

Artificial Intelligence

 By
 Dr Zafar. M. Alvi

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

2

Table of Contents:

1 Introduction.. 4

1.1 What is Intelligence? .. 4

1.2 Intelligent Machines ... 7

1.3 Formal Definitions for Artificial Intelligence... 7

1.4 History and Evolution of Artificial Intelligence ... 9

1.5 Applications ... 13

1.6 Summary .. 14

2 Problem Solving .. 15

2.1 Classical Approach... 15

2.2 Generate and Test ... 15

2.3 Problem Representation.. 16

2.4 Components of Problem Solving.. 17

2.5 The Two-One Problem... 18

2.6 Searching.. 21

2.7 Tree and Graphs Terminology.. 21

2.8 Search Strategies .. 23

2.9 Simple Search Algorithm ... 24

2.10 Simple Search Algorithm Applied to Depth First Search... 25

2.11 Simple Search Algorithm Applied to Breadth First Search.. 28

2.12 Problems with DFS and BFS.. 32

2.13 Progressive Deepening ... 32

2.14 Heuristically Informed Searches .. 37

2.15 Hill Climbing.. 39

2.16 Beam Search... 43

2.17 Best First Search... 45

2.18 Optimal Searches.. 47

2.19 Branch and Bound .. 48

2.20 Improvements in Branch and Bound .. 55

2.21 A* Procedure.. 56

2.22 Adversarial Search ... 62

2.23 Minimax Procedure .. 63

2.24 Alpha Beta Pruning .. 64

2.25 Summary .. 71

2.26 Problems... 72

3 Genetic Algorithms.. 76

3.1 Discussion on Problem Solving.. 76

3.2 Hill Climbing in Parallel .. 76

3.3 Comment on Evolution... 77

3.4 Genetic Algorithm.. 77

3.5 Basic Genetic Algorithm .. 77

3.6 Solution to a Few Problems using GA ... 77

3.7 Eight Queens Problem.. 82

3.8 Problems... 88

4 Knowledge Representation and Reasoning.. 89

4.1 The AI Cycle .. 89

4.2 The dilemma... 90

4.3 Knowledge and its types... 90

4.4 Towards Representation ... 91

4.5 Formal KR techniques.. 93

4.6 Facts ... 94

4.7 Rules... 95

4.8 Semantic networks ... 97

4.9 Frames .. 98

4.10 Logic... 98

4.11 Reasoning ... 102

4.12 Types of reasoning ... 102

5 Expert Systems .. 111

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

3

5.1 What is an Expert? ... 111

5.2 What is an expert system? .. 111

5.3 History and Evolution .. 111

5.4 Comparison of a human expert and an expert yystem.. 112

5.5 Roles of an expert system... 113

5.6 How are expert systems used?.. 114

5.7 Expert system structure .. 115

5.8 Characteristics of expert systems ... 121

5.9 Programming vs. knowledge engineering .. 122

5.10 People involved in an expert system project .. 122

5.11 Inference mechanisms .. 123

5.12 Design of expert systems.. 129

6 Handling uncertainty with fuzzy systems .. 145

6.1 Introduction .. 145

6.2 Classical sets .. 145

6.3 Fuzzy sets ... 146

6.4 Fuzzy Logic.. 147

6.5 Fuzzy inference system .. 153

6.6 Summary .. 158

6.7 Exercise .. 158

7 Introduction to learning.. 159

7.1 Motivation .. 159

7.2 What is learning ?... 159

7.3 What is machine learning ? .. 160

7.4 Why do we want machine learning .. 160

7.5 What are the three phases in machine learning?... 160

7.6 Learning techniques available .. 162

7.7 How is it different from the AI we've studied so far?... 163

7.8 Applied learning ... 163

7.9 LEARNING: Symbol-based... 165

7.10 Problem and problem spaces .. 165

7.11 Concept learning as search ... 171

7.12 Decision trees learning ... 176

7.13 LEARNING: Connectionist ... 181

7.14 Biological aspects and structure of a neuron ... 181

7.15 Single perceptron.. 182

7.16 Linearly separable problems... 184

7.17 Multiple layers of perceptrons.. 186

7.18 Artificial Neural Networks: supervised and unsupervised ... 187

7.19 Basic terminologies .. 187

7.20 Design phases of ANNs.. 188

7.21 Supervised .. 190

7.22 Unsupervised .. 190

7.23 Exercise .. 192

8 Planning ... 195

8.1 Motivation .. 195

8.2 Definition of Planning .. 196

8.3 Planning vs. problem solving ... 197

8.4 Planning language .. 197

8.5 The partial-order planning algorithm – POP .. 198

8.6 POP Example ... 199

8.7 Problems... 202

9 Advanced Topics ... 203

9.1 Computer vision ... 203

9.2 Robotics.. 204

9.3 Clustering ... 205

10 Conclusion .. 206

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

4

Artificial Intelligence

1 Introduction
This booklet is organized as chapters that elaborate on various concepts of
Artificial Intelligence. The field itself is an emerging area of computer sciences
and a lot of work is underway in order to mature the concepts of this field.
In this booklet we will however try to envelop some important aspects and basic
concepts which will help the reader to get an insight into the type of topics that
Artificial Intelligence deals with.
We have used the name of the field i.e. Artificial Intelligence (commonly referred
as AI) without any explanation of the name itself. Let us now look into a simple
but comprehensive way to define the field.
To define AI, let us first try to understand that what is Intelligence?

1.1 What is Intelligence?

If you were asked a simple question; how can we define Intelligence? many of

you would exactly know what it is but most of you won’t exactly be able to define
it. Is it something tangible? We all know that it does exist but what actually it is.
Some of us will attribute intelligence to living beings and would be of the view that
all living species are intelligent. But how about these plants and tress, they are
living species but are they also intelligent? So can we say that Intelligence is a
trait of some living species? Let us try to understand the phenomena of
intelligence by using a few examples.
Consider the following image where a mouse is trying to search a maze in order
to find its way from the bottom left to the piece of cheese in the top right corner of
the image.

This problem can be considered as a common real life problem which we deal
with many times in our life, i.e. finding a path, may be to a university, to a friends
house, to a market, or in this case to the piece of cheese. The mouse tries
various paths as shown by arrows and can reach the cheese by more than one
path. In other words the mouse can find more than one solutions to this problem.
The mouse was intelligent enough to find a solution to the problem at hand.
Hence the ability of problem solving demonstrates intelligence.

Let us consider another problem. Consider the sequence of numbers below:

1, 3, 7, 13, 21, ___

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

5

If you were asked to find the next number in the sequence what would be your
answer? Just to help you out in the answer let us solve it for you “adding the next
even number to the” i.e. if we add 2 to 1 we get 3, then we add 4 to 3 we get 7,
then we get 6 to 7 we get 13, then we add 8 to 13 we get 21 and finally if we’ll
add 10 to 21 we’ll get 31 as the answer. Again answering the question requires a
little bit intelligence. The characteristic of intelligence comes in when we try to
solve something, we check various ways to solve it, we check different
combinations, and many other things to solve different problems. All this thinking,
this memory manipulation capability, this numerical processing ability and a lot of
other things add to ones intelligence.

All of you have experienced your college life. It was very easy for us to look at the
timetable and go to the respective classes to attend them. Not even caring that
how that time table was actually developed. In simple cases developing such a
timetable is simple. But in cases where we have 100s of students studying in
different classes, where we have only a few rooms and limited time to schedule
all those classes. This gets tougher and tougher. The person who makes the
timetable has to look into all the time schedule, availability of the teachers,
availability of the rooms, and many other things to fit all the items correctly within
a fixed span of time. He has to look into many expressions and thoughts like “If
room A is free AND teacher B is ready to take the class AND the students of the
class are not studying any other course at that time” THEN “the class can be
scheduled”. This is a fairly simple one, things get complex as we add more and
more parameters e.g. if we were to consider that teacher B might teach more
than one course and he might just prefer to teach in room C and many other
things like that. The problem gets more and more complex. We are pretty much
sure than none of us had ever realized the complexity through which our teachers
go through while developing these schedules for our classes. However, like we
know such time tables can be developed. All this information has to reside in the
developer’s brain. His intelligence helps him to create such a schedule. Hence
the ability to think, plan and schedule demonstrate intelligence.

Consider a doctor, he checks many patients daily, diagnoses their disease, gives
them medicine and prescribes them behaviors that can help them to get cured.
Let us think a little and try to understand that what actually he does. Though
checking a patient and diagnosing the disease is much more complex but we’ll try
to keep our discussion very simple and will intentionally miss out stuff from this
discussion.

A person goes to doctor, tells him that he is not feeling well. The doctor asks him
a few questions to clarify the patient’s situation. The doctor takes a few
measurements to check the physical status of the person. These measurements
might just include the temperature (T), Blood Pressure (BP), Pulse Rate (PR) and
things like that. For simplicity let us consider that some doctor only checks these
measurements and tries to come up with a diagnosis for the disease. He takes
these measurements and based on his previous knowledge he tries to diagnose
the disease. His previous knowledge is based on rules like: “If the patient has a
high BP and normal T and normal PR then he is not well”. “If only the BP is
normal then what ever the other measurements may be the person should be
healthy”, and many such other rules.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

6

The key thing to notice is that by using such rules the doctor might classify a
person to be healthy or ill and might as well prescribe different medicines to him
using the information observed from the measurements according to his previous
knowledge. Diagnosing a disease has many other complex information and

observations involved, we have just mentioned a very simple case here. However,
the doctor is actually faced with solving a problem of diagnosis having looked at
some specific measurements. It is important to consider that a doctor who would
have a better memory to store all this precious knowledge, better ability of
retrieving the correct portion of the knowledge for the correct patient will be better
able to classify a patient. Hence, telling us that memory and correct and
efficient memory and information manipulation also counts towards ones
intelligence.

Things are not all that simple. People don’t think about problems in the same
manner. Let us give you an extremely simple problem. Just tell us about your
height. Are you short, medium or tall? An extremely easy question! Well you
might just think that you are tall but your friend who is taller than you might say
that NO! You are not. The point being that some people might have such a
distribution in their mind that people having height around 4ft are short, around 5ft
are medium and around 6ft are tall. Others might have this distribution that
people having height around 4.5ft are short, around 5.5ft are medium and around
6.5ft are tall. Even having the same measurements different people can get to
completely different results as they approach the problem in different fashion.
Things can be even more complex when the same person, having observed
same measurements solves the same problem in two different ways and reaches
different solutions. But we all know that we answer such fuzzy questions very
efficiently in our daily lives. Our intelligence actually helps us do this. Hence the
ability to tackle ambiguous and fuzzy problems demonstrates intelligence.

Can you recognize a person just by looking at his/her fingerprint? Though we all
know that every human has a distinct pattern of his/her fingerprint but just by
looking at a fingerprint image a human generally can’t just tell that this print must
be of person XYZ. On the other hand having distinct fingerprint is really important
information as it serves as a unique ID for all the humans in this world.

Let us just consider 5 different people and ask a sixth one to have a look at
different images of their fingerprints. We ask him to somehow learn the patterns,
which make the five prints distinct in some manner. After having seen the images
a several times, that sixth person might get to find something that is making the
prints distinct. Things like one of them has fever lines in the print, the other one
has sharply curved lines, some might have larger distance between the lines in
the print and some might have smaller displacement between the lines and many
such features. The point being that after some time, which may be in hours or
days or may be even months, that sixth person will be able to look at a new
fingerprint of one of those five persons and he might with some degree of
accuracy recognize that which one amongst the five does it belong. Only with 5
people the problem was hard to solve. His intelligence helped him to learn the
features that distinguish one finger print from the other. Hence the ability to
learn and recognize demonstrates intelligence.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

7

Let us give one last thought and then will get to why we have discussed all this. A
lot of us regularly watch television. Consider that you switch off the volume of
your TV set. If you are watching a VU lecture you will somehow perceive that the
person standing in front of you is not singing a song, or anchoring a musical show
or playing some sport. So just by observing the sequence of images of the
person you are able to perceive meaningful information out of the video. Your
intelligence helped you to perceive and understand what was happening on the
TV. Hence the ability to understand and perceive demonstrates intelligence.

1.2 Intelligent Machines

The discussion in the above section has a lot of consequences when we see it
with a different perspective. Let us show you something really interesting now
and hence informally define the field of Artificial Intelligence at the same time.
What if?
� A machine searches through a mesh and finds a path?
� A machine solves problems like the next number in the sequence?
� A machine develops plans?
� A machine diagnoses and prescribes?
� A machine answers ambiguous questions?
� A machine recognizes fingerprints?
� A machine understands?
� A machine perceives?
� A machine does MANY MORE SUCH THINGS!
� A machine behaves as HUMANS do? HUMANOID!!!

We will have to call such a machine Intelligent. Is this real or natural
intelligence? NO! This is Artificial Intelligence.

1.3 Formal Definitions for Artificial Intelligence

In their book “Artificial Intelligence: A Modern Approach” Stuart Russell and Peter
Norvig comment on artificial intelligence in a very comprehensive manner. They
present the definitions of artificial intelligence according to eight recent textbooks.
These definitions can be broadly categorized under two themes. The ones in the
left column of the table below are concerned with thought process and
reasoning, where as the ones in the right column address behavior.

Systems that think like
humans

Systems that act like
humans

“The exciting new effort
to make computers think
… machines with minds,
in the full and literal
sense” (Haugeland,
1985)

“The art of creating
machines that perform
functions that require
intelligence when
performed by people”
(Kurzweil 1990)

“[The automation of]
activities that we
associate with human
thinking, activities such

“The study of how to
make computers do
things at which, at the
moment, people are

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

8

as decision making,
problem solving,
learning …” (Bellman,
1978)

better” (Rich and Knight,
1991)

“The study of mental
faculties through the use
of computational
models” (Charniak and
McDermott)

“A field of study that
seeks to explain and
emulate intelligent
behavior in terms of
computational
processes” (Schalkoff,
1990)

“The study of
computation that make it
possible to perceive
reason and act”
(Winston 1992)

“The branch of computer
science that is
concerned with the
automation of intelligent
behavior” (Luger and
Stubblefield, 1993)

To make computers think like humans we first need to devise ways to determine
that how humans think. This is not that easy. For this we need to get inside the
actual functioning of the human brain. There are two ways to do this:

� Introspection: that is trying to catch out own thoughts as they go by.
� Psychological Experiments: that concern with the study of science of

mental life.
 Once we accomplish in developing some sort of comprehensive theory that how
humans think, only then can we come up with computer programs that follow the
same rules. The interdisciplinary field of cognitive science brings together
computer models from AI and experimental techniques from psychology to try to
construct precise and testable theories of the working of human mind.

The issue of acting like humans comes up when AI programs have to interact
with people or when they have to do something physically which human usually
do in real life. For instance when a natural language processing system makes a
dialog with a person, or when some intelligent software gives out a medical
diagnosis, or when a robotic arm sorts out manufactured goods over a conveyer
belt and many other such scenarios.

Keeping in view all the above motivations let us give a fairly comprehensive
comment that Artificial Intelligence is an effort to create systems that can learn,
think, perceive, analyze and act in the same manner as real humans.

People have also looked into understanding the phenomena of Artificial
Intelligence from a different view point. They call this strong and weal AI.

Strong AI means that machines act intelligently and they have real conscious
minds. Weak AI says that machines can be made to act as if they are intelligent.
That is Weak AI treats the brain as a black box and just emulates its functionality.
While strong AI actually tries to recreate the functions of the inside of the brain as
opposed to simply emulating behavior.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

9

The concept can be explained by an example. Consider you have a very
intelligent machine that does a lot of tasks with a lot of intelligence. On the other
hand you have very trivial specie e.g. a cat. If you throw both of them into a pool
of water, the cat will try to save her life and would swim out of the pool. The
“intelligent” machine would die out in the water without any effort to save itself.
The mouse had strong Intelligence, the machine didn’t. If the machine has strong
artificial intelligence, it would have used its knowledge to counter for this totally
new situation in its environment. But the machine only knew what we taught it or
in other wards only knew what was programmed into it. It never had the inherent
capability of intelligence which would have helped it to deal with this new
situation.

Most of the researchers are of the view that strong AI can’t actually ever be
created and what ever we study and understand while dealing with the field of AI
is related to weak AI. A few are also of the view that we can get to the essence of
strong AI as well. However it is a standing debate but the purpose was to
introduce you with another aspect of thinking about the field.

1.4 History and Evolution of Artificial Intelligence

AI is a young field. It has inherited its ideas, concepts and techniques from many
disciplines like philosophy, mathematics, psychology, linguistics, biology etc.
From over a long period of traditions in philosophy theories of reasoning and
learning have emerged. From over 400 years of mathematics we have formal
theories of logic, probability, decision-making and computation. From psychology
we have the tools and techniques to investigate the human mind and ways to
represent the resulting theories. Linguistics provides us with the theories of
structure and meaning of language. From biology we have information about the
network structure of a human brain and all the theories on functionalities of
different human organs. Finally from computer science we have tools and
concepts to make AI a reality.

1.4.1 First recognized work on AI

The first work that is now generally recognized as AI was done by Warren
McCulloch and Walter Pitts (1943). Their work based on three sources:

� The basic physiology and function of neurons in the human brain
� The prepositional logic
� The Turing’s theory of computation

The proposed an artificial model of the human neuron. Their model proposed a
human neuron to be a bi-state element i.e. on or off and that the state of the
neuron depending on response to stimulation by a sufficient number of
neighboring neurons. They showed, for example, that some network of
connected neurons could compute any computable function, and that all the
logical connectives can be implemented by simple net structures. They also
suggested that suitably connected networks can also learn but they didn’t pursue
this idea much at that time. Donald Hebb (1949) demonstrated a simple updating
rile for the modifying the connection strengths between neurons, such that
learning could take place.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

10

1.4.2 The name of the field as “Artificial Intelligence”

In 1956 some of the U.S researchers got together and organized a two-month
workshop at Dartmouth. There were altogether only 10 attendees. Allen Newell
and Herbert Simon actually dominated the workshop. Although all the
researchers had some excellent ideas and a few even had some demo programs
like checkers, but Newell and Herbert already had a reasoning program, the
Logic Theorist. The program came up with proofs for logic theorems. The
Dartmouth workshop didn’t lead to any new breakthroughs, but it did all the major
people who were working in the field to each other. Over the next twenty years
these people, their students and colleagues at MIT, CMU, Stanford and IBM,
dominated the field of artificial intelligence. The most lasting and memorable thing
that came out of that workshop was an agreement to adopt the new name for the
field: Artificial Intelligence. So this was when the term was actually coined.

1.4.3 First program that thought humanly
In the early years AI met drastic success. The researchers were highly motivated
to try out AI techniques to solve problems that were not yet been solved. Many of
them met great successes. Newell and Simon’s early success was followed up
with the General Problem Solver. Unlike Logic Theorist, this program was
developed in the manner that it attacked a problem imitating the steps that
human take when solving a problem. Though it catered for a limited class of
problems but it was found out that it addressed those problems in a way very
similar to that as humans. It was probably the first program that imitated human
thinking approach.

1.4.4 Development of Lisp

In 1958 In MIT AI Lab, McCarthy defined the high-level language Lisp that
became the dominant AI programming language in the proceeding years. Though
McCarthy had the required tools with him to implement programs in this language
but access to scarce and expensive computing resources were also a serious
problem. Thus he and other researchers at MIT invented time sharing. Also in
1958 he published a paper titled Programs with Common Sense, in which he
mentioned Advice Taker a hypothetical that can be seen as the first complete AI
system. Unlike the other systems at that time, it was to cater for the general
knowledge of the world. For example he showed that how some simple rules
could help a program generate a plan to drive to an airport and catch the plane.

1.4.5 Microworlds

Marvin Minsky (1963), a researcher at MIT supervised a number of students who
chose limited problems that appeared to require intelligence to solve. These
limited domains became known as Microworlds. Some of them developed
programs that solved calculus problems; some developed programs, which were
able to accept input statements in a very restricted subset of English language,
and generated answers to these statements. An example statement and an
answer can be:
Statement:
If Ali is 2 years younger than Umar and Umar is 23 years old. How old is Ali?
Answer:

Ali is 21 years old.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

11

In the same era a few researchers also met significant successes in building
neural networks but neural networks will be discusses in detail in the section titled
“Learning” in this book.

1.4.6 Researchers started to realize problems

In the beginning the AI researchers very confidently predicted their up coming
successes. Herbert Simon in 1957 said:

It is not my aim to surprise of shock you -- but the simplest way I can
summarize is to say that there are now in the world machines that think,
that learn and that create. Moreover, their ability to do these things is going
to increase rapidly until -- in a visible future – the range of problems they
can handle will be coextensive with the range to which human mind has
been applied

In 1958 he predicted that computers would be chess champions, and an
important new mathematical theorem would be proved by machine. But over the
years it was revealed that such statements and claims were really optimistic. A
major problem that AI researchers started to realize was that though their
techniques worked fairly well on one or two simple examples but most of them
turned out to fail when tried out on wider selection of problems and on more
difficult tasks.

One of the problems was that early programs often didn’t have much knowledge
of their subject matter, and succeeded by means of simple syntactic
manipulations e.g. Weizenbaum’s ELIZA program (1965), which could apparently
engage in serious conversation on any topic, actually just borrowed and
manipulated the sentences typed into it by a human. Many of the language
translation programs tried to translate sentences by just a replacement of words
without having catered for the context in which they were used, hence totally
failing to maintain the subject matter in the actual sentence, which was to be
translated. The famous retranslation of “the spirit is willing but the flesh is
weak” as “the vodka is good but the meat is rotten” illustrates the difficulties
encountered.

Second kind of difficulty was that many problems that AI was trying to solve were
intractable. Most of the AI programs in the early years tried to attack a problem by
finding different combinations in which a problem can be solved and then
combined different combinations and steps until the right solution was found.
This didn’t work always. There were many intractable problems in which this
approach failed.

A third problem arose because of the fundamental limitations on the basic
structures being used to generate intelligent behavior. For example in 1969,
Minsky and Papert’s book Perceptrons proved that although perceptrons could
be shown to learn anything they were capable of representing, they could
represent very little.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

12

However, in brief different happenings made the researchers realize that as they
tried harder and more complex problem the pace of their success decreased so
they now refrained from making highly optimistic statements.

1.4.7 AI becomes part of Commercial Market

Even after realizing the basic hurdles and problems in the way of achieving
success in this field, the researchers went on exploring grounds and techniques.
The first successful commercial expert system, R1, began operation at Digital
Equipment Corporation (McDermott, 1982). The program basically helped to
configure the orders for new computer systems. Detailed study of what expert
systems are will be dealt later in this book. For now consider expert systems as a
programs that somehow solves a certain problem by using previously stored
information about some rules and fact of the domain to which that problem
belongs.

In 1981, the Japanese announced the “Fifth Generation” project, a 10-year plan
to build intelligent computers running Prolog in much the same way that ordinary
computers run the machine code. The project proposed to achieve full-scale
natural language understanding along with many other ambitious goals.
However, by this time people began to invest in this field and many AI projects
got commercially funded and accepted.

1.4.8 Neural networks reinvented

Although computer science had rejected this concept of neural networks after
Minsky and Papert’s Perceptrons book, but in 1980s at least four different
groups reinvented the back propagation learning algorithm which was first found
in 1969 by Bryson and Ho. The algorithm was applied to many learning problem
in computer science and the wide spread dissemination of the results in the
collection Parallel Distributed Processing (Rumelhart and McClelland, 1986)
caused great excitement.

People tried out the back propagation neural networks as a solution to many
learning problems and met great success.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

13

The diagram above summarizes the history and evolution of AI in a
comprehensive shape.

1.5 Applications

Artificial finds its application in a lot of areas not only related to computer

sciences but many other fields as well. We will briefly mention a few of the
application areas and throughout the content of this booklet you will find various
applications of the field in detail later.

Many information retrieval systems like Google search engine uses artificially
intelligent crawlers and content based searching techniques to efficiency and
accuracy of the information retrieval.

A lot of computer based games like chess, 3D combat games even many arcade
games use intelligent software to make the user feel as if the machine on which
that game is running is intelligent.

Computer Vision is a new area where people are trying to develop the sense of
visionary perception into a machine. Computer vision applications help to
establish tasks which previously required human vision capabilities e.g.
recognizing human faces, understanding images and to interpret them, analyzing
medical scan and innumerable amount of other tasks.

Natural language processing is another area which tries to make machines speak
and interact with humans just like humans themselves. This requires a lot from
the field of Artificial Intelligence.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

14

Expert systems form probably the largest industrial applications of AI. Software
like MYCIN and XCON/R1 has been successfully employed in medical and
manufacturing industries respectively.

Robotics again forms a branch linked with the applications of AI where people are
trying to develop robots which can be rather called as humanoids. Organizations
have developed robots that act as pets, visitor guides etc.

In short there are vast applications of the field and a lot of research work is going
on around the globe in the sub-branches of the field. Like mentioned previously,
during the course of the booklet you will find details of many application of AI.

1.6 Summary

� Intelligence can be understood as a trait of some living species
� Many factors and behaviors contribute to intelligence
� Intelligent machines can be created
� To create intelligent machines we first need to understand how the real

brain functions
� Artificial intelligence deals with making machines think and act like

humans
� It is difficult to give one precise definition of AI
� History of AI is marked by many interesting happenings through which the

field gradually evolved
� In the early years people made optimistic claims about AI but soon they

realized that it’s not all that smooth
� AI is employed in various different fields like gaming, business, law,

medicine, engineering, robotics, computer vision and many other fields

� This book will guide you through basic concepts and some core algorithms

that form the fundamentals of Artificial Intelligence
� AI has enormous room for research and posses a diverse future

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

15

Lecture No. 4 -10

2 Problem Solving
In chapter one, we discussed a few factors that demonstrate intelligence.
Problem solving was one of them when we referred to it using the examples of a
mouse searching a maze and the next number in the sequence problem.
Historically people viewed the phenomena of intelligence as strongly related to
problem solving. They used to think that the person who is able to solve more
and more problems is more intelligent than others.
In order to understand how exactly problem solving contributes to intelligence, we
need to find out how intelligent species solve problems.

2.1 Classical Approach

The classical approach to solving a problem is pretty simple. Given a problem at
hand use hit and trial method to check for various solutions to that problem.
This hit and trial approach usually works well for trivial problems and is referred to
as the classical approach to problem solving.

Consider the maze searching problem. The mouse travels though one path and
finds that the path leads to a dead end, it then back tracks somewhat and goes
along some other path and again finds that there is no way to proceed. It goes on
performing such search, trying different solutions to solve the problem until a
sequence of turns in the maze takes it to the cheese. Hence, of all the solutions
the mouse tries, the one that reached the cheese was the one that solved the
problem.
Consider that a toddler is to switch on the light in a dark room. He sees the
switchboard having a number of buttons on it. He presses one, nothing happens,
he presses the second one, the fan gets on, he goes on trying different buttons till
at last the room gets lighted and his problem gets solved.
Consider another situation when we have to open a combinational lock of a
briefcase. It is a lock which probably most of you would have seen where we
have different numbers and we adjust the individual dials/digits to obtain a
combination that opens the lock. However, if we don’t know the correct
combination of digits that open the lock, we usually try 0-0-0, 7-7-7, 7-8-6 or any
such combination for opening the lock. We are solving this problem in the same
manner as the toddler did in the light switch example.

All this discussion has one thing in common. That different intelligent species use
a similar approach to solve the problem at hand. This approach is essentially the
classical way in which intelligent species solve problems. Technically we call this
hit and trial approach the “Generate and Test” approach.

2.2 Generate and Test

This is a technical name given to the classical way of solving problems where we
generate different combinations to solve our problem, and the one which solves
the problem is taken as the correct solution. The rest of the combinations that we
try are considered as incorrect solutions and hence are destroyed.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

16

The diagram above shows a simple arrangement of a Generate and Test
procedure. The box on the left labeled “Solution Generator” generates different
solutions to a problem at hand, e.g. in the case of maze searching problem, the
solution generator can be thought of as a machine that generates different paths
inside a maze. The “Tester” actually checks that either a possible solution from
the solution generates solves out problem or not. Again in case of maze
searching the tester can be thought of as a device that checks that a path is a
valid path for the mouse to reach the cheese. In case the tester verifies the
solution to be a valid path, the solution is taken to be the “Correct Solution”. On
the other hand if the solution was incorrect, it is discarded as being an “Incorrect
Solution”.

2.3 Problem Representation

All the problems that we have seen till now were trivial in nature. When the
magnitude of the problem increases and more parameters are added, e.g. the
problem of developing a time table, then we have to come up with procedures
better than simple Generate and Test approach.
Before even thinking of developing techniques to systematically solve the
problem, we need to know one more thing that is true about problem solving
namely problem representation. The key to problem solving is actually good
representation of a problem. Natural representation of problems is usually done
using graphics and diagrams to develop a clear picture of the problem in your
mind. As an example to our comment consider the diagram below.

It shows the problem of switching on the light by a toddler in a graphical form.
Each rectangle represents the state of the switch board. OFF | OFF| OFF means
that all the three switches are OFF. Similarly OFF| ON | OFF means that the first
and the last switch is OFF and the middle one is ON. Starting from the state
when all the switches are OFF the child can proceed in any of the three ways by

Solution
Generator

Tester Possible
Solutions

Incorrect

Solutions

Correct
Solutions

OFF | OFF | OFF

ON | OFF | OFF OFF | ON | OFF OFF | OFF | ON

ON | ON | OFF ON | OFF | ON ON | ON | OFF OFF | ON | ON ON | OFF | ON OFF | ON | ON

OFF | OFF | OFF

ON | OFF | OFF OFF | ON | OFF OFF | OFF | ON

ON | ON | OFF ON | OFF | ON ON | ON | OFF OFF | ON | ON ON | OFF | ON OFF | ON | ON

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

17

switching either one of the switch ON. This brings the toddler to the next level in
the tree. Now from here he can explore the other options, till he gets to a state
where the switch corresponding to the light is ON. Hence our problem was
reduced to finding a node in the tree which ON is the place corresponding to the
light switch. Observe how representing a problem in a nice manner clarifies the
approach to be taken in order to solve it.

2.4 Components of Problem Solving

Let us now be a bit more formal in dealing with problem solving and take a look at
the topic with reference to some components that constitute problem solving.
They are namely: Problem Statement, Goal State, Solution Space and Operators.
We will discuss each one of them in detail.

2.4.1 Problem Statement

This is the very essential component where by we get to know what exactly the
problem at hand is. The two major things that we get to know about the problem
is the Information about what is to be done and constraints to which our solution
should comply. For example we might just say that given infinite amount of time,
one will be able to solve any problem he wishes to solve. But the constraint
“infinite amount of time” is not a practical one. Hence whenever addressing a
problem we have to see that how much time shall out solution take at max. Time
is not the only constraint. Availability of resources, and all the other parameters
laid down in the problem statement actually tells us about all the rules that have
to be followed while solving a problem. For example, taking the same example of
the mouse, are problem statement will tell us things like, the mouse has to reach
the cheese as soon as possible and in case it is unable to find a path within an
hour, it might die of hunger. The statement might as well tell us that the mouse is
located in the lower left corner of the maze and the cheese in the top left corner,
the mouse can turn left, right and might or might not be allowed to move
backward and things like that. Thus it is the problem statement that gives us a
feel of what exactly to do and helps us start thinking of how exactly things will
work in the solution.

2.4.2 Problem Solution

While solving a problem, this should be known that what will be out ultimate aim.
That is what should be the output of our procedure in order to solve the problem.
For example in the case of mouse, the ultimate aim is to reach the cheese. The
state of world when mouse will be beside the cheese and probably eating it
defines the aim. This state of world is also referred to as the Goal State or the
state that represents the solution of the problem.

2.4.3 Solution space

In order to reach the solution we need to check various strategies. We might or
might not follow a systematic strategy in all the cases. Whatever we follow, we
have to go though a certain amount of states of nature to reach the solution. For
example when the mouse was in the lower left corner of the maze, represents a
state i.e. the start state. When it was stuck in some corner of the maze
represents a state. When it was stuck somewhere else represents another state.
When it was traveling on a path represents some other state and finally when it

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

18

reaches the cheese represents a state called the goal state. The set of the start
state, the goal state and all the intermediate states constitutes something which
is called a solution space.

2.4.4 Traveling in the solution space

We have to travel inside this solution space in order to find a solution to our
problem. The traveling inside a solution space requires something called as
“operators”. In case of the mouse example, turn left, turn right, go straight are
the operators which help us travel inside the solution space. In short the action
that takes us from one state to the other is referred to as an operator. So while
solving a problem we should clearly know that what are the operators that we can
use in order to reach the goal state from the starting state. The sequence of
these operators is actually the solution to our problem.

2.5 The Two-One Problem

In order to explain the four components of problem solving in a better way we
have chosen a simple but interesting problem to help you grasp the concepts.
The diagram below shows the setting of our problem called the Two-One
Problem.

A simple problem statement to the problem at hand is as under.
You are given a rectangular container that has 5 slots in it. Each slot can hold
only one coin at a time. Place Rs.1 coins in the two left slots; keep the center slot
empty and put Rs.2 coins in the two right slots. A simple representation can be
seen in the diagram above where the top left container represents the Start State
in which the coined are placed as just described. Our aim is to reach a state of
the container where the left two slots should contain Rs.2 coins, the center slot
should be empty and the right two slots should contain Rs.1 coin as shown in the
Goal State. There are certain simple rules to play this game. The rules are
mentioned clearly in the diagram under the heading of “Rules”. The rules actually
define the constraints under which the problem has to be solved. The legal
moves are the Operators that we can use to get from one state to the other. For
example we can slide a coin to its left or right if the left or right slot is empty, or
we can hop the coin over a single slot. The rules say that Rs.1 coins can slide or
hop only towards right. Similarly the Rs.2 coins can slide or hop only towards the
left. You can only move one coin at a time.

1 1 ? 2 2 2 2 ? 1 1

Start Goal

Rules:
• 1s’ move right
• 2s’ move left
• Only one move at a time
• No backing up

Legal Moves:
• Slide

• Hop

1 1 ? 2 2 2 2 ? 1 1

Start Goal

Rules:
• 1s’ move right
• 2s’ move left
• Only one move at a time
• No backing up

Legal Moves:
• Slide

• Hop

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

19

Now let us try to solve the problem in a trivial manner just by using a hit and trial
method without addressing the problem in a systematic manner.

Trial 1

Start State

Move 1

Move 2

Move 3

Move 4

Move 5

In Move 1 we slide a 2 to the left, then we hop a 1 to the right, then we slide the 2
to the left again and then we hop the 2 to the left, then slide the one to the right
hence at least one 2 and one 1 are at the desired positions as required in the
goal state but then we are stuck. There is no other valid move which takes us out
of this state. Let us consider another trial.
Trial 2

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

20

Starting from the start state we first hop a 1 to the right, then we slide the other 1
to the right and then suddenly we get STUCK!! Hence solving the problem
through a hit and trial might not give us the solution.
Let us now try to address the problem in a systematic manner. Consider the
diagram below.

Starting from the goal state if we hop, we get stuck. If we slide we can further
carry on. Keeping this observation in mind let us now try to develop all the
possible combinations that can happen after we slide.

1 1 ? 2 2? 1 1 2 2 1 1 2 2 ?

1 ? 1 2 2 1 1 2 ? 2

1 2 1 ? 2? 1 1 2 2 1 1 2 2 ?1 ? 2 1 2

1 2 1 2 ? 1 2 ? 1 2 ? 1 2 1 2

? 2 1 1 2 1 2 2 1 ? 2 1 ? 1 21 2 ? 2 1

1 2 2 ? 1 ? 2 1 2 1 2 ? 1 1 2 1 2 2 ?1 2 1 1 2 ? 2 ? 1 1 2

2 ? 1 2 1 2 1 2 ? 1

2 2 1 ? 1 2 ? 2 1 1

1 1 ? 2 2

H H

S S

S H H S

S S S S

S H S S H S

S
S

H H

S S

H
H H H

1 1 ? 2 2? 1 1 2 2 1 1 2 2 ?

1 ? 1 2 2 1 1 2 ? 2

1 2 1 ? 2? 1 1 2 2 1 1 2 2 ?1 ? 2 1 2

1 2 1 2 ? 1 2 ? 1 2 ? 1 2 1 2

? 2 1 1 2 1 2 2 1 ? 2 1 ? 1 21 2 ? 2 1

1 2 2 ? 1 ? 2 1 2 1 2 ? 1 1 2 1 2 2 ?1 2 1 1 2 ? 2 ? 1 1 2

2 ? 1 2 1 2 1 2 ? 1

2 2 1 ? 1 2 ? 2 1 1

1 1 ? 2 2

H H

S S

S H H S

S S S S

S H S S H S

S
S

H H

S S

H
H H H

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

21

The diagram above shows a tree sort of structure enumerating all the possible
states and moves. Looking at this diagram we can easily figure out the solution to
our problem. This tree like structure actually represents the “Solution Space” of
this problem. The labels on the links are H and S representing hop and slide
operators respectively. Hence H and S are the operators that help us travel
through this solution space in order to reach the goal state from the start state.

We hope that this example actually clarifies the terms problem statement, start
state, goal state, solution space and operators in your mind. It will be a nice
exercise to design your own simple problems and try to identify these
components in them in order to develop a better understanding.

2.6 Searching

All the problems that we have looked at can be converted to a form where we
have to start from a start state and search for a goal state by traveling through a
solution space. Searching is a formal mechanism to explore alternatives.

Most of the solution spaces for problems can be represented in a graph where
nodes represent different states and edges represent the operator which takes us
from one state to the other. If we can get our grips on algorithms that deal with
searching techniques in graphs and trees, we’ll be all set to perform problem
solving in an efficient manner.

2.7 Tree and Graphs Terminology

Before studying the searching techniques defined on trees and graphs let us
briefly review some underlying terminology.

The diagram above is just to refresh your memories on the terminology of a tree.
As for graphs, there are undirected and directed graphs which can be seen in the
diagram below.

A

B C

D E F G H

I J
•“A” is the “root node”
•“A, B, C …. J” are “nodes”
•“B” is a “child” of “A”
•“A” is ancestor of “D”
•“D” is a descendant of “A”
•“D, E, F, G, I, J” are “leaf nodes”
•Arrows represent “edges” or “links”

A

B C

D E F G H

I J
•“A” is the “root node”
•“A, B, C …. J” are “nodes”
•“B” is a “child” of “A”
•“A” is ancestor of “D”
•“D” is a descendant of “A”
•“D, E, F, G, I, J” are “leaf nodes”
•Arrows represent “edges” or “links”

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

22

Let us first consider a couple of examples to learn how graphs can represent
important information by the help of nodes and edges.
Graphs can be used to represent city routes.

Graphs can be used to plan actions.

We will use graphs to represent problems and their solution spaces. One thing to
be noted is that every graph can be converted into a tree, by replicating the
nodes. Consider the following example.

A

B C

D E F G

H I

A

B C

D E F G

H I

Directed Graph Undirected Graph

A

B C

D E F G

H I

A

B C

D E F G

H I

Directed Graph Undirected Graph

A

B C

D E F G

H I

A

B C

D E F G

H I

Directed Graph Undirected Graph

A

B C

D E F G

H I

A

B C

D E F G

H I

Directed Graph Undirected Graph

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

23

The graph in the figure represents a city map with cities labeled as S, A, B, C, D,
E, F and G. Just by following a simple procedure we can convert this graph to a
tree.

Start from node S and make it the root of your tree, check how many nodes are
adjacent to it. In this case A and D are adjacent to it. Hence in the tree make A
and D, children of S. Now go on proceeding in this manner and you’ll get a tree
with a few nodes replicated. In this manner depending on a starting node you can
get a different tree too. But just recall that when solving a problem; we usually
know the start state and the end state. So we will be able to transform our
problem graphs in problem trees. Now if we can develop understanding of
algorithms that are defined for tree searching and tree traversals then we will be
in a better shape to solve problems efficiently.

We know that problems can be represented in graphs, and are well familiar with
the components of problem solving, let us now address problem solving in a
more formal manner and study the searching techniques in detail so that we can
systematically approach the solution to a given problem.

2.8 Search Strategies

Search strategies and algorithms that we will study are primarily of four types,
blind/uninformed, informed/heuristic, any path/non-optimal and optimal path
search algorithms. We will discuss each of these using the same mouse
example.

Suppose the mouse does not know where and how far is the cheese and is
totally blind to the configuration of the maze. The mouse would blindly search the
maze without any hints that will help it turning left or right at any junction. The
mouse will purely use a hit and trial approach and will check all combinations till
one takes it to the cheese. Such searching is called blind or uninformed
searching.

Consider now that the cheese is fresh and the smell of cheese is spread through
the maze. The mouse will now use this smell as a guide, or heuristic (we will
comment on this word in detail later) to guess the position of the cheese and
choose the best from the alternative choices. As the smell gets stronger, the

S G

FE

CB

D

A

2

3 3

3

1 3

2

4 4

S

A D

B D A E

C E

D F

G

E

B F

C G

B

C E

F

G

B F

A C G

S G

FE

CB

D

A

2

3 3

3

1 3

2

4 4

S

A D

B D A E

C E

D F

G

E

B F

C G

B

C E

F

G

B F

A C G

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

24

mouse knows that the cheese is closer. Hence the mouse is informed about the
cheese through the smell and thus performs an informed search in the maze.
For now you might think that the informed search will always give us a better
solution and will always solve our problem. This might not be true as you will find
out when we discuss the word heuristic in detail later.

When solving the maze search problem, we saw that the mouse can reach the
cheese from different paths. In the diagram above two possible paths are shown.

In any-path/non optimal searches we are concerned with finding any one solution
to our problem. As soon as we find a solution, we stop, without thinking that there
might as well be a better way to solve the problem which might take lesser time
or fewer operators.

Contrary to this, in optimal path searches we try to find the best solution. For
example, in the diagram above the optimal path is the blue one because it is
smaller and requires lesser operators. Hence in optimal searches we find
solutions that are least costly, where cost of the solution may be different for
each problem.

2.9 Simple Search Algorithm

Let us now state a simple search algorithm that will try to give you an idea about
the sort of data structures that will be used while searching, and the stop criteria
for your search. The strength of the algorithm is such that we will be able to use
this algorithm for both Depth First Search (DFS) and Breadth First Search (BFS).

Let S be the start state
1. Initialize Q with the start node Q=(S) as the only entry; set Visited =
(S)

2. If Q is empty, fail. Else pick node X from Q
3. If X is a goal, return X, we’ve reached the goal
4. (Otherwise) Remove X from Q
5. Find all the children of state X not in Visited
6. Add these to Q; Add Children of X to Visited
7. Go to Step 2

Here Q represents a priority queue. The algorithm is simple and doesn’t need
much explanation. We will use this algorithm to implement blind and uninformed
searches. The algorithm however can be used to implement informed searches

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

25

as well. The critical step in the Simple Search Algorithm is picking of a node X
from Q according to a priority function. Let us call this function P(n). While using
this algorithm for any of the techniques, our priority will be to reduce the value of
P(n) as much as we can. In other words, the node with the highest priority will
have the smallest value of the function P(n) where n is the node referred to as X
in the algorithm.

2.10 Simple Search Algorithm Applied to Depth First Search

Depth First Search dives into a tree deeper and deeper to fine the goal state. We
will use the same Simple Search Algorithm to implement DFS by keeping our
priority function as

)(

1
)(

nheight
nP =

As mentioned previously we will give priority to the element with minimum P(n)
hence the node with the largest value of height will be at the maximum priority to
be picked from Q. The following sequence of diagrams will show you how DFS
works on a tree using the Simple Search Algorithm.

We start with a tree containing nodes S, A, B, C, D, E, F, G, and H, with H as the
goal node. In the bottom left table we show the two queues Q and Visited.
According to the Simple Search Algorithm, we initialize Q with the start node S,
shown below.

If Q is not empty, pick the node X with the minimum P(n) (in this case S), as it is
the only node in Q. Check if X is goal, (in this case X is not the goal). Hence find
all the children of X not in Visited and add them to Q and Visited. Goto Step 2.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

26

Again check if Q is not empty, pick the node X with the minimum P(n) (in this
case either A or B), as both of them have the same value for P(n). Check if X is
goal, (in this case A is not the goal). Hence, find all the children of A not in Visited
and add them to Q and Visited. Go to Step 2.

Go on following the steps in the Simple Search Algorithm till you find a goal node.
The diagrams below show you how the algorithm proceeds.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

27

Here, from the 5th row of the table when we remove H and check if it’s the goal,
the algorithm says YES and hence we return H as we have reached the goal
state. The path followed by the DFS is shown by green arrows at each step. The
diagram below also shows that DFS didn’t have to search the entire search
space, rather only by traveling in half the tree, the algorithm was able to search
the solution.

Hence simply by selecting a specific P(n) our Simple Search Algorithm was
converted to a DFS procedure.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

28

2.11 Simple Search Algorithm Applied to Breadth First Search

Breadth First Search explores the breadth of the tree first and progresses
downward level by level. Now, we will use the same Simple Search Algorithm to
implement BFS by keeping our priority function as

)()(nheightnP =

As mentioned previously, we will give priority to the element with minimum P(n)
hence the node with the largest value of height will be at the maximum priority to
be picked from Q. In other words, greater the depth/height greater the priority.
The following sequence of diagrams will show you how BFS works on a tree
using the Simple Search Algorithm.

We start with a tree containing nodes S, A, B, C, D, E, F, G, and H, with H as the
goal node. In the bottom left table we show the two queues Q and Visited.
According to the Simple Search Algorithm, we initialize Q with the start node S.

If Q is not empty, pick the node X with the minimum P(n) (in this case S), as it is
the only node in Q. Check if X is goal, (in this case X is not the goal). Hence find
all the children of X not in Visited and add them to Q and Visited. Goto Step 2.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

29

Again, check if Q is not empty, pick the node X with the minimum P(n) (in this
case either A or B), as both of them have the same value for P(n). Remember, n
refers to the node X. Check if X is goal, (in this case A is not the goal). Hence find
all the children of A not in Visited and add them to Q and Visited. Go to Step 2.

Now, we have B, C and D in the list Q. B has height 1 while C and D are at a
height 2. As we are to select the node with the minimum P(n) hence we will select
B and repeat. The following sequence of diagram tells you how the algorithm
proceeds till it reach the goal state.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

30

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

31

When we remove H from the 9th row of the table and check if it’s the goal, the
algorithm says YES and hence we return H since we have reached the goal
state. The path followed by the BFS is shown by green arrows at each step. The
diagram below also shows that BFS travels a significant area of the search space
if the solution is located somewhere deep inside the tree.

Hence, simply by selecting a specific P(n) our Simple Search Algorithm was
converted to a BFS procedure.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

32

2.12 Problems with DFS and BFS

Though DFS and BFS are simple searching techniques which can get us to the
goal state very easily yet both of them have their own problems.

DFS has small space requirements (linear in depth) but has major problems:

� DFS can run forever in search spaces with infinite length paths
� DFS does not guarantee finding the shallowest goal

BFS guarantees finding the shallowest path even in presence of infinite paths,
but it has one great problem

� BFS requires a great deal of space (exponential in depth)

We can still come up with a better technique which caters for the drawbacks of
both these techniques. One such technique is progressive deepening.

2.13 Progressive Deepening

Progressive deepening actually emulates BFS using DFS. The idea is to simply
apply DFS to a specific level. If you find the goal, exit, other wise repeat DFS to
the next lower level. Go on doing this until you either reach the goal node or the
full height of the tree is explored. For example, apply a DFS to level 2 in the tree,
if it reaches the goal state, exit, otherwise increase the level of DFS and apply it
again until you reach level 4. You can increase the level of DFS by any factor. An
example will further clarify your understanding.

Consider the tree on the previous page with nodes from S … to N, where I is the
goal node.

Apply DFS to level 2 in the tree. The green arrows in the diagrams below show
how DFS will proceed to level 2.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

33

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

34

After exploring to level 2, the progressive deepening procedure will find out that
the goal state has still not been reached. Hence, it will increment the level by a
factor of, say 2, and will now perform a DFS in the tree to depth 4. The blue
arrows in the diagrams below show how DFS will proceed to level 4.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

35

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

36

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

37

As soon as the procedure finds the goal state it will quit. Notice that it guarantees
to find the solution at a minimum depth like BFS. Imagine that there are a number
of solutions below level 4 in the tree. The procedure would only travel a small
portion of the search space and without large memory requirements, will find out
the solution.

2.14 Heuristically Informed Searches

So far we have looked into procedures that search the solution space in an
uninformed manner. Such procedures are usually costly with respect to either
time, space or both. We now focus on a few techniques that search the solution
space in an informed manner using something which is called a heuristic. Such
techniques are called heuristic searches. The basic idea of a heuristic search is
that rather than trying all possible search paths, you try and focus on paths that
seem to be getting you closer to your goal state using some kind of a “guide”. Of
course, you generally can't be sure that you are really near your goal state.
However, we might be able to use a good guess for the purpose. Heuristics are
used to help us make that guess. It must be noted that heuristics don’t always
give us the right guess, and hence the correct solutions. In other words educated
guesses are not always correct.

Recall the example of the mouse searching for cheese. The smell of cheese
guides the mouse in the maze, in other words the strength of the smell informs
the mouse that how far is it from the goal state. Here the smell of cheese is the
heuristic and it is quite accurate.

Similarly, consider the diagram below. The graph shows a map in which the
numbers on the edges are the distances between cities, for example, the
distance between city S and city D is 3 and between B and E is 4.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

38

Suppose our goal is to reach city G starting from S. There can be many choices,
we might take S, A, D, E, F, G or travel from S, to A, to E, to F, and to G. At each
city, if we were to decide which city to go next, we might be interested in some
sort of information which will guide us to travel to the city from which the distance
of goal is minimum.

If someone can tell us the straight-line distance of G from each city then it might
help us as a heuristic in order to decide our route map. Consider the graph
below.

It shows the straight line distances from every city to the goal. Now, cities that are
closer to the goal should be our preference. These straight line distances also
known as “as the crow flies distance” shall be our heuristic.

It is important to note that heuristics can sometimes misguide us. In the example
we have just discussed, one might try to reach city C as it is closest from the goal
according to our heuristic, but in the original map you can see that there is no
direct link between city C and city G. Even if someone reaches city C using the
heuristic, he won’t be able to travel to G from C directly, hence the heuristic can
misguide. The catch here is that crow-flight distances do not tell us that the two
cities are directly connected.

Similarly, in the example of mouse and cheese, consider that the maze has
fences fixed along some of the paths through which the smell can pass. Our
heuristic might guide us on a path which is blocked by a fence, hence again the
heuristic is misguiding us.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

39

The conclusion then is that heuristics do help us reduce the search space, but it
is not at all guaranteed that we’ll always find a solution. Still many people use
them as most of the time they are helpful. The key lies in the fact that how do we
use the heuristic. Consider the notion of a heuristic function.

Whenever we choose a heuristic, we come up with a heuristic function which
takes as input the heuristic and gives us out a number corresponding to that
heuristic. The search will now be guided by the output of the heuristic function.
Depending on our application we might give priority to either larger numbers or
smaller numbers.

Hence to every node/ state in our graph we will assign a heuristic value,
calculated by the heuristic function. We will start with a basic heuristically
informed search which is called Hill Climbing.

2.15 Hill Climbing

Hill Climbing is basically a depth first search with a measure of quality that is
assigned to each node in the tree. The basic idea is: Proceed as you would in
DFS except that you order your choices according to some heuristic
measurement of the remaining distance to the goal. We will discuss the Hill
climbing with an example.

Before going to the actual example, let us give another analogy for which the
name Hill Climbing has been given to this procedure. Consider a blind person
climbing a hill. He can not see the peak of the hill. The best he can do is that from
a given point he takes steps in all possible directions and wherever he finds that
a step takes him higher he takes that step and reaches a new, higher point. He
goes on doing this until all possible steps in any direction will take him higher and
this would be the peak, hence the name hill climbing. Notice that each step that
we take, gets us closer to our goal which in this example is the peak of a hill.

Such a procedure might as well have some problems.

Foothill Problem: Consider the diagram of a mountain below. Before reaching
the global maxima, that is the highest peak, the blind man will encounter local
maxima that are the intermediate peaks and before reaching the maximum
height. At each of these local maxima, the blind man gets the perception of
having reached the global maxima as none of the steps takes him to a higher
point. Hence he might just reach local maxima and think that he has reached the
global maxima. Thus getting stuck in the middle of searching the solution space.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

40

Plateau Problem: Similarly, consider another problem as depicted in the
diagram below. Mountains where flat areas called plateaus are frequently
encountered the blind person might again get stuck.

When he reaches the portion of a mountain which is totally flat, whatever step he
takes gives him no improvement in height hence he gets stuck.

Ridge Problem: Consider another problem; you are standing on what seems like
a knife edge contour running generally from northeast to southwest. If you take
step in one direction it takes you lower, on the other hand when you step in some
other direction it gives you no improvement.

All these problems can be mapped to situations in our solution space searching.
If we are at a state and the heuristics of all the available options take us to a
lower value, we might be at local maxima. Similarly, if all the available heuristics

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

41

take us to no improvement we might be at a plateau. Same is the case with ridge
as we can encounter such states in our search tree.

The solution to all these problems is randomness. Try taking random steps in
random direction of random length and you might get out of the place where you
are stuck.

Example

Let us now take you through an example of searching a tree using hill climbing to
end out discussion on hill climbing.

Consider the diagram below. The tree corresponds to our problem of reaching
city M starting from city S. In other words our aim is to find a path from S to M.
We now associate heuristics with every node, that is the straight line distance
from the path-terminating city to the goal city.

When we start at S we see that if we move to A we will be left with 9 units to
travel. As moving on A has given us an improvement in reaching our goal hence
we move to A. Exactly in the same manner as the blind man moves up a step
that gives him more height.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

42

Standing on A we see that C takes us closer to the goal hence we move to C.

From C we see that city I give us more improvement hence we move to I and
then finally to M.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

43

Notice that we only traveled a small portion of the search space and reached our
goal. Hence the informed nature of the search can help reduce space and time.

2.16 Beam Search

You just saw how hill climbing procedure works through the search space of a
tree. Another procedure called beam search proceeds in a similar manner. Out of
n possible choices at any level, beam search follows only the best k of them; k is
the parameter which we set and the procedure considers only those many nodes
at each level.

The following sequence of diagrams will show you how Beam Search works in a
search tree.

We start with a search tree with L as goal state and k=2, that is at every level we
will only consider the best 2 nodes. When standing on S we observe that the only
two nodes available are A and B so we explore both of them as shown below.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

44

From here we have C, D, E and F as the available options to go. Again, we select
the two best of them and we explore C and E as shown in the diagram below.

From C and E we have G, H, I and J as the available options so we select H and
J and similarly at the last level we select L and N of which L is the goal.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

45

2.17 Best First Search

Just as beam search considers best k nodes at every level, best first search
considers all the open nodes so far and selects the best amongst them. The
following sequence of diagrams will show you how a best first search procedure
works in a search tree.

We start with a search tree as shown above. From S we observe that A is the
best option so we explore A.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

46

At A we now have C, G, D and B as the options. We select the best of them
which is D.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

47

At D we have S, G, B, H, M and J as the options. We select H which is the best of
them.

At last from H we find L as the best. Hence best first search is a greedy approach
will looks for the best amongst the available options and hence can sometimes
reduce the searching time. All these heuristically informed procedures are
considered better but they do not guarantee the optimal solution, as they are
dependent on the quality of heuristic being used.

2.18 Optimal Searches

So far we have looked at uninformed and informed searches. Both have their
advantages and disadvantages. But one thing that lacks in both is that whenever
they find a solution they immediately stop. They never consider that their might
be more than one solution to the problem and the solution that they have ignored
might be the optimal one.

A simplest approach to find the optimal solution is this; find all the possible
solutions using either an uninformed search or informed search and once you
have searched the whole search space and no other solution exists, then choose

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

48

the most optimal amongst the solutions found. This approach is analogous to the
brute force method and is also called the British museum procedure.

But in reality, exploring the entire search space is never feasible and at times is
not even possible, for instance, if we just consider the tree corresponding to a
game of chess (we will learn about game trees later), the effective branching
factor is 16 and the effective depth is 100. The number of branches in an
exhaustive survey would be on the order of 10120. Hence a huge amount of
computation power and time is required in solving the optimal search problems in
a brute force manner.

2.19 Branch and Bound

In order to solve our problem of optimal search without using a brute force
technique, people have come up with different procedures. One such procedure
is called branch-and-bound method.

The simple idea of branch and bound is the following:

The length of the complete path from S to G is 9. Also note that while traveling
from S to B we have already covered a distance of 9 units. So traveling further
from S D A B to some other node will make the path longer. So we ignore any
further paths ahead of the path S D A B.

We will show this with a simple example.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

49

The diagram above shows the same city road map with distance between the
cities labels on the edges. We convert the map to a tree as shown below.

We proceed in a Best First Search manner. Starting at S we see that A is the
best option so we explore A.

From S the options to travel are B and D, the children of A and D the child of S.
Among these, D the child of S is the best option. So we explore D.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

50

From here the best option is E so we go there,

then B,

then D,

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

51

Here we have E, F and A as equally good options so we select arbitrarily and
move to say A,

then E.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

52

When we explore E we find out that if we follow this path further, our path length
will increase beyond 9 which is the distance of S to G. Hence we block all the
further sub-trees along this path, as shown in the diagram below.

We then move to F as that is the best option at this point with a value 7.

then C,

We see that C is a leaf node so we bind C too as shown in the next diagram.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

53

Then we move to B on the right hand side of the tree and bind the sub trees
ahead of B as they also exceed the path length 9.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

54

We go on proceeding in this fashion, binding the paths that exceed 9 and hence
we are saved from traversing a considerable portion of the tree. The subsequent
diagrams complete the search until it has found all the optimal solution, that is
along the right hand branch of the tree.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

55

Notice that we have saved ourselves from traversing a considerable portion of
the tree and still have found the optimal solution. The basic idea was to reduce
the search space by binding the paths that exceed the path length from S to G.

2.20 Improvements in Branch and Bound

The above procedure can be improved in many different ways. We will discuss
the two most famous ways to improve it.

1. Estimates
2. Dynamic Programming

The idea of estimates is that we can travel in the solution space using a heuristic
estimate. By using “guesses” about remaining distance as well as facts about
distance already accumulated we will be able to travel in the solution space more
efficiently. Hence we use the estimates of the remaining distance. A problem
here is that if we go with an overestimate of the remaining distance then we might
loose a solution that is somewhere nearby. Hence we always travel with
underestimates of the remaining distance. We will demonstrate this improvement
with an example.

The second improvement is dynamic programming. The simple idea behind
dynamic programming is that if we can reach a specific node through more than
one different path then we shall take the path with the minimum cost.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

56

In the diagram you can see that we can reach node D directly from S with a cost
of 3 and via S A D with a cost of 6 hence we will never expand the path with the
larger cost of reaching the same node.

When we include these two improvements in branch and bound then we name it
as a different technique known as A* Procedure.

2.21 A* Procedure

This is actually branch and bound technique with the improvement of
underestimates and dynamic programming.

We will discuss the technique with the same example as that in branch-and-
bound.

The values on the nodes shown in yellow are the underestimates of the distance
of a specific node from G. The values on the edges are the distance between two
adjacent cities.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

57

Our measure of goodness and badness of a node will now be decided by a
combination of values that is the distance traveled so far and the estimate of the
remaining distance. We construct the tree corresponding to the graph above.
We start with a tree with goodness of every node mentioned on it.

Standing at S we observe that the best node is A with a value of 4 so we move to
4.

Then B. As all the sub-trees emerging from B make our path length more than 9
units so we bound this path, as shown in the next diagram.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

58

Now observe that to reach node D that is the child of A we can reach it either with
a cost of 12 or we can directly reach D from S with a cost of 9. Hence using
dynamic programming we will ignore the whole sub-tree beneath D (the child of
A) as shown in the next diagram.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

59

Now we move to D from S.

Now A and E are equally good nodes so we arbitrarily choose amongst them,
and we move to A.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

60

As the sub-tree beneath A expands the path length is beyond 9 so we bind it.

We proceed in this manner. Next we visit E, then we visit B the child of E, we
bound the sub-tree below B. We visit F and finally we reach G as shown in the
subsequent diagrams.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

61

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

62

Notice that by using underestimates and dynamic programming the search space
was further reduced and our optimal solution was found efficiently.

2.22 Adversarial Search

Up until now all the searches that we have studied there was only one person or
agent searching the solution space to find the goal or the solution. In many
applications there might be multiple agents or persons searching for solutions in
the same solution space.

Such scenarios usually occur in game playing where two opponents also called
adversaries are searching for a goal. Their goals are usually contrary to each
other. For example, in a game of tic-tac-toe player one might want that he should
complete a line with crosses while at the same time player two wants to complete
a line of zeros. Hence both have different goals. Notice further that if player one
puts a cross in any box, player-two will intelligently try to make a move that would
leave player-one with minimum chance to win, that is, he will try to stop player-
one from completing a line of crosses and at the same time will try to complete
his line of zeros.
Many games can be modeled as trees as shown below. We will focus on board
games for simplicity.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

63

Searches in which two or more players with contrary goals are trying to explore
the same solution space in search of the solution are called adversarial searches.

2.23 Minimax Procedure

In adversarial searches one player tries to cater for the opponent’s moves by
intelligently deciding that what will be the impact of his own move on the over all
configuration of the game. To develop this stance he uses a look ahead thinking
strategy. That is, before making a move he looks a few levels down the game
tree to see that what can be the impact of his move and what options will be open
to the opponent once he has made this move.

To clarify the concept of adversarial search let us discuss a procedure called the
minimax procedure.

Here we assume that we have a situation analyzer that converts all judgments
about board situations into a single, over all quality number. This situation
analyzer is also called a static evaluator and the score/ number calculated by the
evaluator is called the static evaluation of that node. Positive numbers, by
convention indicate favor to one player. Negative numbers indicate favor to the
other player. The player hoping for positive numbers is called maximizing player
or maximizer. The other player is called minimizing player or minimizer. The
maximizer has to keep in view that what choices will be available to the minimizer
on the next step. The minimizer has to keep in view that what choices will be
available to the maximizer on the next step.

Consider the following diagram.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

64

Standing at node A the maximizer wants to decide which node to visit next, that
is, choose between B or C. The maximizer wishes to maximize the score so
apparently 7 being the maximum score, the maximizer should go to C and then to
G. But when the maximizer will reach C the next turn to select the node will be of
the minimizer, which will force the game to reach configuration/node F with a
score of 2. Hence maximizer will end up with a score of 2 if he goes to C from A.
On the other hand, if the maximizer goes to B from A the worst which the
minimizer can do is that he will force the maximizer to a score of 3. Now, since
the choice is between scores of 3 or 2, the maximizer will go to node B from A.

2.24 Alpha Beta Pruning

In Minimax Procedure, it seems as if the static evaluator must be used on each
leaf node. Fortunately there is a procedure that reduces both the tree branches
that must be generated and the number of evaluations. This procedure is called
Alpha Beta pruning which “prunes” the tree branches thus reducing the number
of static evaluations.
We use the following example to explain the notion of Alpha Beta Pruning.
Suppose we start of with a game tree in the diagram below. Notice that all
nodes/situations have not yet been previously evaluated for their static evaluation
score. Only two leaf nodes have been evaluated so far.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

65

Sitting at A, the player-one will observe that if he moves to B the best he can get
is 3.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

66

So the value three travels to the root A. Now after observing the other side of the
tree, this score will either increase or will remain the same as this level is for the
maximizer.

When he evaluates the first leaf node on the other side of the tree, he will see
that the minimizer can force him to a score of less than 3 hence there is no need
to fully explore the tree from that side. Hence the right most branch of the tree will
be pruned and won’t be evaluated for static evaluation.

We have discussed a detailed example on Alpha Beta Pruning in the lectures.
We have shown the sequence of steps in the diagrams below. The readers are

required to go through the last portion of Lecture 10 for the explanation of this
example, if required.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

67

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

68

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

69

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

70

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

71

2.25 Summary

� People used to think that one who can solve more problems is more intelligent

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

72

� Generate and test is the classical approach to solving problems
� Problem representation plays a key role in problem solving
� The components of problem solving include

o Problem Statement
o Operators
o Goal State
o Solution Space

� Searching is a formal mechanism to explore alternatives
� Searches can be blind or uninformed, informed, heuristic, non-optimal and

optional.
� Different procedures to implement different search strategies form the major

content of this chapter

2.26 Problems

Q1 Consider that a person has never been to the city air port. Its early in the
morning and assume that no other person is awake in the town who can guide
him on the way. He has to drive on his car but doesn’t know the way to airport.
Clearly identify the four components of problem solving in the above statement,
i.e. problem statement, operators, solution space, and goal state. Should he
follow blind or heuristic search strategy? Try to model the problem in a graphical
representation.

Q2 Clearly identify the difference between WSP (Well-Structured Problems) and
ISP (Ill- Structured) problems as discussed in the lecture. Give relevant
examples.

Q3 Given the following tree. Apply DFS and BFS as studied in the chapter. Show
the state of the data structure Q and the visited list clearly at every step. S is the
initial state and D is the goal state.

S

I

H

ED

G

F

C

BA

S

I

H

ED

G

F

C

BA

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

73

Q4 Discuss how progressive deepening uses a mixture of DFS and BFS to
eliminate the disadvantages of both and at the same time finds the solution is a
given tree. Support your answer with examples of a few trees.

Q5 Discuss the problems in Hill Climbing. Suggest solutions to the commonly
encountered problems that are local maxima, plateau problem and ridge problem.
Given the following tree, use the hill climbing procedure to climb up the tree. Use
your suggested solutions to the above mention problems if any of them are
encountered. K is the goal state and numbers written on each node is the
estimate of remaining distance to the goal.

Q6 Discuss how best first search works in a tree. Support your answer with an
example tree. Is best first search always the best strategy? Will it always
guarantee the best solution?

Q7 Discuss how beam search with degree of the search = 3 propagates in the
given search tree. Is it equal to best first search when the degree = 1.

S

K

J

ED

I

F

C

BA

G H

9

10

11

1297

7 7 7

7 5

0

S

K

J

ED

I

F

C

BA

G H

9

10

11

1297

7 7 7

7 5

0

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

74

Q8 Discuss the main concept behind branch and bound search strategy. Suggest
Improvements in the Algorithm. Simulate the algorithm on the given graph below.
The values on the links are the distances between the cities. The numbers on the
nodes are the estimated distance on the node from the goal state.

Q9. Run the MiniMax procedure on the given tree. The static evaluation scores
for each leaf node are written under it. For example the static evaluation scores
for the left most leaf node is 80.

Q10 Discuss how Alpha Beta Pruning minimizes the number of static evaluations
at the leaf nodes by pruning branches. Support your answer with small examples
of a few trees.
Q11 Simulate the Minimax procedure with Alpha Beta Pruning algorithm on the
following search tree.

 80 10 55 45 65 100 20 35 70

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

75

Adapted from: Artificial Intelligence, Third Edition by Patrick Henry Winston

30 50 40 70 60 20 80 90 10 90 70 60

Maximizing Level

Minimizing Level

Maximizing Level

30 50 40 70 60 20 80 90 10 90 70 6030 50 40 70 60 20 80 90 10 90 70 60

Maximizing Level

Minimizing Level

Maximizing Level

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

76

Lecture No. 11-13

3 Genetic Algorithms

3.1 Discussion on Problem Solving

In the previous chapter we studied problem solving in general and elaborated on
various search strategies that help us solve problems through searching in
problem trees. We kept the information about the tree traversal in memory (in the
queues), thus we know the links that have to be followed to reach the goal. At
times we don’t really need to remember the links that were followed. In many
problems where the size of search space grows extremely large we often use
techniques in which we don’t need to keep all the history in memory. Similarly, in
problems where requirements are not clearly defined and the problem is ill-
structured, that is, we don’t exactly know the initial state, goal state and operators
etc, we might employ such techniques where our objective is to find the solution
not how we got there.

Another thing we have noticed in the previous chapter is that we perform a
sequential search through the search space. In order to speed up the techniques
we can follow a parallel approach where we start from multiple locations (states)
in the solution space and try to search the space in parallel.

3.2 Hill Climbing in Parallel

Suppose we were to climb up a hill. Our goal is to reach the top irrespective of
how we get there. We apply different operators at a given position, and move in
the direction that gives us improvement (more height). What if instead of starting
from one position we start to climb the hill from different positions as indicated by
the diagram below.

In other words, we start with different independent search instances that start
from different locations to climb up the hill.

Further think that we can improve this using a collaborative approach where
these instances interact and evolve by sharing information in order to solve the
problem. You will soon find out that what we mean by interact and evolve.

However, it is possible to implement parallelism in the sense that the instances
can interact and evolve to solve the solution. Such implementations and

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

77

algorithms are motivated from the biological concept of evolution of our genes,
hence the name Genetic Algorithms, commonly terms as GA.

3.3 Comment on Evolution

Before we discuss Genetic Algorithms in detail with examples lets go through
some basic terminology that we will use to explain the technique. The genetic
algorithm technology comes from the concept of human evolution. The following
paragraph gives a brief overview of evolution and introduces some terminologies
to the extent that we will require for further discussion on GA. Individuals (animals
or plants) produce a number of offspring (children) which are almost, but not
entirely, like themselves. Variation may be due to mutation (random changes), or
due to inheritance (offspring/children inherit some characteristics from each
parent). Some of these offspring may survive to produce offspring of their own—
some will not. The “better adapted” individuals are more likely to survive. Over
time, generations become better and better adapted to survive.

3.4 Genetic Algorithm

Genetic Algorithms is a search method in which multiple search paths are
followed in parallel. At each step, current states of different pairs of these paths
are combined to form new paths. This way the search paths don't remain
independent, instead they share information with each other and thus try to
improve the overall performance of the complete search space.

3.5 Basic Genetic Algorithm

A very basic genetic algorithm can be stated as below.

Start with a population of randomly generated, (attempted) solutions to a
problem

Repeatedly do the following:

Evaluate each of the attempted solutions
Keep the “best” solutions
Produce next generation from these solutions (using
“inheritance” and “mutation”)

Quit when you have a satisfactory solution (or you run out of time)

The two terms introduced here are inheritance and mutation. Inheritance has the
same notion of having something or some attribute from a parent while mutation
refers to a small random change. We will explain these two terms as we discuss
the solution to a few problems through GA.

3.6 Solution to a Few Problems using GA

3.6.1 Problem 1:

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

78

• Suppose your “individuals” are 32-bit computer words
• You want a string in which all the bits in these words are ones
• Here’s how you can do it:

• Create 100 randomly generated computer words
• Repeatedly do the following:

• Count the 1 bits in each word
• Exit if any of the words have all 32 bits set to 1
• Keep the ten words that have the most 1s (discard the

rest)
• From each word, generate 9 new words as follows:

• Pick a random bit in the word and toggle (change)
it

• Note that this procedure does not guarantee that the next
“generation” will have more 1 bits, but it’s likely

As you can observe, the above solution is totally in accordance with the basic
algorithm you saw in the previous section. The table on the next page shows
which steps correspond to what.

Terms Basic GA Problem 1

Solution

Initial
Population

Start with a
population of
randomly
generated
attempted solutions
to a problem

Create 100
randomly
generated
computer words

Evaluation
Function

Evaluate each of
the attempted
solutions.
Keep the “best”
solutions

Count the 1 bits
in each word.
Exit if any of the
words have all
32 bits set to 1

Keep the ten
words that have
the most 1s
(discard the
rest)

Mutation Produce next
generation from
these solutions
(using “inheritance”
and “mutation”)

From each
word, generate
9 new words as
follows:
Pick a random
bit in the word
and toggle
(change) it

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

79

For the sake of simplicity we only use mutation for now to generate the new
individuals. We will incorporate inheritance later in the example. Let’s introduce
the concept of an evaluation function. An evaluation function is the criteria that
check various individuals/ solutions for being better than others in the population.
Notice that mutation can be as simple as just flipping a bit at random or any
number of bits.

We go on repeating the algorithm until we either get our required word that is a
32-bit number with all ones, or we run out of time. If we run out of time, we either
present the best possible solution (the one with most number of 1-bits) as the
answer or we can say that the solution can’t be found. Hence GA is at times used
to get optimal solution given some parameters.

3.6.2 Problem 2:

• Suppose you have a large number of data points (x, y), e.g., (1, 4), (3,

9), (5, 8), ...
• You would like to fit a polynomial (of up to degree 1) through these

data points
• That is, you want a formula y = mx + c that gives you a

reasonably good fit to the actual data
• Here’s the usual way to compute goodness of fit of the

polynomial on the data points:
• Compute the sum of (actual y – predicted y)2 for all the

data points
• The lowest sum represents the best fit

• You can use a genetic algorithm to find a “pretty good” solution

By a pretty good solution we simply mean that you can get reasonably good
polynomial that best fits the given data.

• Your formula is y = mx + c
• Your unknowns are m and c; where m and c are integers
• Your representation is the array [m, c]
• Your evaluation function for one array is:

• For every actual data point (x, y)
• Compute ý = mx + c
• Find the sum of (y – ý)2 over all x
• The sum is your measure of “badness” (larger numbers

are worse)
• Example: For [5, 7] and the data points (1, 10) and (2, 13):

• ý = 5x + 7 = 12 when x is 1
• ý = 5x + 7 = 17 when x is 2
• (10 - 12)2 + (13 – 17)2 = 22 + 42 = 20
• If these are the only two data points, the “badness” of [5,

7] is 20

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

80

• Your algorithm might be as follows:

• Create two-element arrays of random numbers
• Repeat 50 times (or any other number):

• For each of the arrays, compute its badness (using all
data points)

• Keep the best arrays (with low badness)
• From the arrays you keep, generate new arrays as

follows:
• Convert the numbers in the array to binary, toggle

one of the bits at random
• Quit if the badness of any of the solution is zero
• After all 50 trials, pick the best array as your final answer

Let us solve this problem in detail. Consider that the given points are as follows.

• (x, y) : {(1,5) (3, 9)}

We start will the following initial population which are the arrays representing the
solutions (m and c).

• [2 7][1 3]

 Compute badness for [2 7]

• ý = 2x + 7 = 9 when x is 1
• ý = 2x + 7 = 13 when x is 3
• (5 – 9)2 + (9 – 13)2 = 42 + 42 = 32

• ý = 1x + 3 = 4 when x is 1
• ý = 1x + 3 = 6 when x is 3
• (5 – 4)2 + (9 – 6)2 = 12 + 32 = 10

• Lets keep the one with low “badness” [1 3]
• Representation [001 011]
• Apply mutation to generate new arrays [011 011]
• Now we have [1 3] [3 3] as the new population considering that we

keep the two best individuals

Second iteration

• (x, y) : {(1,5) (3, 9)}
• [1 3][3 3]

• ý = 1x + 3 = 4 when x is 1
• ý = 1x + 3 = 6 when x is 3
• (5 – 4)2 + (9 – 6)2 = 12 + 32 = 10

• ý = 3x + 3 = 6 when x is 1
• ý = 3x + 3 = 12 when x is 3

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

81

• (5 – 6)2 + (9 – 12)2 = 1 + 9 = 10

• Lets keep the [3 3]
• Representation [011 011]
• Apply mutation to generate new arrays [010 011]
• Now we have [3 3] [2 3] as the new population

Third Iteration

• (x, y) : {(1,5) (3, 9)}
• [3 3][2 3]

• ý = 3x + 3 = 6 when x is 1
• ý = 3x + 3 = 12 when x is 3
• (5 – 6)2 + (9 – 12)2 = 1 + 9 = 10

• ý = 2x + 3 = 5 when x is 1
• ý = 2x + 3 = 9 when x is 3
• (5 – 5)2 + (9 – 9)2 = 02 + 02 = 0

• Solution found [2 3]
• y = 2x+3

So you see that how by going through the iteration of a GA one can find a solution

to the given problem. It is not necessary in the above example that you get a
solution that gives 0 badness. In case we go on doing iterations and we run out of
time, we might just present the solution that has the least badness as the most
optimal solution given these number of iterations on this data.

In the examples so far, each “Individual” (or “solution”) had only one parent. The
only way to introduce variation was through mutation (random changes). In
Inheritance or Crossover, each “Individual” (or “solution”) has two parents.
Assuming that each organism has just one chromosome, new offspring are
produced by forming a new chromosome from parts of the chromosomes of each
parent.

Let us repeat the 32-bit word example again but this time using crossover instead
of mutation.

• Suppose your “organisms” are 32-bit computer words, and you want

a string in which all the bits are ones
• Here’s how you can do it:

• Create 100 randomly generated computer words
• Repeatedly do the following:

• Count the 1 bits in each word
• Exit if any of the words have all 32 bits set to 1
• Keep the ten words that have the most 1s (discard the

rest)
• From each word, generate 9 new words as follows:

• Choose one of the other words

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

82

• Take the first half of this word and combine it with
the second half of the other word

Notice that we are generating new individuals from the best ones by using
crossover. The simplest way to perform this crossover is to combine the head of
one individual to the tail of the other, as shown in the diagram below.

In the 32-bit word problem, the (two-parent, no mutation) approach, if it succeeds,
is likely to succeed much faster because up to half of the bits change each time,
not just one bit. However, with no mutation, it may not succeed at all. By pure bad
luck, maybe none of the first (randomly generated) words have (say) bit 17 set to
1. Then there is no way a 1 could ever occur in this position. Another problem is
lack of genetic diversity. Maybe some of the first generation did have bit 17 set to
1, but none of them were selected for the second generation. The best technique
in general turns out to be a combination of both, i.e., crossover with mutation.

3.7 Eight Queens Problem

Let us now solve a famous problem which will be discussed under GA in many
famous books in AI. Its called the Eight Queens Problem.

The problem is to place 8 queens on a chess board so that none of them can
attack the other. A chess board can be considered a plain board with eight
columns and eight rows as shown below.

The possible cells that the Queen can move to when placed in a particular square
are shown (in black shading)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

83

We now have to come up with a representation of an individual/ candidate
solution representing the board configuration which can be used as individuals in
the GA.

We will use the representation as shown in the figure below.

Where the 8 digits for eight columns specify the index of the row where the queen
is placed. For example, the sequence 2 6 8 3 4 5 3 1 tells us that in first column
the queen is placed in the second row, in the second column the queen is in the
6th row so on till in the 8th column the queen is in the 1st row.

Now we need a fitness function, a function by which we can tell which board
position is nearer to our goal. Since we are going to select best individuals at
every step, we need to define a method to rate these board positions or
individuals. One fitness function can be to count the number of pairs of Queens
that are not attacking each other. An example of how to compute the fitness of a
board configuration is given in the diagram on the next page.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

84

So once representation and fitness function is decided, the solution to the
problem is simple.

• Choose initial population
• Evaluate the fitness of each individual
• Choose the best individuals from the population for crossover

Let us quickly go through an example of how to solve this problem using GA.

Suppose individuals (board positions) chosen for crossover are:

Where the numbers 2 and 3 in the boxes to the left and right show the fitness of
each board configuration and green arrows denote the queens that can attack
none.

The following diagram shows how we apply crossover:

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

85

The individuals in the initial population are shown on the left and the children
generated by swapping their tails are shown on the right. Hence we now have a
total of 4 candidate solutions. Depending on their fitness we will select the best
two.

The diagram below shows where we select the best two on the bases of their
fitness. The vertical over shows the children and the horizontal oval shows the
selected individuals which are the fittest ones according to the fitness function.

Similarly, the mutation step can be done as under.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

86

That is, we represent the individual in binary and we flip at random a certain
number of bits. You might as well decide to flip 1, 2, 3 or k number of bits, at
random position. Hence GA is totally a random technique.

This process is repeated until an individual with required fitness level is found. If
no such individual is found, then the process is repeated till the overall fitness of
the population or any of its individuals gets very close to the required fitness
level. An upper limit on the number of iterations is usually used to end the
process in finite time.

One of the solutions to the problem is shown as under whose fitness value is 8.

The following flow chart summarizes the Genetic Algorithm.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

87

You are encouraged to explore the internet and other books to find more
applications of GA in various fields like:
• Genetic Programming
• Evolvable Systems
• Composing Music
• Gaming
• Market Strategies
• Robotics
• Industrial Optimization
and many more.

No Yes

Start

Initialize

Population

Evaluate Fitness
of Population

Solution

Found?
End

Mate

individuals in

population

Apply mutation

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

88

3.8 Problems

Q1 what type of problems can be solved using GA. Give examples of at least 3
problems from different fields of life. Clearly identify the initial population,
representation, evaluation function, mutation and cross over procedure and exit
criteria.

Q2 Given pairs of (x, y) coordinates, find the best possible m, c parameters of the
line y = mx + c that generates them. Use mutation only. Present the best possible
solution given the data after at least three iterations of GA or exit if you find the
solution earlier.

• (x, y) : {(1,2.5) (2, 3.75)}
• Initial population [2 0][3 1]

Q3 Solve the 8 Queens Problem on paper. Use the representations and strategy
as discussed in the chapter.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

89

Lecture No. 14 -17

4 Knowledge Representation and Reasoning

Now that have looked at general problem solving, lets look at knowledge
representation and reasoning which are important aspects of any artificial
intelligence system and of any computer system in general. In this section we will
become familiar with classical methods of knowledge representation and
reasoning in AI.

4.1 The AI Cycle

Almost all AI systems have the following components in general:
• Perception
• Learning
• Knowledge Representation and Reasoning
• Planning
• Execution

Figure 1 shows the relationship between these components.

An AI system has a perception component that allows the system to get
information from its environment. As with human perception, this may be visual,
audio or other forms of sensory information. The system must then form a
meaningful and useful representation of this information internally. This
knowledge representation maybe static or it may be coupled with a learning
component that is adaptive and draws trends from the perceived data.

Figure 1: The AI Cycle

Knowledge representation (KR) and reasoning are closely coupled components;
each is intrinsically tied to the other. A representation scheme is not meaningful
on its own; it must be useful and helpful in achieve certain tasks. The same
information may be represented in many different ways, depending on how you
want to use that information. For example, in mathematics, if we want to solve

PERCEPTION

LEARNING

KNOWLEDGE
REPRESENTATION
(KR)

REASONING

PLANNING

EXECUTION

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

90

problems about ratios, we would most likely use algebra, but we could also use
simple hand drawn symbols. To say half of something, you could use 0.5x or you
could draw a picture of the object with half of it colored differently. Both would
convey the same information but the former is more compact and useful in
complex scenarios where you want to perform reasoning on the information. It is
important at this point to understand how knowledge representation and
reasoning are interdependent components, and as AI system designer, you have
to consider this relationship when coming up with any solution.

4.2 The dilemma

The key question when we begin to think about knowledge representation and
reasoning is how to approach the problem ----should we try to emulate the human
brain completely and exactly as it is? Or should we come up with something
new?

Since we do not know how the KR and reasoning components are implemented
in humans, even though we can see their manifestation in the form of intelligent
behavior, we need a synthetic (artificial) way to model the knowledge
representation and reasoning capability of humans in computers.

4.3 Knowledge and its types

Before we go any further, lets try to understand what ‘knowledge’ is. Durkin refers
to it as the “Understanding of a subject area”. A well-focused subject area is
referred to as a knowledge domain, for example, medical domain, engineering
domain, business domain, etc..

If we analyze the various types of knowledge we use in every day life, we can
broadly define knowledge to be one of the following categories:

• Procedural knowledge: Describes how to do things, provides a set of
directions of how to perform certain tasks, e.g., how to drive a car.

• Declarative knowledge: It describes objects, rather than processes. What

is known about a situation, e.g. it is sunny today, and cherries are red.

• Meta knowledge: Knowledge about knowledge, e.g., the knowledge that
blood pressure is more important for diagnosing a medical condition than
eye color.

• Heuristic knowledge: Rule-of-thumb, e.g. if I start seeing shops, I am close

to the market.
o Heuristic knowledge is sometimes called shallow knowledge.
o Heuristic knowledge is empirical as opposed to deterministic

• Structural knowledge: Describes structures and their relationships. e.g.

how the various parts of the car fit together to make a car, or knowledge
structures in terms of concepts, sub concepts, and objects.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

91

Fig 2: Types of Knowledge

4.4 Towards Representation

There are multiple approaches and schemes that come to mind when we begin to
think about representation

– Pictures and symbols. This is how the earliest humans represented
knowledge when sophisticated linguistic systems had not yet evolved

– Graphs and Networks
– Numbers

4.4.1 Pictures

Each type of representation has its benefits. What types of knowledge is best
represented using pictures? , e.g. can we represent the relationship between
individuals in a family using a picture? We could use a series of pictures to store
procedural knowledge, e.g. how to boil an egg. But we can easily see that
pictures are best suited for recognition tasks and for representing structural
information. However, pictorial representations are not very easily translated to
useful information in computers because computers cannot interpret pictures
directly with out complex reasoning. So even though pictures are useful for
human understanding, because they provide a high level view of a concept to be
obtained readily, using them for representation in computers is not as straight
forward.

4.4.2 Graphs and Networks

Structural
Knowledge

Declarative
Knowledge

Meta-
Knowledge

Heuristic
Knowledge Procedural

Knowledge

Knowledge

Objects
Facts

Rules
of

Thumb

Knowledge
about

Knowledge

Relationships
between
Objects,
 Concepts

Rules
Procedure

s
Methods

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

92

Graphs and Networks allow relationships between objects/entities to be
incorporated, e.g., to show family relationships, we can use a graph.

Fig 3: Family Relationships

We can also represent procedural knowledge using graphs, e.g. How to start a
car?

Fig 4: Graph for procedural knowledge

4.4.3 Numbers

Numbers are an integral part of knowledge representation used by humans.
Numbers translate easily to computer representation. Eventually, as we know,
every representation we use gets translated to numbers in the computers internal
representation.

4.4.4 An Example

In the context of the above discussion, let’s look at some ways to represent the
knowledge of a family

Using a picture

Tariq

Hassan Mona

Ayesha

Ali

Amina

 Turn Ignition Press Clutch Insert Key Set Gear

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

93

Fig 5: Family Picture

As you can see, this kind of representation makes sense readily to humans, but if
we give this picture to a computer, it would not have an easy time figuring out the
relationships between the individuals, or even figuring out how many individuals
are there in the picture. Computers need complex computer vision algorithms to
understand pictures.

Using a graph

Fig 6: Family graph

This representation is more direct and highlights relationships.

Using a description in words

For the family above, we could say in words
– Tariq is Mona’s Father
– Ayesha is Mona’s Mother
– Mona is Tariq and Ayesha’s Daughter

This example demonstrates the fact that each knowledge representation scheme
has its own strengths and weaknesses.

4.5 Formal KR techniques

In the examples above, we explored intuitive ways for knowledge representation.
Now, we will turn our attention to formal KR techniques in AI. While studying
these techniques, it is important to remember that each method is suited to
representing a certain type of knowledge. Choosing the proper representation is

Tariq Ayesha

Mona

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

94

important because it must help in reasoning. As the saying goes ‘Knowledge is
Power’.

4.6 Facts

Facts are a basic block of knowledge (the atomic units of knowledge). They
represent declarative knowledge (they declare knowledge about objects). A
proposition is the statement of a fact. Each proposition has an associated truth
value. It may be either true or false. In AI, to represent a fact, we use a
proposition and its associated truth value, e.g.

–Proposition A: It is raining
–Proposition B: I have an umbrella
–Proposition C: I will go to school

4.6.1 Types of facts

Single-valued or multiple –valued

Facts may be single-valued or multi-valued, where each fact (attribute) can take
one or more than one values at the same time, e.g. an individual can only have
one eye color, but may have many cars. So the value of attribute cars may
contain more than one value.

Uncertain facts

Sometimes we need to represent uncertain information in facts. These facts are
called uncertain facts, e.g. it will probably be sunny today. We may chose to store
numerical certainty values with such facts that tell us how much uncertainty there
is in the fact.

Fuzzy facts

Fuzzy facts are ambiguous in nature, e.g. the book is heavy/light. Here it is
unclear what heavy means because it is a subjective description. Fuzzy
representation is used for such facts. While defining fuzzy facts, we use certainty
factor values to specify value of “truth”. We will look at fuzzy representation in
more detail later.

Object-Attribute-Value triplets

Object-Attribute Value Triplets or OAV triplets are a type of fact composed of
three parts; object, attribute and value. Such facts are used to assert a particular
property of some object, e.g.

Ali’s eye color is brown.

o Object: Ali
o Attribute: eye color

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

95

o Value: brown

Ahmed’s son is Ali

o Object: Ahmed
o Attribute: son
o Value: Ali

OAV Triplets are also defined as in figure below

Figure: OAV Triplets

4.7 Rules

Rules are another form of knowledge representation. Durkin defines a rule as “A
knowledge structure that relates some known information to other information
that can be concluded or inferred to be true.”

4.7.1 Components of a rule

A Rule consists of two components

o Antecedent or premise or the IF part
o Consequent or conclusion or the THEN part

For example, we have a rule: IF it is raining THEN I will not go to school
Premise: It is raining
Conclusion: I will not go to school.

4.7.2 Compound Rules

Multiple premises or antecedents may be joined using AND (conjunctions) and
OR (disjunctions), e.g.

IF it is raining AND I have an umbrella
THEN I will go to school.

 IF it is raining OR it is snowing
THEN I will not go to school

Ali Brown

Object Attribute Value

Ahmed

Color

Red

Object Attribute Value

Eye Color

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

96

4.7.3 Types of rules

Relationship

Relationship rules are used to express a direct occurrence relationship between
two events, e.g. IF you hear a loud sound THEN the silencer is not working

Recommendation

Recommendation rules offer a recommendation on the basis of some known
information, e.g.

IF it is raining
THEN bring an umbrella

Directive

Directive rules are like recommendations rule but they offer a specific line of
action, as opposed to the ‘advice’ of a recommendation rule, e.g.

IF it is raining AND you don’t have an umbrella
THEN wait for the rain to stop

Variable Rules

If the same type of rule is to be applied to multiple objects, we use variable rules,
i.e. rules with variables, e.g.

If X is a Student
AND X’s GPA>3.7
THEN place X on honor roll.

Such rules are called pattern-matching rules. The rule is matched with known
facts and different possibilities for the variables are tested, to determine the truth
of the fact.

Uncertain Rules

Uncertain rules introduce uncertain facts into the system, e.g.
IF you have never won a match
THEN you will most probably not win this time.

Meta Rules

Meta rules describe how to use other rules, e.g.
IF you are coughing AND you have chest congestion
THEN use the set of respiratory disease rules.

Rule Sets

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

97

As in the previous example, we may group rules into categories in our knowledge
representation scheme, e.g. the set of respiratory disease rules

4.8 Semantic networks

Semantic networks are graphs, with nodes representing objects and arcs
representing relationships between objects. Various types of relationships may
be defined using semantic networks. The two most common types of
relationships are

–IS-A (Inheritance relation)
–HAS (Ownership relation)

Let’s consider an example semantic network to demonstrate how knowledge in a
semantic network can be used

Figure: Vehicle Semantic Network

Network Operation

To infer new information from semantic networks, we can ask questions from
nodes
– Ask node vehicle: ‘How do you travel?’

– This node looks at arc and replies: road
– Ask node Suzuki: ‘How do you travel?’

– This node does not have a link to travel therefore it asks other
nodes linked by the IS-A link

– Asks node Car (because of IS-A relationship)
– Asks node Vehicle (IS-A relationship)
– Node Vehicle Replies: road

Problems with Semantic Networks

o Semantic networks are computationally expensive at run-time as we need
to traverse the network to answer some question. In the worst case, we
may need to traverse the entire network and then discover that the
requested info does not exist.

o They try to model human associative memory (store information using
associations), but in the human brain the number of neurons and links are

Vehicle Car Suzuki Truck Bedford

Road

IS-A IS-A IS-A IS-A

Travels by

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

98

in the order of 1015. It is not practical to build such a large semantic
network, hence this scheme is not feasible for this type of problems.

o Semantic networks are logically inadequate as they do not have any
equivalent quantifiers, e.g., for all, for some, none.

4.9 Frames

“Frames are data structures for representing stereotypical knowledge of some
concept or object” according to Durkin, a frame is like a schema, as we would call
it in a database design. They were developed from semantic networks and later
evolved into our modern-day Classes and Objects. For example, to represent a
student, we make use of the following frame:

Figure: Student Frame

The various components within the frame are called slots, e.g. Frame Name slot.

4.9.1 Facets

A slot in a frame can hold more that just a value, it consists of metadata and
procedures also. The various aspects of a slot are called facets. They are a
feature of frames that allows us to put constraints on frames. e.g. IF-NEEDED
Facets are called when the data of a particular slot is needed. Similarly, IF-
CHANGED Facets are when the value of a slot changes.

4.10 Logic

Just like algebra is a type of formal logic that deals with numbers, e.g. 2+4 = 6,
propositional logic and predicate calculus are forms of formal logic for dealing
with propositions. We will consider two basic logic representation techniques:

–Propositional Logic
–Predicate Calculus

4.10.1 Propositional logic

A proposition is the statement of a fact. We usually assign a symbolic variable to
represent a proposition, e.g.

Frame Name: Student

Properties:
 Age: 19
 GPA: 4.0
 Ranking: 1

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

99

 p = It is raining
 q = I carry an umbrella

A proposition is a sentence whose truth values may be determined. So, each
proposition has a truth value, e.g.
–The proposition ‘A rectangle has four sides’ is true
–The proposition ‘The world is a cube’ is false.

4.10.1.1 Compound statements

Different propositions may be logically related and we can form compound
statements of propositions using logical connectives. Common logical
connectives are:

∧ AND (Conjunction)
∨ OR (Disjunction)
¬ NOT (Negation)
→ If … then (Conditional)
⇔ If and only if (bi-conditional)

The table below shows the logic of the above connectives

Figure: Truth Table of Binary Logical Connectives

4.10.1.2 Limitations of propositional logic

o Propositions can only represent knowledge as complete sentences, e.g.

a = the ball’s color is blue.
o Cannot analyze the internal structure of the sentence.

T T F F F F

F T T F T F

F F T F F T

T T T T T T

p ⇔ q p ⇒ q p ∨ q p ∧q q p

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

100

o No quantifiers are available, e.g. for-all, there-exists
o Propositional logic provides no framework for proving statements such as:

All humans are mortal
All women are humans
Therefore, all women are mortals

This is a limitation in its representational power.

4.10.2 Predicate calculus

Predicate Calculus is an extension of propositional logic that allows the structure
of facts and sentences to be defined. With predicate logic, we can use
expressions like
 Color(ball, blue)
This allows the relationship of sub-sentence units to be expressed, e.g. the
relationship between color, ball and blue in the above example. Due to its greater
representational power, predicate calculus provides a mechanism for proving
statements and can be used as a logic system for proving logical theorems.

4.10.2.1 Quantifiers

Predicate calculus allows us to use quantifiers for statements. Quantifiers allow
us to say things about some or all objects within some set. The logical quantifiers
used in basic predicate calculus are universal and existential quantifiers.

The Universal quantifier

The symbol for the universal quantifier is ∀ It is read as “for every” or “for all” and
used in formulae to assign the same truth value to all variables in the domain,
e.g. in the domain of numbers, we can say that (∀ x) (x + x = 2x). In words this
is: for every x (where x is a number), x + x = 2x is true. Similarly, in the domain of
shapes, we can say that (∀ x) (x = square → x = polygon), which is read in
words as: every square is a polygon. In other words, for every x (where x is a
shape), if x is a square, then x is a polygon (it implies that x is a polygon).

Existential quantifier

The symbol for the existential quantifier is ∃ . It is read as “there exists”, “ for
some”, “for at least one”, “there is one”, and is used in formulae to say that
something is true for at least one value in the domain, e.g. in the domain of
persons, we can say that
(∃x) (Person (x) ∧ father (x, Ahmed)). In words this reads as: there exists some
person, x who is Ahmed’s father.

4.10.2.2 First order predicate logic

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

101

First order predicate logic is the simplest form of predicate logic. The main types
of symbols used are

–Constants are used to name specific objects or properties, e.g. Ali, Ayesha,
blue, ball.

–Predicates: A fact or proposition is divided into two parts

Predicate: the assertion of the proposition
Argument: the object of the proposition

For example, the proposition “Ali likes bananas” can be represented in predicate
logic as Likes (Ali, bananas), where Likes is the predicate and Ali and bananas
are the arguments.

–Variables: Variables are used to a represent general class of objects/properties,
e.g. in the predicate likes (X, Y), X and Y are variables that assume the values
X=Ali and Y=bananas

–Formulae: Formulas combine predicates and quantifiers to represent
information

Lets us illustrate these symbols using an example

Figure : Predicate Logic Example

The predicate section outlines the known facts about the situation in the form of
predicates, i.e. predicate name and its arguments. So, man(ahmed) means that
ahmed is a man, hates(ahmed, chand) means that ahmed hates chand.

 ahmed, belal, chand and car

X, Y and Z

∀∀∀∀ Y (¬¬¬¬sister(Y,ahmed))

∀∀∀∀X,Y,Z(man(X) ∧∧∧∧ man(Y) man(Z) ∧∧∧∧ father(Z,Y)

∧∧∧∧ father(Z,X) ⇒⇒⇒⇒ brother(X,Y))

man(ahmed)
father(ahmed, belal)
brother(ahmed, chand)
owns(belal, car)
tall(belal)
hates(ahmed, chand)
family()

Predicates

Formulae

Variables

Constants

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

102

The formulae sections outlines formulae that use universal quantifiers and

variables to define certain rules. ∀ Y (¬sister(Y,ahmed)) says that there exists
no Y such that Y is the sister of ahmed, i.e. ahmed has no sister. Similarly,
∀X,Y,Z(man(X) ∧ man(Y) man(Z) ∧ father(Z,Y) ∧ father(Z,X) ⇒ brother(X,Y))
means that if there are three men, X, Y and Z, and Z is the father of both X
and Y, then X and Y are bothers. This expresses the rule for the two
individuals being brothers.

4.11 Reasoning

Now that we have looked at knowledge representation, we will look at
mechanisms to reason on the knowledge once we have represented it using
some logical scheme. Reasoning is the process of deriving logical conclusions
from given facts. Durkin defines reasoning as ‘the process of working with
knowledge, facts and problem solving strategies to draw conclusions’.

Throughout this section, you will notice how representing knowledge in a
particular way is useful for a particular kind of reasoning.

4.12 Types of reasoning

We will look at some broad categories of reasoning

4.12.1.1 Deductive reasoning

Deductive reasoning, as the name implies, is based on deducing new information
from logically related known information. A deductive argument offers assertions
that lead automatically to a conclusion, e.g.
–If there is dry wood, oxygen and a spark, there will be a fire
 Given: There is dry wood, oxygen and a spark
 We can deduce: There will be a fire.
–All men are mortal. Socrates is a man.
 We can deduce: Socrates is mortal

4.12.2 Inductive reasoning

Inductive reasoning is based on forming, or inducing a ‘generalization’ from a
limited set of observations, e.g.

–Observation: All the crows that I have seen in my life are black.
–Conclusion: All crows are black

Comparison of deductive and inductive reasoning

We can compare deductive and inductive reasoning using an example. We
conclude what will happen when we let a ball go using both each type of
reasoning in turn

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

103

–The inductive reasoning is as follows: By experience, every time I have let a ball
go, it falls downwards. Therefore, I conclude that the next time I let a ball go, it
will also come down.
–The deductive reasoning is as follows: I know Newton's Laws. So I conclude
that if I let a ball go, it will certainly fall downwards.

Thus the essential difference is that inductive reasoning is based on experience
while deductive reasoning is based on rules, hence the latter will always be
correct.

4.12.3 Abductive reasoning

Deduction is exact in the sense that deductions follow in a logically provable way
from the axioms. Abduction is a form of deduction that allows for plausible
inference, i.e. the conclusion might be wrong, e.g.

Implication: She carries an umbrella if it is raining
Axiom: she is carrying an umbrella
Conclusion: It is raining

This conclusion might be false, because there could be other reasons that she is
carrying an umbrella, e.g. she might be carrying it to protect herself from the sun.

4.12.4 Analogical reasoning

Analogical reasoning works by drawing analogies between two situations, looking
for similarities and differences, e.g. when you say driving a truck is just like
driving a car, by analogy you know that there are some similarities in the driving
mechanism, but you also know that there are certain other distinct characteristics
of each.

4.12.5 Common-sense reasoning

Common-sense reasoning is an informal form of reasoning that uses rules gained
through experience or what we call rules-of-thumb. It operates on heuristic
knowledge and heuristic rules.

4.12.6 Non-Monotonic reasoning

Non-Monotonic reasoning is used when the facts of the case are likely to change
after some time, e.g.

Rule:
IF the wind blows
THEN the curtains sway

When the wind stops blowing, the curtains should sway no longer. However, if we
use monotonic reasoning, this would not happen. The fact that the curtains are
swaying would be retained even after the wind stopped blowing. In non-

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

104

monotonic reasoning, we have a ‘truth maintenance system’. It keeps track of
what caused a fact to become true. If the cause is removed, that fact is removed
(retracted) also.

4.12.7 Inference

Inference is the process of deriving new information from known information. In
the domain of AI, the component of the system that performs inference is called
an inference engine. We will look at inference within the framework of ‘logic’,
which we introduced earlier

4.12.7.1 Logic

Logic, which we introduced earlier, can be viewed as a formal language. As a
language, it has the following components: syntax, semantics and proof systems.

Syntax

Syntax is a description of valid statements, the expressions that are legal in that
language. We have already looked at the syntax of two type of logic systems
called propositional logic and predicate logic. The syntax of proposition gives us
ways to use propositions, their associated truth value and logical connectives to
reason.

Semantics

Semantics pertain to what expressions mean, e.g. the expression ‘the cat drove
the car’ is syntactically correct, but semantically non-sensible.

Proof systems

A logic framework comes with a proof system, which is a way of manipulating
given statements to arrive at new statements. The idea is to derive ‘new’
information from the given information.

Recall proofs in math class. You write down all you know about the situation and
then try to apply all the rules you know repeatedly until you come up with the
statement you were supposed to prove. Formally, a proof is a sequence of
statements aiming at inferring some information. While doing a proof, you usually
proceed with the following steps:

–You begin with initial statements, called premises of the proof (or knowledge
base)
–Use rules, i.e. apply rules to the known information
–Add new statements, based on the rules that match

Repeat the above steps until you arrive at the statement you wished to prove.

4.12.7.1.1 Rules of inference

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

105

Rules of inference are logical rules that you can use to prove certain things. As
you look at the rules of inference, try to figure out and convince yourself that the
rules are logically sound, by looking at the associated truth tables. The rules we
will use for propositional logic are:

Modus Ponens
Modus Tolens
And-Introduction
And-Elimination

Modus ponens

“Modus ponens" means "affirming method“. Note: From now on in our discussion
of logic, anything that is written down in a proof is a statement that is true.

Modus Ponens says that if you know that alpha implies beta, and you know alpha
to be true, you can automatically say that beta is true.

Modus Tolens

Modus Tolens says that "alpha implies beta" and "not beta" you can conclude
"not alpha". In other words, if Alpha implies beta is true and beta is known to be
not true, then alpha could not have been true. Had alpha been true, beta would
automatically have been true due to the implication.

And-Introduction and and-Elimination

And-introduction say that from "Alpha" and from "Beta" you can conclude "Alpha
and Beta". That seems pretty obvious, but is a useful tool to know upfront.
Conversely, and-elimination says that from "Alpha and Beta" you can conclude
"Alpha".

β

α

βα →

Modus-

Ponens

α

β

βα

¬

¬

→

Modus -
Tolens

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

106

The table below gives the four rules of inference together:

Figure : Table of Rules of Inference

4.12.7.2 Inference example

Now, we will do an example using the above rules. Steps 1, 2 and 3 are added
initially, they are the given facts. The goal is to prove D. Steps 4-8 use the rules
of inference to reach at the required goal from the given rules.

Step Formula Derivation

1 A ∧ B Given

2 A→C Given

3 (B ∧ C) →D Given

4 A 1 And-elimination

5 C 4, 2 Modus Ponens

6 B 1 And-elimination

7 B ∧C 5, 6 And-introduction

8 D 7, 3 Modus Ponens

Note: The numbers in the derivation reference the statements of other step
numbers.

βα

β

α

∧ α

βα ∧

And-

Introduction

And-

elimination

βα

β

α

∧
α

βα ∧

α

β

βα

¬

¬

→

β

α

βα →

Modus
Ponens

Modus
Tolens

And-
Introduction

And-
elimination

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

107

4.12.7.3 Resolution rule

The deduction mechanism we discussed above, using the four rules of inference
may be used in practical systems, but is not feasible. It uses a lot of inference
rules that introduce a large branch factor in the search for a proof. An alternative
is approach is called resolution, a strategy used to determine the truth of an
assertion, using only one resolution rule:

To see how this rule is logically correct, look at the table below:

Α β Γ

F F F T F T F

F F T T F T T

F T F F T F F

F T T F T T T

T F F T T T T

T F T T T T T

T T F F T F T

T T T F T T T

You can see that the rows where the premises of the rule are true, the conclusion
of the rule is true also.

To be able to use the resolution rule for proofs, the first step is to convert all given
statements into the conjunctive normal form.

4.12.7.4 Conjunctive normal form

Resolution requires all sentences to be converted into a special form called
conjunctive normal form (CNF). A statement in conjunctive normal form (CNF)
consists of ANDs of Ors. A sentence written in CNF looks like

γα

γβ

βα

∨

∨¬

∨

β¬ βα ∨ γβ ∨¬ γα ∨

)(:

)()()(

DDDnote

DCBBA

¬∨=

∧¬∨∧∨

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

108

The outermost structure is made up of conjunctions. Inner units called clauses
are made up of disjunctions. The components of a statement in CNF are clauses
and literals. A clause is the disjunction of many units. The units that make up a
clause are called literals. And a literal is either a variable or the negation of a
variable. So you get an expression where the negations are pushed in as tightly
as possible, then you have ORs, then you have ANDs. You can think of each
clause as a requirement. Each clause has to be satisfied individually to satisfy the
entire statement.

4.12.7.5 Conversion to CNF

1. Eliminate arrows (implications)

2. Drive in negations using De Morgan’s Laws, which are given below

3. Distribute OR over AND

4.12.7.6 Example of CNF conversion

4.12.7.7 Resolution by Refutation

Now, we will look at a proof strategy called resolution refutation. The steps for
proving a statement using resolution refutation are:
• Write all sentences in CNF
• Negate the desired conclusion
• Apply the resolution rule until you derive a contradiction or cannot apply

the rule anymore.
• If we derive a contradiction, then the conclusion follows from the given

axioms
• If we cannot apply anymore, then the conclusion cannot be proved from

the given axioms

BABA ∨¬=→

)()(BABA ¬∧¬=∨¬

)()(BABA ¬∨¬=∧¬

)()(

)(

CABA

CBA

∨∧∨=

∧∨

() ()

1. () ()

2.() ()

3.() ()

A B C D

A B C D

A B C D

A C D B C D

∨ → →

¬ ∨ ∨ ¬ ∨

¬ ∧ ¬ ∨ ¬ ∨

¬ ∨ ¬ ∨ ∧ ¬ ∨ ¬ ∨

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

109

4.12.8 Resolution refutation example 1

The statements in the table on the right are the given statements. These are
converted to CNF and are included as steps 1, 2 and 3. Our goal is to prove C.
Step 4 is the addition of the negation of the desired conclusion. Steps 5-8 use the
resolution rule to prove C.

Note that you could have come up with multiple ways of proving R:

4.12.9 Resolution Refutation Example 2

Negated Conclusion ¬C 4

2, 4 ¬A 6

3, 4 ¬B 7

5, 7 Contradiction! C 8

1, 2 B ∨ C 5

Given ¬B ∨ C 3

Given ¬A ∨ C 2

Given A ∨ B 1

Derivation Formula Ste
p

B →C 3

A→C 2

A ∨ B 1

Prove C

 ¬C 4

1,5 A 6

2,6 C 7

3,4 ¬B 5

Given ¬B ∨ C 3

Given ¬A ∨ C 2

Given A ∨ B 1

 Formula Step

 ¬C 4

2,4 ¬A 6

3,4 ¬B 7

5,7 C 8

1,2 B ∨ C 5

Given ¬B ∨ C 3

Given ¬A ∨ C 2

Given A ∨ B 1

 Formula Step

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

110

1. (A→B) →B
2. A→C
3. ¬C → ¬B
Prove C

Convert to CNF

Proof

4.12.9.1 Proof strategies

As you can see from the examples above, it is often possible to apply more
than one rule at a particular step. We can use several strategies in such
cases. We may apply rules in an arbitrary order, but there are some rules of
thumb that may make the search more efficient

)(

)()(

)(

)(

)(

).(1

BA

BBBA

BBA

BBA

BBA

BBA

∨=

∨¬∧∨=

∨¬∧=

∨∨¬¬=

→∨¬=

→→

CACA ∨¬=→.2

BCBC ¬∨=¬→¬.3

Negation of
conclusion

¬C 4

2,5 C 6

2,4 A 5

Given C ∨ ¬B 3

Given ¬ A ∨ C 2

Given B ∨ A 1

Derivation Formula Step

Negation of
conclusion

¬C 4

1,5 A 6

2,6 C 7

3,4 ¬B 5

Given C ∨ ¬B 3

Given ¬ A ∨ C 2

Given B ∨ A 1

Derivation Formula Step

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

111

• Unit preference: prefer using a clause with one literal. Produces shorter
clauses

• Set of support: Try to involve the thing you are trying to prove. Chose a
resolution involving the negated goal. These are relevant clauses. We
move ‘towards solution’

Lecture No. 18-28

5 Expert Systems

Expert Systems (ES) are a popular and useful application area in AI. Having
studied KRR, it is instructive to study ES to see a practical manifestation of the
principles learnt there.

5.1 What is an Expert?

Before we attempt to define an expert system, we have look at what we take the
term ‘expert’ to mean when we refer to human experts. Some traits that
characterize experts are:

• They possess specialized knowledge in a certain area
• They possess experience in the given area
• They can provide, upon elicitation, an explanation of their decisions
• The have a skill set that enables them to translate the specialized

knowledge gained through experience into solutions.

Try to think of the various traits you associate with experts you might know, e.g.
skin specialist, heart specialist, car mechanic, architect, software designer. You
will see that the underlying common factors are similar to those outlined above.

5.2 What is an expert system?

According to Durkin, an expert system is “A computer program designed to model
the problem solving ability of a human expert”. With the above discussion of
experts in mind, the aspects of human experts that expert systems model are the
experts:

• Knowledge
• Reasoning

5.3 History and Evolution

Before we begin to study development of expert systems, let us get some
historical perspective about the earliest practical AI systems. After the so-called
dark ages in AI, expert systems were at the forefront of rebirth of AI. There was a
realization in the late 60’s that the general framework of problem solving was not

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

112

enough to solve all kinds of problem. This was augmented by the realization that
specialized knowledge is a very important component of practical systems.
People observed that systems that were designed for well-focused problems and
domains out performed more ‘general’ systems. These observations provided the
motivation for expert systems. Expert systems are important historically as the
earliest AI systems and the most used systems practically. To highlight the utility
of expert systems, we will look at some famous expert systems, which served to
define the paradigms for the current expert systems.

5.3.1 Dendral (1960’s)

Dendral was one of the pioneering expert systems. It was developed at Stanford
for NASA to perform chemical analysis of Martian soil for space missions. Given
mass spectral data, the problem was to determine molecular structure. In the
laboratory, the ‘generate and test’ method was used; possible hypothesis about
molecular structures were generated and tested by matching to actual data.
There was an early realization that experts use certain heuristics to rule out
certain options when looking at possible structures. It seemed like a good idea to
encode that knowledge in a software system. The result was the program
Dendral, which gained a lot of acclaim and most importantly provided the
important distinction that Durkin describes as: ‘Intelligent behavior is dependent,
not so much on the methods of reasoning, but on the knowledge one has to
reason with’.

5.3.2 MYCIN (mid 70s)

MYCIN was developed at Stanford to aid physicians in diagnosing and treating
patients with a particular blood disease. The motivation for building MYCIN was
that there were few experts of that disease, they also had availability constraints.
Immediate expertise was often needed because they were dealing with a life-
threatening condition. MYCIN was tested in 1982. Its diagnosis on ten selected
cases was obtained, along with the diagnosis of a panel of human experts.
MYCIN compositely scored higher than human experts!

MYCIN was an important system in the history of AI because it demonstrated that
expert systems could be used for solving practical problems. It was pioneering
work on the structure of ES (separate knowledge and control), as opposed to
Dendral, MYCIN used the same structure that is now formalized for expert
systems.

5.3.3 R1/XCON (late 70’s)

R1/XCON is also amongst the most cited expert systems. It was developed by
DEC (Digital Equipment Corporation), as a computer configuration assistant. It
was one of the most successful expert systems in routine use, bringing an
estimated saving of $25million per year to DEC. It is a classical example of how
an ES can increase productivity of organization, by assisting existing experts.

5.4 Comparison of a human expert and an expert system

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

113

The following table compares human experts to expert systems. While looking at
these, consider some examples, e.g. doctor, weather expert.

Issues Human Expert Expert System

Availability Limited Always

Geographic location Locally available Anywhere

Safety considerations Irreplaceable Can be replaced

Durability Depends on
individual

Non-perishable

Performance Variable High

Speed Variable High

Cost High Low

Learning Ability Variable/High Low

Explanation Variable Exact

5.5 Roles of an expert system

An expert system may take two main roles, relative to the human expert. It may
replace the expert or assist the expert

Replacement of expert

This proposition raises many eyebrows. It is not very practical in some situations,
but feasible in others. Consider drastic situations where safety or location is an
issue, e.g. a mission to Mars. In such cases replacement of an expert may be the
only feasible option. Also, in cases where an expert cannot be available at a
particular geographical location e.g. volcanic areas, it is expedient to use an
expert system as a substitute.

An example of this role is a France based oil exploration company that maintains
a number of oil wells. They had a problem that the drills would occasionally
become stuck. This typically occurs when the drill hits something that prevents it
from turning. Often delays due to this problem cause huge losses until an expert
can arrive at the scene to investigate. The company decided to deploy an expert
system so solve the problem. A system called ‘Drilling Advisor’ (Elf-Aquitane
1983) was developed, which saved the company from huge losses that would be
incurred otherwise.

Assisting expert

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

114

Assisting an expert is the most commonly found role of an ES. The goal is to aid
an expert in a routine tasks to increase productivity, or to aid in managing a
complex situation by using an expert system that may itself draw on experience
of other (possibly more than one) individuals. Such an expert system helps an
expert overcome shortcomings such as recalling relevant information.
XCON is an example of how an ES can assist an expert.

5.6 How are expert systems used?

Expert systems may be used in a host of application areas including diagnosis,
interpretation, prescription, design, planning, control, instruction, prediction and
simulation.

Control applications

In control applications, ES are used to adaptively govern/regulate the behavior of
a system, e.g. controlling a manufacturing process, or medical treatment. The ES
obtains data about current system state, reasons, predicts future system states
and recommends (or executes) adjustments accordingly. An example of such a
system is VM (Fagan 1978). This ES is used to monitor patient status in the
intensive care unit. It analyses heart rate, blood pressure and breathing
measurements to adjust the ventilator being used by the patient.

Design

ES are used for design applications to configure objects under given design
constraints, e.g. XCON. Such ES often use non-monotonic reasoning, because of
implications of steps on previous steps. Another example of a design ES is
PEACE (Dincbas 1980), which is a CAD tool to assist in design of electronic
structures.

Diagnosis and Prescription

An ES can serve to identify system malfunction points. To do this it must have
knowledge of possible faults as well as diagnosis methodology extracted from
technical experts, e.g. diagnosis based on patient’s symptoms, diagnosing
malfunctioning electronic structures. Most diagnosis ES have a prescription
subsystem. Such systems are usually interactive, building on user information to
narrow down diagnosis.

Instruction and Simulation

ES may be used to guide the instruction of a student in some topic. Tutoring
applications include GUIDON (Clancey 1979), which instructs students in
diagnosis of bacterial infections. Its strategy is to present user with cases (of
which it has solution). It then analyzes the student’s response. It compares the
students approach to its own and directs student based on differences.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

115

Simulation

ES can be used to model processes or systems for operational study, or for use
along with tutoring applications

Interpretation

According to Durkin, interpretation is ‘Producing an understanding of situation
from given information’. An example of a system that provides interpretation is
FXAA (1988). This ES provides financial assistance for a commercial bank. It
looks at a large number of transactions and identifies irregularities in transaction
trends. It also enables automated audit.

Planning and prediction

ES may be used for planning applications, e.g. recommending steps for a robot
to carry out certain steps, cash management planning. SMARTPlan is such a
system, a strategic market planning expert (Beeral, 1993). It suggests
appropriate marketing strategy required to achieve economic success. Similarly,
prediction systems infer likely consequences from a given situation.

Appropriate domains for expert systems

When analyzing a particular domain to see if an expert system may be useful, the
system analyst should ask the following questions:

• Can the problem be effectively solved by conventional programming? If
not, an ES may be the choice, because ES are especially suited to ill-
structured problems.

• Is the domain well-bounded? e.g. a headache diagnosis system may
eventually have to contain domain knowledge of many areas of medicine
because it is not easy to limit diagnosis to one area. In such cases where
the domain is too wide, building an ES may be not be a feasible
proposition.

• What are the practical issues involved? Is some human expert willing to
cooperate? Is the expert’s knowledge especially uncertain and heuristic? If
so, ES may be useful.

5.7 Expert system structure

Having discussed the scenarios and applications in which expert systems may be
useful, let us delve into the structure of expert systems. To facilitate this, we use
the analogy of an expert (say a doctor) solving a problem. The expert has the
following:

• Focused area of expertise
• Specialized Knowledge (Long-term Memory, LTM)
• Case facts (Short-term Memory, STM)
• Reasons with these to form new knowledge

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

116

• Solves the given problem

Now, we are ready to define the corresponding concepts in an Expert System.

We can view the structure of the ES and its components as shown in the figure
below

Conclusions Solution

Inference Engine Reasoning

Case/Inferred Facts (stored in
Working Memory)

Case Facts (stored in STM)

Domain Knowledge (stored in
Knowledge Base)

Specialized Knowledge (stored in
LTM)

Domain Focused Area of Expertise

Expert System Human Expert

USER

Working Memory

Analogy: STM

-Initial Case facts
-Inferred facts

Knowledge Base

Analogy: LTM
- Domain knowledge

Inference
Engine

Expert System

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

117

Figure 13: Expert System Structure

5.7.1 Knowledge Base

The knowledge base is the part of an expert system that contains the domain
knowledge, i.e.

• Problem facts, rules
• Concepts
• Relationships

As we have emphasised several times, the power of an ES lies to a large extent
in its richness of knowledge. Therefore, one of the prime roles of the expert
system designer is to act as a knowledge engineer. As a knowledge engineer,
the designer must overcome the knowledge acquisition bottleneck and find an
effective way to get information from the expert and encode it in the knowledge
base, using one of the knowledge representation techniques we discussed in
KRR.

As discussed in the KRR section, one way of encoding that knowledge is in the
form of IF-THEN rules. We saw that such representation is especially conducive
to reasoning.

5.7.2 Working memory

The working memory is the ‘part of the expert system that contains the problem
facts that are discovered during the session’ according to Durkin. One session in
the working memory corresponds to one consultation. During a consultation:

• User presents some facts about the situation.
• These are stored in the working memory.
• Using these and the knowledge stored in the knowledge base, new

information is inferred and also added to the working memory.

5.7.3 Inference Engine

The inference engine can be viewed as the processor in an expert system that
matches the facts contained in the working memory with the domain knowledge
contained in the knowledge base, to draw conclusions about the problem. It
works with the knowledge base and the working memory, and draws on both to
add new facts to the working memory.

If the knowledge of an ES is represented in the form of IF-THEN rules, the
Inference Engine has the following strategy: Match given facts in working
memory to the premises of the rules in the knowledge base, if match found, ‘fire’
the conclusion of the rule, i.e. add the conclusion to the working memory. Do this
repeatedly, while new facts can be added, until you come up with the desired
conclusion.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

118

We will illustrate the above features using examples in the following sections

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

119

5.7.4 Expert System Example: Family

Let’s look at the example above to see how the knowledge base and working
memory are used by the inference engine to add new facts to the working
memory. The knowledge base column on the left contains the three rules of the
system. The working memory starts out with two initial case facts:

father (M.Tariq, Ali)
father (M.Tariq, Ahmed)

The inference engine matches each rule in turn with the rules in the working
memory to see if the premises are all matched. Once all premises are matched,
the rule is fired and the conclusion is added to the working memory, e.g. the
premises of rule 1 match the initial facts, therefore it fires and the fact brother(Ali,
Ahmed is fired). This matching of rule premises and facts continues until no new
facts can be added to the system. The matching and firing is indicated by arrows
in the above table.

5.7.5 Expert system example: raining

Knowledge Base

Rule 1:

IF father (X, Y)

AND father (X, Z)

THEN brother (Y, Z)

Rule 2:

 IF father (X, Y)

 THEN payTuition (X, Y)

Rule 3:

 IF brother (X, Y)

 THEN like (X, Y)

Working Memory

father (M.Tariq, Ali)

father (M.Tariq, Ahmed)

brother (Ali, Ahmed)

payTuition (M.Tariq, Ali)

payTuition (M.Tariq,Ahmed)

like (Ali, Ahmed)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

120

5.7.6 Explanation facility

The explanation facility is a module of an expert system that allows transparency
of operation, by providing an explanation of how it reached the conclusion. In the
family example above, how does the expert system draw the conclusion that Ali
likes Ahmed?
The answer to this is the sequence of reasoning steps as shown with the arrows
in the table below.

Knowledge Base

Rule 1:

IF person(X)

AND person(Y)

AND likes (X, Y)

AND sameSchool(X,Y)

THEN

 friends(X, Y)

Rule 2:

 IF friends (X, Y)

 AND weekend()

 THEN

 goToMovies(X)

 goToMovies(Y)

Rule 3:

 IF goToMovies(X)

 AND cloudy()

 THEN

 carryUmbrella(X)

Working Memory

person (Ali)

person (Ahmed)

cloudy ()

likes(Ali, Ahmed)

sameSchool(Ali, Ahmed)

weekend()

friends(Ali, Ahmed)

goToMovies(Ali)

goToMovies(Ahmed)

carryUmbrella(Ali)

carryUmbrella(Ahmed)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

121

The arrows above provide the explanation for how the fact like(Ali, Ahmed) was
added to the working memory.

5.8 Characteristics of expert systems

Having looked at the basic operation of expert systems, we can begin to outline
desirable properties or characteristics we would like our expert systems to
possess.

ES have an explanation facility. This is the module of an expert system that
allows transparency of operation, by providing an explanation of how the
inference engine reached the conclusion. We want ES to have this facility so that
users can have knowledge of how it reaches its conclusion.

An expert system is different from conventional programs in the sense that
program control and knowledge are separate. We can change one while affecting
the other minimally. This separation is manifest in ES structure; knowledge base,
working memory and inference engine. Separation of these components allows
changes to the knowledge to be independent of changes in control and vice
versa.

”There is a clear separation of general knowledge about the problem (the rules
forming the knowledge base) from information about the current problem (the
input data) and methods for applying the general knowledge to a problem (the
rule interpreter).The program itself is only an interpreter (or general reasoning

Knowledge Base

Rule 1:

 IF father (X, Y)

 AND father (X, Z)

 THEN brother (Y, Z)

Rule 2:

 IF father (X, Y)

 THEN payTuition (X, Y)

Rule 3:

 IF brother (X, Y)

 THEN like (X, Y)

Working Memory

father (M.Tariq, Ali)

father (M.Tariq, Ahmed)

brother (Ali, Ahmed)

payTuition (M.Tariq, Ali)

payTuition (M.Tariq,Ahmed)

like (Ali, Ahmed)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

122

mechanism) and ideally the system can be changed simply by adding or
subtracting rules in the knowledge base” (Duda)

Besides these properties, an expert system also possesses expert knowledge in
that it embodies expertise of human expert. If focuses expertise because the
larger the domain, the more complex the expert system becomes, e.g. a car
diagnosis expert is more easily handled if we make separate ES components for
engine problems, electricity problems, etc. instead of just designing one
component for all problems.

We have also seen that an ES reasons heuristically, by encoding an expert’s
rules-of-thumb. Lastly, an expert system, like a human expert makes mistakes,
but that is tolerable if we can get the expert system to perform at least as well as
the human expert it is trying to emulate.

5.9 Programming vs. knowledge engineering

Conventional programming is a sequential, three step process: Design, Code,
Debug. Knowledge engineering, which is the process of building an expert
system, also involves assessment, knowledge acquisition, design, testing,
documentation and maintenance. However, there are some key differences
between the two programming paradigms.

Conventional programming focuses on solution, while ES programming focuses
on problem. An ES is designed on the philosophy that if we have the right
knowledge base, the solution will be derived from that data using a generic
reasoning mechanism.

Unlike traditional programs, you don’t just program an ES and consider it ‘built’. It
grows as you add new knowledge. Once framework is made, addition of
knowledge dictates growth of ES.

5.10 People involved in an expert system project

The main people involved in an ES development project are the domain expert,
the knowledge engineer and the end user.

Domain Expert

A domain expert is ‘A person who posses the skill and knowledge to solve a
specific problem in a manner superior to others’ (Durkin). For our purposes, an
expert should have expert knowledge in the given domain, good communication
skills, availability and readiness to co-operate.

Knowledge Engineer
A knowledge engineer is ‘a person who designs, builds and tests an Expert
System’ (Durkin). A knowledge engineer plays a key role in identifying, acquiring
and encoding knowledge.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

123

End-user

The end users are the people who will use the expert system. Correctness,
usability and clarity are important ES features for an end user.

5.11 Inference mechanisms

In the examples we have looked at so far, we have looked informally at how the
inference engine adds new facts to the working memory. We can see that many
different sequences for matching are possible and that we can have multiple
strategies for inferring new information, depending upon our goal. If we want to
look for a specific fact, it makes no sense to add all possible facts to the working
memory. In other cases, we might actually need to know all possible facts about
the situation. Guided by this intuition, we have two formal inference mechanisms;
forward and backward chaining.

5.11.1 Forward Chaining

Let’s look at how a doctor goes about diagnosing a patient. He asks the patient
for symptoms and then infers diagnosis from symptoms. Forward chaining is
based on the same idea. It is an “inference strategy that begins with a set of
known facts, derives new facts using rules whose premises match the known
facts, and continues this process until a goal sate is reached or until no further
rules have premises that match the known or derived facts” (Durkin). As you will
come to appreciate shortly, it is a data-driven approach.

Approach

1. Add facts to working memory (WM)
2. Take each rule in turn and check to see if any of its premises match the

facts in the WM
3. When matches found for all premises of a rule, place the conclusion of the

rule in WM.
4. Repeat this process until no more facts can be added. Each repetition of

the process is called a pass.

We will demonstrate forward chaining using an example.

Doctor example (forward chaining)

Rules

Rule 1
IF The patient has deep cough
AND We suspect an infection
THEN The patient has Pneumonia

Rule 2
IF The patient’s temperature is above 100
THEN Patient has fever

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

124

Rule 3
IF The patient has been sick for over a fortnight
AND The patient has a fever
THEN We suspect an infection

Case facts

• Patients temperature= 103
• Patient has been sick for over a month
• Patient has violent coughing fits

First Pass

Rule, premise Status Working Memory

1, 1
Deep cough

True

Temp= 103
Sick for a month
Coughing fits

1, 2
Suspect infection

Unknown

Temp= 103
Sick for a month
Coughing fits

2, 1
Temperature>100

True, fire rule

Temp= 103
Sick for a month
Coughing fits
Patient has fever

Second Pass

Rule, premise Status Working Memory

1, 1

Deep cough

True

Temp= 103
Sick for a month
Coughing fits
Patient has fever

1, 2
Suspect infection

Unknown

Temp= 103
Sick for a month
Coughing fits
Patient has fever

3, 1
Sick for over fortnight

True

Temp= 103
Sick for a month
Coughing fits
Patient has fever

3, 2
Patient has fever

True, fire

Temp= 103
Sick for a month
Coughing fits
Patient has fever
Infection

Third Pass

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

125

Rule, premise Status Working Memory

1, 1

Deep cough

True

Temp= 103
Sick for a month
Coughing fits
Patient has fever
Infection

1, 2
Suspect infection

True, fire

Temp= 103
Sick for a month
Coughing fits
Patient has fever
Infection
Pneumonia

Now, no more facts can be added to the WM. Diagnosis: Patient has Pneumonia.

Issues in forward chaining

Undirected search

There is an important observation to be made about forward chaining. The
forward chaining inference engine infers all possible facts from the given facts. It
has no way of distinguishing between important and unimportant facts. Therefore,
equal time spent on trivial evidence as well as crucial facts. This is draw back of
this approach and we will see in the coming section how to overcome this.

Conflict resolution

Another important issue is conflict resolution. This is the question of what to do
when the premises of two rules match the given facts. Which should be fired
first? If we fire both, they may add conflicting facts, e.g.

IF you are bored
 AND you have no cash
 THEN go to a friend’s place
IF you are bored
 AND you have a credit card
 THEN go watch a movie

If both rules are fired, you will add conflicting recommendations to the working
memory.

Conflict resolution strategies

To overcome the conflict problem stated above, we may choose to use on of the
following conflict resolution strategies:

• Fire first rule in sequence (rule ordering in list). Using this strategy all the
rules in the list are ordered (the ordering imposes prioritization). When
more than one rule matches, we simply fire the first in the sequence

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

126

• Assign rule priorities (rule ordering by importance). Using this approach we

assign explicit priorities to rules to allow conflict resolution.

• More specific rules (more premises) are preferred over general rules. This

strategy is based on the observation that a rule with more premises, in a
sense, more evidence or votes from its premises, therefore it should be
fired in preference to a rule that has less premises.

• Prefer rules whose premises were added more recently to WM (time-

stamping). This allows prioritizing recently added facts over older facts.

• Parallel Strategy (view-points). Using this strategy, we do not actually

resolve the conflict by selecting one rule to fire. Instead, we branch out our
execution into a tree, with each branch operation in parallel on multiple
threads of reasoning. This allows us to maintain multiple view-points on
the argument concurrently

5.11.2 Backward chaining

Backward chaining is an inference strategy that works backward from a
hypothesis to a proof. You begin with a hypothesis about what the situation might
be. Then you prove it using given facts, e.g. a doctor may suspect some disease
and proceed by inspection of symptoms. In backward chaining terminology, the
hypothesis to prove is called the goal.

Approach

1. Start with the goal.
2. Goal may be in WM initially, so check and you are done if found!
3. If not, then search for goal in the THEN part of the rules (match

conclusions, rather than premises). This type of rule is called goal rule.
4. Check to see if the goal rule’s premises are listed in the working memory.
5. Premises not listed become sub-goals to prove.
6. Process continues in a recursive fashion until a premise is found that is

not supported by a rule, i.e. a premise is called a primitive, if it cannot be
concluded by any rule

7. When a primitive is found, ask user for information about it. Back track and
use this information to prove sub-goals and subsequently the goal.

As you look at the example for backward chaining below, notice how the
approach of backward chaining is like depth first search.

Backward chaining example

Consider the same example of doctor and patient that we looked at previously

Rules

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

127

Rule 1
IF The patient has deep cough
AND We suspect an infection
THEN The patient has Pneumonia

Rule 2
IF The patient’s temperature is above 100
THEN Patient has fever

Rule 3
IF The patient has been sick for over a fortnight
AND The patient has fever
THEN We suspect an infection

Goal

Patient has Pneumonia

Step Description Working Memory

1 Goal: Patient has pneumonia. Not in working
memory

2 Find rules with goal in conclusion:
Rule 1

3 See if rule 1, premise 1 is known, “the patient
has a deep cough

4 Find rules with this statement in conclusion.
No rule found. “The patient has a deep
cough” is a primitive. Prompt patient.
Response: Yes.

Deep cough

5 See if rule 1, premise 2 is known, “We
suspect an infection”

Deep cough

6 This is in conclusion of rule 3. See if rule 3,
premise 1 is known, “The patient has been
sick for over a fortnight”

Deep cough

7 This is a primitive. Prompt patient. Response:
Yes

Deep cough
Sick over a month

8 See if rule 3, premise 2 is known, “The
patient has a fever”

Deep cough
Sick over a month

9 This is conclusion of rule 2. See if rule 2,
premise 1 is known, “Then patients
temperature is above 100”

Deep cough
Sick over a month

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

128

10 This is a primitive. Prompt patient. Response:

Yes. Fire Rule

Deep cough
Sick over a month
Fever

11 Rule 3 fires

Deep cough
Sick over a month
Fever
Infection

12 Rule 1 fires

Deep cough
Sick over a month
Fever
Infection
Pneumonia

5.11.3 Forward vs. backward chaining

The exploration of knowledge has different mechanisms in forward and backward
chaining. Backward chaining is more focused and tries to avoid exploring
unnecessary paths of reasoning. Forward chaining, on the other hand is like an
exhaustive search.

In the figures below, each node represents a statement. Forward chaining starts
with several facts in the working memory. It uses rules to generate more facts. In
the end, several facts have been added, amongst which one or more may be
relevant. Backward chaining however, starts with the goal state and tries to reach
down to all primitive nodes (marked by ‘?’), where information is sought from the
user.

 Figure: Forward chaining Figure: Backward Chaining

? ?

?

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

129

5.12 Design of expert systems

We will now look at software engineering methodology for developing practical
ES. The general stages of the expert system development lifecycle or ESDLC are

• Feasibility study
• Rapid prototyping
• Alpha system (in-house verification)
• Beta system (tested by users)
• Maintenance and evolution

Linear model

The Linear model (Bochsler 88) of software development has been successfully
used in developing expert systems. A linear sequence of steps is applied
repeatedly in an iterative fashion to develop the ES. The main phases of the
linear sequence are

• Planning
• Knowledge acquisition and analysis
• Knowledge design
• Code
• Knowledge verification
• System evaluation

Figure: Linear Model for ES development

5.12.1 Planning phase

This phase involves the following steps

• Feasibility assessment
• Resource allocation
• Task phasing and scheduling
• Requirements analysis

5.12.2 Knowledge acquisition

Planning Knowledge
Acquisition
and
Analysis

Work
Plan

Knowledge
Baseline

Knowledge
Design

Design
Baseline

Code Knowledge
Verification

System
Evaluation

Encoding of knowledge
Using a development

tool
Formal in-house testing Product evaluation by

users

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

130

This is the most important stage in the development of ES. During this stage the
knowledge engineer works with the domain expert to acquire, organize and
analyze the domain knowledge for the ES. ‘Knowledge acquisition is the
bottleneck in the construction of expert systems’ (Hayes-Roth et al.). The main
steps in this phase are

• Knowledge acquisition from expert
• Define knowledge acquisition strategy (consider various options)
• Identify concrete knowledge elements
• Group and classify knowledge. Develop hierarchical representation where

possible.
• Identify knowledge source, i.e. expert in the domain

o Identify potential sources (human expert, expert handbooks/
manuals), e.g. car mechanic expert system’s knowledge engineer
may chose a mix of interviewing an expert mechanic and using a
mechanics trouble-shooting manual.
Tip: Limit the number of knowledge sources (experts) for simple
domains to avoid scheduling and view conflicts. However, a single
expert approach may only be applicable to restricted small
domains.

o Rank by importance
o Rank by availability
o Select expert/panel of experts
o If more than one expert has to be consulted, consider a blackboard

system, where more than one knowledge source (kept partitioned),
interact through an interface called a Blackboard

5.12.3 Knowledge acquisition techniques

• Knowledge elicitation by interview
• Brainstorming session with one or more experts. Try to introduce some

structure to this session by defining the problem at hand, prompting for
ideas and looking for converging lines of thought.

• Electronic brainstorming
• On-site observation
• Documented organizational expertise, e.g. troubleshooting manuals

5.12.4 Knowledge elicitation

Getting knowledge from the expert is called knowledge elicitation vs. the broader
term knowledge acquisition. Elicitation methods may be broadly divided into:

• Direct Methods
o Interviews

� Very good at initial stages
� Reach a balance between structured (multiple choice, rating

scale) and un-structured interviewing.
� Record interviews (transcribe or tape)
� Mix of open and close ended questions

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

131

o Informal discussions (gently control digression, but do not offend
expert by frequent interruption)

• Indirect methods
o Questionnaire

Problems that may be faced and have to be overcome during elicitation include

• Expert may not be able to effectively articulate his/her knowledge.
• Expert may not provide relevant information.
• Expert may provide incomplete knowledge
• Expert may provide inconsistent or incorrect knowledge

5.12.5 Knowledge analysis

The goal of knowledge analysis is to analyze and structure the knowledge gained
during the knowledge acquisition phase. The key steps to be followed during this
stage are

• Identify specific knowledge elements, at the level of concepts, entities, etc.
• From the notes taken during the interview sessions, extract specific

o Identify strategies (as a list of points)
o Translate strategies to rules
o Identify heuristics
o Identify concepts
o Represent concepts and their relationships using some visual

mechanism like cognitive maps

Patient

Age

Medical
History

Personal
History

Tests

Blood
Sugar

Blood
Hematology

Echo
Cardiogram

Gets

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

132

Figure: Cognitive Map example

The example cognitive map for the domain of medicine shows entities and their
relationships. Concepts and sub-concepts are identified and grouped together to
understand the structure of the knowledge better. Cognitive maps are usually
used to represent static entities.

Inference networks

Inference networks encode the knowledge of rules and strategies.

Figure: Inference Network Example

Flowcharts

Flow charts also capture knowledge of strategies. They may be used to represent
a sequence of steps that depict the order of application of rule sets. Try making a
flow chart that depicts the following strategy. The doctor begins by asking
symptoms. If they are not indicative of some disease the doctor will not ask for
specific tests. If it is symptomatic of two or three potential diseases, the doctor
decides which disease to check for first and rules out potential diagnoses in some
heuristic sequence.

Diagnosis is
Anemia

Inner surface of
eyes lids pale

Consistent Low
Blood Pressure

Feeling Listless

Symptoms
indicate anemia

Blood test shows
low hemoglobin
level

OR OR

AND

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

133

5.12.6 Knowledge design

After knowledge analysis is done, we enter the knowledge design phase. At the
end of this phase, we have

• Knowledge definition
• Detailed design
• Decision of how to represent knowledge

o Rules and Logic
o Frames

• Decision of a development tool. Consider whether it supports your planned
strategy.

• Internal fact structure
• Mock interface

5.12.7 Code

This phase occupies the least time in the ESDLC. It involves coding, preparing
test cases, commenting code, developing user’s manual and installation guide. At
the end of this phase the system is ready to be tested.

5.12.8 CLIPS

We will now look at a tool for expert system development. CLIPS stands for C
Language Integrated Production System. CLIPS is an expert system tool which
provides a complete environment for the construction of rule and object based
expert systems.Download CLIPS for windows (CLIPSWin.zip) from:
http://www.ghg.net/clips/download/executables/pc/. Also download the complete
documentation including the programming guide from:
http://www.ghg.net/clips/download/documentation/

The guides that you download will provide comprehensive guidance on
programming using CLIP. Here are some of the basics to get you started

Entering and Exiting CLIPS

When you start executable, you will see prompt
 CLIPS>
Commands can be entered here

To leave CLIPS, enter
(exit)

All commands use () as delimiters, i.e. all commands are enclosed in brackets.
A simple command example for adding numbers
CLIPS> (+ 3 4)

Fields

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

134

Fields are the main types of fields/tokens that can be used with clips. They can
be:

• Numeric fields: consist of sign, value and exponent
o Float .e.g. 3.5e-10
o Integer e.g. -1 , 3

• Symbol: ASCII characters, ends with delimiter. e.g. family
• String: Begins and ends with double quotation marks, “Ali is Ahmed’s

brother”

Remember that CLIPS is case sensitive

The Deftemplate construct

Before facts can be added, we have to define the format for our relations.Each
relation consists of: relation name, zero or more slots (arguments of the relation)
The Deftemplate construct defines a relation’s structure
 (deftemplate <relation-name> [<optional comment>] <slot-definition>
 e.g.
 CLIPS> (deftemplate father “Relation father”
 (slot fathersName)
 (slot sonsName))
Adding facts

Facts are added in the predicate format. The deftemplate construct is used to
inform CLIPS of the structure of facts. The set of all known facts is called the fact
list. To add facts to the fact list, use the assert command, e.g.
Facts to add:
man(ahmed)
father(ahmed, belal)
brother(ahmed, chand)

CLIPS> (assert (man (name “Ahmed”)))

CLIPS>(assert (father (fathersName “Ahmed”) (sonsName “Belal”)))

Viewing fact list

After adding facts, you can see the fact list using command: (facts). You will see
that a fact index is assigned to each fact, starting with 0. For long fact lists, use
the format
(facts [<start> [<end>]])
For example:
(facts 1 10) lists fact numbers 1 through 10

Removing facts

The retract command is used to remove or retract facts. For example:
(retract 1) removes fact 1

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

135

(retract 1 3) removes fact 1 and 3

Modifying and duplicating facts

We add a fact:
CLIPS>(assert (father (fathersName “Ahmed”) (sonsName “Belal”)))

To modify the fathers name slot, enter the following:

CLIPS> (modify 2 (fathersName “Ali Ahmed”))

Notice that a new index is assigned to the modified fact
To duplicate a fact, enter:

CLIPS> (duplicate 2 (name “name”))

The WATCH command

The WATCH command is used for debugging programs. It is used to view the
assertion and modification of facts. The command is

CLIPS> (watch facts)

After entering this command, for subsequent commands, the whole sequence of
events will be shown. To turn off this option, use:
(unwatch facts)

The DEFFACTS construct

These are a set of facts that are automatically asserted when the (reset)
command is used, to set the working memory to its initial state. For example:

CLIPS> (deffacts myFacts “My known facts
(man (name “Ahmed”))
(father
 (fathersName“Ahmed”)
 (sonsName “Belal”)))

The Components of a rule

The Defrule construct is used to add rules. Before using a rule the component
facts need to be defined. For example, if we have the rule

IF Ali is Ahmed’s father
THEN Ahmed is Ali’s son

We enter this into CLIPS using the following construct:

 ;Rule header
 (defrule isSon “An example rule”

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

136

 ; Patterns
 (father (fathersName “ali”) (sonsName “ahmed”)
 ;THEN
 =>
 ;Actions
 (assert (son (sonsName “ahmed”) (fathersName “ali”)))
)

CLIPS attempts to match the pattern of the rules against the facts in the fact list.
If all patterns of a rule match, the rule is activated, i.e. placed on the agenda.

Agenda driven control and execution

The agenda is the list of activated rules. We use the run command to run the
agenda. Running the agenda causes the rules in the agenda to be fired.

CLIPS>(run)

Displaying the agenda

To display the set of rules on the agenda, enter the command
(agenda)

Watching activations and rules

You can watch activations in the agenda by entering
(watch activations)

You can watch rules firing using
(watch rules)

All subsequent activations and firings will be shown until you turn the watch off
using the unwatch command.

Clearing all constructs

(clear) clears the working memory

The PRINTOUT command

Instead of asserting facts in a rule, you can print out messages using
(printout t “Ali is Ahmed’s son” crlf)

The SET-BREAK command

This is a debugging command that allows execution of an agenda to halt at a
specified rule (breakpoint)
 (set-break isSon)
Once execution stops, run is used to resume it again.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

137

(remove-break isSon) is used to remove the specified breakpoint.

Use (show-breaks) to view all breakpoints.

Loading and saving constructs

Commands cannot be loaded from a file; they have to be entered at the
command prompt. However constructs like deftemplate, deffacts and defrules
can be loaded from a file that has been saved using .clp extension. The
command to load the file is:
(load “filename.clp”)

You can write out constructs in file editor, save and load. Also (save
“filename.clp”) saves all constructs currently loaded in CLIPS to the specified file.

Pattern matching

Variables in CLIPS are preceded by ?, e.g.
?speed
?name
Variables are used on left hand side of a rule. They are bound to different values
and once bound may be referenced on the right hand side of a rule. Multi-field
wildcard variables may be bound to one or more field of a pattern. They are
preceded by $? e.g. $?name will match to entire name(last, middle and first)

Below are some examples to help you see the above concept in practice:

Example 1

;This is a comment, anything after a semicolon is a comment
;Define initial facts
(deffacts startup (animal dog) (animal cat) (animal duck) (animal turtle)(animal horse) (warm-
blooded dog) (warm-blooded cat) (warm-blooded duck) (lays-eggs duck) (lays-eggs turtle) (child-
of dog puppy) (child-of cat kitten) (child-of turtle hatchling))

;Define a rule that prints animal names
(defrule animal (animal ?x) => (printout t "animal found: " ?x crlf))

;Define a rule that identifies mammals
(defrule mammal
 (animal ?name)
 (warm-blooded ?name)
 (not (lays-eggs ?name))
 =>
 (assert (mammal ?name))
 (printout t ?name " is a mammal" crlf))

;Define a rule that adds mammals
(defrule mammal2
 (mammal ?name)
 (child-of ?name ?young)
 =>
 (assert (mammal ?young))
 (printout t ?young " is a mammal" crlf))

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

138

;Define a rule that removes mammals from fact list
;(defrule remove-mammals
; ?fact <- (mammal ?)
; =>
; (printout t "retracting " ?fact crlf)
; (retract ?fact))
;

;Define rule that adds child’s name after asking user
(defrule what-is-child
 (animal ?name)
 (not (child-of ?name ?))
=>
 (printout t "What do you call the child of a " ?name "?")
 (assert (child-of ?name (read))))

Example 2

;OR example
;note: CLIPS operators use prefix notation
(deffacts startup (weather raining))

(defrule take-umbrella
 (or (weather raining)
 (weather snowing))
 =>
 (assert (umbrella required)))

These two are very basic examples. You will find many examples in the CLIPS
documentation that you download. Try out these examples.

Below is the code for the case study we discussed in the lectures, for the
automobile diagnosis problem discussion that is given in Durkin’s book. This is an
implementation of the solution. (The solution is presented by Durkin as rules in
your book).

;Helper functions for asking user questions
(deffunction ask-question (?question $?allowed-values)
 (printout t ?question)
 (bind ?answer (readline))

 (while (and (not (member ?answer ?allowed-values)) (not(eq ?answer "q"))) do
 (printout t ?question)
 (bind ?answer (readline)))
 (if (eq ?answer "q")
 then (clear))
?answer)

(deffunction yes-or-no-p (?question)
 (bind ?response (ask-question ?question "yes" "no" "y" "n"))
 (if (or (eq ?response "yes") (eq ?response "y"))
 then TRUE
 else FALSE))

;startup rule

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

139

(deffacts startup (task begin))

(defrule startDiagnosis
 ?fact <- (task begin)
 =>
 (retract ?fact)
 (assert (task test_cranking_system))
 (printout t "Auto Diagnostic Expert System" crlf)
)

;---------------------------------
;Test Display Rules
;---------------------------------
(defrule testTheCrankingSystem
 ?fact <- (task test_cranking_system)
 =>
 (printout t "Cranking System Test" crlf)
 (printout t "--------------------" crlf)
 (printout t "I want to first check out the major components of the cranking system. This
includes such items as the battery, cables, ignition switch and starter. Usually, when a car does
not start the problem can be found with one of these components" crlf)
 (printout t "Steps: Please turn on the ignition switch to energize the starting motor" crlf)
 (bind ?response
 (ask-question "How does your engine turn: (slowly or not at all/normal)? "
 "slowly or not at all" "normal"))
 (assert(engine_turns ?response))
)

(defrule testTheBatteryConnection
 ?fact <- (task test_battery_connection)
 =>
 (printout t "Battery Connection Test" crlf)
 (printout t "-----------------------" crlf)
 (printout t "I next want to see if the battery connections are good. Often, a bad connection
will appear like a bad battery" crlf)
 (printout t "Steps: Insert a screwdriver between the battery post and the cable clamp.
Then turn the headlights on high beam and observe the lights as the screwdriver is twisted." crlf)
 (bind ?response
 (ask-question "What happens to the lights: (brighten/don't brighten/not on)? "
 "brighten" "don't brighten" "not on"))
 (assert(screwdriver_test_shows_that_lights ?response))
)

(defrule testTheBattery
 ?fact <- (task test_battery)
 =>
 (printout t "Battery Test" crlf)
 (printout t "------------" crlf)
 (printout t "The state of the battery can be checked with a hydrometer. This is a good test
to determine the amount of charge in the battery and is better than a simple voltage
measurement" crlf)
 (printout t "Steps: Please test each battery cell with the hydrometer and note each cell's
specific gravity reading." crlf)
 (bind ?response
 (ask-question "Do all cells have a reading above 1.2: (yes/no)? "
 "yes" "no" "y" "n"))
 (assert(battery_hydrometer_reading_good ?response))
)

(defrule testTheStartingSystem

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

140

 ?fact <- (task test_starting_system)
 =>
 (printout t "Starting System Test" crlf)
 (printout t "--------------------" crlf)
 (printout t "Since the battery looks good, I want to next test the starter and solenoid" crlf)
 (printout t "Steps: Please connect a jumper from the battery post of the solenoid to the
starter post of hte solenoid. Then turn the ignition key." crlf)
 (bind ?response
 (ask-question "What happens after you make this connection and turn the key:
(engine turns normally/starter buzzes/engine turns slowly/nothing)? "
 "engine turns normally" "starter buzzes" "engine turns slowly" "nothing"))
 (assert(starter ?response))
)

(defrule testTheStarterOnBench
 ?fact <- (task test_starter_on_bench)
 =>
 (bind ?response
 (ask-question "Check your starter on bench: (meets specifications/doesn't meet
specifications)? "
 "meets specifications" "doesn't meet specifications"))
 (assert(starter_on_bench ?response))
)

(defrule testTheIgnitionOverrideSwitch
 ?fact <- (task test_ignition_override_switches)
 =>
 (bind ?response
 (ask-question "Check the ignition override switches: starter(operates/doesn't
operate)? "
 "operates" "doesn't operate"))
 (assert(starter_override ?response))
)

(defrule testTheIgnitionSwitch
 ?fact <- (task test_ignition_switch)
 =>
 (bind ?response
 (ask-question "Test your ignition swich. The voltmeter: (moves/doesn't move)? "
"moves" "doesn't move"))
 (assert(voltmeter ?response))
)
(defrule testEngineMovement
 ?fact <- (task test_engine_movement)
 =>
 (bind ?response
 (ask-question "Test your engine movement: (doesn't move/moves freely)? "
 "doesn't move" "moves freely"))
 (assert(engine_turns ?response))
)
;---------------------------------
;Test Cranking System Rules
;---------------------------------
(defrule crankingSystemIsDefective
 ?fact <- (task test_cranking_system)
 (engine_turns "slowly or not at all")
 =>
 (assert(cranking_system defective))
 (retract ?fact)
 ;(bind ?response)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

141

 (printout t "It seems like the cranking system is defective! I will now identify the problem
with the cranking system" crlf)
 (assert (task test_battery_connection))
)

(defrule crankingSystemIsGood
 ?fact <- (task test_cranking_system)
 (engine_turns "normal")
 =>
 (assert(cranking_system "good"))
 (retract ?fact)
 (printout t "Your Cranking System Appears to be Good" crlf)
 (printout t "I will now check your ignition system" crlf)
 (assert(task test_ignition_switch)) ;in complete system, replace this with
test_ignition_system
)

;---------------------------------
;Test Battery Connection Rules
;---------------------------------
(defrule batteryConnectionIsBad
 ?fact <- (task test_battery_connection)
 (or (screwdriver_test_shows_that_lights "brighten")(screwdriver_test_shows_that_lights
"not on"))

 =>
 (assert(problem bad_battery_connection))
 (printout t "The problem is a bad battery connection" crlf)
 (retract ?fact)
 (assert (task done))
)

(defrule batteryConnectionIsGood
 ?fact <- (task test_battery_connection)
 (screwdriver_test_shows_that_lights "don't brighten")
 =>
 (printout t "The problem does not appear to be a bad battery connection." crlf)
 (retract ?fact)
 (assert(task test_battery))
)

;---------------------------------
;Test Battery Rules
;---------------------------------
(defrule batteryChargeIsBad
 ?fact <- (task test_battery)
 (battery_hydrometer_reading_good "no")
 =>
 (assert(problem bad_battery))
 (printout t "The problem is a bad battery." crlf)
 (retract ?fact)
 (assert (task done))

)

(defrule batteryChargeIsGood
 ?fact <- (task test_battery)
 (battery_hydrometer_reading_good "yes")
 =>
 (retract ?fact)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

142

 (printout t "The problem does not appear to be a bad battery." crlf)
 (assert(task test_starting_system))
)

;---------------------------------
;Test Starter Rules
;---------------------------------
(defrule RunStarterBenchTest
 ?fact <- (task test_starting_system)
 (or (starter "starter buzzes")(starter "engine turns slowly"))
 =>
 (retract ?fact)
 (assert (task test_starter_on_bench))
)

(defrule solenoidBad
 ?fact <- (task test_starting_system)
 (starter "nothing")
 =>
 (retract ?fact)
 (assert (problem bad_solenoid))
 (printout t "The problem appears to be a bad solenoid." crlf)
 (assert(task done))
)

(defrule starterTurnsEngineNormally
 ?fact <- (task test_starting_system)
 (starter "engine turns normally")
 =>
 (retract ?fact)
 (printout t "The problem does not appears to be a bad solenoid." crlf)
 (assert(task test_ignition_override_switches))
)

;---------------------------------
;Starter Bench Test Rules
;---------------------------------
(defrule starterBad
 ?fact <- (task test_starter_on_bench)
 (starter_on_bench "doesn't meet specifications")
 =>
 (assert(problem bad_starter))
 (printout t "The problem is a bad starter." crlf)
 (retract ?fact)
 (assert (task done))

)

(defrule starterGood
 ?fact <- (task test_starter_on_bench)
 (starter_on_bench "meets specifications")
 =>
 (retract ?fact)
 (printout t "The problem does not appear to be with starter." crlf)
 (assert(task test_engine_movement))
)

;---------------------------------
;Override Swich Test Rules
;---------------------------------

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

143

(defrule overrideSwitchBad
 ?fact <- (task test_ignition_override_switches)
 (starter_override "operates")
 =>
 (assert(problem bad_override_switch))
 (printout t "The problem is a bad override switch." crlf)
 (retract ?fact)
 (assert (task done))

)

(defrule starterWontOperate
 ?fact <- (task test_ignition_override_switches)
 (starter_override "doesn't operate")
 =>
 (retract ?fact)
 (printout t "The problem does not appear to be with override switches." crlf)
 (assert(task test_ignition_switch))
)

;---------------------------------
;Engine Movement Test
;---------------------------------
(defrule engineBad
 ?fact <- (task test_engine_movement)
 (engine_turns "doesn't move")
 =>
 (assert(problem bad_engine))
 (printout t "The problem is a bad engine." crlf)
 (retract ?fact)
 (assert (task done))

)

(defrule engineMovesFreely
 ?fact <- (task test_engine_movement)
 (engine_turns "moves freely")
 =>
 (retract ?fact)
 (printout t "The problem does not appear to be with the engine." crlf)
 (printout t "Test your engine timing. That is beyond my scope for now" crlf) ; actual test
goes here in final system.
 (assert(task perform_engine_timing_test))
)

;---------------------------------
;Ignition Switch Test
;---------------------------------
;these reluts for the ignition system are not complete, they are added only to test the control flow.

(defrule ignitionSwitchConnectionsBad
 ?fact <- (task test_ignition_switch)
 (voltmeter "doesn't move")
 =>
 (assert(problem bad_ignition_switch_connections))
 (printout t "The problem is bad ignition switch connections." crlf)
 (retract ?fact)
 (assert (task done))

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

144

)

(defrule ignitionSwitchBad
 ?fact <- (task test_ignition_switch)
 (voltmeter "moves")
 =>
 (assert(problem bad_ignition_switch))
 (printout t "The problem is a bad ignition switch." crlf)
 (retract ?fact)
 (assert (task done))
)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

145

6 Handling uncertainty with fuzzy systems

6.1 Introduction

Ours is a vague world. We humans, talk in terms of ‘maybe’, ‘perhaps’, things
which cannot be defined with cent percent authority. But on the other hand,
conventional computer programs cannot understand natural language as
computers cannot work with vague concepts. Statements such as: “Umar is tall”,
are difficult for computers to translate into definite rules. On the other hand,
“Umar’s height is 162 cm”, doesn’t explicitly state whether Umar is tall or short.

We’re driving in a car, and we see an old house. We can easily classify it as an
old house. But what exactly is an old house? Is a 15 years old house, an old
house? Is 40 years old house an old house? Where is the dividing line between
the old and the new houses? If we agree that a 40 years old house is an old
house, then how is it possible that a house is considered new when it is 39 years,
11 months and 30 days old only. And one day later it has become old all of a
sudden? That would be a bizarre world, had it been like that for us in all
scenarios of life.
Similarly human beings form vague groups of things such as ‘short men’, ‘warm
days’, ‘high pressure’. These are all groups which don’t appear to have a well
defined boundary but yet humans communicate with each other using these
terminologies.

6.2 Classical sets

A classical set is a container, which wholly includes or wholly excludes any given
element. It’s called classical merely because it has been around for quite some
time. It was Aristotle who came up with the ‘Law of the Excluded Middle’, which
states that any element X, must be either in set A or in set not-A. It cannot be in
both. And these two sets, set A and set not-A should contain the entire universe
between them.

 Figure : Classical Set

Let’s take the example of the set ‘Days of the week’. This is a classical set in
which all the 7 days from Monday up until Sunday belong to the set, and
everything possible other than that that you can think of, monkeys, computers,
fish, telephone, etc, are definitely not a part of this set. This is a binary

Computers

Fish

Monday

Wednesday

Friday

Monkeys

Days of the week

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

146

classification system, in which everything must be asserted or denied. In the case
of Monday, it will be asserted to be an element of the set of ‘days of the week’,
but tuna fish will not be an element of this set.

6.3 Fuzzy sets

Fuzzy sets, unlike classical sets, do not restrict themselves to something lying
wholly in either set A or in set not-A. They let things sit on the fence, and are thus
closer to the human world. Let us, for example, take into consideration ‘days of
the weekend’. The classical set would say strictly that only Saturday and Sunday
are a part of weekend, whereas most of us would agree that we do feel like it’s a
weekend somewhat on Friday as well. Actually we’re more excited about the
weekend on a Friday than on Sunday, because on Sunday we know that the next
day is a working day. This concept is more vividly shown in the following figure.

Figure : Fuzzy Sets

Another diagram that would help distinguish between crisp and fuzzy
representation of days of the weekend is shown below.

Figure : Crisp v/s Fuzzy

The left side of the above figure shows the crisp set ‘days of the weekend’, which
is a Boolean two-valued function, so it gives a value of 0 for all week days except
Saturday and Sunday where it gives an abrupt 1 and then back to 0 as soon as
Sunday ends. On the other hand, Fuzzy set is a multi-valued function, which in
this case is shown by a smoothly rising curve for the weekend, and even Friday
has a good membership in the set ‘days of the weekend’.

Same is the case with seasons. There are four seasons in Pakistan: Spring,
Summer, Fall and Winter. The classical/crisp set would mark a hard boundary

Saturday

Sunday

Monkeys

Computers

Fish

Days of the weekend

Friday
Tuesday

Monday

Thursday

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

147

between the two adjacent seasons, whereas we know that this is not the case in
reality. Seasons gradually change from one into the next. This is more clearly
explained in the figure below.

Figure: Seasons [Left: Crisp] [Right: Fuzzy]

This entire discussion brings us to a question: What is fuzzy logic?

6.4 Fuzzy Logic

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended
to handle the concept of partial truth -- truth values between "completely true" and
"completely false".

Dr. Lotfi Zadeh of UC/Berkeley introduced it in the 1960's as a means to model
the uncertainty of natural languages. He was faced with a lot of criticism but
today the vast number of fuzzy logic applications speak for themselves:

• Self-focusing cameras
• Washing machines that adjust themselves according to the dirtiness of the

clothes
• Automobile engine controls
• Anti-lock braking systems
• Color film developing systems
• Subway control systems
• Computer programs trading successfully in financial markets

6.4.1 Fuzzy logic represents partial truth

Any statement can be fuzzy. The tool that fuzzy reasoning gives is the ability to
reply to a yes-no question with a not-quite-yes-or-no answer. This is the kind of
thing that humans do all the time (think how rarely you get a straight answer to a
seemingly simple question; what time are you coming home? Ans: soon. Q: are
you coming? Ans: I might) but it's a rather new trick for computers.

How does it work? Reasoning in fuzzy logic is just a matter of generalizing the
familiar yes-no (Boolean) logic. If we give "true" the numerical value of 1 and
"false" the numerical value of 0, we're saying that fuzzy logic also permits in-
between values like 0.2 and 0.7453.
“In fuzzy logic, the truth of any statement becomes matter of degree”
We will understand the concept of degree or partial truth by the same example of
days of the weekend. Following are some questions and their respective
answers:

– Q: Is Saturday a weekend day?

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

148

– A: 1 (yes, or true)
– Q: Is Tuesday a weekend day?
– A: 0 (no, or false)
– Q: Is Friday a weekend day?
– A: 0.7 (for the most part yes, but not completely)
– Q: Is Sunday a weekend day?
– A: 0.9 (yes, but not quite as much as Saturday)

6.4.2 Boolean versus fuzzy

Let’s look at another comparison between boolean and fuzzy logic with the help
of the following figures. There are two persons. Person A is standing on the left of
person B. Person A is definitely shorter than person B. But if boolean gauge has
only two readings, 1 and 0, then a person can be either tall or short. Let’s say if
the cut off point is at 5 feet 10 inches then all the people having a height greater
than this limit are taller and the rest are short.

Figure: Boolean Logic

On the other hand, in fuzzy logic, you can define any function represented by any
mathematical shape. The output of the function can be discreet or continuous.
The output of the function defines the membership of the input or the degree of
truth. As in this case, the same person A is termed as ‘Not very tall’. This isn’t
absolute ‘Not tall’ as in the case of boolean. Similarly, person B is termed as
‘Quite Tall’ as apposed to the absolute ‘Tall’ classification by the boolean
parameters. In short, fuzzy logic lets us define more realistically the true functions
that define real world scenarios.

Degree
of
tallness

height

0.
0

1.
0

Not Tall
(0.0)

Tall
(1.0)

height

Not Very Tall
(0.2)

Quite Tall
(0.8) Degree

of
tallness

0.
0

1.
0

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

149

Figure: Fuzzy Logic

6.4.3 Membership Function (µ)

The degree of truth that we have been talking about, is specifically driven out by
a function called the membership function. It can be any function ranging from a
simple linear straight line to a complicated spline function or a polynomial of a
higher degree.

Some characteristics of the membership functions are:

• It is represented by the Greek symbol µ
• Truth values range between 0.0 and 1.0

o Where 0.0 normally represents absolute falseness
o And 1.0 represent absolute truth

Consider the following sentence:
“Amma ji is old”

In (crisp) set terminology, Amma ji belongs to the set of old people. We define
µOLD, the membership function operating on the fuzzy set of old people. µOLD
takes as input one variable, which is age, and returns a value between 0.0 and
1.0.

– If Amma ji’s age is 75 years

• We might say µOLD(Amma ji’s age) = 0.75
– Meaning Amma ji is quite old

– For Amber, a 20 year old:
• We might say µOLD(Amber’s age) = 0.2

– Meaning that Amber is not very old

For this particular age, the membership function is defined by a linear line with
positive slope.

6.4.4 Fuzzy vs. probability

It’s important to distinguish at this point the difference between probability and
fuzzy, as both operate over the same range [0.0 to 1.0]. To understand their
differences lets take into account the following case, where Amber is a 20 years
old girl.
µOLD(Amber) = 0.2

In probability theory:
There is a 20% chance that Amber belongs to the set of old people, there’s an
80% chance that she doesn’t belong to the set of old people.

In fuzzy terminology:
Amber is definitely not old or some other term corresponding to the value 0.2. But
there are certainly no chances involved, no guess work left for the system to
classify Amber as young or old.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

150

6.4.5 Logical and fuzzy operators

Before we move on, let’s take a look at the logical operators. What these
operators help us see is that fuzzy logic is actually a superset of conventional
boolean logic. This might appear to be a startling remark at first, but look at Table
1 below.

Table: Logical Operators

The table above lists down the AND, OR and NOT operators and their respective
values for the boolean inputs. Now for fuzzy systems we needed the exact
operators which would act exactly the same way when given the extreme values
of 0 and 1, and that would in addition also act on other real numbers between the
ranges of 0.0 to 1.0. If we choose min (minimum) operator in place for AND, we
get the same output, similarly max (maximum) operator replaces OR, and 1-A
replaces NOT of A.

Table: Fuzzy Operators

In a lot of ways these operators seem to make sense. When we are ANDing two
domains, A and B, we do want to have the intersection as a result, and
intersection gives us the minimum overlapping area, hence both are equivalent.
Same is the case with max and 1-A.

The figure below explains these logical operators in a non-tabular form. If we
allow the fuzzy system to take on only two values, 0 and 1, then it becomes
boolean logic, as can be seen in the figure, top row.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

151

Figure: Logical vs Fuzzy Operators

It would be interesting to mention here that the graphs for A and B are nothing
more than a distribution, for instance if A was the set of short men, then the graph
A shows the entire distribution of short men where the horizontal axis is the
increasing height and the vertical axis shows the membership of men with
different heights in the function ‘short men’. The men who would be taller would
have little or 0 membership in the function, whereas they would have a significant
membership in set B, considering it to be the distribution of tall men.

6.4.6 Fuzzy set representation

Usually a triangular graph is chosen to represent a fuzzy set, with the peak
around the mean, which is true in most real world scenarios, as majority of the
population lies around the average height. There are fewer men who are
exceptionally tall or short, which explains the slopes around both sides of the
triangular distribution. It’s also an approximation of the Gaussian curve, which is
a more general function in some aspects.

Apart from this graphical representation, there’s also another representation
which is more handy if you were to write down some individual members along
with their membership. With this representation, the set of Tall men would be
written like follows:
• Tall = (0/5, 0.25/5.5, 0.8/6, 1/6.5, 1/7)

– Numerator: membership value
– Denominator: actual value of the variable

For instance, the first element is 0/5 meaning, that a height of 5 feet has 0
membership in the set of tall people, likewise, men who are 6.5 feet or 7 feet tall
have a membership value of maximum 1.

6.4.7 Fuzzy rules

First of all, let us revise the concept of simple If-Then rules. The rule is of the
form:
If x is A then y is B
Where x and y are variables and A and B are some distributions/fuzzy sets. For
example:

If hotel service is good then tip is average

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

152

Here hotel service is a linguistic variable, which when given to a real fuzzy
system would have a certain crisp value, maybe a rating between 0 and 10. This
rating would have a membership value in the fuzzy set of ‘good’. We shall
evaluate this rule in more detail in the case study that follows.

Antecedents can have multiple parts:
• If wind is mild and racquets are good then playing badminton is fun

In this case all parts of the antecedent are resolved simultaneously and resolved
to a single number using logical operators

The consequent can have multiple parts as well
• if temperature is cold then hot water valve is open and cold water valve is

shut

How is the consequent affected by the antecedent? The consequent specifies
that a fuzzy set be assigned to the output. The implication function then
modifies that fuzzy set to the degree specified by the antecedent. The most
common ways to modify the output fuzzy set are truncation using the min function
(where the fuzzy set is "chopped off“).

Consider the following figure, which demonstrates the working of fuzzy rule
system on one rule, which states:
“If service is excellent or food is delicious then tip is generous”

Figure: Fuzzy If-Then Rule

Fuzzify inputs: Resolve all fuzzy statements in the antecedent to a degree of
membership between 0 and 1. If there is only one part to the antecedent, this is
the degree of support for the rule. In the example, the user gives a rating of 3 to

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

153

the service, so its membership in the fuzzy set ‘excellent’ is 0. Likewise, the user
gives a rating of 8 to the food, so it has a membership of 0.7 in the fuzzy set of
delicious.

Apply fuzzy operator to multiple part antecedents: If there are multiple parts to the
antecedent, apply fuzzy logic operators and resolve the antecedent to a single
number between 0 and 1. This is the degree of support for the rule. In the
example, there are two parts to the antecedent, and they have an OR operator in
between them, so they are resolved using the max operator and max(0,0,0.7) is
0.7. That becomes the output of this step.

Apply implication method: Use the degree of support for the entire rule to shape
the output fuzzy set. The consequent of a fuzzy rule assigns an entire fuzzy set to
the output. This fuzzy set is represented by a membership function that is chosen
to indicate the qualities of the consequent. If the antecedent is only partially true,
(i.e., is assigned a value less than 1), then the output fuzzy set is truncated
according to the implication method.

In general, one rule by itself doesn't do much good. What's needed are two or
more rules that can play off one another. The output of each rule is a fuzzy set.
The output fuzzy sets for each rule are then aggregated into a single output fuzzy
set. Finally the resulting set is defuzzified, or resolved to a single number. The
next section shows how the whole process works from beginning to end for a
particular type of fuzzy inference system.

6.5 Fuzzy inference system

Fuzzy inference system (FIS) is the process of formulating the mapping from a
given input to an output using fuzzy logic. This mapping then provides a basis
from which decisions can be made, or patterns discerned

Fuzzy inference systems have been successfully applied in fields such as
automatic control, data classification, decision analysis, expert systems, and
computer vision. Because of its multidisciplinary nature, fuzzy inference systems
are associated with a number of names, such as fuzzy-rule-based systems, fuzzy
expert systems, fuzzy modeling, fuzzy associative memory, fuzzy logic
controllers, and simply (and ambiguously !!) fuzzy systems. Since the terms used
to describe the various parts of the fuzzy inference process are far from standard,
we will try to be as clear as possible about the different terms introduced in this
section.

Mamdani's fuzzy inference method is the most commonly seen fuzzy
methodology. Mamdani's method was among the first control systems built using
fuzzy set theory. It was proposed in 1975 by Ebrahim Mamdani as an attempt to
control a steam engine and boiler combination by synthesizing a set of linguistic
control rules obtained from experienced human operators. Mamdani's effort was
based on Lotfi Zadeh's 1973 paper on fuzzy algorithms for complex systems and
decision processes.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

154

6.5.1 Five parts of the fuzzy inference process

• Fuzzification of the input variables
• Application of fuzzy operator in the antecedent (premises)
• Implication from antecedent to consequent
• Aggregation of consequents across the rules
• Defuzzification of output

To help us understand these steps, let’s do a small case study.

6.5.2 Case Study: dinner for two

We present a small case study in which two people go for a dinner to a
restaurant. Our fuzzy system will help them decide the percentage of tip to be
given to the waiter (between 5 to 25 percent of the total bill), based on their rating
of service and food. The rating is between 0 and 10. The system is based on
three fuzzy rules:

Rule1:
If service is poor or food is rancid then tip is cheap

Rule2:
If service is good then tip is average

Rule3:
If service is excellent or food is delicious then tip is generous

Based on these rules and the input by the diners, the Fuzzy inference system
gives the final output using all the inference steps listed above. Let’s take a look
at those steps one at a time.

Figure: Dinner for Two

6.5.2.1 Fuzzify Inputs

The first step is to take the inputs and determine the degree to which they belong
to each of the appropriate fuzzy sets via membership functions. The input is

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

155

always a crisp numerical value limited to the universe of discourse of the input
variable (in this case the interval between 0 and 10) and the output is a fuzzy
degree of membership in the qualifying linguistic set (always the interval between
0 and 1). Fuzzification of the input amounts to either a table lookup or a function
evaluation.

The example we're using in this section is built on three rules, and each of the
rules depends on resolving the inputs into a number of different fuzzy linguistic
sets: service is poor, service is good, food is rancid, food is delicious, and so on.
Before the rules can be evaluated, the inputs must be fuzzified according to each
of these linguistic sets. For example, to what extent is the food really delicious?
The figure below shows how well the food at our hypothetical restaurant (rated on
a scale of 0 to 10) qualifies, (via its membership function), as the linguistic
variable "delicious." In this case, the diners rated the food as an 8, which, given
our graphical definition of delicious, corresponds to µ = 0.7 for the "delicious"
membership function.

Figure: Fuzzify Input

6.5.2.2 Apply fuzzy operator

Once the inputs have been fuzzified, we know the degree to which each part of
the antecedent has been satisfied for each rule. If the antecedent of a given rule
has more than one part, the fuzzy operator is applied to obtain one number that
represents the result of the antecedent for that rule. This number will then be
applied to the output function. The input to the fuzzy operator is two or more
membership values from fuzzified input variables. The output is a single truth
value.

Shown below is an example of the OR operator max at work. We're evaluating
the antecedent of the rule 3 for the tipping calculation. The two different pieces of
the antecedent (service is excellent and food is delicious) yielded the fuzzy
membership values 0.0 and 0.7 respectively. The fuzzy OR operator simply
selects the maximum of the two values, 0.7, and the fuzzy operation for rule 3 is
complete.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

156

Figure: Apply Fuzzy Operator

6.5.2.3 Apply implication method

Before applying the implication method, we must take care of the rule's weight.
Every rule has a weight (a number between 0 and 1), which is applied to the
number given by the antecedent. Generally this weight is 1 (as it is for this
example) and so it has no effect at all on the implication process. From time to
time you may want to weigh one rule relative to the others by changing its weight
value to something other than 1.

Once proper weightage has been assigned to each rule, the implication method
is implemented. A consequent is a fuzzy set represented by a membership
function, which weighs appropriately the linguistic characteristics that are
attributed to it. The consequent is reshaped using a function associated with the
antecedent (a single number). The input for the implication process is a single
number given by the antecedent, and the output is a fuzzy set. Implication is
implemented for each rule. We will use the min (minimum) operator to perform
the implication, which truncates the output fuzzy set, as shown in the figure

below.

Figure: Apply Implication Method

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

157

6.5.2.4 Aggregate all outputs

Since decisions are based on the testing of all of the rules in an FIS (fuzzy
inference system), the rules must be combined in some manner in order to make
a decision. Aggregation is the process by which the fuzzy sets that represent the
outputs of each rule are combined into a single fuzzy set. Aggregation only
occurs once for each output variable, just prior to the fifth and final step,
defuzzification. The input of the aggregation process is the list of truncated output
functions returned by the implication process for each rule. The output of the
aggregation process is one fuzzy set for each output variable.

Notice that as long as the aggregation method is commutative (which it always
should be), then the order in which the rules are executed is unimportant. Any
logical operator can be used to perform the aggregation function: max
(maximum), probor (probabilistic OR), and sum (simply the sum of each rule's
output set).

In the diagram below, all three rules have been placed together to show how the
output of each rule is combined, or aggregated, into a single fuzzy set whose
membership function assigns a weighting for every output (tip) value.

Figure: Aggregate all outputs

6.5.2.5 Defuzzify

The input for the defuzzification process is a fuzzy set (the aggregate output
fuzzy set) and the output is a single number. As much as fuzziness helps the rule
evaluation during the intermediate steps, the final desired output for each variable
is generally a single number. However, the aggregate of a fuzzy set
encompasses a range of output values, and so must be defuzzified in order to
resolve a single output value from the set.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

158

Perhaps the most popular defuzzification method is the centroid calculation,
which returns the center of area under the curve. There are other methods in
practice: centroid, bisector, middle of maximum (the average of the maximum
value of the output set), largest of maximum, and smallest of maximum.

Figure: Defuzzification

Thus the FIS calculates that in case the food has a rating of 8 and the service
has a rating of 3, then the tip given to the waiter should be 16.7% of the total bill.

6.6 Summary

Fuzzy system maps more realistically, the everyday concepts, like age, height,
temperature etc. The variables are given fuzzy values. Classical sets, either
wholly include something or exclude it from the membership of a set, for instance,
in a classical set, a man can be either young or old. There are crisp and rigid
boundaries between the two age sets, but in Fuzzy sets, there can be partial
membership of a man in both the sets.

6.7 Exercise

1) Think of the membership functions for the following concepts, from the
famous quote: “Early to bed, and early to rise, makes a man healthy,
wealthy and wise.”

a. Health
b. Wealth
c. Wisdom

2) What do you think would be the implication of using a different shaped
curve for a membership function? For example, a triangular, gaussian,
square etc

3) Try to come up with at least 5 more rules for the tipping system(Dinner for
two case study), such that the system would be a more realistic and
complete one.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

159

7 Introduction to learning

7.1 Motivation

Artificial Intelligence (AI) is concerned with programming computers to perform
tasks that are presently done better by humans. AI is about human behavior, the
discovery of techniques that will allow computers to learn from humans. One of
the most often heard criticisms of AI is that machines cannot be called Intelligent
until they are able to learn to do new things and adapt to new situations, rather
than simply doing as they are told to do. There can be little question that the
ability to adapt to new surroundings and to solve new problems is an important
characteristic of intelligent entities. Can we expect such abilities in programs?
Ada Augusta, one of the earliest philosophers of computing, wrote: "The
Analytical Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform." This remark has been interpreted
by several AI critics as saying that computers cannot learn. In fact, it does not say
that at all. Nothing prevents us from telling a computer how to interpret its inputs
in such a way that its performance gradually improves. Rather than asking in
advance whether it is possible for computers to "learn", it is much more
enlightening to try to describe exactly what activities we mean when we say
"learning" and what mechanisms could be used to enable us to perform those
activities. [Simon, 1993] stated "changes in the system that are adaptive in the
sense that they enable the system to do the same task or tasks drawn from the
same population more efficiently and more effectively the next time".

7.2 What is learning ?

Learning can be described as normally a relatively permanent change that occurs
in behavior as a result of experience. Learning occurs in various regimes. For
example, it is possible to learn to open a lock as a result of trial and error;
possible to learn how to use a word processor as a result of following particular
instructions.

Once the internal model of what ought to happen is set, it is possible to learn by
practicing the skill until the performance converges on the desired model. One
begins by paying attention to what needs to be done, but with more practice, one
will need to monitor only the trickier parts of the performance.

Automatic performance of some skills by the brain points out that the brain is
capable of doing things in parallel i.e. one part is devoted to the skill whilst
another part mediates conscious experience.

There’s no decisive definition of learning but here are some that do justice:

• "Learning denotes changes in a system that ... enables a system to do the
same task more efficiently the next time." --Herbert Simon

• "Learning is constructing or modifying representations of what is being
experienced." --Ryszard Michalski

• "Learning is making useful changes in our minds." --Marvin Minsky

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

160

7.3 What is machine learning ?

It is a very difficult to define precisely what machine learning is. We can best
enlighten ourselves by exactly describing the activities that we want a machine to
do when we say learning and by deciding on the best possible mechanism to
enable us to perform those activities. Generally speaking, the goal of machine
learning is to build computer systems that can learn from their experience and
adapt to their environments. Obviously, learning is an important aspect or
component of intelligence. There are both theoretical and practical reasons to
support such a claim. Some people even think intelligence is nothing but the
ability to learn, though other people think an intelligent system has a separate
"learning mechanism" which improves the performance of other mechanisms of
the system.

7.4 Why do we want machine learning

One response to the idea of AI is to say that computers can not think because
they only do what their programmers tell them to do. However, it is not always
easy to tell what a particular program will do, but given the same inputs and
conditions it will always produce the same outputs. If the program gets something
right once it will always get it right. If it makes a mistake once it will always make
the same mistake every time it runs. In contrast to computers, humans learn from
their mistakes; attempt to work out why things went wrong and try alternative
solutions. Also, we are able to notice similarities between things, and therefore
can generate new ideas about the world we live in. Any intelligence, however
artificial or alien, that did not learn would not be much of an intelligence. So,
machine learning is a prerequisite for any mature programme of artificial
intelligence.

7.5 What are the three phases in machine learning?

Machine learning typically follows three phases according to Finlay, [Janet Finlay,
1996]. They are as follows:
1. Training: a training set of examples of correct behavior is analyzed and
some representation of the newly learnt knowledge is stored. This is often some
form of rules.
2. Validation: the rules are checked and, if necessary, additional training is
given. Sometimes additional test data are used, but instead of using a human to
validate the rules, some other automatic knowledge based component may be
used. The role of tester is often called the critic.
3. Application: the rules are used in responding to some new situations.

These phases may not be distinct. For example, there may not be an explicit
validation phase; instead, the learning algorithm guarantees some form of
correctness. Also in some circumstances, systems learn "on the job", that is, the
training and application phases overlap.

7.5.1 Inputs to training

There is a continuum between knowledge-rich methods that use extensive
domain knowledge and those that use only simple domain-independent
knowledge. The domain-independent knowledge is often implicit in the
algorithms; e.g. inductive learning is based on the knowledge that if something

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

161

happens a lot it is likely to be generally true. Where examples are provided, it is
important to know the source. The examples may be simply measurements from
the world, for example, transcripts of grand master tournaments. If so, do they
represent "typical" sets of behavior or have they been filtered to be
"representative"? If the former is true then it is possible to infer information about
the relative probability from the frequency in the training set. However, unfiltered
data may also be noisy, have errors, etc., and examples from the world may not
be complete, since infrequent situations may simply not be in the training set.

Alternatively, the examples may have been generated by a teacher. In this case,
it can be assumed that they are a helpful set which cover all the important cases.
Also, it is advisable to assume that the teacher will not be ambiguous.

Finally the system itself may be able to generate examples by performing
experiments on the world, asking an expert, or even using the internal model of
the world.

Some form of representation of the examples also has to be decided. This may
partly be determined by the context, but more often than not there will be a
choice. Often the choice of representation embodies quite a lot of the domain
knowledge.

7.5.2 Outputs of training

Outputs of learning are determined by the application. The question that arises is
'What is it that we want to do with our knowledge?’. Many machine learning
systems are classifiers. The examples they are given are from two or more
classes, and the purpose of learning is to determine the common features in each
class. When a new unseen example is presented, the system uses the common
features to determine which class the new example belongs to. For example:
If example satisfies condition
Then assign it to class X
This sort of job classification is often termed as concept learning. The simplest
case is when there are only two classes, of which one is seen as the desired
"concept" to be learnt and the other is everything else. The "then" part of the rules
is always the same and so the learnt rule is just a predicate describing the
concept.

Not all learning is simple classification. In applications such as robotics one wants
to learn appropriate actions. In such a case, the knowledge may be in terms of
production rules or some similar representation.

An important consideration for both the content and representation of learnt
knowledge is the extent to which explanation may be required for future actions.
Because of this, the learnt rules must often be restricted to a form that is
comprehensible to humans.

7.5.3 The training process

Real learning involves some generalization from past experience and usually
some coding of memories into a more compact form. Achieving this
generalization needs some form of reasoning. The difference between deductive

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

162

reasoning and inductive reasoning is often used as the primary distinction
between machine learning algorithms. Deductive learning working on existing
facts and knowledge and deduces new knowledge from the old. In contrast,
inductive learning uses examples and generates hypothesis based on the
similarities between them.
One way of looking at the learning process is as a search process. One has a set
of examples and a set of possible rules. The job of the learning algorithm is to
find suitable rules that are correct with respect to the examples and existing
knowledge.

7.6 Learning techniques available

7.6.1 Rote learning

In this kind of learning there is no prior knowledge. When a computer stores a
piece of data, it is performing an elementary form of learning. This act of storage
presumably allows the program to perform better in the future. Examples of
correct behavior are stored and when a new situation arises it is matched with the
learnt examples. The values are stored so that they are not re-computed later.
One of the earliest game-playing programs is [Samuel, 1963] checkers program.
This program learned to play checkers well enough to beat its creator/designer.

7.6.2 Deductive learning

Deductive learning works on existing facts and knowledge and deduces new
knowledge from the old. This is best illustrated by giving an example. For
example, assume:
A = B
B = C
Then we can deduce with much confidence that:
C = A
Arguably, deductive learning does not generate "new" knowledge at all, it simply
memorizes the logical consequences of what is known already. This implies that
virtually all mathematical research would not be classified as learning "new"
things. However, regardless of whether this is termed as new knowledge or not, it
certainly makes the reasoning system more efficient.

7.6.3 Inductive learning

Inductive learning takes examples and generalizes rather than starting with
existing knowledge. For example, having seen many cats, all of which have tails,
one might conclude that all cats have tails. This is an unsound step of reasoning
but it would be impossible to function without using induction to some extent. In
many areas it is an explicit assumption. There is scope of error in inductive
reasoning, but still it is a useful technique that has been used as the basis of
several successful systems.

One major subclass of inductive learning is concept learning. This takes
examples of a concept and tries to build a general description of the concept.
Very often, the examples are described using attribute-value pairs. The example
of inductive learning given here is that of a fish. Look at the table below:

 herring cat dog cod whale

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

163

Swims yes no no yes yes
has fins yes no no yes yes
has lungs no yes yes no yes
is a fish yes no no yes no

In the above example, there are various ways of generalizing from examples of
fish and non-fish. The simplest description can be that a fish is something that
does not have lungs. No other single attribute would serve to differentiate the
fish.

The two very common inductive learning algorithms are version spaces and ID3.
These will be discussed in detail, later.

7.7 How is it different from the AI we've studied so far?

Many practical applications of AI do not make use of machine learning. The
relevant knowledge is built in at the start. Such programs even though are
fundamentally limited; they are useful and do their job. However, even where we
do not require a system to learn "on the job", machine learning has a part to play.

7.7.1 Machine learning in developing expert systems?

Many AI applications are built with rich domain knowledge and hence do not
make use of machine learning. To build such expert systems, it is critical to
capture knowledge from experts. However, the fundamental problem remains
unresolved, in the sense that things that are normally implicit inside the expert's
head must be made explicit. This is not always easy as the experts may find it
hard to say what rules they use to assess a situation but they can always tell you
what factors they take into account. This is where machine learning mechanism
could help. A machine learning program can take descriptions of situations
couched in terms of these factors and then infer rules that match expert's
behavior.

7.8 Applied learning

7.8.1 Solving real world problems by learning

We do not yet know how to make computers learn nearly as well as people learn.
However, algorithms have been developed that are effective for certain types of
learning tasks, and many significant commercial applications have begun to
appear. For problems such as speech recognition, algorithms based on machine
learning outperform all other approaches that have been attempted to date. In
other emergent fields like computer vision and data mining, machine learning
algorithms are being used to recognize faces and to extract valuable information
and knowledge from large commercial databases respectively. Some of the
applications that use learning algorithms include:

• Spoken digits and word recognition
• Handwriting recognition
• Driving autonomous vehicles
• Path finders
• Intelligent homes

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

164

• Intrusion detectors
• Intelligent refrigerators, tvs, vacuum cleaners
• Computer games
• Humanoid robotics

This is just the glimpse of the applications that use some intelligent learning
components. The current era has applied learning in the domains ranging from
agriculture to astronomy to medical sciences.

7.8.2 A general model of learning agents, pattern recognition

Any given learning problem is primarily composed of three things:
• Input
• Processing unit
• Output

The input is composed of examples that can help the learner learn the underlying
problem concept. Suppose we were to build the learner for recognizing spoken
digits. We would ask some of our friends to record their sounds for each digit [0
to 9]. Positive examples of digit ‘1’ would be the spoken digit ‘1’, by the speakers.
Negative examples for digit ‘1’ would be all the rest of the digits. For our learner
to learn the digit ‘1’, it would need positive and negative examples of digit ‘1’ in
order to truly learn the difference between digit ‘1’ and the rest.

The processing unit is the learning agent in our focus of study. Any learning
agent or algorithm should in turn have at least the following three characteristics:

7.8.2.1 Feature representation
The input is usually broken down into a number of features. This is not a
rule, but sometimes the real world problems have inputs that cannot be fed
to a learning system directly, for instance, if the learner is to tell the
difference between a good and a not-good student, how do you suppose it
would take the input? And for that matter, what would be an appropriate
input to the system? It would be very interesting if the input were an entire
student named Ali or Umar etc. So the student goes into the machine and
it tells if the student it consumed was a good student or not. But that
seems like a far fetched idea right now. In reality, we usually associate
some attributes or features to every input, for instance, two features that
can define a student can be: grade and class participation. So these
become the feature set of the learning system. Based on these features,
the learner processes each input.

7.8.2.2 Distance measure
Given two different inputs, the learner should be able to tell them apart.
The distance measure is the procedure that the learner uses to calculate
the difference between the two inputs.

7.8.2.3 Generalization
In the training phase, the learner is presented with some positive and
negative examples from which it leans. In the testing phase, when the

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

165

learner comes across new but similar inputs, it should be able to classify
them similarly. This is called generalization. Humans are exceptionally
good at generalization. A small child learns to differentiate between birds
and cats in the early days of his/her life. Later when he/she sees a new
bird, never seen before, he/she can easily tell that it’s a bird and not a cat.

7.9 LEARNING: Symbol-based

Ours is a world of symbols. We use symbolic interpretations to understand the
world around us. For instance, if we saw a ship, and were to tell a friend about its
size, we will not say that we saw a 254.756 meters long ship, instead we’d say
that we saw a ‘huge’ ship about the size of ‘Eiffel tower’. And our friend would
understand the relationship between the size of the ship and its hugeness with
the analogies of the symbolic information associated with the two words used:
‘huge’ and ‘Eiffel tower’.

Similarly, the techniques we are to learn now use symbols to represent
knowledge and information. Let us consider a small example to help us see
where we’re headed. What if we were to learn the concept of a GOOD
STUDENT. We would need to define, first of all some attributes of a student, on
the basis of which we could tell apart the good student from the average. Then
we would require some examples of good students and average students. To
keep the problem simple we can label all the students who are “not good”
(average, below average, satisfactory, bad) as NOT GOOD STUDENT. Let’s say
we choose two attributes to define a student: grade and class participation. Both
the attributes can have either of the two values: High, Low. Our learner program
will require some examples from the concept of a student, for instance:

1. Student (GOOD STUDENT): Grade (High) ^ Class Participation (High)
2. Student (GOOD STUDENT): Grade (High) ^ Class Participation (Low)
3. Student (NOT GOOD STUDENT): Grade (Low) ^ Class Participation

(High)
4. Student (NOT GOOD STUDENT): Grade (Low) ^ Class Participation (Low)

As you can see the system is composed of symbolic information, based on which
the learner can even generalize that a student is a GOOD STUDENT if his/her
grade is high, even if the class participation is low:
Student (GOOD STUDENT): Grade (High) ^ Class Participation (?)
This is the final rule that the learner has learnt from the enumerated examples.
Here the ‘?’ means that the attribute class participation can have any value, as
long as the grade is high. In this section we will see all the steps the learner has
to go through to actually come up with the final conclusion like this.

7.10 Problem and problem spaces

Before we get down to solving a problem, the first task is to understand the
problem itself. There are various kinds of problems that require solutions. In
theoretical computer science there are two main branches of problems:

• Tractable
• Intractable

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

166

Those problems that can be solved in polynomial time are termed as tractable,
the other half is called intractable. The tractable problems are further divided into
structured and complex problems. Structured problems are those which have
defined steps through which the solution to the problem is reached. Complex
problems usually don’t have well-defined steps. Machine learning algorithms are
particularly more useful in solving the complex problems like recognition of
patterns in images or speech, for which it’s hard to come up with procedural
algorithms otherwise.

The solution to any problem is a function that converts its inputs to corresponding
outputs. The domain of a problem or the problem space is defined by the
elements explained in the following paragraphs. These new concepts will be best
understood if we take one example and exhaustively use it to justify each
construct.

Example:
Let us consider the domain of HEALTH. The problem in this case is to distinguish
between a sick and a healthy person. Suppose we have some domain
knowledge; keeping a simplistic approach, we say that two attributes are
necessary and sufficient to declare a person as healthy or sick. These two
attributes are: Temperature (T) and Blood Pressure (BP). Any patient coming into
the hospital can have three values for T and BP: High (H), Normal (N) and Low
(L). Based on these values, the person is to be classified as Sick (SK). SK is a
Boolean concept, SK = 1 means the person is sick, and SK = 0 means person is
healthy. So the concept to be learnt by the system is of Sick, i.e., SK=1.

7.10.1 Instance space

How many distinct instances can the concept sick have? Since there are two
attributes: T and BP, each having 3 values, there can be a total of 9 possible
distinct instances in all. If we were to enumerate these, we’ll get the following
table:

X T BP SK

x1 L L -
x2 L N -
x3 L H -
x4 N L -
x5 N N -
x6 N H -
x7 H L -
x8 H N -
x9 H H -

This is the entire instance space, denoted by X, and the individual instances are
denoted by xi. |X| gives us the size of the instance space, which in this case is 9.
|X| = 9
The set X is the entire data possibly available for any concept. However,
sometimes in real world problems, we don’t have the liberty to have access to the

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

167

entire set X, instead we have a subset of X, known as training data, denoted by
D, available to us, on the basis of which we make our learner learn the concept.

7.10.2 Concept space

A concept is the representation of the problem with respect to the given
attributes, for example, if we’re talking about the problem scenario of concept
SICK defined over the attributes T and BP, then the concept space is defined by
all the combinations of values of SK for every instance x. One of the possible
concepts for the concept SICK might be enumerated in the following table:

X T BP SK

x1 L L 0
x2 L N 0
x3 L H 1
x4 N L 0
x5 N N 0
x6 N H 1
x7 H L 1
x8 H N 1
x9 H H 1

But there are a lot of other possibilities besides this one. The question is: how
many total concepts can be generated out of this given situation. The answer is:
2|X|. To see this intuitively, we’ll make small tables for each concept and see them
graphically if they come up to the number 29, since |X| = 9.

The representation used here is that every box in the following diagram is
populated using C(xi), i.e. the value that the concept C gives as output when xi is
given to it as input.

Since we don’t know the concept yet, so there might be concepts which can
produce 29 different outputs, such as:

Each of these is a different concept, only one of which is the true concept (that
we are trying to learn), but the dilemma is that we don’t know which one of the 29
is the true concept of SICK that we’re looking for, since in real world problems we
don’t have all the instances in the instance space X, available to us for learning. If
we had all the possible instances available, we would know the exact concept,
but the problem is that we might just have three or four examples of instances
available to us out of nine.

C(x3) C(x6) C(x9)

C(x2) C(x5) C(x8)

C(x1) C(x4) C(x7)

0 0 0
0 0 0
0 0 0

C1

0 0 0
0 0 0
1 0 0

C2

0 0 0
1 0 0
0 0 0

C3

0 0 0
1 0 0
1 0 0

C4

1 1 1
1 1 1
1 1 1

C2
9

1 1 1
1 1 1
1 1 1

C2
9

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

168

D T BP SK

x1 N L 1
x2 L N 0
x3 N N 0

Notice that this is not the instance space X, in fact it is D: the training set. We
don’t have any idea about the instances that lie outside this set D. The learner is
to learn the true concept C based on only these three observations, so that once
it has learnt, it could classify the new patients as sick or healthy based on the
input parameters.

7.10.3 Hypothesis space

The above condition is typically the case in almost all the real world problems
where learning is to be done based on a few available examples. In this situation,
the learner has to hypothesize. It would be insensible to exhaustively search over
the entire concept space, since there are 29 concepts. This is just a toy problem
with only 9 possible instances in the instance space; just imagine how huge the
concept space would be for real world problems that involve larger attribute sets.

So the learner has to apply some hypothesis, which has either a search or the
language bias to reduce the size of the concept space. This reduced concept
space becomes the hypothesis space. For example, the most common language
bias is that the hypothesis space uses the conjunctions (AND) of the attributes,
i.e.
H = <T, BP>
H is the denotive representation of the hypothesis space; here it is the
conjunction of attribute T and BP. If written in English it would mean:

H = <T, BP>:

IF “Temperature” = T AND “Blood Pressure” = BP
THEN

H = 1
ELSE

H = 0

Now if we fill in these two blanks with some particular values of T and B, it would
form a hypothesis, e.g. for T = N and BP = N:

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

169

For h = <L, L>:

Notice that this is the C2 we presented before in the concept space section:

This means that if the true concept of SICK that we wanted to learn was c2 then
the hypothesis h = <L, L> would have been the solution to our problem. But you
must still be wondering what’s all the use of having separate conventions for
hypothesis and concepts, when in the end we reached at the same thing: C2 =
<L, L> = h. Well, the advantage is that now we are not required to look at 29
different concepts, instead we are only going to have to look at the maximum of
17 different hypotheses before reaching at the concept. We’ll see in a moment
how that is possible.

We said H = <T, BP>. Now T and BP here can take three values for sure: L, N
and H, but now they can take two more values: ? and Ø. Where ? means that for
any value, H = 1, and Ø means that there will be no value for which H will be 1.
For example, h1 = <?, ?>: [For any value of T or BP, the person is sick]
Similarly h2 = <?, N>: [For any value of T AND for BP = N, the person is sick]

h3 = < Ø , Ø >: [For no value of T or BP, the person
[is sick]

BP

H 0 0 0

N 1 1 1

L 0 0 0

 L N H T

BP

H 0 0 0

N 0 0 0

L 1 0 0

 L N H T

0 0 0

0 0 0

1 0 0

BP

H 1 1 1

N 1 1 1

L 1 1 1

 L N H T

BP

H 0 0 0

N 0 1 0

L 0 0 0

 L N H T

BP

H 0 0 0

N 0 0 0

L 0 0 0

 L N H T

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

170

Having said all this, how does this still reduce the hypothesis space to 17? Well
it’s simple, now each attribute T and BP can take 5 values each: L, N, H, ? and
Ø. So there are 5 x 5 = 25 total hypotheses possible. This is a tremendous
reduction from 29 = 512 to 25.

But if we want to represent h4 = < Ø , L>, it would be the same as h3, meaning
that there are some redundancies within the 25 hypotheses. These redundancies
are caused by Ø, so if there’s this ‘Ø’ in the T or the BP or both, we’ll have the
same hypothesis h3 as the outcome, all zeros. To calculate the number of
semantically distinct hypotheses, we need one hypothesis which outputs all
zeros, since it’s a distinct hypothesis than others, so that’s one, plus we need to
know the rest of the combinations. This primarily means that T and BP can now
take 4 values instead of 5, which are: L, N, H and ?. This implies that there are
now 4 x 4 = 16 different hypotheses possible. So the total distinct hypotheses
are: 16 + 1 = 17. This is a wonderful idea, but it comes at a vital cost. What if the
true concept doesn’t lie in the conjunctive hypothesis space? This is often the
case. We can try different hypotheses then. Some prior knowledge about the
problem always helps.

7.10.4 Version space and searching

Version space is a set of all the hypotheses that are consistent with all the
training examples. When we are given a set of training examples D, it is possible
that there might be more than one hypotheses from the hypothesis space that are
consistent with all the training examples. By consistent we mean h(xi) = C(xi).
That is, if the true output of a concept [c(xi)] is 1 or 0 for an instance, then the
output by our hypothesis [h(xi)] is 1 or 0 as well, respectively. If this is true for
every instance in our training set D, we can say that the hypothesis is consistent.

Let us take the following training set D:

D T BP SK

x1 H H 1
x2 L L 0
x3 N N 0

One of the consistent hypotheses can be h1=<H, H >
But then there are other hypotheses consistent with D, such as h2 = < H, ? >

Although it classifies some of the unseen instances that are not in the training set

BP

H 0 0 1

N 0 0 0

L 0 0 0

 L N H T

BP

H 0 0 1

N 0 0 1

L 0 0 1

 L N H T

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

171

D, different from h1, but it’s still consistent over all the instances in D. Similarly

there’s another hypothesis, h3 = < ?, H >
Notice the change in h3 as compared to h2, but this is again consistent with D.
Version space is denoted as VS H,D = {h1, h2, h3}. This translates as: Version
space is a subset of hypothesis space H, composed of h1, h2 and h3, that is
consistent with D.

7.11 Concept learning as search

Now that we are well familiar with most of the terminologies of machine learning,
we can define the learning process in technical terms as:

“We have to assume that the concept lies in the hypothesis space. So we search
for a hypothesis belonging to this hypothesis space that best fits the training
examples, such that the output given by the hypothesis is same as the true
output of concept.”

In short:-
Assume C∈H, search for an h∈H that best fits D
Such that ∀ xi∈D, h(xi) = C(xi).

The stress here is on the word ‘search’. We need to somehow search through the
hypothesis space.

7.11.1 General to specific ordering of hypothesis space

Many algorithms for concept learning organize the search through the hypothesis
space by relying on a very useful structure that exists for any concept learning
problem: a general-to-specific ordering of hypotheses. By taking advantage of
this naturally occurring structure over the hypothesis space, we can design
learning algorithms that exhaustively search even infinite hypothesis spaces
without explicitly enumerating every hypothesis. To illustrate the general-to-
specific ordering, consider two hypotheses:
 h1 = < H, H >
h2 = < ?, H >
Now consider the sets of instances that are classified positive by h1 and by h2.
Because h2 imposes fewer constraints on the instance, it classifies more
instances as positive. In fact, any instance classified positive by h1 will also be
classified positive by h2. Therefore, we say that h2 is more general than h1.

So all the hypothesis in H can be ordered according to their generality, starting
from < ?, ? > which is the most general hypothesis since it always classifies all

BP

H 1 1 1

N 0 0 0

L 0 0 0

 L N H T

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

172

the instances as positive. On the contrary we have < Ø , Ø > which is the most
specific hypothesis, since it doesn’t classify a single instance as positive.

7.11.2 FIND-S

FIND-S finds the maximally specific hypothesis possible within the version space
given a set of training data. How can we use the general to specific ordering of
hypothesis space to organize the search for a hypothesis consistent with the
observed training examples? One way is to begin with the most specific possible
hypothesis in H, then generalize the hypothesis each time it fails to cover an
observed positive training example. (We say that a hypothesis “covers” a positive
example if it correctly classifies the example as positive.) To be more precise
about how the partial ordering is used, consider the FIND-S algorithm:

To illustrate this algorithm, let us assume that the learner is given the sequence
of following training examples from the SICK domain:

D T BP SK

x1 H H 1
x2 L L 0
x3 N H 1

The first step of FIND-S is to initialize h to the most specific hypothesis in H:
h = < Ø , Ø >
Upon observing the first training example (< H, H >, 1), which happens to be a
positive example, it becomes obvious that our hypothesis is too specific. In
particular, none of the “Ø” constraints in h are satisfied by this training example,
so each Ø is replaced by the next more general constraint that fits this particular
example; namely, the attribute values for this very training example:
h = < H , H >
This is our h after we have seen the first example, but this h is still very specific. It
asserts that all instances are negative except for the single positive training
example we have observed.

Upon encountering the second example; in this case a negative example, the
algorithm makes no change to h. In fact, the FIND-S algorithm simply ignores
every negative example. While this may at first seem strange, notice that in the
current case our hypothesis h is already consistent with the new negative
example (i.e. h correctly classifies this example as negative), and hence no
revision is needed. In the general case, as long as we assume that the
hypothesis space H contains a hypothesis that describes the true target concept

Initialize h to the most specific hypothesis in H
For each positive training instance x

For each attribute constraint ai in h
If the constraint ai is satisfied by x

Then do nothing
Else

Replace ai in h by the next more general
constraint that is satisfied by x

Output hypothesis h

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

173

c and that the training data contains no errors and conflicts, then the current
hypothesis h can never require a revision in response to a negative example.

To complete our trace of FIND-S, the third (positive) example leads to a further
generalization of h, this time substituting a “?” in place of any attribute value in h
that is not satisfied by the new example. The final hypothesis is:
h = < ?, H >
This hypothesis will term all the future patients which have BP = H as SICK for all
the different values of T.

There might be other hypotheses in the version space but this one was the
maximally specific with respect to the given three training examples. For
generalization purposes we might be interested in the other hypotheses but
FIND-S fails to find the other hypotheses. Also in real world problems, the training
data isn’t consistent and void of conflicting errors. This is another drawback of
FIND-S, that, it assumes the consistency within the training set.

7.11.3 Candidate-Elimination algorithm

Although FIND-S outputs a hypothesis from H that is consistent with the training
examples, but this is just one of many hypotheses from H that might fit the
training data equally well. The key idea in Candidate-Elimination algorithm is to
output a description of the set of all hypotheses consistent with the training
examples. This subset of all hypotheses is actually the version space with
respect to the hypothesis space H and the training examples D, because it
contains all possible versions of the target concept.
The Candidate-Elimination algorithm represents the version space by storing only
its most general members (denoted by G) and its most specific members
(denoted by S). Given only these two sets S and G, it is possible to enumerate all
members of the version space as needed by generating the hypotheses that lie
between these two sets in general-to-specific partial ordering over hypotheses.

Candidate-Elimination algorithm begins by initializing the version space to the set
of all hypotheses in H; that is by initializing the G boundary set to contain the
most general hypothesis in H, for example for the SICK problem, the G0 will be:
G0 = {< ?, ? >}
The S boundary set is also initialized to contain the most specific (least general)
hypothesis:
S0 = {< Ø , Ø >}
These two boundary sets (G and S) delimit the entire hypothesis space, because
every other hypothesis in H is both more general than S0 and more specific than
G0. As each training example is observed one by one, the S boundary is made
more and more general, whereas the G boundary set is made more and more
specific, to eliminate from the version space any hypotheses found inconsistent
with the new training example. After all the examples have been processed, the
computed version space contains all the hypotheses consistent with these
examples. The algorithm is summarized below:

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

174

The Candidate-Elimination algorithm above is specified in terms of operations.
The detailed implementation of these operations will depend on the specific
problem and instances and their hypothesis space, however the algorithm can be
applied to any concept learning task. We will now apply this algorithm to our
designed problem SICK, to trace the working of each step of the algorithm. For
comparison purposes, we will choose the exact training set that was employed in
FIND-S:

D T BP SK

x1 H H 1
x2 L L 0
x3 N H 1

We know the initial values of G and S:

G0 = {< ?, ? >}
S0 = {< Ø, Ø >}

Now the Candidate-Elimination learner starts:
First training observation is: d1 = (<H, H>, 1) [A positive example]

G1 = G0 = {< ?, ? >}, since <?, ?> is consistent with d1; both give positive outputs.

Since S0 has only one hypothesis that is < Ø, Ø >, which implies S0(x1) = 0, which
is not consistent with d1, so we have to remove < Ø, Ø > from S1. Also, we add
minimally general hypotheses from H to S1, such that those hypotheses are
consistent with d1. The obvious choices are like <H,H>, <H,N>, <H,L>,

Initialize G to the set of maximally general hypotheses in H
Initialize S to the set of maximally specific hypotheses in H
For each training example d, do

If d is a positive example
 Remove from G any hypothesis inconsistent with d
For each hypothesis s in S that is inconsistent with d
 Remove s from S
 Add to S all minimal generalization h of s, such that
 h is consistent with d, and some member of G is more general than h
 Remove from S any hypothesis that is more general than another one in S

If d is a negative example
 Remove from S any hypothesis inconsistent with d
For each hypothesis g in G that is inconsistent with d
 Remove g from G
 Add to G all minimal specializations h of g, such that
 h is consistent with d, and some member of S is more specific than h
 Remove from G any hypothesis that is less general than another one in S

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

175

<N,H>……… <L,N>, <L,L>, but none of these except <H,H> is consistent with d1.
So S1 becomes:

S1 = {< H, H >}
G1 = {< ?, ? >}

Second training example is: d2 = (<L, L>, 0) [A negative example]

S2 = S1 = {< H, H>}, since <H, H> is consistent with d2: both give negative outputs
for x2.

G1 has only one hypothesis: < ?, ? >, which gives a positive output on x2, and
hence is not consistent, since SK(x2) = 0, so we have to remove it and add in its
place, the hypotheses which are minimally specialized. While adding we have to
take care of two things; we would like to revise the statement of the algorithm for
the negative examples:

“Add to G all minimal specializations h of g, such that

h is consistent with d, and some member of S is more specific than h”

The immediate one step specialized hypotheses of < ?, ? > are:

{< H, ? >, < N, ? >, < L, ? >, < ?, H >, < ?, N >, < ?, L >}
Out of these we have to get rid of the hypotheses which are not consistent with d2
= (<L, L>, 0). We see that all of the above listed hypotheses will give a 0
(negative) output on x2 = < L, L >, except for < L, ? > and < ?, L >, which give a 1
(positive) output on x2, and hence are not consistent with d2, and will not be
added to G2. This leaves us with {< H, ? >, < N, ? >, < ?, H >, < ?, N >}. This
takes care of the inconsistent hypotheses, but there’s another condition in the
algorithm that we must take care of before adding all these hypotheses to G2. We
will repeat the statement again, this time highlighting the point under
consideration:

“Add to G all minimal specializations h of g, such that

h is consistent with d, and some member of S is more specific than h”

This is very important condition, which is often ignored, and which results in the
wrong final version space. We know the current S we have is S2, which is: S2 = {<
H, H>}. Now for which hypotheses do you think < H, H > is more specific to, out
of {< H, ? >, < N, ? >, < ?, H >, < ?, N >}. Certainly < H, H > is more specific than
< H, ? > and < ?, H >, so we remove < N, ? > and < ?, N >to get the final G2:

G2 = {< H, ? >, < ?, H >}
S2 = {< H, H>}

Third and final training example is: d3 = (<N, H>, 1) [A positive example]

We see that in G2, < H, ? > is not consistent with d3, so we remove it:
G3 = {< ?, H >}

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

176

We also see that in S2, < H, H > is not consistent with d3, so we remove it and
add minimally general hypotheses than < H, H >. The two choices we have are: <
H, ? > and < ?, H >. We only keep < ?, H >, since the other one is not consistent
with d3. So our final version space is encompassed by S3 and G3:

G3 = {< ?, H >}
S3 = {< ?, H >}

It is only a coincidence that both G and S sets are the same. In bigger problems,
or even here if we had more examples, there was a chance that we’d get different
but consistent sets. These two sets of G and S outline the version space of a
concept. Note that the final hypothesis is the same one that was computed by
FIND-S.

7.12 Decision trees learning

Up until now we have been searching in conjunctive spaces which are formed by
ANDing the attributes, for instance:
IF Temperature = High AND Blood Pressure = High
THEN Person = SICK
But this is a very restrictive search, as we saw the reduction in hypothesis space
from 29 total possible concepts to 17. This can be risky if we’re not sure if the true
concept will lie in the conjunctive space. So a safer approach is to relax the
searching constraints. One way is to involve OR into the search. Do you think
we’ll have a bigger search space if we employ OR? Yes, most certainly; consider,
for example, the statement:
IF Temperature = High OR Blood Pressure = High
THEN Person = SICK
If we could use these kind of OR statements, we’d have a better chance of
finding the true concept, if the concept does not lie in the conjunctive space.
These are also called disjunctive spaces.

7.12.1 Decision tree representation

Decision trees give us disjunctions of conjunctions, that is, they have the form:
(A AND B) OR (C AND D)
In tree representation, this would translate into:

where A, B, C and D are the attributes for the problem. This tree gives a positive
output if either A AND B attributes are present in the instance; OR C AND D
attributes are present. Through decision trees, this is how we reach the final
hypothesis. This is a hypothetical tree. In real problems, every tree has to have a

A

B

C

D

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

177

root node. There are various algorithms like ID3 and C4.5 to find decision trees
for learning problems.

7.12.2 ID3

ID stands for interactive dichotomizer. This was the 3rd revision of the algorithm
which got wide acclaims. The first step of ID3 is to find the root node. It uses a
special function GAIN, to evaluate the gain information of each attribute. For
example if there are 3 instances, it will calculate the gain information for each.
Whichever attribute has the maximum gain information, becomes the root node.
The rest of the attributes then fight for the next slots.

7.12.2.1 Entropy
In order to define information gain precisely, we begin by defining a measure
commonly used in statistics and information theory, called entropy, which
characterizes the purity/impurity of an arbitrary collection of examples. Given a
collection S, containing positive and negative examples of some target concept,
the entropy of S relative to this Boolean classification is:
Entropy(S) = - p+log2 p+ - p-log2 p-
where p+ is the proportion of positive examples in S and p- is the proportion of
negative examples in S. In all calculations involving entropy we define 0log 0 to
be 0.

To illustrate, suppose S is a collection of 14 examples of some Boolean concept,
including 9 positive and 5 negative examples, then the entropy of S relative to
this Boolean classification is:

Entropy(S) = - (9/14)log2 (9/14) - (5/14)log2 (5/14)
 = 0.940

Notice that the entropy is 0, if all the members of S belong to the same class
(purity). For example, if all the members are positive (p+ = 1), then p- = 0 and so:
Entropy(S) = - 1log2 1 - 0log2 0
 = - 1 (0) - 0 [since log2 1 = 0, also 0log2 0 = 0]
 = 0
Note the entropy is 1 when the collection contains equal number of positive and
negative examples (impurity). See for yourself by putting p+ and p- equal to 1/2.
Otherwise if the collection contains unequal numbers of positive and negative
examples, the entropy is between 0 and 1.

7.12.2.2 Information gain
Given entropy as a measure of the impurity in a collection of training examples,
we can now define a measure of the effectiveness of an attribute in classifying
the training data. The measure we will use, called information gain, is simply the
expected reduction in entropy caused by partitioning the examples according to
this attribute. That is, if we use the attribute with the maximum information gain
as the node, then it will classify some of the instances as positive or negative with
100% accuracy, and this will reduce the entropy for the remaining instances. We
will now proceed to an example to explain further.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

178

7.12.2.3 Example
Suppose we have the following hypothetical training data available to us given in
the table below. There are three attributes: A, B and E. Attribute A can take three
values: a1, a2 and a3. Attribute B can take two values: b1 and b2. Attribute E can
also take two values: e1 and e2. The concept to be learnt is a Boolean concept,
so C takes a YES (1) or a NO (0), depending on the values of the attributes.

S A B E C

d1 a1 b1 e2 YES
d2 a2 b2 e1 YES
d3 a3 b2 e1 NO
d4 a2 b2 e1 NO
d5 a3 b1 e2 NO

First step is to calculate the entropy of the entire set S. We know:
E(S) = - p+log2 p+ - p-log2 p-

5

3
log
5

2

5

2
log
5

2
22 −− = 0.97

We have the entropy of the entire training set S with us now. We have to
calculate the information gain for each attribute A, B, and E based on this entropy
so that the attribute giving the maximum information is to be placed at the root of
the tree.

The formula for calculating the gain for A is:

)(
||

||
)(

||

||
)(

||

||
)(),(3

3

2
2

1
1

SaE
S

Sa
SaE

S

Sa
SaE

S

Sa
SEASG −−−=

where |Sa1| is the number of times attribute A takes the value a1. E(Sa1) is the
entropy of a1, which will be calculated by observing the proportion of total
population of a1 and the number of times the C is YES or NO within these
observation containing a1 for the value of A.

For example, from the table it is obvious that:
|S| = 5
|Sa1| = 1 [since there is only one observation of a1 which outputs a YES]
E(Sa1) = -1log21 - 0log20 = 0 [since log 1 = 0]

|Sa2| = 2 [one outputs a YES and the other outputs NO]

E(Sa2) =
2

1
log
2

1

2

1
log
2

1
22 −− = () ()1

2

1
1

2

1
−−−− = 1

|Sa3| = 1 [since there is only one observation of a3 which outputs a NO]
E(Sa3) = -0log20 - 1log21 = 0 [since log 1 = 0]

Putting all these values in the equation for G(S,A) we get:

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

179

() () ()0
5

1
1

5

2
0

5

1
97.0),(−−−=ASG = 0.57

Similarly for B, now since there are only two values observable for the attribute B:

)(
||

||
)(

||

||
)(),(2

2
1

1
SbE

S

Sb
SbE

S

Sb
SEBSG −−=

)
3

2
log
3

2

3

1
log
3

1
(
5

3
)1(

5

2
97.0),(22 −−−−=BSG

)39.052.0(
5

3
4.097.0),(+−−=BSG = 0.02

Similarly for E

)(
||

||
)(

||

||
)(),(2

2
1

1
SeE

S

Se
SeE

S

Se
SEESG −−= = 0.02

This tells us that information gain for A is the highest. So we will simply choose A
as the root of our decision tree. By doing that we’ll check if there are any
conflicting leaf nodes in the tree. We’ll get a better picture in the pictorial
representation shown below:

This is a tree of height one, and we have built this tree after only one iteration.
This tree correctly classifies 3 out of 5 training samples, based on only one
attribute A, which gave the maximum information gain. It will classify every
forthcoming sample that has a value of a1 in attribute A as YES, and each sample
having a3 as NO. The correctly classified samples are highlighted below:

S A B E C

d1 a1 b1 e2 YES
d2 a2 b2 e1 YES
d3 a3 b2 e1 NO
d4 a2 b2 e1 NO
d5 a3 b1 e2 NO

Note that a2 was not a good determinant for classifying the output C, because it
gives both YES and NO for d2 and d4 respectively. This means that now we have
to look at other attributes B and E to resolve this conflict. To build the tree further
we will ignore the samples already covered by the tree above. Our new sample
space will be given by S’ as given in the table below:

S’ = [d2, d4] YES NO

a1 a2 a3

A

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

180

S’ A B E C

d2 a2 B2 e1 YES
d4 a2 B2 e2 NO

We’ll apply the same process as above again. First we calculate the entropy for
this sub sample space S’:
E(S’) = - p+log2 p+ - p-log2 p-

 =
2

1
log
2

1

2

1
log
2

1
22 −− = 1

This gives us entropy of 1, which is the maximum value for entropy. This is also
obvious from the data, since half of the samples are positive (YES) and half are
negative (NO).

Since our tree already has a node for A, ID3 assumes that the tree will not have
the attribute repeated again, which is true since A has already divided the data as
much as it can, it doesn’t make any sense to repeat A in the intermediate nodes.
Give this a thought yourself too. Meanwhile, we will calculate the gain information
of B and E with respect to this new sample space S’:

|S’| = 2
|S’b2| = 2

)'(
|'|

|'|
)'(),'(2

2
bSE

S

bS
SEBSG −=

)
2

1
log
2

1

2

1
log
2

1
(
2

2
1),'(22 −−−=BSG = 1 - 1 = 0

Similarly for E:

|S’| = 2
|S’e1| = 1 [since there is only one observation of e1 which outputs a YES]
E(S’e1) = -1log21 - 0log20 = 0 [since log 1 = 0]
|S’e2| = 1 [since there is only one observation of e2 which outputs a NO]
E(S’e2) = -0log20 - 1log21 = 0 [since log 1 = 0]

Hence:

)'(
|'|

|'|
)'(

|'|

|'|
)'(),'(2

2
1

1
eSE

S

eS
eSE

S

eS
SEESG −−=

)0(
2

1
)0(

2

1
1),'(−−=ESG = 1 - 0 - 0 = 1

Therefore E gives us a maximum information gain, which is also true intuitively
since by looking at the table for S’, we can see that B has only one value b2,
which doesn’t help us decide anything, since it gives both, a YES and a NO.
Whereas, E has two values, e1 and e2; e1 gives a YES and e2 gives a NO. So we
put the node E in the tree which we are already building. The pictorial
representation is shown below:

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

181

Now we will stop further iterations since there are no conflicting leaves that we
need to expand. This is our hypothesis h that satisfies each training example.

7.13 LEARNING: Connectionist

Although ID3 spanned more of the concept space, but still there is a possibility
that the true concept is not simply a mixture of disjunctions of conjunctions, but
some more complex arrangement of attributes.
(Artificial Neural Networks) ANNs can compute more complicated functions
ranging from linear to any higher order quadratic, especially for non-Boolean
concepts. This new learning paradigm takes its roots from biology inspired
approach to learning. Its primarily a network of parallel distributed computing in
which the focus of algorithms is on training rather than explicit programming.
Tasks for which connectionist approach is well suited include:
• Classification

• Fruits – Apple or orange
• Pattern Recognition

• Finger print, Face recognition
• Prediction

• Stock market analysis, weather forecast

7.14 Biological aspects and structure of a neuron

The brain is a collection of about 100 billion interconnected neurons. Each
neuron is a cell that uses biochemical reactions to receive, process and transmit
information. A neuron's dendritic tree is connected to a thousand neighboring
neurons. When one of those neurons fire, a positive or negative charge is
received by one of the dendrites. The strengths of all the received charges are
added together through the processes of spatial and temporal summation. Spatial
summation occurs when several weak signals are converted into a single large
one, while temporal summation converts a rapid series of weak pulses from one
source into one large signal. The aggregate input is then passed to the soma (cell
body). The soma and the enclosed nucleus don't play a significant role in the
processing of incoming and outgoing data. Their primary function is to perform
the continuous maintenance required to keep the neuron functional. The part of
the soma that does concern itself with the signal is the axon hillock. If the
aggregate input is greater than the axon hillock's threshold value, then the neuron
fires, and an output signal is transmitted down the axon. The strength of the
output is constant, regardless of whether the input was just above the threshold,
or a hundred times as great. The output strength is unaffected by the many

YES NO

a1 a2 a3

YES NO

e1 e2

A

E

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

182

divisions in the axon; it reaches each terminal button with the same intensity it
had at the axon hillock. This uniformity is critical in an analogue device such as a
brain where small errors can snowball, and where error correction is more difficult
than in a digital system. Each terminal button is connected to other neurons
across a small gap called a synapse.

7.14.1 Comparison between computers and the brain

While this clearly shows that the human information processing system is
superior to conventional computers, but still it is possible to realize an artificial
neural network which exhibits the above mentioned properties. We’ll start with a
single perceptron, pioneering work done in 1943 by McCulloch and Pitts.

7.15 Single perceptron

To capture the essence of biological neural systems, an artificial neuron is
defined as follows:
It receives a number of inputs (either from original data, or from the output of
other neurons in the neural network). Each input comes via a connection that has
a strength (or weight); these weights correspond to synaptic efficacy in a
biological neuron. Each neuron also has a single threshold value. The weighted
sum of the inputs is formed, and the threshold subtracted, to compose the
activation of the neuron. The activation signal is passed through an activation
function (also known as a transfer function) to produce the output of the neuron.

Biological Neural Networks Computers

Speed Fast (nanoseconds) Slow (milliseconds)

Processing Superior (massively parallel) Inferior (Sequential mode)

Size & Complexity 1011 neurons, 1015 interconnections Far few processing elements

Storage Adaptable, interconnection strengths Strictly replaceable

Fault tolerance Extremely Fault tolerant Inherently non fault tolerant

Control mechanism Distributive control Central control

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

183

Neuron Firing Rule:

IF (Input1 x weight1) + (Input2 x weight2) + (Bias) satisfies Threshold value
 Then Output = 1
Else Output = 0

7.15.1 Response of changing bias

The response of changing the bias of a neuron results in shifting the decision line
up or down, as shown by the following figures taken from matlab.

Input1

Input2

Bias

Output
Threshold
Function

weigh

weigh

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

184

7.15.2 Response of changing weight

The change in weight results in the rotation of the decision line. Hence this up
and down shift, together with the rotation of the straight line can achieve any
linear decision.

7.16 Linearly separable problems

There is a whole class of problems which are termed as linearly separable. This
name is given to them, because if we were to represent them in the input space,
we could classify them using a straight line. The simplest examples are the
logical AND or OR. We have drawn them in their input spaces, as this is a simple
2D problem. The upper sloping line in the diagram shows the decision boundary
for AND gate, above which, the output is 1, below is 0. The lower sloping line
decides for the OR gate similarly.

A single perceptron simply draws a line, which is a hyper plane when the data is
more then 2 dimensional. Sometimes there are complex problems (as is the case

(0,0) (0,1

(1,0

Input 2

Input 1

Input 1 Input 2 AND

0 0 0

0 1 0

1 0 0

1 1 1

Input 1 Input 2 OR

0 0 0

0 1 1

1 0 1

1 1 1

(1,1

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

185

in real life). The data for these problems cannot be separated into their respective
classes by using a single straight line. These problems are not linearly separable.

Another example of linearly non-separable problems is the XOR gate (exclusive
OR). This shows how such a small data of just 4 rows, can make it impossible to
draw one line decision boundary, which can separate the 1s from 0s.

Linearly Separable Linearly Non Separable /
Non linear decision region

Input 1 Input 2 Output

0 0 1

0 1 0

1 0 0

1 1 1

(0,0) (0,1)

(1,0)

Input 2

Input 1

(1,1)

Can you draw one line which separates the ones from zeros for the output?

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

186

A single layer perceptron can perform pattern classification only on linearly
separable patterns, regardless of the type of non-linearity (hard limiter, signoidal).
Papert and Minsky in 1969 illustrated the limitations of Rosenblatt’s single layer
perceptron (e.g. requirement of linear separability, inability to solve XOR
problem) and cast doubt on the viability of neural networks. However, multi-layer
perceptron and the back-propagation algorithm overcomes many of the
shortcomings of the single layer perceptron.

7.17 Multiple layers of perceptrons

Just as in the previous example we saw that XOR needs two lines to separate
the data without incorporating errors. Likewise, there are many problems which
need to have multiple decision lines for a good acceptable solution. Multiple layer
perceptrons achieve this task by the introduction of one or more hidden layers.
Each neuron in the hidden layer is responsible for a different line. Together they
form a classification for the given problem.

Each neuron in the hidden layer forms a different decision line. Together all the
lines can construct any arbitrary non-linear decision boundaries. These multi-
layer perceptrons are the most basic artificial neural networks.

Input 1

1

Input 2

Input
Layer

Hidden
Layer

Output
Layer

(0,0) (0,1)

(1,0)

Input 2

Input 1

(1,1)

We need two lines:

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

187

7.18 Artificial Neural Networks: supervised and unsupervised

A neural network is a massively parallel distributed computing system that has a
natural propensity for storing experiential knowledge and making it available for
use. It resembles the brain in two respects:

• Knowledge is acquired by the network through a learning process (called
training)

• Interneuron connection strengths known as synaptic weights are used to
store the knowledge

Knowledge in the artificial neural networks is implicit and distributed.

Advantages
• Excellent for pattern recognition
• Excellent classifiers
• Handles noisy data well
• Good for generalization

Draw backs
• The power of ANNs lie in their parallel architecture

– Unfortunately, most machines we have are serial (Von Neumann
architecture)

• Lack of defined rules to build a neural network for a specific problem
– Too many variables, for instance, the learning algorithm, number of

neurons per layer, number of layers, data representation etc
• Knowledge is implicit
• Data dependency

But all these drawbacks doesn’t mean that the neural networks are useless
artifacts. They are still arguably very powerful general purpose problem solvers.

7.19 Basic terminologies

• Number of layers
o Single layer network
o Multilayer networks

Single Layer
Only one input and
One output layer

Two Layers
One input ,
One hidden and
One output layer

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

188

• Direction of information (signal) flow
o Feed-forward
o Recurrent (feed-back)

• Connectivity
o Fully connected
o Partially connected

• Learning methodology

o Supervised
� Given a set of example input/output pairs, find a rule that does a

good job of predicting the output associated with a new input.
o Unsupervised

� Given a set of examples with no labeling, group them into
sets called clusters

Knowledge is not explicitly represented in ANNs. Knowledge is primarily encoded
in the weights of the neurons within the network

7.20 Design phases of ANNs

• Feature Representation
• The number of features are determined using no of inputs for the

problem. In many machine learning applications, there are huge
number of features:
• Text Classification (# of words)
• Gene Arrays for DNA classification (5,000-50,000)
• Images (512 x 512)

Feed forward Recurrent Network

Fully connected Partially connected

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

189

• These large feature spaces make algorithms run slower. They also
make the training process longer. The solution lies in finding a
smaller feature space which is the subset of existing features.

• Feature Space should show discrimination between classes of the
data. Patient’s height is not a useful feature for classifying whether
he is sick or healthy

• Training

• Training is either supervised or unsupervised.
• Remember when we said:

• We assume that the concept lies in the hypothesis space. So
we search for a hypothesis belonging to this hypothesis
space that best fits the training examples, such that the
output given by the hypothesis is same as the true output of
concept

• Finding the right hypothesis is the goal of the training
session. So neural networks are doing function
approximation, and training stops when it has found the
closest possible function that gives the minimum error on all
the instances

• Training is the heart of learning, in which finding the best
hypothesis that covers most of the examples is the objective.
Learning is simply done through adjusting the weights of the
network

• Similarity Measurement
• A measure to tell the difference between the actual output of

the network while training and the desired labeled output
• The most common technique for measuring the total error in

each iteration of the neural network (epoch) is Mean
Squared Error (MSE).

• Validation

• During training, training data is divided into k data sets; k-1
sets are used for training, and the remaining data set is used
for cross validation. This ensures better results, and avoids
over-fitting.

Weighted
Sum

 of input

Similarity
measure

Activation
function

Weight
updation

Input

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

190

• Stopping Criteria
• Done through MSE. We define a low threshold usually 0.01,

which if reached stops the training data.
• Another stopping criterion is the number of epochs, which

defines how many maximum times the data can be
presented to the network for learning.

• Application Testing

• A network is said to generalize well when the input-output
relationship computed by the network is correct (or nearly so)
for input-output pattern (test data) never used in creating and
training the network.

7.21 Supervised

Given a set of example input/output pairs, find a rule that does a good job of
predicting the output associated with a new input.

7.21.1 Back propagation algorithm

1. Randomize the weights {ws} to small random values (both positive and
negative)

2. Select a training instance t, i.e.,
a. the vector {xk(t)}, i = 1,...,Ninp (a pair of input and output patterns),

from the training set
3. Apply the network input vector to network input
4. Calculate the network output vector {zk(t)}, k = 1,...,Nout
5. Calculate the errors for each of the outputs k , k=1,...,Nout, the difference

between the desired output and the network output
6. Calculate the necessary updates for weights -ws in a way that minimizes

this error
7. Adjust the weights of the network by - ws
8. Repeat steps for each instance (pair of input–output vectors) in the training

set until the error for the entire system

7.22 Unsupervised

• Given a set of examples with no labeling, group them into sets called
clusters

• A cluster represents some specific underlying patterns in the data
• Useful for finding patterns in large data sets
• Form clusters of input data
• Map the clusters into outputs
• Given a new example, find its cluster, and generate the associated output

7.22.1 Self-organizing neural networks: clustering, quantization,
function approximation, Kohonen maps

1. Each node's weights are initialized

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

191

2. A data input from training data (vector) is chosen at random and presented
to the cluster lattice

3. Every cluster centre is examined to calculate which weights are most like
the input vector. The winning node is commonly known as the Best
Matching Unit (BMU)

4. The radius of the neighborhood of the BMU is now calculated. Any nodes
found within this radius are deemed to be inside the BMU's neighborhood

5. Each neighboring node's (the nodes found in step 4) weights are adjusted
to make them more like the input vector. The closer a node is to the BMU,
the more its weights get altered

6. Repeat steps for N iterations

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

192

7.23 Exercise

1) We will change the problem size for SICK a little bit. If T can take on 4

values, and BP can take 5 values. For conjunctive bias, determine the
size of instance space and hypothesis space.

2) Is the following concept possible through conjunctive or disjunctive
hypothesis? (T AND BP) or (T OR BP)

Appendix – MATLAB CODE

makeTrainData.m

trainData = zeros(21, 100);
tempImage = zeros(10,10);

for i = 1:7
 filename = strcat('alif', int2str(i),'.bmp');
 tempImage = imread(filename);
 trainData(i,:) = reshape(tempImage,1,100);
end

for i = 1:7
 filename = strcat('bay', int2str(i),'.bmp');
 tempImage = imread(filename);
 trainData(i+7,:) = reshape(tempImage,1,100);
end

for i = 1:7
 filename = strcat('jeem', int2str(i),'.bmp');
 tempImage = imread(filename);
 trainData(i+14,:) = reshape(tempImage,1,100);
end

targetData = zeros(21,3);

targetData(1:7,1) = 1;
targetData(8:14,2) = 1;
targetData(15:21,3) = 1;

BP

H 1 0 0

N 0 1 0

L 0 0 1

 L N H T

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

193

save 'trainData' trainData targetData ;

makeTestData.m

testData = zeros(9, 100);
tempImage = zeros(10,10);

for i = 1:3
 filename = strcat('alif', int2str(i),'.bmp');
 tempImage = imread(filename);
 testData(i,:) = reshape(tempImage,1,100);
end

for i = 1:3
 filename = strcat('bay', int2str(i),'.bmp');
 tempImage = imread(filename);
 testData(i+3,:) = reshape(tempImage,1,100);
end

for i = 1:3
 filename = strcat('jeem', int2str(i),'.bmp');
 tempImage = imread(filename);
 testData(i+6,:) = reshape(tempImage,1,100);
end

targetData = zeros(9,3);

targetData(1:3,1) = 1;
targetData(4:6,2) = 1;
targetData(7:9,3) = 1;

save 'testData' testData targetData;

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

194

trainNN.m

load 'trainData.mat';

minMax = [min(trainData) ; max(trainData)]';

bpn = newff(minMax, [10 3],{'tansig' 'tansig'});

bpn.trainParam.epochs = 15;
bpn.trainParam.goal = 0.01;

bpn = train(bpn,trainData',targetData');

save 'bpnNet' bpn;

testNN.m

load('trainData');
load('bpnNet');
Y = sim(bpn, trainData');

[X,I] = max(Y);

errorCount = 0;
for i = 1 : length(targetData)
 if ceil(i/7) ~= I(i)
 errorCount = errorCount + 1;
 end
end

percentageAccuracyOnTraining = (1-(errorCount/length(targetData))) * 100

%%%%%%%%%%%%%%%%%%%%%%%%%%

load('testData');
Y = sim(bpn, testData');

[X,I] = max(Y);

errorCount = 0;
for i = 1 : length(targetData)
 if ceil(i/3) ~= I(i)
 errorCount = errorCount + 1;
 end
end

percentageAccuracyOnTesting = (1-(errorCount/length(targetData))) * 100

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

195

8 Planning

8.1 Motivation

We started study of AI with the classical approach of problem solving that
founders of AI used to exhibit intelligence in programs. If you look at problem
solving again you might now be able to imagine that for realistically complex
problems too problem solving could work. But when you think more you might
guess that there might be some limitation to this old approach.

Lets take an example. I have just landed on Lahore airport as a cricket-loving
tourist. I have to hear cricket commentary live on radio at night at a hotel where I
have to reserve a room. For doing that, I have to find the hotel to get my room
reserved before its too late, and also I have to find the market to buy the radio
from. Now this is a more realistic problem. Is this a tougher problem? Let’s see.

One thing easily visible is that this problem can be broken into multiple problems
i.e. is composed of small problems like finding market and finding the hotel.
Another observation is that different things are dependent on others like listening
to radio is dependent upon the sub-problem of buying the radio or finding the
market.

Ignore the observations made above for a moment. If we start formulating this
problem as usual, be assured that the state design will have more information in
it. There will be more operators. Consequently, the search tree we generate will
be much bigger. The poor system that will run this search will have much more
load than any of the examples we have studied so far. The search tree will
consume more space and it will take more calculations in the process.

A state design and operators for the sample problem formulation could be as
shown in figure.

 Turn right
 Turn left
 Move forward
 Buy radio
 Get reservation
 Listen radio
 Sleep
 And maybe more…

Initial state Operators

Figure – Sample problem formulation

If we apply say, BFS in this problem the tree can easily become something huge
like this rough illustration.

Location
Has radio?
Sells radio?
IsHotel?
IsMarket?
Reservation
done?
And maybe
more…

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

196

Figure – Search space
of a moderate problem

Although this tree is
just a depiction of
how a search space
grows for realistic
problems, yet after
seeing this tree we
can very well
imagine for even
more complex
problems that the
search tree could
be too big, big
enough to trouble
us. So the question
is, can we make
such inefficient
problem solving any
better?

Good news is that
the answer is yes.
How? Simply
speaking, this
‘search’ technique
could be improved

by acting a bit logically instead of blindly. For example not using operators at a
state where their usage is illogical. Like operator ‘sleeping’ should not be even
tried to generate children nodes from a state where I am not at the hotel, or even
haven’t reserved the room.

The field of acting logically to solve problems is known as Planning. Planning is
based on logic representation that we have already studied, so you will not find it
too difficult and thus we have kept it short.

8.2 Definition of Planning

The key in planning is to use logic in order to solve problem elegantly. People
working in AI have devised different techniques and algorithms for planning. We
will now introduce a basic definition of planning.

Planning is an advanced form problem solving which generates a sequence of
operators that guarantee the goal. Furthermore, such sequence of operators or
actions (commonly used in planning literature) is called a plan.

Location=Airpo
rt
Has radio?=No
Sells
radio?=No
IsHotel?=No
IsMarket?=No
ReservationDo
ne?=No
.
.

Location=Airport
Has radio?=No
Sells radio?=No
IsHotel?=No
IsMarket?=No
ReservationDone
?=No
.
.
.

BuyRadio

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

X
X
X

TurnRight TurnLeft

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

197

8.3 Planning vs. problem solving

Planning introduces the following improvements with respect to classical problem
solving:

• Each state is represented in predicate logic. De-facto representation of a
state is the conjunction (AND) of predicates that are true in that state.

• The goal is also represented as states, i.e. conjunction of predicates.
• Each action (or operator) is associated with some logic preconditions that

must be true for that action to be applied. Thus a planning system can
avoid any action that is just not possible at a particular state.

• Each action is associated with an ‘effect’ or post-conditions. These post-
conditions specify the added and/or deleted predicates when the action is
applied.

• The inference mechanism used is that of backward chaining so as to use
only the actions and states that are really required to reach goal state.

• Optional: The sequence of actions (plan) is minimally ordered. Only those
actions are ordered in a sequence when any other order will not achieve
the desired goal. Therefore, planning allows partial ordering i.e. there can
be two actions that are not in any order from each other because any
particular order used amongst them will achieve the same goal.

8.4 Planning language

STRIPS is one of the founding languages developed particularly for planning. Let
us understand planning to a better level by seeing what a planning language can
represent.

8.4.1 Condition predicates

Condition predicates are the predicates that define states. For example, a
predicate that specifies that we are at location ‘X’ is given as.

at(X)

8.4.2 State

State is a conjunction of predicates represented in well-known form, for example,
a state where we are at the hotel and do not have either cash or radio is
represented as,

at(hotel) ∧ ¬have(cash) ∧ ¬have(radio)

8.4.3 Goal

Goal is also represented in the same manner as a state. For example, if the goal
of a planning problem is to be at the hotel with radio, it is represented as,

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

198

at(hotel) ∧ have(radio)

8.4.4 Action Predicates

Action is a predicate used to change states. It has three components namely, the
predicate itself, the pre-condition, and post-condition predicates. For example,
the action to buy something item can be represented as,

Action:
buy(X)

Pre-conditions:
at(Place) ∧ sells(Place, X)

Post-conditions/Effect:
have(X)

What this example action says is that to buy any item ‘X’, you have to be (pre-
conditions) at a place ‘Place’ where ‘X’ is sold. And when you apply this operator
i.e. buy ‘X’, then the consequence would be that you have item ‘X’ (post-
conditions).

8.5 The partial-order planning algorithm – POP

Now that we know what planning is and how states and actions are represented,
let us see a basic planning algorithm POP.

POP(initial_state, goal, actions) returns plan

Begin

Initialize plan ‘p’ with initial_state linked to goal state with two

special actions, start and finish
Loop until there is not unsatisfied pre-condition

Find an action ‘a’ which satisfies an unachieved pre-condition of
some action ‘b’ in the plan

Insert ‘a’ in plan linked with ‘b’
Reorder actions to resolve any threats

End

If you think over this algorithm, it is quite simple. You just start with an empty plan
in which naturally, no condition predicate of goal state is met i.e. pre-conditions of
finish action are not met. You backtrack by adding actions that meet these
unsatisfied pre-condition predicates. New unsatisfied preconditions will be
generated for each newly added action. Then you try to satisfy those by using
appropriate actions in the same way as was done for goal state initially. You keep
on doing that until there is no unsatisfied precondition.

Now, at some time there might be two actions at the same level of ordering of
them one action’s effect conflicts with other action’s pre-condition. This is called a

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

199

threat and should be resolved. Threats are resolved by simply reordering such
actions such that you see no threat.

Because this algorithm does not order actions unless absolutely necessary it is
known as a partial-order planning algorithm.

Let us understand it more by means of the example we discussed in the lecture
from [??].

8.6 POP Example

The problem to solve is of shopping a banana, milk and drill from the market and
coming back to home. Before going into the dry-run of POP let us reproduce the
predicates.

The condition predicates are:
At(x)
Has (x)

Sells (s, g)
Path (s, d)

The initial state and the goal state for our algorithm are formally specified as
under.

Initial State:
At(Home) ∧ Sells (HWS, Drill) ∧ Sells (SM, Banana) ∧ Sells (SM, Milk) ∧

Path (home, SM) ∧ path (SM, HWS) ∧ Path (home, HWS)

Goal State:
At (Home) ∧ Has (Banana) ∧ Has (Milk) ∧ Has (Drill)

The actions for this problem are only two i.e. buy and go. We have added the
special actions start and finish for our POP algorithm to work. The definitions for
these four actions are.

Go (x)

Preconditions: at(y) ∧ path(y,x)

Postconditions: at(x) ∧ ~at(y)

Buy (x)

Preconditions: at(s) ∧ sells (s, x)

Postconditions: has(x)

Start ()

Preconditions: nill

Postconditions: At(Home) ∧ Sells (HWS, Drill) ∧ Sells (SM, Banana) ∧

Sells (SM, Milk) ∧ Path (home, SM) ∧ path (SM, HWS) ∧ Path (home, HWS)

Finish ()

Preconditions: At (Home) ∧ Has (Banana) ∧ Has (Milk) ∧ Has (Drill)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

200

Postconditions: nill

Note the post-condition of the start action is exactly our initial state. That is how
we have made sure that our end plan starts with the initial state configuration
given. Similarly note that the pre-conditions of finish action are exactly the same
as the goal state. Thus we can ensure that this plan satisfies all the conditions of
the goal state. Also note that naturally there is no pre-condition to start and no
post-condition for finish actions.

Now we start the algorithm by just putting the start and finish actions in our plan
and linking them. After this first initial step the situation becomes as follows.

Figure – Initial plan scene A

We now enter the main loop of POP algorithm where we iteratively find any
unsatisfied pre-condition in our existing plan and then satisfying it by an
appropriate action.

At first you see three unsatisfied predicates Have(Drill), Have(Milk) and
Have(Banana). Lets take Have(Drill) first. Have(Drill) matches the post-condition
Have(X) of action Buy(X), where X becomes Drill in this case. Similarly we can
satisfy the other two condition predicates and the resulting plan has three new
actions added as shown below.

Figure – Plan scene B

There is no threat
visible in the current
plan, so no re-ordering
is required.

The algorithm moves
forward. Now if you see

the Sells() pre-conditions of the three new actions, they are satisfied with the
post-conditions Sells(HWS,Drill), Sells(SM,Banana), and Sells(SM,Milk) of the
Start() action with the exact values as shown.

At(Home) Sells(SM, Banana) Sells(SM, Milk) Sells(HWS, Drill)

Start

At(Home) Sells(SM, Banana) Sells(SM, Milk) Sells(HWS, Drill)

Finish

Have(Drill) Have(Milk) Have(Banana) At(Home)

Start

At(s) Sells(s, Drill) At(s) Sells(s, Milk) At(s), Sells(s, Bananas)

Finish

Have(Drill), Have(Milk), Have(Bananas) At(Home)

Buy(Drill) Buy(Milk) Buy(Bananas)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

201

Figure – Plan scene C

We now move forward and see what other pre-conditions are not satisfied.
At(HWS) is not satisfied in action Buy(Drill). Similarly At(SM) is not satisfied in
actions Buy(Milk) and Buy(Banana). Only action Go() has post-conditions that
can satisfy these pre-conditions. Adding them one-by-one to satisfy all these pre-
conditions our plan becomes,

Figure – Plan scene
D

Now if we check
for threats we
find that if we go
to HWS from
Home we cannot
go to SM from
Home. Meaning,
post-condition of

Go(HWS)
threats the pre-

condition
At(Home) of
Go(SM) and vice
versa. So as

given in our POP algorithm, we have to resolve the threat by reordering these
actions such that no action threat pre-conditions of other action.

That is how POP proceeds by adding actions to satisfy preconditions and
reordering actions to resolve any threat in the plan. The final plan using this
algorithm becomes.

Start

At(HWS), Sells(HWS, Drill) At(SM), Sells(SM, Milk) At(SM), Sells(SM, Bananas)

Finish

Have(Drill), Have(Milk), Have(Bananas) At(Home)

Buy(Drill) Buy(Milk) Buy(Bananas)

Start

At(HWS), Sells(HWS, Drill) At(SM), Sells(SM, Milk) At(SM), Sells(SM, Bananas)

Finish

Have(Drill), Have(Milk), Have(Bananas) At(Home)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(HWS) Go(SM)

At(Home) At(Home)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

202

Figure – Plan scene
E

You can see
how reordering
is done from this
illustration. For
example the
threat we

observed
between

Go(HWS) and
Go(SM), the link
from Start to
Go(SM) has
been deleted
and a new links

have been established from Go(HWS) and Buy(Drill) to Go(SM).

To feel more comfortable on the plan we have achieved from this problem, lets
narrate our solution in plain English.

“Start by going to hardware store. Then you can buy drill and then go to the super
market. At the super market, buy milk and banana in any order and then go
home. You are done.”

8.7 Problems

1. A Farmer has a tiger, a goat and a bundle of grass. He is standing at one

side of the river with a very week boat which can hold only one of his
belongings at a time. His goal is has to take all three of his belongings to
the other side. The constraint is that the farmer cannot leave either goat
and tiger, or goat and grass, at any side of the river unattended because
one of them will eat the other. Using the simple POP algorithm we studied
in the lecture, solve this problem. Show all the intermediate and final plans
step by step.

2. A robot has three slots available to put the blocks A, B, C. The blocks are

initially placed at slot 1, one upon the other (A placed on B placed on C)
and it’s goal is to move all three to slot 3 in the same order. The constraint
to this robot is that it can only move one block from any slot to any other
slot, and it can only pick the top most block from a slot to move. Using the
simple POP algorithm we studied in the lecture, solve this problem. Show
all the intermediate and final plans step by step.

Start

At(HWS), Sells(HWS, Drill) At(SM), Sells(SM, Milk) At(SM), Sells(SM, Bananas)

Finish

Have(Drill), Have(Milk), Have(Bananas) At(Home)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(HWS) Go(SM)

At(Home) At(Home)

Go(Home)

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

203

9 Advanced Topics

9.1 Computer vision

It is a subfield of Artificial Intelligence. The purpose of computer vision is to study
algorithms, techniques and applications that help us make machines that can
"understand" images and videos. In other words, it deals with procedures that
extract useful information from static pictures and sequence of images. Enabling
a machine to see, percieve and understand exactly as humans see, percieve and
understand is the aim of Computer Vision.

Computer vision finds its applications in medicine, military, security and
surveillance, quality inspection, robotics, automotive industry and many other
areas. Few areas of vision in which research is benig actively conducted

throughout the world are as follows:

� The detection, segmentation, localisation, and recognition of certain
objects in images (e.g., human faces)

� Tracking an object through an image sequence

� Object Extraction from a video sequence

� Automated Navigation of a robot or a vehicle

� Estimation of the three-dimensional pose of humans and their limbs

� Medical Imaging, automated analysis of different body scans (CT Scan,

Bone Scan, X-Rays)

� Searching for digital images by their content (content-based image
retrieval)

� Registration of different views of the same scene or object

Computer vision encompases topics from pattern recognition, machine learning,
geometry, image processing, artificial intelligence, linear algebra and other
subjects.

Apart from its applications, computer vision is itself interesting to study. Many
detailed turorials regarding the field are freely avalible on the internet. Readers of

this text are encouraged to read through these tutorials get indepth knowledge
about the limits and contents of the field.

Exercise Question

Search through the internet and read about interesting happenings and research
going on around the globe in the area of Computer Vision.

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

204

http://www.cs.ucf.edu/~vision/

The above link might be useful to explore knowledge about computer vision.

9.2 Robotics

Robotics is the highly advanced and totally hyped field of today. Literally
speaking, robotics is the study of robots. Robots are nothing but a complex
combination of hardware and intelligence, or mechanics and brains. Thus
robotics is truly a multi-disciplinary area, having active contributions from,
physics, mechanics, biology, mathematics, computer science, statistics, control
thory, philosophy, etc.

The features that constitute a robot are:

• Mobility
• Perception
• Planning
• Searching
• Reasoning
• Dealing with uncertainty
• Vision
• Learning
• Autonomy
• Physical Intelligence

What we can see from the list is that robotics is the most profound manifestation
of AI in practice. The most crucial or defining ones from the list above are
mobility, autonomy and dealing with uncertainety

The area of robotics have been followed with enthusiasm by masses from fiction,
science and industry. Now robots have entered the common household, as robot
pets (Sony Aibo entertainment robot), oldage assistant and people carriers
(Segway human transporter).
Exercise Question

Search through the internet and read about interesting happenings and reseach
going on around the globe in the area of robotics.

http://www.cs.dartmouth.edu/~brd/Teaching/AI/Lectures/Summaries/robotics.html

The above link might be useful to explore knowledge about robotics.

9.2.1 Softcomputing

Softcomputing is a relatively new term coined to encapsulate the emergence of
new hybrid area of work in AI. Different technologies including fuzzy systems,

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

205

genetic algorithms, neural networks and a few statistical methods have been
combined together in different orientations to successfully solve today’s complex
real-world problems.

The most common combinations are of the pairs

• genetic algorithms – fuzzy systems (genetic fuzzy)
• Neural Networks – fuzzy systems (neuro-fuzzy systems)
• Genetic algorithms – Neural Networks (neuro-genetic systems)

Softcomputing is naturally applied in machine learning applications. For example
one usage of genetic-fuzzy system is of ‘searching’ for an acceptable fuzzy
system that conforms to the training data. In which, fuzzy sets and rules
combined, are encoded as individuals, and GA iterations refine the individuals
i.e. fuzzy system, on the basis of their fitness evaluations. The fitness function is
usually MSE of the invidual fuzzy system on the training data. Very similar
applications have been developed in the other popular neuro-fuzzy systems, in
which neural networks are used to find the best fuzzy system for the given data
through means of classical ANN learning algorithms.

Genetic algorithms have been employed in finding the optimal initial weights of
neural networks.

Exercise Question

Search through the internet and read about interesting happenings and research
going on around the globe in the area of softcomputing.

http://www.soft-computing.de/

The above link might be useful to explore knowledge about softcomputing.

9.3 Clustering

Clustering is a form of unsupervised learning, in which the training data is
available but without the classification information or class labels. The task of
clustering is to identify and group similar individual data elements based on some
measure of similarity. So basically using clustering algorithms, classification
information can be ‘produced’ from a training data which has no classification
data at the first place. Naturally, there is no supervision of classification in
clustering algorithms for their learning/clustering, and hence they fall under the
category of unsupervised learning.

The famous clustering algorithms are Self-organizing maps (SOM), k-means,
linear vector quantization, Density based data analysis, etc.

Exercise Question

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

206

Search through the internet and read about interesting happenings and research
going on around the globe in the area of clustering.

http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/

The above link might be useful to explore knowledge about clustering.

10 Conclusion
We have now come to the end of this course and we have tried to cover all the
core technologies of AI at the basic level. We hope that the set of topics we have
studied so far can give you the essential base to work into specialized, cutting-
edge areas of AI.

Let us recap what have we studied and concluded so far. The list of major topics
that we covered in the course is:

• Introduction to intelligence and AI
• Classical problem solving
• Genetic algorithms
• Knowledge representation and reasoning
• Expert systems
• Fuzzy systems
• Learning
• Planning
• Advanced topics

Let us review each of them very briefly.

10.1 Intelligence and AI

Intelligence is defined by some characteristics that are common in different
intelligent species, including problem solving, uncertainty handling, planning,
perception, information processing, recognition, etc.
AI is classified differently by two major schools of thought. One school classifies
AI as study of systems that think like humans i.e. strong AI and the other
classifies AI as study of systems that act like humans i.e. weak AI. Most of the
techniques prevalent today are counted in the latter classification.

10.2 Problem solving

Many people view AI as nothing but problem solving. Early work in AI was done
around the generic concept of problem solving, starting with the basic technique
of generate and test. Although such classical problem solving did not get
extraordinary success but still it provided a conceptual backbone for almost each
approach to the systematic exploration of alternatives.
The basic technique used in classical problem solving is searching. There are
several algorithms for searching for problem solving, including BFS, DFS, hill
climbing, beam search, A* etc. broadly categorized on the basis of completeness,
optimality and informed ness. A special branch of problem solving through

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

207

searching involved adversarial problems like classical two-player games, handled
in classical problem solving by adversarial search algorithms like Minimax.

10.3 Genetic Algorithms

Genetic algorithms is a modern advancement to the hill climbing search based
problem solving. Genetic algorithms are inspired by the biological theory of
evolution and provide facilities of parallel search agents using collaborative hill
climbing. We have seen that many otherwise difficult problems to solve through
classical programming or blind search techniques are easily but
undeterministically solved using genetic algorithms.

At this point we introduced the cycle of AI to set base for systematic approach to
study contemporary techniques in AI.

10.4 Knowledge representation and reasoning

Reasoning has been presented by most researchers in AI as the core ability of an
intelligent being. By nature, reasoning is tightly coupled with knowledge
representation i.e. the reasoning process must exactly know how the knowledge
is kept to manipulate and extract new knowledge from it.

As we are yet to decode the exact representation of knowledge in natural
intelligent beings like humans, we have based our knowledge representation and
hence reasoning on man-made logical representation namely logic i.e. predicate
logic and family.

10.5 Expert systems

The first breakthrough successful application of AI came from the subject of
knowledge representation and reasoning and was name expert systems. Based
on its components i.e. knowledge base, inference and working memory, expert
systems have been successfully applied to diagnosis, interpretation, prescription,
design, planning, simulations, etc.

10.6 Fuzzy systems

Predicate logic and the classical and successful expert systems were limited in
that they could only deal with perfect boolean logic alone. Fuzzy logic provided
the new base of knowledge and logic representation to capture uncertain
information and thus fuzzy reasoning systems were developed. Just like expert
systems, fuzzy systems have almost recently found exceptional success and are
one of the most used AI systems of today, with applications ranging from self-
focusing cameras to automatic intelligent stock trading systems.

10.7 Learning

Having covered the core intelligence characteristic of reasoning, we shifted to the
other major half contributed to AI i.e. learning or formally machine learning. The
KRR and fuzzy systems perform remarkably but they cannot add or improve their

Artificial Intelligence (CS607)

© Copyright Virtual University of Pakistan

208

knowledge at all, and that is where learning was felt essential i.e. the ability of
knowledge based systems to improve through experience.

Learning has been categorized into rote, inductive and deductive learning. Out of
these all almost all the prevalent learning techniques are attributed to inductive
learning, including concept learning, decision tree learning and neural networks.

10.8 Planning

In the end we have studied a rather specialized part of AI namely planning.
Planning is basically advancement to problem solving in which concepts of KRR
are fused with the knowledge of classical problem solving to construct advanced
systems to solve reasonably complex real world problems with multiple,
interrelated and unrelated goals. We have learned that using predicate logic and
regression, problems could be elegantly solved which would have been
nightmare for machines in case of classical problem solving approach.

10.9 Advanced Topics

You have been given just a hint of where the field of AI is moving by mentioning
some of the exciting areas of AI of today including vision, robotics, soft-computing
and clustering. Of these we saw robotics as the most comprehensive field in
which the other topics like vision can be considered as a sub-part.

 Now, it’s up to you to take these thoughts and directions along with the basics
and move forward into advanced study and true application of the field of Artificial
Intelligence.

	merged_document1
	11-45_NoRestriction(1)

