence relation with constant

coefficients a, =A-a, ;+B-a,_, Vk=2

The characteristic equation of the relation is t* — At—B =0

Example 1: Using characteristic equation, find solution to a recurrence relation
a=a ,+2-a, Vk=>2

Find all sequences that satisfy relation and have the form 1t,t2,...,t",...,t =0

Solution: Above recurrence relation is satisfied by a sequence 1t,t?,...,t",...,.t #0
if and only if, t* —t—2=0

=({t-2)t+1)=0 =t=2-1

Hence2°,2,2%,2%,...,2",... and (-1)°,(-1)},(=2),(-1)’,...

are both particular solutions for this recurrence relation

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Repeated Roots
Theorem: Let A and B be real numbers, and suppose that the characteristic equation

t?*~At-B=0

has a single root r, than the sequences

Lr,r’,...,r" and O,r,2r23r,...nr"..

Both satisfy the recurrence relation

a, =Aa, , +Ba,,

Proof

if t? ~At-B=0

has a single repeated root ‘r’ than

t? ~At-B=(t-r)

=t? - At-B=t*-2rt+r’

=A=2r and B=-r?

We know that r" is a solution. Now we prove that S, =nr"

is also a solution, i.e.

S, satisfies the recurrence a, = Aa, ; +Ba,,

ie, S =AS, , +BS, ,=kr"

In fact we have to provethat

AS _, +BS _, =kr*

Consider the left hand side

AS, ,+BS, , = A((k=1)-r**)+B((k-2)-r?)
=2r-(k=2)-r*t—r?.(k—2)-r*?
=2(k-1)-r*—(k-2)r*
=(2k-2-k+2)r"
=k.r* =RHS, hence proved

Example 1: Single root case

Suppose sequence, b0, bl, b2,. .. satisfies recurrence relation
b, =4b ,—4b, , Vk>2

with initial condition: b, =1 and b, =3

then find the explicit formula for b0, b1, b2, . ..

Solution:
Characteristic equation t*? —4t+4=0

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

W Cs-702 Advanced Algorithms Analysis and Design

(t—2)° =0=t =2,is repeated root
2" and n.2" aresequences which satisfy tte same
recurrence relation, but do not satisfy tte initial conditions

Supposegeneral solution:b, =C.2" + D.n.2"
which satisfies theoriginal recurrence , C and D are constants
Since b,=1 b =3
Forn=0, C+D-0-2°=1= C=1
Forn=1, b=C.-2'+D-1.2"
3-2

=2C+2D=3= 2'1+2D:3:>D:T:%

Hence, b =1-2" +=.n.2" = 2"(1+ﬂj
2 2

= [1+ 2)2" is the required solution for repeated roots.

Checking Explicit Formula

b, = (1 + n/2).2"

First term bo=(1+0/2).2°=11=1

Secondterm b, =(1+1/2).2'=3/22=3

Third term b,=(1+2/2).2°=2.4=8
Fourth term bs = (1 + 3/2).2° = 5/2.8 = 20, and so on

Theorem (Linear Combination is also a Solution)

Theorem: if Iy, n,1,,... and S;,S,,S,,... are sequences that satisfy the some second order linear
homogeneous recurrence relation with constant coefficients, and if C and D are any numbers
then the sequence a,,a,,a,,... defined by the formula a, =Cr, + Ds, V' n>0 also satisfies
the same recurrence relation.

Proof: Since Iy, I, 1,,..., and S;,S;,S,,...

Satisfy the same second order LHRRWCC

= 3 Aand B constantsreal no. s.t
r.=Ar_,+Br,_,and s, =As,_,+Bs, ,

If a,=Cr, +Ds, vnz0

Then we have to prove that a, = Aa, , +Ba, ,

Consider R. H. S
Aa_,+Ba, ,=AC-r_ +D-s_,)+B(Cr_,+Ds_,)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

=C(Ar,_, +Br,_,)+D(As,_, +Bs,_,)
=C(r)+ D(s,) =3,
= a =Aa_,+Ba,,

It proves that @, = Cr, + Ds, satisfies same recurrence

Solution as Linear Combination
Find a sequence that satisfies the recurrence relation

a=a ,+2-a, Vk>2
And that also satisfies the initial condition

a,=land a =8

Solution: The characteristics equation of the relation

a=a ,+2-a, Vk=>2

t?—t-2=0 = (t-2)t+1)=0

t=-12

r,=2°22%..and s, =(-1,(-2),(-2)’,..

Are both sequence which satisfy above relation but neither one is having
a,=1land a =8

Now since a, =Cr, +Ds, also satisfies the same recurrence relation and
Forn=0weget a, =Cr,+Ds, =1=C+D (1)

Forn=1weget a, =Cr,+Ds, =8=2C-D (2)

Solving equation (1) and (2) weget, C=3and D=-2

Nowa, =Cr,+Ds, =a, =3-(2)'—2(-1)

is the required sequence which satisfies the given conditions

General Homogenous Recurrence Relations (Constant Coefficients)
K order: General Homogenous Recurrence
» First order: linear combination of two cons. terms,
» Second order: linear combination of three consecutive terms,
+ We extend technique of recurrence equation with resolution of homogeneous linear
recurrence with constant coefficient, that is recurrence of the form
aty, +tajtp +.....tact =0 D
where t; are value we are looking for
« In equation (1), values of t; such that (1 < i < k) are need to determine a sequence.
« Equation 1 typically has infinite many solutions, because linear combination is also a
solution.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

BTN ¢s-702 Advanced Algorithms Analysis and Design

K =1: General Homogenous Recurrence

aoty, tajty + ... tagt =0)

If we put k = 1 then above equation becomes

at, +a;t,.1=0
th = '(al / Ao)tn—l

» The resultant equation becomes a recurrence relation which is

— first order

— linear

— homogenous

— with constant coefficients.

K = 2: General Homogenous Recurrence
aoty, tajty s+ ... tact =0 D)
If we put k = 2 then above equation becomes
do tn +a; tn—l +a; 1:n—2 =0
th =-(a1/ @p)th.1- (A2 @0)th2 = Caly1 + Co thz

¢ This time we have a recurrence relation which is
— second order
— linear

homogenous

with constant coefficients.

K = 3: General Homogenous Recurrence
Aty +ajtp +.....tact =0 D
If we put k = 3 then above equation becomes
Aty +tagtha+tat,tasts=0
th =-(a1/ @)th1- (@z @0)thz - (@z @0 Ytns

« This is a recurrence relation which is
— third order
linear
homogenous
— with constant coefficients.
« Similarly we can have fourth order and higher order recurrence relations.

Characteristics of General Recurrence
Rty tagtp + .. tact =0 Q)
The recurrence is:
+ Linear because it does not contain terms of the form t,; .tn; 2. and so on
+ Homogeneous because the linear combination of the t,; equal to zero
« This is K" order because current term is linear combination of previous k number of
terms
« Constant coefficients because all a; are constants

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example:
» Consider Fibonacci sequence: fo=foa1+ foo
» This recurrence fits Eq. (1) after obvious rewriting. f,- f,1- f,.o=0

Observation of Homogenous Recurrence
o fr-fha-f2=0
» The Fibonacci sequence corresponds to a second homogeneous linear recurrence
relation with constant coefficient, where
k=2,
ao =1,
a;=-1
a=-1
» Before we even start to look for solutions to Equation 1, it would be interesting to note
that any linear combination of solutions is itself a solution.

Theorem
Statement: Prove that any linear combination of solutions of equation given below is also a
solution.
at, +agty+ ... tact =0
Proof: Assume that f, and g, are solutions of above equation and hence satisfy it, i.e.

k k
> af, =0and> ag,;=0
i=0 i=0

« Ifwe sett, =c.f, + d.g, for arbitrary constants ¢ and d, we have to prove that t, is also

solution, i.e.,
. Aoty + asth +...... +act, =0
aot, + asth +...... +agtx=

Ao (Cfn + dgn) + al(Cfn—l"' dgn—l) +.. -+ak(Cfn—k+dgn—k) =
C(aOfn + alfn-l +...F akfn-k) +d(aogn + A10n-1 +...F a-kgn-k) =

=c.0+d0=0
 Hence apt, +tait,.1 +...... +act=0
Note :
« ltis to be noted that this rule can be generalized to linear combinations of any number
of solutions.

More Generalized Results
Statement: If f,, g, and h,, are solutions to recurrence below then their linear combination is also
a solution Aty tagtp +....Fact =0

Proof: As f, , g, and h, are solutions of above, hence

iai f.. =0, Zk:aign_i =0, and Zk:aihn_i =0
i=0 i=0 i=0

+ Lett, =c.fy +d.g, + e.h, for arbitrary constants c, d and e, now we prove that t, is also
solution, i.e., agt, + asth.g +...... + ax thx= 0, easy to prove

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WEN ¢s-702 Advanced Algorithms Analysis and Design

Conclusion
* Why recurrence?
» Type of recurrences
» Techniques solving recurrences
+ Generalized form of recurrence
» Linear combination of solutions itself solution
» Reusability of models when initial conditions are changed but pattern remains same
* It empowers the recursive models to be used in more general phenomena
» Easy implementation

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WEN €s-702 Advanced Algorithms Analysis and Design

Lecture No 8
Recurrence Relations
(Algorithms Design and Analysis Techniques)

Today Covered

Solution: General Homogenous Recurrences when
— Roots are distinct
— Roots are repeated
— multiplicity of a root is k
— many roots with different multiplicities
Non-homogenous Recurrence Relations
Characteristics of various type of non-homogenous recurrence relations
Solution to various non-homogenous recurrence relations
Conclusion

Solution to Generalized Recurrence with Distinct Roots
Statement:

Find the general solution of the k™ order recurrence given below assuming that all roots
are distinct agt, +a;thy + +agthx =0

Solution:
Let T,= X", x is a constant as yet unknown.

If we assume that T, is a solution of equation apt, +a; t,1 ++axt,x =0
Then, aX"+ a;x"*+....... +ax" =0
Equation satisfied if x = 0 ,trivial solution, no interest.
Otherwise, the equation is satisfied if and only if ag+ a.;x* +....... +ax=0
This equation of degree k in x is called the characteristic equation of above recurrence
and
P(X) = ap+ apX* +....... + a,x* is called its characteristic polynomial
Fundamental theorem of algebra states that polynomial P(x) of degree k has k roots, not
necessarily distinct
It means that it can be factorized as a product of k terms P(x) = (X-r1) (X-r2) (X-rs). . .(X-r)
where r; may be complex numbers.
Moreover, these r; are only solutions of equation P(x) = 0
Consider any root r; of the characteristic polynomial P(x) = ap+ a;x* +....... + aX

=]]x=r)

Since, p(r1) =0, p(r2) = 0, p(rz) =0, . . ., p(r) =0

Hence allx =r1;, fori e {1, 2, . . .,k} are solutions to above characteristic polynomial.
Therefore, r,", 1,", . . ., r" are solution to our original recurrence relation.

Since linear combination of solutions is also a solution to recurrence, therefore below is

K
a solution. T(n)=>"cr"

i=1
where, ¢4, C,, . . ., Cc are all constants to be determined finding particular solution
The remarkable fact is that this equation has only solutions of this form provided all r;
are distinct.
Constants can be determined from k initial conditions by solving system of k linear
equations in k unknowns

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Solving Recurrence Problem with Distinct Roots

Problem: Consider the recurrence th=n ifn=0,1,2
th = 7.tho + 6.ty otherwise

Find the general solution of the recurrence above.

Solution: First we rewrite the recurrence.
th - 7.tn_2' 6tn_3 =0
» The characteristic equation become.
XX—Tx+6= (x+1) (x+2)(x-3)
e Therootsare:r;=-1,r,=-2andr; =+ 3
th=¢1 (-1)" + 2 (-2)"+ ¢35 (3")
th=cy (-1)" + ¢, (-2)"+ ¢35 (3")
The initial conditions give

Ci1+Cri+cCc3=0 forn=0
-C1-2C,+3c3=1 forn=1
Ci1+4c, +9¢c3 =2 forn=2

Solving these equations, we obtain
c1=-1/4,c,=0andc;=1/4
Therefore, t, = ¢y (-1/4)(-1)" + (1/4).(3)"

Solution to Generalized Recurrence with One Repeated Root
Statement:
If the characteristic polynomial P(x) = ap+ a;x* +....... + ax* then conclude that
if r is a double root then t,=r"and t,= n r" are both solutions to recurrence.
Solution:
» It can be found as in case of second order linear homogenous recurrence relation.
« Since r is a multiple root. By definition of multiple roots, there exists a polynomial q(x) of
degree k-2 such that the following holds

p(x) = (x —r)?q(x), for every n > k
Consider the k™ degree polynomials
U () =ag X" +a; x" + ... +a x"™ and
Vo (X) = agn X" + ag (n-1)x"* + .. . + a (n-k)x"*
« Itis to be noted that v,(x) = x.u, (X), where u, (x) denotes the derivative of u, (x) with
respect to x .
* But u, (x) can be written as
Un () = X" p(x) = x™ (x-nq(x) = (x-N*(x™ q(x))
» Using rule for computing the derivative of a product of functions, we obtain that
derivative of u,(x) with respect to x is given by
Un () = 2 (x-1) X™ q(x) +(x-n*(x" q(x))
therefore u, () = 0, which implies that v, (1) =r. u, () =0 forall n>k.
« Itmeans:aonr" + a;(n-1) "+, . .+ ac(n-k) =0
« Hence, t,=nr"is also solution to the recurrence.
« Now we conclude that if r is a double root then t,=r"and t,= n r" are both solutions to
the recurrence.
» Rest of k-2 are all distinct roots hence general solution
where ¢4, €y, by, bs,. . ., and by, are all real constants

k

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Higher Order Homogenous Recurrence with k-multiplicity of a Root
Now if we have to solve recurrence order k, then to solve polynomial, degree k, given below is
sufficient
Statement:
If the characteristic polynomial
P(X) = ag+ ax* +....... + X
has r as double root then it can be written as
p(x) = (x —r)*q(x), for every n > k
and solutions are: r" and n r"
has r as triple root then it can be written as
p(x) = (x —1)3g1(x), for every n > k
and solutions are: r", n.r"and n*.r"

K-Multiplicity of a Root: General Result
r has multiplicity k then it can be written as
p(x) = (x —r), for every n >k

and solutions are: r", n.r", n2.r",. . ., n*L"
then general solution is
n n k-1,.n
t,=cr +c,nr +..+cnr
k
_ j-1,n
t,=> c;n’r
j=1
where by, b,,. . ., by are all real constants

Multiplicity of Roots: More General Result

If there are | roots, rq, Iy, . . ., r, with multiplicities my, m,, . . ., m, respectively, of the polynomial:
P(X) =ag+ aX* +. . .+ ax* st.my+my+...+m=k
then the general solution to the recurrence is
n n 2..n m-1.n

t,=C,n +C,Nr +cC,N°N +o. G N+

C " +Cy,Nh," +Cyan’r," +...+02mzn"‘2‘1r2n +

m—1,.n

¢, " +c,nr" +c,n°r" +..4C, N™ T,
t =c, " +c,nn" +c 0" +..+ clmlnml‘lrln +
C,yl," +Cy,nh," +Cyan’r," +...+02mzn"‘2‘1r2n +

m—1,.n

n n 2..n
Cyl, +C,Nnr +C3n7r +...+c,mln I

m; m, m,
_ j-1pn j-1pn j-1pn
t,=> ¢+ ¢, nt T+ + D ent
i1 il it

| i
t, :Zicijnjflrin

i=1 j=1
where all ¢; ; are constants

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Statement: Consider the recurrence
th=n ifn=0,1,2
t, =5t,1 - 8ty + 4t,3 otherwise
Find general solution of the recurrence above.
Solution: First we rewrite the recurrence.
th - 5tn_1 + 8tn_2 - 4tn_3 =0
» The characteristic equation become.
X2 —5x% + 8x -4 = (x-1) (x-2)*
« The roots are: r; = 1 of multiplicity m; = 1 and r, = 2 of multiplicity m, = 2, and hence the
general solution is
thb=c; 1" +c,2"+c3n2"
The initial conditions give

Ci+C,=0 forn=0
C1+2c,+ 2¢c3=1 forn=1
c1+4c, +8c; =2 forn=2
Solving these equations, we obtain ¢; =-2, ¢, =2 and ¢c3 = -1/2
Therefore,

th=c 1" +c,2"+c3n2"=-2+22"-1%n.2" =2 _p2™-2

Non-homogeneous Recurrence of Higher Order

» Solution of a linear recurrence with constant coefficients becomes more difficult when
the recurrence is not homogeneous

» That is when linear combination is not equal to zero

» In particular, it is no longer true that any linear combination of solutions is a solution.

« Consider the following recurrence ag t, + as tha + . . .+ a to = b" p(n)

« The left-hand side is the same as before, but on the right-hand side we have b"p(n)
where b is a constant and p(n) is a polynomial in n of degree d.

Generalization: Non-homogeneous Recurrences
» Ifarecurrence is of the form
» Then the characteristics polynomial is
» Which contains one factor for the left hand side
» And other factor corresponding to the right hand side, where d is degree of polynomial
» Characteristics polynomial can be used to solve the above recurrence.

Problem 1: Non-homogeneous Recurrences
Problem:
Consider the recurrence below. Find its solution t, — 2t,; = 3"
Solution:
» Compare the above recurrence with
Aty +art+.. .+ acty =b"p(n)
» Here: b =3, p(n) =1, a polynomial of degree 0.
» Reducing to homogeneous case, we are given
th — 2th, = 3" ()
Replace n by n - 1 and multiply by 3, we obtain
thg — 2ty = 3"
3tn_1 - 6tn,2 = 3n
From (1) and (2)
th — 2tna =3" (1)
+ Stn,l - 6tn_2 = 3n (2)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Subtracting 2 from equation 1, we get
tn - 5tn_1 + 6tn_2 =0
« The characteristic equation is x* - 5x + 6 = 0
Roots of this equation are: x =2 and x =3
« And therefore general solution is t, =¢; 2" + ¢, 3"

It is not always true that an arbitrary choice of c1 and c2 produces a solution to the recurrence
even when initial conditions are not taken into account.

Note:
It is to be noted that solutions:
t, = 2" and
t, = 3"

which are solutions to reduced recurrence, are not solution to original one
What is the reason?

Problem 2: Non-homogeneous Recurrences

Find general solution of the following recurrence. t, -2t,,=(n+5)3" n> 1
Solution:

The manipulation needed to transform this into a homogeneous recurrence is slightly
more complicated than with first example.

t, -2t,a=(n+5)3"n>1 (1)
replace n by n-1, n-2, we get
thr -2tho=(N+4)3"™ n> 2 (2)
thr -2tha=(N+3)3"2 n> 3 (3)
Above equations can be written as
th -2t.1=9(n+5)3"% n> 1 (4)
th1 -2th,=3(N+4)3"2 n> 2 (5)
tho -2ths=(N+3)3"2 n> 3 (6)
» Our objective is to eliminate the right hand side of the above equations to make it
homogenous.
» Multiply (5) by -6, and (6) by 9 we get
ty - 2tns = 9(n +5) 3"
- Bty + 12t =-18(n + 4) 3"
+09t,, -18t,3 = 9(n+3) 3"
After simplification, the above equations can be written as
ty - 2tns = (9n + 45) 3™
- Bty + 12t = (-18n—-72) 3"
+ Ot - 18ty =(9n +27) 3"

Adding these equation, we get homogenous equation, which can be solved easily
th - 8tn,1 + 21tn,2 - 18tn_3 =0
t, — 8tn_1+ 21tn-2 - 18tn_3 =0
The characteristics equation of the above homogenous equation is:
x> —8x% +21x -18 = 0
(x-2) (x-3)*=0
and hence, x=2, 3, 3
+ General solutionis: t, =c;2" +¢,3" +c3n 3"
e Forn=0,1,2
We can find values of c,, ¢,, ¢; and then
t, = (to- 9)2" + (n + 3)3"™*

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Tower of Hanoi: Problem 3
Tower of Hanoi is a mathematical game or puzzle. It consists of three towers, a number of disks
of different sizes which can slide onto any tower. The puzzle starts with disks stacked in order of
size on one tower, smallest at top, making a conical shape.
Objective is to move entire stack to another tower, obeying following rules:
+ Only one disk may be moved at a time.
» Each move consists of taking upper disk from one of towers and sliding it onto another
tower
* You can put on top of other disks already present
No disk may be placed on top of a smaller disk.

More Generalized Non-homogeneous Recurrences
- If arecurrence is of the form ayt, +at, , +...+a.t,, =b'p,(n)+b) p,(n)+...

- Then the characteristics polynomial is (a,x* +a,x*" +...+a)(x—b*")(x—b%")...,

» Which contains one factor for the left hand side
* And other factor corresponding to the each term on right hand side.
» Once the characteristics polynomial is obtained the recurrence can be solved as before.

Problem 6 : Non-homogeneous Recurrences
Consider the recurrence
t,=2t,, +n+2" otherwise
Solution:
« Compare the recurrence: t, - 2t,; = n+ 2" with
 Here,b;=1, pi(n)=n, b,=2, and p,(n) = 1.
» Degree of py(n) =d; = 1,
» Degree of pp(n) =d, =0.
« The characteristic polynomial: (x-2) (x-1)* (x-2)
« Theroots are, x = 1, 2, both of multiplicity 2.
e All solutions of recurrence therefore have form
t"=c, 1" +c, n1"+c3 2"+c,n2"
n+2" =(2c, -c1)—con+c¢, 2"
« Forn=0,1, 2, 3cy Cy c3 and c, can be solved and hence solution is
t,=n.2" +2™ —n -2

Conclusion

» Recursive relations are important because used in divide and conquer, dynamic
programming and in many other e.g. optimization problems

» Analysis of such algorithms is required to compute complexity

» Recursive algorithms may not follow homogenous behavior, it means there must be
some cost in addition to recursive cost

» Solution to homogenous recursive relations is comparatively easy, but not so easy in
case of non-homogenous recursive relations

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture 9
Further Technigues Solving Recurrence Relations
Algorithms Analysis Techniques

Review of Previous Lecture
- If arecurrence is of the form agt, +at, , +...+a.t, , =b'p,(n)+b; p,(n)+...

- Then the characteristics polynomial is (a,x* +a,x“*+...+a)(x—b)*"(x—h,)"="...,

» It has one factor for left hand side for homogenous part, and factor corresponding to
each term on right hand side for non-homogenous part.
» Once the characteristics polynomial is obtained the recurrence can be solved as before.

Today Covered
In this lecture following will be covered
— Assumptions in solving recurrence
— The Substitution Method
— The Recursion Tree Method
— The Master Theorem
— Conclusion

Assumption in Solving Recurrence Relation
» Neglect certain technical details solve recurrences
» Assume integer arguments to functions
— Because running time T (n) is always defined when n is an integer
+ Consequently, for convenience, we shall omit statements of boundary conditions of
recurrences and assume that T (n) is constant for small n
» Recurrence for worst-case time of MERGE-SORT

o) ifn=1
T(n)= TB}LTE J+@(n) otherwise

* We do not give any explicit value for small n

» Because changing n, T (1) changes solution to recurrence. Solution typically doesn’t
change by more than a constant factor, so order of growth is unchanged

Solve recurrences, often omit floors, ceilings, etc.

» First analyze without these details and later determine whether such assumptions matter

or not.
« Usually it dose not matter but it is important to know when it does and when it does not
0 ifn=1
T(n)=

2T (g) +0®(n) otherwise

Methods Solving Recurrence Relation
Substitution Method
» Substitution method has two steps
¢ Guess the form of the solution
« Use mathematical induction to find constants and show that the solution does
work

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» The name Substitution comes from the substitution of guessed answer for the function
when the inductive hypothesis is applied to smaller values.

» Method is powerful, but it can be applied only in cases when it is easy to guess the form
of answer

» The substitution method can be used to establish either upper or lower bounds on a
recurrence.

Some Important Rules used in this Section
Prove that log, b-log, c=1log, c

Proof

let us suppose that: log® = log; =t

= a’=b and b'=c
Now b'=c, (a°)'=c
a* =c, logS =s-t
s-t=logé, log’-logf =log: proved

Some Important Rules used in this Section
Prove that 3°% = n'*%

Proof 3°% = n'°d%

& log,(3°%) =log,(n"*)

< log}-logs =log;- log}

< log} =log:-log}

< log} =log} “+log®-logf = log®

The Substitution Method
Solve the recurrence relation given below.

1 if n=1
T(n)=
() 3-T(%)+n otherwise
Solution:
) T(n):3-T(2)+n
replace the value of nby n/4in (1)

n n, n
2) T(=)=3-T(=)+—
@ TC=3T()+,

n n, n
3) T(F):3-T(F)+F and so on
n n

PR

Now substitutethe value of T (2) from (2) to (1)

@) T(%)=3-T(

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

) T(n):3[3T(%)+ﬂ+n
) n 3
=3 'T(F)+(Z)'n+n

substitute the value of T (4_r12) from (3) to (5) equation, we have

T(n)=32{3-T(;)+H+(2)n+n

After continuing this process

T =3 T+ n+ 2 s e Oy
47 4 4 4 4

Let us supposethat n can be expressed as n = 4*

T(n)=3" -T(E)+n[1+(%)+(%)2 +....+(§)H}

3\
1_(2) 1_Xk
T(n)=3“T@)+n1()| vl x x4 x T =1 ()
1_§ 1-x
4
3k
T(n) =3“-1+4n(0 T =1

k

k
T(n)=3“+4n-(—j—k)=3k+4n-(1—3—)
n

n—3

)
n
=3 +4(n-3)=1.3"+4n—4.3

=4.n—3.3* =4n—-3.3"%
w4“=n, k=log}

=3“+4n(

T(n) =4n—3-3"°%

T(n)=4n—3-n"%

T(nN)=4n-3-n“ --0<a<l
=T(n)=4n-3-n"

Hence T(n) e @(n) let «=log}

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

A Hard Example
Solve the recurrence relation given below

1 if n=1
T(n)= n . where O<a<b
aT(B)+n otherwise
Solution :
T(n):aT(E)+n=a~a-T(£2)+a-E+n

n

=a’ T()+()n+n_ {aT()+b2

a
+(=)n+n
} (b)
—a3T()+()n+()n+n
Contlnumg thls process we get

T(n)= akT(blk)+(%)“n+(%)k2n+....+(%)1n+n
—a*T (bik) + n{1+ (%) + (%)2 bt (%)H}
Let us supposethat,n = b*

T(n)=a" 'T(l)+n{1+(%)+....+(%)k_1}

a

1-(0)" ak
—a*T(W)+n —t; —a T(1)+n(—)(1——
1-2
b
K _ Ak k Ak
—at Len 2)E=E) sat)
b—a n
b b
-a +———-bk a“) =a"+ b - -a
()(“) = b a b a
b b—a-b b b—a—b
:—'bk k——'bk a.k
o_a T) EP i e
T() = ()b - 2o
_ b e @ e let o=
b—a b—a
ra<b=log; <1 =0<a<l
ST = - e S T(n)eom)
b—a b—a

log;

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

More Hard Example using Substitution Method

Solve the recurrence relation given below.
1 ifn=1
T(n)=

3-T(2) +cn’® otherwise

Solution:
) T(n)=3-T(%)+cn2

n n n,,
@ T =3TGD+(Q)
® T(%)=3-T(%)+c(%)2
(4) T(D=3T(;)+c()2

and soon

(5) T(%)=3~T(4—”k)+c<%)2

Now substitutethe value of T (2) from (2) to (2)
n Ny, 2
(6) T(n):3{3T(—2)+c(—) }cn
4 4
n n
=3T(—)+3c(~)* +cn’
(42) (4)
substitute the value of T (12) from (3) to (6), we have
T(n) = 32[3T()+c() }+3c-(2)2+cn2
=T () +32c()2 +3c- (D)2 +on?
() + () +3¢- ()
=3’°’T(%)+(4—32)2cn2+(%)1cn2+cn2
After continuing this process, we get
n
T =3 T(4 () (0 s 3 o
Let us supposethat n can be expressed as n = 4k

K o4, 3 (32 3 \k1
T(n)=3T(@)+cn {1+E+(E) +----+(E) }

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

BN ¢s-702 Advanced Algorithms Analysis and Design

T =3 1+en? (28| =3 +en®. 16(1——)

3
1 ()k 3k
k
L3 16
16

since 4 =n = (4")? =n?
= (4°) =n’=16" =n?

16 3 16 ,n? -3¢
T(n)=3"+cn?- 1— =3"4+cn?.—=
(n)= (k) 3¢)
=3¢ +g c-(n? 3")—%0 n’ (1——c)3k

16

T(n)——cn +(1 —1—c)3'°94

let

13
1600 +(1—l c)n"%’
13 13
Iog4:awhere O<a<l

16

T(n)_—3cn +(1——c)n

Hence T(n)ed(n®)

Observations

T(n)=

1 ifn=1

a-T(E) +cn® otherwise

=en* + fn"%" supposeb =a

=en* + fn
—en“+ f.n

Iog b

kilog b _ ank 4 f pk

— ®(nmax(k,k1))

Recursion Tree Method

» Although substitution method can provide a sufficient proof that a solution to a
recurrence is correct, sometimes difficult to give a good guess.

« Drawing out a recursion tree, is a straight forward way to devise a good guess.

* Inrecursion tree, nodes represent costs of a sub-problems in the set of recursive
function invocations.

* We sum costs within each level of the tree to obtain a set of per-level costs.

» And then we sum all per-level costs to determine the total cost of all levels of the
recursion.

» Recursion trees are particularly useful when recurrence describes running time of divide

and conquer algos.

» Recursion tree is best one used to generate a good guess, which is then verified by
substitution method

* When using a recursion tree to generate a good guess, we can often tolerate a small

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

amount of sloppiness since we have to verify it later on.

» If we are careful when drawing out a recursion tree and summing costs, then we can use
a recursion tree as a direct proof of a solution to any recurrence of any problem.

» Here, we will use recursion trees directly to prove theorem that forms the basis of the
master method.

Example: Solve the following recurrence using recurrence tree method

o) if n=1
T(n)= n
3T (Z) +0O(n®) if otherwise

Solution: The above recurrence can be written in the form

1 if n=1
T(n) = n
3T (Z) +cn? if otherwise

Assumption: We assume that n is exact power of 4.

T(n) = 3.T(n/4)+c.n? //

v,
P

T(r‘;/4) T(n/4) T(n/4)

o | S

c.(n/4)? c.(n/4)? c.(n/4)?

Pa

/

/ y\ //l\ /fr\

T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

(:.r'.2 ... > Cn2
Suppose n=4*
c.(n/4)? c.(n/4)? (1) — »(3/16).c.n?
c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)? c(n/16)? c(n/16)’
/\/\/\/\/\/\/\/\/\(3”6
T(n/4k) T(n/4k) T(n/4k) T(n/4k) T(n/4k) T(n/4k) T(n/4k) T(n/4k)
2 ... 2
“R— c.n > C.n
S oy c.(n/ay’ B s >(3/16).c.n?

/

N JIN TN

c(n/16)? c(n/16)? c(n/16)? c(n/16)? c(n/16)? c(n/16)° c(n/16)? c(n/16)?

IR AN

T(n/4k) T'(n/4k) T.(n/4") .T(n/4") T(n/4k)

Now the total computation cost would be
= Cost of Childs + Cost of tree excluding childes

c(n/16)?2

\3/16

(3/42)"

f(n/4") .Tkn/4k) | 'T(n/4k)
T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1) T(1)

= Cost of Child x total number of Childs + Cost of all levels excluding childes level
= total number of Childs + sum of costs at each level excluding childes level.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

T(n) =3"% + cost at Levels above child level

nmww%+()(>+ (ﬁmz

Now total computatlonal cost can be calculated as

T(n)=®(n'°g3)+() +(z)+ gz)“Cn2

Where 4* =n:>k=|og4

T(n)s@(n'°g34)+_4—32)° () }nz

T(n) <O(N°%) +()en? = @(n'"%') +gcn2

1-()

Hence T(n) =0(n?)
Master Theorem

Lemma 1: Leta > 1, b > 1 be constants, f(n) a non-negative function defined on exact power of
b by recurrence

o) if n=1

Tm={ |
aT()+f() if n=b

where i is a positive integer. Then
log," -1

T =0n"")+ Y a’]f(&)

j=0

Lemma 2: Leta> 1, b > 1 be constants, let f(n) be a non-negative function defined on exact
power of b. A function g(n) defined over exact powers of b by

log,"-1 n
9= a'f ()
j=0
can be bounded asymptotically for exact powers of b as
1. If f(n)=0(n"* "), for some constantse >0, then g(n) = O(n"*")
2. 1f f(n)=0(n"*"), then g(n) =O(N"*".Ig n)
3. If a.f(n/b) < c.f(n), for some constant c < 1 and for all n > b, then g(n) = O(f(n))

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WA ¢s-702 Advanced Algorithms Analysis and Design

Proof:
Case 1: f(n)=0(n"%")

Which implies that f(&):o«b—nj)'%“) 0
log,"-1 n
We are given that: g(n) = 120 al.f (F) 2)
Substituting value from Equation (1) in Equation (2)
log," -1
H n 0 bafs
g =0(Y al.()™™)
j=0 b
log,"-1 s s log," -1 &
- Consider:)’ a’.(lj)Iogb =n"%) (al.olza)!
Y i b
* Assume that: o = X
b
« Taking log on both sides: Iogb(%) =log, x
b)
log,"~log,” =log, x < log,*—log,*.log,” = log, x

log,’—log,” =log, x < 0=log, X < x =1

log,"-1 N oo oe ot log," -1 ab® . o log," -1)
0] . 0
Z aJ_(F) % _plose™ Z (logba)J —n'% " Z(b.e)J
j=0 =0 b j=0

=n"%"" (0°)° + (B°)! +...+ (b°) % 1)
It is a geometric series with first term 1, common ratio b* and number of terms as log,n. Hence

g(n),
s ba)logb" -1 s b5-|09bn -1 e n5-|09bb -1
— nlogb (- r]Iogh — I,,llogb
o) o) o)
—nlos”’ (—28 _i) =c.n°® —cn® =O(n"*") Hence proved
Case 2: f(n)=0(n"*")
Which implies that: f(&) :@((%)'0%3) 3)
log,"-1 n
We are given that: g(n)= Y al.f (F) ()
=0

Substituting value from Equation (3) in Equation (4)
log," -1 log," -1

g =0(Y a".<b—“,.)'°gba)=®(n'°gf. 3 2)

: 4 logp?
j=0 i=0 b

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

We have already proved that =1

logy?

a log, -1 a a
g(nN)=0(n**. > 1) =(n"*. (1+1+..+1) =6(n"* .log,") case is proved
-——

j:O | n
0g, numberof terms

Case 3:
Given that: a.f (N <c.f(n) = f ()<< f(n)
b b” a
f(b—”z)sf.f(ﬂ)s(f)z.f(n) = f(2) <)% (n)
a b a b a
LR ORI CMIOESICORORIC
a b a b a
In general: f (1.) < (E)j.f (n)
b’ a
Equivalently: al. f (%) <cl.f(n)

log,"-1 n
We are given that: g(n)= Y al.f (F) (5)

j=0
We have proved that: a'.f (%) <cl.f(n) (6)
From equation (5) and (6)

log," -1 log," -1

gm= aj.f(%) < Self(n) < _w ¢l f(n)

j=0

9() = f () = O (n))
Since f(n) appears in definition of g(n) and all terms of g(n) are non-negative, we can conclude
easily that
g(n) =Q(f (n)) (8)
We have already proved, equation (7), that
g(n) =0O(f(n)))

From Equations (8) and (9) g(n) =0(f(n))
Hence it proves the lemma

Lemma 3:

Leta> 1, b > 1 be constants, let f(n) be a hon-negative function defined on exact power of b.
Define T(n) on exact powers of b by the recurrence

o) if n=1

=y . |
aT()+ () if n=p

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

W ¢s-702 Advanced Algorithms Analysis and Design

where is a positive integer. Then T(n) can be bounded asymptotically for exact powers of b as
1. If f(n)=0(n"% "), for some constants& >0, then T (n) = O(n"%*")

2. If f(n)=0(n"*"), thenT(n) =O("*".Ig n)

3. If f(n)=Q(n"*"") for some ¢ > 0, and a.f(n/b) < c.f(n) for some constant ¢ < 1and

sufficiently large n, then T(n) = ©(f(n))
Proof: Case 1

0() if n=1
Given that T(n) = N _
aT (B) + f(n) if n=b'

log," -1
0g, 2 ; n
By Lemma 4.2: T(n) =©(n"*")+ > aj-f(ﬁ)

i=0
By Lemma 4.3: T(n) =0(n"*")+0(n"*")

Hence for case 1 it is proved
Case 2

o) if n=1
Again given that T(n) = n _
aT (B) +f(n) if n=Db

log,"-1
By Lemma 4.2: T(n) =@(n"**)+ Y a’.f(%)
j=0

By Lemma 4.3: T(n) = O(n"*")+©(n"*".Ign)
Hence for case 2 it is also proved
Case 3

) Y log,"-1 n
By Lemma 4.2: T(n) =@(n"*")+ > a’.f(ﬁ)

By Lemma 4.3: T(n) =©(n"*")+0(f (n))

since f(n)=Q(n"*"")
Hence T(n) =0O(f (n))
This proves the Lemma 3

Conclusion

» First Order homogenous linear recurrence is in fact a geometric sequence

» We studied characteristics of second and higher order linear homogenous recurrence
relations with constant coefficients

« Then non-homogenous recurrence relations with constant coefficients

» Different methods to solve such recurrences

* As most of the algorithms are recursive therefore to give analysis of such algorithms, we
have discussed this powerful technique.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 10
Time Complexity of Algorithms
(Asymptotic Notations)

Today Covered
» Major Factors in Algorithms Design
» Complexity Analysis
» Growth of Functions
« Asymptotic Notations
» Usefulness of Notations
» Reflexivity, Symmetry, Transitivity Relations over ©, Q, O, m and 0
* Relation between ©, Q and O
» Various Examples Explaining each concept

What is Complexity?
» The level in difficulty in solving mathematically posed problems as measured by

— Thetime

(time complexity)
— number of steps or arithmetic operations

(computational complexity)
— memory space required
— (space complexity)

Major Factors in Algorithms Design
1. Correctness
An algorithm is said to be correct if
« For every input, it halts with correct output.
* An incorrect algorithm might not halt at all OR
* It might halt with an answer other than desired one.
» Correct algorithm solves a computational problem
2. Algorithm Efficiency
Measuring efficiency of an algorithm,
» doits analysis i.e. growth rate.
« Compare efficiencies of different algorithms for the same problem.

Algorithms Growth Rate
Algorithm Growth Rates
* It measures algorithm efficiency

What means by efficient?
= |f running time is bounded by polynomial in the input

Notations for Asymptotic performance
» How running time increases with input size
+ O, Omega, Theta, etc. for asymptotic running time
» These notations defined in terms of functions whose domains are natural numbers
» convenient for worst case running time
» Algorithms, asymptotically efficient best choice

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

BN ¢s-702 Advanced Algorithms Analysis and Design

Complexity Analysis
» Algorithm analysis means predicting resources such as
— computational time
— memory
— computer hardware etc
* Worst case analysis
— Provides an upper bound on running time
— An absolute guarantee
» Average case analysis
— Provides the expected running time
— Very useful, but treat with care: what is “average”™?
+ Random (equally likely) inputs
+ Real-life inputs

Worst-case Analysis
Let us suppose that
» D, = set of inputs of size n for the problem
| =an element of D,.
* t(l) = number of basic operations performed on |
» Define a function W by
W(n) = max{t(l) | | € Dn}
called the worst-case complexity of the algorithm
* W(n) is the maximum number of basic operations performed by the algorithm on any
input of size n.
+ Please note that the input, I, for which an algorithm behaves worst depends on the
particular algorithm.

Average Complexity
« Let Pr(l) be the probability that input | occurs.
« Then the average behavior of the algorithm is defined as
A(n) = ZPr(l) t(1), summation over all | € D,
* We determine t(l) by analyzing the algorithm, but Pr(lI) cannot be computed analytically.
* Average cost =
A(n) = Pr(succ)Asucc(n) + Pr(fail)Afail(n)
+ Anelementlin D, may be thought as a set or equivalence class that affect the behavior
of the algorithm
Worst Analysis computing average cost
« Take all possible inputs, compute their cost, take average

Asymptotic Notations Properties
» Categorize algorithms based on asymptotic growth rate e.g. linear, quadratic,
polynomial, exponential
» Ignore small constant and small inputs
+ Estimate upper bound and lower bound on growth rate of time complexity function
» Describe running time of algorithm as n grows to .
» Describes behavior of function within the limit.
Limitations
* not always useful for analysis on fixed-size inputs.
» All results are for sufficiently large inputs.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WEEN €s-702 Advanced Algorithms Analysis and Design

Asymptotic Notations
Asymptotic Notations @, O, Q, 0, ®
= We use ® to mean “order exactly”,
= O to mean “order at most”,
= () to mean “order at least”,
= 0 to mean “tight upper bound”,
» ® to mean “tight lower bound”,
Define a set of functions: which is in practice used to compare two function sizes.

Big-Oh Notation (O)
If f,g: N— R", then we can define Big-Oh as
Fora given function g(n)> 0, denoted by O(g(n))theset of functions,
0(g(n))={f(n): there exist positiveconstantsc and n, such that
0< f(n)<cg(n),foralln>n,}
f (n)=0(g(n)) means function g(n)is an asy mptotially
upperbound for f(n).
We may write f(n) = O(g(n)) OR f(n) € O(g(n))

Intuitively:
ce(n) Set of all functions whose rate of growth is
- the same as or lower than that of g(n).
f(n)
: n

n p
O fn) = O(gn))
f(n) € O(g(n))
3¢>0,3n,>0 and V¥n>ny, 0 < f(n) <c.g(n)
g(n) is an asymptotic upper bound for f(n).

Example 1: Prove that 2n” € O(n®)
Proof:
Assume that f(n) = 2n*, and g(n) = n®
f(n) € O(g(n)) ?
Now we have to find the existence of ¢ and ng
f(n)<c.g(n) ' 2n*<cn® 1 2<cn

if we take, c =1 and np=2 OR
¢ =2 and ng= 1 then
2n’<c.n®

Hence f(n) € O(g(n)), c =1 and ne= 2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example 2: Prove that n> € O(n?)

Proof:
Assume that f(n) = n? , and g(n) = n?
Now we have to show that f(n) € O(g(n))

Since
f(n)<c.g(n) ' n°<c.n® 1 1<c, take,c=1,n,=1
Then

n’<c.n’ forc=landn>1

Hence, 2n* € O(n?), where ¢ = 1 and no= 1

Example 3: Prove that 1000.n?+ 1000.n € O(n?)
Proof:
Assume that f(n) = 1000.n?+ 1000.n, and g(n) = n?
We have to find existence of ¢ and nq such that
0 =f(n) <c.g(n) [ln=ng
1000.n*+ 1000.n < c.n’= 1001.n% for ¢ = 1001
1000.n?+ 1000.n < 1001.n°
U 1000.n <n?[1n*>1000.n " n*-1000.n >0
U n (n-1000) > 0, this true for n > 1000
f(n)<c.g(n) In>ngandc=1001
Hence f(n) € O(g(n)) for c = 1001 and ny, = 1000

Example 4: Prove that n® .1 O(n?)
Proof:
On contrary we assume that there exist some positive constants ¢ and nq such that
0<n®<cn® Inx>ng
0<n®<cn’ln<c
Since c is any fixed number and n is any arbitrary constant, therefore n < ¢ is not possible in
general. Hence our supposition is wrong and n® < c.n?,
I n>ng is not true for any combination of ¢ and n,. And hence, n* (1 O(n?)
Some More Examples

1. n®+n® =0(n%

2. n?/log(n) = O(n . log n)

3. 5n +log(n) = O(n)

4. nIog n_ O(nloo)

5. 3"=0(2". n')

6. n'=0(3")

7. n+1=0(n)

8. 2n+1 =0(2n)

9. (n+1)!=0(n!)
10.1+c+c®+..+c"=0(c") forc>1
11.1+c+c?+...+c"=0(1) forc<1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Big-Omega Notation (Q)
If f, g: N > R", then we can define Big-Omega as
Fora given function g(n)denote by Q(g(n)) theset of functions,

Q(g(n))={f(n): thereexist positiveconstantsc and n, such that
0<cg(n)< f(n)foralln>n,}
f (n)=(g(n)), means that function g(n)is an asymptotially
lower bound for f(n).
We may write f(n) = Q(g(n)) OR f(n) € Q(g(n))

Intuitively:
Set of all functions whose rate of growth is the same as or higher than that of g(n).

f(n)

cg(n)

n

H .
 fn) =Q(gn)
f(n) € Q(g(n))
3¢>0,3n,=0, Vn=ng, f(n) > c.g(n)
g(n) is an asymptotically lower bound for f(n).

Example 1: Prove that 5.n? € Q(n)

Proof:

Assume that f(n) = 5.n? , and g(n) = n
f(n) € Q(g(n)) ?

We have to find the existence of ¢ and ngs.t.
cg(n)sf(n) 'nx=ng
cn<5n®’c<5n

if we take, c =5 and ny= 1 then
c.n<5.n? n>ng

And hence f(n) € Q(g(n)), forc =5 and ny=1

Example 2: Prove that 5.n + 10 € Q(n)
Proof:
Assume that f(n) = 5.n + 10, and g(n) = n

f(n) e Q(g(n) ?

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

We have to find the existence of ¢ and ngs.t.
cg(n)<f(n) [Inx=ng
cn<5n+10 7 cn<s5n+10.n11c<15.n
if we take, c = 15 and no= 1 then
cn<5n+10 [l n=ng
And hence f(n) € Q(g(n)), forc =15 and ng=1

Example 3: Prove that 100.n + 5 ¢ Q(n%)
Proof:
Let f(n) = 100.n + 5, and g(n) = n?
Assume that f(n) € Q(g(n)) ?
Now if f(n) € Q(g(n)) then there exist c and ng S.t.

cg(n)<f(n) [Inx=ng O
c.n°<100.n+5 0
c.n <100 + 5/n O

n < 100/c, for a very large n, which is not possible
And hence f(n) (1 Q(g(n))

Theta Notation (®)
If f,g: N— R", then we can define Big-Theta as
given function g(n)denoted by ®(g(n))theset of functions,

©(g(n))={f(n): thereexist positiveconstantsc,, ¢, and n, such that
0<cg(n)< f(n)<c,g(n)forall n>n_}
f (n)=®(g(n))means function f (n)is equal to g(n)to within a constant

factor,and g(n)is an asymptotially tight bound for f(n).
We may write f(n) = ®(g(n)) OR f(n) € ®(g(n))

Intuitively: Set of all functions that have same rate of growth as g(n).
c28(n)

fn)

crg(n)

n
no

f(n) =0(gn))

f(n) € ©(g(n))
3¢,>0,¢c,>0,3Nn0>0, V n2>ng, cg(n) <f(n) <cyg(n)
We say that g(n) is an asymptotically tight bound for f(n).

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example 1: Prove that ¥%.n% — %..n = ©(n?)
Proof
Assume that f(n) = ¥%.n% — %.n, and g(n) = n?
f(n) € ©(g(n))?
We have to find the existence of ¢4, ¢; and ngs.t.
c1.g(n)=<f(n)<c,.g(n) Ll n=ng
Since, %2 n’-%n<%n? vn=0 if c,=% and
Y“Bn?-%hnz%n?-%n.%n(vn22)=%n* c;=%
Hence % n?-%n<%n?’<%n’-%n
ci.g(n)<f(n)<c,g(n) Vvn=2,ci1=%, Cc, =%
Hence f(n) € ©(g(n)) = %.n? — %.n = O(n?)

Example 2: Prove that a.n® + b.n + ¢ = ®(n®) where a, b, ¢ are constants and a > 0
Proof
If we take ¢, = Ya.a, ¢, = 7/4. aand

Then it can be easily verified that

0 < c;.g(n) =f(n) < ¢,.g(n),vn = ny, ¢;=Ya.a, c, = 7/4.a
Hence f(n) € ®(g(n)) = a.n’ + b.n + ¢ = O(n?)

Hence any polynomial of degree 2 is of order ©(n%)

Example 3: Prove that 2.n? + 3.n + 6 [©(n®)
Proof: Letf(n)=2.n*+3.n+6,andg(n) =n?
we have to show that f(n) [©(g(n))
On contrary assume that f(n) € ®(g(n)) i.e.
there exist some positive constants ¢4, ¢, and ng such that: ¢;.g(n) < f(n) < c¢,.g(n)
ci.g(n)<f(n)<cog(n) L ci.n®*<2.n*+3n+6<c,n’l
c.Nn<2+3n+6/n’<c,,n =
Cci.n<2<=<c¢, n,forlarge n =
n < 2/c; < c,/ci.n which is not possible
Hence f(n) ' ©(g(n)) = 2.n* + 3.n + 6 11 O(n°)

Little-Oh Notation
o-notation is used to denote a upper bound that is not asymptotically tight.
ragiven function g(n)> 0, denoted by o(g(n)) theset of functions,

f(n): for any positiveconstantsc, there exists a constant n,
olg(n))= {such that0< f(n)<cg(n)foralln>n,}

f(n) becomes insignificant relative to g(n) as n approaches infinity
e.g, 2n= o(nz)but 2n° # o(nz).

g(n) is an upper bound for f(n), not asymptotically tight

imm:
)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example 1: Prove that 2n? € o(n°)
Proof:
Assume that f(n) = 2n?, and g(n) = n®
f(n) € o(g(n)) ?

Now we have to find the existence nqfor any c

f(n) < c.g(n) this is true

o 2n*<cn®ll2<cn
This is true for any c, because for any arbitrary ¢ we can choose ng such that the above
inequality holds. Hence f(n) € o(g(n))

Example 2: Prove that n? ¢ o(n?%

Proof:
Assume that f(n) = n? , and g(n) = n?
Now we have to show that f(n) ¢ o(g(n))
Since
f(n)<c.g(n) I n<c.n’ 1 1<c,

In our definition of small o, it was required to prove for any c but here there is a
constraint over ¢ . Hence, n® ¢ o(n?), where ¢ = 1 and no=1

Example 3: Prove that 1000.n%+ 1000.n ¢ o(n?)
Proof:

Assume that f(n) = 1000.n?+ 1000.n, and g(n) = n
we have to show that f(n) ¢ o(g(n)) i.e.

We assume that for any c there exist ny such that

0 =f(n) <c.g(n) [ln=ng
1000.n” + 1000.n < ¢.n’

If we take ¢ = 2001, then,1000.n*+ 1000.n < 2001.n°
11000.n < 1001.n?> which is not true

Hence f(n) ¢ o(g(n)) for c = 2001

Little-Omega Notation
Little-o notation is used to denote a lower bound that is not asymptotically tight.
For a given function g(n), denote by w(g(n))theset of all functions.

w(g(n))={f (n): for any positiveconstantsc, there exists a constant n, such that
0<cg(n)< f(n)foralln>n_}
f(n)

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity lim ﬂ =00
n—oo g n
n? n?)
&g, - = w(n)but > * (n?).

Example 1: Prove that 5.n? € w(n)
Proof:
Assume that f(n) = 5.n? , and g(n) = n
f(n) € Q(g(n)) ?
We have to prove that for any c there exists ngs.t., c.g(n) <f(n) 1 n>ng
cn<5n’ c<5.n

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

This is true for any c, because for any arbitrary ¢ e.g. ¢ = 1000000, we can choose ng
=1000000/5 = 200000 and the above inequality does hold.
And hence f(n) € w(g(n)),

Example 2: Prove that 5.n + 10 ¢ o(n)
Proof:
Assume that f(n) = 5.n + 10, and g(n) = n
f(n) ¢ Q(g(n)) ?
We have to find the existence nqfor any c, s.t.
c.g(n) <f(n) [ln=ng
c.n<5.n+ 10, if we take c = 16 then
16.n<5.n+ 10 < 11.n < 10 is not true for any positive integer.
Hence f(n) ¢ w(g(n))

Example 3: Prove that 100.n ¢ w(n?

Proof:
Let f(n) = 100.n, and g(n) = n?
Assume that f(n) € o(g(n))
Now if f(n) € w(g(n)) then there n, for any ¢ s.t.
c.g(n) <f(n) [ln=ng this is true
1 ¢.n?<100.n [c.n < 100
If we take ¢ = 100, n < 1, not possible

Hence f(n) (1 (g(n)) i.e. 100.n ¢ o(n?)

Usefulness of Notations

» Itis not always possible to determine behaviour of an algorithm using ©-notation.

« For example, given a problem with n inputs, we may have an algorithm to solve it in a.n?
time when n is even and c.n time when n is odd. OR

« We may prove that an algorithm never uses more than e.n? time and never less than f.n
time.

« In either case we can neither claim ®(n) nor ®(n?) to be the order of the time usage of
the algorithm.

+ Big O and Q notation will allow us to give at least partial information

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture 11
Relations over Asymptotic Notations

Overview of Previous Lecture

Although Estimation but Useful

+ Itis not always possible to determine behaviour of an algorithm using ©-notation.

« For example, given a problem with n inputs, we may have an algorithm to solve it in a.n’
time when n is even and c.n time when n is odd. OR

« We may prove that an algorithm never uses more than e.n? time and never less than f.n
time.

+ In either case we can neither claim ®(n) nor ®(n?) to be the order of the time usage of
the algorithm.

+ Big O and Q notation will allow us to give at least partial information

Reflexive Relation
Definition:
+ Let X be a non-empty set and R is a relation over X then R is said to be reflexive if
(a,a) e R,VaceX,
Example 1:
» Let G be a graph. Let us define a relation R over G as if node x is connected to y then (x,
y) € G. Reflexivity is satisfied over G if for every node there is a self loop.
Example 2:
+ Let P be a set of all persons, and S be a relation over P such that if (x, y) € S then x has
same birthday as y.
« Of course this relation is reflexive because
(x,X) € S, v aeP,

Reflexivity Relations over ©, Q, O
Example 1

Since, 0<f(n)<cf(n) Vn>ny=1, ifc=1
Hence f(n) = O(f(n))

Example 2
Since, 0<cf(n)<f(n) Yn=ny=1, ifc=1
Hence f(n) = Q(f(n))

Example 3

Since, 0 < ¢4f(n) < f(n) < c,f(n) vn>ny=1jifc,;=c,=1
Hence f(n) = O(f(n))

Note: All the relations, Q, W, O, are reflexive

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Little o and o are not Reflexivity Relations
Example
As we can not prove that f(n) < f(n), for any n, and for allc > 0
Therefore
1. f(n) = o(f(n)) and
2. f(n) = w(f(n))
Note : Hence small o and small omega are not reflexive relations

Symmetry
Definition:
» Let X be a non-empty set and R is a relation over X then R is said to be symmetric if
Va,beX (aab)eR=(,a)eR

Example 1: » Let P be a set of all persons, and B
» Let P be a set of persons, and S be be a relation over P such that if (x, y)
a relation over P such that if (X, y) € € B then x is brother of y.
S then x has the same sign as y. » This relation is not symmetric
» This relation is symmetric because because
X,y)eS=(,x)eS (Anwer, Sadia) € B = (Saida,

Brother) ¢ B
Example 2:
Symmetry over ®
Property : prove that
f(n) = ©(g(n)) < g(n) = B(f(n))
Proof
« Since f(n) = ©(g(n)) i.e. f(n) € ©(g(n)) =
3 constants ¢y, ¢, > 0 and ng € N such that

0 < cyg(n) < f(n) < cog(n) ¥ n=ng D
(2) = 0<cg(n) <f(n) <cg(n) = 0<1(n) <cg(n)

= 0 < (L/cy)f(n) < g(n) 2)
(2) = 0<c9(n) <f(n) <cg(n) = 0<cyig(n) <1(n)

= 0 <g(n) < (L/cy)f(n) 3

From (2),(3): 0 < (1/cy)f(n) < g(n) A 0 < g(n) < (L/cyf(n)
= 0 < (2/cy)f(n) < g(n) < (1/cy)f(n)
Suppose that 1/c, = ¢35, and 1/cy = ¢y,
Now the above equation implies that
0 < csf(n) < g(n) < c4f(n), Vn>ng
= g(n) = B(f(n)), v n>ng
Hence it proves that, f(n) = ®(g(n)) < g(n) = O(f(n))
Exercise: prove that big O, big omega Q, little , and little o, do not satisfy the symmetry
property.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Transitivity
Definition:

Example 1: Example 2:
» Let P be a set of all persons, and B » Let P be a set of all persons, and F
be a relation over P such that if (x, y) be a relation over P such that if (x, y)
€ B then x is brother of y. € F then x is father of y.
» This relation is transitive this is « Of course this relation is not a
because transitive because if (x,y) € F A (y,
X,y)eBA(y,2)eB=(x,2) B 2)eF=>(X2)¢F

Let X be a non-empty set and R is a relation over X then R is said to be transitive if

VabceX (@ab)eRa((bc)eR=(ac)eR

Transitivity Relation over Q, W, O, 0 and ®
Prove the following

1.

arwbd

Note

f(n) = ©(9(n)) & g(n) = ©((n)) = f(n) = B(h(n))
f(n) = O(g(n)) & g(n) = O(h(n)) = f(n) = O(h(n))
f(n) = Q(g(n)) & g(n) = Q(h(n)) = f(n) = Q(h(n))
f(n) = 0 (9(n)) & g(n) = o (h(n)) = f(n) = o (h(n))
f(n) = (g(n)) & g(n) = o(h(n)) = f(n) = o(h(n))

It is to be noted that all these algorithms complexity measuring notations are in fact

relations which satisfy the transitive property.

Transitivity Relation over Q
Property 1

f(n) = ©(9(n)) & g(n) = ©(h(n)) = f(n) = B(h(n))

Proof

Since f(n) = ©(g(n)) i.e. f(n) € B(g(n)) =

3 constants ¢4, ¢; > 0 and ng; € N such that

0 < c,g(n) < f(n) < cyg(n) ¥ Nn2ng D

Now since g(n) = ®(h(n)) i.e. g(n) € ©(h(n)) =

3 constants c3, ¢, > 0 and ng, € N such that

0 < c3h(n) < g(n) < c4h(n) ¥V N2 nNgy (2)

Now let us suppose that ng = max (Noz, Ne2)

Now we have to show that f(n) = ®(h(n)) i.e. we have to prove that
3 constants cs, ¢ > 0 and ng € N such that

0 < csh(n) < 1(n) < cgh(n) ?

(2) = 0 < c3h(n) <g(n) <c4h(n)

= 0 < csh(n) < g(n) (3

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

(1) = 0 <cyg(n) <f(n) < czg(n)
= 0<c.g(n) <f(n)

= 0 <g(n) < (L/cy)f(n) 4
From (3) and (4), 0 < csh(n) < g(n) < (1/cyf(n)

= 0 < csc3h(n) < f(n) (5)
(1) = 0<cig9(n) <f(n) < c9(n)

= 0 <f(n) < c,g(n) = 0 < (L/ec,)f(n) < g(n) (6)
(2) = 0 < c3h(n) < g(n) < c4h(n)

= 0<g(n) < c4h(n) 7

From (6) and (7), 0 < (2/cy)f(n) < g(n) < (cqy)h(n)

= 0 < (1/ey)f(n) < (ca)h(n)

= 0 < f(n) < coe4h(n) (8)
From (5), (8), 0 < c,c3h(n) < f(n) A 0 < f(n) < cye4h(n)

0 < c¢y¢3h(n) < f(n) < c,e4h(N)

0 < csh(n) < f(n) < cgh(n)

And hence f(n) = ©(h(n)) Y nxng

Transitivity Relation over Big O

Property 2

f(n) = O(g(n)) & g(n) = O(h(n)) = f(n) = O(h(n))
Proof

« Since f(n) = O(g(n)) i.e. f(n) € O(g(n)) =

3 constants ¢; > 0 and ng; € N such that

0 <f(n) <cy9(n) ¥ N2 ng D
2. Now since g(n) = O(h(n)) i.e. g(n) € O(h(n)) =

3 constants ¢, > 0 and ng; € N such that

0 <g(n) < ch(n) ¥V N = Ngy 2)
3. Now let us suppose that np = max (Noz, Ngy)
Now we have to two equations

0 <f(n) < c,g(n) ¥ N> nNg D

0 <g(n) < czh(n) ¥ N2 nNg, (2)
2 = 0 < c19(n) < c165h(Nn) ¥V N = nNg 3)

From (1) and (3)
0 <f(n) < c,g(n) < cich(n)
Now suppose that c;= c;C;
0 <f(n) < cy.c2h(n)
And hence f(n) = O(h(n)) ¥ n2zng

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

N ¢s-702 Advanced Algorithms Analysis and Design

Transitivity Relation over Big Q
Property 3
f(n) = Q(9(n)) & g(n) = Q(h(n)) = f(n) = Q(h(n))
Proof
» Since f(n) = Q(g(n)) =
3 constants ¢; > 0 and ng; € N such that

0 < cg(n) <f(n) V¥ N> nNp D
2. Now since g(n) = Q(h(n)) =
3 constants ¢, > 0 and ng; € N such that
0 < cyh(n) <g(n) ¥ N2 nNg, (2)
3. Suppose that ng = max (Ney, Ng2)
4, We have to show that f(n) = Q(h(n)) i.e. we have to prove that
3 constants ¢; > 0 and ny, € N such that
0 < csh(n) <f(n) Y nxng ?

(2) = 0 < cyh(n) <g(n)
(1) = 0 < cyg(n) <f(n)
= 0<g(n) < (L/cy)f(n) 3)
From (2) and (3), 0 < cyh(n) < g(n) < (L/cy)f(n)
= 0 < cich(n) < f(n) hence f(n) = Q(h(n)), ¥ n > ny

Transitivity Relation over little o
Property 4

f(n) = o(g9(n)) & g(n) = o(h(n)) = f(n) = o(h(n))
Proof

+ Since f(n) = o(g(n)) i.e. f(n) € o(g(n)) =

3 constants ¢; > 0 and ng; € N such that

0 <f(n) < cyg(n) ¥ Nn2=ng D
2. Now since g(n) = o(h(n)) i.e. g(n) € o(h(n)) =

3 constants ¢, > 0 and ng, € N such that

0 <g(n) < coh(n) ¥ N2 nNg, (2)
3. Now let us suppose that np = max (No, Noy)
Now we have to two equations

0 <f(n) < cig(n) ¥ N> nNg D

0 < g(n) < coh(n) ¥ n2=ng (2)
(2) = 0 < c19(n) < c1¢h(n) ¥V N2 nNgy 3)

From (1) and (3)
0 <f(n) < c,9(n) < c1c20(N)
Now suppose that cs= c;C;
0 <f(n) < cicoh(n)
And hence f(n) = o(h(n)) ¥ N 2=ng

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Transitivity Relation over little
Property 5
f(n) = o(g(n)) & g(n) = w(h(n)) = f(n) = o(h(n))
Proof
» Since f(n) = o(g(n)) =
3 constants ¢; > 0 and ng; € N such that

0 < c,g(n) < f(n) V¥ N> nNp D
2. Now since g(n) = o(h(n)) =
3 constants ¢, > 0 and ng; € N such that
0 < czh(n) < g(n) ¥ N2 nNg, (2)
3. Suppose that ng = max (Ney, Ng2)
4, We have to show that f(n) = w(h(n)) i.e. we have to prove that
3 constants ¢; > 0 and ny, € N such that
0 < csh(n) <f(n) Y nxng ?

(2) = 0 < cyh(n) < g(n)
(1) = 0 < cyg(n) <f(n)
= 0 < g(n) < (L/cy)f(n) 3)
From (2) and (3), 0 < cyh(n) < g(n) < (L/cy)f(n)
= 0 < ci¢h(n) < f(n) hence f(n) = w(h(n)), ¥V n=ng

Transpose Symmetry
Property 1
Prove that f(n) = O(g(n)) < g(n) = Q(f(n))
Proof
Since f(n) = O(g(n)) =
3 constants ¢ > 0 and ny € N such that
0<f(n)<cg(n) Vn=ng
Dividing both side by ¢
0 < (L/e)f(n) < g(n) Y nxng
Put1/c=c
0 <cf(n)<g(n) Y nxng
Hence, g(n) = Q(f(n))

Property 2

Prove that f(n) = o(g(n)) < g(n) = wf(n))
Proof

Since f(n) = o(g(n)) =

3 constants ¢ > 0 and ng € N such that

0 <f(n) < cg(n) Y n>ng
Dividing both side by c

0 < (L/c)f(n) < g(n) ¥ n>ng
Put1/c=c

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

0 <c'f(n) <g(n) VY n>ng
Hence, g(n) = o(f(n))

Relation between Q, W, O
Trichotmy property over real numbers
» For any two real numbers a and b, exactly one of the following must hold: a < b,a =b, or
a>bh.
The asymptotic comparision of two functions f and g and the comparision of two real numbers a
and b.
Trichotmy property over Q, W and O
1. f(n)=0(g(n)) = asb

2. f(n)=Q(g(n) = az=b
3. f(nN)=06 (g(n)) = a=b
4. f(n)=o0(g(n)) = a<b
5. f(n) =w(g(n) = a>b

Some Other Standard Notations
Monotonicity
» monotonically increasing if m < n = f(m) < f(n).
» monotonically decreasing if m < n = f(m) > f(n).
 strictly increasing if m < n = f(m) < f(n).
» strictly decreasing if m < n = f(m) > f(n).
Polynomials
« Given a positive integer d, a polynomial in n of degree d is a function of the form given
below, a; are coefficient of polynomial.

o) -

Standard Logarithms Notations

Exponent a =P
« x =logpa is the exponent for a = b*. |
og.(ab)=1log,a+log.b
Natural log gc(n) =log, 9
* Ina=logea log,a" =nlog,a
Binary log g a - log,.a

Square of log log, (1/a) = —log,a

« lg’a= (g a)’
Log of Log log,a=——
« Iglga=Ig(ga) log,b

log,c logya
agb :C ¢

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture 12
Design of Algorithms using Brute Force Approach

Today Covered
Brute Force Approach,
» Checking primality
« Sorting sequence of numbers
» Knapsack problem
» Closest pair in 2-D, 3-D and n-D
+ Finding maximal points in n-D

Primality Testing
(given number is n binary digits)

First Algorithm for Testing Primality
Brute Force Approach
Prime (n)
fori<« 2ton-1
if n=0 mod i then
“number is composite”
else
“number is prime”
» The computational cost is ©(n)
« The computational cost in terms of binary operation is (2"

Refined Algorithm for Testing Primality
Prime (n)
fori« 2ton/2
if n=0 mod i then
“number is composite”
else
“‘number is prime”
« The computational cost is ®(n/2)
« The computational cost in terms of binary operation is ®(2"), not much improvement

Algorithm for Testing Primality

* We are not interested, how many operations are required to test if the number n is prime

» Infact, we are interested, how many operations are required to test if a number with n
digits is prime.

« RSA-128 encryption uses prime numbers which are 128 bits long. Where 2% is:
340282366920938463463374607431768211456

» Therefore, to prime test a number with n binary digits by brute force, we need to check
2" numbers.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

T ¢s-702 Advanced Algorithms Analysis and Design

» Thus brute-force prime testing requires exponential time with the n number of digits.
* Which is not accepted in this case

Lemma
Statement
* Ifne N, n>1is not prime then n is divisible by some prime number p < square root of
n.
Proof
» Since nis not prime hence it can be factored as

n=xy where 1 <x <y <n
* Xoryis aprime, if not it can be further factored out.
» Also suppose without loss of generality that x <y
* Now our claim is that x < sq(n)
» This is because otherwise x.y > n, a contradiction
* We only require to check till sqr(n) for primality test.

Refined Algorithm for Testing Primality

Prime (n)
fori < 2 to sqr(n)
if n=0 mod i then
“number is composite”
else
“number is prime”

» The computational cost is ®(sqgr(n)), much faster

« The computational cost in terms of binary operation is @(2°%2°°™) 'stjll exponential

» Computation cost can be decreased using number theoretic concepts, which will be
discussed later on.

Sorting Sequence of Numbers

An Example of Algorithm
« Input : A sequence of n numbers (distinct) (a,,a,,...,a,)

A
A
Q

+ Output : A permutation, (a;,a;,...,a,) of the input sequence such that a; < a,

(3,0,6,1,5,2) (0,1,2,3,5,6)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Sorting Algorithm: Brute Force Approach
Sort the array [2, 4, 1, 3] in increasing order
s1=[4,3,2,1], s2=[4,3,1,2], s3=[4,1,2,3]
s4 =[4,2,3,1], s5=[4,1,3,2], s6 =[4,2,1,3]
s7=1[3,4,2,1], s8 =[3,4,1,2], s9 =[3,1,2,4]

s10 = [3,2,4,1], s11=1[3,1,4,2], s12 =[3,2,1,4]
s13 =[2,3,4,1], s14 =[2,3,1,4], s15 =[2,1,4,3]
s16 = [2,4,3,1], s17 =[2,1,3,4], s18 =[2,4,1,3]
s19 =[1,3,2,4], s20 =[1,3,1,4], s21 =[1,4,2,3]
s22 =[1,2,3,4], s23 =[1,4,3,2], s24 =[1,2,4,3]

There are 4! = 24 number of permutations.

For n number of elements there will be n! humber of permutations. Hence cost of order n! for
sorting.

Generating Permutations

Permute (i) \linitial call Permute(1)
if i ==
output A[N]
else
forj=itoNdo

swap(A[i], All])
permute(i+1)
swap(Ali], Ali])

» There are 4! = 24 number of permutations.
« For n number of elements there will be n! number of permutations. Hence cost of order
n! for sorting.

Theorem
« Prove, by mathematical induction, that computational cost of generating permutations is
n'.
Proof
 If n=1, then the statement is true, because 1! =1
» If there are k elements in set then no. of permutation = k!
+ If we add one more element in any of the permutations, there will be k+1 number of
ways to add it, resulting k+1 no. of permutations.
* Now total no. of permutations = k!(k+1) = (k+1)!
* Hence true for all n.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

file://initial

W ¢s-702 Advanced Algorithms Analysis and Design

0-1 Knapsack Problem Statement
The knapsack problem arises whenever there is resource allocation with no financial constraints

Problem Statement

* You are in Japan on an official visit and want to make shopping from a store (Best
Denki)

* You have a list of required items

* You have also a bag (knapsack), of fixed capacity, and only you can fill this bag with the
selected items

» Every item has a value (cost) and weight,

» And your objective is to seek most valuable set of items which you can buy not
exceeding bag limit.

0-1 Knapsack Example

Input
» Given n items each
— weight w;
— valuevy,

» Knapsack of capacity W
Output: Find most valuable items that fit into the knapsack

Example:

item weight value knapsack capacity W = 16
1 2 20

2 5 30

3 10 50

4 5 10

Subset Total weight Total value

1. %) 0 0 # W \%
2. {1} 2 20 1 2 20
3. {2} 5 30 2 5 30
4, {3} 10 50 3 10 50
5. {4} 5 10 4 5 10
6. {1,2} 7 50

7. {1,3} 12 70

8. {1,4} 7 30

9. {2,3} 15 80

10. {2,4} 10 40

11. {3,4} 15 60

12. {1,2,3} 17 not feasible

13. {1,2,4} 12 60

14. {1,3,4} 17 not feasible

15. {2,3,4} 20 not feasible

16.{1,2,3,4} 22 not feasible

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

0-1 Knapsack Algorithm

1 Knapsack-BF (n, V, W, C) Compute all subsets, s, of S ={1, 2, 3, 4}
2 foralls € S

3 weight = Compute sum of weights of these items

4 if weight > C, not feasible

5 new solution = Compute sum of values of these items

6 solution = solution U {new solution}

7 Return maximum of solution

0-1 Knapsack Algorithm Analysis

Approach
» In brute force algorithm, we go through all combinations and find the one with maximum
value and with total weight less or equal to W = 16

Complexity
« Cost of computing subsets O(2") for n elements
« Cost of computing weight = O(2")
« Cost of computing values = O(2")
« Total cost in worst case: O(2")

The Closest Pair Problem (Finding Closest Pair)

Problem: The closest pair problem is defined as follows:

» Given a set of n points, determine the two points that are closest to each other in terms
of distance. Furthermore, if there are more than one pair of points with the closest
distance, all such pairs should be identified.

Input:
is a set of n points
Output
» is a pair of points closest to each other,
» there can be more then one such pairs

Closest Pair Problem in 2-D
* Apointin 2-D is an ordered pair of values (x, y).
» The Euclidean distance between two points
Pi=(x, y) and P; = (x; y)) is
d(pi, py) = sar((xi = Xj)2 +(yi - YJ)Z)
» The closest-pair problem is finding the two closest points in a set of n points.
» The brute force algorithm checks every pair of points.
+ Assumption: We can avoid computing square roots by using squared distance.
— This assumption will not loose correctness of the problem.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Brute Force Approach: Finding Closest Pair in 2-D
ClosestPairBF(P)

1. mind < =
2. forie1ton

3. do
4 forj<1ton . .
5 if i = | Time Complexity
6. do n.n
7 d e (= %)+ (=) =2.2.¢
8 if d < minn then =
9. mind « d N
10. mini « i =20
11. minj < j 2
12. return mind, p(mini, minj) =cn
=0(n?)
Improved Version: Finding Closest Pair in 2-D
ClosestPairBF(P) Complexity
1. mind « = n-1 n
2. fori<—1ton-1 =ZZC
3 dO i=1 j=i+l
4. forj«i+1ton L .
5. do - Zc(n—l)
6. de —;:,-)2 + =)
7 if d < minn then i
=c() n—-> 1
8 mind < d (; ,Z:l:)
9. mini <« i
n-1n
10. minj <« | = cn(n—l)—c%
11. return mind, p(mini, minj)
=0(n%)

Finding Maximal in n-dimension
Maximal Points

+ Dominated Point in 2-D
A point p is said to be dominated by q if
p.x<qgxandp.y<q.y
+ Dominated Point in n-D
A point p is said to be dominated by q if
pxi<gxVi=1...,n
* Maximal Point
A point is said to be maximal if it is not dominated by any other point.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WEEN ¢s-702 Advanced Algorithms Analysis and Design

Example: Maximal Points in 2-Dimension

i Ty

(4,10)
101

O
—
N
(2]
~

= N WO OO N @

123456 7 8 9 1011 12

Example: Buying a Car
Suppose we want to buy a car which is
— Fastest and
— Cheapest
» Fast cars are expensive. We want cheapest.
* We can’t decide which one is more important
— Speed or
— Price.
» Of course fast and cheap dominates slow and expensive car.
» So, given a collection of cars, we want the car which is not dominated by any other.
Formal Problem: Problem can be modeled as:
» For each car C, we define C (x, y) where
X = speed of car and
y = price of car
« This problem can not be solved using maximal point algorithm.
Redefine Problem:
» Foreach car C’, we define C’ (X', y’) where
X = speed of car and
y’ = negation of car price
« This problem is reduced to designing maximal point algorithm

Problem Statement
Problem Statement:

Given a set of m points, P = {p1, p2, . - . , Pm}, iN N- dimension. Our objective is to
compute a set of maximal points i.e. set of points which are not dominated by any one in the
given list.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WG ¢s-702 Advanced Algorithms Analysis and Design

Mathematical Description:
Maximal Points =
{peP|3ie{l,...,n}&pXx2q.x,

Brute Force Algorithm in n-dimension
MAXIMAL-POINTS (int m, Point P[1. .. m])
0.A=g;
1.fori<1tom

of points

2. do maximal « true
3.forj«1ltom

4, do

5.if(i#]) &
6.fork<« 1ton
dimension

7.do

8. P[i].x[k] < P[j].x[K]
9. then maximal « false; break
10. if maximal

11. then A= AU PJi]

\\ m used for number

\\ n stands for

Plane Sweep Algorithm in n-dimension

Conclusion

que{pl’pzn---:pm}

MAXIMAL-PINTS (int m, int n, Point P[1. . .
m])

1. sort P in increasing order by first
component

2. stack s;
3.fori<ltom
of points

4. do

5. while (s.noEmpty() &
6.forj«<2ton \\ n stands for
dimension

7.do

8. s.top().x[j] < P[i].x[i])

9. do s.pop();

10. s.push(P[i]);

11. output the contents of stack s;

\\ m used for number

» Brute Force approach is discussed, design of some algorithms is also discussed.

» Algorithms computing maximal points is generalization of sorting algorithms

« Maximal points are useful in Computer Sciences and Mathematics in which at least one
component of every point is dominated over all points.

» In fact we put elements in a certain order

« For Brute Force, formally, the output of any sorting algorithm must satisfy the following

two conditions:

— Output is in decreasing/increasing order and
— Output is a permutation, or reordering, of input.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 13
Designing Algorithms using
Brute Force & Divide & Conquer Approaches

Today Covered
Brute Force

» Finding closest pair in 2-D

» Improved version finding closest pair in 2-D

+ Generalization in 3-D and then n-D

» Finding maximal points in n-D
Divide and Conquer

» A General Divide and Conquer approach

+ Merge Sort algorithm

+ Finding Maxima in 1-D, and 2-D

» Finding Closest Pair in 2-D

Finding Closest Pair in 2-D
Problem
The closest pair problem is defined as follows:

» Given a set of n points, determine the two points that are closest to each other in terms
of distance. Furthermore, if there are more than one pair of points with the closest
distance, all such pairs should be identified.

Input :
is a set of n points
Output
» is a pair of points closest to each other,
» there can be more then one such pairs

Definition: Closest Pair
Distance
« In mathematics, particular in geometry, distance on a given set M is a function d: M x
M — R, where R denotes the set of real numbers, that satisfies the following conditions:

1. d(x,y)=0,

2. d(x,y)=0ifand onlyifx =y.

3. Symmetric i.e. d(x, y) = d(y, x).
4. Triangle inequality: d(x, z) £ d(x, y) + d(y, 2)

Closest Pair Problem in 2-D
* A pointin 2-D is an ordered pair of values (X, y).
» The Euclidean distance between two points
Pi=(xi, yi) and P; = (x;, yj) is
d(pi, py) = sAr((6 = x)° + (i = ¥)*)
» The closest-pair problem is finding the two closest points in a set of n points.
» The brute force algorithm checks every pair of points.
+ Assumption: We can avoid computing square roots by using squared distance.
— This assumption will not loose correctness of the problem.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Brute Force Approach: Finding Closest Pair in 2-D

mind <« «

fori<1ton

do

forj«<~1ton

ifi]

do

d (06— %)*+ (yi = ¥)?)
if d < mind then

mind < d

mini < i

minj < j

return mind, p(mini, minj)

Improved Version:
Finding Closest Pair in 2-D

ClosestPairBF(P)
mind <« «
fori<~1ton-1
do
forj«<—i+1ton
do

d« (%= %)+ (i -)"
if d < mind then

mind < d

mini < i

minj < j

return mind, p(mini, minj)

Finding Closest Pair in n-D

ClosestPairBF(P)
mind « «
fori<~1ton-1
do

forj«<i+1ton

do
d ¢ (%o = x2)” + (X2 = X2)” +
if d < minn then

mind <« d

mini < i

minj < |

.. -+(Xin - Xjn)z)

Time Complexity

n

= IZ::ZC

i1

n

Y.cn

=1

cn?
O(n?)

Time Complexity

n

PN

i=1 j=irl

~Sen-i)

«En-3)
(n=Dn
2

>

I
[N

=cn(n-1)-c

n> n
=c(n®-n——+—
(5 2)

2

= (-~ 2)=0(n)

return mind, p(mini), p(minj)

Time Complexity

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Maximal Points

Maximal Points in 2-D

A point p is said to be dominated by q if
p.x<qg.xandp.y<q.y

A point p is said to be maximal if
p.x>qgxORpy > q.y

Maximal Points in n-D

A point p is said to be dominated by q if
pxi<qgxVi=1...,n

A point p is said to be maximal if
Ji=1,...,n pX>Qg.X

A point is said to be maximal if it is not

dominated by any other point.

Example: Maximal Points in 2-Dimension

Problem Statement:

s i
0 o

= N WA OO N @

(9.1)
°

1 2 3 456 7 8 9 10 11 12

Given a set of m points, P = {p1, p2, - - . , Pm}, in N- dimension. Our objective is to compute a set
of maximal points i.e. set of points which are not dominated by any one in the given list.

Mathematical Description:

Maximal Points ={p e P |V qe{ps...

Brute Force Algorithm in n-dimension
MAXIMAL-POINTS (int n, Point P[1. . . m])

yPmb =P, 3ief{l,...,n}& p.x=q.x}

0 A=,

1 fori <1 tom \m used for number of points

2 do maximal « true

3 forj«<—1tom

4 do

5 if (i#])&

6 for k <~ 1 to n \\ n stands for dimension
7 do

8 P[i].x[k] < P[j].x[K]

9 then maximal <« false; break
10 if maximal

11 then A=A U PJi]

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

T ¢s-702 Advanced Algorithms Analysis and Design

Conclusion:

Designing Algorithms using Brute Force approach is discussed
For Brute Force, formally, the output of any sorting algorithm must satisfy the following
two conditions:

— Output is in decreasing/increasing order and

— Output is a permutation, or reordering, of input.
Algorithms computing maximal points can be considered as generalization of sorting
algorithms
Maximal points are useful in Computer Sciences and Mathematics in which at least one
component of every point is dominated over all points.
In fact we put elements in a certain order

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 14
Designing Algorithms using
Divide & Conquer Approach
Today Covered
Divide and Conquer?
» A General Divide and Conquer Approach
» Merge Sort algorithm
+ Finding Maxima in 1-D, and 2-D
» Finding Closest Pair in 2-D

A General Divide and Conquer Algorithm
Step 1:
» If the problem size is small, solve this problem directly
» Otherwise, split the original problem into 2 or more sub-problems with almost equal
sizes.
Step 2:
» Recursively solve these sub-problems by applying this algorithm.
Step 3:
» Merge the solutions of the sub- problems into a solution of the original problem.

Time Complexity of General Algorithms
» Time complexity:

T(n):{ZT(n/2)+Sb(n)+M(n) :iz

— where S(n) is time for splitting
— M(n) is time for merging
— b and c are constants
Example
« Binary search
* Quick sort
* Merge sort

Merge-sort
Merge-sort is based on divide-and-conquer approach and can be described by the following
three steps:
Divide Step:
» If given array A has zero or one element, return S.
« Otherwise, divide A into two arrays, Al and A2,
» Each containing about half of the elements of A.
Recursion Step:
* Recursively sort array A1, A2
Conquer Step:

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

BTN ¢s-702 Advanced Algorithms Analysis and Design

» Combine the elements back in A by merging the sorted arrays A1 and A2 into a sorted
sequence.

Visualization of Merge-sort as Binary Tree

* We can visualize Merge-sort by means of binary tree where each node of the tree
represents a recursive call

« Each external node represents individual elements of given array A.

» Such a tree is called Merge-sort tree.

» The heart of the Merge-sort algorithm is conquer step, which merge two sorted
sequences into a single sorted sequence

» The merge algorithm is explained in the next

Sorting Example: Divide and Conquer Rule

» Sort the array [14, 10, 4, 8, 2, 12, 6, 0] in the ascending order
Solution:

e Divide

| 14,10,4,8,2,12,60 |

| 14, 10,4,8 | | 212,60 |

Merge-sort Merge-sort

14, 10 4,8 2. 12 6.0
siges0 [Merge-sort |

mmw@uwm

» Recursion and Conquer

| 0,2,4,6,810,12,14 |

4, 8,10, 14

Merge
[10, 14" 48 5 .06 |
Merge Merge Vierge Merge

_Ilﬂll_l\ill_llﬁll_llll

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Merge-sort Algorithm

Merge-sort(A, f, I)
1. if f<I
2 thenm = (f +1)/2
3. Merge-sort(A, f, m)
4. Merge-sort(A, m + 1, I)
5 Merge(A, f, m, 1)

Merge(A, f, m, 1)

1. TIf.] \\declare temporary array of same size
2. i« fikefjem+1 \linitialize integers i, j, and k
3. while(i<m)and (j<I)

4. doif (Ali] < A[j)) \\comparison of elements

5. then T[k++] < Ali++]

6. else T[k++] <« Afj++]

7. while (i<m)

8. do Tl[k++] « Afi++] \\copy from Ato T

9. while (j <)

10.do T[k++] < A[j++] \\copy from Ato T
11.fori<ptor

12. do A[i] < TIi] \\copy from T to A

Analysis of Merge-sort Algorithm
« Let T(n) be the time taken by this algorithm to sort an array of n elements dividing A into
sub-arrays A; and A..
+ Itis easy to see that the Merge (A4, A,, A) takes the linear time. Consequently,

T(n) = T(n/2) + T(n/2) + 6(n)
T(n) = 2T (n/2) + 8(n)

» The above recurrence relation is non-homogenous and can be solved by any of the
methods
— Defining characteristics polynomial
— Substitution
— recursion tree or
— master method

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

file://declare
file://initialize
file://comparison
file://copy
file://copy
file://copy

RN ¢s-702 Advanced Algorithms Analysis and Design

Analysis: Substitution Method

T(n):2.T(g)+n
n n n
T(E) = Z-T(y) +§
n n n
T =2T()+

n n n
n
2k—l

n
2k—1

)=2T(y+

Searching: Finding Maximain 1-D
A Simple Example in 1-D:
Finding the maximum of a set S of n numbers

[14

Analysis of Merge-sort Algorithm

T(n)=2T (g) +O(n)=2°T (%) n+n

T(n):zz.T(%)+n+n

T(n):23.T(%)+n+n+n

T(n):2k.T(%)+p+n+. ..+N

k—times
T(n)=2"T (%) +kn
Let us suppose that: n=2“ = log, n =k

Hence, T(n) =n.T (1) +n.log,n=n+n.log,n

T(n) =®(n.log, n)

| 14,10,4,8,2,12,60 |

i :
| 14,10,4,8 | [2,12,6,0
1% 8 12/ \6
14,10 4,8 2,42 6,0
A e N
(14 [10] 41 [&] L[2] [12) [6] [O]

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

WEEN €s-702 Advanced Algorithms Analysis and Design

Time Complexity

T(n) :{ZT(niZ)+1 :Z;

« Assume n =2 then
T(N)=2T(n/2) + 1 =2(2T(n/4) + 1) + 1

=2’T(n/2) +2+1
=2°Q2T(n/2%) + 1)+ 2+ 1
=2°T(n/2}) + 22+ 2' +1
= 20T (/2" +24 2+ + 22+ 20+ 1
= 2K T(2) + 2%+ + 22+ 20+ 1
=2+ 2%y +4+2+1=2%1=n-1=0(n)

Finding Maxima in 2-D using Divide and Conquer

A il How to Find Maxima in 2-D
P2 |
P3
} ®
I
|
L,—I
P1
| P4
|
SL I SR - - - -
| s {P1, P2} both maximal in S_ and {Ps} only maxima in
Sr
Merging S, and Sy
N L
P2 |
P3
! O)
I
I
—
P1 I
| P4
I
SL I Sr
|

S
7

After Merging Maximal in S and Sg we get {P,, P3} only maximal

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Divide and Conquer for Maxima Finding Problem

Y St Sk
4

T

&]
s B [¢] |§| - L
7 & . [G
EI P o L JES
. pw
r,
® I L S L Jch
-y
L
The maximal points of S| and Sg P3 is not maximal point of S,
2-D Maxima Finding Problem
y
y
. ® ®
¢ .
]
. ®
X

Algorithm: Maxima Finding Problem
Input: A set S of 2-dimensional points.
Output: The maximal set of S.
Maxima(P[1..n])
1. Sort the points in ascending order w. r .t. X axis
2. If|S| =1, thenreturn it, else
find a line perpendicular to X-axis which separates S into S| and Sg, each of which
consisting of n/2 points.
3. Recursively find the maxima’s S, and Sg
4. Project the maxima’s of S| and Sk onto L and sort these points according to their y-
values.
5. Conduct a linear scan on the projections and discard each of maxima of S, if its y-value
is less than the y-value of some maxima’s of Sg .

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Time Complexity:
2T(n/2) + O(n) + O(n)

T(n) = !

Assume n = 2%, then

T(n) =2T(n/2) +n+n
=2(2T(n/4) +n/2 +n/2) + n+n
=2°T(n/2) +n+n+n+n
= 2*T(n/2%) + 4n
= 2%(2T(n/2°%) + n/4 + n/4) + 4n
=2°T(n/2®) +n+n+6n

T(n) =2°T(n/2%) + n+ n + 6n

T(n) = 2T(n/2") + 2kn
= 2T(2"2*) + 2kn ~ Since n=2¢
Hence
T(n) = 2" + 2kn
T(n) = 2+ 2kn n = 2=k =log(n)
T(n) = n + 2n.logn = ®(n.logn)

Necessary Dividing Problem into two Parts?
Maximal Points: Dividing Problem into four Parts

Maximal points in Sy; = {P:}

Maximal points in S;, = {Ps, P4}
Maximal points in S,; = {Ps, Pg}
Maximal points in Sy, = {P;, Pg}

A =
1 Sn S Sy Stz
P3
- P;
B L@
P] .%
e
Py
[] I Pg
r ® 2
®]
X

,h>2
,h<2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Merging S1,, S1» Y Sia S Sz
A; = {Ps, P4} Ps
Merging Sz1, Sz ¢ B,
Az = {P7, P} P, \

Merging Ay, A, P
A ={Ps, P, Pg} ‘. Pe\ '

[]
g
/
®
8
T

Merging Si2, Si2 Y o - “ o
A1 ={Ps, P4} Ps
Merging Sz1, Sz A
A2 = {P7, Pg} Vg []
Merging A, A, Py _
A = {P3, P7, Pg} . R P

F

Closest Pair in 2-D using Divide and Conquer
Problem
The closest pair problem is defined as follows:
+ Given a set of n points
» Determine the two points that are closest to each other in terms of distance.
« Furthermore, if there are more than one pair of points with the closest distances, all such
pairs should be identified.
» First we sort the points on x-coordinate basis, and divide into left and right parts

P1 P2 ... Prr2 and Pr2+1 - IDn ®

- Solve recursively the left and right o P
sub-problems 5| ® o

« Letd=min{d, d}, o ®

+ How do we combine &) o & °
two solutions to o
sub-problems? P O Pr

- 2 P

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

+ How do we combine two solutions?
— Letd =min {d; di}, where d is distance of closest pair where both points are
either in left or in right
— Something is missing. We have to check where one point is from left and the
other from the right.
— Such closest-pair can only be in a strip of width 2d around the dividing line,
otherwise the points would be more than d units apart.

» Combining solutions:
— Finding the closest pair in a strip of width 2d, knowing that no one in any two
given pairs is closer than d
« Combining solutions:
» For agiven point p from one partition, where can there be a point g from the
other partition, that can form the closest pair with p?
+ How many points can there be in this square?
— Atmost4

e

o O ®

» Algorithm for checking the strip:
— Sort all the points in the strip on the y-coordinate
— For each point p only 7 points ahead of it in the order have to be checked to see
if any of them is closer to p than d

1. Partition the strip into squares of length
d/2 as shown in the picture.

2. Each square contains at most 1 point by
definition of d.

3. If there are at least 2 squares between
points then they cannot be the closest
points.

4. There are at most 8 squares to check.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Closest-Pair(P, I, r) | O :
01 if r — 1 < 3 then return ClosestPairBF(P) K.
02 q - é(I+r)/2u

03 dl = Closest-Pair(P, |, g-1)

04 dr - Closest-Pair(P, q, r)

05 d = min(dl, dr)

06 fori-ltordo

07 ifP[g]l.x-d£ P[i].x £P[qg].x +d then

08 append P[ijto S ﬁd_/z,ﬂ, M

09 Sort S on y-coordinate

10 for j = 1 to size_of(S)-1 do L , Q

11 Check if any of d(S[j],S[i]+1), ..., i | "
d(S[j].S[j]+7) is smaller than d, if so set 2
d to the smallest of them E

12 return d e Id/ 2

L

Running Time
* Running time of a divide-and-conquer algorithm can be described by a recurrence
— Divide = 0(1)
— Combine = O(n Ig n)
— This gives the recurrence given below
— Total running time: O(n log2 n)

n n<3

T(n)= n .
2T (E) +nlogn otherwise

Improved Version: Divide and Conquer Approach
» Sort all the points by x and y coordinate once
» Before recursive calls, partition the sorted lists into two sorted sublists for the left and
right halves, it will take simple time O(n)
» When combining, run through the y-sorted list once and select all points that are in a 2d
strip around partition line, again time O(n)
* New recurrence:

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

n n<3

T(n)=
(") 2T(g)+n otherwise

Conclusion

Brute Force approach is discussed, design of some algorithms is also discussed.
Algorithms computing maximal points is generalization of sorting algorithms
Maximal points are useful in Computer Sciences and Mathematics in which at least one
component of every point is dominated over all points.
In fact we put elements in a certain order
For Brute Force, formally, the output of any sorting algorithm must satisfy the following
two conditions:

— Output is in decreasing/increasing order and

— Output is a permutation, or reordering, of input.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 15
Dynamic Programming for Solving Optimization Problems
(Chain Matrix Multiplication Problem)
Today Covered

» Optimizations problem?
» Steps in Development of Dynamic Algorithms
» Why dynamic in optimization problem?
» Introduction to Catalan numbers
» Chain-Matrix Multiplication
+ Problem Analysis

— Brute Force approach

— Time Complexity
» Conclusion

Optimization Problems
» If a problem has only one correct solution, then optimization is not required
» For example, there is only one sorted sequence containing a given set of numbers.
» Optimization problems have many solutions.
* We want to compute an optimal solution e. g. with minimal cost and maximal gain.
« There could be many solutions having optimal value
» Dynamic programming is very effective technique
» Development of dynamic programming algorithms can be broken into a sequence steps
as in the next.

Steps in Development of Dynamic Algorithms
1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

Note: Steps 1-3 form the basis of a dynamic programming solution to a problem. Step 4 can be
omitted only if the value of an optimal solution is required.

Why Dynamic Programming?
» Dynamic programming, like divide and conquer method, solves problems by combining
the solutions to sub-problems.
» Divide and conquer algorithms:
» partition the problem into independent sub-problem
+ Solve the sub-problem recursively and
+ Combine their solutions to solve the original problem
» In contrast, dynamic programming is applicable when the sub-problems are not
independent.
« Dynamic programming is typically applied to optimization problems.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Time Complexity in Dynamic Algorithms
« Time complexity:

— If there are polynomial number of sub-problems.

— If each sub-problem can be computed in polynomial time.

— Then the solution of whole problem can be found in polynomial time.
Remark:

Greedy also applies a top-down strategy but usually on one sub-problem so that the

order of computation is clear

Catalan Numbers
Multiplying n Numbers
Objective:
» Find C(n), the number of ways to

n multiplication order

compute product X; . Xp ... Xn. 2 Xy = %)
3 X1 * (X2 * X3))
(X1 * Xp) " X3)

Multiplying n Numbers —small n
Recursive equation:

n C(n)
Where is the last multiplication?

n-1 1 1
Cm=%, _Ck) CM-k 5 1
Catalan numbers: 3 2
C(n):l(Zn—Z) 4 5

ni n-1
8 14
Asymptoticnvalue: 6 42
C(n) R 4
n*? 7 132

C(n)
C(n-1)

—4 forn— o

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Chain-Matrix Multiplication
Statement: The chain-matrix multiplication problem can be stated as below:

Given a chain of [A(, A, . . ., A)] of n matrices where fori=1, 2, ..., n, matrix A; has
dimension pi1 X p;, find the order of multiplication which minimizes the number of scalar
multiplications.

Order of A; is po X P,

Order of A, is p; X P2,

Order of Az is p2 X ps, €etc.

Order of A; X Az X Az iS Po X Ps,
Order of A; X Ao X ... XAy iS Po X Pn

Objective is to find order not multiplication

Given a sequence of matrices, we want to find a most efficient way to multiply these
matrices

It means that problem is not actually to perform the multiplications, but decide the order
in which these must be multiplied to reduce the cost.

This problem is an optimization type which can be solved using dynamic programming.
The problem is not limited to find an efficient way of multiplication of matrices, but can be
used to be applied in various purposes.

But how to transform the original problem into chain matrix multiplication, this is another
issue, which is common in systems modeling.

Why this problem is of Optimization Category?

If these matrices are all square and of same size, the multiplication order will not affect
the total cost.
If matrices are of different sizes but compatible for multiplication, then order can make
big difference.
Brute Force approach
— The number of possible multiplication orders are exponential in n, and so trying
all possible orders may take a very long time.
Dynamic Programming
— To find an optimal solution, we will discuss it using dynamic programming to
solve it efficiently.

Assumptions (Only Multiplications Considered)

We really want is the minimum cost to multiply

But we know that cost of an algorithm depends on how many number of operations are
performed i.e.

We must be interested to minimize number of operations, needed to multiply out the
matrices.

As in matrices multiplication, there will be addition as well multiplication operations in
addition to other

Since cost of multiplication is dominated over addition therefore we will minimize the
number of multiplication operations in this problem.

In case of two matrices, there is only one way to multiply them, so the cost fixed.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Brute Force Chain Matrix Multiplication Algorithm

» If we wish to multiply two matrices:
A =ali, Jlp,q and B = bfi, g«

* Nowif C=ABthenorderof Cispxr.

« Since in each entry i, j], there are q number of scalar of multiplications

» Total number of scalar multiplications in computing C = Total entries in C x Cost of
computing a singleentry=p.r.q

* Hence the computational costof AB=p.q.r

cli, j]:gA[i,k]B[j,k]

Example
» Given a sequence [A1, Ay, Az, A4
« Order of A;= 10 x 100
 Orderof A,= 100x5
e Order of A= 5x 50
* Order of A,= 50x 20

Compute the order of the product A; . A, . As . A4in such a way that minimizes the total number
of scalar multiplications.

» There are five ways to parenthesize

this product (A1 - (Az. (As. Ay)))
» Cost of computing the matrix product (A1 - (A2 . A3). AY))

may vary, depending on order of (A1 - A2). (As. Ay)

parenthesis. ((Ar - (A2 . A3)). Al
« All possible ways of parenthesizing (((A1 - A). Az). As)

Kinds of problems solved by algorithms

Q1 10 x 100 x 20 = 20000

,/10x20\

\

a1 () @\z 100 x 5 x 20 = 10000
10 x 100)
Ox20Q

10 _
A2©/ 3 5 x 50 x 20 = 5000

100 x 5 / \
5x 20 Total Cost = 35000
A3 d A4
5x50 50 x 20

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

B0 CS-702 Advanced Algorithms Analysis and Design

Second Chain: (Al - (A2 . A3). A4))

10 x100 x 20 = 20000

100 x 50 x 20 = 100000

A4 100 x 5 x 50 = 25000
50 x 20

Total Cost = 145000

Third Chain : (Al - A2). (A3 . Ad))
10 x 5 x 20 = 1000

10 x 100 100 x 5 5x50 50 x 20

Total Cost = 11000

Fourth Chain : ((Al1 - (A2 . A3)). A4)

10 x 50 x 20 = 10000

10 x 100 x 50 = 50000

A4
50x20
100 x 5 x 50 = 25000
Total Cost = 85000 10x100
100x50
e 5ﬁ§o

100x5

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Fifth Chain: (A1 - A2). A3). A4)
10 x 50 x 20 = 10000 3

10 x 20

O

50 x 20

10 x 56 x 50 = 2500

10 x 100 x 5 = 5000

Total Cost = 17500

A1
10 x 100 100 x 5

Chain Matrix Cost

First Chain 35,000
Second Chain | 145,000
Third Chain 11,000
Fourth Chain 85,000
Fifth Chain 17,500

((A1 - A2). (A3 . A4))

2

10x20

3

/

10x5 5% 20

A1 A2 A3 A4
10 x 100 100 x5 5x 50 50 x 20

Generalization of Brute Force Approach
» If there is sequence of n matrices, [A1, Az, . . ., Ad]
« A has dimension pi; X p;, wherefori=1,2,...,n
» Find order of multiplication that minimizes number of scalar multiplications using brute
force approach

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Recurrence Relation: After k™ matrix, create two sub-lists, one with k and other with n - k
matrices i.e. (A; A2AzALAs . . . AY) (Aks1Axsz...An)
» Let P(n) be the number of different ways of parenthesizing n items

1 n=1
P(n)={_n-1
(m) ZE_lP(k)P(n—k) n>2
Ifn=2
P(2) = P(1).P(1)=1.1=1
Ifn=3

P(3) = P(1).P(2) + P2).P(1)=1.1+1.1=2
(Al A2A3) = ((Al . Az) A3) OR (Al . (A2 A3))

Ifn=4
P(4) = P(1).P(3) + P(2).P(2) + P(3).P(1) = 1.2+ 1.1+ 21=5

1 n=1

P(n)= ZE;iP(k)P(n—k) nx2

Why Brute Force Approach not Economical
» This is related to a famous function in combinatorics called the Catalan numbers.
« Catalan numbers are related with the number of different binary trees on n nodes.
« P(n) e (4"n*?
« The dominating term is the exponential 4" thus P(n) will grow large very quickly.
« And hence this approach is not economical.

Conclusion
» Introduction to optimization problem
« Dynamic Programming
» Comparison of Dynamic and Divide and conquer
» Chain matrix multiplication problem is introduced
» Analyzed that chain matrix is an optimization type problem
» Brute force solution is discussed
* Analysis is done and based on its analysis it was found that solution to chain matrix
multiplication problem using brute force approach is not economical for large input

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 16
Chain Matrix Multiplication Problem using
Dynamic Programming
Today Covered

+ Chain-Matrix Multiplication
» Problem Analysis

— Notations

— Dynamic Algorithm

— Time Complexity
» Generalization and Applications
» Conclusion

Problem Statement: Chain Matrix Multiplication
Statement: The chain-matrix multiplication problem can be stated as below:
* Given achain of [A, Ay, ..., Ay of n matricesfori=1, 2, ..., n, matrix A; has
dimension p;1 X p;, find the order of multiplication which minimizes the number of scalar
multiplications.

» Order of A; is po X p1,

* Order of A; is p; X P2,

» Order of Az is p, X p3, etc.

* Order of A; X A, X Az is po X Pa,

e Orderof Ay x Az X ... XA,IS PoXPn

Why Dynamic Programming in this problem?
» Problem is of type optimization
* Sub-problems are dependant
« Optimal structure can be characterized and
» Can be defined recursively
» Solution for base cases exits
» Optimal solution can be constructed
» Hence here is dynamic programming

Dynamic Programming Formulation

« LetA j=A.Au... A

» Order of A = pi1 X p;, and

« Order of A; = pj.1 X P,

« Order of A j = rows in A x columns in Aj = pi.1 X P

+ At the highest level of parenthesisation,
A=Ak X A isk<j

« Let m[i, j] = minimum number of multiplications needed to compute A; j, for 1 <i <j <n

* Objective function = finding minimum number of multiplications needed to compute A; ,
i.e. to compute m[1, n]

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Mathematical Model
Ai..j = (A, Ai+1 Ak) (Ak+1. Ak+2 AJ) = Ai..k X Ak+1--j
+ Order of A x = pi1 X Pk, and order of Awi1 j = Pk

X Pjs

isk<]j

* mI[i, K] = minimum number of multiplications needed to compute A,
« mlk+1, j] = minimum number of multiplications needed to compute Ay.q |

Mathematical Model

mli, 1 =0

mli,] = m&nli m[1, k] +mlk + 1,3+ piapwp;)
L ol |

Example: Dynamic Programming

Problem: Compute optimal multiplication

m[1,1]

m[1,2]

m[1,3]

m[1,4]

order for a series of matrices given below

A A A A

m[2,2]

m[2,3]

m[2,4]

10x100 100x5 5x50 50x 20

m[3,3]

m[3,4]

Py, =10,P, =100,P,=5,P3=50, P,=20

m[4,4]

Main Diagonal
m[i,i]=0,vi=1,...,4

mfi, jT=minMmG.kl1+mk +1, j1+ p,_4-p-p;)

i<k<j

m[1, 1]=0, m[2,2] =0, m[3, 3] =0, m[4, 4] =0

Computing m[1, 2], m[2, 3], m[3, 4]
mfi, j1=min M, kl+mk +1, j1+ p,_;-py-P;)

i<k<j

m[L 2]=min(mL K]+ mk +1,2] + py.p,-p,)

1<k<2

m[L, 2] = m| n(m[l,l] +m[2,2]+ py. p1-P,)

m[1,2]=0+0+10. 100 .5 = 5000
S[1,2]=k=1

Computing m[2, 3]
mli, j1=min(mii,kl+mk +1 j1+ piy-Pc-P;)

i<k<j

m[2,3] = m| N(m[2,k]+m[k +1,3] + p,.p,.P3)

2<k<3

m[2,3]= min(m[2.2]+m[3,3] + p,.p,.p3)

m[2,3]=0+0+100.5 .50 = 25000
s[2,3]=k=2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Computing m[3, 4]
mfi, jT= N0kl +mk +1, j1+ pi_s-P.p;)

i<k<j

m[3,4]1=min(m3,k1+m[k +1,4]+ p,.p,.p,)

3<k<4

m[3! 4] = mi n(m[3!3] + m[4!4] + p2' p3' p4)

m[3,4]=0+0+5.50.20 = 5000
s[3,4]=k=3

Computing m[1, 3], m[2, 4]
mli, i1= min(m0i,kl1+mk +1 j1+ p4-Pc-P;)

i<k<j

m{1,3] = i (ML K]+ MLk +1,3]+ po. Py p3)

1<k<3

m[1, 3] = mn (ML +m[2,3]+ po.p;. ps,

m[L, 2]+ m[3,3]+ py.P,-P3))
m([1, 3] = min(0+25000+10.100.50, 5000+0+10.5.50) = min(75000, 2500) = 2500
s[1,3]=k=2

Computing m[2, 4]
mli, i1= min(m0,kl1+mk +1 j1+ pis-Pe-P;)

i<k<j

m[2,4]= min(ml2.k]+mk +1,4]+ p.p,.p,)

2<k<4

m[2,4]1=min(ml2,2]+m[3,4]+ p,.p,.P,,

m[2,3]+m[4,4] + p.Ps-P4))
m[2, 4] = min(0+5000+100.5.20, 25000+0+100.50.20) = min(15000, 35000) = 15000
s[2,4]=k=2

Computing m[1, 4]
mfi, jT=min M.kl +mk +1, j1+ pi_s-p.p;)

i<k<j

m[L41=min(mLk]+mk +1,4] + p,.p,.p,)

1<k<4
m[L 4] =min(mL1]+m[2,4] + pq.p;. P,
m[1, 2]+ m[3,4] + pq. P, Py, ML, 3]+ m[4, 4] + py. p3.P,)

m[1, 4] = min(0+15000+10.100.20, 5000+5000+ 10.5.20, 2500+0+10.50.20)
= min(35000, 11000, 35000) = 11000 S[1,4]=k=2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Final Cost Matrix and Its Order of Computation

Final Cost Matrix Order of Computation
0 [5000 |2500 |11000 1 5 8 10
0 25000 | 15000 2 6 9
0 5000 3 T
0 4

Representing Order using Binary Tree
» The above computation shows that the minimum cost for multiplying those four matrices
is 11000.
» The optimal order for multiplication is ((A; . A2) . (As. Ay)) For, m(1, 4), k=2
2

7 10x20

1
/Q\ e ’
/10x5 \\ /5x20
A1 (:j// A2 () <:j/A3 Ad
5 x 50

10 x 100 100x 5 50 x 20

Chain-Matrix-Order(p)

1. n<« length[p] -1 m[1,1] |m[1,2] |m[1,3] |[m[1,4]
g' forcjo‘_m;,ta :‘_ . m22] |m23] |m[24]
4. forl «2ton, m(3,3] | m[3,4]
5. dofori<« 1ton-I+1 m[4,4]
6 doj« i+l-1
7 mli, j] < o
8 fork < itoj-1
9 do g « m[i, k] + m[k+1, j]

+ Pi1 - Pk - Py
10. if g < mi,]
11. thenml[i, j] = q
12. s[i, j] « k

13. return m and s, “l is chain length”

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Computational Cost

T(n)=n+izn:(j—i)=i§k

i=1 j=i+l i=1 k=1
T(n):n+z":(n—i)(2—i+1)

1 n 2 - .2 -
T(N)=n+—= n“—2ni+i“+n-—i
() 2;()

T(n)=n+%(i2l:n2 —iZl:ZnHiZl:iz +iZl:n—Zn1:i)

n

T(n)=n+%(gn2 —izl:znnizlliz +izl:n—2i)

i=1

T(n)= n+%(n2§1—2ngi +i2l:i2 +ni2:1—zn:i)

i=1

T(n)=n +%(n2.n _op M+Y n(n+D@n+D) n(n2+1))

2
n(n+1) N n(n+1)(2n+1) o n(n +1))
2 : 2

T(n)= n+%(n2.n—2n.

n(n+1)(2n+1) i n(n +1))

1 3 2
T(N)=n+=(n°-n“(n+1)+
(n) 5 (n+1) 3

T(n):n+é(6n3—6n3—6n2 +2n° +3n* +n+6n° —3n° - 3n)

1 3 1 3y 1 3
T(N)=—@12n+2n°-2n)=—1A0Nn+2n°)=—=(n+n
(m) =2)=,)=5Gn+n’)

Cost Comparison Brute Force Dynamic Programming
Dynamic Programming
There are three loop

« The most two loop for i, j, satisfy the condition: 10i0j0n

« Cost="C,+n=n(n-1)/2+n=0 (n?

» The third one most inner loop for k satisfies the condition, i [k <}, in worst case, it cost
n and

« Hence total cost = ® (n*. n) = O (n°)
Brute Force Approach
« P()=C(n-1)C(n) e (4"n*?

Generalization: Sequence of Objects
» Although this algorithm applies well to the problem of matrix chain multiplication
» Many researchers have noted that it generalizes well to solving a more abstract problem
+ given a linear sequence of objects
* an associative binary operation on those objects hold

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» the objective to find a way to compute the cost of performing that operation on
any two given objects
» and finally computing the minimum cost for grouping these objects to apply the
operation over the entire sequence.
It is obvious that this problem can be solved using chain matrix multiplication, because
there is a one to one correspondence between both problem

Generalization: String Concatenation

One common special case of chain matrix multiplication problem is string concatenation.
For example, we are give a list of strings.
» The cost of concatenating two strings of length m and n is for example O(m + n)
+ Since we need O(m) time to find the end of the first string and O(n) time to copy
the second string onto the end of it.
» Using this cost function, we can write a dynamic programming algorithm to find
the fastest way to concatenate a sequence of strings
» Itis possible to concatenate all in time proportional to sum of their lengths, but
here we are interested to link this problem with chain matrix multiplication

Generalization: Parallel Processors

Another generalization is to solve the problem when many parallel processors are
available.

In this case, instead of adding the costs of computing each subsequence, we just take
the maximum, because we can do them both simultaneously.

This can drastically affect both the minimum cost and the final optimal grouping

But of course more balanced groupings that keep all the processors busy is more
favorable solution

There exists some more sophisticated approaches to solve this problem

Conclusion

Created some notations to describe mathematical model of the chain matrix
multiplication problem

A recursive model was described

Based on this model dynamic programming algorithm was designed

An example was taken for applying model to solve dynamically, constructing optimal
solution based on the given information

Time complexity was computed for the Algorithm

Applications of chain matrix problem are discussed

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 17
Assembly-Line Scheduling Problem

Today Covered

Assembly Line Scheduling Problem
Problem Analysis

— Defining Notations

— Brute Force approach

— Dynamic Solution
Algorithm using Dynamic Programming
Time Complexity
Generalization and Applications
Conclusion

Assembly-Line Scheduling Problem

There are two assembly lines each with n stations

The jth station on line i is denoted by S;

The assembly time at that station is a;;.

An auto enters factory, goes into line i taking time e;

After going through the jth station on a line i, the auto goes on to the (j+1)st station on
either line

There is no transfer cost if it stays on the same line

It takes time t;; to transfer to other line after station S;;

After exiting the nth station on a line, it takes time x; for the completed auto to exit the
factory.

Problem is to determine which stations to choose from lines 1 and 2 to minimize total
time through the factory.

Notations: Assembly-Line Scheduling Problem

Stations S;;;

2 assembly lines, i =1,2;

n stations, j=1,...,n.

a;j = assembly time at S;;

t;; = transfer time from S;; (t0 Si.1j+1 OR Sityj+1);
e = entry time from line i;

X; = exit time from line i .

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Total Computational Time = possible ways to enter in stations at level n x one way Cost
Possible ways to enter in stations at level 1 = 2*

Possible ways to enter in stations at level 2 = 2%

Possible ways to enter in stations at level 2 = 2"

Total Computational Time = n.2"

Dynamic Programming Solution
Notations: Finding Objective Function

Let f[j] = fastest time from starting point station S;

fi[n] = fastest time from starting point station S; ,

fo[n] = fastest time from starting point station S, ,

l[i] = The line number, 1 or 2, whose station j-1 is used in a fastest way through station
Si,j .

It is to be noted that [j[1] is not required to be defined because there is no station before
1

tij-1] = transfer time from line i to station S;; ; or Sisy |

Objective function = * = min(f,[n] + Xy, f2[N] + X7)

I* =to be the line no. whose n" station is used in a fastest way.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Mathematical Model: Finding Objective Function

In Out

fifl] =e; +agy;
fo[1] = €2 + az1.
fafil = min (f1[j-1] + agj, f2[-1] + toj0 + @y) forj 2 2;
foli] = min (f2-1] + @z, fafj-1] + taja + @z)) forj = 2;

Complete Model: Finding Objective Function
Base Cases
« fifl]l=ei+a;
« B[l]=e,+ay;
Two possible ways of computing fy[j]
o ffil =ff-1] + tp 11 + @1, OR fi[J] = fafj-1] + @y |
Forj=2,3,...,n
fi[j] = min (fufj-1] + ag,j, f2[j-1] + to, j2 + ag,j)
Symmetrically
Forj=2,3,...,n
fo[i] = min (f2[-1] + @z j, fal-1] + ty 1 + @2,
Objective function = * = min(f,[n] + x4, f2[n] + X7)

Example: Computation of f1[2]

e ffl]=e;+a;,,=2+7=9

e fll]l=ey+a,;=4+8=12

o fufl] = min (fij-1] + &y, f2[-1] + to, j1 + @1,))
o fl] = min (fo[j-1] + az,j, f1-1] + t1 1 + @z,))

° J = 2
d f1[2] =min (fl[l] + ay, o, fz[l] + tzy 1t ay, 2) =min (9 + 9, 12 +2 + 9) =min (18, 23) = 18,
L2l = 1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Computation of 2[2]

f1[1]=el+a1,1=2+7=9

fz[l]:ez+a2’1:4+8=12

fafi] = min (f[-1] + aqj, f2f-1] + to, ja + Q1))

foi] = min (f2[j-1] + @z, j, fa[-1] + ty 1 + @2)

j=2

f,[2] = min (f3[1] + @, 5, f1[1] + t1. 1 + @5 2) = min (12 + 5, 9 + 2 + 5) = min (17, 16) = 16,
b[2] = 1

Computation of f1[3]

f1[|] = min (f]_[]'l] + ay, j, fz[l-l] + tg’ i1 + ay, j)

fg[l] =min (fz[]-l] + az |, f1[|'1] + tl,j—l + ap, j)

j=3

f1[3] = min (fl[Z] +ay, 3, f2[2] + tgy 2t ay, 3) = min (18 +3,16 +1+ 3) =min (21, 20) =20
L[3] = 2

Computation of f2[3]

fl[l] =min (fl[]-l] +ay f2[|'1] + 1, 1t ag j)

fg[l] =min (fz[]-l] +az f1[|'1] + t]_’j_]_ + ap, j)

j=3

f2[3] =min (f2[2] + ay 3, f1[2] + tl,2 + dy, 3) =min (16 + 6, 18+ 3+ 6) =min (22, 27) = 22,
L[3] = 2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Computation of f1[4]

f1[|] = min (f]_[]'l] + ay, j, fz[l'l] + tz’ i1 + ay, j)

f2[|] = min (fz[]'l] + az f]_[l'l] + t]_’j.]_ + ap, j)

j=4

f1[4] = min (f[3] + @y 4, ©2[3] + to 3 + @1 4) = min (20 + 4, 22 + 1 + 4) = min (24, 27) = 24,
l1[4] =1

Computation of f2[4]

f1[|] = min (f]_[]'l] + ay, fz[l-l] + tg’ i1 + ay, j)

f2[|] = min (fz[]'l] + az j, f]_[l'l] + t]_’j.]_ + ap, j)

j=4

f2[4] = min (f2[3] + ay, 4, f1[3] + t1’3 + ap, 4) = min (22 + 4, 20+ 1 + 4) = min (26, 25) = 25,
1b[4] =1

Computation of f1[5]

fl[J] =min (fl[J-l] + ay, fzh-l] + tzy i1 + ay, j)

fz[J] =min (fz[]-l] + az fll]'l] + t]_’j_]_ + ap, j)

j=5

f1[5] =min (f1[4] + ay, s, f2[4] + t2’4 + ay, 5) =min (24 + 8, 25+ 2+ 8) =min (32, 35) = 32,
I1[5] =1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Computation of f2[5]

f1[|] = min (f]_[]'l] + a]_'j, fz[l'l] + tz’ i1 + a, j)

folj] = min (fo[j-1] + @z, j, fafj-1] + t1, 12 + @z,))

j=5

f,[5] = min (fJ[4] + @z 5, f1[4] + t1. 4 + @2 5) = min (25 + 5, 24 + 3 + 5) = min (30, 32) = 30,
l,[5] =2

Computation of f1[6]

f1[|] = min (f]_[]'l] + ay, fz[l'l] + tg’ i1 + ay, j)

fg[l] =min (fz[]-l] + agvj, f1[|'1] + t]_,j_]_ + ap, j)

j=6

£,[6] = min (F1[5] + aq 6, [5] + to 5 + a; &) = min (32 + 4, 30 + 1 + 4) = min (36, 35) = 35,

1.[6] = 2

Computation of f2[6]

fl[J] =min (fl[J-l] + ay, fzh-l] + tzy i1 + ay, j)

fz[J] =min (fz[]-l] + az fll]'l] + t]_’j_]_ + ap, j)

j=6

f2[6] =min (f2[5] + a6, f1[5] + t1’5 + ap, 6) =min (30 + 7, 32+4+ 7) = min (37, 43) = 37,
1.[6] = 2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Keeping Track Constructing Optimal Solution

* = min (f,[6] + Xy, f2[6] + X2) =min (35 + 3, 37 +2) =min (38, 39) =38
=1

* =1 => Station S;

[1[6] = 2 => Station S, 5

[,[5] = 2 => Station S, 4

[,[4] = 1 => Station S; 3

[1[3] = 2 => Station S, ,

[,[2] = 1 => Station S;,;

Entire Solution Set: Assembly-Line Scheduling

oY)
n
—
p—
[\
—_
o

1 91182024132

(O]
<
[\
—
[\
—
)

2 [12]16 {22|25]|30

f*=38 I* =1

Fastest Way: Assembly-Line Scheduling

* =1=>Station S; ¢
[1[6] = 2 => Station S,, 5
[,[5] = 2 => Station S, 4
[,[4] = 1 => Station S; 3
[1[3] = 2 => Station S,, ,
[o[2] =1 => Station S; ;

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 18
2-Line Assembly Scheduling Problem

Today Covered
* 2-Line Assembly Scheduling Algorithm using Dynamic Programming
» Time Complexity
* n-Line Assembly Problem
» Brute Force Analysis
* n-Line Assembly Scheduling Algorithm using Dynamic Programming
+ Time Complexity
» Generalization and Applications
+ Conclusion

Assembly-Line Scheduling Problem

» There are two assembly lines each with n stations

» The jth station on line i is denoted by S; |

« The assembly time at that station is a;;.

» An auto enters factory, goes into line i taking time e;

» After going through the jth station on a line i, the auto goes on to the (j+1)st station on
either line

» There is no transfer cost if it stays on the same line

+ Ittakes time t;; to transfer to other line after station S

» After exiting the nth station on a line, it takes time x; for the completed auto to exit the
factory.

» Problem is to determine which stations to choose from lines 1 and 2 to minimize total
time through the factory.

Mathematical Model Defining Objective Function
Base Cases

« fifll=ei+as;

« ffl]=ex+ay;

Two possible ways of computing fy[j]
o fufl] = f2[I-1] + to, 11 + @1, OR fu[j] = f1[j-1] + &y |
Forj=2,3,...,n
fl[l] = min (fl[]-l] + a.l'j, f2[|'1] + tz’ i1 + a, J‘)

Symmetrically
Forj=2,3,...,n
fz[]] = min (fz[]-l] + a.zvj, fl[l-l] + t]_’j_]_ + dy, j)

Objective function = * = min(fy[n] + Xy, fo[n] + Xy)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Dynamic Algorithm
FASTEST-WAY(a, t, e, X, n)

© o0 ~NO Ol WDN PP

10
11
12
13
14
15
16
17
18

filll=ei+ a1,
faA1l1=e+ay,
forj=2ton
doif fa[j-1]+ay ;S fofj-1] +1tpj.1+ @y,
then fi[j] = fi[j- 1] + ay
lh[j] =1
else fa[1= fo[j- 1] +tpj.1 + Ay
L[j] =2
iffo[j-1]+az;s fa[j-1]+tyj.1+az;
then fo[j] = fo[j- 1] + az

[] =2
else fo J]= fal j-1]+ 1t .1+ @y
[j] =1

if fa[n] + X1 < fa[n] + %2
then f - fi[n] + X

'=1
else f - f2[n] + x.
'=2

Optimal Solution: Constructing The Fastest Way

1.

o gk wN

Print-Stations (I, n)
i
print “line” i “, station” n
for j = n downto 2
doi = Ii[j]
print “line

, station” j - 1

n-Assembly Line Scheduling Problem

There are n assembly lines each with m stations

The jth station on line i is denoted by S;

The assembly time at that station is a;;.

An auto enters factory, goes into line i taking time e;

After going through the jth station on a line i, the auto goes on to the (j+1)st station on
either line

It takes time t;; to transfer from line i, station j to line i’ and station j+1

After exiting the nth station on a line i, it takes time x; for the completed auto to exit the
factory.

Problem is to determine which stations to choose from lines 1 to n to minimize total time
through the factory.

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

n-Line: Brute Force Solution

en

Total Computational Time = possible ways to enter in stations at level n x one way Cost
Possible ways to enter in stations at level 1 = n*

Possible ways to enter in stations at level 2 = n?-

Possible ways to enter in stations at level m = n™

Total Computational Time = ®(m.m")

Dynamic Solution
Notations : n-Line Assembly

t(1,i-1)
-O-0©

+ Let fi[j] = fastest time from starting point to station S; |

» f;[m] = fastest time from starting point to station S;

+ f,[m] = fastest time from starting point to station S, ,

+ f,[m] = fastest time from starting point to station Sy,

* |i[jl = The line number, 1 to n, whose station j-1 is used in a fastest way through station
Si”j

a La)—(a)
In
RORO
en

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

en

« t[-1] = transfer time from station S; j,; to station S;, ;

« ali, j] = time of assembling at station S; ;

« f*=is minimum time through any way

« |*=the line no. whose m" station is used in a fastest way

Possible Lines to reach Station S(i, j)
a L)
In
ROSO
en

Time from Line 1, f[1, j-1] + t[1, j-1] + &[i, J]
Time from Line 2, f[2, j-1] + t[2, |-1] + ali,]]
Time from Line 3, f[3, j-1] + t[3, j-1] + ali,]]

Time from Line n, f[n, j-1] + t[n, j-1] + ali, j]

()
0O
O (=)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Values of f(i, j) and I* at Station S(i, j)

FORORO ()
In x1
t(1,j-1)
(@D~ a~(O—O—(=)- o
ei xi
@)=~ DHD)—O—) /
en

f[i, j] = min{f[1, j-1] + t[1, j-1] + a[i, j], f[2, j-1] + t[2, j-1] + a[i,]], . . , f[n, j-1] + t[n, j-1] + ali,]}
fl1, 1] =e; + a1, 1]; f[2, 1] = e, + a[2, 1], ... ,f[n, 1] = e, + [N, 1]

f* = min{f[1, n] +x4, f[2, n] + X2, . ., f[n, M] + X}

I* = line number of m" station used

n-Line Assembly: Dynamic Algorithm

FASTEST-WAY(a, t, e, X, n, m)

1 fori=1ton

2 fIi,1] = e[i] + a[i,1]

3 forj=2tom

4 fori=1ton

5 fli, j1 < f[1, j-1] + 41, j-1] + a[i,]]

6 L[1,j]=1

7 fork<« 2ton

8 if f[i,j] > f[k, j-1] + t[2, j-1] + a[i, |]

9 then f[i,j] < f[k, j-1] + t[2, j-1] + a]i, j]
L[i,jl=k

10 end if

11 f* <« f[1, m] + x[1]

12 *=1

13 fork«< 2ton

14 if f* > f[k, m] + x[K]

15 then f* « f[k, m] + x[K]

16 *=k

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Constructing the Fastest Way: n-Line

1
2
3
4.
5
6

Print-Stations (I*, m)
i=*
print “line” i “, station” m
for j = m downto 2
doi = Ii[j]
print “line” i “, station”j - 1

Generalization: Cyclic Assembly Line Scheduling

Title: Moving policies in cyclic assembly line scheduling
Source: Theoretical Computer Science, Volume 351, Issue (February 2006)

Summary: Assembly line problem occurs in various kinds of production automation. In this
paper, originality lies in the automated manufacturing of PC boards.

In this case, the assembly line has to process number of identical work pieces in a cyclic
fashion. In contrast to common variant of assembly line scheduling.

Each station may process parts of several work-pieces at the same time, and parts of a
work-piece may be processed by several stations at the same time.

Application: Multiprocessor Scheduling

The assembly line problem is well known in the area of multiprocessor scheduling.

In this problem, we are given a set of tasks to be executed by a system with n identical
processors.

Each task, Ti, requires a fixed, known time pi to execute.

Tasks are indivisible, so that at most one processor may be executing a given task at
any time

They are un-interruptible, i.e., once assigned a task, may not leave it until task is
complete.

The precedence ordering restrictions between tasks may be represented by a tree or
forest of trees

Generalization: Cyclic Assembly Line Scheduling

Title: Moving policies in cyclic assembly line scheduling
Source: Theoretical Computer Science, Volume 351, Issue (February 2006)

Summary: Assembly line problem occurs in various kinds of production automation. In this
paper, originality lies in the automated manufacturing of PC boards.

In this case, the assembly line has to process number of identical work pieces in a cyclic
fashion. In contrast to common variant of assembly line scheduling.

Each station may process parts of several work-pieces at the same time, and parts of a
work-piece may be processed by several stations at the same time.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Application: Multiprocessor Scheduling

The assembly line problem is well known in the area of multiprocessor scheduling.

In this problem, we are given a set of tasks to be executed by a system with n identical
processors.

Each task, Ti, requires a fixed, known time pi to execute.

Tasks are indivisible, so that at most one processor may be executing a given task at
any time

They are un-interruptible, i.e., once assigned a task, may not leave it until task is
complete.

The precedence ordering restrictions between tasks may be represented by a tree or
forest of trees

Conclusion

Assembly line problem is discussed

Generalization is made

Mathematical Model of generalized problem is discribed
Algorithm is proposed

Applications are observed in various domains

Some research issues are identified

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 19
0-1 Knapsack Problem using
Dynamic Programming

Today Covered
* 0-1 Knapsack Problem
* Problem Analysis
— Divide and Conquer
— Dynamic Solution
« Algorithm using Dynamic Programming
» Time Complexity
» Generalization, Variations and Applications
» Conclusion

General Knapsack Problem

« Given a set of items, each with a cost and a value, then determine the items to include in
a collection so that the total cost is less than some given cost and the total value is as
large as possible.

» Knapsack problem is of combinatorial optimization

» It derives its name from the maximization problem of choosing possible essentials that
can fit into one bag, of maximum weight, to be carried on a trip.

» A similar problem very often appears in business, complexity theory, cryptography and
applied mathematics.

0-1Knapsack Problem Statement
The knapsack problem arises whenever there is resource allocation with no financial constraints
Problem Statement
» Athief robbing a store and can carry a maximal weight of W into his knapsack. There
are n items and ith item weight is w; and worth is v; dollars. What items should thief take,
not exceeding the bag capacity, to maximize value?
Assumption:
« the items may not be broken into smaller pieces, so thief may decide either to take an
item or to leave it, but may not take a fraction of an item.

0-1Knapsack Problem Another Statement
Problem Statement
* You are in Japan on an official visit and want to make shopping from a store (Best
Denki)
» Alist of required items is available at the store
* You are given a bag (knapsack), of fixed capacity, and only you can fill this bag with the
selected items from the list.
+ Every item has a value (cost) and weight,
» And your objective is to seek most valuable set of items which you can buy not
exceeding bag limit.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

0-1 Knapsack Problem: Remarks
Assumption
» Each item must be put entirely in the knapsack or not included at all that is why the
problem is called 0-1 knapsack problem
Remarks
» Because an item cannot be broken up arbitrarily, so it is its 0-1 property that makes the
knapsack problem hard.
« If an item can be broken and allowed to take part of it then algorithm can be solved using
greedy approach optimally

Notations: 0-1 Knapsack Problem Construction
Problem Construction
* You have prepared a list of n objects for which you are interested to buy, The items are
numbered as iy, iy, . . ., In
+ Capacity of bag is W
» Each itemi has value v;, and weigh w;
+ We want to select a set of items among iy, i, . . ., i,which do not exceed (in total weight)
capacity W of the bag
e Total value of selected items must be maximum
» How should we select the items?

Model: 0-1 Knapsack Problem Construction

Formal Construction of Problem
» Givenalist: iy, iy, . . ., Iy, values: vy, Vo, . . ., voand weights: wy, Wo, . . ., W, respectively
» Of course W >0, and we wish to find a set S of items such that S < {iy, iy, . . ., in} that
« Maximizes Y v,

ieS

* subjectto »w <W

Brute Force Solution
« Compute all the subsets of {iy, iy, . . ., in}, there will be 2" number of subsets.
« Find sum of the weights of total items in each set and list only those sets whose sum
does not increase by W (capacity of knapsack)
« Compute sum of values of items in each selected list and find the highest one
» This highest value is the required solution
» The computational cost of Brute Force Approach is exponential and not economical
* Find some other way!

Divide and Conquer Approach

Approach
» Partition the knapsack problem into sub-problems
* Find the solutions of the sub-problems
+ Combine these solutions to solve original problem

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Comments
» In this case the sub-problems are not independent
» And the sub-problems share sub-sub-problems
» Algorithm repeatedly solves common sub-sub-problems and takes more effort than
required
» Because this is an optimization problem and hence dynamic approach is another
solution if we are able to construct problem dynamically

Steps in Dynamic Programming
Stepl (Structure):
» Characterize the structure of an optimal solution
* Next decompose the problem into sub-problems
» Relate structure of the optimal solution of original problem and solutions of sub-problems

Step 2 (Principal of Optimality)
» Define value of an optimal solution recursively
» Then express solution of the main problem in terms of optimal solutions of sub-
problems.

Step3 (Bottom-up Computation):
» Inthis step, compute the value of an optimal solution in a bottom-up fashion by using
structure of the table already constructed.

Step 4 (Construction of an Optimal Solution)
« Construct an optimal solution from the computed information based on Steps 1-3.

Note:
» Some time people, combine the steps 3 and 4
» Step 1-3 form basis of dynamic problem
+ Step 4 may be omitted if only optimal solution of the problem is required

Mathematical Model: Dynamic Programming

Stepl (Structure):

» Decompose problem into smaller problems

» Construct an array V[0..n, 0..W]

* V[i, w] = maximum value of items selected from {1, 2,. . ., i}, that can fit into a bag with
capacityw, where 1 & i S n, 1 Stw STw

* V[n, W] = contains maximum value of the items selected from {1,2,...,n} that can fit into
the bag with capacity W storage

» Hence V[n, W] is the required solution for our knapsack problem

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Step 2 (Principal of Optimality)

Recursively define value of an optimal solution in terms of solutions to sub-problems
Base Case: Since
V[0, w] =0,0 & w & W, no items are available
V[0, w] = -0, w < 0, invalid
V[i, 0]=0,0 & i n, no capacity available
Recursion:
V[i, w] = max(V[i-1, w], v; + V[i-1, w - wj])
ford itno0Sw W

Proof of Correctness
Correctness of Model
Prove that: V[i, w] = max(V[i-1, w], v; + V[i-1, w - w])

Proof:

fort i no0oSwSIw

To compute VJ[i, w], we have only two choices for i

1.

Do not Select Item i

ltems left={1,2,...,i-1}and

storage limit = w, hence

Max. value, selected from {1,2, ...,i} = V[i-1,w], (1)

Select Item i (possible if w;, 1 w)

In this way, we gain value v; but use capacity w;

ltems left = {1,2,. . ., i-1}, storage limit =w - w;,

Max. value, from items {1,2, ...,i-1} = V[i-1,w — w]

Total value if we select item i = v; + V[i-1,w — wj]

Finally, the solution will be optimal if we take the maximum of
V[i-1,w] and

vi + V[i-1,w — w]

Hence V[i, w] = max(V[i-1,w], v; + V[i-1,w — wj]

Problem: Developing Algorithm for Knapsack

- V[1,1]=0,
* V[1,2]=0 | 1 2 3 4
- V[1,3]=0, Vi 10 [40 [30 |50
- V[1,4]=0 W, |5 4 6 3
« V[, j] = max(V[i-1,], vi + V[i-1, j — w]);
« V[1, 5] = max(V[0, 5], v1 + V[0, 5 — w;]); Capacity = 10

= max(V[0, 5], 10 + V[0, 5 - 5])

= max(V[0, 5], 10 + V[0, 0]) Keep(1,5) =1

= max(0, 10 + 0) = max(0, 10)

=10

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

I 1 2 3 4

Vi 10 |40 |30 |50

w, |5 [4 |6 |3

VI, j1 = max(V[i-1,], vi + V[i-1, j — wi);
V[1, 6] = max(V[O0, 6], v; + V[0, 6 — w]);
= max(V[0, 6], 10 + VIO, 6 - 5])
max(V[0, 6], 10 + V][O, 1])
max(0, 10 + 0) = max(0, 10) = 10,

Keep(l,6)=1

V[1, 7] = max(V[O, 7], vy + V][O, 7 — wy]);

= max(V[0, 7], 10 + V[0, 7 - 5])

= max(V[0, 7], 10 + V[0, 2])

= max(0, 10 + 0) = max(0, 10) =10
Keep(1,7)=1

V[1, 8] = max(V][O0, 8], v; + V[0, 8 —w4]);

= max(V[0, 8], 10 + V[0, 8 - 5])

= max(V[0, 8], 10 + VIO, 3])

= max(0, 10 + 0) = max(0, 10) = 10
Keep(1,8)=1

V[1, 9] = max(V[O0, 9], vi + V[0, 9 — wy]);

= max(V[0, 9], 10 + V[0, 9 - 5])

= max(V[0, 7], 10 + VIO, 4])

= max(0, 10 + 0) = max(0, 10) =10
Keep(1,9)=1

V[1, 10] = max(V][0, 10], v, + V[0, 10 — w4]);

= max(V[0, 10], 10 + V][O0, 10 - 5))

= max(V[0, 10], 10 + V][O, 5])

= max(0, 10 + 0) = max(0, 10) = 10
Keep(1, 10) = 1;

V[2, 4] = max(V[1, 4], v> + V[1, 4 —w,]);
max(V[1, 4], 40 + V[1, 4 - 4])
max(V[1, 4], 40 + V[1, 0])

max(0, 40 + 0) = max(0, 40) = 40

Keep(2,4)=1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

I 1 2 3 4

Vi 10 |40 |30 |50

w, |5 [4 |6 |3

VI, j1 = max(V[i-1,], vi + V[i-1, j — wi);

V[2, 5] = max(V[1, 5], v2 + V[1, 5 — wy));
=max(V[1, 5], 40 + V[1, 5 - 4])

max(V[1, 5], 40 + V[1, 1])

max(10, 40 + 0) = max(0, 40) = 40

Keep(2,5)=1

V[2, 6] = max(V[1, 6], v2 + V[1, 6 —wy));
= max(V[1, 6], 40 + V[1, 6 - 4])
= max(V[1, 6], 40 + V[1, 2])
= max(10, 40 + 0) = max(10, 40) =40

V[2, 7] = max(V[1, 7], v2 + V[1, 7 — wy));
=max(V[1, 7], 40 + V[1, 7 - 4])
=max(V[1, 7], 40 + V[1, 2])
= max(10, 40 + 0) = max(10, 40) =40

V[2, 8] = max(V[1, 8], v + V[1, 8 — wy));
= max(V[1, 8], 40 + V[1, 8 - 4])
= max(V[1, 8], 40 + V[1, 4])
= max(10, 40 + 0) = max(10, 40) =40

V[2, 9] = max(V[1, 9], v2 + V[1, 9 — wy));
=max(V[1, 9], 40 + V[1, 9 - 4])
= max(V[1, 9], 40 + V[1, 5])
= max(10, 40 + 10) = max(10, 50) = 50

V[2, 10] = max(V[1, 10], v, + V[1, 10 — w,]);
= max(V[1, 10], 40 + V[1, 10 - 4))
= max(V[1, 10], 40 + V[1, 6])
= max(10, 40 + 10) = max(10, 50) = 50
V[3, 1] =0;
V[3, 2] =0;
V[3, 3] =0;
VI, i1 = max(V[i-1, jl, vi + V[i-1, j — wi]);
V[3, 4] = max(V[2, 4], vz + V[2, 4 — w3));
=max(V[2, 4], 30 + V[2, 4 - 6])
=max(V[2, 4], 30 + V[2, -2]) =V[2, 4] =40

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

| 1 2 [3 [a
vi |10 [40 [30 [50
w, |5 [4 |6 |3

VI, j1 = max(V[i-1,], vi + V[i-1, j — wi);

V[3, 5] = max(V[2, 5], vz + V[2, 5 — w;));
=max(V[2, 5], 30 + V[2, 5 - 6])
= max(V[2, 5], 30 + V[2, -1])
=V[2,5] =40

VI[i, j] = max(V[i-1, j], v + V[i-1, j — w]);
V[3, 6] = max(V[2, 6], vz + V[2, 6 — ws));
= max(V[2, 6], 30 + V[2, 6 - 6])
=max(V[2, 6], 30 + V[2, 0])
= max(V[2, 6], 30 + V[2, 0])
= max(40, 30) =40

V[3, 7] = max(V[2, 7], vs + V[2, 7 — wj3]);
=max(V[2, 7], 30 + V[2, 7 - 6])
=max(V[2, 7], 30 + V[2, 1])
=max(V[2, 7], 30 + V[2, 1])
= max(40, 30) =40

V[3, 8] = max(V[2, 8], vz + V[2, 8 — w3));
= max(V[2, 8], 30 + V[2, 8 - 6])
=max(V[2, 8], 30 + V[2, 2])
=max(V[2, 8], 30 + V[2, 2])
= max(40, 30 + 0) =40

V[3, 9] = max(V[2, 9], v5 + V[2, 9 — wj3]);
= max(V[2, 9], 30 + V[2, 9 - 6])
=max(V[2, 9], 30 + V[2, 3])
= max(V[2, 9], 30 + V[2, 3])
= max(50, 30 + 0) =50

V[3, 10] = max(V[2, 10], vz + V[2, 10 — wy]);
= max(V[2, 10], 30 + V[2, 10 - 6])
= max(V[2, 10], 30 + V[2, 4])
= max(V[2, 10], 30 + V[2, 4])
= max(50, 30 + 40) =70

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

V[4, 1] =0;
V[4, 2] =0;
VI, j1 = max(V[i-1,], vi + V[i-1, j — wi);
V[4, 3] = max(V[3, 3], v4 + V[3, 3 —wWy]);
=max(V[3, 3], 50 + V[3, 3-3)])
= max(V[3, 3], 50 + V[3, 3 - 3)])
=max(V[3, 3], 50 + V[3, 0]) = max(0, 50) =50

V[4, 4] = max(V[3, 4], v4 + V[3, 4 —wWy]);

= max(V[3, 4], 50 + V[3, 4 - 3)])
max(V[3, 4], 50 + V[3, 4 - 3))
max(V[3, 4], 50 + V[3, 1])
= max(40, 50) =50

V[4, 5] = max(V[3, 5], v4 + V[3, 5 —wWy]);
=max(V[3, 5], 50 + V[3, 5 - 3])

max(V[3, 5], 50 + V[3, 5 - 3])

max(V[3, 5], 50 + VI[3, 2])

= max(40, 50) = 50

V[4, 6] = max(V[3, 6], v4 + V[3, 6 —wWy]);
=max(V[3, 6], 50 + V[3, 6 - 3])
= max(V[3, 6], 50 + V[3, 6 - 3])
=max(V[3, 6], 50 + V[3, 3])
= max(40, 50) = 50

V[4, 71 = max(V[3, 7], v4 + V[3, 7 — wy));
=max(V[3, 7], 50 + V[3, 7 - 3])
=max(V[3, 7], 50 + V[3, 7 - 3])
= max(V[3, 7], 50 + V[3, 4])
= max(40, 50 + 40) = 90

V[4, 8] = max(V[3, 8], v4 + V[3, 8 —wy]);

= max(V[3, 8], 50 + V[3, 8 - 3])
max(V[3, 8], 50 + V[3, 8 - 3])
max(V[3, 8], 50 + V[3, 5])
max(40, 50 + 40) = 90

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

i 1 2 3 4

Vi 10 |40 |30 |50

w |5 |4 |6 |3

* VI, j1= max(V[i-1, I, vi + V[i-1, j — wi]);

* V[4,9]=max(V[3, 9], v4 + V[3, 9 —wWy]);
=max(V[3, 9], 50 + V[3, 9 - 3])
=max(V[3, 9], 50 + V[3, 9 - 3])
= max(V[3, 9], 50 + VI3, 6])
= max(50, 50 + 40) = 90

* V[4, 10] = max(V[3, 10], v4 + V[3, 10 — wy]);
= max(V[3, 10], 50 + V[3, 10 - 3])
= max(V[3, 10], 50 + V[3, 10 - 3)])
= max(V[3, 10], 50 + V[3, 7])
= max(70, 50 + 40) = 90; Keep(4, 10)=1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 20

0-1 Knapsack Problem’s Algorithm
(using Dynamic Programming) &

Optimal Weight Triangulation

Today Covered
* 0-1 knapsack problem
— Algorithm

— Generalizations and variations of the Problem

+ Optimal Weight Triangulation
— Definitions
— Problem Analysis
— Dynamic Solution
— Algorithm using Dynamic Programming
— Time Complexity
» Conclusion

Optimal Value: Entire Solution

LetW =10 I 1 2 3 4
Final Solution: V[4, 10] = 90 Vi 10 40 30 50
ltems selected = {2, 4) W |5 4 6 3
V[iw] |W=0 |1 2 3 4 5 6 7 8 9 10
i=0 |0 0 0 0 0 0 0 0 0 0 0
i=1 |0 0 0 0 0 10 10 10 10 10 10
i=2 |0 0 0 0 40 40 40 40 40 50 50
i=3 |0 0 0 0 40 40 40 40 40 50 70
i=4 |0 0 0 50 50 50 50 90 90 90 90
Constructing Optimal Solution

« VI, jl = max(V[i-1, j], v + V[i-1, j — w]);

« i=4 V[4, 10] = max(70, 50 + 40) = 90; Keep(4, 10) =1

« =3 V[3,10-3]=V][3, 7] = max(40, 30) = 40 Keep(3,7)=0

« 1=2 V[2,7] =max(10, 40) =40 Keep(2,7)=1

« i=1 V[1,74]=V[13]=0 Keep(1,3)=0

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Algorithm: Dynamic Programming

KnapSack (v, w, n, W)
for (i=1ton), V|[i, 0] =0;
for j=0to W), V[0, j]=0;

for i=1ton)
for(=1toW)
if (w(i) < j)
VI[i, j] = max(V[i-1, j], vi + V[i-1, j — w]);
else

VI, 1 = V[i-1, j];
Return V[n, W]
Time Complexity O(n.W)

Output Elements: Knapsack Algorithm
How do we use all values keep[i, w], to determine a subset S of items having the maximum
value?

+ Ifkeep[n, w]is 1,thenn € S, and we can repeat for keep[n-1, W - w,]

» If keep[n, w]is 0, then n 2 S and we can repeat for keep[n-1, W]

» Following is a partial program for this output elements

K=W,;
for (i= ndownto 1)
if keep[i, K]==1
output i
K=K-=-w,

Complete: Dynamic Programming Algorithm
KnapSack(v, w, n, W)
for (w =0 to W), V[0, w] = 0; for (i=1ton), V[i, 0] = 0;
for(i=1ton)
for (w=1to W)
if (w(i) & w) and (v, + V[i-1,w — wj] > V[i-1,w]))
V[i, w] = (vi + V[i-1,w — w;
keep[i, w] = 1;
else
VI[i, w] = V[i-1,w];
keepl[i, w] = 0;

for (i=n down to 1)
if keep[i, K] ==1
output i
K=K- W;
Return V[n, W]

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

1. Generalizations (x; € {0, 1})

Common to all versions are a set of n items, with each item 1 <j < n having an
associated profit p; and weight w;.

The objective is to pick some of the items, with maximal total profit, obeying that
maximum total weight limit W.

Generally, coefficients are scaled to become integers, and they are almost always
assumed to be positive.

The knapsack problem in its most basic form:

Maximize Z P, X subject to ivvixi <W

xie {0,1}, V1<is<n

2. Specialization (weight = profit)

If for each item the profit and weight are identical, we get the subset sum problem
Often called the decision problem

Maximize Z P, X subject to Z p.X <W

xie{0,1}, v1<isn

3. Generalizations (more than one objects)

If each item can be chosen multiple times, we get the bounded knapsack problem.
Suppose, weight of each item is at least 1 unit, then we can never choose an item more
than W times.

This is another variation in the basic form

Now the problem will become

Maximize Z P, X subject to iwixi <W

xe{0,1, ..,W}, V1<isn

4. Generalizations (K Classes)

If the items are subdivided into k classes denoted N;
And exactly one item must be taken from each class
We get the multiple choice knapsack problem

In this case our optimized mathematical model is
Maximize iz P, X;

i=1 jeNj

subject to anz W, x, <W where > x, =1
i=L jeNj jeNi

vV1<i<k

Xije{O, l}, V1S|Sk,j e N;

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

5. Generalizations (more than one knapsacks)

If there are n items, m knapsacks with capacities W;
We get the multiple knapsack problem

Maximize i Z P,X,

[N

subject to Z"‘,wjxu <W, 1<i<m
j=1

2%, =1 1<i<n 1<j<n

Xje {0,1}, 1<sismand1s<j<n

6. Item’s Different Weight in Different Knapsack

If in the multiple knapsack problem, the weights are not the same in every container
We are allowed to choose each item multiple times, we get multiple constrained
knapsack problem

Maximize . p X
j=

subject to Zn;vvijxj <W 1<i<m
=

xJ.zO, xjeZ

Optimal Weight Triangulation

Why Polygon Triangulation?

Finite element method is a technique for solving numerical problems e.g. stress or heat
flow simulations of any kind of systems

It involves dividing a shape into simple elements for example triangles

Then formulating a set of linear equations describing relations between simulated
guantities in each element, and solving these equations.

The time and accuracy both, in solution, depend on the quality of dividing into triangles
Generally, it is desired that triangles must be as close to equilateral as possible

Similarity: Optimal Polygon Triangulation, other Problem

Optimal triangulation problem is very similar to matrix chain multiplication

It is an excellent approach to make one to one corresponding between two problems
and

Then solving one problem based on the approach already used in the solution of the
other problem

This is what we are going to do in solving an optimal solution of the triangulation problem
which is very popular in computational geometry

Applications of this problem can be observed in many other areas where division of
structures is required before performing computation over it.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Basic Concepts

Polygon: A set of finite piecewise-linear, closed curve in a plane is called a polygon
Sides: The pieces of the polygon are called its sides

Vertex: A point joining two consecutive sides is called a vertex

Interior: Set of points in plane enclosed by a simple polygon forms interior of the polygon
Boundary: The set of point on the polygon forms its boundary

Exterior: The set of points surrounding the polygon form its exterior

Simple Polygon: A polygon is simple if it does not cross itself, i.e., if its sides do not
intersect one another except for two consecutive sides sharing a common vertex.
Subdivision of Polygon: A simple polygon subdivides the plane into its interior, its
boundary and it's exterior.

Convex Polygon: A simple polygon is convex if given any two points on its boundary or
in its interior all points on the line segment drawn between them are contained in the
polygon’s boundary or interior.

Polygons

P <L

Polygon Simple Polygon Simple Polygon

O <>

Convex Polygons

Labeling Convex Polygons

For a convex polygon, it is assumed Vo= Ve Vs
that its vertices are labeled in
counterclockwise order Vg

P= <v0,v1,v2,...,vn_1>.
We assume that indexing is done
modulo n, so v, =v and the above

polygon P has n number of vertices V2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Chords in Polygons
+ Given two non-adjacent vertices v;,v; of a convex polygon (i < j), the line segment vyv; is
called a chord
+ For two non-adjacent vertices v; and v; of a simple polygon (i <j), line segment vy; is a
chord if interior of the segment lies entirely in the interior of polygon
» Any chord subdivides a polygon into two polygons

V
0 Ve Vo Ve
\ Va g
Vs
V3 V3
Vo Vs

Optimal Weight Triangulation Problem
» Atriangulation of a convex polygon is a maximal set T of pair-wise non-crossing chords,
i.e., every chord not in T intersects the interior of some chord in T
» Itis easy to see that such a set subdivides interior of polygon into a collection of
triangles, pair-wise disjoint

Problem Statement: Given a convex polygon, determine a triangulation that minimizes sum of
the perimeters of its triangles

Analysis
+ Given three distinct vertices, v;, v; and vy.
« Define a weight of associated triangle by a function w(vi, vj, Vi) = Vi Vj | + |vj Vi | + [Vk Vi |,
« where |v; v; | denotes length of line segment (v;, v)).

Brute Force Triangulation: Triangulation
* In general, given a convex polygon, there are exponential number of possible
triangulations.
» There are many criteria that are used depending on application. For example, you have
to minimize the value of cable in designing such triangulation
» This suggests the optimal solution to this problem

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

@ Triangulation @

Dual Graphs

Dual graph of a triangulation is a graph whose vertices are the triangles, and in which
two vertices are adjacent if the corresponding both triangles share a common chord

It is to be noted that dual graph is a tree. And hence algorithms for traversing trees can
be used for traversing the triangles of that triangulation

@ Dual Graph @

Observations in Dual Graph

Each internal node corresponds to
one triangle
Each edge between internal nodes
corresponds to one chord of
triangulation.
Now for given n-vertex polygon

* n-2internal nodes which are

in fact triangles and

» n-3 edges which are chords

Lemmal

Proof:

A triangulation of a simple polygon, with n vertices, has n-2 number of triangles.

Proof is done using mathematical induction

Basis Step

Suppose that there three vertices, polygon will be a triangle, i.e. thereare 3-2=1
number of triangles

Hence statement is true for n = 3

If there are 4 vertices, polygon will be in fact a rectangle, divide it into two triangles. The
result is true. Hence statement is true for n = 4

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Inductive Hypothesis
» Let us suppose that statement is true for n =k, i.e., if there are k vertices then there are

k-2 number of triangles

Claim

» Now we have to prove that if there are k+1 vertices there must be k+1-2 = k-1, number
of triangles.

» Since for k vertices there are k-2 triangles. Insert one more point at boundary of polygon

» Infact point will be inserted at boundary of one of the triangles. So the triangle will
become rectangle. Divide it into two triangles. It will increase one more triangle in the
division. Hence it becomes; k—-2+1=k-1, number of triangles.

» It proves the claim. Hence by mathematical induction it proves that for n number of
vertices there are n - 2 number of triangles.

Lemma 2
» Atriangulation of a simple polygon, with n vertices, has n-3 chords.

Proof
» Proof not difficult, and it can be proved following the steps of proof in lemma 1.
» If there are three points, it will be triangle. To make a chord in a polygon, it requires at
least four points.
» So you have to give proof for n = 4.

Basis Step
» Suppose that there are four number of vertices, in this case polygon will be a rectangle,
there must be 4 - 3 = 1 number of chords
e Hence statement is true forn =4

Inductive Hypothesis
» Let us suppose that the statement is true for n =k, i.e., if there are k vertices then there

are k - 3 number of chords of the polygon

Claim
* Now we have to prove that if there are k+1 vertices there must be k+1-3 = k-2, number
of chords.
» Since for k vertices there are k-3 chords. Insert one more point at boundary of polygon
* Infact point will be inserted at boundary of one of the triangles. So the triangle will
become rectangle. Divide it into two triangles. It will increase one more chord in the
division. Hence it becomes; k-3 +1=k- 2, number of chords. Proved.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Correspondence to Binary Trees

Relationship between optimal triangulation and chain matrix multiplication problem

root

A A, A, A, A A A, A Ay Ay A

In chain matrix multiplication, associated binary tree is the evaluation tree for the
multiplication, where the leaves of the tree correspond to the matrices, and each node of
the tree is associated with a product of a sequence of two or more matrices.
Now let us consider an (n+1) sided convex polygon, P = <vg, vy, . . ,V,> and fix one side
of it as (Vo ,Vn)
Consider a rooted binary tree whose:

— root node = is the triangle containing side (v ,Vvy),

— internal nodes = are nodes of the dual tree, and

— leaves = are remaining sides of the tree.
This partitioning of polygon is equivalent to a binary tree with n-1 leaves, and vice versa.

Dynamic Programming Solution

Let t[i, j] = minimum weight triangulation for the sub-polygon <vi4, vi,..., v;>,
forl<i<j<n

We have start with v;; rather than v;, to keep the structure as similar as matrix chain
multiplication

It is to be noted that if we can compute t[i, j] for alli and j (1 <i<j<n), then the weight
of minimum weight triangulation of the entire polygon will be t[1, n]. Hence it is our
objective function.

For the base case

t[i, i] = O, for line (vi.1, vi).

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Optimal Substructure
« [i, j] = weight of an optimal

triangulation of polygon <v;. Y
1:Viy-e s, V>
o i, j] = min {t[i, K] + tk+1, j] + W(Av;1 Vier1
Vi) }i<]
« ftfi,i]j=0
. i<k< 1 Vi
* Ingeneral, to compute t[i, j],
consider the sub-polygon <v,4, vi,...,
V>, where i <j. Vi

« One of the chords of this polygon is the side (vi.y, vj).
» We may split this sub-polygon by introducing a triangle whose base is this chord, and
whose third vertex is any vertex vi, where i <k < j-1.
« This subdivides the polygon into 2 sub-polygons <vi,...v,> and <Vi.i,... V;>, whose
minimum weights are {[i, k] and t[k+1, j].
» Itleads to following recursive rule computing t[i, j]
- ti,i]=0
— i, j] = minic<ja (i, K] + tlk+1,] + w(viawiy;)) for i <j

Algorithm

tfi, j] = mini << (ti, K] + t[k, j] + w(vi vj V) if i <j;

ti,]=0ifi=].

function min_weight_tri(p[], n) T[L,1] |[T[,2] |......... T[1,n]

1. fori=1tondo T[2,2] [......... T[2,n]

2. fi,ij=zo; L e [

3. forl=2tondo T[n,n]

4 fori=1ton-I+1do

5. jZi+ -1 Computational Cost

6 tfi, j] = T(M=n+Y3 (j-)=23k

7 fork=i toj-1do R e

8. q = tfi, K] + tk+1,] + w(vi vy i) T(m=ns+3 =D =i+]

9. if (q < t[i, j]) then 2

10. tfi, jT = min(tfi, j1, q); sl 1 i
11 Vi il= K T(n) n+2§(n +n+1) 2;((1+2n)| i°)

12. return(t(1, n)); =n+%(n2+n+1)il—%(l+2n)ii+%i i

=0(n%)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 21
Optimal Weight Triangulation

Observations in Dual Graph

Each internal node corresponds to
one triangle
Each edge between internal nodes
corresponds to one chord of
triangulation.
Now for given n-vertex polygon

* n-2 internal nodes which are

in fact triangles and
» n-3 edges which are chords

Proof of Lemmas:

Lemma 1:

Proof

A triangulation of a simple polygon, with n vertices, has n-2 number of triangles.

Proof is done using mathematical induction

Basis Step

Suppose that there three vertices, polygon will be a triangle, i.e. there are 3 - 2 =1
number of triangles

Hence statement is true for n = 3

If there are 4 vertices, polygon will be in fact a rectangle, divide it into two triangles. The
result is true. Hence statement is true for n = 4

Inductive Hypothesis

Claim

Let us suppose that statement is true for n = k, i.e., if there are k vertices then there are
k-2 number of triangles

Now we have to prove that if there are k+1 vertices there must be k+1-2 = k-1, number
of triangles.

Since for k vertices there are k-2 triangles. Insert one more point at boundary of polygon
In fact point will be inserted at boundary of one of the triangles. So the triangle will
become rectangle. Divide it into two triangles. It will increase one more triangle in the
division. Hence it becomes; k—-2+1=k-1, number of triangles.

It proves the claim. Hence by mathematical induction it proves that for n number of
vertices there are n - 2 number of triangles.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lemma 2
« Atriangulation of a simple polygon, with n vertices, has n-3 chords.

Proof
» Proof not difficult and it can be proved following the steps of proof in lemma 1.
» If there are three points, it will be triangle. To make a chord in a polygon, it requires at
least four points.
* So you have to give proof for n = 4.

Basis Step
» Suppose that there are four number of vertices, in this case polygon will be a rectangle,
there must be 4 - 3 = 1 number of chords
» Hence statement is true for n = 4

Inductive Hypothesis
» Let us suppose that the statement is true for n = k, i.e., if there are k vertices then there
are k - 3 number of chords of the polygon
Claim
» Now we have to prove that if there are k+1 vertices there must be k+1-3 = k-2, number
of chords.
» Since for k vertices there are k-3 chords. Insert one more point at boundary of polygon
» In fact point will be inserted at boundary of one of the triangles. So the triangle will
become rectangle. Divide it into two triangles. It will increase one more chord in the
division. Hence it becomes; k-3 + 1=k -2, number of chords. Proved.

Correspondence to Binary Trees
Relationship between optimal triangulation and chain matrix multiplication problem

root
A, root
: vy

AA,AAAAAAAA A,

4 4

* In chain matrix multiplication, associated binary tree is the evaluation tree for the
multiplication, where the leaves of the tree correspond to the matrices, and each node of
the tree is associated with a product of a sequence of two or more matrices.

* Now let us consider an (n+1) sided convex polygon, P = <vg, vy, . . ,V,> and fix one side
of itas (vq ,Vn)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Consider a rooted binary tree whose:

— root node = is the triangle containing side (Vo ,Vy),
— internal nodes = are nodes of the dual tree, and
— leaves = are remaining sides of the tree.

This partitioning of polygon is equivalent to a binary tree with n-1 leaves, and vice versa.

Dynamic Programming Solution

Let t[i, j] = minimum weight triangulation for the sub-polygon <vi4, vi,..., v;>,
forl<i<j<n

We have start with vi; rather than v;, to keep the structure as similar as matrix chain
multiplication

It is to be noted that if we can compute t[i, j] foralli and j (1 <i<j<n), then the weight
of minimum weight triangulation of the entire polygon will be t[1, n]. Hence it is our
objective function.

For the base case t[i, i] = 0, for line (v, V).

Optimal Substructure

tfi, j] = weight of an optimal
triangulation of polygon J
Vi, Vi,..., V2.

t[i, j] = min, { t[i, k] + t[k+1, j]

+ W(AViL Vi V) }, 1<)
tfi,i]=0 Vi
i<k< j1
In general, to compute ft[i, jl,
consider the sub-polygon
<Vi, Vi,..., V>, where i <j.

One of the chords of this polygon is
the side (Viq, V).

We may split this sub-polygon by introducing a triangle whose base is this chord, and
whose third vertex is any vertex vi, where i <k < j-1.

This subdivides the polygon into 2 sub-polygons <vii,...v> and <Vii,... V>, whose
minimum weights are {[i, k] and t[k+1, j].

It leads to following recursive rule computing t[i, j]

tfi,i]=0

tfi, J1 = mini<ic<ja (i, K]+ tk+1, j] + w(viaviyy)) for i <

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Algorithm

tfi, j] = mini <« < (ti, K] + t[k, j] + w(vi vj V) ifi <j;

ti,j]=0ifi=j.

function min_weight_tri(p[], n) T[L,1] [T[,2] |......... T[1,n]

1. fori=1tondo T[2,2] |......... T[2,n]

2. =0, L e [,

3. forI=2tondo T[n,n]

4 fori=1ton-I+1do

5. j=i+ -1 Computational Cost

6. tfi,] = «; TM=n+>3(j-)=33k

7 fork=i toj-1do NN 3

8 q =i, K] + tk+1,] + w(vi vj vi); T(n=ns+3N=DO=T+Y)

9 if (q < t[i, j]) then 2

10. tfi, j] = min(t[i, jl, q); Ll —le o
1 viLil= K T(n) n+2§(n +n+1 2;((1+2n)| i*)
12. return(t(1, n));

= n+%(n2 + n+1)i1—%(1+2n)ii +%Zn: i’

i=1

=0(n%)

Longest Common Subsequence Problem
An Introduction

In biological applications, we often want to compare the DNA of two (or more) different
organisms.

A part of DNA consists of a string of molecules called bases, where the possible bases
are

adenine,

— guanine,

— cytosine, and

thymine.

Represent each of the bases by their initial letters

A part of DNA can be expressed as a string over the finite set {A, C, G, T}.

For example, the DNA of one organism may be

S1= CCGGTCGAGTGCGCGGAAGCCGGCCGAA,

While the DNA of another organism may be

S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA.

One goal of comparing two parts of DNA is to determine how “similar” two parts are, OR
Measure of how closely related two organisms are.

As we know that similarity is an ambiguous term and can be defined in many different
ways.

Here we give some ways of defining it with reference to this problem.

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

An Introduction: Similarity
+ For example, we can say that two DNA parts are similar if one is a substring of the other.
In our case, neither S1 nor S2 is a substring of the other. This will be discussed in string

matching.

+ Alternatively, we could say two parts are similar if changes needed to turn one to other is
small.

* Another way to measure similarity is by finding third part S3 in which bases in S3 appear
in both S1, S2

» Bases must preserve order, may not consecutively.
» Longer S3 we can find, more similar S1 and S2 are.
» In above, S3is GTCGTCGGAAGCCGGCCGAA

What is a Subsequence?
» In mathematics, a subsequence of some sequence is a new sequence which is formed
from original one by deleting some elements without disturbing the relative positions of
the remaining elements.

Examples:
+ <B,C,D,B>is asubsequence of < A,C,B,D,E,G,C,E,D,B,G >, with corresponding index
sequence <3,7,9,10>.
« <D, E, E, B>is also a subsequence of the same < A,C,B,D,E,G,C,E,D,B,G >, with
corresponding index sequence <4,5,8,10>.

Longest Common Subsequence
+ The sequence Z = (B, C, A) is a subsequence of
X=(A, B, C,B,D,A, B).
+ Thesequence Z = (B, C, A) is also a subsequence of
Y=(B,D,C, A, B,A).
« Of course, it is a common subsequence of X and Y.
» But the above sequence is not a longest common subsequence
« This is because the sequence Z’ = (B, D, A, B) is a longer subsequence of
X=(A,B,C,B DA BandY=(B,D,C,A B,A)

Problem
Statement:
» Inthe longest-common-subsequence (LCS) problem, we are given two sequences
X =<Xq, Xo, . . ., Xm> and
Y=<y, Yz, ..., ¥Yn>
* And our objective is to find a maximum-length common subsequence of X and Y.
Note:
» This LCS problem can be solved using brute force approach as well but using dynamic
programming it will be solved more efficiently.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Brute Force Approach
» First we enumerate all the subsequences of X = <xy, Xz, . . . , Xm>.
« There will be 2™ such subsequences.
» Then we check if a subsequence of X is also a subsequence of Y.
» In this way, we can compute all the common subsequences of X and Y.
» Certainly, this approach requires exponential time, making it impractical for long
sequences.
Note:
» Because this problem has an optimal sub-structure property, and hence can be solved
using approach of dynamic programming

Dynamic Programming Solution

Towards Optimal Substructure of LCS: Prefixes
» As we shall see, the natural classes of sub-problems correspond to pairs of “prefixes” of
the two input sequences.
» To be precise, given a sequence X = <Xy, X, ..., Xn>, We define the ith prefix of X, fori =
0,1, ..., m,as X; = <Xq, X2, ..., Xi>.

Examples,
If X=<A, B, C, B, D, A, B>then
« X4=<A, B, C,B>and
* X is the empty sequence =< >

Theorem:
o If X=(Xg, X2,. . o, Xm), @and Y = (Y1, V2, . . ., Yn) be sequences and let us suppose that Z =
(z1, 25, . . ., Z¢) be a longest common sub-sequence of X and Y
« Let, Xi= (X1, X2, ...y X), Yj= (Y1, Yo, ..., Y)) and Z, = (z4, 2o, ..., z)) are prefixes of X, Y and Z
res.

1. if Xm =Yn, then zg = xnand Z,_1 is LCS of Xy _1, Y.
2. If Xy # Yn, then z # X, implies that Z is LCS of X,,_; and Y
3. If Xm # yn, then z, = y, implies that Z is LCS of X and Y, _;

Proof of Theorem
Case 1
» On contrary suppose that x,, = y, but z, # Xn,
» Then we could append x, =y, to Z to obtain a common subsequence of X and Y of
length k + 1, contradicting the supposition that Z is a LCS of X and Y.
» Thus, we must have z; = Xy, = Yp.
* Now, the prefix Z; is a length-(k - 1) common subsequence of X,,.; and Y.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Now we wish to show that it is an LCS.
* Suppose, there is a common subsequence W of X1 & Y1 with length greater than k - 1
» Appending X, = Yy, to W gives common subsequence of X and Y whose length is greater
than k, a contradiction.

Case 2
* If z« # Xm, then Z is a common subsequence of X,,; and Y.
» If there were a common subsequence W of X,,; and Y with length greater than k, then W
would also be a common subsequence of X, and Y, contradicting the assumption that Z
isan LCS of X and Y.

Case 3
» The proof is symmetric to (2).

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 22
Review Lectures 1-21

Lecture No 1: Model of Computation
* Analysis independent of the variations in
— machine, operating system, language, compiler,
* We did not consider the low-level details
* We supposed our model to be an abstraction of a standard generic single-processor
machine, called a random access machine RAM, an idealized machine
— infinitely large random-access memory,
— instructions execute sequentially
« Every instruction is in fact a basic operation on two values in machine’s memory which
takes unit time.

Drawbacks in Model of Computation
+ We assumed each basic operation takes constant time i.e. adding, multiplying,
comparing etc. of two numbers of any length in constants time
« Addition of two numbers takes a unit time!
— not good because numbers may be arbitrarily
« Addition and multiplication both take unit time!
— Again very bad assumption

Finally what about Our Model?
» But with all these weaknesses, our model is not so bad because we have to give the
comparison not the absolute analysis of any algorithm.

Lecture No 2: Mathematical Tools
A Sequence of Mathematical Tools

* Sets * Relation
+ Sequences » Functions
» Order pairs » Operators over above structures

» Cross Product

Lecture No 3: Logic and Proving Techniques
» Propositional Logic
» Predicate Logic
* Proofs using
— Truth Tables
— Logical Equivalences
— Counter Example
— Contradiction
— Rule of Inference

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No 4 & 5: Mathematical Induction
Claim: P(n) is true for alln € Z*, for n > ng

1. Basis

Show formula is true when n = ng

2. Inductive hypothesis

Assume formula is true for an arbitrary n = k, where, k € Z* and k > ng

3. To Prove Claim

Show that formula is then true for k+1

Note: In fact we have to prove

1)
2)

P(ny) and
P(k) = P(k+1)

Mathematical Way of Expressing Induction

+ Basis step.
Show that proposition P(1) is true.
* Inductive step.
Show that for every positive integer n, the implication P(n) — P(n+1) is true.

P(n) for a fixed n is called inductive hypothesis.
« [PQQ)AVn, (PN —PNn+1))] — Vn,P()

Well Ordering and Modus Ponens Principal

Definition (Well-Ordering Principle)
« The Well-ordering Principle is the following statement
+ ‘“every nonempty set of positive integers contains a least element”
* In a mathematical way we can define this Principle as:
thereisain Ssuchthata<bforallbin Si.e.
Jae S,suchthata<b,VvbeS
* And we say that set S is well-ordered with respect to <.
Modus Ponens Principal

pP=q9
p

Hence,q

Why Mathematical Induction is Valid?

» Let’s suppose that P(1) is true, and that
vk (P(k) > P(k+1)) is also true,

 Claim:

vn P(n) is true

Assume proposition V n, P(n) is false, i. e, there are some positive integers for
which P(n) false.

Let S be the set of those n’s. By well-ordering property, S has a least element,

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

558 CS-702 Advanced Algorithms Analysis and Design

suppose, k.
— As 1¢S, so 1<k, so k-1 is a positive
— Since k-1 <k, hence k-1¢ S. So P(k-1) is true.
— By modus ponens, P((k-1) + 1) = P(K) is true.
— Contradiction, hence vn, P(n)

Another Reason for Validity

Basis Step Iterating gives a proof of ¥ n, P(n). This is
First suppose that we have a proof another way of proving validity of
of P(0). mathematical Induction.
Inductive Hypothesis
vk >0, P(k) = Pk +1)
How it is proved V n > 0,?
P(0) = P(1)
P(1) = P(2)
P(2) = P(@3)

Strong Mathematical Induction
+ Let P(n) be a predicate defined for integers n, and a and b are fixed integers with a < b.
» Suppose the following statements are true:
1. P(a), P(a+ 1), ..., P(b) are all true

(basis step)
2. For any integer k > b,
if P(i) is true for all integers i with a < i <Kk,
then P(k) is true. (inductive step)
» Then P(n) is true for all integers n = a.

Lecture No 6: Fibonacci Sequences

» Start with a pair of rabbits, one male and one female, born on January 1. Assume that all
months are of equal length and that rabbits begin to produce two months after their own
birth. After reaching age of two months, each pair produces another mixed pair, one
male and one female, then another mixed pair each month, and no rabbit dies.
How many pairs of rabbits will there be after one year?

» Construction of Mathematical Model

» Explicit Formula Computing Fibonacci Numbers

» Recursive Algorithms, Generalizations of Rabbits Problem and Constructing its
Mathematical Models

» Applications of Fibonacci Sequences

Lecture 7, 8, & 9: Recursion
* Recursion? Recursive Mathematical Models
» Solving Recurrence Relations
» First and second Order Linear Homogenous Recurrences with Constant Coefficients its

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Characteristics and Solution
+ General Homogenous Recurrences, Characteristics and solution
» Solution: General Homogenous Recurrence when
— Roots distinct, repeated, multiplicity of root is k
— many roots with different multiplicities
» Non-homogenous Recurrence Relations
» Characteristics and solution of various type of non-homogenous recurrence relations

Lecture 10 & 11: Asymptotic Notations
» Major Factors in Algorithms Design
« Complexity Analysis
» Growth of Functions
+ Asymptotic Notations
» Usefulness of Notations
» Reflexivity, Symmetry, Transitivity Relations over ©, Q, O, ® and 0
* Relation between ©, Q and O
» Various Examples Explaining each concept

Big-Oh Notation (O)
If f, g: N > R", then we can define Big-Oh as
For a given function g(n) >0, denoted by O(g (n)) the set of functions,

0(g(n))={f (n):there exist positive constants ¢ and n, such that
0< f(n)<cg(n), foralln>n_}
f (n)=0(g(n)) means function g(n) is an asymptotically
upper bound for f (n).
We may write f(n) = O(g(n)) OR f(n) € O(g(n))
Intuitively: Set of all functions whose rate of growth is the same as or lower than that of g(n).

Big-Omega Notation (Q)
If f,g: N > R", then we can define Big-Omega as
For a given function g(n) denote by Q(g (n)) the set of functions,

Q(g(n))={f (n):there exist positive constants ¢ and n, such that
0< cg(n)< f(n) foralln>n}
f (n)=9Q(g(n)), means that function g(n) is an asymptotically
lower bound for f (n).
We may write f(n) = Q(g(n)) OR f(n) € Q(g(n))
Intuitively: Set of all functions whose rate of growth is the same as or higher than that of g(n).

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Theta Notation (®)
If f, g: N > R", then we can define Big-Theta as
For a given function g(n) denoted by ®(g(n)) the set of functions,

®(g(n))={f(n):there exist positive constants c,, ¢, and n, such that

0< ¢g(n)< f(n)<c,g(n)foralln>n,}

f (n)=©(g(n)) means function f (n) is equal to g (n) to within a constant
factor, and g(n) is an asymptotically tight bound for f (n).

We may write f(n) = ®(g(n)) OR f(n) € ©(g(n))
Intuitively: Set of all functions that have same rate of growth as g(n).

Relations over Asymptotic Notations
Reflexivity
e All the relations, Q, W, O, are reflexive
« Small o and small omega are not reflexive relations
Symmetry
* Q is symmetric.
» Big O, big omega Q, little 0, and little », do not satisfy the symmetry property.
Transitivity
« All complexity measuring notations Q, W, O, o and o satisfy the transitive property.

Lecture 12 &13: Brute Force Approach
Brute Force Approach,

» Checking primality

» Sorting sequence of numbers

» Knapsack problem

» Closest pair in 2-D, 3-D and n-D

» Finding maximal points in n-D

Lecture 12 &13: Brute Force Approach
Brute Force Approach,
» Checking primality
» Sorting sequence of numbers
+ Knapsack problem
» Closest pair in 2-D, 3-D and n-D
» Finding maximal points in n-D

Lecture 14: Divide and Conquer
Divide and Conquer?
+ Merge Sort algorithm
* Finding Maxima in 1-D, and 2-D
+ Finding Closest Pair in 2-D

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture 15 & 16:
Dynamic Programming

Optimizations problem?
Steps in Development of Dynamic Algorithms
Why dynamic in optimization problem?
Chain-Matrix Multiplication
Problem Analysis
— Brute Force approach
— Time Complexity
Chain-Matrix Multiplication
Using Dynamic
— Notations
— Dynamic Algorithm
— Time Complexity

Chain Matrix Multiplication

Statement: The chain-matrix multiplication problem can be stated as below:

Given a chain of [A1, A, . . ., Ay of n matrices where fori=1, 2,..., n, matrix A; has
dimension p;.; X p;, find the order of multiplication which minimizes the number of scalar
multiplications.

Order of A; is po X P,

Order of A, is p1 X pa,

Order of Az is p, X ps, €tc.

Order of A; X Ay X Az iS Po X Ps,
Order of A; X Ao X ... XA, IS Po X Pn

Steps in Development of Dynamic Algorithms

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution in a bottom-up fashion

4. Construct an optimal solution from computed information
Note: Steps 1-3 form the basis of a dynamic programming solution to a problem. Step 4 can be
omitted only if the value of an optimal solution is required.

Lecture 17 & 18: Assembly Line Scheduling

Assembly Line Scheduling Problem
Problem Analysis
— Notations, Brute Force and Dynamic Solutions
Algorithm using Dynamic Programming
Time Complexity
n-Line Assembly Problem
n-Line Assembly Algorithm using Dynamic Programming

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» Time Complexity

» Applications

» There are two assembly lines each with n stations

» The jth station on line i is denoted by S; |

« The assembly time at that station is a;;.

» An auto enters factory, goes into line i taking time e;

» After going through the jth station on a line i, the auto goes on to the (j+1)st station on
either line

» There is no transfer cost if it stays on the same line

+ Ittakes time t;; to transfer to other line after station S,

» After exiting the nth station on a line, it takes time x; for the completed auto to exit the
factory.

* Problem is to determine which stations to choose from lines 1 and 2 to minimize total
time through the factory.

Lecture 19 & 20: 0-1 Knapsack Problem

» 0-1 Knapsack Problem » Optimal Weight Triangulation
* Problem Analysis — Definitions, Problem Analysis
— Divide and Conquer — Dynamic Solution
— Dynamic Solution — Algorithm using Dynamic
» Algorithm using Dynamic Programming
Programming — Time Complexity
+ Time Complexity + Conclusion
« Generalization, Variations and
Applications

Lecture 21: Longest Common Subsequence
» Longest Common sub-sequence problem
« Problem Analysis
— Brute Force approach
— Dynamic Solution
» Algorithm using Dynamic Programming

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Mid-Term 2015 Exam Questions

Chain Matrix using brute force

in = jn2 SOIve the recurrence

Given a sequence [Al, A2, A3, Ad]

[A1 =10 x 100], [A2 = 100 x 5], [A3 = 5x 50] [A4 = 50x 20]

Compute the order of the product A1, A2, A3, A4 in such a way that minimizes the total
number of scalar multiplications.

whh ke

4. Let N be a set of natural numbers. Then <= (equal) is relations over N. Prove or disprove
the < is reflexive, symmetric and transitive

5. Write algorithm to Closest Pair in 2-D using Divide and Conquer

6. Write algorithm to find line assembly scheduling DP pseudo code

7. 0-1 knapsack problem DP pseudo code

8. Write pseudo code of assembly line scheduling

9. Write knapsack for brute force algorithm

10. Write steps for divide and conquer with time complexity

11. Write assembly line dynamic algorithm

12.Use Dynamic Programming to find an optimal solution for the 0-1 Knapsack
problem.
item weight value knapsack capacity W = 11

[1 2 3 4 5
Vi 1 2 5 6 7
Wi 1 6 18 |22 |28

And write algorithm for it.

3 4
13.Prove that2.n +3.n+10 € O(n)
14.Suppose sequence, bO, bl, bz, , satisfies recurrence relation by= 6by.1-9by»

vk=2 with condition initial condition: bpy=2 and b;=6, then find explicit formula for
bo, bl, bz, . . ., using characteristic equation of the above recursion.

15.Show that any amount in cents = 20 cents can be obtained using 5 cents and 6
cents coins only.

16.Use mathematical induction to prove sigma i=0 to n (i] = n(n+1)(2n+1)/6 .

17.Write 2 line assembly algorithm

18.What is the Fibonacci sequence, write formula for it.

19.Sigma i=0 to n (i) = n(n+1)(2n+1)/6 . Prove by mathematical induction

20. Write n-line assembly line algorithm

21.Write algorithm of 0-1 knapsack problem by brute force.

22.Write algorithm knapsack problem by dynamic programming.

23.Write algorithm of 2-dimension points.

24.N be a set of natural number < or = over relation prove or disprove ,symmetric ,transitive
,reflexive

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 23
Longest Common Subsequence
(Dynamic Algorithm)
Optimal Binary Search Trees

Theorem: Optimal Substructure of an LCS

o If X=X, X2,. . ., Xm), @and Y = (yy1, V2, . . ., Yn) be sequences and let us suppose that Z =
(21, Z, . . ., Zx) be alongest common sub-sequence of X and Y
1. if Xn =Yy, then zy = xnand Z,_1is LCS of Xin_1 Yia.

N

If Xm # Yn, then z, = X, implies that Z is LCS of X,,_;and Y
3. If Xm # Yn, then z, =y, implies that Z is LCS of X and Y, _;

0 ifi=00OR j=0
c(i, j)=4c(i-1 j-1+1 if i,j>0and x; =y,
max(c(i-1, j).c(i, j-1)) ifi, j>0andx; =y,

Problem

IfX=<AB,C,B,D,A B> andY =<B, D, C, A, B, A> are two sequences then compute a
maximum-length common subsequence of X and Y.

Solution:
« Letc(i, j) = length of LCS of X; and Y;, now we have to compute c(7, 6).
» The recursive mathematical formula computing LCS is given below

0 ifi=0OR j=0
c@i,j)=qc(i-1j-)+1 if i, j>0and x, =y,
max(c(i-1, j),c(i, j-1) ifi j>0andx; =y,

IfX=<AB,C/B,DAB>Y=<B,D,C,A B,A>

* ¢(1,1) =max(c(0, 1), c(1,0) =max (0,0)=0 b[1, 1] = «
* ¢(1, 2) =max (c(0, 2), c(1, 1)) =max (0,0) =0 b[1, 2] = «
* ¢(1,3)=max(c(0, 3),c(1,2)=max (0,0)=0 b[1, 3] = «
* ¢(1,4)=c(0,3)+1=0+1=1; b1, 4] =~
* ¢(1,5)=max(c(0, 5),c(1,4)) =max (0,1) =1 b[1, 5] = «
« ¢(1,6)=c(0,5)+1=0+1=1; b[1, 6] =~
e ¢(2,1)=¢c(1,0)+1=0+1=1; b[2, 1] =~
*+ ¢(2,2)=max(c(1, 2),c(2,1))=max (0,1)=1 b[2, 2] = «
*+ ¢(2,3)=max(c(1, 3),c(2,2))=max (0,1)=1 b[2, 3] = «
* c(2,4)=max(c(1,4),c(23)=max(1,1)=1 b[2, 4] = «
« ¢(2,5)=c(1,4)+1=1+1=2; b[2, 5] =~
* ¢(2,6)=max(c(1, 6),c(2,5)=max(1,2)=2 b[2, 6] = «

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

IfX=<AB,CB,DAB>Y=<B,D,C,A B, A>

c(3,
c(3,
c(3,
c(3,
c(3,
c(3,

c(4,
c(4,
c(4,
c(4,
c(4,
c(4,

c(5,
c(5,
c(5,
c(5,
c(5,
c(5,

c(6,
c(6,
c(6,
c(6,
c(6,
c(6,

c(7,
c(7,
c(7,
c(7,
c(7,
c(7,

1) = max (c(2, 1), c(3, 0)) = max (1,
2) = max (c(2, 2), ¢(3, 1)) = max (1,
3)=c(2,2)+1=1+1=2;

4) = max (c(2, 4), c(3, 3)) = max (1,
5) = max (c(2, 5), ¢(3, 4)) = max (2,
6) = max (c(2, 6), ¢(3, 5)) = max (2,

1)=c(3,00+1=0+1=1;
2) = max (c(3, 2), c(4, 1)) = max (1,
3) = max (c(3, 3), c(4, 2)) = max (2,
4) = max (c(3, 4), c(4, 3)) = max (2,
5)=c¢(3,4)+1=2+1=3;
6) = max (c(3, 6), c(4, 5)) = max (2,

1) = max (c(4, 1), c(5, 0)) = max (1,
2)=c@4,1)+1=1+1=2;

3) = max (c(4, 3), ¢(5, 2)) = max (2,
4) = max (c(4, 4), c(5, 3)) = max (2,
5) = max (c(4, 5), c(5, 4)) = max (3,
6) = max (c(4, 6), ¢(5, 5)) = max (3,

1) = max (c(5, 1), c(6, 0)) = max (1,
2) = max (c(5, 2), ¢(6, 1)) = max (2,
3) = max (c(5, 3), ¢(6, 2)) = max (2,
4)=c¢(5,3)+1=2+1=3;
5) = max (c(5, 5), ¢(6, 4)) = max (2,
6)=c(5,5)+1=3+1=4;

1)=c¢(6,0)+1=0+1=1;
2) = max (c(6, 2), c(7, 1)) = max (2,
3) = max (c(6, 3), c(7, 2)) = max (2,
4) = max (c(6, 4), c(7, 3)) = max (3,
5)=c(6,4) +1=3+1=4;
6) = max (c(6, 6), c(7, 5)) = max (4,

R
N N
1n 1
L

N NN
N N N
I
NDNDN

N PP
N N N
I mnnu
NN

w

N—r
1

w

(=}
~
1
=

WWN N

WNN N
o =

N = O
~— ——
1l
NN

wW

N—r
1

w

NN -
— — ~—
I nu
WNN

N

N
Il
N

b[3,
b[3,
b[3,
3, 4
b[3,
b[2,

o0 WN
Inmn n

Tt

b[4,
b[4,
b[4,
b[4,
b[4,
b[4,

S as N =
L I e A T | 1|
IR

b[5,
b[5,
b[5,
b[5,
b[5,

WY,

m o mn mnu
R

b[6,
b[6,
b[6,
b[6,
b[6,
b[6,

KL e
o nu
/'T Ao

b[7,
b[7,
b[7,
b[7,
b[7,

SN Mt

[L I | I 1|
Y S

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Results:

g 0 1 2 3 & 5 @6 Jj 0 1 2 3 4 5 #
i ¥y B D C A B A i) B D CAB A
ox|0|0flO0O|O|O|O]|O g, | s |=|s|o | @]w|w
1A|l0[OfO|O]|1]|1]1 1A| e [—|—=|=|N|[<]|N
2Blolt|1|X|1]|2]| 2 2B| ¢ | H|e||—|N
SE|®| 5|1 |Z]| 2|22 3 8 | F | =™ | i | &
4B|lOo|1|1]|2]2]|3]3 4B| s |N|=|1 || XN
5D|o0|1]|2]2]|2|3]3 5D| |t |N||]| 1]«
6 A0 |1|2|2]3 4 G| B | T1T | | Bl | &
7BlOo|[1]|2|2]|3|4] 4 T7B|« |XN|1t|<]|1t|N]|«

0 ifi=0OR j=0

c(i,)=1¢c(i—-1,j-1)+1 ifi,j>0and x, =y,

max(c(i-1, j),c(i,j-1) ifi,j>0andx, =y,

Computable Tables:

Fo 1 23 & 35 6 i 842 8 4 5 %
i 3% B D C A B A & % BD ¢ A B A
ox|o|loflo|o|lo|o]|oO 0x || o|o|o]]]>
1Alo|lofo|lo]|1|1]1 LA|* | ||| N]|«|N
2Bl ||| 88|28 2B|* [\||]|=|N]|<
3 plt|d|2|2]2]2 3C|le || |N|e|e|
4Blo|l1|1|2]|2]|3]|3 4B Bl —|1]|—=|N|<
5Diofl1]2(2]|2(3]3 5D| |1 [B8«|—]|1|<
6 Alo|1|2]|2|3]|3]|4 6 A |11 || N[N
7Blof1|2]|2|3]|4]4 7Bl |81 [=|1EN<
0 if i=0OR j=0

i, j)=<c(i-1,7-1)+1

max(c(i—1, /), ¢, j—1))

ifij>0andx; =y,
ifij>0and x; =y,

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

i)l CS-702 Advanced Algorithms Analysis and Design

F & 41 ZxE 3 4 5 6 J & 3 2 F 4 5 ‘6
i y B D C A B A i y B D C A B A
0 xi 0 0 0 0 0 0 0 0 xi
1Al 0|0|lO|l0]|a]]| LA | * | &=l e N\| e N
280|312 | |22 2B [N|<|— ||\~
3o |1|A|2|12Z|2]| 2 3C| s | T | |N||«|«
4B|O0|1|1]|2]|2]|3]|3 4B| ¢ |N |1 |<|KN|«
sBI8lI1|2|Z2|213]| 3 5D [T |XN|<|<|T]|«
GAR(B|I|Z|2|3|3| 4 6 HEAEEES PN
7B(0|1]|2|2|3]|4]| 4 7B« |X|Tl<=| 1N

0 ifi=00Rj=0
c(i.j)=4c(i-1,j-1)+1 ifi,j>0andx; =y,
max(c(i—1,j).c(i.j-1) ifij>0andx; #y,

0 1 Z 3 4 5 6
i % B D C A B A
0Ox,({0|0O|O0O|O[O|O]|O » Table size: O(n.m)

« Every entry takes O(1) time to
1Aloflofofof1f1]1 Comrgute_y M)
2 Blol1l1l1l1l21l2 + The algorithm takes O(n.m) time and
space.
el olill2]2]2]| 2 * The space complexity can be
reduced to 2 - min(m, n) + O(1).

4Bjlo|1|1|2(|2]|3]3
sDio|2|2|2|2|8]3
6 Alo|1]|2|2]|3|3]4
7Blo|1|2|2]|3|4]|4

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Longest Common Subsequence Algorithm

cfi,jl=c(-1, 1) +1 if Xi =yj;

cfi, j] = max(c(i-1, j), c(i, j-1)) if Xi #vj;

cli,j]=0 if 1=0)or(j=0).

function LCS(X, Y) procedure PrintLCS(b, X, i, |)

1 m = length [X] 1. if(i==0)or (j==0)

2 n=length [Y] 2 then return

3 fori=1ltom 3. ifb[fi, jJ==" "

4 do c[i, 0] = 0; 4, then PrintLCS(b, X, i-1, j-1)
5 forj=1ton 5 Print x;

6 doc[0,j]=0; 6. elseif b[i, J=%”

7 fori=1tom 7 then PrintLCS(b, X, i-1, j)
8 doforj=1lton 8. else PrintLCS(b, X, i, j-1)

9 do if (xi = =yj)

10 thencli, j] = c[i-1, j-1] + 1

11 bli,]=“ ”

12 else if ¢[i-1, j] = c[i, j-1]

13 then c[i, j] = c[i-1, |

14 b[i, j1=“1”

15 else cli, j] = c[i, j-1]

16 b[i, j]=“«”

17 Return c and b;

Relationship with shortest common supper-sequence
» Shortest common super-sequence problem is closely related to longest common
subsequence problem

Shortest common super-sequence
+ Given two sequences:
X =< Xq,y...,%Xm > and
Y=<VYi,...,¥n >
A sequence U =< uy,...,ux > is a common super-sequence of X and Y if U is a super-
sequence of both X and Y.
» The shortest common supersequence (scs) is a common supersequence of minimal
length.

Problem Statement
» The two sequences X and Y are given and task is to find a shortest possible common
supersequence.
» Shortest common supersequence is not unique.
+ Easy to make SCS from LCS for 2 input sequences.

Example,
» X[1..m] = abcbdab, Y[1..n] = bdcaba, we get LCS = Z[1..r] = bcba
* Insert non-Ics symbols preserving order, we get SCS = U[1..t] = abdcabdab.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Binary Search Trees

Binary search tree (BST) is a binary data structure which has the following properties:
+ Each node has a value.
» Anorder is defined on these values.
» Left sub-tree of node contains values less than node value
» Right sub-tree of a node contains only values greater than or equal to the node’s
value.

Optimal Binary Search Trees
Example: A translator from English to, say, Urdu.

Use a binary search tree to store all the words in our dictionary, together with their
translations.

The word “the” is much more likely to be looked up than the word “ring”

So we would like to make the search time for the word “the” very short, possibly at the
expense of increasing the search time for the word “ring.”

Problem Statement: We are given a probability distribution that determines, for every key in the
tree, the likelihood that we search for this key.

The objective is to minimize the expected search time of the tree.

We need is known as an optimal binary search tree.

Formally, we are given a sequence K = <k, k,, ..., k,> of n distinct keys in sorted order
i.e. k; <k, <--- <k, and we wish to build a binary search tree from these keys.

For each k;, we have a probability p; that search is for k;.

Some searches may not be successful, so we have n + 1 “dummy keys” do, di, d», ..., d,
representing values not in K

In particular

do = represents all values less than kj,

d» = represents all values greater than k,,, and

d; = represents all values between k;and ki, vVi=1,2,...,n-1

For each dummy key d;, we have a probability g; that a search will correspond to d.
Each k; is an internal node, each dummy key d; is a leaf.

Every search is either successful (finding some key k;) or failure (finding some dummy
key d)), a’}nd SO we have

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Total Cost: Optimal Binary Search Trees

Total cost =

> py(depth((k)+1)+ Y. a,(depth (@) +1)

= Z p;-depth(k;) + Z Pi + Zqidepth(di) + zqi
i1 i—0 i—0

i=1
Since weknow that: > 'p;+>.q, =1
i=1 i=0
HenceT otal Cost

=" p;.depth(k;) + > g;depth(d;) +1
i=1 i=0

Let Qi 0.05 0.10 0.05 0.05 0.05

pi = probability of searching k; 0.10

gi = probability representing d Define cost of a search is as number of
nodes examined in a search

Expected cost = 2.8 Cost of a key = depth of the key + 1

@ Expected cost = 2.75
® ® ()

AR Odl
"%

R
|) () {d] (d @ & (@
[0 1 2 3 4
%i 0.15 0.10 0.05 0.10 @ @
0.20 m [i]

Brute Force Solution
« Total number of binary trees will be exponential as in case of chain matrix problem

(ky) (i)
=
(k) (ko) -
(k) (dg) (dd) (dg) ()

@] ﬂaﬂ -

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» Brute force approach is not economical

(o) O,
M o
£ b L% !
(@) (@) (k) (ad (6] (@) (k) (dd

S (@

@ @

) (&
@) (&)

» Observations:
— Optimal BST may not have smallest height.
— Optimal BST may not have highest-probability key at root.
» Build by exhaustive checking?
— Construct each n-node BST.
— For each, assign keys and compute expected search cost.
— But there are Q(4"/n*?) different BSTs with n nodes.

Optimal Substructure

Observation: Cut and paste method.
Any subtree of a BST contains keys range

Ki, ..., kiforsome 1 <i<j<n.

Lemma:

If T is an optimal BST and contains subtree
T with keys k;, ... ,k;, then T must be an
optimal BST for keys ki, ..., K;.

Proof:

Limitations of Dynamic Programming

« Dynamic programming can be applied to any problem that observes the principle of
optimality.

+ Generally, it means that partial solutions can be optimally extended with regard to the
state after the partial solution instead of the partial solution itself.

« The biggest limitation using dynamic programming is number of partial solutions we
must keep track of

+ For all examples we have seen, partial solutions can be described by stopping places in
the input.

» This is because combinatorial objects e.g. strings, humerical sequences, and polygons
etc., all have an implicit order defined upon their elements.

» This order cannot be changed without completely changing the origional problem.

» Once order fixed, there are relatively few possible stopping places, and we get an
efficient algorithms.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» If objects are not firmly ordered then we have an exponential number of possible partial
solutions
* And we get an infeasible amount of memory resulting an infeasible solution.

Construction: Optimal Substructure
+ One of the keys ink;, ...,k;, say k;, i <
r < j, must be the root of an optimal
subtree for these keys.
e Left subtree of k, contains k;,...,K.1.
* Right subtree of k; contains ki, ...,K;

Kt

oy

» Tofind an optimal BST:
— Examine all candidate roots k, , fori<r <
— Determine all optimal BSTs containing k;,...,k.1 and containing K1, ...,K;
« Find optimal BST for k;,...,k;, wherei21,j<n,j2i-1
* When | =i-1, the tree is empty.
« Define €[i, j] = expected search cost of optimal BST for k;,... k.
« Ifj=i-1, thene[i,] = Qis.

o Ifj2i,
— Selectarootk,, forsomei<r<j.
— Recursively make an optimal BSTs
- fork,..,k_; as the left subtree, and
+ fork.4,..,k @s the right subtree.
Lemma

Prove that when OPT tree becomes a sub-tree of a hode then expected search cost increases
by

w(i, j) = Z P+ Zq|

I=i-1
Proof

Total cost when a tree becomes subtree

p, (depth((k,) +1+1) + qu (depth((d,) +1+1)

I=i-1

2
ZJ: .(depth(k,)+1)+z p, + Zq. (depth(d,)+1)+ Zq|
>n

=i 1=i-1 1=i-1

.(depth(k,) +1) + qu(depth(d)+1)+Z P, + qu

I=i-1 I=i-1

= total cost when tree was not subtree + Z p, + Zq,
I=i I=i-1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

When OPT subtree becomes a subtree of a node:
— Depth of every node in OPT subtree goes up by 1.
— Expected search cost increases by

Wi, =3P+ Y0

I=i-1

If k; is the root of an optimal BST for k;,.. kK

efi,j]=p:+ (efi, r=1] + w(i, r-1))+(e[r+1, j] + w(r+1, j))
= e[l! r_l] + e[r+1l J] + W(Il J)

But, we don’t know k,. Hence,

T (4, if j=i-1
efi, J]:{min_{e[i,r—l]+e[r 41]+ wd,)} ifi<j

i<r<j

Algorithm: Optimal Binary Search

OPTIMAL-BST(p, g, n)
fori<—1ton+1

do eJi, i— 1] < qi.1.

wli, i- 1] « Q1. Consider all trees with | keys
forl« 1to r/
do fori«1to n-| + l¢——m — Fix the first key

doj—i+1-1
efi,]]« « Fix the last key
w[i, j] < W[i, j-1] + p; + g, — Determine the root of the optimal sub-tree
forr —itoj
dot—efi,r-1]+e[r+1,j]1+W[i,j]
ift<elij]
thenefi,j] <t

rootfi, j] «r
return e and root

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 24
Optimal Binary Search Trees
Constructing Dynamic Programming

Today Covered

« Introduction to Greedy Algorithms — Dynamic programming
— Why Greedy Algorithm? solution
— Where Greedy? — Greedy choice
— Where Greed Algorithm do — Recursive algorithm
not work? — lterative algorithm
» Activity Selection Problem » Conclusion
+ Steps developing activity selection
algorithm

Why Greedy Algorithm?
The algorithms we have studied in dynamic programming are relatively inefficient, for example
» Cost of 0-1 knapsack problem: O(nW)

« Cost of matrix chain multiplication: O(n®)
» Cost in longest common subsequence: O(mn)

« Optimal binary search trees: O(n®)
This is because
* We have many choices computing optimal solution.
* We check all of them in dynamic programming.
» We must think which choice is the best or
» At least restrict the choices we have to try.

What are Greedy Algorithm?

» In greedy algorithms, we do the same thing

» Mostly optimization algorithms go through a sequence of steps, with a set of choices at
each step.

« In dynamic programming best choices is ignored

+ Some times a simpler and efficient algorithm required.

+ Greedy algorithms make best choice at a moment.

» It makes a locally optimal choice in the hope that this choice will lead to a globally
optimal solution.

» Greedy algorithms do not always yield an optimal solutions, but mostly they do

« They tend to be easier to implement.

Where Greedy Algorithms do not work?

» Greedy choice:
» We make the choice that looks best at a moment.
» Every time make a choice, greedily maximize value

» An example where this does not work
» Find longest monotonically increasing subsequence
+ Given sequence <34517789>
» Longest such subsequence is <3457 8 9>.
» The greedy choice after choosing <3 4 5> is to choose 17, which is an unwanted

element, results in the sequence <3 4 5 17> which is suboptimal.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Some Definitions:

Closed Interval = [a, b] ={x eR | a < x < b}
Open Interval = (a, b) ={x eR|a<x < Db}
Left Semi Open = (a, b] = {x eR|a<x < b}
Right Semi Open =[a, b) ={x eR|a < x < b}

Activity Selection Problem
The problem involves scheduling of several competing activities that require exclusive use of
common resource

Problem Statement
» The problem can be stated as, suppose we have a set:
S ={ay, a,, ..., ay} of n proposed activities.
— Each activity wish to use a resource which can be used by only one activity at a
time.
— Each activity a; has starting time s;, finishing time f, where, 0 < 5;<f;< =
» Objective in activity-selection problem is to select a maximum-size subset of mutually
compatible activities

Steps in Designing Activity Selection Algorithm
» Steps to solve the problem
* We will formulate the dynamic-programming solution in which
— Combine optimal solutions to two subproblems to form an optimal solution
to original problem
— Check several choices when determining which subproblems to use in an
optimal solution
» Then needed to make a greedy choice in which
— One of the subproblems guaranteed empty, so that only one nonempty
subproblem remains
« Then a recursive greedy algorithm is developed and converted to an iterative one

Application : Scheduling Problem

» Aclassroom can be used for one class at a time.

» There are n classes that want to use the classroom.

+ Every class has a corresponding time interval |; = [s;, f)) during which the room would be
needed for this class.

« Our goal is to choose a maximal number of classes that can be scheduled to use the
classroom without two classes ever using the classroom at the same time.

» Assume that the classes are sorted according to increasing finish times; that is, f; < f, <
o <fp.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Designing Activity Selection Problem
Compatible Activity
» If a selected activity a; is required to take place during the half-open time interval [s;, f;).
And activity a; is required to take place during the half-open time interval [s;, f). Then the
activities a; and a are compatible if the intervals [s;, f) and [s;, fj) do not overlap i.e
SiijorSjZfi

Compatible Activities:

a; I
Not Compatible Activities:

bi
Compatible not Maximal
i |1 2 3 45 6 7 8 9101l
s |1 3 8 8§ 3 5 6 8 8 2 12
LHi |4 3 6 T 8 9 10 11 12 13 14

A set S of activities sorted in increasing order of finish time
» The subset consisting of mutually compatible activities are
— {as, ag, a1} but it is not a maximal subset,
— {ay, as, ag, ay} is larger.
— {a,, a4, a9, a11} is another largest subset.

Optimal Substructure of Activity Selection Problem

« The first step is to find optimal substructure and then use it to construct an optimal
solution to the problem from optimal solutions to subproblems.

« Let us start by defining sets S = {ax [S: f; < s, < fi < 5} S; is the subset of activities in S
that can start after activity a; finishes and finish before activity a; starts.

« The fictitious activities ay and a,.; are added and adopt the conventions that f, = 0 and
Sn+1 = . Then S = Sy 41, and the ranges for i and j are given by 0 <i,j<n+ 1.

« Let us assume that A; is a solution to S;;

Optimal Substructure of Problem
» Let us assume that the activities are sorted in monotonically increasing order of finish
times of the activities:
fosflsfzs an<fn+1

» Assuming that we have sorted set of activities, our space of subproblems is
— to select a maximum-size subset of mutually compatible activities from S;, for 0 <
i<jsn+1,
— knowing that all other S; are empty.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Decomposition: Optimal Substructure of Problem
+ Suppose that a solution to S; is non-empty and includes some activity a, so that
fiSSk<kaSj.
+ After choosing activity ay, it decomposes S;; into two subproblems, Sy and Sy
Si« = activities that start after a; finishes and finish before a, starts and
Sy; = activities that start after a, finishes and finish before g, starts,
« Each of S and Sy; are subset of the activities in S;;

Solution to S;; : Optimal Substructure of Problem
« Our solution to S; is the union of the solutions to Sy and Sy, along with the activity a.
« Thus, the number of activities in our solution to S; is the size of our solution to Sy, plus
the size of our solution to S, plus a.
SOIUtion(Sij) = SOIUtiOn(Sik) U SOIUtion(Skj) u{ak}, Aij = AV Akj u{ak}
+ Suppose we now that an optimal solution A; includes activity ay, then the solutions Aj
and Ay used within this optimal solution must be optimal.

Why A and Ay are Optimal?
Proof Why Ay and A, are Optimal?

« If we had a solution A’y to S;, that included more activities than Ay, we could cut out Ay
from A; and paste A’y in Ajj, thus producing another solution A’; to S;; with more activities
than Aij-

« Because we assumed that A; is an optimal solution, we have derived a contradiction.

« Similarly, if we had a solution A’,; to Sy; with more activities than Ay, we could replace Ay
by A’ to produce solution to S; with more activities than A;

Further Decomposition to Find Sy n+1
+ Now we can build a maximum-size subset of mutually compatible activities in S;;
— by splitting the problem into two subproblems, mutually compatible activities in Si
and Skj
— finding maximume-size subsets Ay and A, of theses activities for these
subproblems and then
— forming maximum-size subset Aj as Aj = A U {a} U Ay
« Optimal solution to entire problem is: Ag n1-

A Recursive Solution

» Letc[i, j] = number of activities in a maximum-size subset of mutually compatible
activities in S;;.

+ We have c[i, j] = 0 whenever S; = @; In particular we have, cfi, j] = 0 fori 2.

. Since Aij =Ax [{ak} O Akj
Therefore the recurrence relation for the problem is cf[i, j] = c[i, k] + c[k, j] + 1.

» Since value of k varies betweeni+ 1, ...,j—1, and hence thereare (j-1)-(i-1)+1
possible values of k,i.e.,j-1—-i-1+1=j—i-1

+ Since maximum-size subset of S; must use one of these values for k, we check them all
to find the best.

» Thus, our full recursive definition of c[i, j] becomes

(o if S, =g
i, 11= max{cli,k]+c[k, j]+1 if S, #¢

* Now it is a straightforward exercise to write a tabular, bottom-up, dynamic programming
algorithm based on recurrence relation defined in previous slide.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 25
Greedy Algorithm

Today Covered

» Activity Selection Problem

— Example

— Recursive algorithm

— lterative Algorithm
» Fractional Knapsack Problem

— Problem Analysis

— Greedy Approach for Fractional Knapsack
« Coin Change Making Problem

— Analysis

— Greedy Algorithm

Theorem: Why This Solution is Optimal?

Statement:
Consider any nonempty subproblem S;, and let a,, be the activity in S; with the earliest finish
time: f,, = min {f : ax € S;}, then
1. Activity a,, is used in some maximum-size subset of mutually compatible
activities of S;.
2. The subproblem S;, is empty, so that choosing a, leaves the subproblem S, as
the only one that may be nhonempty.

Note: After proving these properties, it is guaranteed that the greedy solution to this problem
does exist.

Proof (Part B)
First we prove second part because it is bit simpler
» Suppose that S;, is nonempty
» It means there is some activity a, such that: f,< s, <fy <5, <f. = fx <fpn.
« Then ais also in S;and it has an earlier finish time than an,, which contradicts our choice
of a,,. Hence Sy, is empty, proved

N
P e P
II alem fmI 5
. 11 3 LS B
S m 8, g

Part A
« To prove first part, suppose that A; is a maximum-size subset of mutually compatible
activities of S,
« Order Aj monotonic increasing order of finish time
+ Let a be the first activity in A;.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Case 1
« If ax = an,, then we are done, since we have shown that a,, is used in some maximal
subset of mutually compatible activities of S;.

Case 2
e If ax # an, then we construct the subset
A’ = Aj\{a € {am}
+ Since activities in A; are disjoint, so is true for A’
« As ay s first activity in A; to finish, and f;, < fi.
+ Noting that A’; has same number of activities as A;
+ We see that A’j is a maximal subset of mutually compatible activities of S; that includes
am.
» Hence proves the theorem.

T ™
fi Sm fm S
] 1 1 |
a L L Sy L a
i am f, @
Why is this Theorem Useful?
Dynamic Using the theorem
programming
Number of 2 subproblems: 1 subproblem: Sy
subproblems in the Siks Sk Sn=9
optimal solution
Number of choicesto | j—i— 1 choices 1 choice: the activity
consider with the earliest
finish time in S;

+ Making the greedy choice i.e., the activity with the earliest finish time in S;;
— Reduce the number of subproblems and choices
— Solved each subproblem in a top-down fashion

» Only one subproblem left to solve

A Recursive Greedy Algorithm

Recursive-Activity-Selector (s, f, i, |)
1 m<—i+1

2 whilem<jands, <f /I Find the first activity in S;.

3 dome—m+1

4 ifm<j

5 then return {a,,} U Recursive-Activity-Selector (s, f, m, j)
6 elsereturn @

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

i |0 1 2 3 45 6 7 8 9 1011
|- 1 3 05 3 5 6 8 8 2 12
fil0 45 6 7 8 9 1011 1213 14

time

i=0,

j=n+1=12

me—i+1—0+1=1

m<j(1<12)ands; <f, (But 1>0)

ifm<j(1l<12)

return {a;} U Recursive-Activity-Selector (s, f, 1,12)

time

i=1,

Mme—i+1l—1+1=2
m<j(2<12)ands,<f;(3<4)
Mm—m+1<2+1=3

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m<j(3<12)ands;<f; (0<4)
Mme—m+1—3+1=4

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

time

m<j(4<12)ands,<f; (But5>4)
ifm<j(@4<12)
return {a;} U Recursive-Activity-Selector(s, f, 4,12)

time

i=4,

me—i+1—4+1=5
m<j(b<l2)andss<f,;(3<7)
Mme—m+1<—5+1=6

K 3 |

a | | a4W

time

m<j(6<12)andss<fy(5<7)
Mme—m+1—6+1=7

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

s L a
time
0 1 2 3 4 &5 © T 8 ® 10 M 12 18 1
m<j(7<12)ands;<f, (6<7)
mem+1«—7+1=8
a4 | ‘ a,
time
0o 1 2 B3 4 & 6 T & 9 10 M 12 13 14
m<j(8<12)andsg<f; (But8>7)
ifm<j(8<12)
return {ag} U Recursive-Activity-Selector (s, f, 8,12)
F\\ a9 ‘
24 [a | ag J
time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i=8,

m—i+1—8+1=9
m<j(9<12)and sy <fg(8<11)
me—m+1<9+1=10

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
m <] (10<12) and s;0 < fg (2 < 11)
m«—m+1<10+1=11
a ‘ l a, | ‘ ag
time

m <j(11<12) and s;; <fg (But 12 > 11)
ifm<j(11<12)
return {a;;} W Recursive-Activity-Selector (s, f, 11,12)

i=11,
Mme—i+1—11+1=12
m<j(Butl2=12)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

An Iterative Greedy Algorithm Summary

Iterative-Activity-Selector (s, f) A greedy algorithm obtains an optimal
1 n <« length[s] solution to a problem by making a sequence
2 A<{aj} of choices.

3 i1

4 form<2ton For each decision point in the algorithm, the
5 do if sy = fi choice that seems best at the moment is
6 then A — A U {an} chosen at that time.

7 i« m

8 return A This strategy does not always produce an

optimal solution, but as we saw in the
activity-selection problem, sometimes it
does.

Now we give a sequence of steps designing
an optimal solution of using greedy
approach

Summary: Steps Designing Greedy Algorithms
We went through the following steps in the above problem:
1. Determine the suboptimal structure of the problem.
2. Develop a recursive solution.
3. Prove that at any stage of the recursion, one of the optimal choices is the greedy choice.
Thus, it is always safe to make the greedy choice.
4. Show that all but one of the sub-problems induced by having made the greedy choice
are empty.
5. Develop a recursive algorithm that implements the greedy strategy.
6. Convert this recursive algorithm to an iterative one.

Checks in Designing Greedy Algorithms
» Inthe beneath every greedy algorithm, there is almost always a dynamic programming
solution.
How can one tell if a greedy algorithm will solve a particular optimization problem?
« There is no way in general, but there are two key ingredients
— greedy choice property and
— optimal sub-structure
» If we can demonstrate that the problem has these properties, then we are well on the
way to developing a greedy algorithm for it.

The Knapsack Problem
* The 0-1 Knapsack Problem
— A thief robbing a store finds n items: i-th item worth v; and weight w;, where v; and
w; integers
— The thief can only carry weight W in his knapsack
— Items must be taken entirely or left behind
— Which items should the thief take to maximize the value of his load?
» The Fractional Knapsack Problem
— Similar to 0-1 can be solved by greedy approach
— In this case, the thief can take fractions of items.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

it CS-702 Advanced Algorithms Analysis and Design

Greedy Fails in 0-1 knap sack problem

g i
0 g,
' 2
item 3 30112
) . .
item 2 + 30§ $120
&R 201 $100 20 $100
item | 30 + B s
2 20[$100 b
| [0f $60 |10] S60 10} $60
$60 $100 $120 knapsack =$220 =$160 =$180 = $40
®) (b) (c)

Figure 16.2 The greedy strategy docs not work for the 0-1 knapsack problem. (a) The thief must
select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal
subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item | has
the greatest value per pound. (¢) For the fractional knapsack problem, taking the items in order of
greatest value per pound yields an optimal solution,

Developing Algorithm: Fractional Knapsack
* Pick the item with the maximum value per pound vi/w;
« If the supply of that element is exhausted and the thief can carry more then take as
much as possible from the item with the next greatest value per pound
+ Continue this process till knapsack is filled
+ Itis good to order items based on their value per pound

V,
iZV—ZZ...Z—n

W W, Wy
Algorithm: Fractional Knapsack Problem
Fractional-Knapsack (W, v[n], w[n])
While w > 0 and as long as there are items remaining
pick item with maximum vi/w;
X <= min (1, w/w;)
remove item i from list
W < W — XjW;

gD

* wthe amount of space remaining in the knapsack (w = W)
* Running time: ®(n) if items already ordered; else ®(nign)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Making Change A greedy approach is to add the highest
Someone comes to your store and makes a value coin possible.
purchase of 98.67. He/she gives you 100.
You want to give back change using the Greedy algorithm (C, N)
least number of coins. sort coinssoCl> C2>...>Ck
S =0q;
INPUT: The values of coins: Cy, Cy, . . ., C, Change =0
and an integer N. Assume that some coin i =1 \\ Check for next coin
has value 1. while Change = N do
\\ all most valuable coins
GOAL: To find a multi-set of coins S whose if Change + Ci < N then
sum is N where the total number of coins is Change = Change + Ci
minimized. S=Ssu{Ci}
elsei=i+1

» In Pakistan, our currency notes are
C, =5000, C, =1000, C3=500,C,=100, C5=50,Cs=20,C;=10
» Applying above greedy algorithm to N = 13,660, we get
S={C,, Cy, C, Cy, Cy, C3,Cy, Cs, Cy}
» Does this algorithm always find an optimal solution? For Pakistani currency.
» It does but does not hold always

Dynamic Programming vs. Greedy Algorithms
» Dynamic programming
— We make a choice at each step
— The choice depends on solutions to subproblems
— Bottom up solution, smaller to larger subproblems
» Greedy algorithm
— Make the greedy choice and THEN
— Solve subproblem arising after the choice is made
— The choice we make may depend on previous choices, but not on solutions to
subproblems
Top down solution, problems decrease in size

Conclusion
* Weaknesses of dynamic programming are discussed
« Approach of designing dynamic algorithms is used for design of greedy algorithms.
» Activity selection problem is discussed in detalil.
» Best, at a moment, of the sub-problems in dynamic programming are selected. The
other sub-problem is forced to become empty in activity selection problem
» Optimality and correctness is proved.
» Discussed why greedy algorithms are efficient.
+ Some problems are discussed where Greedy algorithms do not work.
+ 0-1 Knapsack problem discussed with greedy approach
» Fractional Knapsack problem analyzed and algorithm using greedy approach is given
» Two different versions of the Task Scheduling Problem are analyzed
» Task Scheduling linked with 0-1 Knapsack
+ Coin change problem is discussed with greedy approach
» Itis observed that all coin changing problems can not be solved using greedy approach
» Relationship between dynamic programming and greedy approach is reviewed

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

file://test
file://test

CS-702 Advanced Algorithms Analysis and Design

Lecture 26
Huffman Coding

Today Covered
* Huffman Problem
+ Problem Analysis
— Binary coding techniques
— Prefix codes
« Algorithm of Huffman Coding Problem
+ Time Complexity
» Road Trip Problem
— Analysis and Greedy Algorithm
+ Conclusion

Using ASCII Code: Text Encoding
« Our objective is to develop a code that represents a given text as compactly as possible.
« A standard encoding is ASCII, which represents every character using 7 bits

Example

Represent “An English sentence” using ASCII code

1000001 (A) 1101110 (n) 0100000 () 1000101 (E) 1101110 (n) 1100111 (g) 1101100 (1)
1101001 (i) 1110011 (s) 1101000 (h) 0100000 () 1110011 (s) 1100101 (e) 1101110 (n)
1110100 (t) 1100101 (e) 1101110 (n) 1100011 (c) 1100101 (e) = 133 bits = 17 bytes

Refinement in Text Encoding
» Now a better code is given by the following encoding:
«<space> = 000, A=0010, E=0011, s=010,
c=0110,g =0111, h=1000, i=1001,
|=1010, t=1011, e=110, n=111

» Then we encode the phrase as 0010 (A) 111 (n) 000 () 0011 (E) 111 (n) 0111 (g)
1010 () 1001 (i) 010(s) 1000(h) 000 () 010(s) 110(e) 111(n) 1011 (v
110 (e) 111 (n) 0110 (c) 110 (e)

» This requires 65 bits = 9 bytes. Much improvement.
» The technique behind this improvement, i.e., Huffman coding which we will discuss later
on.

Major Types of Binary Coding
There are many ways to represent a file of information.
» Binary Character Code (or Code)
— each character represented by a unique binary string.

» Fixed-Length Code
— 1f£={0, 1} then
— All possible combinations of two bit strings
¥ x 2 =400, 01, 10, 11}
— If there are less than four characters then two bit strings enough
— If there are less than three characters then two bit strings not economical
— All possible combinations of three bit strings

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

> x 2 x £ ={000, 001, 010, 011, 100, 101, 110, 111}

If there are less than nine characters then three bit strings enough

If there are less than five characters then three bit strings not economical and

can be considered two bit strings

— If there are six characters then needs 3 bits to represent, following could be one
representation. a = 000, b = 001, ¢ = 010, d =011, e = 100, f = 101

» Variable-Length Code

better than a fixed-length code

It gives short code-words for frequent characters and
— long code-words for infrequent characters

» Assigning variable code requires some skill

+ Before we use variable codes we have to discuss prefix codes to assign variable codes
to set of given characters

» A prefix code is a code typically a variable length code, with the “prefix property”

» Prefix property is defined as no codeword is a prefix of any other code word in the set.

Examples
1. Code words {0,10,11} has prefix property
2. A code consisting of {0, 1, 10, 11} does not have, because “1” is a prefix of both “10” and
“1 1!!.

Other names
» Prefix codes are also known as prefix-free codes, prefix condition codes, comma-free
codes, and instantaneous codes etc.

Why are prefix codes?
« Encoding simple for any binary character code;
» Decoding also easy in prefix codes. This is because no codeword is a prefix of any

other.
Example 1
« Ifa=0,b=101, and c = 100 in prefix code then the string: 0101100 is coded as
0-101-100
Example 2
* Incode words: {0, 1, 10, 11}, receiver reading “1” at the start of a code word would not
know whether

— that was complete code word “1”, or
prefix of the code word “10” or of “11”

Prefix codes and binary trees
» Tree representation of prefix codes

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

00
010
0110
0111
10
11

Mmoo |m|>

Huffman Codes
« In Huffman coding, variable length code is used
« Data considered to be a sequence of characters.
» Huffman codes are a widely used and very effective technique for compressing data
— Savings of 20% to 90% are typical, depending on the characteristics of the data
being compressed.
» Huffman’s greedy algorithm uses a table of the frequencies of occurrence of the
characters to build up an optimal way of representing each character as a binary string.
* Now let us see an example to understand the concepts used in Huffman coding

Example: Huffman Codes
a b c d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Binary Tree: Variable Length Codeword

Frequency Variable-
(in length

thousands) codeword

a 45 0

b 13 101

c 12 100

d 16 11

e 9 1101

f 5 1100

Cost of Tree Corresponding to Prefix Code
» Given atree T corresponding to a prefix code. For each character ¢ in the alphabet C,
— let f (c) denote the frequency of c in the file and
— let d+(c) denote the depth of c’s leaf in the tree.
— dy(c) is also the length of the codeword for character c.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

— The number of bits required to encode a file is

B(T) =Y f(©)ds (¢)

ceC

— which we define as the cost of the tree T.
Algorithm: Constructing a Huffman Codes

Huffman (C)

1 n<|C|

2 Q«C

3 fori—1lton-1

4 do allocate a new node z

5 left[z] — x <« Extract-Min (Q)

6 right[z] « y « Extract-Min (Q)

7 flz] —1[x] +fly]

8 Insert (Q, z)

9 return Extract-Min(Q) ® Return root of the tree.

Example: Constructing a Huffman Codes

Q: (&5 | e9 | [c12](b:13) a:16][aas |

o: ﬁ
[5 | [e9 |
fori« 1

Allocate a new node z
left[z] <« x < Extract-Min (Q) = f:5
right[z] «— y « Extract-Min (Q) = e:9
flzl —fIX]+fly] (5+9=14)
Insert (Q, z)

Q: [c)(55) (W)
Ch) (e

[5][e] (12 | [b113 |

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

fori«2

Allocate a new node z
left[z] «— x < Extract-Min (Q) = c:12
right[z] « y « Extract-Min (Q) = b:13
flz] —f[x]+f[y] (12 + 13 =25)
Insert (Q, z)

fori—3

Allocate a new node z
left[z] < X < Extract-Min (Q) = z:14
right[z] < y « Extract-Min (Q) = d:16
flz] — f[x]+f[y] (14 + 16 =30)

Insert (Q, z)

Q:
fori«4 fori—5
Allocate a new node z Allocate a new node z
left[z] — X < Extract-Min (Q) = z:25 left[z] «— x < Extract-Min (Q) = a:45
right[z] « y < Extract-Min (Q) = z:30 right[z] < y « Extract-Min (Q) = z:55
flz] —f[x] +f[y] (25 + 30 =55) flz] < f[x] +f[y] (45+ 55 =100)
Insert (Q, z) Insert (Q, z)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lemma 1: Greedy Choice

There exists an optimal prefix code such that the two characters with smallest frequency are
siblings and have maximal depth in T.

Proof:
+ Letx andy be two such characters, and let T be a tree representing an optimal prefix

code.

» Letaand b be two sibling leaves of maximal depth in T, and assume with out loss of
generality that f(x) < f(y) and f(a) < f(b).

« This implies that f(x) < f(a) and f(y) < f(b).

» Let T' be the tree obtained by exchanging a and x and b and y.

The cost difference between trees T and T' is

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

B(T)-B(T") = Zcf (c)dr(c) =y, fle)dr(c)

ceC

= f(x)dr (x) + f(a)dr (a) - f(x)dr (x) - f(a)dr (a)+
fB)dr(y) + £(b)dr (b) - f(y)dr (y) - £ (b)dr (b)

= (f(a) = fx)(dr (@) —dr(x)) + (f(b) = f(¥))(dr (b) - dr ()
>0

Hence B(T’) < B(T)
Since B(T) < B(T’)
Hence B(T) = B(T’)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 27
Huffman Coding Problem and Graph Theory

Algorithm: Constructing a Huffman Codes
Huffman (C)

1 n<|C|

2 Q«C

3 fori<—1ton-1

4
5
6
7
8
9

do allocate a new node z
left[z] — x <« Extract-Min (Q)
right[z] « y « Extract-Min (Q)
flz] <X +fly]
Insert (Q, z)

return Extract-Min(Q) // Return root of the tree

Lemma 2: Optimal Substructure Property

Let C be a given alphabet with frequency f[c] defined for each character ¢ € C.

Let X, y (characters) e C with minimum frequency.

Let C' be alphabet C with characters x, y removed, new character z added, so that C' =
C-{xytu{zh

Define f for C' as for C, except that f[z] = f[x] + f[y].

Let T' be any tree representing an optimal prefix code for the alphabet C'.

Then tree T, obtained from T’ by replacing leaf node for z with an internal node having X,
y as children, represents an optimal prefix code for alphabet C.

Since C' = C - {x, y} U {z}; where f(z) = f(x) + f(y),
We are give that T' is an optimal tree for C'.
Let T be tree obtained from T' by making X, y children of z.
We prove: B(T) = B(T") + f(x) + f(y)
B(T) = ¥ f(©)dr(©)
cE

= Y flo)dr(c)+ fx)dr(x) + f(»)dr ()

ceC\{x,y}

= Y. fledp(e)+(f(x)+f)(dr(z)+1)

ceC'\{z}

= Y f(o)dr(c)+ f(z)dr(z) + f(x) + f(¥)

ceC’\{z}

= Y fe)dr(c)+ f(x)+ ()
celC’
=B(T")+ f(x)+ f(»)
B(T") = B(T) - f(x) - f(y)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

If T'is optimal for C', then T is optimal for C?
« Assume on contrary that there exists a better tree T" for C, such that B(T”) < B(T)
» Assume without loss of generality T” has siblings x and y.
 Lettree T" be a tree T" with the common parent of x and y replaced by vertex z with
frequency f[z] = f[x] + f[y]. Then
B(T™) = B(T") — f(x) - f(y)
< B(T) - f(x) — f(y) Since, B(T”) < B(T)
= B(T").
» This contradicts the optimality of B(T").
Hence, T must be optimal for C.

Road Trip Problem
Problem Statement
* You purchase a new car. On your semester break, you decide to take a road trip from
Peshawar to Karachi.
» Your car has a tank of some capacity such that only a distance k km can be traveled
before refilling the tank.
» Suppose there are filling stations at distances of
do<di<d,<...<d,
where dj, is the total distance of your trip.
» Your goal is to find the smallest number of stops required i.e. shortest subsequence of
<do - - - d,>, given that you start at dy and end at d,..

INPUT:

+ The max distance k, along with the distances: do, dy, . . . ,dn.
GOAL:

+ To find a smallest sub sequence of dy, ..., d, so that you can start from do, and end at d,.
Note

» Greedy approach is considered each d; in order.
» We stop to refuel at d; only if the tank will finish before we get to d;.1.

Greedy algorithm
1. fori=1tondo

2. if d; - di.; > k then “do not use this car”
3. S=dg

4, last = dy (the distance of the last item in S)

5. dns+1 == (forces d, to be in S)

6. fori=1tondo

7. if dis1 - last > k then

8. S:=Sud

9. last :=d,

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Graph Theoretic Concepts
Definitions
» Graph G consists of two finite sets V(G) and E(G)
» Endpoints a set of one or two vertices of an edge
» Loop an edge with just one endpoint
» Edge-endpoint function: End-Point-Function: E— Set of V
» Parallel edges two distinct edges with same endpoints
» Adjacent vertices vertices connected by an edge
» Vertex adjacent to itself vertex endpoint of a loop
+ Adjacent edges two edges incident on the same endpoint
» Isolated a vertex on which no edge is incident
« Empty a graph with no vertices, otherwise nonempty.

Examples

Vertex set = {vy, Vz, Vs, V4, Vs, Ve}

Edge set = {e4, €5, €3, €4, €5, €, €7}

e, €, and ez are incident on v; @

v, and v; are adjacent to v, g
5

e,, ez and e, are adjacent to e;
es and e; are loops

e, and e; are parallel @ @’
Vs and vg are adjacent to themselves

. V4 IS an isolated vertex e P
10. Endpoint(es) = (Vs, Ve)

©oNoGA~®DNE

Directed, Simple and Complete Graph

« Directed graph (digraph) in which each edge is associated with an ordered pairs of
vertices

« Simple graph does not have any loop or parallel edge

« Subgraph H is subgraph of G if and only if, every vertex in H is also vertex in G, and
every edge in H has the same endpoints as in G.

« Complete graph on n vertices, (K,) is a simple graph in which each pair of vertices has
exactly one edge

0'0
©© o6 &'

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Complete Graph
Example 1:
Find a recursive formula to compute number of edges in a complete graph on n vertices.

Solution:
» Let Sk = total number of edges of a complete graph with k vertices
« Sy = total number of edges of a complete graph with k - 1 vertices + total number
of edges connected k™ node
« = total number of edges of a complete graph with k - 1 vertices + k-1 number of
edges Sk = Sk + (k—1)

0'0
00 ¢'o od

Example 2:
Find an explicit formula to compute number of edges in complete graph on n vertices.

Solution:
Since, Sy = Sk + (k—1) = Sy = Sk + (k—2) and so on
By back substitution
Sk=Sk2+ (k=2)+(k-1) =S¢+ (k-3)+(k-2)+(k-1)
Sk=S;1+1+2+...+(k-2)+(k-1)=(k-1)k/2
Sk = (k-1)k/2
Sy =(n-1)n/2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Complete Bipartite Graph
* A complete bipartite graph on (m, n) vertices, denoted K, , , is a simple graph with
vertices vy, Vy, ...,v, and wy, W,, ...,w, that satisfies the following properties:
foralli,k=1,2,...,mandforalljl=1,2,...,n
1. there is an edge from each vertex v; to each vertex w;;
2. there is not an edge from any vertex v; to any other vertex vy
3. there is not an edge from any vertex w; to any other vertex w,

Degree of Graph
Definition degree of v is number of edges incident on v

Theorem:
In a graph G, sum of degrees of all vertices equals twice the number of edges of G. Specifically,
if the vertices of G are vy, Vs, ...,v, Wwhere n is a positive integer, then
Total degree of G = deg(vy)+ deg(v2) + ... + deg(v,)
= 2. (the number of edges of G)
Proof: easy
Note: Total degree of an undirected graph, G, is even.

Proposition
In a graph there are even number of vertices of odd degree.

Solution:

Let us suppose that: V = all vertices of a graph

V1 ={vy, Vo, . . ., W} = set of all vertices of odd degree
V2 = {wy, Wo, . . ., Wy} = set of all vertices of even degree

Now we have to prove that k is even?

On contrary, suppose that k is odd

Degree (graph) = deg(v,) + deg(v,) +, . . ., deg(vy) + deg(V2) = odd + even = odd, contradiction.
Hence k must be even.

That is there even number of vertices of odd degree.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Walk of Graph

+ Walk from v to w is a finite alternating sequence of adjacent vertices and edges of G. It
has the form v = vpgeivie, . . Vo€V, =W, foralli=1, 2,..., n, vi; and v; are endpoints of g,

» Trivial walk from v to v consists of single vertex v.

» Closed walk starts and ends at the same vertex

» Path a walk that does not contain a repeated edge. VvV = Vee1Vi€s . . . Vo€V, = W, Where
all the e; are distinct (that is, e; # e for any i # k).

+ Simple path a path that does not contain a repeated vertex. Thus a simple path is a walk
of form v = vgevi€; . . . Vna€nVy = W, all e and v; are distinct (vi# v, e # g; for any i #).

Circuit of Graph
» Acircuit is a closed walk that does not contain a repeated edge. Thus a circuit is a walk
of the form vgeivie, . . . vVp1€nVv, Where vy = v, and all the e; are distinct.
» A simple circuit is a circuit that does not have any other repeated vertex except the first
and last. Thus a simple circuit is walk of the form voe;vie; . . . Vhai€nVy, where all the
g; are distinct and all the v; are distinct except that vy = v,

Euler Circuit
» An Euler circuit for G is a circuit that contains every vertex and every edge of G. That is,
an Euler circuit is a sequence of adjacent vertices and edges in G that starts and ends at
the same vertex, uses every vertex of G at least once, and every edge exactly once.

Theorem
If a graph has an Euler circuit, then every vertex of the graph has even degree.

Theorem
A graph G has an Euler circuit if, and only if, G is connected and every vertex of G has even
degree.

Euler Path
* Let G be a graph and let v and w be two vertices of G. An Euler path from v to w is a
sequence of adjacent edges and vertices that starts at v, ends at w, passes through
every vertex of G at least once, and traverses every edge of G exactly once.

Corollary
» Let G be a graph and let v and w be two vertices of G. There is a an Euler path from v to
w if, and only if, G is connected, v and w have odd degree, and all other vertices of G
have even degree.

Hamiltonian Circuit
» Given a graph G, a Hamiltonian circuit for G is a simple circuit that includes every vertex
of G. That is, a Hamiltonian circuit of G is a sequence of adjacent vertices and distinct
edges in which every vertex of G appears exactly once.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» If a graph G has a Hamiltonian circuit then G has a sub-graph H with the following
properties:
1. H contains every vertex of G;
2. His connected;
3. H has the same number of edges as vertices;
4. every vertex of H has degree 2.

Connected Graph
» Two vertices v and w of G are connected if, and only if, there is a walk from v to w.
» G is connected if, and only if, for any two vertices v and w in G, there is a walk from v to
w. symbolically: G is connected & (1 v, w ¢ V(G), = a walk from v to w

Lemma
» If G is connected, then any two distinct vertices of G can be connected by a simple path.
« If v, w are in circuit and one edge is removed from the circuit, then there still exists a
path from v tow
» If G is connected and contains a circuit, then an edge of circuit can be removed without
disconnecting G.

Connected Component
» Agraph His a connected component of a graph G if, and only if,
1. His asubgraph of G;
2. His connected,;
3. No connected subgraphs of G has H as a subgraph and contains vertices or
edges that are not in H.

’ ¥

e'

The Graph, G Three Connected components of G

Isomorphism
+ Let G and G’ be graphs with vertex sets V(G) and V(G’) and edge sets E(G) and E(G’),
respectively. G is isomorphic to G’ if, and only if, there exist one-to-one correspondence
g: V(G) X’V(G') and h : E(G) X’E(G’) that preserve the edge-endpoint functions of G
and G’ in the sense that for all v L V(G) and e L E(G) , v is an endpoint of e & g(v) is
an endpoint of h(e)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Isomorphism Invariants

A property P is called an isomorphic invariant if, and only if, given any graphs G and G’,
if G has property P and G’ is isomorphic to G, then G’ has property P.

If G and G’ are simple graphs then G is isomorphic to G’ if, and only if, there exists a
one-to-one correspondence g from the vertex set V(G) of G to the vertex set V(G’) of G’
that preserves the edge-endpoint functions of G and G’ in the sense that for all vertices u
and v of G, {u, v} is an edge in G &{g(u), g(v)} is an edge in G’

Theorem

Each of following properties is an invariant for graph isomorphism, n, m, and k are all
nonnegative integers:
1. has n vertices;
has m edges;
has a vertex of degree k;
has m vertices of degree k;
has a circuit of length k;
has a simple circuit of length k;
has m simple circuits of length k;
iS connected;
has an Euler circuit;
10. has a Hamiltonian circuit.

© o N OA~®DN

Graph is circuit-free < it has no nontrivial circuits.

A graph is a tree < it is circuit-free and connected.

A trivial tree is a graph that consists of a single vertex
Empty tree that does not have any vertices or edges.
Forest a graph if circuit-free.

Terminal vertex (Leaf) a vertex of degree 1in T
Internal vertex a vertex of degree greaterthan 1in T

Lemma 1:
Any tree having more than one vertices has at least one vertex of degree 1.

Lemma 2:
If G is any connected graph, C is any nontrivial circuit in G, and one of the edges of C is
removed form G’, then the graph that remains is connected.

Theorem:
For any positive integer n, if G is a connected graph with n vertices and n — 1 edges, then G is a

tree

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Statement
For positive integer n, any tree with n vertices has n — 1 edges.

Solution

We prove this theorem by mathematical induction
Basis

n =1, tree has no edge and hence true

Inductive hypothesis
Suppose that id n = k then tree has k — 1 edges

Claim
« Now if we add one more vertex to the tree then exactly one edge will be added
otherwise it will not remain tree. And hence it will become k edges in the tree. Proved.

Rooted Trees

» Rooted tree a distinguished vertex

» Level of a vertex is the number of edges along the unique path between it and the root.

» Height of a rooted tree is maximum level to any vertex

« Children of v are all those vertices that are adjacent to v and are one level farther away
from the root than v.

» Parent if wis child of v, then v its parent

» Siblings vertices that are children of same parent

» Ancestor and Descendent given vertices v and w, if v lies on the unique path between w
and the root, then v is an ancestor of w and w is a descendent of v.

Level 2

Level 3

Level 4

Vertices in enclosed region vis a child of u
are descendants of u,

which is an ancestor of
each v and w are siblings

u 1s the parent of v

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Binary Trees

* A binary tree is a rooted tree in which every internal vertex has at most two children.
Each child in a binary tree is either left child or a right child (but not both), an internal
vertex has at most one left and one right child.

» Full binary tree is a binary tree in which each internal vertex has exactly two children

root X' ”
v is the left s xasdhe
child of 1Ny - l\rlght child
& x Qf w
A

\ right subtree

/
left subtree of w= i\

Theorem

If k is a positive integer and T is a full binary tree with k internal vertices, the T has a total of 2k
+ 1 vertices and has k + 1 terminal vertices.

Theorem

If T is a binary tree that has t number of terminal vertices and height is h, then t <2 OR log, t
<h

Spanning Trees
» A spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a
tree.
Proposition
» Every connected graph has a spanning tree.
» Any two spanning trees for a graph have the same number of edges.

Minimal Spanning Trees
» A weighted graph is a graph for which each edge has an associated real number weight.
The sum of the weights of all the edges is the total weight of the graph.
« A minimal spanning tree for a weighted graph is a spanning tree that has the least
possible total weight compared to all other spanning trees for the graphs.

+ If G is a weighted graph and e is an edge of G then w(e) denotes the weight of e and
w(G) denotes the total weight of G.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 28
Breadth First Search
Contents of the Today Lecture
» Representation of Graphs
+ Breadth First Search

— Algorithm — Proof of correctness

— Analysis — Shortest paths, for un-

— Supporting lemmas in the weighted edges, based on
proof Breadth First Search

« Conclusion

Representations of Graphs
+ Two standard ways to represent a graph
— Adjacency lists,
— Adjacency Matrix
» Applicable to directed and undirected graphs.
Adjacency lists
« A compact way to represent sparse graphs.
« |E] is much less than |V|?
« Graph G(V, E) is represented by array Adj of |V| lists
» Foreachu 1V, the adjacency list Adj[u] consists of all the vertices adjacentto uin G
» The amount of memory required is: (V + E)
Adjacency Matrix
» A graph G(V, E) assuming the vertices are numbered 1, 2, 3, ... , |V| in some arbitrary
manner, then representation of G consists of: [V| x |V| matrix A = (a;) such that
{ 1 ifGH)ME
4~ 0 otherwise
» Preferred when graph is dense
— |E|is close to |V[*

Adjacency matrix of undirected graph

L S S
— O = O

SO CCOo|Ww

wnhwWwN -

- OO0 =CC|o

-~
<o

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Adjacency Matrix

The amount of memory required is (V?)

For undirected graph to cut down needed memory only entries on and above diagonal

are saved

— In an undirected graph, (u, v) and (v, u) represents the same edge, adjacency matrix
A of an undirected graph is its own transpose A = A"

It can be adapted to represent weighted graphs.

Breadth First Search

One of simplest algorithm searching graphs
A vertex is discovered first time, encountered
Let G (V, E) be a graph with source vertex s, BFS
— discovers every vertex reachable from s.
— gives distance from s to each reachable vertex
— produces BF tree root with s to reachable vertices
To keep track of progress, it colors each vertex
— vertices start white, may later gray, then black
— Adjacent to black vertices have been discovered
— Gray vertices may have some adjacent white vertices
It is assumed that input graph G (V, E) is represented using adjacency list.
Additional structures maintained with each vertexv [V are
— color[u] — stores color of each vertex
— Tr[u] — stores predecessor of u
— d[u] — stores distance from source s to vertex u

BFS(G, s)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

for each vertex u € V [G] — {s}
do color [u] — WHITE
du] «
m[u] < NIL
color[s] +— GRAY
d[s]<—0
T1[s] < NIL
Q-9 /* Q always contains the set of GRAY vertices */
ENQUEUE (Q, s)
while Q # &
do u — DEQUEUE (Q)
for each v € Adj [u]
do if color [v] = WHITE /* For undiscovered vertex. */
then color [v] < GRAY
d[v] —d[u] +1
m[v] «u
ENQUEUE(Q, V)
color [u] < BLACK

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Except root node, s
For each vertex u € V(G)
color [u] = WHITE

dlu] = =
1 [s] = NIL
Q |7
r s t u Considering s as root node
@ ‘ @ @ color[s] = GRAY
dis]=0
1 [s] = NIL
ENQUEUE (Q, s)
CC e I C
v w X ¥
Q| s

DEQUEUE s from Q

Adj[s] =w, r

color [w] = WHITE
color [w] — GRAY
dwl«<—d[s]+1=0+1=1
mw] <« s
ENQUEUE (Q, w)

color [r] = WHITE
color [r] — GRAY

Q| w | r d[f«—d[s]+1=0+1=1
T[] < s
ENQUEUE (Q, 1)

color [s] «— BLACK

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

r s t u DEQUEUE w from Q

Adjlw] = s, t, X

color [s] # WHITE

color [t] = WHITE
color [t] < GRAY
dff] «dw]+1=1+1=2
mt] « w
ENQUEUE (Q, t)

Ol r |t | x color [x] = WHITE

- color [x] — GRAY
dx]—dw]+1=1+1=2
X] —w
ENQUEUE (Q, X)

color [w] « BLACK

r s t u DEQUEUE r from Q

Adjlr] =s, v

color [s] # WHITE

color [v] = WHITE
color [v] < GRAY
dv]—d[r]+1=1+1=2
V] < r
ENQUEUE (Q, v)

color [r] — BLACK

DEQUEUE t from Q

Adj[t] = u, w, X

color [u] = WHITE
color [u] — GRAY
du«<—d[t]+1=2+1=3
mu] <t
ENQUEUE (Q, u)

color [w] # WHITE

color [x] # WHITE

color [t] « BLACK

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

r s
v w
O|v |u |y
r s
% w
Qlu|y
r A
v W
21

X

X

u

J,'

u

u

DEQUEUE x from Q
Adj[x] =t,u,w,y
color [t] # WHITE
color [u] #WHITE
color [w] # WHITE
color [y] = WHITE
color [y] « GRAY
dy] —d[x]+1=2+1=3
Ty] < x
ENQUEUE (Q, vy)
color [X] <+ BLACK

DEQUEUE v from Q
Adj[v] =r

color [r] # WHITE
color [v] « BLACK

DEQUEUE u from Q
Adjlul =t, x, y

color [t] #WHITE
color [x] # WHITE
color [y] # WHITE
color [u] «— BLACK

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

r s 4 u DEQUEUE y from Q
Adjly] = u, x
color [u] #WHITE
color [X] # WHITE
color [y] < BLACK

04 w X y

=
f ST
0 | T

» Each vertex is enqueued and dequeued atmost once
— Total time devoted to queue operation is O(V)
« The sum of lengths of all adjacency lists is ® (E)
— Total time spent in scanning adjacency lists is O(E)
» The overhead for initialization O(V)
» Total Running Time of BFS = O(V+E)

Shortest Paths

» The shortest-path-distance 0 (s, v) from s to v as the minimum number of edges in any

path from vertex s to vertex v.
— if there is no path from s to v, then & (s, v) = =

» A path of length & (s, v) from s to v is said to be a shortest path from s to v.

» Breadth First search finds the distance to each reachable vertex in the graph G (V, E)
from a given source vertex s [V.

« The field d, for distance, of each vertex is used.

BFS-Shortest-Paths (G, s)
veV
d [V] «—
d[s] <0
ENQUEUE (Q, s)
while Q # @
do v — DEQUEUE(Q)
for each w in Adj[v]
doifd[w] =
thend [w] « d[v] +1
ENQUEUE (Q, w)

© 00 ~NO UL WN P

[EEN
o

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lemmal
Statement:
« Let G = (V, E) be a directed or undirected graph, and let s € V be an arbitrary vertex.
Then, for any edge (u, v) € E, (s, v)<d(s,u) + 1

Proof
— If u is reachable from s, then so is v. In this case, the shortest path from s to v
cannot be longer than the shortest path from s to u followed by the edge (u, v),
and thus the inequality holds.
— If uis not reachable from s, then &(s, u) = «, and the inequality holds.
Lemma 2
Statement:

Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a
given source vertex s € V. Then upon termination, for each vertex v € V, value d[v] computed
by BFS satisfies: d[v] = &(s, V).
Proof
* Induction on number of ENQUEUE operations.
— Toproved[v]29(s,v)forallv e V
» The basis of the induction is situation immediately after s is enqueued in line 9 of BFS
algorithm.
» Base case holds, because d[s] = 0 = &(s, s) and d[v] = » 2 (s, V) for all v € V - {s}
» Inductive hypothesis: d[u] = &(s, u). Here white vertex v is discovered during search from

avertex u.
» Byline 15 of BFS we have d[v] = d[u] + 1 Q)
» By Inductive hypothesis d[u] = &(s, u) (2
» By previous Lemma, &(s, u) + 1 2 8(s, V) 3

* Now by (1), (2) and (3),
— dv]=d[ul+1208(s,u)+120(s, V)

« Hence d[v] = &(s, V). Vertex v is then enqueued, and never enqueued again because it is
also grayed.

* Hence it prove the theorem

Lemma 3
Statement
» Suppose that during execution of BFS on a graph G = (V, E), the queue Q contains the
vertices ¢ vy, Va,..., V;T, where v, is the head of Q and v, is the tail. Then, d[v,] < d[v4] + 1
andd[v;] < d[vi] fori=1,2,..,r-1
Proof
— Proof is done by induction on queue operations
— Initially, when queue contains s, lemma holds.
— For inductive step, we must prove that lemma holds after dequeuing and
engueuing a vertex.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Dequeuing a vertex.
— If head v; of queue is dequeued, v, becomes new head. (If queue is empty,
lemma holds vacuously.)
— Now d[v4] £ d[v,] (by inductive hypothesis)
— Toprove thatd[v,] =d[vy] + 1
— Wehaved[v]sdvy]+1<d[v,] +1
— And remaining inequalities are unaffected.

Enqueuing a vertex.
— When we enqueue vertex V.,
— At time of enqueuing v, let u was removed. Hence, by inductive hypothesis,
d[vi] 2 d[u] i.e.

d[u] = d[v4]. (2)
— Since v, is adjacent to u
d[Vr+l] = d[U] + 1 (2)

— By (1) and (2), d[Vi+1] =d[u] + 1 <d[vy] + 1

— By inductive hypothesis we have d[v,] < d[u] + 1

— Nowd[v] £d[u] + 1 =d[v.1], and the remaining inequalities are unaffected.
— Thus, the lemma is proved when v, is enqueued

Corollary
Suppose that vertices v; and v; are enqueued during execution of BFS, and that v; is enqueued
before v;. Then d[v] < d[v] at the time that v; is enqueued.

Proof
— Immediate from above Lemma and
— the property that each vertex receives a finite d value at most once during the
course of BFS

Theorem (Correctness of BFS)

Statement: Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G
from a given source vertex s € V. Then, during its execution, BFS discovers every vertex v € V
that is reachable from the source s, and upon termination d[v] = &(s, v) for allv € V.

Moreover, for any vertex v # s that is reachable from s, one of the shortest paths from sto vis a
shortest path from s to m[v] followed by edge (11[v], V).

Proof
» Assume, for the purpose of contradiction, that some vertex receives a d value not equal
to its shortest path distance.
« Let v be the vertex with minimum &(s, v) that receives such an incorrect d value;
clearly v # s.
« By Lemma 22.2, d[v] = &(s, V), and thus we have that d[v] > &(s, v). Vertex v must be
reachable from s, for if it is not, then &(s, v) = « = d[v].

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Let u be the vertex immediately preceding v on a shortest path from s to v, so that

o(s, v) = 0(s, u) + 1.

Because 8(s, u) < §(s, V), and because of how we chose v, we have d[u] = §(s, u).
Putting these properties together, we have

d[v] > &(s, v) =8(s, u) + 1 =d[u] +1 (22.1)

Now consider the time when BFS chooses to dequeue vertex u from Q in line 11.

At this time, vertex v is, white, gray, or black.

We shall show that in each of these cases, we derive a contradiction to inequality (22.1).
If v is white, then line 15 sets d[v] = d[u] + 1, contradicting inequality (22.1).

If v is black, then it was already removed from the queue and, by Corollary 22.4, we
have d[v] < d[u], again contradicting inequality (22.1).

If v is gray, then it was painted gray upon dequeuing some vertex w, which was removed
from Q earlier than u and, d[v] = d[w] + 1.

By Corollary 22.4, however, d[w] < d[u], and so we have d[v] < d[u] + 1, once again
contradicting inequality (22.1).

Thus we conclude that d[v] = &(s, v) for all v € V . All vertices reachable from s must be
discovered, if they were not, they would have infinite d values.

To conclude the proof of the theorem, observe that if T1[v] = u, then d[v] = d[u] + 1.

Thus, we can obtain a shortest path from s to v by taking a shortest path from s to 1[v]
and then traversing the edge (11[v], V)

Lemma
When applied to a directed or undirected graph G = (V, E), procedure BFS constructs 1 so that
the predecessor subgraph G, = (Vy, Er) is a breadth-first tree.

Proof

Print

Line 16 of BFS sets m[v] = u if and only if (u v) €E and (s, v) < « that is, if v is
reachable from s and thus V;; consists of the vertices in V reachable from s.

Since G, forms a tree, it contains a unique path from s to each vertex in V;; .

By applying previous Theorem inductively, we conclude that every such path is a
shortest path.

The procedure in upcoming slide prints out the vertices on a shortest path from s to v,
assuming that BFS has already been run to compute the shortest-path tree.

Path

PRINT-PATH (G, s, V)

1
2
3
4
5
6

ifv=s

then print s
else if Tr[v] = NIL
then print “no path from s to v exists
else PRINT-PATH (G, s, m[v])
print v

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Conclusion
* How graphs can be represented
» Breadth First Search Techniques is discussed
» Algorithms is designed
» ltis to be noted that just designing an algorithm of any problem is not enough, to give its
proof is required as well.
» Correctness of Breadth First Search is given
« BFS algorithm is refined to find shortest path
» This shortest path is, of course, for un-weighted graphs
» Searching algorithms have various applications.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture 29
Proof (Breadth First Search Algorithm)
Depth First Search

Depth First Search
» The predecessor subgraph of a depth-first search forms a depth-first forest composed of
several depth-first trees defined as
Gr = (Vq, En), where
E. ={(1[v], v) : vmV and m[v] # NIL}
the edges in E, are called tree edges.
» Each vertex is initially white
— Itis grayed when it is discovered in the search, and
— It is blackened when it is finished, that is, when its adjacency list has been
examined completely.

Discovery and Finish Times
» It guarantees that each vertex ends up in exactly one depth-first tree, so that these trees
are disjoint.

» Ittimestamps each vertex
— the first timestamp d[v] records when v is first discovered (and grayed), and
— the second timestamp f [v] records when the search finishes examining Vv's

adjacency list (and blackens v).
o Foreveryvertexu du] <ffu]

Algorithm: Depth First Search

DFS(G) DFS-Visit(u)

1 for eachvertexumV [G] 1 color [u] — GRAY

2 do color [u] — WHITE 2 time «time +1

3 mu] < NIL 3 d[u] « time

4 time <0 4 for each vm Adj [u]

5 for each vertexu mV [G] 5 do if color [v] = WHITE

6 do if color [u] = WHITE 6 then 1m[v] < u

7 then DFS-Visit (u) 7 DFS-Visit (v)
8 color [u] — BLACK

Total Running Time = * (V + E) 9 flu] « time «time +1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

For each vertex u m V(G)
color [u] = WHITE

1 [u] = NIL

time =0

Considering white vertex u
color [u] = GRAY
diu=time+1=0+1=1
Adj[u] = v, X
color [v] = WHITE

V] « u

DFS-VISIT (v)

u 04 w

color [v] = GRAY
div]=time+1=1+1=2
Adjlv] =y
color [y] = WHITE
Ty] v
DFS-VISIT (y)

color [y] = GRAY
dy]=tme+1=2+1=3
Adjly] = x
color [x] = WHITE

TX] <y

DFS-VISIT (x)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

color [x] = GRAY
dix]=tme+1=3+1=4
Adj[x] = v

color [v] # WHITE

The edge (X, V) is a back
edge that is a non tree edge
and is labeled as B

The vertex x is finished.
color [x] = BLACK
fix] =time+1=4+1=5

The vertex y is finished.
color [y] = BLACK
fly]=time+1=5+1=6

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

The vertex v is finished.
color [v] = BLACK
flv]=time+1=6+1=7

The edge (u, X) is a forward
edge that is a non tree edge
and is labeled as F

The vertex u is finished.
color [u] = BLACK
flu=tme+1=7+1=8

Considering white vertex w
color [w] = GRAY
dw] Etme+1=8+1=9
Adjiw] =y, z
color [y] # WHITE
color [z] = WHITE

m[z] —w

DFS-VISIT (2)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

The edge (w, y) is a cross
edge that is a non tree edge
and is labeled as C

color [z] = GRAY

dfz] =time+1=9+1=10
Adj[z] =z

color [z] # WHITE

The edge (z, z) is a back
edge that is a non tree edge
and is labeled as B

The vertex z is finished.
color [z] = BLACK
flz] =time+1=10+1=11

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

The vertex w is finished.
color [w] = BLACK
flw]=tme+1=11+1=12

Properties of Depth First Search
+ It yields valuable information about structure of a graph.
— Predecessor subgraph G;; does indeed form a forest of trees, since the structure
of the depth-first trees exactly mirrors the structure of recursive calls of DFS-
VISIT.
» Discovery and finishing times have parenthesis structure.
— If we represent the discovery of vertex u with a left parenthesis “(u” and represent
its finishing by a right parenthesis “u)”, then
— history of discoveries and finishing makes well-formed expression in a sense that
parentheses properly nested.

Parenthesis Structure

1 23 456 7 8 910 111213 14 15 16
(s @ xx)yywwizs)(t (vv)uut
Theorem: Parenthesis Theorem

In any depth-first search of a (directed or undirected) graph G = (V, E), for any two vertices u
and v, exactly one of the following three conditions holds:

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

The intervals [d[u], flu]] and [d[v], f[v]] are entirely disjoint, and neither u nor v is a
descendant of the other in the depth-first forest,

The interval [d[u], f[u]] is contained entirely within the interval [d[v], f[v]], and u is a
descendant of v in a depth-first tree, or

The interval [d[v], f[v]] is contained entirely within the interval [d[u], f[u]], and Vv is a
descendant of u in a depth-first tree.

We begin with case in which d[u] < d[v].
There are two sub-cases, either d[v] < f[u] or d[v] > f[u] .

d[v] < flu] = v discovered while u was still gray.

This means v is a descendant of u.

Since v was discovered more recently than u, all of its outgoing edges are explored, and
v is finished, before search finishes u.

Hence d[u] < d[v] < f(v) < f(u) (part 3 is proved)

d[u] < d[v] (supposed)

and f[u] < d[v] (by case 2)

Hence intervals [d[u], f[u]] and [d[v], f[v]] disjoint.

Because intervals are disjoint, neither vertex was discovered while the other was gray,
and so neither vertex is a descendant of the other.

Now if we suppose d[v] < d[u], then again either

Intervals will be disjoint OR

Interval of v will contain interval of u.

Corollary (Nesting of Descendants’ Intervals)
Vertex v is a proper descendant of vertex u in the depth-first forest for a (directed or undirected)
graph G if and only if d[u] < d[v] < f[v] < f[u]

Proof

Immediate from the above Theorem

Classification of Edges
The depth-first search can be used to classify the edges of the input graph G = (V, E).

Tree edges

— These are edges in the depth-first forest Gr..
— Edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v).
Back edges
— those edges (u, v) connecting a vertex u to an ancestor v in a depth first tree.
— Self-loops, which may occur in directed graphs, are considered to be back
edges.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» Forward edges
— Those nontree edges (u, v) connecting a vertex u to a descendant v in a depth-
first tree.

+ Cross edges
— These are all other edges.
— They can go between vertices in the same depth-first tree, as long as one vertex
is not an ancestor of the other, or
— They can go between vertices in different depth-first trees.

Theorem
In a depth-first search of an undirected graph G, every edge of G is either a tree edge or back
edge.

Proof

» Let(u, v) an arbitrary edge of G, and suppose without loss of generality that d[u] < d[v].

» Then, v must be discovered and finished before we finish u (while u is gray), since v is
on u's adjacency list.

» If the edge (u, v) is explored first in direction from u to v, then v is undiscovered (white)
until that time, for otherwise we would have explored this edge already in the direction
from v to u.

» Thus, (u, v) becomes a tree edge.

« If (u, v) is explored first in the direction from v to u, then (u, v) is a back edge, since u is
still gray at the time the edge is first explored.

Conclusion
» Depth First Search Techniques is discussed
» Algorithms is designed
» Correctness of Depth First Search is given
» Topological sort and its benefits
« Computing strongly connected components
« Applications and Conclusion

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture 30
Proof (White Path Theorem)
Applications of Depth First Search

Classification of Edges

Tree edges
source

vertex Back edges

Forward edges

Theorem: White-Path Theorem

In a depth-first forest of a (directed or undirected) graph G = (V, E), vertex v is a descendant of
vertex u if and only if at the time d[u] that the search discovers u, vertex v can be reached from
u along a path consisting entirely of white vertices.

Proof:

« Assume that v is a descendant of u.

+ Let w be any vertex on the path between u and v in depth-first tree, so that w is a
descendant of u

* Asd[u] < d[w], and so w is white at time d[u].

» Second part is proved by contradiction

» Suppose that vertex v is reachable from u along a path of white vertices at time d[u], but
v does not become a descendant of u in the depth-first tree.

« Without loss of generality, assume that every other vertex along the path becomes a
descendant of u.

* (Otherwise, let v be the closest vertex to u along the path that doesn't become a
descendant of u.)

» Letw be predecessor of v in the path, so that w is a descendant of u (w, u may be same)

by Corollary above f[w] < f[u]. (2)
* Note v must be discovered after u is discovered, d[u] < d[v] (2)
» but v must be discovered before w is finished. d[v] < f[w] 3)

» Therefore, by (1), (2) and (3) d[u] < d[v] < f[w] < f[u].
» Above Theorem implies that interval [d[v],f[v]] contained entirely within interval [d[u],f[u]].
» By Corollary above, v must be a descendant of u.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Topological Sort

A Topological Sort of a directed acyclic graph, or a “dag” G = (V, E) is a linear ordering
of all its vertices such that

— if G contains an edge (u, V), then u appears before v in the ordering.
It is ordering of its vertices along a horizontal line so that all directed edges go from left
to right
The depth-first search can be used to perform a topological sort of a dag.

TOPOLOGICAL-SORT (G)

1.

6.

Call DFS(G) to compute f [v] of each vertex vim V.
Set an empty linked list L = &.

2
3. When a vertex v is colored black, assign it f (v).
4.
5

Insert v onto the front of the linked list, L = {v}.L.
Return the linked list.
The rank of each node is its position in the linked list started from the head of the list.

Total Running Time = O (V + E)

Example: Topological Sort

11/16 {Underwear Socks 17/18

Watch | 9/10
12/15 Pant * Shoes 13/14
1/8
2/5
Jacket 3/4

Ordering w. r. t. Finishing Time: Topological Sort

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

11/16 |Underwear Socks 17/18
, 9/10
12/15 Pa Shoes 13/14

nts

1/8

[Socks] [Underwear]—-[Pants]—{ Shoes] [Watch] [Shirt]—{ Belt]

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Jacket

Lemma
A directed graph G is acyclic if and only if a depth-first search of G yields no back edges.

Proof

O: G is acyclic.
» Suppose that there is a back edge (u, v).
* Then, vertex v is an ancestor of u in DF forest.
» There is thus a path from v to u in G, and the back edge (u, v) completes a cycle.
» G s cyclic and hence a contradiction,
» Our supposition is wrong and
» Hence G has no back edge

<: If DFS yields no back edges G has no cycle
« We prove it by contra positive
» We prove that if G contains a cycle ¢ the DFS of G yields a back edge.
« LetG hasacyclec.
» Let v be the first vertex to be discovered in c, and let (u, v) be the preceding edge in c.
« Attime d[v], the vertices of c form a path of white vertices from v to u.
+ By the white-path theorem, vertex u becomes a descendant of v in the depth-first forest.
Therefore, (u, v) is a back edge.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Theorem
TOPOLOGICAL-SORT (G) produces a topological sort of a directed acyclic graph G .

Proof
+ Let DFS s run on G to determine finishing times.
» It sufficient to show that for any two distinct u, v € V, if there is an edge in G from u to v,
then f[v] < f[u]
« Consider any edge (u, v) explored by DFS(G).
* When (u, v) is explored, v is gray, white or black

Case 1
e Vv is gray. v is ancestor of u. (u, v) would be a back edge. It contradicts the above
Lemma.

Case 2
» If vis white, it becomes a descendant of u, and hence f[v] < fu].

Case 3
» If vis black, it has already been finished, so that f[v] has already been set.
» Because we are still exploring from u, we have yet to assign a timestamp to f[u] to u, and
so once we do, we will have f[v] < f[u] as well.

Thus, for any edge (u, v) in the dag, we have f[v] < f[u]. It proves the theorem.

Strongly Connected Components
« A strongly connected component of a directed graph G = (V, E) is a maximal set of
vertices C # —V such that for every pair of vertices u and v in C, we have
— ud v, vis reachable from u.
— v &y uis reachable from v.
» The depth-first search can be used in decomposing a directed graph into its strongly
connected components.

Transpose of a Graph
« The strongly connected components of a graph G = (V, E) uses the transpose of G,
which is defined as
G" = (V, E"), where
E"={(u, V) : (v, u) € E}
E' consists of the edges of G with reversed directions.
« G and G" have exactly the same strongly connected components
— uand v are reachable from each other in G if and only if they are reachable from
each other in G".

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

STRONGLY-CONNECTED-COMPONENTS (G)
1 call DFS(G), to compute the finish time f [u] of each vertex u
2 Compute G.
3 Call DFS (G"), but in the main loop of DFS, consider the vertices in order of decreasing
flu]. (as computed in line 1)
4 Output of the vertices of each tree in the depth-first forest formed in line 3 as a separate
strongly connected component.

Total Running Time =* (V + E)

—— ———

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Component Graph

a b c d 0
ab,
= Sl - Fo—C D

« The component graph G°°¢ = (V5¢¢, ES¢)
VSC = {vi, Vo, ..., v}, where v; corresponds to each strongly connected
component C;
— There an edge (v;, v)) € E*C if G contains a directed edge (x, y) for some x € C;
andy e C
» The component graph is a DAG Lemma

Lemmal
+ LetCandC’ bedistinct SCC’sin G
e Letu,veC,andu,v e€C
» Suppose thereisapathu € u'in G
* Then there cannot also be a path v’ € vin G.

» Suppose there is path v’ & v

» Thereexistsu & U & Vv’

e Thereexists vV & v & u

* uandV are reachable from each other, so they are not in separate SCC’s: contradiction!

Notations

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Notations: Vertices to SCC
+ dand ftimes of vertices of SCC
+ LetUcV,aSCC
— d(U) = minugy { d[u] } (earliest discovery time)
- f(U) = max yy { flu] } (latest finishing time)

d(C,)=11
f(C,) =16

Lemma 2
»+ Let C and C’ be distinct SCCs in a directed graph G = (V, E). If there is an edge (u, v) €
E, where u e Cand v € C’ then f(C) > f(C’).

Proof
» Consider C1 and C2, connected by edge (u, V)
» There are two cases, depending on which strongly connected component, C or C’, had
the first discovered vertex during the depth-first search

Case 1
« If d(C) < d(C"), let x be the first vertex discovered in C. At time d[x], all vertices in C and
C' are white.
« There is a path in G from x to each vertex in C consisting only of white vertices.
» Because (u, v) € E, for any vertex w € C', there is also a path at time d[x] from x to w in

G consisting only of white vertices: x & u l v & w.
» By the white-path theorem, all vertices in C and C' become descendants of x in the
depth-first tree. By Corollary, f[x] = f(C) > f(C’).

« d(C)>d(C) (supposition)

* Now (u,Vv) € E,whereu € Candv € C’ (given)

» Lety be the first vertex discovered in C'.

« At time d[y], all vertices in C' are white and there is a path in G from y to each vertex in
C' consisting only of white vertices.

» By the white-path theorem, all vertices in C' become descendants of y in the depth-first
tree, and by Corollary, fy] = f(C').

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

« Attime d[y], all vertices in C are white. Since there is an edge (u, v) from C to C', Lemma
implies that there cannot be a path from C' to C.

» Hence, no vertex in C is reachable from y.

» Attime fly], therefore, all vertices in C are still white.

» Thus, for any vertex w € C, we have f[w] > fly], which implies that f(C) > f(C’).

Corollary
Let C and C' be distinct strongly connected components in directed graph G = (V, E). Suppose
that there is an edge (u, v) € E', whereu € Cand v e C'. Then f(C) < f(C")

Proof
« Since (u,Vv) € E', we have (v, u) € E.
« Since strongly connected components of G and G' are same, Lemma implies that f(C) <
f(C".

Theorem: Correctness of SCC Algorithm
STRONGLY-CONNECTED-COMPONENTS (G) correctly computes SCCs of a directed graph
G.

Proof

« We argue by induction on number of DF trees of G' that “vertices of each tree form a
SCC”.

» The basis for induction, when k = 0, is trivial.

« Inductive hypothesis is that, first k trees produced by DFS of G are strongly connected
components.

« Now we prove for (k+1)* tree produced from G, i.e. vertices of this tree form a SCC.

« Let root of this tree be u, which is in SCC C.

* Now, flu] = f(C) > f(C'), V C' yet to be visited and = C

* By inductive hypothesis, at the time search visits u, all other vertices of C are white.

» By white-path theorem, all other vertices of C are descendants of u in its DF tree.

« Moreover, by inductive hypothesis and by Corollary above, any edges in G, that leave C
must be, to SCCs that have already been visited.

« Thus, no vertex in any SCC other than C will be a descendant of u during the DFS of G.

« Thus, vertices of DF tree in G' rooted at u form exactly one SCC.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 31
Backtracking and Branch & Bound

Algorithms
Today Covered
» Why backtracking? — Knapsack Problem
» What is backtracking? — The Queens Problem
» Backtracking « Branch and bound technique
— Solution Spaces — Assigning Task to Agents

Why BackTracking?
» When the graph is too large
— Depth and breadth-first techniques are infeasible
» In this approach if node searched for
— is found out that cannot exist in the branch then
— return back to previous step and continue the search to find the required node
» What is backtracking?

What is BackTracking?

» Backtracking is refinement of Brute Force approach

« Itis atechnigue of constraint satisfaction problems

» Constraint satisfaction problems are with complete solution, where elements order does
not matter.

» In backtracking, multiple solutions can be eliminated without examining, by using specific
properties

» Backtracking closely related to combinatorial search

» There must be the proper hierarchy in produces

* When a node is rejected, whole sub-tree rejected, and we backtrack to the ancestor of
node.

» Method is not very popular, in the worst case, it takes an exponential amount of time to
complete.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Solution Spaces

» Solutions are represented by vectors (vy, ..., V) of values. If S; is the domain of v;, then
S; x ... X S, is the solution space of the problem.
» Approach
— It starts with an empty vector.

— At each stage it extends a partial vector with a new value

— Upon reaching a partial vector (v4, ..., Vv;, V) which can’t represent a partial
solution, the algorithm backtracks by removing the trailing value from the vector,
and then proceeds by trying to extend the vector with alternative values.

General Algorithm: Solution Spaces
ALGORITHM try(vy,...,V;)
IF (vy,...,V)) is a solution
THEN RETURN (vq,...,V})
FOR each v DO
IF (vi,...,v;,V) is acceptable vector
THEN
sol = try(vy,...,V;,V)
THEN RETURN sol

Knapsack: Feasible Solutions
» Partial solution is one in which only first k items have been considered.
— Solution has form Sy = {Xy, X2,..., X}, 1<k <n.
— The patrtial solution Sy is feasible if and only if

Zk:wixi <C
i=1

— If S¢ is infeasible, then every possible complete solution containing Sy is also
infeasible.

Knapsack Example: Backtracking
Maximum Capacity = 8

i |1 2 3 4
v, |3 5 6 10
w, |2 3 4 5

(2,2,3;11) means that two elements of each weight 2 and one element of weight 3 is with total
value 11

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

2.3 3;5 4:6 5;10

2,261(2,3;8][2,4;9](2,5;13] |3,3;10]/3,4;11](3,5;15]

Knapsack Algorithm: Backtracking

BackTrack(i, r) \ BackTrack(1, C)
b«0
{try each kind of item in tern}
fork<«iton

do

if w(k) < r then
b < max (b, v[K] + BackTrack(k, r - wk]))
return b

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

file://BackTrack(1

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 32
Minimal Spanning Tree Problem

Today Lecture Covers

» Importance of Minimal Spanning — Algorithm
Trees (MST) — Analysis
+ MST Problem * Prim’s Algorithm
— Definitions and analysis — Algorithm
— Generic Solution — Analysis
— Proofs of correctness + Conclusion

» Kruskal’s Algorithm

Minimum Spanning Tree
» Given agraph G = (V, E) such that
G is connected and undirected
— w(u, v) weight of edge (u, v)
— Tis a Minimum Spanning Tree (MST) of G if
— Tis acyclic subset of E (T 71 E)
— It connects all the vertices of G and
—~ Total weight, w(T) = Y w(u,V)is minimized
(u,v)eT
Example of MST
* Minimum spanning trees are not unigque
— If we replace (b, c) with (a, h), get a different spanning tree with the same cost
* MST have no cycles
— We can take out an edge of
— acycle, and still have the
— vertices connected while reducing the cost

Generic Solution : To Compute MST
Minimum-spanning-tree problem: Find a MST for a connected, undirected graph, with a weight
function associated with its edges

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

A generic solution:
+ Build a set A of edges
(initially empty)
* Incrementally add edges to A such that they would belong to a MST
* Anedge (u, v) is safe for A < A U {(u, v)} is also a subset of some MST

How to Find Safe Edge?
» Letuslook at edge (h, g)
— Is it safe for A initially?
— Let S c V be any set of vertices that includes h but not g (so thatgisinV - S)
— In any MST, there has to be one edge (at least) that connects Swith V - S
— Why not choose edge with minimum weight (h, g)

Generic Algorithm: Minimum Spanning Tree

GENERIC-MST(G, w)

1 A<Q Initialization g
2 while A does not form a spanning tree £
3 do find an edge (u, v) that is safe } g
for A Termination g
4 A—AuU {(uVv)}

5 return A

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Strategy: Growing Minimum Spanning Tree

The algorithm uses greedy strategy which grows MST one edge at a time.

Given a connected, undirected graph G = (V, E) with a weight functionw : E 7 R
Algorithm manages a set of edges A, maintaining loop invariant

Prior to each iteration, A is a subset of some MST

An edge (u, v) is a safe edge for A such that A U {(u, v)} is also a subset of some MST.
Algorithms, discussed here, to find safe edge are

— Kruskal’s Algorithm

— Prim’s Algorithm

Definitions (Kruskal’s Algorithm)

A cut (S, V-S) of an undirected graph is a partition of V

An edge crosses the cut (S, V-S) if one of its endpoints is in S and the other is in V-S.

A cut respects set A of edges if no edge in A crosses cut.

An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing
the cut.

Theorem (Kruskal’s Algorithm)

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w on E. Let
A be a subset of E that is included in some minimum spanning tree for G, let (S, V -S) be any
cut of G that respects A, and let (u, v) be a light edge crossing (S, V - S). Then, edge (u, v) is
safe for A.

Proof

Let T be a minimum spanning tree
that includes A (edges of A are
shaded),

Assume that T does not contain the
light edge (u, v), since if it does, we
are done.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Construction of another MST

For(u,v) ¢ T

We construct another MST T' that includes A U {(u, v)} by cut-and-paste, and showing
that (u, v) is a safe A.

Since (u, v) crosses cut set (S, V-S) and

(u,v) ¢T,

Hence there must be an edge (x, y) € T which crosses the cut set

By removing (X, y) breaks T into two components.

Adding (u, v) reconnects them to form a new spanning tree T'=T - {(x, ¥)} U {(u, V)}.

Show that T' is a minimum spanning tree.

Since (u, V) is a light edge crossing (S, V - S) and (X, y) also crosses this cut, w(u, v) <
w(X, Y).

Hence, w(T') = w(T) - w(x, y) + w(u, v) < w(T).

But T is a MST, so that w(T) < w(T"); thus, T' must be a minimum spanning tree also.

Show that (u, v) is safe for A: (u, v) can be part of MST

Now (X, y) is not in A, because the cut respects A.
SinceAcTand(x,y) g A=>AcCT-{(x y)}
Av{uvcT-{x ytuf{uvi=T

Since T is an MST = (u, v) is safe for A

Kruskal’s Algorithm

MST-KRUSKAL (G, w)
1A—0O
2 for each vertex ve V[G]

3

4
5
6
7
8
9

do MAKE-SET(v)
sort edges in non-decreasing order by weight w
for each (u, v) in non-decreasing order by weight
do if FIND-SET(u) # FIND-SET(v)
then A — A U {(u, v)}
UNION (u, v)
return A

Total Running time = O (E Ig V),

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Kruskal’s Algorithm

Edges Weight | Edges Weight
(9, h) 1 (h,) 7

(c, i) 1 (a, h) 8

(f. 9) 2 (b, ©) 8

(a, b) 4 (d, e) 9

(c, 1) 4 (e, f) 10

(g, i) 6 (b h) 11

(c, d) 7 (d,) 14

Initial sets = {a}, {b}, {c}, {d}, {e}, {f}, {a}, {h},
{i}
Final sets = {a}, {b}, {c}, {d}, {e}, {f}, {9, h},
{i}

A=
(g, h) is the least weight edge
FIND-SET (g) # FIND-SET (h)
A=A U {(g h}
UNION (g, h)

Initial sets = {a}, {b}, {c}, {d}, {e}, {f}, {g, h},
{i}
Final sets = {a}, {b}, {c, i}, {d}, {e}, {f}, {g, h}

(c, i) is the least weight edge
FIND-SET (c) # FIND-SET (i)
A=A U {(c, i)}
UNION (c, i)

Initial sets = {a}, {b}, {c, i}, {d}, {e}, {f}, {q, h}
Final sets = {a}, {b}, {c, i}, {d}, {e}, {f, g, h}

(f, g) is the least weight edge
FIND-SET (f) # FIND-SET (Q)
A=A U {(f 9)}
UNION (f, g)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Initial sets = {a}, {b}, {c, i}, {d}, {e}, {f, g, h}
Final sets = {a, b}, {c, i}, {d}, {e}, {f, g, h}

(a, b) is the least weight edge
FIND-SET (a) # FIND-SET (b)
A=A U {(a, b)}
UNION (a, b)

Initial sets = {a, b}, {c, i}, {d}, {e}, {f, g, h}
Final sets = {a, b}, {c, f, g, h , i}, {d}, {e}

(c,) is the least weight edge
FIND-SET (c) # FIND-SET (f)
A=A U {(c N}
UNION (c, f)

Initial sets = {a, b}, {c, f, 4, h, i}, {d}, {e}
Final sets = {a, b}, {c, f, g, h, i}, {d}, {e}

(g, i) is the least weight edge
FIND-SET (g) = FIND-SET (i)

Initial sets = {a, b}, {c, f, g, h, i}, {d}, {e}
Final sets = {a, b}, {c, d, f, g, h, i}, {€}

(c, d) is the least weight edge
FIND-SET (c) # FIND-SET (d)
A=A U {(c, d)}
UNION (c, d)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Initial sets = {a, b}, {c, d, f, g, h_, i}, {e}
Final sets = {a, b}, {c, f, d, g, h, i}, {e}

(h, i) is the least weight edge
FIND-SET (h) = FIND-SET (i)

Initial sets = {a, b}, {c, d, f, g,._h, i}, {e}
Final sets={a, b, c,d, f, g, h, i}, {e}
(a, h) is the least weight edge
FIND-SET (a) # FIND-SET (h)

A=A U {(@a h)}

UNION (a, h)

Initial sets ={a, b, ¢, d, f, g, h, i}, {e}
Final sets={a, b, c,d, f, g, h, i}, {€}

(b, ¢) is the least weight edge
FIND-SET (b) = FIND-SET (c)

Initial sets = {a, b, ¢, d, f, g, h, i}, {e}
Final sets={a, b, c,d, e, f, g, h,i}

(d, e) is the least weight edge
FIND-SET (d) # FIND-SET (e)
A=A U {(d,e)}
UNION (d, e)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Initial sets ={a, b, ¢, d, e, f, g, h, i}
Final sets={a, b,c,d, e, f,g, h, i}

(e, f) is the least weight edge
FIND-SET (e) = FIND-SET (f)

Initial sets = {a, b, ¢, d, e, f, g, h, i}
Final sets={a, b, c, d, e, f, g, h, i}

(b, h) is the least weight edge
FIND-SET (b) = FIND-SET (h)

Initial sets = {a, b, ¢, d, e, f, g, h, i}
Final sets={a, b, c,d, e, f,g, h, i}

(d, f) is the least weight edge
FIND-SET (d) = FIND-SET (f)

Correctness of Kruskal’s Algorithm

Used to determine the safe edge of GENERIC-MST
The algorithm manages set of edges A which always form a single tree.
The tree starts from an arbitrary vertex r and grows until tree spans all the vertices in V.
At each step, a light edge added to the tree A that connects A to an isolated vertex of Ga
=(V,A)
It is a greedy algorithm
— At each step tree is augmented with an edge that contributes least possible
amount to tree’s weight
Since vertices, of each edge considered, are in different sets hence no cycle is created.

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Prim’s Algorithm
MST-PRIM (G, w, r)
1 foreachu eV [G]

2 do key[u] < =

3 m[u] < NIL

4 key[r] <0

5 Q< V]G]

6 whileQ#d

7 do u «— EXTRACT-MIN(Q)

8 for each v € Adj[u]

9 do if v € Q and w(u, v) < key[V]
10 then T1[v] <« u

11 key[v] < w(u, v)

Q= @ Total time: O(VIgV + ElgV) = O(ElgV)
foreachueV

do key[u] — = O(V) if Q is implemented as a min-heap
B

Tr[u] < NIL
INSERT(Q, u)

DECREASE-KEY(Q,r,0) » key[r] < 0

whileQ = & Executed |V|times } 2",12}232&:
do u — EXTRACT-MIN(Q) ~— Takes O(igV)] O(VigV)

Executed O(E) times
do if v e Q and w(u, v) < key[v]— Constant O(ElgV)
then Tr[v] —u

DECREASE-KEY(Q, v, w(u, V))
Takes O(lgV)

foreach v € Adj[u]

* The performance depends on the implementation of min-priority queue Q.
» Using binary min-heap Total Running time =0 (E lg V)
» Using fibonacci heaps Total Runningtime=0 (E+VIg V)

For each vertex u € V(G)
key[u] = =

1 [u] = NIL

Considering a as root node
key[a] =0

(e

&/,

Q la]p]cld]e|rlg]n]i]

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

a = EXTRACT-MIN(Q)
Adj[a] = b, h
b e Qand
w(a, b) < key[b] (4 < «)
mb] = a
key[b] =w(a, b) =4
h e Qand
w(a, h) < key[h] (8 < =)
mh] = a
key[h] =w(a, h) =8

b = EXTRACT-MIN(Q)
Adjlb]=a, ¢, h
a’Q
c e Qand
w(b, c) <keyl[c] (8 < «)
mc]=b
key[c] =w(b, c)=8
h e Qand
w(b, h) < key[h]

fleln]i] (but 11 > 8)

e

Q [c]d

! ¢ = EXTRACT-MIN(Q)
Adj[c] =b, d, f,i
b”Q
d e Qand
w(c, d) < key[d] (7 < «)
md]=c
key[d] =w(c, d) =7
f e Qand
: w(c, f) <key[f] (4 < «)
Tl] T
key[f] = w(c, f) =4
i e Qand
w(c, i) < keyli] (2 < =)
mli]=c
key[i] = w(c, i) =

Q [4f

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

i = EXTRACT-MIN(Q)
Adjlil=c, g, h
c7Q
g € Qand
w(i, g) < key[g] (6 <)
mg] =1
key[g] = w(i, g) = 6
h e Qand
w(i, h) < key[h] (7 < 8)

Q mh] = |
7

87 key[h] = w(i, h) = 7

. f = EXTRACT-MIN(Q)
Adj[fl=c,d,e, g
e
d e Qand
w(f, d) < key[d]
But (14 < 7)
e e Qand
w(f, e) < key[e] (10 < =)
mfe] =f
key[e] = w(f, e) =10
g € Qand
w(f, g) <key[g] (2 < 6)
mg] =f
key[g] = w(f, g) = 2

g = EXTRACT-MIN(Q)
Adjlg] =1, h, i
f7Q
h €eQand
w(g, h) <key[h] (1 <7)
mh]1 =g
key[h] =w(g, h) =1
i72Q

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

h = EXTRACT-MIN(Q)
Adj[h]=a, b, g, i
a’2Q

b”Q

9/7Q

1 7Q

d = EXTRACT-MIN(Q)
Adjd]=c, e, f
c”Q
e e Qand
w(d, e) < key[e] (9 < 10)
me]=d
keyle] =w(d, e)=9
f7Q

e = EXTRACT-MIN(Q)
Adj[e] = d, f

d/Q

f2Q

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Importance of Minimal Spanning Trees
There are various applications of Minimal Spanning Trees (MST). Let us consider a couple of
real-world examples

« One practical application would be in designing a network.
— For example, a group of individuals, separated by varying distances, are to be
connected in a telephone network.
— Although MST cannot do anything about distance from one connection to another,
but it can reduce connecting cost.
» Another useful application of it is finding airline routes.
— The vertices of the graph would represent cities, and the edges would represent
routes between the cities.
— Obviously, more traveling require more cost
— Hence MST can be applied to optimize airline routes by finding the least costly paths
with no cycles.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 33
Single-Source Shortest Path

Today Covered

» Road map problem — Relaxation property

» Linking road map problem with — Algorithm design and
graph theory analysis

+ Paths and Shortest paths — Proof of correctness

» Cycles and their role in finding » Applications
shortest paths + Conclusion

» The Bellman-Ford Algorithm
— Initialization of graphs

Road Map Problem
+ We are given a road map on which the distance between each pair of adjacent cities is
marked, and our goal is to determine the shortest route from one city to another.
» The number of possible routes can be huge.
+ How do we choose which one routes is shortest?
» This problem can be modelled as a graph
* And then we can find the shortest path from one city to another using graph algorithms.
» How to solve this problem efficiently?

Linking Road Map with Graph Theory

Road map problem
» This problem can be modeled as a graph problem
* Road map is a weighted graph:
set of vertices = set of cities
set of edges = road segments between cities
edge weight = length between two cities
— Goal: find a shortest path between two vertices i.e. between two cities

Weight of a Path
* In a shortest path problem, a weighted, directed graph G = (V, E) is given with weight
function
w : E 7 R mapping edges to real-valued weights.
« The weight of path p =(v,,V, ,..., V) is the sum of the weights of its constituents edges

w(p) = ZW(Vi—l' V)

=W(Vy, V) +W(V, V) 4.+ WY, g, V)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Shortest Path
» A shortest path from vertex u to v is denoted by & (u, v) and is defined as

S5(U, V) = min{w(p):u—>—>v} if thereis a path fromutov
1 o0 otherwise

» Weight of edges can represent any metric such as

— Distance, — penalty,
— time, — loss etc.
— cost,

Variants of Shortest Path

» Single-source shortest path

- G =(V, E) = find a shortest path from a given source vertex s to each vertex v
Vv

» Single-destination shortest path
— Find a shortest path to a given destination vertex t from each vertex v
— Reverse the direction of each edge = single-source

» Single-pair shortest path
— Find a shortest path from u to v for given vertices u and v
— Solve the single-source problem

» All-pairs shortest-paths
— Find shortest path for every pair of vertices u and v of G

Lemma : subpath of a shortest path, a shortest path

Statement

Given a weighted, directed graph G = (V, E) with weight functionw : E - R, let p = N\ vy, Va,..., VW
1 be a shortest path from vertex v, to vertex vy, for any i, j such that 1 <i <j <Kk, let pj = N v,
Vis1,..., Vj T be subpath of p from v; to vertex v;. Then, p; is a shortest path from v; to v;.

Proof

+ We prove this lemma by contradiction

- If we decompose path p into v, £ v; 877 v; 87 v, then we have that w(p) = w(py;) + w(p;)
+ W(pjc)

+ Now, assume that there is a path p’; from v; to v; with weight w(p’;) < w(p;)

« Thatis there is a subpath p’;; from v; to vertex v; which is shortest than p;;

« Then, vy 3" v; 8" v; 8% v, is a path from vertices v; to v, whose weight w(py) + w(p’y) +
w(pj) is less than w(p).

+ It contradicts the assumption that p is a shortest path from v; to vy.

» Hence subpath of a given shortest path is also a shortest path.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Why Positive Cycle Not?

* s — a: only one path
o(s,a)=w(s,a)=3

* S — b: only one path
d(s, b) =w(s, a) + w(a, b) =-1

* S — c:infinitely many paths
(s, c), (s, c,d,c)(s,cd,c,d,c)

+ cycle has positive weight (6 - 3 = 3)
(s, ¢) shortest path with weight
d(s, ¢) =w(s, c) =5,

» Positive cycle increases length of paths

Why Negative Cycle Not?

* s — e:infinitely many paths:

- (s,e) (s, e f e) (s efe,fe)etc.

— cycle (e, f, e) has negative weight:
3+(-6)=-3

— paths from s to e with arbitrarily large
negative weights

— 9(s,) =- o = no shortest path exists
between s and e

— Similarly: (s, f) = - «, 8(s, g) = - ©

Removing cycles from shortest paths
« Ifp=(vV ..,V isapathand c = (v,v,, .., V) is a positive weight cycle on this path

then the path p’ = (Vy, Vi, .y Vis V.15 V00 - Vi) hAS weight w(p’) = w(p) — w(c) < w(p), and
SO p cannot be a shortest path from vq to vy
» As long as a shortest path has 0-weight cycles, we can repeatedly remove these cycles

from path until a cycle-free shortest path is obtained.

When is no shortest path?
+ There may be edges with negative weight.
» Acycle p = vp,V4,...,Vk,V iS @ negative cycle such that w(p) <0
« If a graph G = (V, E) contains no negative weight cycle reachable from the source s,
then for all v € V, shortest path d(s, v) remains well defined.
If there is a negative weight cycles reachable from s, then shortest path weight is not
well defined.
» If there is a path from u to v that contains a negative cycle, then shortest path is defined
as d(u,v) =-©

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Summary of cycles in SPP
+ Can shortest paths contain cycles?
* Negative-weight cycles:
» Positive-weight cycles:
— By removing the cycle we can get a shorter path
» Zero-weight cycles
— No reason to use them
— Can remove them to obtain a path with similar weight
Note
+ We will assume that when we are finding shortest paths, the paths will have no cycles

Representing Shortest Paths
+ Foragraph G=(V, E), a predecessor 1[Vv] is maintained for each vertex v € V
— Either vertex or NIL
— We are interested in predecessor subgraph G.=(Vy, Er) induced by 1 values,
such that
V. ={v e V:mv] #NIL} 1 {s}
Er={(m[Vv],v) € E:v € V- {s}}

Shortest Path Rooted Tree
+ Let G = (V, E) be a weighted, directed graph with weight function w : E 7 R and assume
that G contains no negative weight cycles reachable from the source vertex s € V, so
that shortest paths are well defined.
» A shortest path tree rooted at s is a directed subgraph G’=(V’, E’), where V' [1 V and E’
O E
» Shortest path are not necessarily unique and neither are shortest path trees.

Shortest path not unique
» Shortest path are neither necessarily
— unique and
— nor shortest path trees

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Initialization and Relaxation
Initialization
» All the shortest-paths algorithms start with initialization of vertices.

Relaxation
» For each vertex v € V, an attribute d[v] is defined and called a shortest path estimate,
maintained
— which is in fact, an upper bound on the weight of a shortest path from source s to
%

» Process of relaxing an edge (u, v) consists of testing whether we can improve shortest
path to v found so far, through u, if so update d[v] and T[v].

Relaxation
» Relaxing edge (u, V), testing whether we can improve shortest path to v found so far
through u
- If d[v] > d[u] + w(u, V)
- we can improve the shortest path to v
- = update d[v] and =[V]

d[v] = d[u] + w(u, v) d[v] < d[u] + w(u, v)

v
0
@ RELAX(u, v, w) @ RELAX(u, v, w)
u 5 v

Initialization and Relaxation
INITIALIZE-SINGLE-SOURCE (G, s) RELAX (u, v, W)
1 for each vertexv € V[G] 1 if dv] > d[u] + w(u, V)
2 do d[v] « = 2 then d[v] < d[u] + w(u, V)
3 m[v] < NIL 3 m[Vv] < u

4 d[s] =
Running time = % (V)
Note:

All the single-source shortest-paths algorithms, start by calling INIT-SINGLE-SOURCE then
relax edges. The algorithms differ in the order and how many times they relax each edge

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

The Bellman-Ford Algorithm
Input:

» Weighted, directed graph G, edges may be negative with weight functionw : E — R,
Output

« it returns boolean value indicating whether or not there is a negative-weight cycle

reachable from source.
« If there is such a cycle, it indicates no solution exists
» Else it produces shortest paths and their weights.

Note:
» It uses relaxation progressively decreasing estimate d[v] on weight of a shortest path
from source s to each vertex v ' V until it achieves actual SP weight &(s, V).

BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s) & (V)
2 fori—1t0|V[G] -1 % (E)

3 do for each edge (u, v) € E[G]

4 do RELAX (u, v, w)

5 for each edge (u, v) € E[G] O(E)
6 do if d[v] > d[u] + w(u, V)

7 then return FALSE

8 return TRUE

Total Running Time = O(E)
For each vertex v € V(G)
dV] «— =

m[v] < NIL

Considering s as root node
ds]=0

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Considering edge (s, t)

d[t] > d[s] + w(s, t) (~>0+6)
dt] < d[s] + w(s, 1)
dtj <« 0+6=6
mft] « s

Considering edge (s, y)

dly] > d[s] + w(s, y) (»>0+7)
dly] < d[s] + w(s, t)
dy] < 0+7=7
my] < s

Considering edge (t, y)
dly] > d[t] + w(t, y)
But (7 < 6 +8)
Considering edge (t, z)
dlz] > d[t] + w(t, z) (~ > 6 +(-4))
d[z] « d[t] + w(t, 2)
d[z] — 6+ (-4)=2
m[z] «t
Considering edge (y, x)
d[x] > d[y] + w(y, x) (© > 7 +(-3))
d[x] < d[y] + w(y, X)
dix] 7+ (-3)=4
TX] <y

Considering edge (x, t)
dit] > d[x] + w(x, t) (6 > 4 + (-2))
d[t] < d[x] + w(x, t)
ditj —4+(-2)=2
T[] < X
Considering edge (y, 2)
diz] > d[y] + w(y, z)
but(2<7+9)
Considering edge (z, x)
d[x] > d[z] + w(z, X)
but(4<2+7)
Considering (z, s)
d[s] > d[z] + w(z, S)
but(0<2+2)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lemmal

Let G = (V, E) be a weighted, directed graph with source s and weight function w : E — R, and
assume that G contains no negative-weight cycles that are reachable from s. Then, after the |V|
- 1 iterations of the for loop of lines 2-4 of BELLMAN-FORD, we have d[v] = &(s, v) for all
vertices v that are reachable from s.

Proof

» We prove the lemma by appealing to the path-relaxation property.

» Consider any vertex v that is reachable from s, and let p = \ Vg, Vi,..., Vx T, where vo = s
and v, = v, be any acyclic shortest path from s to v.

» Path p has at most |V| - 1 edges, and so k < |V| - 1.

» Each of the |V] - 1 iterations of the for loop of lines 2-4 relaxes all E edges.

* Among the edges relaxed in the ith iteration, for i = 1, 2,..., Kk, is (Vi.1, V).

» By the path-relaxation property, therefore, d[v] = d[vi] = 8(s, Vi) = &(s, V).

Theorem : Correctness of Bellman-Ford algorithm
Let BELLMAN-FORD be run on weighted, directed graph G = (V, E), with source vertex s, and
weight functionw : E —» R.
» If G contains no negative-weight cycles that are reachable from s, then
— d[v] = d(s, v) for all verticesv € V, and
— the algorithm returns TRUE
— the predecessor subgraph G1r is shortest-paths tree rooted at s.
« If G does contain a negative weight cycle reachable from s, then the algorithm returns
FALSE.

Proof:
Case 1
Suppose graph G contains no negative-weight cycles that are reachable from the source s.
» We first prove the claim that at termination, d[v] = 8(s, v) for all verticesv "' V.
— Ifvis reachable from s, Lemma above proves it.
— If v is not reachable from s, then the claim follows from the no-path property.
Thus, the claim is proven.
» The predecessor subgraph property, along with the claim, implies that G;; is a shortest-
paths tree.
» Now we use the claim to show that BELLMAN-FORD returns TRUE.
— At termination, for all edges (u, v)
— dv] =8(s, v) £ 8(s, u) + w(u, v) =d[u] + w(u, v),
— It therefore returns TRUE

Case 2,
» Suppose that graph G contains a negative-weight cycle that is reachable from the
source s
» Letthis cycle be ¢ = \vg, vy,..., W, where vy = v,

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Then, Zklw(vi_l, v,) <0 (A)

» Assume for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE.
e Thus, dvi] < d[viq] + w(viq, v) fori=1, 2,..., k.
+ Summing the inequalities around cycle c gives us

Z dlv,]< Z (dlvi_]+ w(v,_;, v))

= Z (d [Vi—l] + ZW(VH’ Vi)

+ Since vy = Vi, each vertex in ¢ appears exactly once in each of the summations and, and
SO

> dlv]=> dlv..]

» Of course d[v] is finite for i = 1, 2,..., k. Thus,
k
0< > W(v,_y, V)
i=1

* Which contradicts inequality (A). And hence it proves the theorem

Applications
Different applications of shortest path
« Transportation problems
— finding the cheapest way to travel between two locations
* Motion planning
— what is the most natural way for a cartoon character to move about a simulated
environment
« Communications problems
— how look will it take for a message to get between two places which two locations
are furthest apart i.e.
— what is the diameter of network

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 34
Proof: Bellman-Ford Algorithm &
Shortest Paths in Directed Acyclic Graphs

Today Covered

» Bellman-Ford Algorithm — Assumptions
— Analysis — Algorithm
— Proof — Analysis
» Shortest path in Directed Acyclic — Proof of correctness
Graphs

Analysis: The Bellman-Ford Algorithm
BELLMAN-FORD (G, w, S)

1 INITIALIZE-SINGLE-SOURCE (G, s) & (V)
2 fori—1to|VI[G] -1

3 do for each edge (u, v) € E[G] % (V.E)

4 do RELAX (u, v, w)

5 for each edge (u, v) € E[G] O(E)
6 do if d[v] > d[u] + w(u, V)

7 then return FALSE

8 return TRUE

Total Running Time = O(V.E)

Lemmal
Statement: Let G =(V, E) be
« directed, with source s,
+ aweighted, with weight function w : E — R, and
« Contains no negative-weight cycle reachable from s. Then, after the |V| - 1 iterations of
the for loop of lines 2-4 of BELLMAN-FORD, we have d[v] = &(s, v) for all vertices v that
are reachable from s.

Path relaxation property
« Ifp=Xwvp Vvy,.., Vi 1, be a shortest path from s = v, to vi and edges of p are relaxed in
the order (v, V1), (V1, V2) . . . (Vk1, Vi), then d(vy) = 8(s, Vi)

Proof

+ We prove it using path-relaxation property.

» Consider any vertex v that is reachable from s

* And let p =~ vy, Vi,..., Vk T, be any acyclic shortest path from s to v, where vy, = s and v,
=V,

» As there are k+1 vertices in the path p, hence there must be k edges in p.

» Because Graph has |V| vertices and path p contains no cycle, hence path p has at most
V| - 1 edges, and therefore, k < |V] - 1.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» Each of the |V] - 1 iterations of the for loop of lines 2-4 relaxes all E edges.

+ Ati=1, edge (vo, v4) is relaxed, and d[v,] = &(s, V1)

« Ati=2, edge (v, V,) is relaxed, and d[v,] = &(s, V,)

» By mathematical induction we can prove that

+ Ati=Kk, edge (Vi.1, Vk) is relaxed, d[vi] = 8(s, V)

» Hence all the edges (vi.1, vi) will be relaxed after the iterations, i =1, 2,..., k.
By the path-relaxation property, after k™ iteration, d[v] = d[v] = d(s, Vi) = d(S, V).
» Hence we have proved the required result using path relaxation property.

Theorem : Correctness of Bellman-Ford algorithm
Let BELLMAN-FORD be run on weighted, directed graph G = (V, E), with source vertex s, and
weight functionw : E — R.
« If G contains no negative-weight cycles that are reachable from s, then
— d[v] = d(s, v) for all verticesv € V, and
— The algorithm returns TRUE
— The predecessor subgraph Gt is shortest-paths tree rooted at s.
» If G does contain a negative weight cycle reachable from s, then the algorithm returns

FALSE.
Proof
Case 1

Suppose graph G contains no negative-weight cycles that are reachable from the source
S.

» We first prove the claim that at termination, d[v] = &(s, v) for all vertices v [V .
— Ifvis reachable from s, Lemma above proves it.
— If vis not reachable from s, then claim follows from no-path property.
» The predecessor subgraph property, along with the claim, implies that G;; is a shortest-
paths tree.
(Once d[v] = &(s, v) for all v € V, the predecessor sub-graph is a shortest paths tree
rooted at s)
* Now we use the claim to show that BELLMAN-FORD returns TRUE.
— At termination, for all edges (u, v)
— dv] =98(s, v) £ 8(s, u) + w(u, v) =d[u] + w(u, v),
— It therefore returns TRUE
Case 2,
» Suppose that graph G contains a negative-weight cycle that is reachable from the
source s
» Let this cycle be ¢ = \vg, vy,..., W1, where vy = v,

Kk
Then, > w(v,_;, v;) <0 (A)
i=1
» Assume for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE.
e Thus, dvi] £ d[viq] + w(viq, V) fori=1, 2,..., k.
+ Summing the inequalities around cycle c gives us

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Z dlv;]< Z (d[v,]+ w(v, ;, v))

= Z (dlvi,]+ ZW(Vi—l' Vi)

» Since vy = Vi, each vertex in ¢ appears exactly once in each of the summations and, and
SO

k k
Zd[vi] = Zd[vi—l]
i=1 i=1
» Of course dv] is finite for i = 1, 2,..., k. Thus,
k
0<> WV, Vi)
i=1

» Which contradicts inequality (A). And hence it proves the theorem

Shortest Paths in Directed Acyclic Graphs
» By relaxing edges of Directed Acyclic Graph (dag) G = (V, E) according to topological
sort of vertices single source shortest path can be computed in # (V + E) time
» Shortest paths are always well defined in a dag
— Since even if there are negative-weight edges no negative weight cycle exists.
» It starts topologically sorting dag, to impose linear ordering of vertices.
— If there is path from u to v then u precedes v.
« Each vertex and each edge that leaves the vertex is processed that is why this approach
is well defined

Algorithm : Topological Sort
TOPOLOGICAL-SORT (G)

1. Call DFS(G) to compute f [v] of each vertex v € V.

2. Set an empty linked list L = @.

3. When a vertex v is colored black, assign it f (v).

4. Insert v onto the front of the linked list, L = {v}.L.

5. Return the linked list.

6. The rank of each node is its position in the linked list started from the head of the list.
Total Running Time = O(V + E)

Algorithm : Shortest Path (dag)
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G O (V+E)
2 INITIALIZE-SINGLE-SOURCE (G, s) 0 (V)

3 for each vertex u, taken in topologically sorted order e V)

4 do for each vertex v e Adj[u]

5 do RELAX (u, v, w)
(3 to 5) takes O(E)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Each iteration of for loop takes O(1)
Total Running Time = O(V+E)

SSSP in Directed Acyclic Graphs
For each vertex v € V(G)
dv] « =
m[v] « NIL
Considering s as root node
d[s]=0
The vertices are taken in
topologically sorted order

6 P 1 Adj[r]=s, t

d[s] > d[r] + w(r, S)
But (0 < = + 5)
d[t] > d[r] + w(r, t)
But (« < = + 3)

(0>0+2)
d[t] < d[s] + w(s, t)
0+2=2
mft] « s
d[x] > d[s] + w(s, x)
(oo >0+ 6)
d[x] < d[s] + w(s, X)
0+6=6
m[X] < s

Considering vertex s
Adj[s] =t, x
d[t] > d[s] + w(s, t)

Considering vertex t
6 % 1 Adjit] =x,y, z
d[x] > d[t] + w(t, x)
But (6 < 9)

dly] > dft] + w, y)
(= >2+4)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

dly] « d[t] + w(t, y)
2+4=6

d[z] < d[t] + w(t, 2)
2+2=4

my] <t mz] «t
d[z] > d[t] + w(t, 2)
(0>2+2)

Considering vertex x
AdjiX] =y, z
dly] > dix] + w(x, y)
(6>6+(-1))
dly] < d[x] + w(x, y)
6+(-1)=5
] — x
d[z] > d[x] + w(x, z)
But(4<6+1)

Adjly] = z
diz] > dly] + w(y, 2)
(4>5+(-2)
diz] < d[y] + w(y, z)
5+(-2)=3
mz] —y

Considering vertex z
Adj[z] = [/

Theorem: Proof of Correctness

If a weighted, directed graph G = (V, E) has source vertex s and no cycles, then at the
termination of the DAG-SHORTEST-PATHS procedure, d[v] = &(s, v) for all vertices v € V, and
the predecessor subgraph G;; is a shortest-paths tree.

Proof
+ We first show that d[v] = 8(s, v) for all vertices v € V at termination.

Case 1
« If vis not reachable from s, then d[v] = 8(s, v) = « by the no-path property.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Case 2
* Now, suppose that v is reachable from s, so that there is a shortest path p = Nvy,
Vi,.....,.VT, where vo = s and v, = V.
» Because we process the vertices in topologically sorted order, the edges on p are
relaxed in the order (vo, V1), (V1, V2),...... »(Vic1, Vi)-
» The path-relaxation property implies that d[vi] = &(s, v;) at termination fori=0, 1,..., k.
» Hence it proves the theorem

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 35
Dijkstra’s Algorithm

Problem Statement

» Given a graph G = (V, E) with a source vertex s, weight function w, edges are non-

negative, i.e., w(u,v) 20, Vv (u,v) € E

» The graph is directed, i.e., if (u, v) € E then (v, u) may or may not be in E.
» The objective is to find shortest path from s to every vertex u € V.

Approach

+ A“cloud S” of vertices, beginning with s, will be constructed, finally covering all vertices

of graph

+ For each vertex v, a label d(v) is stored, representing distance of v from s in the
subgraph consisting of the cloud and its adjacent vertices

» Ateach step

— We add to the cloud the vertex u outside the cloud with the smallest distance

label, d(u)

— We update labels of the vertices adjacent to u

Mathematical Statement of Problem
Input: A graph G(V,E) with source s, weight
w

Assumption:

Edges non-negative, w(u, v) 20, V (u, v) €
E

Directed, if (u, v) € E then (v, u) may be in E

Objective:
Find shortest paths from sto everyu € V

Approach
Maintain a set S of vertices whose final
shortest-path weights from s have been
determined

Repeatedly select, u € V — S with minimum
shortest path estimate, add u to S, relax all
edges leaving u.

Greedy, always choose light vertex in V-S
addto S

Edge Relaxation
Consider edge e = (u, z) such that

u is vertex most recently added to the
cloud S

z is not in the cloud

Relaxation of edge e updates distance d(z)
as
d(z) = min {d(2), d(u) + weight(e)}

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Dijkstra’s Algorithm
DIJKSTRA(G, w, S)
INITIALIZE-SINGLE-SOURCE(G, s)
S—¢d
Q «— VI[G]
while Q # &

do u — EXTRACT-MIN(Q)

S8 c {u
for each vertex v e Adj[u]
do RELAX (u, v, w)

0O ~N OO WNPE

Example: Dijkstra’s Algorithm

For each vertex v € V(G)
dv] « =
m[v] < NIL

Considering s as root node
dis]=0
S=/7

s is extracted form queue
S=S 7 {s}
Adj[s]=t,y
d[t] > d[s] + w(s, t)
(2>0+10)
d[t] « d[s] + w(s, 1)
0+10=10
mft] « s
dly] > d[s] + w(s, y)
(°>0+5)
Q |tlx]y dly] « dis] + (s Y
w5 0+5=5
my] s

(g |

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

dt] < d[y] + w(y, 1)
5+3=8
Tt <y
d[x] > dy] + w(y, x)

(oo >5+ 9)
d[x] — d[y] + w(y, x)
5+9=14
Tx] <y
diz] > d[y] + w(y,)
(o>5+2)
d(z] — d[y] + w(y, 2)
y is extracted form queue 5+2=7
S=S 7 {y} mz] <y
Adjly]l=t, %, z
d[t] > dy] + w(y, 1)
(10>5+3)

Z is extracted form queue
S=ES 7 {z}

Adj[z] = s, X

d[s] > d[z] + w(s, 2)
But(0<7+7)

d[x] > d[z] + w(z, X)

(14>7+6)
d[x] < d[z] + w(z, x)
7+6=13

m[X] « z

t is extracted form queue
S=S 7 {t}
Adlt] = x, y
d[x] > d[t] + w(t, x)
(13>8+1)
d[x] < d[t] + w(t, x)
8+1=9
[X] <t
dly] > d[t] + w(t, y)
But (5<8+3)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

X is extracted form queue
S=S 7{x}

Adj[x] =z

d[z] > d[x] + w(Xx, z)

But (7<9+4)

Analysis: Dijkstra’s Algorithm
Cost depends on implementation of min-priority queue
Case 1: Vertices being numbered 1 to |V|
» INSERT, DECREASE-KEY operations takes O(1)
+ EXTRACT-MIN operation takes O(V) time
« Sub costis O(V?)
» Total number of edges in all adjacency list is |E|
« Total Running time = O (V?+ E) = O(V?)

Case 2: Graph is sufficiently spare, e.g., E = O (V? /lgV)
Implement min-priority queue with binary min heap
Vertices being numbered 1 to |V|
+ Each EXTRACT-MIN operation takes O(IgV)
» There |V| operations, time to build min heap O(V)
* Sub costis O(V IgV)
+ Each DECREASE-KEY operation takes time O(IgV), and there are |E| such operation.
» Sub costis O(E IgV)
Hence Total Running time = O (V+ E) IgV = E IgV

Case 3: Implement min-priority queue with Fibonacci heap
Vertices being numbered 1 to |V|
+ Each EXTRACT-MIN operation takes O(lgV)
» There |V| operations, time to build min heap O(V)
* Sub costis O(V IgV)
+ Each DECREASE-KEY operation takes time O(1), and there are |E| such operation.
* Sub costis O(E)
Hence Total Running time = O (V.lgV + E) =V IgV

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Case 1: Computation Time

1. INITIALIZE-SINGLE-SOURCE(V, s) — O(V)

2. S«

3. Q< V[G] — O(V) build min-heap
4, whileQ=J

5. do u «— EXTRACT-MIN(Q) — o)

6. S—Su{u}

7. for each vertex v e Adj[u] — O(E)

8. do RELAX(u, v, w)

Running time: O(V? + E) = O((V?)
Note: Running time depends on Impl. Of min-priority (Q)

Case 2: Binary min Heap

1. INITIALIZE-SINGLE-SOURCE(V, s) — o)
2. S«
3. Q<V[G] — O(V) build min-heap
4. while Q= J — Executed O(V) times
5. do u — EXTRACT-MIN(Q) — O(lgV)
6. S — Su{u}
7. for each vertex v e Adj[u]
8. do RELAX(u, v, w) — O(E) times O(lgV)
Running time: O(VIgV + ElgV) = O(ElgV)
Case 3: Fibonacci Heap
1. INITIALIZE-SINGLE-SOURCE(V, s) — CI\Y)]
2. S
3. Q< V[G] — O(V) build min-heap
4. while Q= J — Executed O(V) times
5. do u «— EXTRACT-MIN(Q) — O(lgV)
6. S —Su{u}
7. for each vertex v e Adj[u]
8. do RELAX(u, v, w) — O(E) times O(1)

Running time: O(VIgV + E) = O(VIgV)

Theorem: Correctness of Dijkstra’s Algorithm
Dijkstra’s algorithm, runs on a weighted, directed graph G = (V, E) with non-negative weight
function w and source s, terminates with d[u] = &(s, u) for all vertices u " V.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Proof
* We use the following loop invariant:
— At start each iteration of the while loop of lines 4-8, d[v] = &(s, V) for each vertex v
e S.
» It suffices to show for each vertex u € V, we have d[u] = 8(s, u) at time when u is added
to set S.
» Once we show that d[u] = &(s, u), we rely on the upper-bound property to show that the
equality holds at all times thereafter.
Initialization:

Initially, S = &, and so the invariant is trivially true

Maintenance:

We wish to show that in each iteration, d[u] = &(s, u), for the vertex added to set S.
On contrary suppose that d[u] # 8(s, u) when u is added to set S. Also suppose that u is
the first vertex for which the equality does not hold.

We focus on situation at beginning of while loop in which u is added to S and derive a
contradiction.

First of all, u # s because s is the first vertex added to set S and d[s] = &(s, s) = 0 at that
time.

Secondly S # @ just before u is added to S, this is because s is at least in S.

There must be some path from s to u, otherwise d[u] = &(s, u) = « by no-path property,
which would violate our assumption that d[u] # &(s, u).

Because there is at least one path, there must be a shortest path p from s to u.

Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in V - S,
namely u.

Let us consider the first vertex y along p suchthaty € V- S, and let x € S be y's
predecessor.

Thus, path p can be decomposed: s 8 x — y $" u (either of paths pl or p2 may have
no edges.)

We claim that d[y] = &(s, y) when u is added to S.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Proof of Claim: observe that x € S.

Because u is chosen as the first vertex for which d[u] # d(s, u) when it is added to S, we
had d[x] = &(s, X) when x was added to S.

Edge (%, y) was relaxed at that time, and hence d[y] = &(s, y) (convergence property).
Because y occurs before u on a shortest path from s to u and all edge weights are
nonnegative (on path p2), we have &(s, y) < &(s, u),

Now d[y] = 8(s, y) < &(s, u) < d[u] = d[y] < d[u]

(1)

But because both vertices u and y were in V - S when u was chosen, we have d[u] <
diyl. 2)

From (1) and (2), d[u] = d[y]

Now, d[y] = &(s, y) < &(s, u) = d[u] = d[y] = &(s, y) = 9(s, u) .

Finally, d[u] = &(s, u), it contradicts choice of u

Hence, d[u] = &(s, u) when u is added to S, and this equality is maintained at all times
after that

Termination:

At termination, Q = @ which, along with our earlier invariant that Q = V - S, implies that
S=V.
Thus, d[u] = &(s, u) for all vertices u € V.

Lemmal
Statement

Proof

Let G = (V, E) be a weighted, directed graph with weight functionw : E — R, lets € V be
a source vertex. Assume that G contains no negative-weight cycles reachable from s.
Then, after the graph is initialized by INITIALIZE-SINGLE-SOURCE(G, s), the
predecessor sub-graph G, forms a rooted tree with root s, and any sequence of
relaxation steps on edges of G maintains this property as an invariant.

Initially, the only vertex in G, is the source vertex, and the lemma is trivially true.
Let Gt be a predecessor subgraph that arises after a sequence of relaxation steps.

First we prove that Gtr is a rooted tree.

Gy is acyclic

On contrary suppose that some relaxation step creates a cycle in the graph Gtr .

Let ¢ = <vg, Vy,....,V,> be cycle, where vy = v,

Then, v =viyfori=1,2,..,k

Now, without loss of generality, we can assume that it was the relaxation of edge (Vi.1,
V) that created the cycle in Gr.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Claim: all vertices on cycle c reachable from s.

Because each vertex has non-NIL predecessor, and it was assigned a finite shortest-
path estimate when it was assigned non-NIL 1 value

By upper-bound property, each vertex on ¢ has a finite shortest-path weight, and
reachable from s.

Shortest-path on c just prior RELAX(Vk.1, Vk, W)

Just before call, m[vi] = vy fori=1, 2,..., k- 1.

Thus, fori=1, 2,..., k - 1, last update to d[v|] was d[vi] « d[vi.] + W(Vi.1, V).
It is obvious that, d[vi] > d[Vik.1] + W(Vk.1, Vi)-

Summing it with k - 1 inequalities,

Z dlv,]> Z (d[v,_]+ w(v,_;,v,))
= id[vil]+i w(v, ,,V,)
But, Zk:d[vi] = Zk:d[vi_l]

k
Hence, 0> w(v;,V;)

1=1
Thus, sum of weights around cycle c is negative, which provides the contradiction.
We have proved that G1T is a directed, acyclic.

To show that it forms a rooted tree with root s
Sufficient to prove that V v e VT, there is a unique path from s to v in Gtr.
On contrary, suppose there are two simple paths from s to some vertex v, and (x # y)
pi: sdudx—>zdv
P22 sduly—>ziv
m[z] = x and T[z] = y, = X =y, a contradiction.
Hence there exists unique path in Gt from s to v. Thus G forms a rooted tree with root
S.

b. Now by predecessor subgraph property
d[v] = &(s, v) for all verticesv € V. Proved

Lemma 2

If we run Dijkstra's algorithm on weighted, directed graph G = (V, E) with nonnegative
weight function w and source s, then at termination, predecessor subgraph Gt is a
shortest paths tree rooted at s.

Proof: Immediate from the above lemma.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 36
All Pairs Shortest Paths

Today Covered
» All Pairs Shortest Paths
» Algorithms
— Matrix Multiplication
— The Floyd-Warshall Algorithm
» Time Complexity
+ Conclusion

All-Pairs Shortest Path (APSP): Approach
* In all-pair shortest path problems, graph G given as
— Directed, weighted with weight functionw : E» R
— where w is a function from edge set to real-valued weights
» Our objective is to find shortest paths, for all pair of verticesu, v € V,

Approach
» All-pair shortest path problem can be solved by running single source shortest path in |V|
times, by taking each vertex as a source vertex.
* Now there are two cases.

Edges are non-negative

Case 1
» Then use Dijkstra’s algorithm
« Linear array of min-priority queue takes O(V ®)
» Binary min-heap of min-priority queue, O(VE Ig V)
+ Fibonacci heap of min-priority queue takes O(V ?lg V+VE)

Negative weight edges are allowed

Case 2
» Bellman-Ford algorithm can be used when negative weight edges are present
« In this case, the running time is O(V %E)
« However if the graph is dense then the running time is O(V %)

* Unlike single-source shortest path algorithms, most algorithms of all pair shortest
problems use an adjacency-matrix representation
» Let us define adjacency matrix representation.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Adjacency Matrix Representation
Assumptions
» Vertices are numbered from 1, 2,. . ., |V]
* Inthis way input is an n x n matrix
+ W represents edges weights of n-vertex directed weighted graph G i.e.,
W = (w;), where

0 ifi=]j
w;; =< the weight of directed edge (i, j) if i=jand(,j)eE,
© if i=jand(i,))¢E

Shortest Path and Solution Representation
« For a moment we assume that negative-weight edges are allowed, but input graph
contains no negative-weight cycle
» The tabular output of all-pairs shortest-paths algorithms will be presented an n x n matrix
D = (d;j), where entry d;j contains the weight of a shortest path from vertex i to vertex j.

And the
» A Predecessor Matrix 1 = (11;), where
m; = NIL, if either i = j or no path fromito |

T = predecessor of j on some shortest path from i, otherwise

Example: All-Pairs Shortest Path
Given:

Directed graph G = (V, E)

Weight function w: E — R

Compute:
The shortest paths between all pairs of
vertices in a graph
Representation of result:

5 x 5 matrix of shortest-path distances &(u,
v)

5 x 5 matrix of predecessor sub-graph

Structure of Output: Sub-graph for each row
» For each vertex i € V the Predecessor Subgraph of G for i is defined as G i = (Vq, i,

E..), where
Vii={ € V:m#NIL} 7 {i} and
Eri={(,)):] € Vi —{i}}

* Gy, is shortest pat tree as was in single source shortest path problem

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Printing Output
PRINT-ALL-PAIRS-SHORTEST-PATH (1, i, j)

1 ifi=j

2 thenprinti

3 elseif m;=NIL

4 then print "no path from" i "to" j "exists"

5 else PRINT-ALL-PAIRS-SHORTEST-PATH (I, i, 1r3)
6 print j

Shortest Paths and Matrix Multiplication

Here we present a dynamic-programming algorithm for all-pairs shortest paths on a
directed graph G = (V, E).

Each major loop of dynamic program will invoke an operation very similar to
multiplication of two matrices, and algorithm looks like repeated matrix multiplication

At first we will develop ©(V*)-time algorithm and then improve its running time to O(V° Ig
V).

Before we go for dynamic solution, let us have a review of steps involved in dynamic-
programming algorithms.

Steps in Dynamic Programming

Steps on dynamic-programming algorithm are

Note:

» Characterize the structure of an optimal solution.

» Recursively define value of an optimal solution

« Computing value of an optimal solution in bottom-up

« Constructing optimal solution from computed information

Steps 1-3 are for optimal value while step 4 is for computing optimal solution

Structure of an Optimal Solution
Consider shortest path p from vertex i to j, and suppose that p contains at most m edges
— Ifi=j, then p has weight 0 and no edges
— If i and j are distinct, then decompose path p into i 8 k ~ j, where path p
contains at most m - 1 edges and it is a shortest path from vertex i to vertex Kk,
and
— Hence & (i, j) = & (i, k) + w.

r

A Recursive Solution
Let |’ = minimum weight of path i to j at most m edges

— m =0, there is shortest path i to j with no edges < i =], thus

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

|0 0 ifi=]j
ol ifi#

— m =1, compute using and adjacency matrix w

IRE min(LG, min {1+ ij})

1<k<n
i f 1 (D)
_EL'Q,{ | +ij}

» The actual shortest-path weights are therefore given by
i)Y Do (D
§(|,j)_lij _Iij_lij =...

3. Compute Shortest Path Weights Bottom-up
Input matrix W = (wj),
« Suppose that, L™ = (1;"™), where, m=1,2,..,n-1
« Compute series of matrices LY, L@ ..., L™,
« Objective function, L™ | at most n-1 edges in each path

« Observe that I;¥, = w;, for alli,j e V, and so LY =W
« Heart of the algorithm is : given matrices L™ and W, and compute the matrix L™
» That s, it extends shortest paths computed so far by one more edge.

Algorithm: Extension from L™% to L™
EXTEND-SHORTEST-PATHS (L, W)

1 n < rows[L]

2 letl'= be an n x n matrix

3 fori<—1ton

4 doforj—1ton

5 do —

6 fork —1ton

7 do

8 returnl’

Iy <min(1, 1y +w,;)

i

Total Running Time = & (n°)

Complete but Slow Algorithm
SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1 n <« rows [W]

2 LY —w

3 form—2ton-1

4 doL™ — EXTEND-SHORTEST-PATHS (L™, W)
5 return LY

Total Running Time = & (n*)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example
0 3 8 o -4
o 0 o 1 7

W=]w 4 0 o o
2 o -5 0 o
o o oo 6 0
0 3 8 2 -4
3 0 -4 1 7

P=lo 4 0 5 11
2 -1 -5 0 -2
8 1 6 0

The reader may verify that L@ = L®=L®=--

0 3 -3 2 -4
3 0 -4 1 -1
®=7 4 0 5 1
2 -1 -5 0 -2
8 5 1 6 0
0 1 -3 2 -4
3 0 -4 1 -1
=7 4 0 5 3
2 -1 -5 0 -2
8 5 1 6 0

Improving Running Time

* Running time of previous algorithm is very high and needs improvement.

« The goal is not to compute all the L™ matrices but only computation of matrix L™ is of
interest

« As Matrix multiplication associative, L™ can be calculated with only [Ig(n - 1)] matrix
products as.
L(l) =W,
LD =W?2=wW . W,
LY =w'=w?.wW?
L®=wsi=w*.w*

RPN ELCURIRWELTE

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Improved Algorithm
FASTER-ALL-PAIRS-SHORTEST-PATHS (W)
1 n < rows[W]
2 LWew

3 m«1

4 whilem<n-1
5 do L®™ — EXTEND-SHORTEST-PATHS (L™, L™)
6 m «— 2m

7 return L™

Total Running Time = O(n*Ig n)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 37
The Floyd-Warshall Algorithm
& Johnson’s Algorithm
Intermediate Vertices
» Vertices in G are given by: V={1, 2, ..., n}
+ Consider a path p = (v, v, ..., V))
— Anintermediate vertex of p is any vertex in set {vy, V3, ..., Vi.1}

Example 1 Example 2
If p={(1, 2, 4, 5) then If p=4(2, 4, 5) then
V. ={2, 4} V. = {4}

The Floyd Warshall Algorithm

1. Structure of a Shortest Path

« LetV={1,2,..., n}be aset of vertices of G

» Consider subset {1, 2,..., k} of vertices for some k

» Let p be a shortest paths from i to j with all intermediate vertices in the set {1, 2,..., k}.

» It exploits a relationship between path p and shortest paths from i to j with all
intermediate vertices in the set {1, 2,..., k - 1}.

» The relationship depends on whether or not k is an intermediate vertex of path p.

» For both cases optimal structure is constructed

2. knotan . vertex. of path p
Shortest path i to j with I.V. from {1, 2, ..., k} is shortest path i to j with I.V. from {1, 2, ...,
k -1}

1. kan intermediate vertex of path p

* plis ashortest path from i to k

* p2is ashortest path from k to

» ks neither intermediate vertex of p1 nor of p2

« p1, p2 shortest paths i to k with I.V. from: {1, 2, ..., k - 1}

all intermediate vertices in {1,..., k-1} all intermediate vertices in {1,..., k-1}
— A $ T A
O—" © @
— (I /
—_

p: all intermediate verticesin {1.....k}

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

2. A Recursive Solution

« Letd" = be the weight of a shortest path from vertex i to vertex j for which all
intermediate vertices are in the set {1, 2,. . ., k}.

. Now D(n) = (di,j(n)),

« Basecased; ?)=w;

+ DO=(w)=W

» The recursive definition is given below

o[, if k=0
di= min(d %2, d P +d%?) if k=1
1 ik kj

3. The Floyd Warshall Algorithm

FLOYD-WARSHALL (W)
1 n <« rows[Ww]

2 DO9<—w

3 fork<—1ton

4 dofori<— 1ton
5 doforj<—1ton

6 do dWemin(d %, d Y +d)
7

ij

return D @
Total Running Time = O(n°)

Constructing a Shortest Path
« One way is to compute matrix D of SP weights and then construct predecessor matrix I
from D matrix.
— It takes O(n%)
* Arecursive formulation of: 7)

— k=0, shortest path from i to j has no intermediate vertex
© {NIL if i=jorw =o

T \ e ..
b if izjandw, <o
— Fork=1
i if dP<d®?4d¢®
ﬂ'_(_k): ij ij ik kj
! n:jk’“ if d i‘jk’“ >d ™ +d ‘kj“’

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example: Floyd Warshall Algorithm

D —

N 8 8 ©
8 b O w

oo o0

8 w -4
o 1 7

0 o o
5 0 o
w 6 0

Adjacency Matrix of given Graph

Fork=0

0 3 8 = -4 NIL 1 1 NIL 1

ol 0 o 1 7 NIL NIL NIL 2 2
DY =llofl 4 0 o o |II®=|\NL 3 NIL NIL NIL

2l -5 0 « 4 NIL 4 NIL NIL

ol © © 6 0 NIL NIL NIL 5 NIL
Fork=1

d; M =min (d; ,, d;;, O+ dy ;@)
=min (0, ©+w)=0w

0 3 8 x -4 0 3 8 o -4

ol 0 oo 1 7 o 0 o 1 7
D® =flof 4 0 [0 DP=|lw 4 0 (o)

2f©) -5 0 w ‘ 2{8)-5 0 -2

o] © © 6 0 o o o 6 0

dy ;) =min (d;,©, d;; @+ dy,®)
=min (c,2+3)=5

0 |3] 8 o -4 (NIL 1 1 NL 1

Lo_oo 8 o -4 NIL NIL NIL 2 2
DVP=|o gl 0 o o | IIW=|NIL 3 NIL NIL NIL

2 ol -5 0 -2 4 1 4 NIL 1

© © 6 0 NIL NIL NIL 5 NIL
Fork =2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

DO —

D® —

DO —

dy;@ = min (d;;O, dy,® + dy ;)
=min (-5,5 +) =-5

0 (3] 8 (w)-4 0 3
0 o) _8 o -4 o 0
0 [pf 0/ «© ‘o D®=|w 4
2 |p]=5 0 -2 ‘ 34 5)
\ © ©w 6 0 J \° ©
dy /@ =min (dy /O, d,® + dy)
=min (0,3 +1)=4
0 3(8J 4 -4 NIL 1 1
o 0 |off 1 7 NIL NIL NIL
0 4|l 5 11 I®=\NIL 3 NIL
2 5 s 0 -2 4 1 4
o0 o0 6 0 NIL NIL NIL
0
o 0
w 4
2 _1
© o
d, 2(3) = min (d, _1(2), d4=3(2) +d, _2(2))
=min (5,-5+4)=-1
NIL 1 1
NIL NIL NIL
=|NIL 3 NIL
4 3 4
NIL NIL NIL

8 (4 -4
o 1 7
05 11
-5 0 -2
© 6 0)
2 1
2 2
2 2
NIL 1
5 NIL
8 4 -4
oo 1 7
¥ 45 1l
-5 0 -2
o 6 0
2 1
2 2
2 2
NIL 1
5 NIL

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

D® —

D(4) Al

ds,® = min (ds,®, ds /& + dy,®)
=min (0,6 +(-1))=5

(0

2
8

1
0
4
L1
5

1 4 2
NIL 4 2
3 NIL 2
3 4 NIL
3 4 5
(0 (1 (3
3 0 —4
=l7 4 @
3 - =%
8 5 1
dy,® =min (d;,?, di 59 + ds,®)
=min (3,(-4)+(5))=1
23 9) (NIL 3 4 5
= SO | 4 NIL 4 2
0 5 3 |I¥=| 4 3 NIL 2
5 9 =P 4 3 4 NIL
1 6 0 . 4 3 4 5

Pt b b

NIL)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Existence of Shortest Paths Between any Pair
Transitive Closure
» Given a directed graph G = (V, E) with vertex set V = {1, 2,...,n}, we may wish to find out
whether there is a path in G from i to j for all vertex pairsi, j € V.
» The transitive closure of G is defined as the graph G* = (V, E*), where E*= {(i, j) : there is
a path from vertex i to vertex j in G}.
+ One way is to assign a weight of 1 to each edge of E and run the Floyd-Warshall
algorithm.
— If there is a path from vertex i to j, then dj<n
— Otherwise, we get d; = .
— The running time is ©(n®) time

Substitution
» Substitute logical operators, [1 (for min) and [(for +) in the Floyd-Warshall algorithm
— Running time: ©(n®) which saves time and space
— Arrecursive definition is given by

k=0 {0 0 .|f'|¢'1ano!(!,j)eE
"1 ifi=jor(,j)eE
— Fork=1 t=t? v(t N ij’“)

Transitive Closure

11 return T®

Total Running Time = O (n°)

TRANSITIVE-CLOSURE(G) 1 000 1000
1 n—VE] qo |01 1 1] o, |0111
2 f0r|<—1.t0n - 0 1 1 0 - 0 1 1 0
3 doforj« 1ton 101 1 101 1
4 doifi=jor(ij) € E[G]
5 then t© « 1 1000 1000
ij

6 else ti([;)<—0 T @= 011 1 T oL 0111

0111 0111
7 fork<—1ton 101 1 111 1
8 dofori« 1ton
9 doforj«— 1ton 1000
10 do 1111

T(4)=

ti(l;)<_ti(l;71)v(ti(t71)/\dikjil)) 1111

1111

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Johnson’s Algorithm
» For sparse graphs, Johnson’s Algorithm is asymptotically better than
— Repeated squaring of matrices and
— The Floyd-Warshall algorithm.
» It uses as subroutines both
— Dijkstra’s algorithm and
— The Bellman-Ford algorithm.
» It returns a matrix of shortest-path weights for all pairs of vertices OR
» Reports that the input graph contains a negative-weight cycle.
» This algorithm uses a technique of reweighting.

Re-weighting
» The technique of reweighting works as follows.
— If all edge weights are nonnegative, find shortest paths by running Dijkstra’s
algorithm, with Fibonacci heap priority queue, once for each vertex.
— If G has negative-weight edges, we simply compute a new set of nonnegative
edges weights that allows us to use the same method.
* New set of edge weights must satisfy the following
— For all pairs of vertices u, v € V, a shortest path from u to v using weight function
w is also a shortest path from u to v using weight function w’.
— Forall (u, v), new weight w’ (u, v) is nonnegative

0, & Preserving Shortest Paths by Re-weighting
» From the lemma given in the next slide shows, it is easy to come up with a re-weighting
of the edges that satisfies the first property above.
+ We use 0 to denote shortest-path weights derived from weight function w
« And &’ to denote shortest-path weights derived from weight function w’.
* And then we will show that, for all (u, v), new weight w’ (u, v) is nonnegative.

Re-weighting does not change shortest paths
Lemma Statement
« Given a weighted, directed graph G = (V, E) with weight functionw : E - R, leth :V —
R be any function mapping vertices to real numbers.
» For each edge (u, v) E, define
w'(u, v) =w(u, v) + h(u) —h(v)

» Letp=<vp vy, .. V> be any path from vertex vq to vertex vi. Then p is a shortest path
from v, to v with weight function w if and only if it is a shortest path with weight function
W!

« Thatis, w(p) = &(vo, V) if and only if W'(p) = &’(Vo, Vk)-
+ Also, G has a negative-weight cycle using weight function w if and only if G has a
negative-weight cycle using weight function w’.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Proof: Lemma

We start by showing that
w'(p) = w(p) + h(v,)-h(v,)
We have

w(p) = SwW,,v)

Il
M~

W(p) + h(vi-l)_h(vi)
W) + > (h(v,,)=h(v))

= 2w(p) + h(v,)-h(v,)

N

I
- -
gl

N

Therefore, any path p from v, to v has w(p) = w(p) + h(vo) — h(vy).

If one path from v, to v, is shorter than another using weight function w, then it is also
shorter using w'.

Thus, w(p) = &(Vo, Vk,) <> W'(p) = d'(Vo, Vi)

Finally, we show that G has a negative-weight cycle using weight function w if and only if
G has a negative-weight cycle using weight function w’.

Consider any cycle ¢ = <vy, V..., V>, where vy = V.

Now w’(c) = w(c) + h(vo) - h(vk) = w(c),

And thus ¢ has negative weight using w if and only if it has negative weight using w’.

It completes the proof of the theorem

Producing nonnegative weights by re-weighting

Next we ensure that second property holds i.e. w’(u, v) to be nonnegative for all edges
(u, v)eE

Given a weighted, directed graph G = (V, E) with weight function w : E — R, we make a
new graph G' = (V', E'), where V' = V U {s} for some new vertex s ¢ V and

E'=E u{(s,v):veV}L

Extend weight function w so that w(s, v) =0 forall v € V.

Note that because s has no edges that enter it, no shortest paths in G', other than those
with source s, contain s.

Moreover, G' has no negative-weight cycles if and only if G has no negative-weight
cycles.

Now suppose that G and G’ have no negative-weight cycles.

Let us define h(v) = &(s, v) forallv € V.

By triangle inequality, we have

h(v) <h(u) + w(u,v), V (u,v)eFE" (2)
Thus, if we define the new weights w’, we have w'(u, v) = w(u, v) + h(u) — h(v) > 0. by
1)

And the second property is satisfied.

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Johnson’s Algorithm

JOHNSON (G)

1 compute G', where V [G] = V [G] T {s},
E[G1=E[G] T{(s,V):V e V[G]}, and
w(s,v) =0forallv e V[G]

2 if BELLMAN-FORD(G', w, s) = FALSE

3 then print “the input graph contains a negative-weight cycle”
4 else for each vertex v € V [G]]
5 do set h(v) to the value of 8(s, V)
computed by the Bellman-Ford algorithm
6 for each edge (u, v) € E [G]
7 do w(u, v) = w(u, v) + h(u) - h(v)
8 for each vertex u € V [G]
9 do run DIJKSTRA(G, w, u) to compute &(u, v) forallv € V [G]
10 for each vertex v e V [G]
11 do dy = 8(u, v) + h(v) - h(u)
12 return D

Total Running Time = O(V 2 IgV + VE)

Bellman-Ford algorithm is used to determine 8(s, v) forall v € V e.g., 8(s, 3) = -5 path: <s, 4, 3>

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

w (0,1) = w(0,1) + h(0) -
w (0,2) = w(0,2) + h(0) -
w (0,3) = w(0,3) + h(0) -
w (0,4) = w(0,4) + h(0) -
w (0,5) = w(0,5) + h(0) -
w (1,2) =w(1,2) + h(1) -
~h(3)=(8+0-(-5) =13
w (1,5) = w(1,5) + h(1) -
w (2,4) = w(2,4) + h(2) -
w (2,5) = w(2,5) + h(2) -
w (3,2) =w(3,2) + h(3) -
w (4,1) = w(4,1) + h(4) -
w (4,3) = w(4,3) + h(4) -
w (5,4) = w(5,4) + h(5) -

w (1,3) = w(1,3)+ h(1)

4

h(1)=(0+0-(-0)=5
h(2)=(0+0-(-1)=1
h(3)=(0+0-(-5)=5
h(4)=(0+0-(-0)=0
h(5)=(0+0-(-4)=4
h(2)=(3+0-(-1)=4

h(5) = (-4+0-(-4)=0
h(4)=(1+(-1)-0)=0
h(5) = (7+(-1)—(-4))= 10
h(2) = (4+(-5)-(-1)) =0
h(1) = (2+0-0) = 2

h(3) = (-5+0—(-5)) = 0
h(4) = (6+(-4)-0)= 2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

aplying Dijkstra’s Algorithm on vertex 1

5 (1,5)5 0, 5 (4,3)=2,
0(1,9) = 5(4,3) = -3

d(1,5) = (5) =-4 d(4,3) = 5(4,3)=-3
5 (54)= 2, 5 (3,2)=2,

5(5,4) = 2 5(3,2) = 1

d(5,4) = 5(5,4) = 2 d(3,2) = 5(3,2) =1

5 (24)=0, 5 (4,3)=

5 (2,4) = 1 5(4,3)= -4
d(2,4)= 5(2,4) =1 d (4,3)=5(4,3) = -4
5 (4,1)=2, 5 (1,5)= 2,
5(4,1)=3 5(1,5)= -1
d(4,1)=5(4,1)=3 d (1,5) = 8(1,5) = -1

5 (3,2)=0, 5 (4122,
5(3,2) = 4 @4,1)=7
d(3,2)=5(3,2) = 4 d@4,1)=58(41)=7
5 (2,4)=0, 5 (1,5)=2,
5(24)=5 5(1,5)=3
d(2,4)=5(2,4)=5 d(1,5)= 8(1,5) =3

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Applying Dijkstra’s Algorithm on vertex 4

5 (4,1)=2, 5 (1,5)=2,
5(4,1)=2 5(1,5)= -2
d(4,1)=5(4,1) =2 d(1,5) = 8(1,5) = -2
5 (4,3)=0, 5 (3,2)=0,
5(4,3)= -5 5(3,2)=-1
d(4,3)=5(4,3)=-5 d(3,2)=5(3,2) =-1
Applying Dijkstra’s Algorithm on vertex 5
5 (54)= 2, 5 (4,3)= 2,
5(54)=6 5 (4,3) = 1
d(5,4)=5(5,4) =6 d(4,3)=5(4,3) =1
5 (4,1)= 4, 5 (3,2)=2,
5(4,1)=8 5(3,2)=5
d(4,1)=5(4,1) =8 d(3,2)=5(3,2) =5

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 38
Number Theoretic Algorithms
(Definitions and Some Important Results)

Today Covered

Applications of Number Theory + GCD

Divisibility » Partitioning of Integers
Numbers » Congruency classes
Prime Numbers » Proofs of some results

Relatively Prime Numbers

Applications of number theoretic algorithms

Electronic commerce

Electronic commerce enables goods and services to be negotiated and exchanged
electronically.

The ability to keep information such as credit card numbers, passwords, bank
statements private is essential if electronic commerce is used widely.

Public-key cryptography and digital signhatures are among the core technologies used
and are based on numerical algorithms and number theory.

Congruency equations modulo n

For example, if we are given an equation ax = b (mod n), where a, b, and n are integers,
and we wish to find all the integers x, modulo n, that satisfy the equation.

There may be zero, one, or more solution.

Using brute force approach, we can simply try x=0,1,..,n-1inorder, and can find
the solution

But our objective is not to find a solution only, in fact we want an efficient, of course this
problem can be solved using number theory.

Numbers

Z=setof allintegers =. . .,-3,-2,-1,0, +1, +2 +3, . ..
Set of all even integers ={2k |k € Z}
Set of all odd integers = {2k + 1|k € Z }
Q = Set of all rational numbers
- pl
- p.gel
- q=0

| = set of all irrational numbers: which are not irrationals i.e.
- ~p/qg OR
- ~(p,qe 2 OR
- ~(q #0)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Divisibility
Let a, b € Z with a = 0 then we say that
alb =adividesbiidceZ:b=ac
It means that a|b if and only if there exists an integer ¢ such that c times a equals b.

Example 1: 3|(-12), because if we assume that a = 3, b = -12 then there exists ¢ = -4 such that
b=ac

Example 2: 3 does not divide 7, because if we assume that a = 3, b = 7 then there does not
exists any integer ¢ such that b = ac

Some Facts
Statement: Prove that if alb then a|(-b)
Proof:
» Since a|b hence there exist an integer x such that b = ax,

* Now -b =-ax = a(-x)
» Sinceif x € Zthen (-x) € Z, Hence, a|(-b)

» Because of the above lemma why not choose divisors as only positive.
* Hence if d is a divisor of b, then 1 <d < |b|,

Example:
Only divisors of 24 are: 1, 2, 3, 4, 6, 8, 12,and 24.

Statement: Provethatal0vVaeZ

Proof:
« As we know that a|Jb means there is an integer s such that b = as, and
« Since 0 = a.0, where 0 is an integer, hence a|0

Statement: Ifalb, alcthena|(b+c)Va,b,ceZ

Proof:
+ As we know that a]Jb means there is an integer s such that b = as, and
» a|c means that there is a t such that ¢ = at,

* Nowb+c=as+at=a(s +t), and hence a|(b + ¢).

Statement: Ifalb, aljcthena|(b-c)Va,b,ceZ

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Proof:
« If a]b means then there is an integer s such that b = as, and
» If alc then there is an integer t such that ¢ = at,
* Nowb-c=as-at =a(s-t),
* Sinceifs,teZ=>s-te”Z
» Hence a|(b - c).

Statement: If a]Jb and bja then prove thata=+Db

Proof:
» Since alb hence there is an integer x such that b = ax, Q)
« Since we are given that b|a therefore there is an integer t such that a = bt, (2)
« From(1)and (2),a=axt=xt=1
+ Since x and t are both integers hencex=t=+1
* Hencea=1b

Generalized Result

Statement: Prove that if alb then albc V a,b,c e Z

Proof:
« As we know that a]Jb means there is an integer s such that b = as, and
* Now bc = asc = a(sc) and hence a|bc

Statement: Prove that if a|b, bjc then ajc, Va,b,c e Z

Proof:
» Since a|b, it means 3 s € Z such that b = as, and
» Since bjc, it means 3t € Z such that ¢ = bt
* Now c = bt = ast = a(st) and hence a|c

Statement:
* Va,b,cezifalband alc then
e al|(bx+cy), VXxyeZ

» As we know that a|b means there is an integer s such that b = as = bx = asx, and
+ Andif aJc means that there is a t such that ¢ = at = cy = aty
* Now bx + cy = asx + aty = a(sx + ty), and hence a|(bx + cy), this is because (sx +ty) € Z

Statement:
* Va,b,ceZ ifalbandalcthen
e al|(x-cy), VXxyeZ

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Proof:
» As we know that a|b therefore there is an integer s such that b = as = bx = asx, and
» Since a|c therefore there is an integer t such that
c=at—=cy=aty
* Now bx - cy = asx - aty = a(sx - ty), and hence a|(bx - cy), this is because (sx - ty) € Z

Prime Numbers
Definition:
» A number p is prime if and only if it is divisible 1 and itself. OR
* A number p is prime if it can not be written as
p=xywherex,yeZandx,y>1.
Note:
1 is prime, but is generally not of interest so we do not include it in set of primes

Examples
 2,3,5,7 etc. are all prime

Examples

« 4,6,8,9, 10 are not primes

+ Prime numbers are central to number theory

* We will study some algorithms on prime numbers

» List of prime number less than 200

- 2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,
191, 193, 197, 199

» There are infinitely many primes.

» Any positive integer that is not prime is composite.

« 1is the “unit” for multiplication and we assume that it is neither prime nor composite.

The Division Algorithm
Statement:
» For any integer dividend a and divisor d # 0, there is a unique quotient g and remainder r
e N such that
a=dq+r,where 0 <r<|d|
* Inotherway:va,deZ d>0,3q,re Zsuchthat 0<r<|dl,anda=d.g+r
+ Wecan find q by: q =la/d], and
* Wecanfindrby:r=(amodd)=a-dqg

Example:
e a=21;d=4then
q=lad|=121/4]=5andr=a-dq=21-45=1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Classification of Integers

When an integer is divided by 2 remainder is O or 1
1. Ci={2k|kez}and
2. C={2k+1lkeZ}

When an integer is divided by 3 remainderis 0, 1 or 2
1. Ci={3k|kezZ}
2. C,={3k+1|keZzZ}and
3. C;={3k+2|keZ}

When an integer divided by 4 remainder, 0, 1, 2 or 3
1. Ci={4k|keZ},
2. C;={4k+1|keZzZ}
3. Cs;={4k+2|keZ}
4 Cs={4k+3|kezZ}

Congruencies and Remainder
Remainder
* When ais divided by n then we can write (a mod n) as remainder of this division.
« If, remainder when a is divisible by n = remainder when b is divisible by n then
(@amod n) = (b mod n) e.g. (8 mod 3) = (11 mod 3)
Congruency
» If (@amod n) = (b mod n) we write it as a = b (mod n)
“a is equivalent to b modulo n.”
* Thus, a and b have same remainder, w.r.t. n then

a=qyn+r, forsomeq, € Z
b=qyn+r, forsome q, € Z
Lemma: If a=b (mod n)then prove that n|(b — a)

Proof:
+ Since a = b (mod n) hence (a mod n) = (b mod n)
« Let(@amodn)=(bmodn)=r
» By division theorem, 3 g, g, € Z such that
o a=Qqh+r, Ollr<n
e b=qg)n+r, Orllr<n
* Now,b-a=(q-qg)n+r-r=(g2-qyn
* Hence, n|(b — a) because (q; - q1) € Z
» The equivalence of b class modulo n: [b] ={b+kn:keZ}e.g.
3817 ={...-11,-4,3,10,17, ..}
[-4]; =. ..
[17]7 =...
« Z,={[a],:0<a<n-1}and we often write

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example
Z4={[0]s, [1]a, [2]a, [3]a}
Usually we write Z4 ={0, 1, 2, 3}
Z,={0,1, 2,3, ..., n— 1}, we associate a with [a];.

Prime Factorization
» By factorization of a number n, we mean that n=axbxc,wherea,b,ce”Z
« By a prime factorization of a number n, we mean thatn=a x b x c, wherea, b,c e Z
and all factors are prime number
Example:
+ 3600 =24 x 32 x 52 factorization
« 3600 = 2'% x 3! x 13" prime factorization
« 91 = 7x13 prime factorization

n=p®.p*..p =11p"

Relatively Prime Numbers
Definition
« Two numbers a, b are relatively prime if they have no common divisors except 1

Example
15, 23 are relatively prime, this is because
+ Factorsof 15are 1, 3, 5, 15 and
 Factors of 23 are 1, 23 and
+ Common factor is only 1
» Hence 15 and 23 are relatively prime

Some More Results
Definition: The greatest common divisor of a and b, not both zero, is the largest common divisor
ofaandb

Some elementary gcd properties
» gcd(a, b) =gcd(b, a), gcd(a, b) = gcd(-a, b)
» gcd(a, b) = gcd(|al, |b]), gcd(a, 0) = |a|

Examples

+ gcd(24,30)=6,gcd(5,7)=1

* gcd(0, 9) =9, gcd(0, 0) = 0 by definition
gcd(a, ka)=a| for any k e Z.

Note: 1 < gcd(a, b) < min(|al, |b|)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example: Greatest Common Divisor
+ GCD of two integers can be obtained by comparing their prime factorizations and using
least powers

Example
e 600=2x2x2x3x5x5=23x3"x5°
« 36=2x2x3x3=2%x3?
* Rearrange the factorization of 600 and 36
e 600=2x2x2x3x5x5=23x3"x5°
¢« 36=2x2x3x3=2?x3*x5°
« GCD(36, 600) = 2MnG:2) y gmin(t.2)y 5min20) = 22 y 31y 50= 4 x 3 =12

Brute Force Approach Finding GCD
Statement:

« Given two integers a and b. Find their greatest common divisor
Method:

» Compute prime factorization of a

a=py.pr.p =110
« Compute prime factorization of b
b=mmmm=gw
« Letpy, pa ..., P be the set of all prime numbers both in the factorization of a and b
» Now the prime factorization of a is rearranged as
a=p".p>.p" :]it"l[p",wherep, < p, <..<p,
» Similarly the prime factorization of b is rearranged as
b=p".p;..p" =]i[p', wherep, < p, <...<p,
« Finally GCD of a and b can be computed as
ged(a,b) = pmmm)L prne

2

ged(a,b) =T p™ .

Methods of Proof
Direct Method:
» Express the statement to be proved in the form:
VvV x € D, P(X) = Q(x)
» Suppose that P(x) is true for an arbitrary element x of D
» Prove that Q(x) is true for the supposed above value x of D.

Parity:
Two integers have same parity if both are either odd or even, otherwise opposite parity.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Direct Proof
Lemma:
* Prove that m + n and m — n have same parity, forallm, n € Z

Proof: There are three cases
Case 1.
e Bothm, nareeveni.e.,
e m=2k; and n = 2k, for some ki, k, € Z
* Now, m+n =2k, + 2k, = 2(k; + k) an even
* And, m-n =2k; - 2k, = 2(k; - k) an even

Case 2:
« Bothm,nareoddi.e.,
e m=2k;+1and n=2k,+ 1forsomeky, k, e Z
e Now,m+n=2k;+1+2k,+1=2(ky+k,+1)=2K
 And,m-n=2k; +1-2k,—1=2(k; - ky) =2K”
¢ Hence m + nand m - n both are even

Case 3:
* misevenandnisoddi.e.,
e m=2k;and n= 2k, + 1 for some ki, k, e Z
e Now,m+n=2k +2k,+1=2(k; +ky)+1=2k+ 1, odd
e And, m-n=2k;-2k,—1=2(k;-ky—1)+1=2k” + 1, odd
* Hence m + n and m - n both have the same parity.

An Alternate Method of Direct Proof
We can formulate the same problem as
Notations
+ LetS-EVEN (m, n)=m +nis even
« LetS-ODD (m,n)=m +nis odd
* Let D-EVEN (m, n)=m - n is even
« LetD-ODD (m,n)=m-nis odd

Mathematical Statement of the problem
* S-EVEN(m,n)< D-EVEN(m,n),vm,neZ
+ S-ODD (m,n) < D-ODD (m,n), Vvm,neZ

Proof

Case 1l
* Suppose that S-EVEN (m, n), Vm,ne Z
* Now, m—-n=m+n-2n=even - even = even integer
* Hence D-EVEN(m,n),vm,neZ

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Case 2
» Suppose that D-EVEN (m,n), vm,ne Z
* Now,m+n=m-n+2n=even+even=aneveninteger,vm,neZ
+ Hence S-EVEN (m,n), Vm,neZ

Case 3
» Suppose that S-ODD (m, n), vm,ne Z
* Now,m-n=m+n-2n=o0dd-even = odd
« D-ODD(mMm,n),vm,neZ

Case 4
» Suppose that D-ODD (m, n), Vm,n e Z
« Now,m+n=m-n+ 2n=o0dd + even = odd
+ S-ODD(Mm,n),vm,neZ

Hence
* S-EVEN(m,n)< D-EVEN(m,n),vm,neZ
+ S-ODD (m, n) < D-ODD (m,n), vm,neZ

Disproof by Counter Example

To disprove a statement of the form:
V X € D, P(X) = Q(X)
» Find a value of x in D for which P(x) is true and Q(x) is false.
» Such an example is called counter example.

Example : Prove or disprove
VabeZ a’=b’=a=b
Disproof:
Let P(a, b)=a?=b? Q(a, b)=a=b,
Now P(1, -1) = (1)® = (-1)* true but Q(1, -1) =1 = -1

Method of Proof by Contradiction

Steps in proving by contradiction
» Suppose the statement to be proved is false
« Show that this supposition leads logically to a contradiction
» Conclude that the statement to be proved is true

Example:
* Prove that sum of an irrational and a rational number is irrational

Proof
» Suppose a is a rational, b is an irrational number and their sum is also rational
» Since aisrational,a=p/q,p,qe Zandg=0
» Now according to our supposition a + b is rational and hence it can be written as
a+b=m/n,wherem,neZandn=0

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

* Now consider
a+t+b=m/n
= b=m/n—a=m/n-p/q=(mp-ng)ng =r/s,
wherer,s e Zands =0
= b is arational number, which is contradiction.
= Hence sum of an irrational and a rational number is always irrational.

Proof by Contradiction
Lemma

» For any integer n and any prime number p, if p divides n then p does not divide n + 1
Proof

» Express the statement in the form:

Vv X € D, P(X) = Q(xX)

» Let, Z = set of all integers, and

+ P =setof all primes

* D(p, n) =pdivides n

* DN(p, n) = p does not divide n

* Now our problem becomes

VneZ peP,D(p,n)=DN(p, n+1)

» Suppose that for some integer n and prime p, p divides n = D(p, n)

» Now we have to prove that p does not divide n + 1

» On contrary we suppose that p divide n + 1

» It means that there exists an integer g, suchthat n+1=pq;

» Since p divides n. Hence there exists an integer g, such that n = pq,

* Now,n+1-n=pqg;—-pQg.

1 = pg:—pg. = p(q:—dz2) = p = 1 or -1 contradiction
» Hence p does not divide n + 1 = DN(p, n)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 39
Number Theoretic Algorithms
(Theorems and Algorithms)

Today Covered

» Some More Proofs

+ GCD as a Linear Combination

» Finding GCD, a Recursive Theorem

» Euclid’s Algorithm

« Extended Euclid’s Algorithm

» Time Complexity of Euclid’s Algorithm

* Residues and Reduced set of Residues
* Groups and Rings

Method of Proof by Contraposition
Steps in proving by contraposition

» Express the statement to be proved in the form:
V x € D, P(X) = Q(X)
» Reuwrite the statement in the contrapositive form
VX eD, - QX = - P(X)
» Prove the contrapositive by direct proof
— Suppose that x is an arbitrary but particular element of D such that Q(x) is false
— Show that P(x) is false

Examples: Proof by Contraposition
Example 1

Prove that for all integers n, if n? is even then n is also even

Proof

» Express the above statement in the form:
V x € D, P(x) = Q(X)
» Suppose that
D=2,
Even(n, 2) = n?is even
Even(n) =nis even
* We have to prove that
Vv n e Z, Even(n, 2) = Even(n)
» Contraposition of the above statement
vV n e Z, - Even(n) = — Even(n, 2) is even
* Now we prove above contrapositive by direct proof
» Suppose that n is an arbitrary element of Z such that, — Even(n) (n is not even) i.e., n is
odd
« n?’=n.n=odd. odd = odd
« n?isodd

Dr.

Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

« — Even(n, 2) is even

* Hence, Vn e Z, - Even(n) = — Even(n, 2) is even
* Therefore, V n € Z, Even(n, 2) = Even(n) is even
« Hence V n e Z, if n?is even then n is even

Example 2
Prove that for all integers n, if n? is divisible by 7 then n is divisible by 7.
Proof
» Express the above statement in the form:
Vv X e D, P(X) = Q(xX)
» Suppose that
D=2,
Div(n, 2, 7) = n? is divisible by 7
Div(n, 7) = nis divisible by 7
* We have to prove that
Vv n e Z, Div(n, 2, 7) = Div(n, 7)
« Contraposition of the above statement
vV neZ —Div(n, 7) = - Div(n, 2, 7)
* Now we prove above contrapositive by direct proof
» Suppose that n is an arbitrary element of Z such that, — Div(n, 7) (n is not divisible by 7)
» ndoes contain any factor of 7
« n?does contain any factor of 7
+ Hence,VneZ —Div(n, 7) = = Div(n, 2, 7)
» Therefore, V n € Z, Div(n, 2, 7) = Div(n, 7)
« Hence, V n e Z, if n®is divisible by 7 then n is divisible by 7.

Lemmal
Statement : The square of an odd integer is of the form 8m + 1 for some integer m.
Proof:
» Suppose n is an arbitrary odd integer.
« By quotient remainder theorem any integer has the form
4Am,4m +1,4m + 2 OR 4m+3
* Now since n is an odd integer, hence n can be represented as
4m + 1 OR 4m+3
* Now we have to prove that squares of 4m + 1 and 4m + 3 are of the form 8m + 1.
Case 1
Square of 4m + 1
(A4m+1)°=16m°+8m+1=82m*+m) + 1
=8m’ + 1, where m ‘ = (2m? + m)

Case 2
Square of 4m + 3
(4m +3)?=16m?+24m +9=8(2m*+3m+ 1)+ 1

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

=8m” + 1, where m” = (2m? + 3m + 1)
* Hence any odd integer has the form 8m + 1 for some m

Theorem 1
Statement:
« If aand b are any integers, not both zero, then gcd(a, b) is the smallest positive element
of the set {ax + by : x, y € Z} of linear combinations of a and b.
Proof
Let s be the smallest positive such linear combination of a and b, i.e.
s =ax + by, forsome x,y € Z
By quotient remainder theorem
a=qs+r= gs+amods, where q = |a/s|.
amods=a—-gs=a-g(ax+hby)=a(l-qgx)+ b(-qy)
* Hence amod s is a linear combination of a and b.
* But, since amod s < s, therefore, amods =0
*« Nowamods=0=s|a
« Similarly we can prove that, s | b.
» Thus, sis a common divisor of both a and b,
» Therefore, s < gcd(a, b) D
+ Weknowthatifd|aandd|bthend |ax+ by forall x, y integers.
» Since gcd(a, b)| a and gcd(a, b) | b, hence gcd(a, b) | s and s > 0 imply that
gcd(a, b) <s. (2)
« By (1)and(2),gcd(a, b)=s

Corollary
Statement;
« For allintegers a and b and any nonnegative integer n, gcd(an, bn) = n gcd(a, b).
Proof
* Ifn=0, the corollary is trivial.
+ Ifn>0, then gcd(an, bn) is the smallest positive element of the set {anx + bny}, i.e.
gcd(an, bn) = min {anx + bny} = min{n.{ax + by}} = n. min{ax + by}
n times smallest positive element of set {ax + by}.
* Hence gcd(an, bn) = n.gcd(x, y)

Relatively Prime Integers
» Two integers a, b are said to be relatively prime if their only common divisor is 1, i. e, if
gced(a, b) = 1.

Generalized Form of Relatively Prime Integers
+ We say that integers ny, ny, ..., ng are pairwise relatively prime if, whenever i # j, we
have gcd(n;, n) = 1.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lemma 2
« For any integers a, b, and p, if both gcd(a, p) = 1 and gcd(b, p) = 1, then gcd(ab, p) = 1.

Proof
* As, gcd(a, p) = 1, there exist integers x, y such that
ax+py=1 1)
» gcd(b, p) =1, there exist integers X', y’ such that bx +py =1 (2)
« Multiplying equations (1) and (2) and rearranging, ab(x x') + p(ybx' + y'ax + pyy') = 1,
abx” + py” =1

» Since 1 is a positive linear combination of ab and p,
» Hence gcd(ab , p) = 1,which completes the proof

Lemma 3
» For all primes p and all integers a, b, if p | ab, then p | a or p | b (or p divides both and b).

Proof
» Let P = setof all primes; Z = set of all integers
* P(p,ab)=p|ab;Q(p,a b)=plaorp|b
» Express above statement to be proved in the form:
vV a, b, p, P(p, ab) = Q(p, a, b)
e VpeP,abeZplab=(p|laorp]|b)
« Assume for the purpose of contradiction that p | ab but that p t aand p + b.
* Nowpta=gcd(a p)=1
* And,ptb=gcd(b,p)=1
» Since only divisors of p are 1 and p, and by assumption p divides neither a nor b.
» Above Lemma 2, states that for any integers a, b, and p, if both gcd(a, p) = 1 and gcd(b,
p) = 1, then gcd(ab, p) = 1.
* Now, gcd(ab,p)=1, contradicts our assumption that p | ab, since p | ab < gcd(ab, p) =p
» This contradiction completes the proof.

Theorem 2: GCD Recursion Theorem
« For any nonnegative integer a and any positive integer b, gcd(a, b) = gcd(b, a mod b).

Proof
« If we will be able to prove that gcd(a, b) and gcd(b, a mod b) divide each other, It will
complete the proof of the theorem. This is because both are nonnegative.
Case 1
* We first show that gcd(a, b) | gcd(b, a mod b).
+ Ifweletd=gcd(a, b).
+ By quotient remainder theorem:
(a@amodb)=a-qgb, whereq=|a/b].

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

{088 CS-702 Advanced Algorithms Analysis and Design

+ Nowd =gcd(a, b) =
— d]aand
— d|b,
* Hence,d| (a—qgb),
(this is because, a — gb is a linear combination of a and b, where x =1,y = -q)
* And consequently d | (a mod b),
this is because (a mod b =a - gb)
* Now, d|bandd]| (amodb), implies that:
d | gcd(b, a mod b)
* Hence gcd(a, b) | gcd(a, a mod b). (A)

Case 2
« We now show that: gcd(a, a mod b) | gcd(a, b).
» Ifwe let, d = gcd(b, a mod b), then
d|band
d | (a mod b).
» By quotient remainder theorem
a=qgb + (a mod b), where q = |a/b],
+ aisalinear combination of band amod b, = d| a
* Now,d|aandd|b=d]|gcd(a, b)
* Hence, gcd(a, a mod b) | gcd(a, b) (B)
« By (A) and (B):
gcd(a, b) = ged(b, a mod b).

Example: Compute gcd (1970, 1066)
a=1970, b = 1066

. 1970 =1x 1066 + 904 = gcd(1066, 904), R = 904
. 1066=1x904+162 =gcd(904, 162), R =162

« 904=5x162+94 =gcd(162,94), R=94
+ 162=1x94+ 68 = gcd(94, 68), R =68
* 94=1x68+26 = gcd(68, 26), R =26
+ 68=2x26+16 = gcd(26, 16), R=16
+ 26=1x16+10 = gcd(16, 10), R =10
+ 16=1x10+6 = gcd(10, 6), R=6
« 10=1x6+4 = gcd(6, 4), R=4
 6=1x4+2 =gcd(4, 2), R=2
e 4=2x2+0 =gcd(2, 0), R=0

Hence gcd(1970, 1066) = 2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Euclid’s Algorithm

EUCLID(a, b)

1 ifb=0

2 then return a

3 else return EUCLID(b, a mod b)
Example

Compute the gcd of 30 and 21

Solution

EUCLID(30, 21) = EUCLID(21, 9) = EUCLID(9, 3)
=EUCLID(3,0) =3
Here, there are three recursive invocations of EUCLID.
The correctness of EUCLID follows from Theorem 2
And the fact that if the algorithm returns a in line 2, then b = 0, and so gcd(a, b) = gcd(a,
0)=a

The algorithm cannot recurse indefinitely

This is because the second argument strictly decreases in each recursive call
And this second argument is also always nonnegative.

Hence it must be 0 after some number of calls

Therefore, EUCLID always terminates with the correct answer.

Running Time of Euclid’s Algorithm

We analyze the worst-case running time of EUCLID as a function of the size of a and b.
We assume without loss of generality that a > b = 0.

This assumption justified because if b > a = 0, then EUCLID(a, b) makes recursive call
EUCLID(b, a).

That is, if first argument is less than second one, EUCLID spends one recursive call
swapping a, b

Similarly, if b = a > 0, the procedure terminates after one recursive call, since a mod b =
0.

The overall running time of EUCLID is proportional to the number of recursive calls it
makes.

Our analysis makes use of the Fibonacci numbers F,, defined earlier in the first part of
our course

Statement

If a > b =1 and the invocation EUCLID(a, b) takes k = 1 recursive calls, then a = Fy.,
and b = F.,,.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Proof
The proof is by induction on k.

Case 1
+ For base case, letk=1. Then, b =1 =F2, and since a > b, we must have a =2 = F3.
» Hence the statement is true fork =1
» Please note that, b > (a mod b), in each recursive call, i.e., first argument is strictly larger
than the second and hence the assumption that a > b therefore holds for each recursive
call.
Case 2
» Now suppose that the lemma is true for k — 1 i.e., if a > b = 1 and invocation EUCLID(a,
b) takes k-1 = 1 recursive calls, thena = Fy.; and b =2 F,.
Case 3
« Now we have to prove that statement is true for k i.e. if a > b = 1 and invocation
EUCLID(a, b) takes k = 1 recursive calls, then a = Fy., and b = Fy..
» Since k>0, and b >0, and EUCLID(a, b) calls EUCLID(b, a mod b) recursively, which in
turn makes k - 1 recursive calls.
» Since we know that statement is true for k-1, hence b = Fy,,;, and (a mod b) = Fk.
* Now we have

b+ (amodb)=b+ (a-|a/b|b) 1)
» Since, a>b >0, therefore, |a/b] =1
= J|a/b|bz=b

= b-lab|b<0
= a+b-lab|b<0+a
= b+(a-|a/b]b)<a
* By(l),b+(amodb)=b+(a-|a/b|b)<a
* b+(@modb)<a
« Thus,a=b+ (@amodb)=Fy; + F=Fyo .
* Hence, a 2 Fy.,, It completes proof of the theorem

Extended Euclid’s Algorithm
EXTENDED-EUCLID(a, b)
1 ifb=0
2 then return (a, 1, 0)
3 (d, X,Yy) <« EXTENDED-EUCLID(b, a mod b)
4 (d,xy) <« (d,y,x-Lably)
5 return(d, x,y)

Proof of Correctness

d’ = bx'+ (a mod b)y’

d =bx+ (a-| a/blb)y’ gcd(a, b) = gcd(b, a mod b)
d=ay +b(x - albly)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Reduced set of residues mod n

+ Complete set of residuesis: 0...n-1

» Reduced set of residues consists of all those numbers (residues) which are relatively
prime to n

* Anditis denoted by
Zy={k:gcd(k,n)=1,0<k<n}

» The number of elements in reduced set of residues is called the Euler Totient Function
o(n)

Example
« For n=10, find reduced list of residues of n
« Allresidues: {0, 1, 2, 3,4,5,6, 7,8, 9}
* Reduced residues (primes) = {1, 3, 7, 9}, ¢(n) = 4

Group
Definition of a Group: Group is a set, G, together with a binary operation : G * G — G, usually
denoted by a*b, such that the following properties are satisfied :
» Associativity :
(a*b)*c = a*(b*c) foralla, b,c € G

+ |dentity :
Je e G,suchthate*g=g=g*eforallg € G.
* Inverse :

For each g € G, there exists the g’, inverse of g, such thatg*g=g*g’' = e
The Multiplicative Group Z',

Zn*={k:gcdkk,n)=1,111k<n}
For any positive integer n, Zn* forms a group under multiplication modulo n.

Proof:

« Binary Operation
Leta, b €Zn* gcd(a, n) = 1; gcd(b,n) =1
gcd(ab, n) = gcd(a, n)*ged(b,n) =1*1=1

» Associativity holds,

+ 1isthe identity element.

» inverse of each element exits
Hence (Zn* ,*) forms a group.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Rings
Definition: A ring is a set R with two binary operations + : RXxR —- R and - : R x R — R (where
x denotes the Cartesian product), called addition and multiplication, such that:
* (R,) is an abelian group with identity element 0
1. (a+b)+c=a+(b+c)
2. 0+a=a+0=a
3. For every ain R, there exists an element denoted -a,
suchthata+-a=-a+a=0
4. a+tb=b+a

Definition (Contd..)
* (R, -) is a monoid with identity element 1:
1. (a-b)-c=a:(b-c)
2. lla=al=a
» Multiplication distributes over addition:
1. a(b+c)=(ab)+(ac)
2. (a+b)c=(ac)+(bc)

» Ring addition is commutative so thata+b=b +a

» But ring with multiplication is not required to be commutative i.e. a-b need not equal b-a.

» Rings that satisfy commutative property for multiplication are called commutative rings.

* Not all rings are commutative.

» Rings need not have multiplicative inverses either.

* Anelementainaring is called a unit if it is invertible with respect to multiplication

* An element a is called invertible under multiplication if there is an element b in the ring
such thata-b =b-a=1,

« This b is uniquely determined by a and we write a™* = b.

Lemma
* The set of all units in R forms a group under ring multiplication

Example
Prove that Z (+, *) (the set of integers) is a ring.

Solution
+ and * are binary operation on Z because sum and product of two integers are also an integer
* Now, la,b,ceZz
1. (a+b)+c=a+(b+0),
2. 0+a=a+0=a
3. at(-a)=(-a)+a=0
4. a+b=b+a
Hence (Z, +) is an abelian group with identity element O

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

+ Since, [1a,b,ceZz
1. (a-b)-c=a:(b-c)
2. lla=al=a
Hence (Z, -) is a monoid with identity element 1
* Finally 1a,b,ceZ
1. a:(b+c)=(ab)+(ac)
2. (a+b)c=(ac)+ (bc)
i.e., multiplication is distributive over addition
Hence we can conclude that Z (+, *) is a ring

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 40
Chinese Remainder Theorem

RSA Cryptosystem
Addition: Modulo 8
0 1 2 3 4 5 6

0| o 1 2 3 4 5 6
T [2 3 4 5 6 7
2| 2 3 4 S 6 7 0
3 3 i 5 6 7 0

4 | 4 5 6 7 0 1

51 5 6 7 0 1 2

6 | 6 7 0 1 2 3

7 7 0 1 2 3 4 5

0 1 2 3 4 5 6

0| o 0 0 0 0 0 0
1 (5 1 2 3 4 5 6
2.1 0 2 4 6 0 2 4
3 0 3 6 1 4 7 2
4 0 4 0 4 0 4

S| o 5 2 7 4 1

6 0 6 4 2 0 6

7 0 7 6 5 4 3 2

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Reduced set of residues mod n

+ Complete set of residues is Z, = {0, 1, . . ., n-1}
» Reduced set of residues consists of all those numbers (residues) which are relatively
prime to n

* Anditis denoted by
Zy={k:gcd(k,n)=1,0<k<n}
« The number of elements in reduced set of residues is called the Euler Totient Function

o(n)

Example 1
« For n=10, find reduced list of residues of n
« Allresidues: {0, 1, 2, 3,4,5,6, 7,8, 9}
* Reduced residues (primes) = {1, 3, 7, 9}, ¢(n) = 4

Group
Group is a set, G, together with a binary operation : G * G — G, usually denoted by a*b, such
that the following properties are satisfied :
» Associativity :
(a*b)*c = a*(b*c) foralla, b, c € G

+ |dentity :
Je e G,suchthate*g=g=g*eforallg € G.
* Inverse :

For each g € G, there exists the g’, inverse of g, such thatg*g=g*g’' = e

Result: The Multiplicative Group Z,-
Statement: Zn* = {k : gcd(k, n) = 1, 1 [0 k < n}. For any positive integer n, Zn* forms a group
under multiplication modulo n.
Proof:
« Binary Operation
— Leta, b €Zn* gcd(a, n)=1;gcd(b,n) =1
— gcd(ab, n) = gcd(a, n)*gcd(b,n) =1*1 =1
« Associativity holds,
— 1 is the identity element.
» inverse of each element exits
— Hence (Zn* ,*) forms a group.

Rings
Aring is a set R with two binary operations + : RxR — R and - : R x R — R (where x denotes
the Cartesian product), called addition and multiplication, such that:
* (R, +) is an abelian group with identity element O
1. (a+b)+c=a+(b+c)
2. 0O+a=a+0=a
3. Forevery ain R, there exists an element denoted -a, such that a + —a =—a+a=0

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

4, a+b=b+a
* (R, -) is a monoid with identity element 1:
1. (a-b)-c=a:(b-c)
2. l.la=al=a
» Multiplication distributes over addition:
1. a(b+c)=(ab)+ (ac)
2. (a+b)c=(ac)+ (bc)

Definition: An element a in a ring R is called unit if there exists b in R such thata-b=b-a=1

Lemma
« Set of all units in R forms a group under ring multiplication

Example 2: Prove that Z (+, *) (the set of integers) is a ring.

Solution: + and * are binary operation on Z because sum and product of two integers are also
an integer

* Now, [la,b,ceZ
1. (a+b)+c=a+(b+0),
2. 0+a=a+0=a
3. at(-a)=(-a)+a=0
4. a+tb=b+a
Hence (Z, +) is an abelian group with identity element O

Example 2: Rings
+ Since, [la,b,ceZ
1. (a-b)-c=a-(b-c)
2. lla=al=a
Hence (Z, -) is a monoid with identity element 1
 Finally 1a,b,ceZzZ
1. a(b+c)=(ab)+ (ac)
2. (a+b)c=(ac)+(bc)
i.e., multiplication is distributive over addition
Hence we can conclude that Z (+, *) is a ring
Modular Arithmetic
* Modular arithmetic for integer n:
Z,={0,1,...n-1}
forms a commutative ring for addition with a multiplicative identity

Lemma 1
Fora,b,ceZ
If (a+b)=(a+c)modnthenb=cmodn

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lemma 2

Fora,b,ceZ
If (a*b) = (a*c) mod n then b = ¢ mod n only if a is relatively prime to n i.e. gcd(a, n) = 1.

Solving Modular Linear Equations
Definition: A congruence of the form ax = b (mod m) is called a linear congruence.

Solving:

To solve this congruence, objective is to find the x that satisfy the given equation.

An inverse of a, modulo m is any integer a' such that, a'a = 1 (mod m).

If we can find such an a’, then we can solve ax = b by multiplying throughout by it, giving
a'ax = a'b,

Thus, 1'x = a’b, = x = a’b (mod m).

Theorem

Proof:

If gcd(a, m) =1 and m > 1, then a has a unique inverse a' (modulo m).

Since ged(a, m) =1,

hence 3 s, t such that, sa+tm =1

So, sa + tm =1 (mod m).

Since tm = 0 (mod m), sa = 1 (mod m).

Thus s is an inverse of a (mod m).

Hence this Theorem guarantees that if ra = sa = 1 then r = s, thus this inverse is unique
mod m.

Chinese Remainder Theorem
Theorem:

Proof:

Let my,...,m¢ > 0O be relatively prime. Then the system of equations:
X = a; (mod my)
X = a; (mod my)

X = ax (mod my)
has a unique solution modulo m = mjy-...-my.

We are given that, m =m;j-...-my.

Let Mi=m/m;. fori=1,...,k
Since ged(m;, M)) = 1, hence by above Theorem,
3y, =M/ such that yM;=1 (mod m;) fori=1,...,k

Let X = a;y1M; + azy.M, + . . .+ ayMk = 3 ayM;
Now m; does don’t divide M,

But m2|M1, m3|M1, C ey mk|M1

Similarly m, does don’t divide M,

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

But m;|My, ms|M,, my|M,, . . ., m M, and so on
Hence m; does don’t divide M;, Vie {1, 2,...,k}
ButmjM;, Vi=#j,i,je{l,2,...,k}

Therefore, Mi=0 (mod m;)) j#i,

Now we show that x is simultaneous solution
X = a; (mod my)

Since x = a;y1M; + ay.M; + .. .+ ayMi
Hence x = a;y;:M; = 1.a; = a; (mod m,).

X = ayoM, = 1.a, = a, (mod my).

X = ayMk = 1.a¢ = ax (mod my).
Thus, x is the solution

Application: Example 3
Solve the given system of linear modular equations using Chinese Remainder Theorem.

X=2(mod3), a; =2
X=3(modb5), a,=3
X=E2(mod7),az=2

Solution

Asm;=3, my,=5,m;=7, hencem=3.5.7 =105
Now M; = m/m; = 105/3 = 35, M, = m/m, = 105/5 = 21 and M3 = m/m5; = 105/7 = 15
Inverse of M; (modulo 3) =y; =2
Inverse of M, (modulo 5) =y, =1
Inverse of Mz (modulo 7) =y; =1
Now, X, solution to this systems is
X = ayy1M; + azyoM; + azysMs
=2.35.2+3.21.1 + 2.15.1 = 233 (mod 105)
= 23 (mod 105)
Thus 23 is the smallest positive integer that is a simultaneous solution.

Verification

23 =2 (mod 3)
23 =3 (mod 5)
23 =2 (mod 7)

Unigue Representation of a Number by CRT

Let my,...,m, are pair-wise relatively prime integers, let m = m;-...-my. Then by CRT it
can be proved that any integer a, 0 < a < m can be uniquely represented by n-tuple

consisting of its remainders upon division by m; (i =1, 2, . . ., k). That is we can
uniquely represent a by
(@amod my, amod my, ...,amod my) = (as, az ,..., a)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example 4
« Pairs to represent non-negative integers < 12, first component is result of division by 3,
second by 4
0=(0,0);1=(1,1);,2=(2,2);3=(0, 3);
4=(1,0);5=(2,1);6=(0,2); 7=(1, 3);
8=(2,0);9=(0,1);10=(1,2);11=(2,3)
Example 5
« Compute(1,2)ifm;=3andm,=4
Solution

* x=1(mod 3)

* X=2(mod4)

e m =3, my=4,hencem=12

« NowM;=m/m;=4, M, =m/m,=3

* Inverse of M; (modulo 3) =y; =1

* Inverse of M, (modulo 4) =y, =3

* Nowx=ay:M; +ayo-M, =1.1.4+23.3=22mod 12 = 10

Example 6: Chinese Remainder Theorem
 Letm; =99, m,=98 m3z=97and my=95
« Now any integer < 99.98.97.95 = 89,403,930 can be uniquely represented by its
remainders when divided by 99, 98, 97 and 95 respectively.
« Ifa=123,684, b = 413,456 then compute a + b.

Solution
Now 123,684 mod 99 = 33; 123,684 mod 98 =8
123,684 mod 97 =9; 123,684 mod 95 = 89
+ Hencea=123,684 =(33, 8, 9, 89)
« Similarly
e 413,456 mod 99 = 32; 413,456 mod 98 = 92
e 413,456 mod 97 =42; 413,456 mod 95 =16
« Hence b =413,456 = (32, 92, 42, 16)
e Nowa+b=123,684 + 413,456
=(33, 8, 9, 89) + (32, 92, 42, 16)
= (65 mod 99, 100 mod 98, 51 mod 97, 105 mod 99)

Now we want to find a number x satisfying following
X = 65 (mod 99) X = 2 (mod 98) x =51 (mod 97) x =10 (mod 95)
This can be solved using CRT, Answer =537,140

The RSA Public Key Cryptosystem
+ RSAinvolves a public key and a private key.
» The public key can be known to everyone and is used for encrypting messages.
+ Messages encrypted with the public key can only be decrypted using the private key.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» The keys for the RSA algorithm are generated by the following way:

1.
2.

Choose two distinct large random prime numbers p and g such that p = q

Compute n by the equation n = pq, n is used as the modulus for both the public and
private keys

Compute the totient function ¢(n)

Choose an integer e such that 1 < e < ¢(n) and e and ¢(n) share no factors other
than 1 (co-prime), e is released as the public key exponent

Compute d to satisfy the congruence relation;

de =1 mod ¢(n) i.e.

de = 1 + ko(n) for some integer k

d is kept as the private key exponent

Publish the pair P =(e, n) as his RSA public Key

Keep secret pair S =(d, n) as his RSA secret Key

Property: Totient Function

Prove that

* o(p.q) = (p-1).(9-1), where p and g are prime numbers

Proof

* If n=p, a prime number, then ¢(p) = (p-1); e.g., (p(7) = 6 because 7 is prime)
« Ifn=p*qwhere p and q are both prime then ¢(n) = ¢(p*q)
« Asabove ¢p(p)=p-1
« Similarly ¢(g)=q-1
« For ¢(n) = d(p*q), the residues will beS; = {0, 1, 2,. . ., (pg-1)}
» Outof Sy, residues that are not relatively prime to n:
Sz ={p, 2p,(qd-1)p}, S3={q, 29,......(p-1)a}, Sa = {0}
» The number of elements of S; = pq
» The number of elements of S, = g-1
» The number of elements of S; = p-1
» The number of elements of S, =1
* Hence number of relatively prime elements in S1 is

* ¢(n) =pg - [(Q-1)+(p-1)+1]

=pg-q+1-p+1-1
=pg-qg-p+1=(p-1)(g-1) =(p)* ()

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 41
RSA Cryptosystem
String Matching

Fermat Theorem

Proof

If p is prime, a is positive integer not divisible by p,
a”=1modp ORa”=amodp

Consider the set, Z,={0,1,..., p -1}

Multiplying each element of Z, by “a mod p”, the result is a set, A, of all the elements of
Z, with a different sequence, where A = Zp

A ={0, amod p, 2a mod p...... (p-1)a mod p}

{0, amod p, 2a mod p...... (p-1)amod p} = {0,1,..., p -1} Since A=2Zp
If all the elements are multiplied together, except 0, on both sides we should
{amodp*2amodp... *(p-1)amodp}modp =1.2....(p-1) mod p OR

a®! (p-1)! mod p = (p-1)! mod p

Since (p-1)! is relatively prime to p. So It can be cancelled from both sides
a” modp=1 OR

a”* =1 modp OR

a’=amodp

Euler’s Theorem: Generalization of Fermat’s
Statement

Proof

If a and n are relatively prime then
a’®**=amodnOR a*™=1modn

If n = prime, then ¢(n) =n-1

By Fermat’s Theorem a"* = a®™ = 1 mod n

If n is a positive integer, then ¢(n) = number of positive integers less than n, relatively
prime to n.

Consider such positive integers as follows:

S1={Xqy, X2, . . ., Xp(n) }

Now multiply each element with a mod n

S;={ax;modn, ax,modn, ..., aXym Mmod n}

Euler’s Theorem

The set S, is a permutation of S; because:

1. ais relatively prime to n.

2. x;is relatively prime to n.

3. Therefore ax; is also relatively prime to n.

Hence each ax; mod n has value less than n

Hence every element of S, is relatively prime to n and less than n.
The number of elements of S, equal to that of S;

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

« Moreover S2 contains no duplicates. It is because if ax;mod n = ax;mod n, then x; = x;
* But S1 has no duplicates
» On multiplying the terms of S1 and S2
IT (ax;mod n) = IT x; OR
IT (ax) = (ITx) mod n OR
a =1modn OR a = amod n, Proved
Corollary:
» Given primes p and g. Let m and n are integers such that n = p*q and 0 <m < n then
m* ™" =m mod n OR m*” =1 mod n

RSA Cryptosystem

Encryption:
» Any number m, (m < n), can be encrypted.
« ciphertext ¢ =m®mod n

Decryption:
« c¢?mod n gives us back m.

Proof
« To prove that ¢® mod n is equal to m:
« ¢“mod n=(m®%"mod n

=m® modn
» Since de =1 mod ®(n) = de = kd(n) + 1
Cd — mde: mch(n) +1

« By the above corollary to Euler's theorem,
¢ =m®=m*™*" = mmodn =m, sincem<n

Example: RSA Cryptosystem
» Encrypt message STOP using RSA cryptosystem withp =43, g=59and e = 13, n=pq
= 2537,
Solution
* gcd(e, (p-1)(g-1)) = 1, encryption can be done
» Translate STOP in numerical values, blocks of 4
1819 1415
« Encrypt
C = M®* mod 2537 = M** mod 2537
« After computing using fast modular multiplication
+ 1819" mod 2537 = 2081;1415" mod 2537 = 2181
» The encrypted message is: 2081 2182

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example: RSA Cryptosystem
« Decrypt 0981 0461 if encrypted using RSA
» Public key = (e, n) = (13, 43.59 = 2537)
Solution
* p=43,p-1=42,9=59,0-1=58,e=13
« d=e"'mod (p-1).(g-1) = 13" mod 42.58 = 937
» Decrypt
M = C*" mod 2537 = C*' mod 2537
» After computing using fast modular multiplication
« 0981%" mod 2537 = 0704;0461%" mod 2537 = 1115
» The decrypted message is: 0704 1115
« Translating back to English: HELP

String Matching Problem
+ We assume that the text is an array T [1 .. n] of length n and that the pattern is an array
P[1 .. m] of length m < n.
» We further assume that the elements of P and T are characters drawn from a finite
alphabet Z.
— For example, we may have Z = {0, 1} or 2={a,b,...,z}.
» The character arrays P and T are often called strings of characters
+ We say that pattern P occurs with shift s in text T (or, equivalently, that pattern P
occurs beginning at position s + 1 in text T) if
Osssn-mandT[s+1..s+m]=P[1..m]ie. T
[s+j]=P[]j],for1<j<m).
— If P occurs with shift siin T, we call s a valid shift;
— otherwise, we call s an invalid shift.

String Matching Problem
» The string-matching problem is “finding all valid shifts with which a given pattern P
occurs in a given text T”.

Text T alb|c|alblajlal/b|c|alb|a]|c

§s=23
Pattern? ———a|b|a|a

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Definitions and Notations

Notation | Terminology

2" The set of all finite-length strings formed using characters from
the alphabet 2.

(3 The zero-length empty string, also belongs to >*.

x| The length of a string x.

Xy The concatenation of two strings x and y has length |x| + |y| and
consists of the characters from x followed by the characters from
y.

w] X A string w is a prefix of a string x, if x = wy for some stringy € *.
If w [x, then |w| < |x].

W N X String w is a suffix of a string x, if x = yw for somey e 2*. If w X\ X
that |w| < |x].

Naive Approach
» Theidea is based on Brute Force Approach.
» The naive algorithm finds all valid shifts using a loop that checks the condition P[1 .. m] =
T[s + 1 .. s + m] for each of the n - m + 1 possible values of s.
» It can be interpreted graphically as sliding a “template” containing the pattern over the
text, noting for which shifts all of the characters on the template equal the corresponding
characters in the text.

NAIVE-STRING-MATCHER(T, P)
1 n < length[T]

2 m <« length[P]

3 fors<—0ton-m

4 doifP[1..m]=T[s+1. s+ m]

5 then print "Pattern occurs with shift" s

* Worst case Running Time
— Outerloop:n—m+1
— Inner loop: m
— Total O((n - m + 1)m)
» Best-case: n-m

» Not an optimal procedure for String Matching problem.

» It has high running time for worst case.

» The naive string-matcher is inefficient because information gained about the text for one
value of s is entirely ignored in considering other values of s.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

The Rabin-Karp Algorithm

Let us assume that 2 = {0, 1, 2, .. ., 9}, so that each character is a decimal digit.

A string of k consecutive characters is viewed as representing a length-k decimal
number.

Given a pattern P[1 .. m], let p denote its corresponding decimal value and atext T [1 ..
n], we let ts denotes the decimal value of the length-m substring T[s + 1 .. s + m], for s =
0,1,....,n-m.

Now, ts=pifandonlyif T[s+1..s+m]=P[1.. m];

thus, s is a valid shift if and only if ts = p.

We can compute p in time ©(m) using Horner's rule

p =P[m]+ 10 (P[m - 1] + 10(P[m - 2] + - - - + 10(P[2] + 10P[1]))).

Example: Horner's rule:

“345” = 5 + 10(4 + 10(3)) = 5 + 10(4 + 30) = 5 + 340 = 345

The value t, can be similarly computed from T [1 .. m] in time ©(m).

To compute the remaining values t, tp, . . ., t..m in time O(n - m), it suffices to observe
that ts+; can be computed from ts in constant time.

Subtracting 10™* T[s + 1] removes the high-order digit from ts, multiplying the result by
10 shifts the number left one position, and adding T [s + m + 1] brings in the appropriate
low-order digit.

ters = (10(ts — T[s + 1] 10™*) + T[s + m + 1])

The only difficulty with this procedure is that p and t; may be too large to work with
conveniently.

Fortunately, there is a simple cure for this problem compute p and the ts's modulo a
suitable modulus q.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 42
String Matching

String Matching Problem

+ GivenatextT[1..n]of length n, a pattern P[1 .. m] of length m < n, both as arrays.

e Further assume that elements of P and T are characters drawn from a finite set of
alphabets 2.

e NowforO<ss<n-mif
T[s+j]=P[jl, V]je{d,2,. .. m}

« then p occurs in T with shift s, and we call s as a valid shift; otherwise, s an invalid shift.

» Now our objective is “finding all valid shifts with which a given pattern P occurs in a text
T

Naive String Matching Algorithm
NAIVE-STRING-MATCHER(T, P)
1 n < length[T]

2 m <« length[P]

3 fors«—0ton-m

4 doif P[L.m]=T[s+1..s+m]

5 then print "Pattern occurs with shift" s

» Worst case Running Time
— OQuterloop:n—m+1
— Innerloop: m
— Total O((n - m + 1)m)
» Best-case: n-m

Example: Naive String Matching Algorithm

alclalalblc n — length[T] = 6

m « length[P] = 3
§ fors—0ton—-m((6-3=23)

s=0 P[1] = T[s + 1]
ala b P[1] =T[1] (Asa=a)

P[2] = T[s + 2]
But P[2] N\ T[2] (AsaNc©)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

ajlc|lala|b|c for s «— 1
P[1] = T[s + 1]
§ But P[1] N\ T[2] (Asa~Nc)

o
=
[=n

fors « 2
P[1] =T[s + 1]
P[1] =T[3] (Asa=a)

&
]
=
=
(=2
o]

- P[2] = T[s + 2]
§=2 P[2] = T[4] (As a = a)
P[3] = T[s + 3]
P[3]=T[5] (Asb=h)

fors «— 3
alclala|b|c P[1] = T[s + 1]
P[1] = T[4] (Asa=a)
§s=3 § P[2] = T[s + 2]
»ala b But P[2] N\ T[5] (AsanNb)

The Rabin-Karp Algorithm
Special Case
 GivenatextT[1..n]of length n, a pattern P[1 .. m] of length m < n, both as arrays.
+ Assume that elements of P and T are characters drawn from a finite set of alphabets %.

« Where2={0,1,2,...,9} sothat each character is a decimal digit.
« Now our objective is “finding all valid shifts with which a given pattern P occurs in a text
T
Notations:

Let us suppose that
* p denotes decimal value of given a pattern P[1 .. m]
+ ts = decimal value of length-m substring T[s + 1 .. s + m], of given text T [1 .. n], for s = 0,
1,...,n-m.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» Itis very obvious that, ts = p if and only if
T[s+1..s+m]=P[1..m]
thus, s is a valid shift if and only if ts = p.
* Now the question is how to compute p and ts efficiently
* Answer is Horner’s rule

Horner’s Rule

Example: Horner’s rule
[3,4,5]=5+10(4 + 10(3)) =5 + 10(4 + 30) =5 340 = 345
p = P[3] + 10 (P[3 - 1] + 10(P[1])).

Formula
* We can compute p in time ©(m) using this rule as
p = P[m] + 10 (P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10P[1])))
» Similarly to can be computed from T [1 .. m] in time ©(m).
« Tocomputety,t, ..., t.nintime O(n - m), it suffices to observe that ts.; can be
computed from ts in constant time.

Computing ts+; from ts in constant time
« Text=[3,1,4,1,5, 2]; to= 31415
 m=5;Shift=0
» Old higher-order digit = 3
* New low-order digit = 2
« t; =10.(31415 - 10*T(1)) + T(5+1)
=10.(31415 - 10*.3) + 2
=10(1415) + 2 = 14152
et = 10(ts— T[s + 1] 10™") + T[s + m + 1])
e t, =10(to — T[1] 10%) + T[0 + 5 + 1])
« Nowty,ty, ..., thm Can be computed in ©(n - m)

314152

Procedure: Computing ts.; from tg
1. Subtract T[s + 1]10™* from t., removes high-order digit
2. Multiply result by 10, shifts the number left one position
3. Add T [s + m + 1], it brings appropriate low-order digit.
ter1 = (10(ts — T[s + 1] 10™*) + T[s + m + 1])

Another issue and its treatment
» The only difficulty with the above procedure is that p and ts may be too large to work with
conveniently.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Fortunately, there is a simple cure for this problem, compute p and the ts modulo a
suitable modulus g.

Computing ts.; from ts Modulo g = 13

A window of length 5 is shaded.
The numerical value of window = 31415
31415 mod 13 =7

2(3|5/9(012|3|1(4|1|5(2|6|/7|3]|9(9(2]1
T mod 13
7
Spurious Hits and their Elimination
m=5.
p = 31415,

Now, 31415 =7 (mod 13)

Now, 67399 = 7 (mod 13)

Window beginning at position 7 = valid match; s = 6
Window beginning at position 13 = spurious hit; s = 12
After comparing decimal values, text comparison is needed

1 2 10 11 12 13 14 15 16 17 18 19

5 6
0]2 S 2 [eliESN29 2 |1

2|3

7 8
31

3 4 9

519 4

TT ese T ess T . mod 13
8/9(3|11|0|1|7|8|4|5|10/11(7 |9 |11

Valid match Spurious hit

The Rabin-Karp Algorithm
Generalization

Given atext T [1 .. n] of length n, a pattern P[1 .. m] of length m < n, both as arrays.
Assume that elements of P and T are characters drawn from a finite set of alphabets % =
{0,1,2,...,d-1}.

Now our objective is “finding all valid shifts with which a given pattern P occurs in a text
T

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Note
* teq = (d(ts = T[s + 1]h) + T[s + m + 1]) mod g where h = d™* (mod q) is the value of the
digit “1” in the high-order position of an m-digit text window.

Sequence of Steps Designing Algorithm
1. Compute the lengths of pattern P and text T
2. Compute p and ts under modulo q using Horner’s Rule
3. For any shift s for which ts = p (mod q), must be tested further to see if s is really valid
shift or a spurious hit.

4. This testing can be done by checking the condition: P[1..m] =T [s+ 1 .. s+ m]. If these

strings are equal s is a valid shift otherwise spurious hit.

5. If for shift s, ts = p (mod q) is false, compute ts.; and replace it with ts and repeat the step

3.
Note
+ Ast; = p (mod q) does not imply that ts = p, hence text comparison is required to find
valid shift

RABIN-KARP-MATCHER(T, P, d, q)

1 n < length[T]

2 m < length[P]

3 h—d" modq

4 p<0

5 t<0

6 fori—1tom | Preprocessing.

7 do p « (dp + PJ[i]) mod g

8 to < (dty + T[i]) mod g

9 fors«—0ton-m " Matching.

10 doif p=ts

11 thenif P[L. m]=T[s+1.. s+m]

12 then print "Pattern occurs with shift" s
13 ifs<n-m

14 then ts.; < (d(ts - T[s + 1]h) + T[s + m + 1]) mod q

Analysis: The Rabin-Karp Algorithm
* Worst case Running Time
— Preprocessing time: ©(m)
— Matching time is ©((n —m + 1)m)
« IfP=a" T=a", verifications take time ©((n - m + 1)m), since each ofthen-m + 1
possible shifts is valid.

* In applications with few valid shifts, matching time of the algorithm is only O((n - m + 1) +

cm) = O(n + m), plus the time required to process spurious hits.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

String Matching with Finite Automata

A finite automaton M is a 5-tuple (Q, go, A, Z, d), where

— Qs afinite set of states,

— (o € Q is the start state,

— A [] Qis adistinguished set of accepting states,

— 2 is afinite input alphabet,

— Qs afunction from Q x X into Q, called the transition function of M.
String-matching automata are very efficient because it examines each character exactly
once, taking constant time.

The matching time used-after preprocessing the pattern to build the automaton-is
therefore O(n).

Some Results
1. Empty string is both a suffix and a prefix of every string.
2. For any strings x and y and any character a, we have x N\ y if and only if xa \ ya.
3. Also it can be proved that [and \ are transitive relations.

Proof :Property 3

Suppose that x (1 yand y (] z, we have to prove that x [z.
X [ly=3w; € 2* such thaty = xw; (A)

y [l z= 3w, € £* such that z = yw, (B)

From (A) and (B)

Z = yW; = XW3W,

Example: Transition Table and Finite Automata

Q ={0, 1}, 11 ={a, b} and transition function is shown below
A simple two-state finite automaton which accepts those strings that end in an odd
number of a’s.

input

state | a b

0 1 0
1 0 0
A tabular representation of State set Q= {0, 1}
transition function o Start state g, =0

Input alphabet K = {a, b}

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Final State Function ¢
« Afinite automaton M induces a function @, called the final-state function, from * to Q
such that ¢(w) is the state of M that ends up in after scanning the string w.
» Thus, M accepts a string w if and only if p(w) € A.
» The function ¢ is defined by the recursive relation
@(€) = do,
¢(wa) = d(p(w), a) forw e £*, a e 2.
» There is a string-matching automaton for every pattern P; constructed in a preprocessing
step.

Suffix Function o

» An auxiliary function g, called the suffix function is defined corresponding to given
pattern P.

» Function o is a mapping from 2* to {0, 1, . . ., m} such that a(x) is length of the longest
prefix of P that is a suffix of x i.e. o(x) = max {k : Px \ x}.

» The suffix function o is well defined since the empty string P, = € is a suffix of every
string.

» For a pattern P of length m, we have o(x) = m if and only if P N\ x.

+ It follows from the definition of the suffix function that if x \ y, then o(x) < o(y).

String Matching Automata
» The string-matching automaton that corresponds to a given pattern P[1.. m] is defined as
« ThestatesetQis{0, 1, ..., m}. The start state g0 is state 0, and state m is the only
accepting state.
« The transition function & is defined by the following equation, for any state q and
character a: & (q, a) = o(Pqa)
» The machine maintains as an invariant of its operation @(T;) = o(T)

String Matching Automata for given Pattern

« Pattern string P = ababaca.

» Edge towards right shows matching

» Edge towards is fro failure

» No edge for some for state and
some alphabet means that edge hits
initial state

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

mput

state| a | b | c | P
0O |1]|]0]|0]| a
1 210 Db
2 |3|10|0]| a
3 |1]14]0]|0Db
4 |5|10]0]| a
5 |1(4|6] c
6 |7|10]|0]| a
7 |1 [2]0

String Matching using Finite Automata

« Finite Automata for Pattern
— P =ababaca
— Text T = abababacaba.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

T[i]
state (T,

0

FINITE-AUTOMATON-MATCHER(T, ©, m)

1 n < length[T]

2 q<0

3 fori«—1ton

4 do q < 8(q, T[i])
5 ifg=m
6

then print "Pattern occurs with shift" i - m

« Matching time on a text string of length n is ©(n).

Memory Usage: O(m|Z|),

» Preprocessing Time: Best case: O(m|Z|).

COMPUTE-TRANSITION-FUNCTION(P, %)

1 m < length[P]
2 forq—0Otom

3 do for each character a € X
4 dok <« min(m+1,q+2)
5 repeatk «— k-1

6 until P N\ Pqa

7 0(q, a) — k

8 return d

Running Time = O(m® |Z|)

11

Summary
Algorithm Preprocessing Time Matching Time
Naive 0 O((n-m+21)m)
Rabin-Karp Oo(m) O((n-m+21)m)
Finite Automaton o(mjl]) O(n)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 43
Polynomials and Fast Fourier Transform

Definitions
A Field is a set F with two binary operations + : F x F - F and *: F x F — F such that
1. (F, +) is an abelian group with identity element 0
2. (F\{0}, *) is an abelian group with identity element 1
3. Multiplication distributes over addition
a*(b + ¢) = (a*b) + (a*c)
— (a+ b)*c = (a*c) + (b*c)

Polynomial
» A polynomial in the variable x over an algebraic field F is a representation of a function
A(x) as a formal sum
AX) = ag+ apxt + apxe + ...+ aX"
Coefficients
» Values ay, a;,..., a, are coefficients of polynomial, and drawn from a field F, typically set
of complex numbers.
Degree
» A polynomial A(x) is said to have degree n if its highest coefficient a, is nonzero
Degree Bound
» Any integer strictly greater than the degree of a polynomial is a degree-bound of that
polynomial.

Addition of two Polynomials: Brute Force
Addition of two polynomials of degree n takes ©(n) time,
Example 1

A(X)=ap+ax' +ax’+ ...+ ax"

B (X) = by + bixt + bpx® + .. .+ bx"

C () = (ap + bo) + (az + by) X' + .. .+(@, + by)X"

Multiplication of Two Polynomial: Brute Force
Multiplication of two polynomials of degree n takes O(n?)
Example 2
A(X)=ap+ax' +ax’ + ...+ ax"
B (X) = b + bix! + bpx® + .. .+ bx"
aghg + asbox! + .. .+ (aybo)x"

aghx! + atbx® + .. .+ (ab)x™!

agby X"+ atbx™ + .+ (ab,)x™"
C (X) = (aoho) + (abg + @b)x* + ... + (@by)x™™"

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Polynomial Representation
1. The Coefficient Representation
2. Point Value Presentation

Note

« The method for multiplying polynomials equations as above take ®(n®) time when the
polynomials are represented in coefficient form

+ But ©(n) time when represented in point value form

» We can multiply using coefficient representation in only ®(n log n) time converting
between two forms

» This lecture make much use of complex numbers, the symbol i has same meaning, you
know sqr(-1)

1. Coefficient Representation
» A coefficient representation of a polynomial degree bound n is a vector of coefficients: a

= (aOl al!"'l an-l)

Vectors as Column
» In this lecture, we will treat vector as column vector

Convenient Way
» The coefficients representation is convenient for certain operations on polynomials

Example: Computing A(X) at X
» Operation of evaluating polynomials A(x) at given point X, consists of computing value of
A(Xo).
« Evaluation takes time ®(n) using Horner’s rule

Evaluation and Addition using Coefficient Form
» Operation 1: Horner’s Rule
A(Xo)= ap+ Xo(@z + Xo(@z +...X o(an2 +Xo(an-1)).-.)
« Operation 2: Addition of Two Polynomials
Similarly adding two polynomials represented by the coefficient vectors:
a=(ag, a,..., a,1) and
b = (b, by, ... ,bn1) takes ®(n) times
» We just produce the coefficient vector:
¢ = (Co, Cy,..., Cn1) Where ¢; = a; + b, Vi=1,.,n-1
» Operation 3: Multiplication of Two Polynomials
— Consider multiplication of A(x) and B(x), with degree bounds n, represented in
coefficient form
— If we use the method described above polynomials multiplication takes time O(n?).
— Since each coefficient in vector a must be multiplied by each coefficients in the
vector b.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

— Operation of multiplying polynomials in coefficient form seems to be considerably
more difficult than that of evaluating or adding two polynomials.

— The resulting coefficient vector c, also called the convolution of the input vectors a
and b.

2. Point—value Representation

A point value representation of a polynomial A(x) of degree bound n is a set of n point
value pairs. { (Xo, Yo), (X1, Y1), - - s(X 01, ¥ n) }

all of the x are distinctand y = A(x), fork=0,1, ..., n-1.

Polynomial has various point value representations, since any set of n distinct points
Xo ,X1,...,X n.1 CaN be used as a basis for the representation.

Conversion: From a Coefficient Form to Point Value Form

Computing a point value representation for a polynomials given in coefficient form is in
principle straight forward ,

This is because select n distinct points Xg ,X1 ,...,X n.1 and then evaluate A(X)
fork=0,1,..., n-1.

With Horner’s rule, n-point evaluation takes q(n?).

This is because for x = Xq, evaluation cost is q(n). And since there are n number of
points, hence there will be q(n?) cost for evaluating all of the n number of points using
Horner’s rule.

Clever Choose of x;

We shall see that if we choose x, cleverly, this computation can be accelerated to run in
q(n log n)

Inverse of evaluating coefficient form of polynomial from point value representation
called interpolation.

Theorem: Uniqueness of an interpolating polynomial

Proof

For any set { (Xo, Y0),(X1, Y1),- - -» (X n-1, Y n-1) } Of N point—value pairs such that all x, values
distinct, there is a unique polynomial A(x) of degree bound n such that y, = A(x,) fork =
0,1,... n-1

Proof is based on existence of inverse of a matrix.

Let us suppose that A(X) is required polynomial

A(X) = ag + apxt + ax’ +. . .+ ax"

Equation: y, = A(xy) is equivalent to the matrix equation given in the next slide.

1 %, X .. [a, Y,
2 n-1

1 X X .. x*lla | |

11 X, X, ... x5l lan] |Vl

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

This matrix on the left side is called vander-monde matrix and is denoted
V(Xo, X1, ++e-Xn-1)

— The determinant of this this matrix is [(X —X;)

0< j<k<n-1
If X, are distinct then it is nonsingular. The coefficient a; can be uniquely determined
a=V(Xo, X1, oo Xn) " Y

Solving The Equation in Proof of Theorem

Using LU decomposition algorithms, we can solve these equation in O(n®)
A faster algorithm, in ©(n?), for n-point interpolation is based on Lagrange's formula:

n-1 lj:{(X—Xj)
&0 T —x)

j#k

Addition using Point Value Form

The point-value representation is quite convenient for many operations on polynomials.
For addition:
C(x) = A(X) + B(X) = C(x) = A(xi) + B(x)
More precisely, if point value representation for A
= {(xo Yo), (X1, Y1), - -, (Xn1, Yn-)hs
And for B: {(Xo, Y'0), (X1, ¥'1),- - -, (Xn-1, ¥'n-0)},
Then a point-value representation for C is
{(Xo, YotY'0)s (X1, Y1+Y'1),- « o (Xn-1s Y1ty)}
Thus, the time to add two polynomials of degree-bound n in point-value form is O(n).

Multiplication using Point Value Form

Similarly, point-value representation is convenient for multiplying polynomials as well.
C(x) = A(X) B(x) = C(xx) = A(Xx)B(xx) for any x,

We can multiply a point value representations for A and B to obtain a point-value
representation for C.

A standard point-value representation for A and B consists of n point-value pairs for
each polynomial

Multiplying these, we must extended point-value representations for A and B of 2n point-
value each.

Given an extended point-value representation for A,

{(Xo, ¥0), (X1, Y1),--., (X2n-1, Y2n-1)}s

And extended point-value representation for B,

{(X0, Y'0), (X1, ¥'1)se-er (Xon-1, Y'2n-1)}s

Then a point-value representation for C is

{(Xo0, YoY'0), (X1, Y1Y'1)seees (Xne1s Y1 Y'ne1)}

Finally, we consider how to evaluate a polynomial given in point-value form at a new
point.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» Apparently no simpler approach than converting polynomial to coefficient form, and then
evaluating it

Discrete Fourier Transform

+ We can use any points as evaluation points, but by choosing evaluation points carefully,
we can convert between representations in only ©(n Ig n) time.

+ If we take “complex roots of unity” evaluation points, we can produce a point-value
representation taking Discrete Fourier Transform of coefficient vector.

» The inverse operation, interpolation, can be performed by taking “inverse DFT” of point-
value pairs, yielding a coefficient vector.

* We will show how FFT performs the DFT and inverse DFT operations in ®(n Ig n)

» Multiplication procedure is shown in the next slide

Fast multiplication of polynomials in coefficient form

ao;al_,..--;a).z_l Ordmary Mult CO:CI;----;Czn_Z
b 0> b1 GeReeS bn-l 0(n") Coefficient
representation
Evalation Interpolation
O(nlog n) B(nlog n)
Point-value
representation
0 0 0
A(»,,), B(®,,) C(,,)
0 0 o 0
A(@M)’ 3(0)2 n) Pointwise Mult C((:)3n)
> 3 B(n) S
2n-1 2n-1 2n-1
A(c 22):B((’):;:) C(C’)zz)

Procedure: Multiplication of Polynomialsin nlgn
We assume n is a power of 2; this requirement can always be met by adding zero coefficients.
1. Double degree-bound:
— Create coefficient representations of A(x) and B(x) as degree bound 2n polynomials
by adding n high-order zero coefficients to each.

2. Evaluate:
— Compute point-value representations of A(x) and B(x) of length 2n through two
applications of FFT of order 2n. These representations contain the values of the two
polynomials at the (2n)th roots of unity.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

3. Point wise multiply:
— Compute point-value form for polynomial C(x) = A(X)B(x) by multiplying these
together point wise. This representation contains the value of C(x) at each (2n)th root
of unity.

4. Interpolate:
— Create coefficient representation of C(x) through a single application of an FFT on 2n

point-value pairs to compute inverse DFT.
Steps (1) and (3) take time @(n), and steps (2) and (4) take time ©(n Ig n).

Complex Roots of Unity and Their Properties
» We claimed that if we use complex roots of unit we can evaluate and interpolate
polynomials in ©(nlgn) time.
» Here, we define complex roots of unity and study their properties.
» Define the DFT,and then show how the FFT computes the DFT and its inverse in just
O(nign) time.
Complex root of unity iy w2
A complex nth root of unity is a complex w3,
number w such that w" =1 wlg

There are exactly n complex nth roots of
unity: e?™"for k=0,1,...,n-1

N o o wog =w88
e" =cos(u) + isin(u). 8
Values of w% w'g,. .., w's in complex .- 1
plane are shown where wg= e*™®is the
principal 8" root of unity.
Complex roots of unity form a cyclic group w53 Wy

Complex roots of unity have interesting
properties. Some of those are discussed in
the next

Properties: Complex Roots of Unity

Lemma 1 (cancellation lemma)
« For any integers n 2 0,k 20,and d > 0, w*, = w*, .

Proof:
« the lemma follows directly from w,=e*™" since
_ wdkdn - (eZTI'i/dn)dk
o :(eZ'rri/n)k
— = wkn

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Corollary 1 (cancellation lemma)
« For any even integer n >0,

wnlzn - _1
Proof:
We know that w, =e®™"
NOW wn/zn — u)n/22.n/2 — U)z - wn :e2m/2 = wn :em - _1

Lemma 2 (Halving Lemma)
« If n>0is even, then squares of n complex nth root of unity are the n/2 complex (n/2)th
root of unity.
Proof:
By the cancellation lemma, we have: (w.*)? = w*y.
» For any nonnegative integer k, note that if we square all of complex nth root of unity,
then each (n/2)th root of unity is obtained exactly twice, since
(wnk +n/2)2 — w2k+nn/2
— UUZKnUJnn — wzkn

Halving Lemma is Essential in Reducing Cost
Thus w*,and w**"?,, have the same square.
» This property can also be proved using corollary,
W= wy=-1
- Since w"%,= -1 implies w*"?,= - w*,and thus
((.Unk +n/2)2 — (wnk)z
» As we shall see, the halving lemma is essential to our divide-and-conquer approach of
converting between coefficient and point-value representation of polynomials

« Since it guarantees that the recursive sub problems are only half as large.

Lemma 3 (Summation Lemma)
For any integer n 2 1 and nonnegative integer k not divisible by n,

n-1
> (W)y=0
=0
Proof:
n-1)
o YW - (w1
=0

w1

(w1

= w1

« Requiring that k not be divisible by n ensures that the denominator is not 0, since w,* = 1
only when K is divisible by n.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

The DFT
Recall that we wish to evaluate a polynomial

n-A(x) =y ax

=0

of degree-bound n at W W, W2, w,"! (that is, at the n complex nth roots of unity).

Without loss of generality, we assume that n is a power of 2, since a given degree-bound
can always be raised we can always add new high-order zero coefficients as necessary.

We assume that A is given in coefficient from a=(ag, a,. . ., An1).
Let us define the results y, for k =0,1,. . ., n-1, by
Yk = A(wkn)
n-1
= Z aj U.)kjn
=0

The vector y = (Yo, Y1,- - -, Yn1) iS Discrete Fourier Transform (DFT) of the coefficient
vector a = (ap, ai,. . ., an1).
We can also write y = DFT,(a)

The FFT
0 0 k
Ar[]:]i hence 2 . {ME = Aok)
AT (X)=a, +a,X+a,X" +....+a, X
(x)=a, +a,x+2, n-2 Yl = Al ()

AY(x) =a +ax+ax’ +...+a,_x"*" (A)
(*) A(X) = A (x?) + xAH (x?) Y, = A(e) = Al (02) + o Al (2"

Thus evaluating A(x) at @, @y, ..., @] reduce to

_ k K K
=AY (0,/,) — o Al (©n2)

— ool ko]
=Y toY

1. evaluating A (x) and AM(x) at

2. combining the results according to (*)

0y2 142 n-1y2
0, , (O , . N , (®
(n) (n) (n) ykm/z — A((Dl:]+n/2) — A[O] (m§k+n)+mﬁ+n/2A[1] (@ﬁk)

= A wp,) + o A (e,)

— 0], ken/2] OI0] kM
=Yoo, Y =Y oY

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

FFT Recursive Algorithm
Recursive-FFT(a)
{ n=length[a]; /*n: power of 2 */
if n=1 the return a;
O)n — eZni/n;
o=1
a” =(a,,a,,.....8,,);
al = (8,808, ,);
vy = Recursive-FFT (a™);
y" = Recursive-FFT (a™);
for k=0 to (n/2-1) do

0 1].
Y= Y + oy,
_ ylol [1].
Yienz = Yo —OY
O=OO,; }

T(n)=2T(n/2)+6(n)
=0(nlog n)

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 44
NP Completeness

Polynomial Time Algorithms

« On any inputs of size n, if worst-case running time of algorithm is O(n*), for constant k,
then it is called polynomial time algorithm

» Every problem can not be solved in polynomial time

» There exists some problems which can not be solved by any computer, in any amount of
time, e.g. Turing’s Halting Problem

» Such problems are called un-decidable

« Some problems can be solved but not in O(n¥)

Polynomial Time (Class P)
» These problems are solvable in polynomial time
» Problems in class P are also called tractable

Intractable Problems
» Problems not in P are called intractable
» These problems can be solved in reasonable amount of time only for small input size

Decision problems
» The problems which return yes or no for a given input and a question regarding the
same problem

Optimization problems
» Find a solution with best value, it can be maximum or minimum. There can be more than
one solutions for it
» Optimization problems can be considered as decision problems which are easier to
study.
+ Finding a path between u and v using fewest edges in an un-weighted directed graph is
O. P. but does a path exist from u to v consisting of at most k edges is D. P.?

NP: Nondeterministic Problems

Class NP

» Problems which are verifiable in polynomial time.

* Whether there exists or not any polynomial time algorithm for solving such problems, we
do not know.

+ Can be solved by nondeterministic polynomial

+ However if we are given a certificate of a solution, we could verify that certificate is
correct in polynomial time

« P=NP?

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Nondeterministic algorithm: break in two steps
1) Nondeterministic step generate a candidate solution called a certificate
2) Deterministic (verification) Step. It takes certificate and an instance of problem as input,
returns yes if certificate represents solution
— In NP problems, verification step is polynomial

Example: Hamiltonian Cycle
+ Given: a directed graph G = (V, E),
determine a simple cycle that
contains each vertex in V, where
each vertex can only be visited once
» Certificate:
— Sequence: (Vi, Vo, V3, ..., Vp) .
— Generating certificates hamiftonian
» Verification:
1. (v Vi) e Efori=1,...,n-1
2. (v, V1) € E
It takes polynomial time
not hamiltonian

Reduction in Polynomial Time Algorithm
« Given two problems A, B, we say that A is reducible to B in polynomial time (A <, B) if
1. There exists a function f that converts the input of A to inputs of B in polynomial
time
2. A(X) = YES < B(f(x)) = YES
where x is input for A and f(x) is input for B

Solving a decision problem A in polynomial time
* Use a polynomial time reduction algorithm to transform A into B
* Run a known polynomial time algorithm for B
» Use the answer for B as the answer for A

yes
o B Polynomial time [=
f [i i no
algorithm to decide B k_,

Polynomial time algorithm to decide A

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

NP Complete
* A problem A is NP-complete if
1) A e NP
2) B<,Aforall B € NP
» If A satisfies only property No. 2 then B is NP-hard
» No polynomial time algorithm has been discovered for an NP-Complete problem
» No one has ever proven that no polynomial time algorithm can exist for any NP-
Complete problem

Reduction and NP Completeness
» Let A and B are two problems, and also suppose that we are given
— No polynomial time algorithm exists for problem A
— If we have a polynomial reduction f from Ato B
» Then no polynomial time algorithm exists for B

yes

oL B yesS _»r—m
f = Problem B < e

no >

Problem A

Relation in Between P, NP, NPC
« P < NP (Researchers Believe)

* NPC c NP (Researchers Believe)
- P=NP (or P < NP, or P # NP) 277 NP @

« NPC = NP (or NPC c NP,

or NPC = NP) ??7? @
« P=NP

« One of the deepest, most perplexing
open research problems in
theoretical computer science since
1971

Problem Definitions: Circuit Satisfiability
Boolean Combinational Circuit
» Boolean combinational elements wired together
+ Each element takes a set of inputs and produces a set of outputs in constant number,
assume binary
» Limit the number of outputs to 1
» Logic gates: NOT, AND, OR
» Satisfying assignment: a true assignment causing the output to be 1.
» A circuit is satisfiable if it has a satisfying assignment.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Two Instances: Satisfiable and Un-satisfiable

Figure 34.8 Two instances of the circuit-satisfiability problem. (a) The assignment (x; = 1,
x2 = 1, x3 = 0) to the inputs of this circuit causes the output of the circuit to be 1. The circuit
is therefore satisfiable. (b) No assignment to the inputs of this circuit can cause the output of the
circuit to be 1. The circuit is therefore unsatisfiable.

Problem: Circuit Satisfiability
Statement

* Given a boolean combinational circuit composed of AND, OR, and NOT, is it stisfiable?
Intuitive solution

» For each possible assignment, check whether it generates 1.

+ Suppose the number of inputs is k, then the total possible assignments are 2.

« So the running time is Q(2").

» When the size of the problem is ®(k), then the running time is not polynomial

Lemma 2: CIRCUIT-SAT is NP Hard
Proof:
» Suppose X is any problem in NP
» Construct polynomial time algorithm F that maps every instance x in X to a circuit C =
f(x) such that x is YES < C e CIRCUIT-SAT (is satisfiable).
+ Since X e NP, there is a polynomial time algorithm A which verifies X.
» Suppose the input length is n and Let T(n) denote the worst-case running time.
« Let k be the constant such that T(n) = O(n*) and the length of the certificate is O(n).

Circuit Satisfiability Problem is NP-complete
* Represent computation of A as a sequence of configurations, Co, C,...,Ci,Ci+1,-..,C1(n),
each c; can be broken into various components
* ¢;is mapped to ci.; by the combinational circuit M implementing the computer hardware.
» Itisto be noted that A(x, y) =1 or 0.
» Paste together all T(n) copies of the circuit M. Call this as, F, the resultant algorithm
* Please see the overall structure in the next slide

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

o

<y

¥ ()

o1 o'ulpul

Figure 34.9 The sequence of configurations produced by an algorithm A running on an input x and
certificate y. Each configuration represents the state of the computer for one step of the computation
and. besides A, x, and y, includes the program counter (PC), auxiliary machine state, and working
storage. Except for the certificate y, the initial configuration g is constant. Each configuration is
mapped to the next configuration by a boolean combinational circuit M. The output is a distinguished
bit in the working storage.

* Now it can be proved that: . ' .
1. F correctly constructs reduction, i.e., C is satisfiable if and only if there exists a

certificate y, such that A(x, y) = 1.
2. Fruns in polynomial time

(Left as an assignment) o
+ Construction of C takes O(n*) steps, a step takes polynomial time

+ F takes polynomial time to construct C from x.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

NP-completeness Proof Basis

Lemma 3
+ If X'is problem such that P* <, X for some P'eNPC, then X is NP-hard. Moreover, X €
NP= Xe NPC.
Proof:
« Since P’ is NPC hence for all P” in NP, we have
P* <, P’ D
« AndP'<,X given (2)
+ By (1) and (2)
. P"<,P <, X = P” <, X hence X is NP-hard

*+ Now if X e NP= Xe NPC

Formula Satisfiability: Notations and Definitions
» SAT Definition
— n boolean variables: Xy, Xa,..., Xn.
— m boolean connectives: A,v,—,—,<>, and
— Parentheses.
+ A SAT ¢ is satisfiable if there exists a true assignment which causes ¢ to evaluate to 1.

In Formal Language
+ SAT={< ¢>: ¢ is a satifiable boolean formula}.

SAT is NP Complete
Theorem:
* SAT is NP-complete.
Proof:
» SAT belongs to NP.
— Given a satisfying assignment
— Verifying algorithm replaces each variable with its value, and evaluates formula
in polynomial time.
« SAT is NP-hard
— Sulfficient to show that CIRCUIT-SATS, SAT
+ CIRCUIT-SATS, SAT, i.e., any instance of circuit satisfiability can be reduced in
polynomial time to an instance of formula satisfiability.
* Intuitive induction:
— Look at the gate that produces the circuit output.
— Inductively express each of gate’s inputs as formulas.
— Formula for circuit is obtained by writing an expression that applies gate’s
function to its input formulas.
» Unfortunately, this is not a polynomial time reduction
» This is because the gate whose output is fed to 2 or more inputs of other gates, cause
size to grow exponentially.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Example of Reduction of CIRCUIT-SAT to SAT

$= X10A(X20¢>(X7A XgA X9))
A(Xg¢>(Xe v X7))
A(Xg¢>(X5 v Xg))
AX76> (XA XoA Xg))
A(Xe€> —Xs))
A(Xs¢>(X1 v X2))
A(Xg¢>—X3)

. »- |
= o= 2
X3 D@ X4 _\ x| o
4

Figure 34.10 Reducing circuit satisfiability to formula satisfiability. The formula produced by the
reduction algorithm has a variable for each wire in the circuit.

INCORRECT REDUCTION: ¢= X10= X7A XgA Xg=(X1A XoA Xg) A (X5V Xe)A (X6 V X7)
=(X1/\ XoA X4) A ((Xl Vv X2) Vv —|X4)/\ (—|X4V (Xl/\ XoN X4)):. cen

NPC Proof: 3 CNF Satisfiability

Definitions:
« Aliteral in a boolean formula is an occurrence of a variable or its negation.
« Clause, OR of one or more literals.
* CNF (Conjunctive Nornal Form) is a boolean formula expressed as AND of clauses.
« 3-CNF is a CNF in which each clause has exactly 3 distinct literals.
(a literal and its negation are distinct)
* 3-CNF-SAT: whether a given 3-CNF is satiafiable?

3-CNF-SAT is NP Complete
Proof:
3-CNF-SAT € NP
» 3-CNF-SAT is NP-hard.
* SAT £,3-CNF-SAT?
— Suppose ¢ is any boolean formula, Construct a binary ‘parse’ tree, with literals as

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

leaves and connectives as internal nodes.
— Introduce y; for output of each internal node.
— Reuwrite formula to ¢": AND of root and conjunction of clauses describing
operation of each node.
— In ¢', each clause has at most three literals.
» Change each clause into conjunctive normal form as:
— Construct a true table, (at most 8 by 4)
— Write disjunctive normal form for items evaluating 0
— Using DeMorgan law to change to CNF.
* Result: ¢" in CNF but each clause has 3 or less literals.
» Change 1 or 2-literal clause into 3-literal clause as:
— Two literals:
(lv Ip), change it to (liv [vp) A (v Iz v—=p).
— If aclause has one literal I, change it to (Ivpva)A(lvpv—ag)A (Iv—=pvag)A (Iv—=pv—Qq).

Binary parse tree for ¢=((x1—- x2) v—=((—x1¢> x3) v X4))A—-x2

Figure 34.11 The tree corresponding to the formula¢ = ((x; = x2)V—((—=x; < X3)VX4))A—X7.

Example of Converting a 3-literal clause to CNF format

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Y1 y2 x| (yp o (y2 A—x3))
1 1 | 0
1 1 0 1
1 0 | 0
] 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

Figure 34.12 The truth table for the clause (y; <> (y2 A =x2)).

CLIQUE: NPC Proof
Definition:
» Aclique in an undirected graph G = (V, E) is a subset V' < V, each pair of V' is
connected by an edge in E, i.e., clique is a complete subgraph of G.
» Size of a clique is number of vertices in the clique.
» Optimization problem: Find maximum size clique.
» Decision problem: whether a clique of given size k exists in the graph?
* CLIQUE = {<G, k>: G is a graph with a clique of size k.}
* Intuitive solution: ??7?

CLIQUE is NP Complete
* Theorem
— CLIQUE problem is NP-complete.
* Proof:

— CLIUEQE eNP: given G = (V, E) and a set V' c V as a certificate for G. The
verifying algorithm checks for each pair of u, v € V', whether <u, v> € E. time:
O(IV'[IE]).

— CLIQUE is NP-hard:

o Show 3-CNF-SAT <,CLUQUE.
o Surprise: from boolean formula to graph.
» Reduction from 3-CNF-SAT to CLUQUE.
— Suppose ¢ = CiA Cra... AC, be a boolean formula in 3-CNF with k clauses.
— We construct a graph G = (V, E) as follows:
o For each clause C, =(l,'v I,'v I3, place triple of vi', v/, v5" into V
o Put edge between vertices v and v when:
v r#s,i.e. v and v’ are in different triples, and
v'corresponding literals are consistent, i.e, I is not negation of |°.
— Then ¢ is satisfiable < G has a clique of size k.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

P=(XLv—x2v—X3)A(—XxLvx2vXx3)A(x1vx2vx3) and its reduced graph G

C1=X1V—|X2 V—X3
o) | ~ I 7 =

-

Cry==xX3 VX2V X3 Ci=xivxaVvx

Figure 34.14 The graph G derived from the 3-CNF formula ¢ = C; A Cy A C3, where C| =
(xy Vv =axp v=x3), Cyp = (mx) Vaa vaz), and C3 = (x; Vv X3 Vv x3), in reducing 3-CNF-SAT
to CLIQUE. A satisfying assignment of the formula has xp = 0, x3 = [, and x; may be either 0
or 1. This assignment satisfies C| with —x3, and it satisfies Cy and C3 with x3, corresponding to the
clique with lightly shaded vertices.

NP-completeness proof structure

Figure 34.13 The structure of NP-completeness proofs in Sections 34.4 and 34.5. All proofs ulti-
mately follow by reduction from the NP-completeness of CIRCUIT-SAT.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture No. 45
Review Lecture

Lecture No 1: Model of Computation
» Analysis independent of the variations in machine, operating system, language,
compiler, etc.
+ Our model was an abstraction of a standard generic single-processor machine, called a
random access machine RAM
— infinitely large random-access memory,
— instructions execute sequentially
» Every instruction, a basic operation taking unit time.
+ We identified some weaknesses in our model of computation but finally we proved that
with all these weaknesses, our model is not so bad because it fulfils our needs in design
and analysis of algorithms

Lecture No 2, 3, 4 & 5: Mathematical Tools
A Sequence of Mathematical Tools
+ Sets, Sequences, Cross Product, Relation, Functions, Operators over above structures
Logic and Proving Techniques
» Propositional Logic, Predicate Logic
» Proofs Logical Equivalences, Contradiction, Rule of Inference
Mathematical Induction
« Simple Induction
» Strong Induction

Lecture 6, 7, 8, & 9: Recursion
« Fibonacci Sequences
* Recursion? Recursive Mathematical Models
« First, second, higher order Linear Homogenous Recurrences with Constant Coefficients
» General Homogenous Recurrence when
— Roots distinct, repeated, multiplicity of root is k
— many roots with different multiplicities
» Non-homogenous Recurrence, Characteristics and solution
¢ Recursive Tree methods
e Substitution Method
» Proof of Master Theorem

Lecture 10 & 11: Asymptotic Notations
* Major Factors in Algorithms Design
+ Complexity Analysis
» Growth of Functions
* Asymptotic Notations
» Usefulness of Notations

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

+ Reflexivity, Symmetry, Transitivity Relations over ©, Q, O, m and o
* Relation between ®, Q and O
» Various Examples Explaining each concept

Lecture 12, 13 & 14
Brute Force Approach,
» Checking primality
» Sorting sequence of numbers
» Knapsack problem
» Closest pair in 2-D, 3-D and n-D
» Finding maximal points in n-D
Divide and Conquer?
» Merge Sort algorithm
» Finding Maxima in 1-D, and 2-D
» Finding Closest Pair in 2-D

Lecture 15 - 24: Dynamic Programming
Optimizations Problems and Dynamic Programming
Chain-Matrix Multiplication

Assembly Line Scheduling Problem
Generalization to n-Line Assembly Problem
0-1 Knapsack Problem

Optimal Weight Triangulation

Longest Common sub-sequence problem
Optimal Binary Search Trees

Noakowdr

1. Chain Matrix Multiplication

Statement: The chain-matrix multiplication problem can be stated as below:

» Given achain of [Ag, Ay, . .., Ay of n matricesfori=1, 2, ..., n, matrix A; has
dimension pi1 X p;, find the order of multiplication which minimizes the number of scalar
multiplications.

Objective Function

« Let m[i, j] = minimum number of multiplications needed to compute A; j, for 1 <i <j <n

» Objective function = finding minimum number of multiplications needed to compute A;
i.e. to compute m[1, n]

2. Assembly-Line Scheduling

» There are two assembly lines each with n stations

« The jth station on line i is denoted by S;

« The assembly time at that station is a;;.

» An auto enters factory, goes into line i taking time e;

» After going through the jth station on a line i, the auto goes on to the (j+1)st station on
either line

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

» There is no transfer cost if it stays on the same line

+ Ittakes time t;; to transfer to other line after station S,

» After exiting the nth station on a line, it takes time x; for the completed auto to exit the
factory.

« Problem is to determine which stations to choose from lines 1 and 2 to minimize total
time through the factory.

Assembly-Line Scheduling Problem

« Letfi[j] = fastest time from starting point station S; ;
» Objective function = f* = min(f;[n] + Xy, fo[n] + X>)
« I* =line no. whose n" station is used in fastest way.

3. n Line Assembly Scheduling Problem

» There are n assembly lines each with m stations

« The jth station on line i is denoted by S; |

« The assembly time at that station is a;;.

» An auto enters factory, goes into line i taking time e;

« After going through the jth station on a line i, the auto goes on to the (j+1)st station on
either line

+ It takes time t;; to transfer from line i, station j to line i’ and station j+1

» After exiting the nth station on a line i, it takes time x; for the completed auto to exit the
factory.

» Problem is to determine which stations to choose from lines 1 to n to minimize total time
through the factory.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

t(1,}-

« Let fi[j] = fastest time from starting point to station S; |
* |i[j] = Line no. 1 to n, for station j-1 used in fastest way
« t[-1] = transfer time from station S; j,; to station S;, ;

« ali, j] = time of assembling at station S;

« f*=is minimum time through any way

« I* = line no. whose m" station is used in a fastest way

‘)

© .@
O—®)/
en

4. 0-1 Knapsack Problem
Assumption
+ Each item must be put entirely in the knapsack or not included at all that is why the
problem is called 0-1 knapsack problem
Remarks
» Because an item cannot be broken up arbitrarily, so it is its 0-1 property that makes the
knapsack problem hard.
« If an item can be broken and allowed to take part of it then algorithm can be solved using
greedy approach optimally

5. Optimal Weight Triangulation Problem
« Atriangulation of a convex polygon is a maximal set T of pair-wise non-crossing chords.
» ltis easy to see that such a set subdivides interior of polygon into a collection of
triangles, pair-wise disjoint
Problem Statement
» Given a convex polygon, determine a triangulation that minimizes sum of the perimeters
of its triangles

6. Longest Common Subsequence Problem
Statement:
* Inthe longest-common-subsequence (LCS) problem, we are given two sequences
X =<Xq, Xo, . . ., Xm> and

Y=<Y1,y2a---,yn>
» And our objective is to find a maximum-length common subsequence of X and Y.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Note:

This LCS problem can be solved using brute force approach as well but using dynamic

programming it will be solved more efficiently.

Optimal Substructure of an LCS

If X=(Xq, X2,. .., Xm), @and Y = (yy, Y2, . . ., Yn) be sequences and let us suppose that Z =
(21, Z, . . ., Zx) be alongest common sub-sequence of X and Y
1. if Xn =Yy, then zg,=xnand Z,_1is LCS of Xin_1 Yia.
2. If Xm # Yn, then z # X, implies that Z is LCS of X,,_; and Y
3. If Xpm # yn then z, = y,implies Zis LCS of X and Y, _;
0 ifi =00Rj =0
c(i,j)=<c(i-1,j-1)+1 ifij>0and x, =y,
max(c(i-1, j),c(i,j-1) ifij>0andx =y,

7. Optimal Binary Search Trees

A translator from English to, say, Urdu.

Use a binary search tree to store all the words in our dictionary, together with their
translations.

The word “the” is much more likely to be looked up than the word “ring”

So we would like to make the search time for the word “the” very short, possibly at the
expense of increasing the search time for the word “ring.”

Problem Statement:;

We are given a probability distribution that determines, for every key in the tree, the
likelihood that we search for this key. Objective is to minimize expected search time of
tree.

Lecture 25-26: Greedy Algorithms
List of Greedy Algorithms discussed in this Course

1.

2
3.
4.
5

Activity Selection Problem
Fractional Knapsack Problem
Coin Change Making Problem
Huffman Problem

Road Trip Problem

Steps Designing Greedy Algorithms
We went through the following steps in the above problem:

1.
2.
3.

4.

Determine the suboptimal structure of the problem.

Develop a recursive solution.

Prove that at any stage of the recursion, one of the optimal choices is the greedy choice.
Thus, it is always safe to make the greedy choice.

Show that all but one of the sub-problems induced by having made the greedy choice
are empty.

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

5. Develop a recursive algorithm that implements the greedy strategy.
6. Convert this recursive algorithm to an iterative one.

Huffman Codes

« In Huffman coding, variable length code is used

» Data considered to be a sequence of characters.

« Huffman codes are a widely used and very effective technique for compressing data

— Savings of 20% to 90% are typical, depending on the characteristics of the data
being compressed.

+ Huffman’s algorithm uses table of frequencies of occurrence of characters to build up an
optimal way of representing each character as a binary string.

» Objective in Huffman coding is to develop a code that represents given text as
compactly as possible

Lecture 27-37: Graph Theoretic Algorithms
Graph Theoretic Algorithms
» Graph Concepts and types of graphs
+ Representation of graphs
» Searching Algorithms
» Backtracking, Branch and Bound Algorithms
» Applications of Searching Algorithm
» Minimal Spanning Tree Algorithms
— Kruskal’s Algorithm
— Prim’s Algorithm
» Shortest Path Algorithms

Minimum Spanning Tree
» Given agraph G = (V, E) such that
— G is connected and undirected
- w(u, v) weight of edge (u, v)
— T is a Minimum Spanning Tree (MST) of G if
T is acyclic subset of E (T [J E)
It connects all the vertices of G and
Total weight, w(T) = > w(u,v) is minimized.

(uv)eT

Shortest Path Problems

» Single-source shortest path
— The Bellman-Ford Algorithm
— Shortest Path in directed acyclic graphs
— Dijkstra’s Algorithm

» Single-destination shortest path

» Single-pair shortest path

* All-pairs shortest-paths
— Matrix Multiplication

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

— The Floyd-Warshall Algorithm
— Johnson’s Algorithm

The Bellman-Ford Algorithm
BELLMAN-FORD (G, w, s)
1 INITIALIZE-SINGLE-SOURCE (G, s) & (V)

fori—1to|V[G] -1 }

3]

do for each edge (u, v) I, E[G] % (VE)

do RELAX (u.v.w)
for each edge (u,v) M, E[G]
do ifd[v] > d[u] + w(u, v) }
then return FALSE
8 return TRUE

Total Running Time = O(V.E)

N QN AW

Algorithm: Shortest Path (dag)
DAG-SHORTEST-PATHS (G, w, s)

1 topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE (G, s)

3 for each vertex u, taken in topologically
sorted order e(V) | o)

4 do for each vertex v 1N, Adj[u]

5 do RELAX (u, v, w)

Each iteration of for loop takes O(1)
Total Running Time = O (V+E)

Dijkstra’s Algorithm
Input Given graph G(V, E) with source s, weights w
Assumption

« Edges non-negative, w(u, v) 20, V (u,Vv) [E

« Directed, if (u, v) € E then (v, u) may or may not € E

Objective: Find shortest paths from s to every u 11 V

Approach
* Maintain a set S of vertices whose final shortest-path weights from s have been
determined

* Repeatedly select, u [1 V — S with minimum shortest path estimate, add u to S, relax all
edges leaving u.
» Greedy, always choose light vertex in V-S , add to S

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Lecture 38-40: Number Theoretic Algorithms
» Applications of Number Theory
* Some Important Concepts and Fats useful in number theoretic Algorithms
» Modular Arithmetic
+ Finding GCD
» Euclid’s Algorithm
« Extended Euclid’s Algorithm
* Residues and Reduced set of Residues
» Chinese Remainder Theorem
*+ RSA Cryptosystem

The RSA Public Key Cryptosystem

Choose two distinct large random prime numbers p and g such that p = g

Compute n by n = pq, nis used as modulus

Compute the totient function ¢(n)

Choose an integer e such that 1 < e < ¢(n) and e and ¢(n) share no factors other than 1
Compute d to satisfy the congruence relation; de =1 mod o¢(n) i.e.

de =1 + ko(n) for some integer k

Publish the pair P =(e, n) as his RSA public Key

7. Keep secret pair S =(d, n) as his RSA secret Key

a s wDnNE

o

Lecture 41-44: Further Topics
» String Matching Problem
— Naive approach
— Rabin Karp algorithm
— String Matching using Finite automata
* Polynomials and Fast Fourier Transform
* NP Completeness

Lecture No. 45: Review Lecture

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

CS-702 Advanced Algorithms Analysis and Design

Final -Term 2015 Exam Questions

Steps of greedy algorithm design

Pseudo code of Huffman coding

Prove that circuit-sat is hard

Prove gcd(an,bn)=n.gcd(a,b)

Decrypted message (example in slides)

Backtracking to find maximum profit maximum weight is 8. see example in

backtracking)

7. In DFES if vi is en-queued before vj then prove that d[vi]<d[vj] 5makrs

8. Bellman ford algorithm 5marks

9. Prove that a|0 for all a belong to Z 5 marks

10.Naive String Matching Algorithm 5 marks

11.For all primes p and all integers a, b, if p | ab, then p | a or p | b (or p divides both
and b)

12.Prime algorithm 10 marks

13.CNF-SAT is NP complete 10 marks

14.1f X is problem such that P'<spXfor some P'eNPC, then X is NP-hard.

Moreover,XeNP=X€eNPC 15 marks

15.Write down pseudo code of longest common subsequence?

16. Write down pseudo code of Naive String Matching problem?

17.Write down pseudo code of optimal BST?

18.Write down pseudo code of transition function?

19. Write down prim’s algorithm?

20.Write down Shortest Path (dag) algorithm?

21.1f a> b =1 and the invocation EUCLID (a, b) takes k = 1 recursive calls, then a =
Fk+2 and b = Fk+1 ?

22.1f p is prime, a is positive integer not divisible by p, ap-1=1mod p OR ap =a
mod p

23.1f gcd(a, m) = 1 and m > 1, then a has a unique inverse a’' (modulo m).

24.1f X is problem such that P‘< p X for some P'eNPC, then X is NP-hard. Moreover,
X € NP—Xe NPC.

25.Why we use dynamic programming? Give limitations.....5 marks

26.Pseudo code for Johnson’s algorithm....5 marks

27.How to print path in BFS algorithm...5 marks.

28.Prove that for a problem X and P' such that P' <p NPC , X is NP hard. ...

29.Extend Shortest Path algorithm.5 marks.

ok wbhE

Dr. Nazir Ahmad Zafar | Virtual University of Pakistan

