
 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  11  

 
Course Organization 

The course is organized around theory and significant amount of practice. The practice 
will be in the form of home works and a project. The project is the highlight of the 
course: you will build a full compiler for subset of Java- like language. The 
implementation will in C++ and you will generate Intel x86 assembly language code. The 
project will be done in six parts; each will be a programming assignment. 
 
The grade distribution will be 
 

 
 
 
 
 

 
The primary text for the course is Compilers – Principles, Techniques and Tools by Aho, 
Sethi and Ullman. This is also called the Dragon Book; here is the image on the cover of 
the book: 

 
 

Theory Homeworks 10% 

 Exams 50% 

Practice Project 40% 



 

Sohail Aslam  Compiler Construction Notes  

2 

Why Take this Course 

There are number of reason for why you should take this course. Let’s go through a few 
 
Reason #1: understand compilers and languages 
We all have used one or computer languages to write programs. We have used compilers 
to “compile” our code and eventually turn it into an executable. While we worry about 
data structures, algorithms and all the functionality that our application is supposed to 
provide, we perhaps overlook the programming language, the structure of the code and 
the language semantics. In this course, we will attempt to understand the code structure, 
understand language semantics and understand relation between source code and 
generated machine code. This will allow you to become a better programmer 
 
Reason #2: nice balance of theory and practice 
We have studied a lot of theory in various CS courses related to languages and grammar. 
We have covered mathematical models:  regular expressions, automata, grammars and 
graph algorithms that use these models. We will now have an opportunity to put this 
theory into practice by building a real compiler. 
 
Reason #3: programming experience 
Creating a compiler entails writing a large computer program which manipulates 
complex data structures and implement sophisticated algorithm. In the process, we will 
learn more about C++ and Intel x86 assembly language. The experience, however, will 
be applicable if we desire to use another programming language, say Java, and generate 
code for architecture other than Intel. 
 

What are Compilers 

Compilers translate information from one representation to another.  Thus, a tool that 
translates, say, Russian into English could be labeled as a compiler. In this course, 
however, information = program in a computer language. In this context, we will talk of 
compilers such as VC, VC++, GCC, JavaC FORTRAN, Pascal, VB. Application that 
convert, for example, a Word file to PDF or PDF to Postscript will be called 
“translators”. In this course we will study typical compilation: from programs written in 
high- level languages to low-level object code and machine code. 
 



 

Sohail Aslam  Compiler Construction Notes  

3 

Typical Compilation 

Consider the source code of C function 
 
int expr( int n ) 
{ 
 int d; 
 d = 4*n*n*(n+1)*(n+1); 
 return d; 
} 
 
Expressing an algorithm or a task in C is optimized for human readability and 
comprehension. This presentation matches human notions of grammar of a programming 
language. The function uses named constructs such as variables and procedures which aid 
human readability. Now consider the assembly code that the C compiler gcc generates 
for the Intel platform: 
 
.globl _expr 
_expr: 
 pushl %ebp 
 movl %esp,%ebp 
 subl $24,%esp 
 movl 8(%ebp),%eax 
 movl %eax,%edx 
 leal 0(,%edx,4),%eax 
 movl %eax,%edx 
 imull 8(%ebp),%edx 
 movl 8(%ebp),%eax 
 incl %eax  
 imull %eax,%edx 
 movl 8(%ebp),%eax 
 incl %eax 
 imull %eax,%edx 
 movl %edx,-4(%ebp) 
 movl -4(%ebp),%edx 
 movl %edx,%eax 
 jmp L2 
 .align 4 
L2: 
 leave 
 ret 
 
The assembly code is optimized for hardware it is to run on. The code consists of 
machine instructions, uses registers and unnamed memory locations. This version is 
much harder to understand by humans 
 



 

Sohail Aslam  Compiler Construction Notes  

4 

Issues in Compilation 

The translation of code from some human readable form to machine code must be 
“correct”, i.e.,  the generated machine code must execute precisely the same computation 
as the source code. In general, there is no unique translation from source language to a 
destination language. No algorithm exists for an “ideal translation”. 
 
Translation is a complex process. The source language and generated code are very 
different. To manage this complex process, the translation is carried out in multiple 
passes. 
 
 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  22  

 
Two-pass Compiler 

 

 
 
 
The figure above shows the structure of a two-pass compiler.  The front end maps legal 
source code into an intermediate representation (IR). The back end maps IR into target 
machine code. An immediate advantage of this scheme is that it admits multiple front 
ends and multiple passes. 
 
The algorithms employed in the front end have polynomial time complexity while 
majority of those in the backend are  NP-complete. This makes compiler writing a 
challenging task. 
 
Let us look at the details of the front and back ends. 
 
Front End 

scanner parsersource
code

tokens IR

errors
 

 
The front end recognizes legal and illegal programs presented to it. When it encounters 
errors, it attempts to report errors in a useful way. For legal programs, front end produces  
IR  and preliminary storage map for the various data structures declared in the program. 
The front end consists of two modules: 
 

1. Scanner 
2. Parser 

 



 

Sohail Aslam  Compiler Construction Notes  

2 

Scanner 

The scanner takes a program as input and maps the character stream into “words” that are 
the basic unit of syntax. It produces pairs – a word and its part of speech. For example, 
the input 
 
 x = x + y  
 
becomes 
 
 <id,x>  
 <assign,=> 
 <id,x> 
 <op,+> 
 <id,y> 
 
We call the pair  “<token type, word>” a token. Typical tokens are: number, identifier, +, 
-, new, while, if. 
 
Parser 

The parser takes in the stream of tokens, recognizes context- free syntax and reports 
errors. It guides context-sensitive (“semantic”) analysis for tasks like type checking. The 
parser builds IR for source program. 
 
The syntax of most programming languages is specified using Context-Free Grammars 
(CFG). Context- free syntax is specified with a grammar G=(S,N,T,P) where 
 

• S is the start symbol 
• N is a set of non-terminal symbols 
• T is set of terminal symbols or words 
• P is a set of productions or rewrite rules 

 
For example, the Context-Free Grammar for arithmetic expressions  is 
 

1. goal ?  expr 
2. expr  ?   expr op term 
3.   | term 
4. term ?   number  
5.   |  id 
6. op  ?    +  
7.   |  –  
 

For this CFG,  
 

S = goal 



 

Sohail Aslam  Compiler Construction Notes  

3 

T = { number, id, +, -} 
N = { goal, expr, term, op} 
P = { 1, 2, 3, 4, 5, 6, 7} 
 

Given a CFG, we can derive sentences by repeated substitution. Consider the sentence  
 
  x + 2 – y 
 

Production Result 

 goal 

1: goal ?  expr expr 

2: expr ?  expr op term expr op term 

5: term ?  id  expr op y 

7: op  ?  –  expr – y 

2: expr ?  expr op term expr op term – y 

4: term ?  number  expr op 2 – y 

6: op  ?  +  expr + 2 – y 

3: expr ?  term term + 2 – y 

5: term ?  id x + 2 – y 

 
To recognize a valid sentence in some CFG, we reverse this process and build up a parse, 
thus the name “parser”.  
 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  33  

 
A parse can be represented by a tree: parse tree or syntax tree. For example, here is the 
parse tree for the expression   x+2-y 
 

 
 
The parse tree captures all rewrite during the derivation. The derivation can be extracted 
by starting at the root of the tree and working towards the leaf nodes. 
 
Abstract Syntax Trees 

The parse tree contains a lot of unneeded information. Compilers often use an abstract 
syntax tree (AST). For example, the AST for the above parse tree is 

 
This is much more concise; AST summarizes grammatical structure without the details of 
derivation. ASTs are one kind of intermediate representation (IR). 
 
The Back End 

– 

<id,y> 

<id,x> <number,2> 

+ 



 

Sohail Aslam  Compiler Construction Notes  

2 

The back end of the compiler translates IR into target machine code.  It chooses machine 
(assembly) instructions to implement each IR operation. The back end ensure 
conformance with system interfaces. It decides which values to keep in registers in order 
to avoid memory access; memory access is far slower than register access. 
 
 

 
 
The back end is responsible for instruction selection so as to produce fast and compact 
code.  Modern processors have a rich instruction set. The back end takes advantage of 
target features such as addressing modes. Usually, instruction selection is viewed as a 
pattern matching problem that can be solved by dynamic programming based algorithms. 
Instruction selection in compilers was spurred by the advent of the VAX-11 which had a 
CISC (Complex Instruction Set Computer) architecture. The VAX-11 had a large 
instruction set that the compiler could work with.  
 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  44  

CISC architecture provided a rich set of instructions and addressing modes but it made 
the job of the compiler harder when it came to generate efficient machine code.  The 
RISC architecture simplified this problem. 
 
Register Allocation 

Registers in a CPU play an important role for providing high speed access to operands. 
Memory access is an order of magnitude slower than register access. The back end 
attempts to have each operand value in a register when it is used. However, the back end 
has to manage a limited set of resources when it comes to the register file. The number of 
registers is small and some registers are pre-allocated for specialize used, e.g., program 
counter, and thus are not available for use to the back end. Optimal register allocation is 
NP-Complete. 
 
Instruction Scheduling 

Modern processors have multiple functional units. The back end needs to schedule 
instructions to avoid hardware stalls and interlocks. The generated code should use all 
functional units productively. Optimal scheduling is NP-Complete in nearly all cases. 
 
Three-pass Compiler 

There is yet another opportunity to produce efficient translation: most modern compilers 
contain three stages. An intermediate stage is used for code improvement or optimization. 
The topology of a three-pass compiler is shown in the following figure: 
 

Front
End

machine
code

errors

Middle
End

Back
End

IR IR

 
 
The middle end analyzes IR and rewrites (or transforms) IR. Its primary goal is to reduce 
running time of the compiled code. This may also improve space usage, power 
consumption, etc. The middle end is generally termed the “Optimizer”. Modern 
optimizers are structured as a series of passes: 
 



 

Sohail Aslam  Compiler Construction Notes  

2 

Opt
1

IR IR

errors

Opt
2

Opt
n

IR IR Opt
3

IR

 
 
Typical transformations performed by the optimizer are: 
 

• Discover & propagate some constant value 
• Move a computation to a less frequently executed place 
• Specialize some computation based on context 
• Discover a redundant computation & remove it 
• Remove useless or unreachable code 
• Encode an idiom in some particularly efficient form 

 
Role of Run-time System 

The executable code typically runs as a process in an Operating System Environment. 
The application will need a number of resources from the OS. For example, dynamic 
memory allocation and input output. The process may spawn more processes of threads. 
If the underline architecture has multiple processors, the application may want to use 
them. Processes communicate with other and may share resources. Compilers need to 
have an intimate knowledge of the runtime system to make effective use of the runtime 
environment and machine resources. The issues in this context are: 
 

• Memory management 
• Allocate and de-allocate memory 
• Garbage collection 
• Run-time type checking 
• Error/exception processing 
• Interface to OS – I/O 
• Support for parallelism 
• Parallel threads 
• Communication and synchronization 

    

 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  55  

Lexical Analysis 

The scanner is the first component of the front-end of a compiler; parser is the second  
 

scanner parsersource
code

tokens IR

errors
 

 
The task of the scanner is to take a program written in some programming language as a 
stream of characters and break it into a stream of tokens. This activity is called lexical 
analysis. A token, however, contains more than just the words extracted from the input. 
The lexical analyzer partition input string into substrings, called words, and classifies 
them according to their role. 
 
Tokens 

A token is a syntactic category in a sentence of a language. Consider the sentence: 
 
He wrote the program 
 

of the natural language English. The words in the sentence are: “He”, “wrote”, “the” and 
“program”. The blanks between words have been ignored. These words are classified as 
subject, verb, object etc. These are the roles.  Similarly, the sentence in a programming 
language like C: 
 
  if(b == 0) a = b 
 
the words are “if”, “(”, “b”, “==”, “0”, “)”, “a”, “=” and “b”. The roles are keyword, 
variable, boolean operator, assignment operator. The pair <role,word> is given the name 
token. Here are some familiar tokens in programming languages: 
 

• Identifiers: x   y11  maxsize 
• Keywords: if  else  while  for 
• Integers: 2  1000  -44   5L 
• Floats: 2.0  0.0034  1e5 
• Symbols: ( ) + * / { } < > == 
• Strings: “enter x”  “error” 

 



 

Sohail Aslam  Compiler Construction Notes  

2 

Ad-hoc Lexer 

The task of writing a scanner is fairly straight forward. We can hand-write code to 
generate tokens. We do this by partitioning the input string by reading left-to-right, 
recognizing one token at a time. We will need to look-ahead in order to decide where one 
token ends and the next token begins. The following C++ code present is template for a 
Lexer class. An object of this class can produce the desired tokens from the input 
stream. 
 
 
class Lexer  
{ 

Inputstream s; 
char next;  //look ahead 
Lexer(Inputstream _s) 
{ 

s = _s;  
 next = s.read(); 
} 

 
Token nextToken() {  

if( idChar(next) )return readId(); 
if( number(next) )return readNumber(); 
if( next == ‘”’ ) return readString(); 
... 
... 

 } 
Token readId() { 

string id = “”; 
while(true){ 

char c = input.read(); 
if(idChar(c) == false) 

return new Token(TID,id); 
id = id + string(c); 

} 
} 
boolean idChar(char c) 
{ 

if( isAlpha(c) ) return true; 
if( isDigit(c) ) return true; 
if( c == ‘_’ )  return true; 

 
return false; 

} 
Token readNumber(){ 

string num = “”; 
while(true){ 



 

Sohail Aslam  Compiler Construction Notes  

3 

next = input.read(); 
if( !isNumber(next)) 

return new Token(TNUM,num); 
num = num+string(next); 

} 
} 
 
 
This works ok, however, there are some problem that we need to tackle. 
 

• We do not know what kind of token we are going to read from seeing first 
character. 

• If token begins with “i”, is it an identifier “i” or keyword “if”? 
• If token begins with “=”, is it “=” or “==”?  

 
We can extend the Lexer class but there are a number of other issues that can make the 
task of hand-writing a lexer tedious. We need a more principled approach. The most 
frequently used approach is to use a lexer generator that generates efficient tokenizer 
automatically. 

    

 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  66  

How to Describe Tokens? 

Regular Languages are the most popular for specifying tokens because  
• These are based on simple and useful theory, 
• Are easy to understand and 
• Efficient implementations exist for generating lexical analysers based on such 

languages. 
 
 
Languages 

Let Σ ?be a set of characters. Σ is called the alphabet. A language over Σ is set of strings 
of characters drawn from Σ.? Here are some examples of languages: 
 

• Alphabet = English characters 
Language = English sentences 

 
• Alphabet = ASCII 

Language = C++, Java, C# programs 
 
Languages are sets of strings (finite sequence of characters). We need some notation for 
specifying which sets we want. For lexical analysis we care about regular languages. 
Regular languages can be described using regular expressions. Each regular expression is 
a notation for a regular language (a set of words). If A is a regular expression, we write 
L(A) to refer to language denoted by A. 
 
Regular Expression 

A regular expression (RE) is defined inductively 
a ordinary character from Σ  
ε the empty string 

 
R|S either R or S 
RS R followed by S (concatenation) 
R* concatenation of R zero or more times (R* =  ε |R|RR|RRR...) 

 
Regular expression extensions are used as convenient notation of complex RE: 
 

R? ε | R (zero or one R) 
R+ RR* (one or more R) 
(R) R     (grouping) 
[abc] a|b|c (any of listed) 
[a-z] a|b|....|z (range) 
[^ab] c|d|... (anything but ‘a’‘b’) 



 

Sohail Aslam  Compiler Construction Notes  

2 

 
Here are some Regular Expressions and the strings of the language denoted by the RE. 
 

RE  Strings in L(R) 
a    “a” 
ab    “ab” 
a|b    “a”  “b” 
(ab)*    “” “ab”  “abab” ... 
(a|ε)b     “ab” “b” 

 
Here are examples of common tokens found in programming languages. 
 

digit   ‘0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’ 
integer  digit digit*  
identifier [a-zA-Z_][a-zA-Z0-9_]* 

 
Finite Automaton 

We need mechanism to determine if an input string w belongs to L(R), the language 
denoted by regular expression R. Such a mechanism is called an acceptor.  
 

input 
string

language

w

L

acceptor yes, if w ε L
no, if w ε L

 
 
The acceptor is based on Finite Automata (FA). A Finite Automaton consists of 
 

• An input alphabet Σ 
• A set of states 
• A start (initial) state 
• A set of transitions 
• A set of accepting (final) states  

 
A finite automaton accepts a string if we can follow transitions labeled with characters in 
the string from start state to some accepting state.  Here are some examples of FA. 
 

• A FA that accepts only “1” 

1

 
 

• A FA that accepts any number of 1’s followed by a single 0 



 

Sohail Aslam  Compiler Construction Notes  

3 

 

0
1

 
 

• A FA that accepts ab*a (Σ : {a,b}) 
 

a

b

a

 
    

 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  77  

Table Encoding of FA 

A FA can be encoded as a table. This is called a transition table. The following example 
shows a FA encoded as a table. 

a

b

a
0 1 2

 
 

 a b 

0 1 err 

1 2 1 

2 err err 

 
The rows correspond to states. The characters of the alphabet set Σ appear in columns. 
The cells of the table contain the next state. This encoding makes the implementation of 
the FA simple and efficient. It is equally simple to simulate or run the FA given an 
alphabet and a string of the language and its associated alphabet set Σ. The C++ code 
shows such a FA simulator. 
 

int trans_table[NSTATES][NCHARS];  
int accept_states[NSTATES]; 
int state = INITIAL; 
while(state != err){ 

c = input.read(); 
if(c == EOF ) break; 
state=trans_table[state][c]; 

} 
return accept_states[state]; 

 
RE ?  Finite Automata 

We now have a strategy for building lexical analyzer. The tokens we want to recognize 
are encoded using regular expressions. If we can build a FA for regular expressions, we 
have our lexical analyzer. The question is can we build a finite automaton for every 
regular expression? The answer, fortunately, is yes – build FA inductively based on the 
definition of Regular Expression (RE). 
 



 

Sohail Aslam  Compiler Construction Notes  

2 

The actual algorithm actually builds Nondeterministic Finite Automaton (NFA) from RE. 
Each RE is converted into an NFA. NFA are joined together with ε-moves. The eventual 
NFA is then converted into a Deterministic Finite Automaton (DFA) which can be 
encoded as a transition table. Let us discuss how this happens. 
 
Nondeterministic Finite Automaton (NFA) 

An NFA can have multiple transitions for one input in a given state. In the following 
NFA, and input of 1 can cause the automaton to go to state B or C.  

1

1

0
A B C

 
It can also have e–moves; the automaton machine can move from state A to state B 
without consuming input. 

ε
A B

 
 

The operation of the automaton is not completely defined by input. A NFA can choose 
whether to make ε-moves and which of multiple transitions to take for a single input. The 
acceptance of NFA for a given string is achieved if it can get in a final state. 
 
Deterministic Finite Automaton (NFA) 

In Deterministic Finite Automata (DFA), on the other hand, there is only one transition 
per input per state. There are no ε-moves. Upon execution of the automaton, a DFA can 
take only one path through the state graph and is therefore completely determined by 
input. 
 
NFAs and DFAs recognize the same set of languages (regular languages). DFAs are 
easier to implement – table driven. For a given language, the NFA can be simpler than 
the DFA. DFA can be exponentially larger than NFA. NFAs are the key to automating 
RE ?  DFA construction. 
 
 
RE ?  NFA Construction 

The algorithm for RE to DFA conversion is called Thompson’s Construction. The 
algorithm appeared in CACM 1968. The algorithm builds an NFA for each RE term. The 
NFAs are then combined using ε-moves. The NFA is converted into a DFA using the 
subset construction procedure. The number of states in the resulting DFA are minimized 
using the Hopcroft’s algorithm. 
 
Given a RE, we first create NFA pattern for each symbol and each operator. We then join 
them with ε-moves in precedence order. Here are examples of such constructions: 



 

Sohail Aslam  Compiler Construction Notes  

3 

1. NFA for RE ab.  
The following figures show the construction steps. NFAs for RE a and RE b are made. 
These two are combined using an ε-move; the NFA for RE a appears on the left and is 
the source of the ε-transition. 

 

ε

s0
a

s1NFA for a

s0
a s1

NFA for ab

s3
b s4

s3
b

s4NFA for b

εs0
a s1

NFA for ab

s3
b s4

 
 
 
2. NFA for RE a|b 

ε
s0 s5

s1
a s2

NFA for a | b

s3
b s4ε

ε

ε

 
 
 
3. NFA for RE a* 

εs0 s4s1
a s2

NFA for a*

ε

ε

ε

 
 



 

Sohail Aslam  Compiler Construction Notes  

4 

3. NFA for RE a ( b|c )* 
ε

s3 s9

s4 s5

s6 s7

s8s0 s1 s2
a εε ε ε

ε ε

ε
b

c

ε
 

 
 

    

 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  88  

NFA ?  DFA Construction 

The algorithm is called subset construction. In the transition table of an NFA, each entry 
is a set of states. In DFA, each entry is a single state. The general idea behind NFA-to-
DFA construction is that each DFA state corresponds to a set of NFA states. The DFA 
uses its state to keep track of all possible states the NFA can be in after reading each 
input symbol. 
 
We will use the following operations. 
 

• ε-closure(T):  
set of NFA states reachable from some NFA state s in T on ? -transitions alone. 

• move(T,a):  
set of NFA states to which there is a transition on input a from some NFA state s 
in set of states T. 

 
Before it sees the first input symbol, NFA can be in any of the state in the set   
ε-closure(s0), where s0 is the start state of the NFA. Suppose that exactly the states in set 
T are reachable from s0 on a given sequence of input symbols. Let a be the next input 
symbol. On seeing a, the NFA can move to any of the states in the set move(T,a). Let a 
be the next input symbol. On seeing a, the NFA can move to any of the states in the set 
move(T,a).  When we allow for  ε-transitions, NFA can be in any of the states in   
ε-closure(move(T,a))  after seeing a. 
 
Subset Construction 

Algorithm: 
Input:  NFA N with state set S, alphabet Σ, start state s0, final states F 
Output: DFA D with state set S’, alphabet Σ, start states,  
 s0’ = ε-closure(s0), final states F’ and transition table: S’ x Σ ?  S’ 
 
// initially, e-closure(s0) is the only state in D states S’ and it is unmarked 
s0’ = ε-closure(s0) 
S’ = {s0’ } (unmarked) 
 
while (there is some unmarked state T in S’) 

mark state T 
for all a in Σ do 

U = ? εclosure( move(T,a) ); 
if U not already in S’ 

add U as an unmarked state to S’ 
Dtran(T,a) = U; 

end for 
end while 



 

Sohail Aslam  Compiler Construction Notes  

2 

 
F’: 
for each DFA state S 

if S contains an NFA final state 
mark S as DFA final state 

end algorithm 
 
Example 
Let us apply the algorithm to the NFA for (a | b )*abb. Σ is {a,b}. 
 

0
ε

ε

ε ε

ε
a

b

ε

ε

1

2 3

4 5

6 8 9
ε

7 a b b
10

 
 
The start state of equivalent DFA is ε-closure(0), which is A = {0,1,2,4,7}; these are 
exactly the states reachable from state 0 via ε-transition. The algorithm tells us to mark A 
and then compute ε-closure(move(A,a)) 
 
move(A,a)), is the set of states of NFA that have transition on ‘a’ from members of A. 
Only 2 and 7 have such transition, to 3 and 8. So,  ε-closure(move(A,a)) =  
ε-closure({3,8}) = {1,2,3,4,6,7,8}. Let B = {1,2,3,4,6,7,8}; thus Dtran[A,a] = B 
 
For input b, among states in A, only 4 has transition on b to 5. Let C = ε-closure({5}) = 
{1,2,4,5,6,7}. Thus, Dtran[A,b] = C 
 
We continue this process with the unmarked sets B and C, i.e., ε-closure(move(B,a)),  
ε-closure(move(B,b)), ε-closure(move(C,a)) and ε-closure(move(C,b)) until all sets and 
states of DFA are marked. This is certain since there are only 211 (!) different subsets of a 
set of 11 states. A set, once marked, is marked forever. Eventually, the 5 sets are: 
 

1. A={0,1,2,4,7} 
2. B={1,2,3,4,6,7,8} 
3. C={1,2,4,5,6,7} 
4. D={1,2,4,5,6,7,9} 
5. E={1,2,4,5,6,7,10} 

 
A is start state because it contains state 0 and E is the accepting state because it contains 
state 10.  



 

Sohail Aslam  Compiler Construction Notes  

3 

The subset construction finally yields the following DFA 
 

A

a

b a

b b
EEB D

C

a

b

b
a

a

 
 
 
The Resulting DFA can be encoded as the following transition table 
 
 

CBE
EBD
CBC
DBB
CBA
ba

Input symbol
State

CBE
EBD
CBC
DBB
CBA
ba

Input symbol
State

  

    

 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  99  

DFA Minimization 

The generated DFA may have a large number of states.  The Hopcroft’s algorithm can be 
used to minimize DFA states. The behind the algorithm is to find groups of equivalent 
states. All transitions from states in one group G1 go to states in the same group G2. 
Construct the minimized DFA such that there is one state for each group of states from 
the initial DFA. Here is the minimized version of the DFA created earlier; states A and C 
have been merged. 
 

A,C

ab

b b
EEB Da

b

a

a

 
 
We can construct an optimized acceptor with the following structure: 
 

input 
string

RE

w

R

yes, if w ε L(R)

no, if w ε L(R)

RE=>NFA

NFA=>DFA

Min. DFA

Simulate
DFA

 
 
Lexical Analyzers 

Lexical analyzers (scanners) use the same mechanism but they have multiple RE 
descriptions for multiple tokens and have a character stream at the input. The lexical 
analyzer returns a sequence of matching tokens at the output (or an error) and it always 
return the longest matching token. 
 



 

Sohail Aslam  Compiler Construction Notes  

2 

Lexical Analyzer Generators 

The process of constructing a lexical analyzer can automated. We only need to specify 
Regular expressions for tokens and rules for assigning priorities for multiple longest 
match cases, e.g, “==” and “=”, “==” is longer. 
 
Two popular lexical analyzer generators are  
 

• Flex : generates lexical analyzer in C or C++. It is more modern version of the 
original Lex tool that was part of the AT&T Bell Labs version of Unix. 

• Jlex: written in Java. Generates lexical analyzer in Java 
 
 
Using Flex 

We will use for the projects in this course. To use Flex, one has to provide a specification 
file as input to Flex. Flex reads this file and produces an output file contains the lexical 
analyzer source in C or C++. 
 
The input specification file consists of three sections: 

C or C++ and flex definitions  
 %%  
 token definitions and actions  
 %%  
 user code  

 
The symbols “%%” mark each section. A detailed guide to Flex is included in 
supplementary reading material for this course. We will go through a simple example. 
 
The following is the Flex specification file for recognizing tokens found in a C++ 
function. The file is named “lex.l”; it is customary to use the “.l” extension for Flex 
input files. 
 

%{ 
#include “tokdefs.h” 
%} 
D   [0-9] 
L   [a-zA-Z_] 
id   {L}({L}|{D})* 
%% 
"void" {return(TOK_VOID);} 
"int"  {return(TOK_INT);} 
"if"   {return(TOK_IF);} 
Specification File lex.l 
"else" {return(TOK_ELSE);} 
"while"{return(TOK_WHILE)}; 
"<="   {return(TOK_LE);} 



 

Sohail Aslam  Compiler Construction Notes  

3 

">="   {return(TOK_GE);} 
"=="   {return(TOK_EQ);} 
"!="   {return(TOK_NE);} 
{D}+   {return(TOK_INT);} 
{id}   {return(TOK_ID);} 
[\n]|[\t]|[ ] ; 
%% 

 
The file lex.l includes another file named “tokdefs.h”. The content of 
tokdefs.h are 
 

#define TOK_VOID 1 
#define TOK_INT 2 
#define TOK_IF 3 
#define TOK_ELSE 4 
#define TOK_WHILE 5 
#define TOK_LE 6 
#define TOK_GE 7 
#define TOK_EQ 8 
#define TOK_NE 9 
#define TOK_INT 10 
#define TOK_ID 111 

 
Flex creates C++ classes that implement the lexical analyzer. The code for these classes 
is placed in the Flex’s output file. Here, for example, is the code needed to invoke the 
scanner; this is placed in main.cpp: 
 

void main() 
{ 

FlexLexer lex; 
int tc = lex.yylex(); 
while(tc != 0) { 

cout << tc << “,” <<lex.YYText() << endl; 
tc = lex.yylex(); 

  } 
} 

The following commands can be used to generate a scanner executable file in windows. 
 

flex lex.l 
g++ –c lex.cpp 
g++ –c main.cpp 
g++ –o lex.exe lex.o main.o 

 

    
 



 

Sohail Aslam  Compiler Construction Notes  

1 

LLeeccttuurree  1100  

Running the Scanner 

 
Here is the output of the scanner when executed and given the file main.cpp as input, 
i.e., the scanner is being asked to provide tokens found in the file main.cpp: 
 
lex <main.cpp 
259,void 
258,main 
283,( 
284,) 
285,{ 
258,FlexLexer 
258,lex 
290,; 
260,int 
258,tc 
266,= 
258,lex 
291,. 
258,yylex 
283,( 
284,) 
290,; 
263,while 
283,( 
258,tc 
276,!= 
257,0 
284,) 
258,cout 
279,<< 
258,tc 
279,<< 
292,"," 
279,<< 
258,lex 
291,. 
258,YYText 
283,( 
284,) 
279,<< 
258,endl 
290,; 
258,tc 
266,= 
258,lex 
291,. 
258,yylex 
283,( 
284,) 
290,; 
286,} 
 



 

Sohail Aslam  Compiler Construction Notes  

2 

Flex input for C++ 

As an illustration of the power of Flex, here is the input for generating scanner for C++ 
compiler. 
 
/* 
 * ISO C++ lexical analyzer. 
 * Based on the ISO C++ draft standard of December '96. 
 */ 
 
%{ 
#include <ctype.h> 
#include <stdio.h> 
#include “tokdefs.h" 
 
int lineno; 
 
static int yywrap(void); 
static void skip_until_eol(void); 
static void skip_comment(void); 
static int check_identifier(const char *); 
%} 
 
intsuffix ([uU][lL]?)|([lL][uU]?) 
fracconst ([0-9]*\.[0-9]+)|([0-9]+\.) 
exppart  [eE][-+]?[0-9]+ 
floatsuffix [fFlL] 
chartext ([^'])|(\\.) 
stringtext ([^"])|(\\.) 
%% 
%% 
"\n"     { ++lineno; } 
[\t\f\v\r ]+    { /* Ignore whitespace. */ } 
 
"/*"     { skip_comment(); } 
"//"     { skip_until_eol(); } 
 
"{"     { return '{'; } 
"<%"     { return '{'; } 
"}"     { return '}'; } 
"%>"     { return '}'; } 
"["     { return '['; } 
"<:"     { return '['; } 
"]"     { return ']'; } 
":>"     { return ']'; } 
"("     { return '('; } 
")"     { return ')'; } 
";"     { return ';'; } 
":"     { return ':'; } 
"..."     { return ELLIPSIS; } 
"?"     { return '?'; } 
"::"     { return COLONCOLON; } 
"."     { return '.'; } 
".*"     { return DOTSTAR; } 
"+"     { return '+'; } 
"-"     { return '-'; } 
"*"     { return '*'; } 
"/"     { return '/'; } 
"%"     { return '%'; } 
"^"     { return '^'; } 
"xor"     { return '^'; } 
"&"     { return '&'; } 



 

Sohail Aslam  Compiler Construction Notes  

3 

"bitand"    { return '&'; } 
"|"     { return '|'; } 
"bitor"     { return '|'; } 
"~"     { return '~'; } 
"compl"     { return '~'; } 
"!"     { return '!'; } 
"not"     { return '!'; } 
"="     { return '='; } 
"<"     { return '<'; } 
">"     { return '>'; } 
"+="     { return ADDEQ; } 
"-="     { return SUBEQ; } 
"*="     { return MULEQ; } 
"/="     { return DIVEQ; } 
"%="     { return MODEQ; } 
"^="     { return XOREQ; } 
"xor_eq"    { return XOREQ; } 
"&="     { return ANDEQ; } 
"and_eq"    { return ANDEQ; } 
"|="     { return OREQ; } 
"or_eq"     { return OREQ; } 
"<<"     { return SL; } 
">>"     { return SR; } 
"<<="     { return SLEQ; } 
">>="     { return SREQ; } 
"=="     { return EQ; } 
"!="     { return NOTEQ; } 
"not_eq"    { return NOTEQ; } 
"<="     { return LTEQ; } 
">="     { return GTEQ; } 
"&&"     { return ANDAND; } 
"and"     { return ANDAND; } 
"||"     { return OROR; } 
"or"     { return OROR; } 
"++"     { return PLUSPLUS; } 
"--"     { return MINUSMINUS; } 
","     { return ','; } 
"->*"     { return ARROWSTAR; } 
"->"     { return ARROW; } 
"asm"     { return ASM; } 
"auto"     { return AUTO; } 
"bool"     { return BOOL; } 
"break"     { return BREAK; } 
"case"     { return CASE; } 
"catch"     { return CATCH; } 
"char"     { return CHAR; } 
"class"     { return CLASS; } 
"const"     { return CONST; } 
"const_cast"    { return CONST_CAST; } 
"continue"    { return CONTINUE; } 
"default"    { return DEFAULT; } 
"delete"    { return DELETE; } 
"do"     { return DO; } 
"double"    { return DOUBLE; } 
"dynamic_cast"    { return DYNAMIC_CAST; } 
"else"     { return ELSE; } 
"enum"     { return ENUM; } 
"explicit"    { return EXPLICIT; } 
"export"    { return EXPORT; } 
"extern"    { return EXTERN; } 
"false"     { return FALSE; } 
"float"     { return FLOAT; } 
"for"     { return FOR; } 



 

Sohail Aslam  Compiler Construction Notes  

4 

"friend"    { return FRIEND; } 
"goto"     { return GOTO; } 
"if"     { return IF; } 
"inline"    { return INLINE; } 
"int"     { return INT; } 
"long"     { return LONG; } 
"mutable"    { return MUTABLE; } 
"namespace"    { return NAMESPACE; } 
"new"     { return NEW; } 
"operator"    { return OPERATOR; } 
"private"    { return PRIVATE; } 
"protected"    { return PROTECTED; } 
"public"    { return PUBLIC; } 
"register"    { return REGISTER; } 
"reinterpret_cast"   { return REINTERPRET_CAST; } 
"return"    { return RETURN; } 
"short"     { return SHORT; } 
"signed"    { return SIGNED; } 
"sizeof"    { return SIZEOF; } 
"static"    { return STATIC; } 
"static_cast"    { return STATIC_CAST; } 
"struct"    { return STRUCT; } 
"switch"    { return SWITCH; } 
"template"    { return TEMPLATE; } 
"this"     { return THIS; } 
"throw"     { return THROW; } 
"true"     { return TRUE; } 
"try"     { return TRY; } 
"typedef"    { return TYPEDEF; } 
"typeid"    { return TYPEID; } 
"typename"    { return TYPENAME; } 
"union"     { return UNION; } 
"unsigned"    { return UNSIGNED; } 
"using"     { return USING; } 
"virtual"    { return VIRTUAL; } 
"void"     { return VOID; } 
"volatile"    { return VOLATILE; } 
"wchar_t"    { return WCHAR_T; } 
"while"     { return WHILE; } 
 
[a-zA-Z_][a-zA-Z_0-9]*  
{ return check_identifier(yytext); } 
 
"0"[xX][0-9a-fA-F]+{intsuffix}? { return INTEGER; } 
"0"[0-7]+{intsuffix}? { return INTEGER; } 
[0-9]+{intsuffix}? { return INTEGER; } 
 
{fracconst}{exppart}?{floatsuffix}? { return FLOATING; } 
[0-9]+{exppart}{floatsuffix}? { return FLOATING; } 
 
"'"{chartext}*"'" { return CHARACTER; } 
"L'"{chartext}*"'" { return CHARACTER; } 
 
"\""{stringtext}*"\"" { return STRING; } 
"L\""{stringtext}*"\"" { return STRING; } 
. { fprintf(stderr,  
  "%d: unexpected character `%c'\n", lineno, 
     yytext[0]); } 
 
%% 
 
static int 
yywrap(void) 



 

Sohail Aslam  Compiler Construction Notes  

5 

{ 
 return 1; 
} 
static void 
skip_comment(void) 
{ 
 int c1, c2; 
 
 c1 = input(); 
 c2 = input(); 
 

while(c2 != EOF && !(c1 == '*' && c2 == '/'))  
{ 

  if (c1 == '\n') 
   ++lineno; 
  c1 = c2; 
  c2 = input(); 
 } 
} 
static void 
skip_until_eol(void) 
{ 
 int c; 
 
 while ((c = input()) != EOF && c != '\n') 
  ; 
 ++lineno; 
} 
 
static int 
check_identifier(const char *s) 
{ 
 /* 
  * This function should check if `s' is a 
   * typedef name or a class 
  * name, or a enum name, ... etc. or  
   * an identifier. 
  */ 
 switch (s[0]) { 
 case 'D': return TYPEDEF_NAME; 
 case 'N': return NAMESPACE_NAME; 
 case 'C': return CLASS_NAME; 
 case 'E': return ENUM_NAME; 
 case 'T': return TEMPLATE_NAME; 
 } 
 return IDENTIFIER; 
} 
 
Parsing 

We now move the second module of the front-end: the parser. Recall the front-end 
components: 
 

scanner parsersource
code

tokens IR

errors
 



 

Sohail Aslam  Compiler Construction Notes  

6 

 
The parser checks the stream of words (tokens) and their parts of speech for grammatical 
correctness. It determines if the input is syntactically well formed. It guides context-
sensitive (“semantic”) analysis (type checking). Finally, it builds IR for source program. 
 
Syntactic Analysis 

Consider the sentence “He wrote the program”. The structure of the sentence can be 
described using grammar syntax of English language. 
 

He wrote the program

noun verb article noun

subject predicate object

sentence  
 
The analogy can be carried over to syntax of sentences in a programming language. For 
example, an if-statement has the syntax 
 

if ( b <= 0 ) a = b

bool expr assignment

if-statement  
 
The parser ensures that sentences of a programming language that make up a program 
abide by the syntax of the language. If there are errors, the parser will detect them and 
reports them accordingly. Consider the following code segment that contains a number of 
syntax errors: 
 

int* foo(int i, int j)) 
{ 
 for(k=0; i j; ) 
  fi( i > j ) 
    return j; 
} 

 
It is clear that a scanner based upon regular expressions will not be able to detect syntax 
error. 
 
 
 
 
 



LLeeccttuurree  1111  

 
Syntactic Analysis 

Consider the following C++ function. There are a number of syntax errors present. 
 

1. int* foo(int i, int j)) 
2. { 
3.  for(k=0; i j; ) 
4.   fi( i > j ) 
5.  return j; 
6. } 

 
Line 1 has extra parenthesis at the end. The boolean expression in the for loop in line 3 is 
incorrect.  Line 4 has a missing semicolon at the end. All such errors are due to the fact 
the function does not abide by the syntax of the C++ language grammar. 
 
Semantic Analysis 

Consider the English language sentence “He wrote the computer”. The sentence is 
syntactically correct but semantically wrong. The meaning of the sentence is incorrect; 
one does not “write” a computer. Issues related to meaning fall under the heading of 
semantic analysis. The following C++ function has semantic errors. The type of the local 
variable sum has not been declared. The returned value does not match the return value 
type of the function (int*). The function is syntactically correct. 
 

int* foo(int i, int j) 
{ 
 for(k=0; i < j; j++ ) 
  if( i < j-2 ) 
    sum = sum+i 
 return sum; 
} 

 
Role of the Parser 

Not all sequences of tokens are program. Parser must distinguish between valid and 
invalid sequences of tokens. What we need is an expressive way to describe the syntax of 
programs and an acceptor mechanism that determines if input token stream satisfies the 
syntax of the programming language. The acceptor mechanism  determines if input token 
stream satisfies the syntax of a programming language. 
 
Parsing is the process of discovering a derivation for some sentence of a language. The 
mathematical model of syntax  is represented by a grammar G. The language generated 



by the grammar is indicated by L(G). Syntax of most programming languages can be 
represented by Context Free Grammars (CFG). 
 
A CFG is a four tuple G=(S,N,T,P) 
 

1. S is the start symbol 
2. N is a set of non-terminals  
3. T is a set of terminals 
4. P is a set of productions 

 
Why aren’t Regular Expressions used to represent syntax? The reasons is that regular 
languages do not have enough power to express syntax of programming languages. 
Moreover, finite automaton can’t remember number of times it has visited a particular 
state. 
 
Consider the following example of CFG 

 
SheepNoise ?  SheepNoise baa 
    |   baa 
 

This CFG defines the set of noises sheep make. We can use the SheepNoise grammar to 
create sentences of the language. We use the productions as rewriting rules 
 
 

Rule Sentential Form 

- SheepNoise 
1 SheepNoise  baa 
1 SheepNoise  baa baa 
2 baa  baa  baa 

 
While it is cute, this example quickly runs out intellectual steam. To explore uses of 
CFGs, we need a more complex grammar. Consider the grammar for arithmetic 
expressions: 
 

1  expr  ?   expr  op  expr 
2     |  num 
3     |  id 
4  op  ?   + 
5     |  – 
6     |  * 
7     |  / 

 
 
Grammar rules in a similar form were first used in the description of the Algol-60 
programming language. The syntax of C, C++ and Java is derived heavily from Algol-60. 



The notation was developed by John Backus and adapted by Peter Naur for the Algol-60 
language report; thus the term Backus-Naur Form (BNF) 
  
Let us use the expression grammar to derive the sentence 
 
         x – 2 * y 
 

Rule  Sentential Form 
-  expr 
1  expr   op  expr 
2  <id,x>  op  expr 
5  <id,x>  –  expr 
1  <id,x>  –  expr  op  expr 
2  <id,x> – <num,2> op expr 
6  <id,x> –  <num,2>  ∗ expr 
3  <id,x> –  <num,2> ∗ <id,y> 

 
Such a process of rewrites is called a derivation and the process or discovering a 
derivation is called parsing. At each step, we choose a non-terminal to replace. Different 
choices can lead to different derivations. 
 
Two derivations are of interest 
 

1. Leftmost: replace leftmost non-terminal (NT) at each step 
2. Rightmost: replace rightmost NT at each step 

 
The example on the preceding slides was leftmost derivation. There is also a rightmost 
derivation. In both cases we have 
 
  expr   ? *  id – num ∗ id 
 
The two derivations produce different parse trees. The parse trees imply different 
evaluation orders! 
 



LLeeccttuurree  1122  

Parse Trees 

The derivations can be represented in a tree-like fashion. The interior nodes contain the 
non-terminals used during the derivation 

  
 

  
 

Precedence 

These two derivations point out a problem with the grammar. It has no notion of 
precedence, or implied order of evaluation. The normal arithmetic rules say that 
multiplication has higher precedence than subtraction. To add precedence, create a non-

G 

E 

E op E 

E op E x – 

2 * y 

Leftmost  
derivation 

evaluation order 
x – ( 2 * y ) 

G 

 E 

op E 

x – 

E 

E op E 

2 

* y 

Rightmost 
derivation 

evaluation order 
(x –  2 ) * y  



terminal for each level of precedence. Isolate corresponding part of grammar to force 
parser to recognize high precedence sub-expressions first. Here is the revised grammar: 
 
 
 
 
 
 
 
 
 
 
 
 
 
This grammar is larger and requires more rewriting to reach some of the terminal 
symbols. But it encodes expected precedence. Let’s see how it parses  
         

x – 2 * y 
 

Rule Sentential Form 
- Goal 
1 Expr 
3 expr  – term  
5 expr  – term  ∗  factor 
9 expr  – term  ∗  <id,y> 
7 expr  – factor  ∗  <id,y> 
8 expr  –  <num,2> ∗ <id,y> 
4 term  –  <num,2> ∗ <id,y> 
7 factor – <num,2> ∗ <id,y> 
9 <id,x> – <num,2> ∗ <id,y> 

 
This produces same parse tree under leftmost and rightmost derivations 
 

Id   |  9 

number ?  factor 8 

factor   |  7 

term / factor   |  6 

term ∗ factor ?  term 5 

term   |  4 

expr  –  term   |  3 

expr  +  term ?  expr 2 

expr ?  Goal 1 

level 
two 

level 
one 



 
 
 
Both leftmost and rightmost derivations give the same expression because the grammar 
directly encodes the desired precedence. 
 
Ambiguous Grammars 

If a grammar has more than one leftmost derivation for a single sentential form, the 
grammar is ambiguous. The leftmost and rightmost derivations for a sentential form may 
differ, even in an unambiguous grammar. Let’s consider the classic if-then-else example 
 

Stmt ?  if Expr  then Stmt 
   | if Expr  then Stmt  else Stmt 
   | … other stmts …. 

 
The following sentential form has two derivations: 

 
if E1  then if E2  then S  else S2 

 

G 

E 

F 

T 

T F 

<id,x> 

-
– 

* 

<id,y> 

T 

E 

T 

<num,2> 

evaluation order 
x – ( 2 * y ) 



  
 
 

 
 
 
The convention in most programming languages is to match the else with the most recent 
if.  

Production 1, then 
Production 2: 
if E1 then 
   if E2 then S1 

else S2 

E1 

if 

then 

if 

then 

else 

S1 

S2 

E2 

E1 

if 

then 

if 

then else 

S1 
S2 

E2 

Production 2, then 
Production 1: 
if E1 then 
   if E2 then S1 

   else S2 



We can rewrite grammar to avoid generating the problem and match each else to 
innermost unmatched if: 
 

 
1. Stmt 

 
 ?  

 
If E  then Stmt 

2.   | If E  then WithElse else Stmt 
3.   | Assignment 
4. WithElse  ?  If E  then WithElse  else WithElse 
5.   | Assignment 

 
 
Let derive the following using the rewritten grammar: 
 

if E1  then  if E2  then A1  else A2 
 

 
  
Context-Free Grammars 

We have been using the term context- free without explaining why such rules are in fact 
“free of context”. The simple reason is that non-terminals appear by themselves to the left 
of the arrow in context-free rules: 
 
           A  ?  α  
 
The rule A ?  α  says that A may be replaced by α   anywhere, regardless of where A 
occurs. On the other hand, we could define a context as pair of strings β , γ , such that a 
rule would apply only if β  occurs before and γ  occurs after the non-terminal A. We would 
write this as 
          β  A γ  ?  β  α γ  

This binds the else controlling A2 to inner if 

E1 

Stmt 

then 

else 

A1 A2 E2 

if Expr Stmt 

Stmt then if Expr Withelse 



Such a rule in which α  ?  ε   is called a context-sensitive grammar rule. We would write 
this as 
          β  A γ  ?  β  α γ  
 
Such a rule in which α  ?  ε  is called a context-sensitive grammar rule 
 
Parsing Techniques 

There are two primary parsing techniques: top-down and bottom-up. 
 
Top-down parsers 

A top-down parsers starts at the root of the parse tree and grows towards leaves. At each 
node, the parser picks a production and tries to match the input.  However, the parser may 
pick the wrong production in which case it will need to backtrack. Some grammars are 
backtrack-free. 
 
Bottom-up parsers 

A bottom-up parser starts at the leaves and grows toward root of the parse tree. As input 
is consumed, the parser encodes possibilities in an internal state. The bottom-up parser 
starts in a state valid for legal first tokens. Bottom-up parsers handle a large class of 
grammars 
 
 



LLeeccttuurree  1133  

Top-Down Parser 

A top-down parser starts with the root of the parse tree. The root node is labeled with the 
goal (start) symbol of the grammar. The top-down parsing algorithm proceeds as follows: 
 

1. Construct the root node of the parse tree 
2. Repeat until the fringe of the parse tree matches input string 

a. At a node labeled A, select a production with A on its lhs  
b. for each symbol on its rhs, construct the appropriate child 
c. When a terminal symbol is added to the fringe and it does not match the 

fringe, backtrack 
 
The key is picking right production in step a. That choice should be guided by the input 
string. Let’s try parsing using this algorithm using the expression grammar. 
 
    x – 2 * y 
 

P Sentential Form input 
- Goal ↑x – 2 * y 
1 expr ↑x – 2 * y 
2 expr  + term  ↑x – 2 * y 
4 term  + term ↑x – 2 * y 
7 factor  + term ↑x – 2 * y 
9 <id,x> + term ↑x – 2 * y 
9 <id,x> + term x ↑– 2 * y 

 
 
This worked well except that “–” does not match “+”. The parser made the wrong choice 
of production to use at step 2. The parser must backtrack and use a different production. 
 

 

 
This time the “–” and “–” matched. We can advance past “–” to look at “2”. Now, we 
need to expand “term”  
 

P Sentential Form input 
- Goal ↑x – 2 * y 
1 expr ↑x – 2 * y 
3 expr  – term  ↑x – 2 * y 
4 term  – term  ↑x – 2 * y 
7 factor  – term ↑x – 2 * y 
9 <id,x> – term ↑x – 2 * y 
9 <id,x> – term x ↑– 2 * y 



 
 
 
 
 
 
 
 
 
 
The 2’s match but the expansion terminated too soon because there is still unconsumed 
input and there are no non-terminals to expand in the sentential form ⇒  Need to 
backtrack. 
 

P Sentential Form input 
- <id,x>  – term x – ↑2 * y 
5 <id,x>  – term  * factor x – ↑2 * y 
7 <id,x>  – factor  * factor x – ↑2 * y 
8 <id,x>  – <num,2>  * factor x – ↑2 * y 
- <id,x>  – <num,2>  * factor x – 2 ↑  * y 
- <id,x>  – <num,2>  * factor x – 2  * ↑  y 
9 <id,x>  – <num,2>  * <id,y> x – 2  * ↑  y 
- <id,x>  – <num,2>  * <id,y> x – 2  *  y ↑  

 
 
This time the parser met with success. All of the input matched. 
 
Left Recursion 

Consider another possible parse: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parser is using productions but no input is being consumed. 

x – 2 ↑* y <id,x>  – <num,2> - 

x – ↑2 * y <id,x>  – <num,2> 9 

x – ↑2 * y <id,x>  – factor 7 

x – ↑2 * y <id,x>  – term - 

Sentential Form input P 

↑x – 2 * y expr +term +term +term +.... 2 

↑x – 2 * y expr +term +term +term  2 

↑x – 2 * y expr +term +term  2 

expr +term  

expr 

Goal 

Sentential Form 

↑x – 2 * y 2 

↑x – 2 * y 1 

↑x – 2 * y - 

input P 



Top-down parsers cannot handle left-recursive grammars. Formally, a grammar is left 
recursive if ∃  A ∈ NT such that ∃  a derivation A ⇒* A α , for some string  
α ∈ (NT ∪ T)*. 
 
Our expression grammar is left recursive. This can lead to non-termination in a top-down 
parser. Non-termination is bad in any part of a compiler! For a top-down parser, any 
recursion must be a right recursion. We would like to convert left recursion to right  
To remove left recursion, we can transform the grammar. Consider a grammar fragment: 
 
        A  ?   A α 
                   |    β  
 
where neither α  nor β  starts with A . We can rewrite this as: 
 
  A  ?  β A' 
 
  A'  ?  α A'  
          |  ε  
 
where  A'  is a new non-terminal. This grammar accepts the same language but uses only 
right recursion. The expression grammar we have been using contains two cases of left- 
recursion. Applying the transformation yields 
 

expr ?  term  expr'  
expr' ?  + term expr'  
    | –  term expr' 
     
term ?  factor  term'  
term' ?  * factor term'  
    | / factor term' 
    | ε 

 
These fragments use only right recursion. They retain the original left associativity. A 
top-down parser will terminate using them. 
 



Predictive Parsing 

If a top down parser picks the wrong production, it may need to backtrack.  
Alternative is to look-ahead in input and use context to pick the production to use 
correctly. How much look-ahead is needed? In general, an arbitrarily large amount of 
look-ahead symbols are required.. Fortunately, large classes of CFGs can be parsed with 
limited lookahead. Most programming languages constructs fall in those subclasses 
 
The basic idea in predictive parsing is: given A ?  α  | β , the parser should be able to 
choose between α  and β . To accomplish this, the parser needs FIRST and FOLLOW sets. 
 
Definition: FIRST sets: for some rhs α  ∈ G, define FIRST(α ) as the set of tokens that 
appear as the first symbol in some string that derives from α . That is,  x ∈ FIRST(α )  iff 
α ⇒∗ x γ, for some γ . 
 



LLeeccttuurree  1144  

 
The LL(1) Property 
 
If A ?  α   and A ?  β  both appear in the grammar, we would like  
 

  FIRST(α ) ∩ FIRST(β) = ∅  
 

Predictive parsers accept LL(k) grammars.  The two LL stand for Left-to-right scan of 
input, left-most derivation. The k stands for number of look-ahead tokens of input. The 
LL(1) Property allows the parser to make a correct choice with a look-ahead of exactly 
one symbol! What about ε-productions? They complicate the definition of LL(1).  
If A ?  α   and A ?  β  and ε  ∈ FIRST(α) , then we need to ensure that FIRST(β ) is 
disjoint from FOLLOW(α ), too.  
 
Definition: FOLLOW(α)  is the set of all words in the grammar that can legally appear 
after an α.  
 
For a non-terminal X,  FOLLOW(X )  is the set of symbols  that might follow the  
derivation of X. Define FIRST+(α) as FIRST(α) ∪ FOLLOW(α), if  ε  ∈ FIRST(α), 
FIRST(α), otherwise. Then a grammar is LL(1) iff A ?  α  and A ?  β   implies 
 
  FIRST+(α ) ∩ FIRST+(β) = ∅ 
 
Given a grammar that has the is LL(1) property, we can write a simple routine to 
recognize each lhs. The code is simple and fast. Consider  
   A ?  β1 | β2 | β3 ,  
which satisfies the LL(1) property  FIRST+(α )∩FIRST+(β) = ∅ 
 

/* find an A */ 
if(token ∈ FIRST(β1)) 
  find a β1 and return true 
else if(token ∈ FIRST(β 2)) 
  find a β2 and return true 
if(token ∈ FIRST(β3)) 
  find a β3 and return true 
else error and return false 

 
Grammar with the LL(1) property are called predictive grammars because the parser can 
“predict” the correct expansion at each point in the parse. Parsers that capitalize on the 
LL(1) property are called predictive parsers. One kind of predictive parser is the 
recursive descent parser. 
 



Recursive Descent Parsing 

Consider the right-recursive expression grammar 
 

1 Goal ?  expr 
2 expr ?  term  expr'  
3 expr' ?  + term expr'  
4     | -  term expr' 
5     | ε 
6 term ?  factor  term'  
7 term' ?  * factor term'  
8     | / factor term' 
9     | ε 
10 factor ?  number 
11     | id 
12     | ( expr ) 

 
This leads to a parser with six mutually recursive routines: goal, expr, eprime, 
term, tprime and factor. Each recognizes one non-terminal (NT) or terminal (T). 
The term descent refers to the direction in which the parse tree is built. Here are some of 
these routines written as functions: 
 

Goal() { 
  token = next_token(); 
  if(Expr() == true && token == EOF) 
     next compilation step 
  else { 
    report syntax error; 
    return false; 
  } 
} 
Expr()  
{ 
  if(Term() == false) 
     return false; 
  else  
    return Eprime(); 
} 
Eprime() { 
  token_type op = next_token(); 
  if( op == PLUS || op == MINUS ) { 
     if(Term() == false) 
        return false; 
     else  
        return Eprime(); 
  } 
} 



 
Functions for other non-terminals Term, Factor and Tprime follow the same pattern. 
 
Recursive Descent in C++ 

This form of the routines is too procedural. Moreover, there is no convenient way to build 
the parse tree. We can use C++ to code the recursive descent parser in an object oriented 
manner. We associate a C++ class with each non-terminal symbol. An instantiated object 
of a non-terminal class contains pointer to the parse tree. Here are the C++ code for the 
non-terminal classes: 
 
class NonTerminal { 
public: 

 NonTerminal(Scanner* sc) 
 { 
    s = sc; tree = NULL;  
 } 
 virtual ~NonTerminal(){} 
 virtual bool isPresent()=0; 
 TreeNode* AST(){  
    return tree; 
 } 

 
protected: 
   Scanner* s; 
   TreeNode* tree;  
} 
 
class Expr:public NonTerminal 
{ 
public:  
  Expr(Scanner* sc): NonTerminal(sc){ } 
  virtual bool isPresent(); 
} 
 
class Eprime:public NonTerminal { 
public:  
 Eprime(Scanner* sc, TreeNode* t): NonTerminal(sc) 
 { 
        exprSofar = t;  
 } 
 virtual bool isPresent(); 
protected: 
 TreeNode* exprSofar; 
} 



 
class Term:public NonTerminal 
{ 
public:  
  Term(Scanner* sc): NonTerminal(sc){ } 
  virtual bool isPresent(); 
} 
 
class Tprime:public NonTerminal { 
public:  
  Tprime(Scanner* sc, TreeNode* t): NonTerminal(sc) 
  { 
      exprSofar = t;  
  } 
  virtual bool isPresent(); 
protected: 
  TreeNode* exprSofar; 
} 
 
class Factor:public NonTerminal { 
public:  
  Factor(Scanner* sc, TreeNode* t): NonTerminal(sc){ }; 
 
  virtual bool isPresent(); 
} 
 



LLeeccttuurree  1155  

 
Let’s consider the implementation of the C++ classes for the non-terminals. We start with 
Expr. 
 
bool Expr::isPresent()  
{ 

 Term* op1 = new Term(s); 
 if(!op1->isPresent()) 
   return false; 
 tree = op1->AST(); 
 Eprime* op2 = new Eprime(s, tree); 
 if(op2->isPresent()) 
 tree = op2->AST();  
 return true; 

} 
 
bool Eprime::isPresent()  
{ 
 int op=s->nextToken(); 
 if(op==PLUS || op==MINUS){ 
  s->advance(); 
  Term* op2=new Term(s); 
  if(!op2->isPresent()) 
 syntaxError(s); 
  TreeNode* t2=op2->AST(); 
  tree = new TreeNode(op,exprSofar,t2); 
  Eprime* op3 = new Eprime(s, tree); 
  if(op3->isPresent()) 
 tree = op3->AST(); 
 return true; 
  } 
 else return false; 
} 
 
bool Term::isPresent()  
{ 
 Factor* op1 = new Factor(s); 
 if(!op1->isPresent()) 
 return false; 
 tree = op1->AST(); 
 Tprime* op2 = new Tprime(s, tree); 
 if(op2->isPresent()) 
 tree = op2->AST();  
 return true; 
} 



 
bool Tprime::isPresent()  
{ 
 int  op=s->nextToken(); 
 if(op == MUL || op == DIV){ 
  s->advance(); 
  Factor* op2=new Factor(s); 
  if(!op2->isPresent()) 
 syntaxError(s); 
  TreeNode* t2=op2->AST(); 
  tree = new TreeNode(op,exprSofar,t2); 
  Tprime* op3 = new Tprime(s, tree); 
  if(op3->isPresent()) 
 tree = op3->AST(); 
 return true; 
  } 
 else return false; 
} 
 
 
bool Factor::isPresent()  
{ 
 int op=s->nextToken(); 
 if(op == ID || op == NUM) 
 { 
  tree = new TreeNode(op,s->tokenValue()); 
  s->advance(); 
  return true; 
 } 
 if( op == LPAREN ){ 
  s->advance(); 
  Expr* opr = new Expr(s); 
  if(!opr->isPresent() ) 
   syntaxError(s); 
  if(s->nextToken() != RPAREN) 
   syntaxError(s); 
  s->advance(); 
  tree = opr->AST(); 
  return true; 
 } 
 return false; 
}  
 



LLeeccttuurree  1166  

Here is the output trace for the expression : 2+4*6  
 
  >> Expr::isPresent() 
    >> Term::isPresent() 
      >> Factor::isPresent() 
              token: 2 (257) 
      << Factor::isPresent() return true 
      >> Tprime::isPresent() 
              token: + (267) 
      << Tprime::isPresent() return false 
    << Term::isPresent() return true 
    >> Eprime::isPresent() 
          token: + (267) 
      >> Term::isPresent() 
        >> Factor::isPresent() 
               token: 4 (257) 
        << Factor::isPresent() return true 
        >> Tprime::isPresent() 
               token: * (269) 
          >> Factor::isPresent() 
                 token: 6 (257) 
          << Factor::isPresent() return true 
          >> Tprime::isPresent() 
                 token:  (0) 
          << Tprime::isPresent() return false 
        << Tprime::isPresent() return true 
      << Term::isPresent() return true 
      >> Eprime::isPresent() 
             token:  (0) 
      << Eprime::isPresent() return false 
    << Eprime::isPresent() return true 
  << Expr::isPresent() return true 
 
** AST ** 
(2+(4*6)) 

 
4 6 

* 2 

+ 



Non-recursive Predictive Parsing 

It is possible to build a non-recursive predictive parser. This is done by maintaining an 
explicit stack and using a table. Such a parser is called a table-driven parser. The non-
recursive LL(1) parser looks up the production to apply by looking up a parsing table. 
The LL(1) table has one dimension for current non-terminal to expand and another 
dimension for next token.  Each table cell contains one production. 
 

 
 
Consider the expression grammar 
 

1 E ?  T  E'  
2 E' ?  + T E'  
3     | ε 
4 T ?  F  T'  
5 T' ?  * F  T'  
6     | ε 
7 F ?  ( E  ) 
8     | id 

 
Using the table construction algorithm that will be discussed later, we have the predictive 
parsing table 
 

 id + * ( ) $ 
E E ? TE'     E ? TE'   
E'   E' ?    +TE'     E' ?  ε  E' ?  ε  

T T ? FT'     T ? FT'   
T'   T' ?  ε  T ? *FT'   T' ?  ε  T' ?  ε  
F F ?  id     F ? (E )   

 
The rows are non-terminals and the columns are the terminals of the expression grammar. 
The predictive parser uses an explicit stack to keep track of pending non-terminals. It can 
thus be implemented without recursion.  
 

a + b $ 

Predictive 
parser 

stack 

X 
Y 

Z 
$ 

Parsing table M 

input 

output 



LL(1) Parsing Algorithm 

The input buffer contains the string to be parsed; $ is the end-of- input marker. The stack 
contains a sequence of grammar symbols.  Initially, the stack contains the start symbol of 
the grammar on the top of $. The parser is controlled by a program that behaves as 
follows: 
 
The program considers X, the symbol on top of the stack, and a, the current input symbol. 
These two symbols, X and a determine the action of the parser. There are three 
possibilities. 
 

1. X =  a = $, the parser halts and annouces successful completion. 
 

2. X =  a ≠ $ the parser pops X off the stack and advances input pointer to next input 
symbol.  
 

3. If X is a nonterminal, the program consults entry M[X,a] of parsing table M.  
 
a. If the entry is a production M[X,a] = {X ?  UVW }, the parser replaces X on 

top of the stack by WVU  (with U on top).  As output, the parser just prints the 
production used:  X ?  UVW. However, any other code could be executed 
here.  
 

b. If M[X,a] =error, the parser calls an error recovery routine 
 
Example: let’s parse the input string 
 
    id+id∗id 
 
using the non-recursive LL(1) parser 



 
 

Stack Input Ouput 
$E id+id∗id$    
$E' T id+id∗id$ E ? TE' 
$E' T' F id+id∗id$ T ? FT' 
$E'T'  id id+id∗id$ F ?  id 
$E' T' +id∗ id$   
$E' +id∗ id$ T' ? ε  
$E' T + +id∗ id$ E' ?  +TE' 
$E' T id∗ id$     
$E' T' F id∗ id$ T ? FT' 
$E' T'  id id∗ id$ F ?  id 
$E' T' ∗id$   
$E' T' F ∗ ∗id$ T ?  ∗FT' 
$E' T' F id$   
$E'T'  id id$ F ?  id 
$E' T' $     
$E' $ T' ? ε  
$ $ E' ? ε  

 
 



LLeeccttuurree  1177  

Note that productions output are tracing out a lefmost derivation. The grammar symbols 
on the stack make up left-sentential forms. 
 
LL(1) Table Construction 

Top-down parsing expands a parse tree from the start symbol to the leaves. It always 
expand the leftmost non-terminal. Consider the state 
 
  S ? ∗ βAγ 
 
with b the next token and we are trying to match βbγ. There are two possibilities 
 

1. b belongs to an expansion of A.  
Any A ?  α can be used if b can start a string derived from α. In this case we say 
that b ∈ FIRST(α ) 
 

2. b does not belong to an expansion of A . Expansion of A  is empty, i.e., A ?  ε   
and b belongs an expansion of  γ , e.g., bω. which means that b can appear after A  
in a derivation of the form  S ? ∗ βAbω. We say that b ∈ FOLLOW(A).  

 
 
Any A ?  α can be used if α  expands to ε. We say that ε  ∈ FIRST(A) in this case. 
 
Definition 
 
 FIRST(X) =  { b | X ? ∗  ba }  ∪ { ε | X ? ∗  ε } 
 
 



LLeeccttuurree  1188  

Computing FIRST Sets 

Here is the algorithm for computing the FIRST sets.  
 
1. For all terminal symbols b, 
 
 FIRST(b) = {b} 
 
2. For all productions:  X ?  A1... An 

 
Add FIRST(A 1) − {ε} to FIRST(X), stop if ε ∉FIRST(A1) 
Add FIRST(A 2) − {ε} to FIRST(X), stop if ε ∉FIRST(A2) 
..... 
Add FIRST(A n) − {ε} to FIRST(X), stop if ε ∉FIRST(A n) 
Add ε to FIRST(X) 

 
This strategy is encoded in the following procedure 
 

for each a ∈ ( T ∪ ε ) 
 FIRST(a) ?  {a} 
for each A ∈  NT 
 FIRST(A) ?  Ø 
while ( FIRST sets are still changing) 
 for each A ?  β1 β2... βk ∈ P 
  FIRST(A) ? FIRST(A) ∪ (FIRST(β1) – {ε})  
  i ? 1 
  while ( ε ∈ FIRST(β i) and i = k-1 ) 
    FIRST(A) ? FIRST(A) ∪ (FIRST(β i+1) – {ε})  
    i ?  i+1 
  if (i == k and ε ∈ FIRST (βk) 
     FIRST(A) ? FIRST(A) ∪ {ε} 

 
Example : consider the expression grammar again 
 

1 E ?  T  E'  
2 E' ?  + T E'  
3     | ε 
4 T ?  F  T'  
5 T' ?  * F  T'  
6     | ε 
7 F ?  ( E  ) 
8     | Id 

 



 FIRST(id) = { id }  
 FIRST('(' ) = { ( } 
 FIRST(‘+' ) = { + } 
 

FIRST(E ) = {FIRST(T ) − {ε} } 
FIRST(T ) = {FIRST(F ) − {ε} } 
FIRST(F ) = {FIRST( '(') − {ε} } = { ( } 

 
FIRST(F ) =  { '(' } + {FIRST( id ) − {ε} } = { ( , id} 
 
FIRST(E' ) = { +, ε } 
FIRST(T' ) = { ∗, ε } 

 
Thus,  

FIRST(E ) =  FIRST(T ) = FIRST(F ) = { (, id } 
FIRST(E' ) = { +, ε } 
FIRST(T' ) = { ∗, ε } 

 
FOLLOW Sets 

Definition: 
 

FOLLOW(X) = { b | S ? ∗  βXbω} 
 
Computing FOLLOW Sets: 
 

1. Add $ to FOLLOW(S) where S is the start non-terminal. 
 

2. If there is a production A ?  αBβ , then everything in FIRST(β) – {ε} is in 
FOLLOW(B).  
 

3. If there is a production A ?  αB, or A ?  αBβ , where in ε ∈ FIRST(β) 
(i.e., β  ? ∗  ε), then everything in FOLLOW(A) is in FOLLOW(B) 

 



The following procedure encodes this strategy.  
 
for each A ∈  NT 
 FOLLOW(A) ?  Ø 
FOLLOW(S) ?  {$} 
while ( FOLLOW sets are still changing) 
       for each A ?  β1 β2... βk ∈ P 
  FOLLOW(βk) ? FOLLOW(βk) ∪ FOLLOW(A)  
  T ?  FOLLOW(A) 
  for i ?  k downto 2 
    if ( ε ∈ FIRST (β i)  ) 
        FOLLOW(β i-1) ? FOLLOW(β i-1) ∪  (FIRST(β i) – {ε})  ∪ T  
    else 
        FOLLOW(β i-1) ? FOLLOW(β i-1) ∪FIRST(β i) 
        T ?  Ø 
 
Let’s apply the algorithm to the expression grammar. 
 
Put $ in FOLLOW(E ). By rule (2) applied to production  ?  ( E  ), ‘)’ is also in 
FOLLOW(E ). Thus, FOLLOW(E ) = { ), $}. By rule (3) applied to production  
E ? T E' , $ and ‘)’ are in FOLLOW(E' ). Thus, FOLLOW(E ) =  FOLLOW (E' )  
= {  ), $ }. Similarly, FOLLOW(T ) =  FOLLOW (T' ) = { +, ), $ } and 
FOLLOW(F )  = { +, ∗, ), $ } 
 
 



Sohail Aslam  Compiler Construction Notes Set:2-1 

LLeeccttuurree  1199  

 
LL(1) Table Construction 

Here now is the algorithm to construct a predictive parsing table. 
 
1. For each production A  ?  α   
 

1. for each terminal a in FIRST(α), add A  ?  α to M[A,a]. 
 

2. If ε  is in FIRST(α), add A  ?  α  to M[A,b] for each terminal b in FOLLOW(A). If ε  
is in FIRST(α), and $ is in FOLLOW(A), add A  ?  α to M[A,$]. 

 
2. Make each undefined entry of M be error. 
 
Let us apply the algorithm to the expression grammar. Since   FIRST(TE ') = FIRST(T ) 
= { (, id }, the production E ? TE'  cause M[E,(] and M[E,id] to get E ? TE'. The 
production E' ?  +TE'  causes M[E',+] to get E' ? +TE'.  The production E' ?  ε  causes 
M[E',)] and M[E',$] to get E' ?  ε since FOLLOW (E' ) = { ), $ }. And so on. The final 
parsing table produced is: 
 

 id + * ( ) $ 
E E ? TE'     E ? TE'   
E'   E' ?    +TE'     E' ?  ε  E' ?  ε  

T T ? FT'     T ? FT'   
T'   T' ?  ε  T ? *FT'   T' ?  ε  T' ?  ε  
F F ?  id     F ? (E )   

 
 
Left Factoring 

Consider the grammar 
 

E ?  T + E  |  T  
T ?   int  |  int∗ T  |  (E) 
 

It is impossible to predict because for T, two productions start with int. For E, it is not 
clear how to predict; the two productions start with the non-terminal T.  A grammar must 
be left factored before use for predictive parsing. The procedure to left-factor a grammar 
is as follows: 
 



Sohail Aslam  Compiler Construction Notes Set:2-2 

If α  ≠  ε, replace all productions 
 
 A  ?  αβ1 | αβ2 | .... | αβn | γ 
with 
 A  ?  α Z | γ 
 Z ?  β1| β2| .... | βn 

 

where Z is a new non-terminal 
 
A graphical explanation: 
 

 
 
 
Example: consider following fragment of expression grammar 
 

Factor ?    id 
    |  id [ ExprList ] 
    |   id ( ExprList ) 
 
After left factoring, the grammar becomes 
 
 Factor  ?   id Args 
 Args   ?   [ ExprList ] 
     |    ( ExprList ) 
     |    ε  
 
Given a CFG that does not meet the LL(1) condition, it is undecidable whether or not an 
equivalent LL(1) grammar exists.  
 

 

A αβ2 

αβ1 

αβ3 

β2 

β1 

β3 

αZ A 



 

Sohail Aslam  Compiler Construction Notes Set:3-63 

63

LLeeccttuurree  2200  
Bottom-up Parsing 

Bottom-up parsing is more general than top-down parsing. Bottom-up parsers handle a 
large class of grammars. It is the preferred method in practice. It is also called LR 
parsing; L means that tokens are read left to right and R means that the parser constructs a 
rightmost derivation. LR parsers do not need left-factored grammars. LR parsers can 
handle left-recursive grammars. 
 
LR parsing reduces a string to the start symbol by inverting productions.A derivation 
consists of a series of rewrite steps 
 
  S ⇒ γ0 ⇒ γ1 ⇒ ... ⇒ γn-1  
  ⇒ γn ⇒ sentence 
 
Each γi is a sentential form. If γ contains only terminals, γ is a sentence in L(G). If γ 
contains ≥ 1 nonterminals, γ is a sentential form. A bottom-up parser builds a derivation 
by working from input sentence back towards the start symbol S. 
 
Consider the grammar 
 
S → aABe 
A  →  Abc | b 
B  → d 
 
The sentence abbcde can be reduced to S: 
 
  abbcde 
  aAbcde 
  aAde 
  aABe 
  S 
 
These reductions, in fact, trace out the following right-most derivation in reverse: 
  
S  ⇒ aABe  
 ⇒ aAde 
 ⇒ aAbcde 
 ⇒ abbcde 
 
 
 
S ⇒ aBy ⇒ aγy ⇒ xy  
 



 

Sohail Aslam  Compiler Construction Notes Set:3-64 

64

 

 
 
Consider the grammar 
 
  1.  E    →  E + (E)  
  2.       |    int 
 
The bottom-up parse of the string int + (int) + (int) would be 
 
 

int + (int) + (int) 
E + (int) + (int) 
E + (E) + (int) 
E + (int) 
E + (E) 
E 

 
The consequence of an LR parser tracing a rightmost derivation in reverse is that given 
αβγ be a step of a bottom-up parse, assuming that next reduction is A → β τhen γ is a 
string of terminals. The reason is that αAγ → αβγ is a step in a rightmost derivation. This 
observation provides a strategy for building bottom up parsers: split the input string into 
two substrings. Right substring (a string of terminals) is as yet unexamined by parser and 
left substring has terminals and non-terminals. The dividing point is marked by a ► (the 
► is not part of the string). Initially, all input is unexamined: ►x1 x1 . . . xn.  
 
Shift-Reduce Parsing 

Bottom-up parsing uses only two kinds of actions: 
 
 1. Shift 
 2. Reduce 
 

α 

x y

B 

S 

γ 

rule: B → γ 

Terminals only 



 

Sohail Aslam  Compiler Construction Notes Set:3-65 

65

Shift moves ► one place to the right which shifts a terminal to the left string 
 
 E + (► int) ⇒ E + (int ►) 
 
In the reduce action, the parser applies an inverse production at the right end of the left 
string. If E → E + (E) is a production, then 
 
  E + ( E+(E)►) ⇒ E + ( E ►) 
 
Shift-Reduce Example 
 

►int + (int) + (int) $ shift 
int ► + (int) + (int) $ reduce E → int 
E ► + (int) + (int) $ shift 3 times 
E + (int ►) + (int) $ reduce E → int 
E + (E ►) + (int) $ shift 
E + (E) ► + (int) $ reduce E → E+(E) 
E ► + (int) $ shift 3 times 
E + (int ►) $ reduce E → int 
E + (E ►) $ shift 
E + (E) ► $ red E → E+(E) 
E ► $ accept 

 

    
 



 

Sohail Aslam  Compiler Construction Notes Set:3-65 

65

LLeeccttuurree  2211  
Shift-Reduce: The Stack 

A stack can be used to hold the content of the left string. The Top of the stack is marked 
by the ► symbol. The shift action pushes a terminal on the stack. Reduce pops zero or 
more symbols from the stack (production rhs) and pushes a non-terminal on the stack 
(production lhs) 
 
Discovering Handles 

A bottom-up parser builds the parse tree starting with its leaves and working toward its 
root. The upper edge of this partially constructed parse tree is called its upper frontier. At 
each step, the parser looks for a section of the upper frontier that matches right-hand side 
of some production. When it finds a match, the parser builds a new tree node with the 
production’s left-hand non-terminal thus extending the frontier upwards towards the root. 
The critical step is developing an efficient mechanism that finds matches along the tree’s 
current frontier. 
 
Formally, the parser must find some substring β, of the upper frontier where 
 

1. β is the right-hand side of some production A → β, and 
2. A → β is one step in right-most derivation of input stream 

 
We can represent each potential match as a pair 〈A→β,k〉, where k is the position on the 
tree’s current frontier of the right-end of β. The pair 〈A→β,k〉, is called the handle of the 
bottom-up parse. 
 
Handle Pruning 

A bottom-up parser operates by repeatedly locating handles on the frontier of the partial 
parse tree and performing reductions that they specify. The bottom-up parser uses a stack 
to hold the frontier. The stack simplifies the parsing algorithm in two ways. 
 
First, the stack trivializes the problem of managing space for the frontier. To extend the 
frontier, the parser simply pushes the current input token onto the top of the stack. 
Second, the stack ensures that all handles occur with their right end at the top of the 
stack. This eliminates the need to represent handle’s position. 
 



 

Sohail Aslam  Compiler Construction Notes Set:3-66 

66

Shift-Reduce Parsing Algorithm 

push $ onto stack 
sym ← nextToken() 
repeat until (sym == $ and the stack contains exactly Goal on top of $) 
 if a handle for A → β on top of stack 
  pop |β| symbols off the stack 
  push A onto the stack 
 else if (sym ≠ $ )  
  push sym onto stack 
  sym ← nextToken() 
 else /* no handle, no input */ 
  report error and halt  

    
 



 

Sohail Aslam  Compiler Construction Notes Set:3-67 

67

LLeeccttuurree  2222  
Example: here is the bottom-up parser’s action when it parses the expression grammar 
sentence 
     x – 2 × y 
 
(tokenized as id – num * id)  
 
  word Stack Handle Action 
1 id ► - none - shift 
2 – id ► 〈Factor → id,1〉 reduce 
3 – Factor ► 〈Term → Factor,1〉 reduce 
4 – Term ► 〈Expr → Term,1〉 reduce 
5 – Expr ► - none - shift 
6 num Expr – ► - none - shift 
7 × Expr – num ► 〈Factor → num,3〉 reduce 
8 × Expr – Factor ► 〈Term → Factor,3〉 shift 
9 × Expr – Term ► - none - shift 
10 id Expr – Term × ► - none - shift 
11 $ Expr – Term × id► 〈Factor → id,5〉 reduce 
12 $ Expr–Term × Factor► 〈Term→Term×Factor,5〉 reduce 
13 $ Expr – Term ► 〈Expr → Expr – Term,3〉 reduce 
14 $ Expr ► 〈Goal → Expr,1〉 reduce 
15 $ Goal - none - accept 
 
 
Handles 

The handle-finding mechanism is the key to efficient bottom-up parsing. As it process an 
input string, the parser must find and track all potential handles. For example, every legal 
input eventually reduces the entire frontier to grammar’s goal symbol. Thus,  
〈Goal → Expr,1〉 is a potential handle at the start of every parse. As the parser builds a 
derivation, it discovers other handles. At each step, the set of potential handles represent 
different suffixes that lead to a reduction. Each potential handle represent a string of 
grammar symbols that, if seen, would complete the right-hand side of some production.  



 

Sohail Aslam  Compiler Construction Notes Set:3-68 

68

For the bottom-up parse of the expression grammar string, we can represent the potential 
handles that the shift-reduce parser should track. Using the placeholder • to represent top 
of the stack, there are nine handles: 
 

 Handles 
1 〈Factor → id •〉 
2 〈Term → Factor•〉 
3 〈Expr → Term •〉 
4 〈Factor → num•〉 
5 〈Term → Factor•〉 
6 〈Factor → id •〉 
7 〈Term → Term × Factor •〉 
8 〈Expr → Expr – Term •〉 
9 〈Goal → Expr •〉 

 
 
This notation shows that the second and fifth handles are identical, as are first and sixth. 
It also create a way to represent the potential of discovering a handle in future. Consider 
the parser’s state in step 6: The parser has recognized Expr –. Using the stack-relative 
notation, we can represent the parser’s state as Expr → Expr – • Term. The parser has 
already recognized an Expr and a –. If the parser reaches a state where it shifts a Term 
on top of Expr and  –, it will complete the handle Expr → Expr – Term •. How many 
potential handles must the parser recognize? The right-hand side of each production can 
have a placeholder at its start, at its end and between any two consecutive symbols. 
 

Expr → • Expr –Term 
Expr → Expr • – Term 
Expr → Expr – •Term 
Expr → Expr – Term • 

 
If the right-hand side of a production has k symbols, it has k +1 placeholder positions. 
 
 
 



Sohail Aslam  Compiler Construction Notes Set:2-1 

LLeeccttuurree  2233  
Handles 

The number of potential handles for the grammar is simply the sum of the lengths of the 
right-hand side of all the productions. The number of complete handles is simply the 
number of productions. These two facts lead to the critical insight behind LR parsers: 
 

A given grammar generates a finite set of handles (and potential handles) 
 that the parser must recognize 

 
However, it is not a simple matter of putting the placeholder in right-hand side to 
generate handles. The parser needs to recognize the correct handle by different right 
contexts. Consider the parser’s action at step 9.  
 

  word Stack Handle Action 

9 × Expr – Term ► - none - shift 

10 id Expr – Term × ► - none - shift 

11 $ Expr – Term × id► 〈Factor → id,5〉 reduce 

12 $ Expr–Term × Factor► 〈Term→Term×Factor,5〉 reduce 

13 $ Expr – Term ► 〈Expr → Expr – Term,3〉 reduce 
14 $ Expr ► 〈Goal → Expr,1〉 reduce 
15 $ Goal - none - accept 

 
The frontier is Expr – Term, suggesting a handle 〈Expr → Expr – Term〉•. However, the 
parser decides to extend the frontier by shifting × on to the stack rather than reducing 
frontier to Expr. Clearly, this the correct move for the parser. No potential handle 
contains Expr followed by ×. At step 9, the set of potential handles is 
 
 〈Expr → Expr – Term•〉 
 〈Term →Term• × Factor〉 
 〈Term →Term• /  Factor 〉 
 
The next input symbol clearly matches the second choice. The parser needs a basis for 
deciding between first (reduce) and second (shift) choices: 
 
 〈Expr → Expr – Term•〉 
 〈Term →Term• × Factor〉 
 
This requires more context than the parser has in the frontier (stack). To choose between 
reducing and shifting, the parser must recognize which symbols can occur to the right of 
Expr and Term in valid phrases. 



Sohail Aslam  Compiler Construction Notes Set:2-2 

LR(1) Parsers 

The LR(1) parsers can recognize precisely those languages in which one-symbol 
lookahead suffices to determine whether to shift or reduce. The LR(1) construction 
algorithm builds a handle-recognizing DFA. The parsing algorithm uses this DFA to 
recognize handles and potential handles on the parse stack 
 
Parsing DFA 

 

 
 
In order to remember the state the DFA goes into on a symbol, the parser stores the DFA 
state in the stack along with the symbol. Initial entry in the stack will be ‘<dummy,0>’.  
 
Parsers represent DFA as a 2D table. The rows correspond to DFA states and columns 
correspond to terminals and non-terminals. The columns with terminals and the rows 
form the action table while the columns with non-terminals and rows are called the      
goto table. It is customary to show these tables together. 
 
Building LR(1) Tables 

To construct Action and Goto tables, the LR(1) parser generator builds a model of 
handle-recognizing DFA. The model is used to fill in the tables. The LR(1)-table 
construction needs a concrete representation for the handles and their associated 
lookahead symbols. We call this representation an LR(1) item. 

    
 

0 

10 

1

2 3 4

7 
6 5

11

8 9

int

E

E 

+ (

E

) 

+ 

int

int(

+ 

)

Reduce:
E → int  
on $,+ 

accept  
on $ 

Reduce: 
E → E+(E)  
on ),+ 

Reduce: 
E → E+(E)  
on ),+ 



 

Sohail Aslam  Compiler Construction Notes Set:2-1 

1

LLeeccttuurree  2244  
An LR(1) item is a pair [X → α•β, a]  where X → αβ is a production and a∈T 
(terminals)  is look-ahead symbol. The model uses a set of LR(1) items to represent each 
parser state. The model is called the canonical collection (CC) of set of LR(1) items. 
 
Canonical Collection 

Each set in CC  represents a state in the eventual parser DFA. The construction of CC 
begins by building a model of parser’s initial state. The initial state consists of the set of 
LR(1) items that represent the parser’s initial state, along with any items that must also 
hold in the initial state. To simplify the task of building this initial state, the construction 
requires that the grammar have a unique goal symbol. The convention is to add a new 
start symbol S to grammar and a production  
 
            S → E 
 
This leads to the augmented grammar 
 
 S → E  
 E → E + (E) | int 
 
The Closure Procedure 

The item [S → •E, $] describes the parser’s initial state. It represents a configuration in 
which recognizing S followed by $ would be a valid parse. This item, i.e., [S → •E, $] 
becomes the core of the first state in CC, labeled I0. If the grammar has several distinct 
productions for the start symbol, each of them generates an item in this initial core of I0. 
The procedure closure does this. 
 

closure(s) = 
repeat 
  for each [X → α•Yβ, a] ∈ s 
   for each production Y → α  
    for each b ∈ FIRST(βa)  
 s ← s ∪ [Y → • γ, b]  
 until s is unchanged 

 
Let’s apply this procedure to the augmented grammar.  
 
The first set is  I0 = closure({[S → •E, $] }). Equating the terms in the procedure,  
s = {[S → •E, $]}, [X → α •Yβ, a]  ⇔  [S → •E, $], X = S, α  = ε, Y = E,  
β = ε, a = $, Y → γ ⇔E → E + (E) and  E → int FIRST(βa) = FIRST($) = $.  
 



 

Sohail Aslam  Compiler Construction Notes Set:2-2 

2

This leads to expansion of s. 
 
s = { [S → •E, $] } ∪ { [E → •E + (E), $] } ∪ { [E → •int, $] } 
  = { [S → •E, $] , [E → •E + (E), $] ,  [E → •int, $] } 
 
The set s changed so we repeat. The item [S → •E, $] is already processed. The for loop 
considers [X → α•Yβ, a] ⇔ [E→•E+(E),$], which leads to the match up X = E,  
α= ε, Y = E, β = +(E), a = $, Y → γ ⇔ E → E + (E),  ⇔ E → int 
FIRST(βa) = FIRST(+(E)$) = +. The set s is extended 
 
    s = s ∪ { [E → •E+(E), +] }   ∪ { [E → •int, +]  } 
 
 



 

Sohail Aslam  Compiler Construction Notes Set:2-1 

1

LLeeccttuurree  2255  
The set s changed so the repeat loop is executed again. This time, however, the item  
[E → •int, $/+] does not yield any more items because the dot is followed by the 
terminal int. The first set of items is 
 
            I0  = { 
  [S → •E, $], 
  [E → •E+(E), $/+],  
  [E → •int, $/+]  
         } 
 
Let’s consider the rationale behind the Closure procedure. If [A → β•Cδ,a] ∈ s, then one 
potential completion for the left context is to find a string that reduces to C, followed by 
δa. This completion should cause a reduction to A, since it fills out the production’s 
right-hand side (Cδ), and follows it with a valid look-ahead symbol. For a production  
C → γ, closure must insert '•' before γ and add appropriate look-ahead symbols – all 
terminals that can appear as the initial symbol in δa.  This includes every terminal in 
FIRST(δ). If ε ∈ FIRST(δ), it also includes a, thus FIRST(δa) in the algorithm. 
 
The goto Procedure 

The second critical step in the construction is to derive other parser states from I0. To 
accomplish this, we compute, for each state Ii and each grammar symbol y, the state that 
would arise if the parser recognized a y while in state Ii. A state s that contains  
[X → α • yβ, b] has a transition (goto) labeled y to the state that contains the items  
goto(s, y) where y can be terminal or a non-terminal. 
 

goto(s, y) 
 m ← { } 
 for each item [X → α •yβ, b] ∈ s 
   m ← m ∪ {[X → α y•β, b]}  
 return closure(m) 

 
Finite Automaton of Items 

The LR(1) items are used as the states of a finite automaton (FA) that maintains 
information about the parsing stack and progress of a shift-reduce parser.  The FA will 
start out as a nondeterministic finite automaton (NFA). A DFA can be constructed from 
this NFA using the subset construction, similar to one we used for lexical analysis.  
 
Consider the NFA of LR(0) items, i.e., no look-ahead. What are the transitions of the 
NFA of LR(0) items? Consider the item A→ α•γ. Suppose γ begins with symbol X which 
may be a terminal (token) or non-terminal. The item can be written as A→ α•Xη. 



 

Sohail Aslam  Compiler Construction Notes Set:2-2 

2

Then there is a transition on symbol X for state represented by item A→ α•Xη to state 
represented by item A→ αX•η. If X is a terminal, then this transition corresponds to a 
shift of X from input to top of parse stack.  
 

 
 
 
If X is a non-terminal, then the interpretation of this transition is more complex because 
non-terminals do not appear in input. In fact, such a transition will correspond to pushing 
of X onto the stack during the parse.  But this can only occur during a reduction by the 
production X → β. Such a reduction must be preceded by recognition of a β. The state 
given by X → •β represents the beginning of this process (dot indicates we are about to 
recognize β). Then for every item A→ α•Xη we must add an ε-transition for every 
production X → β.  
 

 
 

    
 

A → 
α•Xη 

X → • β 
ε 

A → α•Xη A → αX• η 
X



 

Sohail Aslam  Compiler Construction Notes Set:2-1 

1

LLeeccttuurree  2266  
 
The initial DFA state I0 we computed is the ε-closure of the set consisting of item  
 
        S → •E 
 
Recall the stage in the closure 
 
 s = { [S → •E, $] ,  [E → •E + (E), $] , [E → •int, $] } 
 
The NFA states and transitions required are 
 
 

 
 
Algorithm:  
  Construction of collection of canonical sets of LR(1) items. 
Input: 
  An augmented grammar G'  
Output: 
  Collection of canonical (CC) sets of LR(1) 

[S → •E,$] 

ε 

[E → •E+(E),$] 

[E → •int,$] 
ε 



 

Sohail Aslam  Compiler Construction Notes Set:2-2 

2

 
CC(G') 
I0 ← {closure([S' → •S, $])} 
CC ← { I0 } 
repeat 
 for each unmarked set Ij ∈ CC 
  mark Ij as processed 

for each X following • in an item in Ij 
  Ik ← goto(Ij,X) 
  if Ik ∉ CC then 
   CC ← CC ∪ Ik  
   record transition from Ij to Ik on X 
 until CC is not changing 
 
We use the algorithm to compute the sets of LR(1) items for the augmented grammar G' 
 

S → E 
E → E + (E) | int 
 

We computed I0; we now compute the sets goto(I0,X) for various values of X. X can be E, 
int, +, ( and ) . 
 
I1 = goto(I0,int): invokes closure({[E → int•,$/+]}). No additional closure is possible 
since the dot is at the right end of the production. Thus I1 = {[E → int•, $/+]} and we 
have the transition from I0 to I1 on int 
 
 
I2 = goto(I0,E) 
 m ← {} 
 for each [X → �•E�, b] ∈ I0 
   ⇔[S → •E, $]  
   ⇔[E → •E+(E), $/+]  
 
 m = m ∪ {[S → E•, $]} ∪ {[E → E•+(E), $/+]} 
 return closure(m) 
 
 
No further closure for the first item because • is at the end 
In the second item, a terminal + appears after • so no further closure is possible. Thus 
I2 = {[S → E•, $],  [E → E• +(E), $/+]}. 
 
We repeat the process in similar fashion.  
 
I3 = goto(I2,+) =  {[E → E + • (E), $/+]} 



 

Sohail Aslam  Compiler Construction Notes Set:2-3 

3

 
I4 = goto(I3,( )  = { [E → E + (• E), $/+], [E → • E + (E), )/+], [E → • int, 
)/+]} 
 
I3 = goto(I2,+) = {[E → E + • (E), $/+]} 
 
I4 = goto(I3,( )  = {[E → E + (• E), $/+], [E → • E + (E), )/+], [E → • int, 
)/+]} 
 
I5 = goto(I4, int) = { [E → int •, )/+] } 
 
I6 = goto(I4, E ) = { [E → E + (E •), $/+], [E → E • + (E), )/+] } 
 
and so on. The sets and transitions so far yield the DFA 
 

 
 

    
 

0 

reduce E → int on ),+ 

int

E 
+

( 

E

int

reduce: E → int on $,+ 

accept on $ 

S→ •E, $ 
E→ •E+(E), $/+ 
E→ •int, $/+ 

1 E→ int •, $/+ 

2 S→ E•, $ 
E→ E• +(E), $/+ 3 E→ E+•(E), $/+ 

4 E→ E+(•E), $/+ 
E→ •E+(E), )/+ 
E→ •int, )/+ 

6 E→ E+(•E), $/+ 
E→ •E+(E), )/+ 
E→ •int, )/+ 

5E→ int •, )/+ 



 

Sohail Aslam  Compiler Construction Notes Set:2-1 

1

LLeeccttuurree  2277  
LR Table Construction 

Construct CC = {I0,I1,I2, ... , In}, for G'. State i of the parser is constructed from the set Ii 
The parsing actions for state i are determined as follows: 
 
for each item Ii ∈ CC 
  if [A → α•a β, b] ∈ Ii and   goto(Ii, a) == Ij  then  
 Action[i,a] ← “shift j”  
  else if [A → �•, a] ∈ Ii and  A ≠ S' then  
  Action[i,a] ← “reduce A → α ” 
  else if [S' → S•, $] ∈ Ii then 
  Action[i,a] ← “accept” 
end for 
 
// the goto table 
for each non-terminal A ∈ G 
  if  goto(Ii, A) = Ij then  
 Goto[i, A] ← j  
 
The initial state is the one that contains the item  [S' → •S, $]. All remaining entries are 
marked “error”. Let us go through an example and construct the LR table for the 
augmented grammar 
 

1. S' →  E 
2. E  →  T – E  
3. E  →  T 
4. T  →   F × T 
5. T  →   F 
6. F  →   id 

 
The FIRST sets we would need are 
 
 Symbol      FIRST 
   S'   { id } 
   E     { id }  
   T    { id }  
   F   { id }  
   id  { id } 
   ×  { × } 
   –  { – } 
 



 

Sohail Aslam  Compiler Construction Notes Set:2-2 

2

We construct the canonical  collection of set of LR(1) 
 
I0 = {closure([S' → •E, $])} 
 { 

[S' → •E, $],  
[E → •T – E, $], [E → •T, $],  
[T → •F×T, $], [T → •F, $] 
[T → •F×T, –], [T → •F, –],  
[F → •id, $], [F → •id, –],  
[F → •id, ×]   

} 
 
I1 = {goto(I0, E)} = {[S' → E•, $] } 
 
I2 = {goto(I0, T)} = {[E → T• – E,$], [E →T•,$]} 
 
I3 = {goto(I0, F)} =   { 
 [T → F• ×T, $],  
 [T → F•, $], 
 [T → F• ×T, –],  
 [T → F•, –] } 
 
I4 = {goto(I0, id)} =  { 
 [F → id •, $],   
 [F → id •, –],  
 [F → id •, ×]  } 
 
I5 = {goto(I2, –)} =  { 

[E →T– • E, $], [E → •T–E, $], [E → •T, $],  
[T → •F×T, $], [T → •F×T, –], [T → •F, $], [T → •F, –],  
[F → •id, $],  [F → •id, –], [F → •id, ×]  } 

 
I6 = {goto(I3, ×)} =   { 

[T → F× •T, $], [T → F× •T, –], 
 [T → •F×T, $], [T → •F×T, –], [T → •F, $], [T → •F, –],  
 [F → •id, $], [F → •id, –],  [F → •id, ×]  } 
 
I7 = {goto(I5, E)} =  {[E → T – E •, $] } 
 
I2 = {goto(I5, T)}, i.e., goto(I5, T) yields the same set as I2. 
 
I3 = {goto(I5, F)} 
 
I4 = {goto(I5, id)} 
 



 

Sohail Aslam  Compiler Construction Notes Set:2-3 

3

 
I8 = {goto(I6, T)} = { [T → F×T •, $], [T → F×T •, –] } 
 
I3 = {goto(I6, F)}  
 
I4 = {goto(I6, id)}  
 
We now filling the LR(1) table by applying the rules. 
 
Apply 
1.  if [A → α•aβ, b] ∈ Ii and goto(Ii, a) = Ij  

then set Action[i,a] ← “shift j”. // here, a is a terminal. 
 
 
I0={[S' → •E,$],[E →•T– E, $], 
  [E → •T, $], [T → •F×T, $], 
 [T → •F×T, –], [T → •F, $], 
 [T → •F, –], [F → •id, $],  
 [F → •id, –], [F → •id, ×]  } 
   goto(I0, id) = I4  
    ⇒ Action[0, id] ← shift 4 
 
I2= {[E → T• – E, $], [E →T•,$]}, goto(I2, –) = I5  

⇒ Action[2, –] ← shift 5 
 
I3={[T → F• ×T, $], [T → F•, $],[T → F• ×T, –], [T → F•, –]}, goto(I3, ×) = I6 

⇒ Action[3, ×] ← shift 6 
 
goto(I5, id) = I4 

⇒ Action[5, id] ← shift 4 
 
goto(I6, id) = I4  

⇒ Action[6, id] ← shift 4 
 
 
Apply 
2. if [A → α•, a] ∈ Ii and A ≠ S' then set action[i,a] to “reduce A → α” 
 
 
I2 = {  [E → T• – E, $], [E →T•,$] }  

⇒ Action[2, $] ← reduce 3 
 
I3 = {[T → F• ×T, $], [T → F•, $], [T → F• ×T, –], [T → F•, –] } 

⇒ Action[3, $] ← reduce 5 
⇒ Action[3, –] ← reduce 5 



 

Sohail Aslam  Compiler Construction Notes Set:2-4 

4

 
I4 = {[F → id•, $],  [F → id•, –], [F → id•, ×]  } 

⇒ Action[4, $] ← reduce 6 
⇒ Action[4, –] ← reduce 6 
⇒ Action[4, ×] ← reduce 6 

 
I7 = {[E → T – E•, $] } 

⇒ Action[7, $] ← reduce 2 
 

I8 = { [T → F×T•, $], [T → F×T•, –] } 
⇒ Action[8, $] ← reduce 4 
⇒ Action[8, –] ← reduce 4 

 
Apply 
3. if [S' → S•, $] ∈ Ii  

then set action[i,$] to “accept” 
 
I1 = {[S' → E•, $] } 

⇒ Action[1, $] ← accept 
 
 
 
Apply 
for each non-terminal A ∈ G 

if goto(Ii, A) = Ij then  
  goto[i, A] ← j.  
 
goto(I0, E) = I1 ⇒ goto[0,E] ← 1 
goto(I0, T) = I2 ⇒ goto[0,T] ← 2 
goto(I0, F) = I3 ⇒ goto[0,F] ← 3 
goto(I5, E) = I7 ⇒ goto[5,E] ← 7 
goto(I5, T) = I2 ⇒ goto[5,T] ← 2 
goto(I5, F) = I3 ⇒ goto[5,F] ← 3 
goto(I6, T) = I8 ⇒ goto[6,T] ← 8 
goto(I6, F) = I3 ⇒ goto[6,F] ← 3 
 



 

Sohail Aslam  Compiler Construction Notes Set:2-5 

5

The final table we get is 
 

  Action Goto 
 id – × $ E T F 
0 s4    1 2 3 
1    acc    
2  s5  r3    
3  r5 s6 r5    
4  r6 r6 r6    
5 s4    7 2 3 
6 s4     8 3 
7    r2    
8  r4  r4    

 
Let us parse the expression x – y × z using the LR(1) table. The scanner will encode the 
input string as  id – id × id $ where $ is the EOF marker 
 

Stack Input   
¤0 id – id × id $s4 
¤0id4 – id × id $r6 F→ id 
¤0F3 – id × id $r5 T→ F 
¤0T2 – id × id $s5 
¤0T2–5 id × id $s4 
¤0T2–5id4 × id $r6 F→ id 
¤0T2–5F3 × id $s6 
¤0T2–5F3×6 id $s4 
¤0T2–5F3×6id4 $r6 F→ id 
¤0T2–5F3×6F3 $r5 T→ F 
¤0T2–5F3×6T8 $r4 T→ F×T 
¤0T2–5T2 $r3 E→T 
¤0T2 –5E7 $r2 E→T–E 
¤0E1 $accept 

    
 



 

Sohail Aslam  Compiler Construction Notes Set:2-1 

1

LLeeccttuurree  2288  
 
LR(1) Skeleton Parser 

stack.push(dummy); stack.push(0); 
done = false; token = scanner.next(); 
while (!done) { 
 s = stack.top(); 
 if( Action[s,token] == “reduce A→β”) { 
  stack.pop(2×|β|);  
  s = stack.top();  
  stack.push(A); 
  stack.push(Goto[s,A]); 
 } 
 else if( Action[s,token] == “shift i”){ 
  stack.push(token); stack.push(i); 
 token = scanner.next();  
 } 
 else if(Action[s,token] == “accept” 
  && token == “$” ) 
  done = true; 
 else 
  report error and recover; 
} 
report success; 
 
Shift/Reduce Conflicts 

If a DFA states contains both [X → α•aβ, b] and [Y → γ•, a] 
Then on input “a” we could either shift into state [X → αa•β,b], or reduce with Y → γ. 
This is called a shift-reduce conflict. Typically, this is due to ambiguities in the grammar. 
The classic example of a shift-reduce conflict is the dangling else. Consider the grammar 
 

stmt  →  if E then stmt 
     | if E then stmt else stmt 
 
We will have DFA state containing 
 
  [stmt → if E then stmt•, else] 
  [stmt → if E then stmt •else stmt, x] 
 
If else follows, we can shift  
 
 [stmt → if E then stmt  else • stmt, x] 



 

Sohail Aslam  Compiler Construction Notes Set:2-2 

2

or reduce 
 
 [stmt → if E then stmt•, else] 
 
Typical action is shift so that else matches with most recent if. 

    
 



 

Sohail Aslam  Compiler Construction Notes Set:2-1 

1

LLeeccttuurree  2299  
Shift/Reduce Conflicts 

Consider the ambiguous grammar 
 
  E → E + E | E × E | int 
 
We will DFA state containg 
 
  [E → E × E•, +] 
  [E → E • + E, +] 
 
Again we have a shift/reduce conflict. We need to reduce because × has precedence  
over + 
 
Reduce/Reduce Conflicts 

If a DFA states contains both  [X → α •, a] and [Y → β •, a], then on input “a” we don’t 
know which production to reduce with. This is called a reduce-reduce conflict. Usually 
due to gross ambiguity in the grammar. 
 
LR(1) Table Size 

LR(1) parsing table for even a simple language can be extremely large with thousands of 
entries. It is possible to reduce the size of the table. Many states in the DFA are similar. 
 
The core of set of LR items is the set of first components without the lookahead  
terminals. For example the core of  the item  { [X → α•β, b], [Y → γ•δ, d] } is 
{ X → α•β, Y → γ•δ  }. Consider the LR(1) states 
 

{ [X → α •, a], [Y → β •, c] } 
{ [X → α •, b], [Y → β •, d] } 
 

They have the same core and can be merged. The merged state contains 
 
  { [X → α •, a/b], [Y → β •, c/d]} 
 
These are called the LALR(1) states. LALR(1) stands for LookAhead LR(1). This leads 
to tables that have 10 times fewer states than LR(1).  



 

Sohail Aslam  Compiler Construction Notes Set:2-2 

2

Here is the algorithm to generate LALR(1) DFA. 
 
Repeat until all states have distinct code 
  choose two distinct states with same core 
  merge states by creating a new one with the union of all the items 
  point edges from predecessors to new state 
  new state points to all the previous successors 
 
LALR languages are not natural. They are an efficiency hack on LR languages. Any 
reasonable programming language has a LALR(1) grammar. LALR(1) has become a 
standard for programming languages and for parser generators. 
 

    
 



 

Sohail Aslam  Compiler Construction Notes Set:2-1 

1

LLeeccttuurree  3300  
Parser Generators 

Parser generators exist for LL(1) and LALR(1) grammars.  For example, 
 

• LALR(1) - YACC, Bison, CUP 
• LL(1) – ANTLR 
• Recursive Descent - JavaCC 

 
YACC Parser Generator 

YACC – Yet Another Compiler Compiler, appeared in 1975 as a Unix application. The 
other companion application Lex appeared at the same time. These two greatly aided the 
construction of compilers and interpreters. The input to YACC consists of a specification 
text file. The structure of the file is 
 
definitions 
%% 
rules 
%% 
C/C++ functions 
 



 

Sohail Aslam  Compiler Construction Notes Set:2-2 

2

Here, for example, is the YACC file for a calculator 
 
%token NUMBER LPAREN RPAREN  
%token PLUS MINUS TIMES DIVIDE  
%% 
expr : expr PLUS expr 
   | expr MINUS expr 
   | expr TIMES expr 
   | expr DIVIDE expr 
   | LPAREN expr RPAREN 
   | MINUS expr 
   | NUMBER 
   ; 
%% 
 
The Flex input file for a calculator is 
 
%{ 
#include "y.tab.h" 
%} 
digit  [0-9] 
ws   [ \t\n]+ 
%% 
{ws}   ; 
{digit}+ {return NUMBER;} 
"+"   {return PLUS;} 
"*"   {return TIMES;} 
"/"   {return DIVIDE;} 
"–"   {return MINUS;} 
%% 
 
The following diagram outlines the process of building a parser with YACC and Lex. 
 

 
 

YACCexpr.y 

expr.l 

y.tab.c 

lex.yy.clex 

CC expr.exe
y.tab.h 



Sohail Aslam  Compiler Construction Notes Set:5-90 

LLeeccttuurree  3311  
Beyond Syntax 

These questions are part of context-sensitive analysis. Answers depend on values, not 
parts of speech. Answers may involve computation. 
 
These questions can be answered by using formal methods such as context-sensitive 
grammars and attribute grammars or by using ad-hoc techniques. 
 
One of the most popular is the use of attribute grammars. 
 
Attribute Grammars 

A CFG is augmented with a set of rules. Each symbol in the derivation has a set of values 
or attributes. Rules specify how to compute a value for each attribute 
 
Consider the grammar for signed binary numbers (SBN)  
 

Number → Sign List 
Sign   → +  – 
List   → List Bit | Bit 
Bit   → 01 

 
The string  “–1” can be derived as follows: 
 

Number → Sign List 
   →  – List 
   →  – Bit 
   →  – 1 
 
Similarly, the derivation for “-101” is 
 
Number  → Sign List 
   → Sign List Bit 
   → Sign List 1 
   → Sign List Bit 1 
   → Sign List 0 1 
   → Sign Bit 0 1 
   → Sign 1 0 1 
   →  – 1 0 1 
 



Sohail Aslam  Compiler Construction Notes Set:5-91 

For an attributed version of SBN, the following attributes are needed 
 

Symbol Attributes 
Number  val 
Sign  neg 
List  pos, val 
Bit  pos, val  

 
 
 
We will add rules to compute decimal value of a signed binary number 
 
 

Productions Attribution Rules 

Number → Sign List List.pos ← 0 
if Sign.neg then 
    Number.val ←  – List.val 
else Number.val ← List.val 

Sign → + Sign.neg ← false 
Sign →  –   Sign.neg ← true 
List0 → List1 Bit List1.pos ← List0.pos + 1 

Bit.pos ← List0.pos 
List0.val ← List1.val + Bit.val 

List  → Bit Bit.pos ← List.pos 
List.val ← Bit.val 

Bit → 0 Bit.val ← 0 
Bit → 1 Bit.val ← 2Bit.pos 

 
Attributes are associated with nodes in parse tree. Rules are value assignments associated 
with productions. Rules and parse tree define an attribute dependence graph which must 
be acyclic.  
 



Sohail Aslam  Compiler Construction Notes Set:5-92 

 
Attributes are distinguished based on the direction of value flow. Attributes of a node 
whose values are defined wholly in terms of attributes of node’s children and from 
constants are called synthesized attributes. Values used to compute synthesized attributes 
flow bottom-up in the parse tree. 
 
Attributes whose values are defined in terms of a node’s own attributes, node’s siblings 
and node’s parent are called inherited attributes. Values flow top-down and laterally in 
the parse tree. The following attributed tree shows the inherited and synthesized attributes 
for the input signed binary number -101. 
 

Number

Sign List

Bit– 

1

List.pos ← 0 
List.val ← Bit.val = 1 

Number.val ← – List.val = –1 

Bit.pos ← 0 
Bit.val ← 2Bit.pos = 1 

Sign.neg ← true 

Number 

Sign 
List

Bit 

– 

1 

val: -5 

List

List 

Bi
t 

1
Bit

0

pos: 0 
val: 5 

pos: 0 
val: 1 

pos: 1 
val: 4 

pos: 1 
val: 0 

pos: 2 
val: 4 

pos: 2 
val: 4 

neg: true 



Sohail Aslam  Compiler Construction Notes Set:5-93 

When the parse tree is peeled away, we get the attribute dependence graph 
 

 
 

 

  
 

– 

1 

val: -5

1

0

pos: 0 
val: 5 

pos: 0 
val: 1 

pos: 1
val: 4 

pos: 1
val: 0 

pos: 2 
val: 4 

pos: 2 
val: 4 

neg: true 



Sohail Aslam  Compiler Construction Notes Set:5-90 

LLeeccttuurree  3322  
  
Evaluation Methods 

A number of ways can be used to evaluate the attributes. When using Dynamic method, 
the compiler application builds the parse tree and then builds the dependence graph. A 
topological sort of the graph is carried out and attributes are evaluated or defined in 
topological order. In rule-based (or treewalk) methodology, the attribute rules are 
analyzed at compiler-generation time. A fixed (static) ordering is determined and the 
nodes in the dependency graph are evaluated this order. In oblivious (passes, dataflow) 
methodology, the attribute rules and parse tree are ignored. A convenient order is picked 
at compiler design time and used. 
 
Attribute grammars have not achieved widespread use due to a number of problems. For 
example: non-local computation, traversing parse tree, storage management for short-
lived attributes and lack of high-quality inexpensive tools. However, a variation of 
attribute grammars and evaluation schemes is used in many compilers. This variation is 
called ad-hoc analysis. 
 
In rule-based evaluators, a sequence of actions is associated with grammar productions. 
Organizing actions required for context-sensitive analysis around structure of the 
grammar leads to powerful, albeit ad-hoc, approach which is used on most parsers. A 
snippet of code (action) is associated with each production that executes at parse time 
In top-down parsers, the snippet is added to the appropriate parsing routine. In a bottom-
up shift-reduce parsers, the actions are performed each time the parser performs a 
reduction. Here the LR(1) skeleton parser indicating the place where the snippet is 
executed. 
 
stack.push(dummy); stack.push(0); 
done = false; token = scanner.next(); 
while (!done) { 
 s = stack.top(); 
 if( Action[s,token] == “reduce A→β”) { 
  invoke the code snippet   
  stack.pop(2×|β|);  
  s = stack.top();  
  stack.push(A); 
  stack.push(Goto[s,A]); 
 } 
 else if( Action[s,token] == “shift i”){ 
  stack.push(token); stack.push(i); 
  token = scanner.next();  
 } 
} 



Sohail Aslam  Compiler Construction Notes Set:5-91 

The following table shows the code snippets for the SBN example.  
 

Productions       Code snippet 
Number → Sign List Number.val ←  – Sign.val × List.val 
Sign → + Sign.val ← 1 
Sign →  –   Sign.val ← –1 
List  → Bit List.val ← Bit.val 
List0 → List1 Bit List0.val ← 2×List1.val + Bit.val 
Bit → 0 Bit.val ← 0 
Bit → 1 Bit.val ← 1 

 

  
 



Sohail Aslam  Compiler Construction Notes Set:5-90 

LLeeccttuurree  3333  
Implementing Ad-Hoc Scheme  

The parser needs a mechanism to pass values of attributes from definitions in one snippet 
to uses in another. We will adopt notation used by YACC for snippets and passing 
values. Recall that the skeleton LR(1) parser stored two values on the stack 
〈symbol,state〉. We can replace this with triples 〈value,symbol,state〉. On a reduction  
by A → β, the parser pops 3×|β| items from the stack rather than 2×|β|. It pushes value 
along with the symbol.  
 

  
 



Sohail Aslam  Compiler Construction Notes Set:5-90 

LLeeccttuurree  3344  
 
Let’s go through an example of using YACC to implement the ad-hoc scheme for an 
arithmetic calculator.  
 
The YACC file for a calculator grammar is as follows: 
 
%token NUMBER LPAREN RPAREN  
%token PLUS MINUS TIMES DIVIDE  
%% 
expr : expr PLUS expr 
   | expr MINUS expr 
   | expr TIMES expr 
   | expr DIVIDE expr 
   | LPAREN expr RPAREN 
   | MINUS expr 
   | NUMBER 
   ; 
%% 
 
We will add the code snippets  
 
%{ 
#include <iostream> 
%} 
 
// type of value entries in the parse stack 
%union  {int val;} 
 
%token NUMBER LPAREN RPAREN EQUAL 
%token PLUS MINUS TIMES DIVIDE  
/* associativity and precedence:in order of increasing  
    precedence */ 
%nonassoc   EQUAL 
%left PLUS MINUS 
%left TIMES DIVIDE 
%left UMINUS /* dummy token to use as  
                 precedence marker */ 
%type <val> NUMBER expr 
%% 
 
prog : expr { cout << $1 << endl;} 
 ; 
 
expr : expr PLUS expr {$$ = $1 + $3;} 
 | expr MINUS expr {$$ = $1 - $3;} 



Sohail Aslam  Compiler Construction Notes Set:5-91 

 | expr TIMES expr {$$ = $1 * $3;} 
 | expr DIVIDE expr {if($3) $$ = $1 / $3;} 
 | LPAREN expr RPAREN {$$ = $2;} 
 | MINUS expr  {$$ = -$2;} 
 | NUMBER   {$$ = $1;} 
 ; 
 
 
The ‘$’ notation is used by YACC to refer to values of symbols on the right hand side of 
the grammar production. For example, for expr : expr PLUS expr, $1 refers to 
first expr on the right, $2 refers to PLUS and $3 refers to the second non-terminal 
expr. The notation $$ refers to the symbol on the left hand side of the production. 
Internally, the $1 refers to the attribute value associated with the first grammar symbol, 
$2 with the second, $3 with the third and so on. These values are stored in the parse 
stack. The notation $$ instructs YACC to push a computed attribute value on the stack 
and associate it with the symbol on the left when the reduction takes place. 
 
The following attributed tree shows the values as they are computed in a bottom-up parse 
 

 
 
 

 
(note: please see the file “lex_yacc.pdf” for additional information on using YACC.) 

3 2 4×+ 

E 

E E

val=3 

val=4

E val=8

val=2

E val=11 



Sohail Aslam  Compiler Construction Notes Set:5-92 

Intermediate Representations  
 
Compilers are organized as a series of passes. This creates the need for an intermediate 
representation (IR) for the code being compiled. Compilers use some internal form– an 
IR –to represent the code being analyzed and translated. Many compilers use more than 
one IR during the course of compilation.  
 
The IR must be expressive enough to record all of the useful facts that might be passed 
between passes of the compiler. During translation, the compiler derives facts that have 
no representation in the source code. For example, the addresses of variables and 
procedures are not specified in the code being compiled. Typically, the compiler 
augments the IR with a set of tables that record additional information. Foremost among 
these is the symbol table. These tables are considered part of the IR 
 
Selecting an appropriate IR for a compiler project requires an understanding of both the 
source language and the target machines and the properties of the programs to be 
compiled. Thus, a source-to-source translator e.g., C++ to Java, might keep its internal 
information in a form quite to close to the source. In contrast, a compiler that produces 
assembly code might use a form close to the target machine’s instruction set.  
 

  
 



Sohail Aslam  Compiler Construction Notes Set:5-90 

LLeeccttuurree  3355  
IR Taxonomy 

IRs fall into three organizational categories: 
 

1. Graphical IRs encode the compiler’s knowledge in a graph.  
2. Linear IRs resemble pseudo-code for some abstract machine 
3. Hybrid IRs combine elements of both graphical (structural)  and linear IRs 

 
Graphical IRs 

Parse trees are graphs that represent source-code form of the program. The structure of 
the tree corresponds to the syntax of the source code. Parse trees are used primarily in 
discussion of parsing and in attribute grammar systems where they are the primary IR 
In most other applications, compilers use one of the more concise alternatives. An 
abstract syntax tree (AST) retains the essential structure of the parse tree but eliminates 
extraneous nodes. Here, for example, is the AST for the expression  
a = b*-c + b*-c. Notice how all derivation related information has been 
removed. 

 
 
 
ASTs have been used in many practical compiler systems such as source-to-source 
systems, automatic parallelization tools, pretty-printing etc.  
 
AST is more concise than a parse tree. It faithfully retains the structure of the original 
source code. Consider the AST for x*2+x*2*y 
 

 
 

= 

a +

* 
b -

c

*
b -

c

+ 

* 

x 2 

*

y*

2x 



Sohail Aslam  Compiler Construction Notes Set:5-91 

The AST contains two distinct copies of x*2.A directed acyclic graph (DAG) is a 
contraction of the AST that avoids duplication.  
 

 
 
If the value of x does not change between uses of x*2, the compiler can generate code 
that evaluates the subtree once and uses the result twice.  
 
The task of building AST fits neatly into an ad hoc-syntax-directed translation scheme. 
Assume that the compiler has routines mknode and mkleaf for creating tree nodes.  The 
following rules can be attached to the expression grammar to create AST. 
 

Production Semantic Rule 
E → E1 + E2 E.nptr =  mknode(‘+’, E1.nptr, E2.nptr) 
E → E1 ∗ E2 E.nptr =  mknode(‘∗’, E1.nptr, E2.nptr) 
E → – E1 E.nptr = mknode(‘–’, E1.nptr) 
E → ( E1 ) E.nptr =  E1.nptr 
E → num E.nptr = mkleaf(‘num’, num.val) 

 
 
The following table shows the same rules using YACC syntax. 
 

Production Semantic Rule (yacc) 
E → E1 + E2 $$.nptr = mknode(‘+’, $1.nptr, $3.nptr) 

E → E1 ∗ E2 $$.nptr = mknode(‘∗’, $1.nptr, $3.nptr) 
E → – E1 $$.nptr = mknode(‘–’, $1.nptr) 
E → ( E1 ) $$.nptr =  $1.nptr 
E → num $$.nptr = mkleaf(‘num’, $1.val) 

 
We will use another IR, called three-address code, for actual code generation 
The semantic rules for generating three-address code for common programming 
languages constructs are similar to those for AST. 
 
Linear IRs 

The alternative to graphical IR is a linear IR. An assembly-language program is a form of 
linear code. It consists of a sequence of instructions that execute in order of appearance 
 

+ 

*

y* 

2x 



Sohail Aslam  Compiler Construction Notes Set:5-92 

Two linear IRs used in modern compilers are stack-machine code and three-address 
code.  
 
Stack-machine code is sometimes called one-address code. It assumes the presence of an 
operand stack. Most operations take their operands from the stack and push results back 
onto the stack. Here, for example, is the linear IR for x – 2 × y 
 

stack-machine three-address 
push 2 t1 ← 2 
push y t2 ← y 
multiply t3 ← t1 × t2 
push x t4 ← x 
subtract t5 ← t4 – t1 

 
 
Stack-machine code is compact; it eliminates many names from IR. This shrinks the 
program in IR form.  All results and arguments are transitory unless explicitly moved to 
memory. Stack-machine code is simple to generate and execute. Smalltalk-80 and Java 
use byte-codes which are abstract stack-machine code. The byte-code is either interpreted 
or translated into target machine code (JIT).  
 
In three-address code most operations have the form 
 
   x ← y op z 
 
with an operator (op), two operands (y and z) and one result  (x). Some operators, 
such as an immediate load and a jump, will need fewer arguments. 
 



 

Sohail Aslam  Compiler Construction Notes Set:6-104 

LLeeccttuurree  3366  
 
Three-address code is attractive for several reasons. Absence of destructive operators 
gives the compiler freedom to reuse names and values. Three-address code is reasonably 
compact: operations are 1 to 2 bytes; addresses are 4 bytes. Many modern processors 
implement three-address operations; a three-address code models their properties well 
 
We now consider syntax-directed translation schemes using three-address code for 
various programming constructs. We start with the assignment statement. 
 
Assignment Statement 

Production translation scheme 
S → id = E { p = lookup(id.name);  emit( p, ‘=’, E.place); } 
E → E1 + E2 { E.place = newtemp(); 

  emit( E.place, ‘=’, E1.place,‘+’, E2.place); } 
E → E1 ∗ E2 { E.place = newtemp(); 

  emit( E.place, ‘=’, E1.place, ‘∗’, E2.place); } 
E → – E1 { E.place = newtemp(); 

  emit( E.place, ‘=’, ‘–’ ,E1.place); } 
E → ( E1 ) { E.place = E1.place; } 
E → id { p = lookup(id.name);  emit( E.place, ‘=’, p ); } 

 
The translation scheme uses a symbol table for identifiers and temporaries. Every time 
the parser encounters an identifier, it installs it in the symbol table. The symbol table can 
be implemented as a hash table or using some other efficient data structure for table. The 
routine lookup(name) checks if there an entry for the name in the symbol table. If the 
name is found, the routine returns a pointer to entry. The routine newtemp() returns a 
new temporary in response to successive calls. Temporaries can be placed in the symbol 
table. The routine emit() generates a three-address statement which can either be held 
in memory or written to a file. The attribute E.place records the symbol table location. 
 

    
 



 

Sohail Aslam  Compiler Construction Notes 

105

LLeeccttuurree  3377  
Here is the bottom-up parse of the assignment statement  a = b*-c + b*-c and the 
syntax-directed translation into three-address code. 
 
 

Parser action attribute Three- address code 
id=id ∗ –id + id ∗ –id     
id=E1 ∗ –id + id ∗ –id E1.place = b   
id=E1 ∗ –E2 + id ∗ –id E2.place = c   
id=E1 ∗ E2 + id ∗ –id E2.place = t1 t1 = – c 
id=E1 + id ∗ –id E1.place = t2 t2 = b∗t1 
id=E1 + E2 ∗ –id E2.place = b   
id=E1 + E2 ∗ –E3 E3.place = c   
id=E1 + E2 ∗ E3 E3.place = t3 t3 = – c 
id=E1 + E2  E2.place = t4 t4 = b∗t3 
id=E1 E1.place = t5 t5 = t2+t4 
S   a = t5 

 
 
 
Representing Linear Codes 

Three-address codes are often implemented as a set of quadruples. Each quadruple has 
four fields: an operator, two operands (or sources) and a destination. In C++, for 
example, one can design a quadruple class and then declare a simple array of quadruples. 
This leads to the following arrangement; the index of the array element acts as the 
number of quadruple generated. 
 

Target Op Arg1 Arg2 
t1 ← 2  
t2 ← y  
t3 × t1 t2 
t4 ← x  
t5 – t4 t3 

 



 

Sohail Aslam  Compiler Construction Notes 

106

An array of pointers to quads can be employed which leads to the following structure: 
 

 
 
Both simple array and array of pointers have maximum size limitation. This limitation 
can be overcome by using a linked list of quads: 
 

 
 
Flow-of-Control Statements 

We now use the syntax-directed translation scheme for the flow-of-control statements 
found in most procedural programming languages. 
 
 S →  if E then S1 

   |  if E then S1 else S2 

   |  while E do S1 

 

where E is a boolean expression. Consider the statement 
 

if c < d then 
 x = y + z 
else 
 x = y – z 

t1  ←   2 •

t2  ←   y •

t3   ×    t1     t2   •

t4  ←   x •

t5   –    t4    t3   •

t1         ←   2     •

t2         ←   y   •

t3          ×    t1       t2   •

t4         ←   x   •

t5         –     t4      t3   •

•



 

Sohail Aslam  Compiler Construction Notes 

107

One possible 3-address code could be 
 

 if c < d goto L1 
 goto L2 
L1: x = y + z 
 goto L3 
L2: x = y – z 
L3: nop 

 
We will assume that a three-address statement can be symbolically labeled; 
the function newlabel() returns a new symbolic label each time it is called 

    
 



 

Sohail Aslam  Compiler Construction Notes Set:6-108 

108

LLeeccttuurree  3388  
Three-Address Statement Types 

Prior to proceeding with flow-of-control construct, here are the types of three-Address 
statements that we will use 
 

• Assignment statement 
x = y op z 

op is a binary arithmetic or logical operation 
 

• Copy statement 
  x = y 

value of y is assigned to x 
 

• Unconditional jump 
  goto L 

The three-address statement with label L is executed next 
 

• Conditional jump 
  if x relop y goto L 

relop is <, =, >=, etc. If x stands in relation relop to y, execute statement with 
label L, next otherwise 

 
• Indexed assignment 

  a) x = y[i] 
  b) x[i] = y 
 In a), set x to value in location i memory units beyond location y. 
 In b), set contents of location i memory units beyond x to y. 
 
We associate with a boolean expression E two labels (attributes); E.true and E.false. The 
control flows to E.true if the expression evaluates to true, to E.false otherwise. 
Following is syntax-directed translation for  
 

S → if E then S1 

 
E.true = newlabel() 

 E.false = S.next 
 S1.next = S.next 
 S.code = E.code || gen(E.true ‘:’) || S1.code 
 
The attribute “next” records the label of the next statement to execute. “code” is 
string-valued attribute that holds the actual code generated in the form of a character 
string. The code can be eventually written out to a file. The || is the string concatenation 
operator, that is “hello”|| “ world” will yield the combined string “hello world”. 



 

Sohail Aslam  Compiler Construction Notes Set:6-109 

109

Suppose E is “a < b”. E.code would be 
 
 if a < b goto E.true 
 goto E.false 
 
We will discuss semantic rules for boolean expressions shortly 
 
The syntax-directed translation for  
 

S → if E then S1 else S2 
is 
  

E.true = newlabel() 
E.false = newlabel() 
S1.next = S.next 
S2.next = S.next 
S.code = E.code ||  gen(E.true ‘:’) || 
       S1.code || 
       gen(‘goto’ S.next) || 
       gen(E.false ‘:’) || 
       S2.code 

 
Similarly, the syntax-directed translation for the while loop is 
 

S → while E do S1 

 

S.begin = newlabel() 
E.true = newlabel() 
E.false = S.next 
S1.next = S.begin 
S.code = gen(S.begin ‘:’) || 
       E.code || 
       gen(E.true ‘:’) || 
       S1.code || 
       gen(‘goto’ S.begin) 

 

    
 



 

Sohail Aslam  Compiler Construction Notes Set:6-110 

110

LLeeccttuurree  3399  
Boolean Expressions 

In programming languages, boolean expressions have two primary purposes: 
• compute logical values such as  x = a < b && d > e 
• conditional expressions in flow-of-control statements 
 

Consider the grammar for Boolean expressions 
 
 E  →  E or E 
   | E and E 
   | not E 
   | ( E ) 
    | id relop id 
    | true 
    | false 
 
We will implement the translation for boolean expressions by flow of control method, 
i.e., representing the value of a boolean expression by a position reached in the program. 
Here are the syntax directed translation for the grammar rules 
 
E → id1 relop id2 

E.code = gen(‘if’ id1 relop id2 ‘goto’ E.true) || gen(‘goto’ E.false) 
 
E → true 
 E.code = gen(‘goto’ E.true) 
 
E → false 
 E.code = gen(‘goto’ E.false) 
 
E → E1 or E2 

E1.true = E.true  
E1.false = newlabel() 
E2.true = E.true  
E2.false = E.false 
E.code =  E1.code || gen(E1.false ‘:’) || E2.code 

 
E → E1 and E2 

E1.true = newlabel()  
E1.false = E.false  
E2.true = E.true  
E2.false = E.false 
E.code =  E1.code ||gen(E1.true ‘:’) || E2.code 

 



 

Sohail Aslam  Compiler Construction Notes Set:6-111 

111

E → not E1 

E1.true = E.false  
E1.false = E.true  
E.code =  E1.code 

 
E → ( E1 ) 

E1.true = E.true  
E1.false = E.false  
E.code =  E1.code 

 
Example: Consider the expression 
 
 a < b or c < d and e < f 
 
Suppose the true and false exits for the entire expression are Ltrue and Lfalse. The 
syntax directed translation scheme will generate the code 
 

 if a < b goto Ltrue 
 goto L1 
L1: if c < d goto L2 
 goto Lfalse 
L2: if e < f goto Ltrue 
 goto Lfalse 
 

 
Example: Consider the while statement 
 

while a < b 
  if c < d then 
    x = y + z 
  else 
    x = y – z 

 
The translation scheme will generate the following code: 

 
L1: if a < b goto L2 
 goto Lnext 
L2: if c < d goto L3 
 goto L4 
L3: t1 = y + z 
 x = t1 
 goto L1 
L4: t2 = y – z 
 x = t2 
 goto L1 
Lnext: nop 



 

Sohail Aslam  Compiler Construction Notes Set:6-112 

112

Implementation of Syntax-directed Translation  

The easiest way to implement syntax-directed definitions is to use two passes: construct a 
syntax tree for the input in the first pass and then walk the tree in depth-first order 
evaluating attributes and emitting code. We would like to use only one pass if possible. 
The problem in generating three-address code in one pass is that we may not know the 
labels that the control must go to when we generate jump statements. However, by using 
a technique called back-patching, we can generate code in one pass. 
 
As we generate code, we will generate the jumps (conditional or unconditional) with 
targets temporarily left unspecified. Each such statement will be put on a list of goto 
statements that have targets missing. We will fill the labels when the proper label can be 
determined; this is the backpatching step. Backpatching is especially suited for bottom-up 
parsers. 
 
Assume that the quadruples are put into a simple array. Labels will be indices into this 
array. 
 
To manipulate list of goto labels, we will use three functions: 
 

1. makelist(i)  
creates and returns a new list containing only i, the index of quadruple 
 

2. merge(p1, p2)  
concatenates lists pointed to by p1 and p2 and returns the concatenated list. 
 

3. backpatch(p, i)  
inserts i as the target label for each of the goto statements on list pointed to by p 

 
We now construct a translation scheme suitable for producing quads (IR) for boolean 
expressions during bottom-up parsing. The grammar we use is 
 

E  → E1 or M E2 
| E1 and M E2 
| not E1  
| ( E1 ) 
| id1 relop id2 
| true 
| false 
 

M →  ε   
 
We will associate synthesized attributes truelist and falselist with the nonterminal E. 
Incomplete jumps will be placed on these list. 



 

Sohail Aslam  Compiler Construction Notes Set:6-113 

113

We associate the semantic action 
 
 { M.quad = nextquad() } 
 
with the production M → ε. The function nextquad() returns the index of the next 
quadruple to follow. The attribute quad will record this index. 
 

1. E → E1 and M  E2 

{  
 backpatch(E1.truelist, M.quad);  
 E.truelist = E2.truelist; 
 E.falselist =  merge(E1.falselist, E2.falselist); 
} 
Let’s look at the mechanics. If E1 is false, E is false because of the and clause. If 
E1 is true, we need to evaluate E2. The start of E1, i.e., the index of the first quad 
for E1 is recorded by M.quad; in a bottom up parse, the reduction M → ε  will 
occur before reduction to E2. The backpatch sets the targets of goto’s in 
E1.truelist to the start of E2.  
 

2. E → E1 or  M  E2 

{  
 backpatch(E1.falselist, M.quad);  
 E.truelist = merge(E1.truelist, E2.truelist); 
 E.falselist = E2.falselist; 
} 
 

3. E → not E1 
{  
 E.truelist = E1.falselist; 
 E.falselist =  E1.truelist; 
} 
 

4. E → ( E1 ) 
{  
 E.truelist = E1.truelist; 
 E.falselist =  E1.falselist; 
} 

5. E → id1 relop id2 
{  
 E.truelist = makelist(nextquad());  
 E.falselist = makelist(nextquad()+1);  
 emit(‘if’ id1 relop id2 ‘goto _’) ; 
 emit(‘goto _’ ); 
} 



 

Sohail Aslam  Compiler Construction Notes Set:6-114 

114

 
 

6. E → true 
{  
 E.truelist = makelist(nextquad());  
 emit(‘goto _’ ); 
} 
 

7. E → false 
{  
 E.falselist = makelist(nextquad());  
 emit(‘goto _’ ); 
} 

  

    
 



 

Sohail Aslam  Compiler Construction Notes Set:6-115 

115

LLeeccttuurree  4400  
 
Example: consider, the boolean expression 
 
 a < b   or   c < d   and   e < f 
 
Recall the syntax directed translation for the production 
 

E → id1 relop id2 

{  
 E.truelist = makelist(nextquad());  
 E.falselist = makelist(nextquad()+1);  
 emit(‘if’ id1 relop id2 ‘goto _’) ; 
 emit(‘goto _’ ); 
} 

 
We carry out a bottom-up parse. In response to reduction of a < b to E, the list E.truelist 
gets {100} and E.falselist  gets {101} and the two quadruples 
 
 100: if a < b goto _ 
 101: goto _ 
 
are generated. Notice that the goto’s are generated with targets. These are precisely the 
goto’s whose quad indices 100 and 101 are recorded in the truelist and falselist attributes 
of E. These will be patched later in the parse via the backpatching mechanism. 
 
The next reduction to happen is M →  ε  which is in the production 
 
  E → E1 or  M  E2 

 

This reduction will eventually take place when reduction to E2 happens. This marker non-
terminal M records the value of nextquad which at this time is 102. Next, the reduction 
of c < d to E leads to the list E.truelist getting {102}, E.falselist  getting {103} and the 
two quadruples 
 
 102: if c < d goto _ 
 103: goto _ 
 
are generated.  
 
Next reduction is M →  ε. Τhe marker non-terminal M in the production  
 
 E → E1 and  M  E2 

 



 

Sohail Aslam  Compiler Construction Notes Set:6-116 

116

records the value of nextquad which at this time is 104, the quad index of first quad of 
E2 . Reducing e < f to E causes E.truelist to get {104}, E.falselist  to get {105} and the  
generation of quads 
 
 104: if e < f goto _ 
 105: goto _ 
 
We now reduce by the production  
 
 E → E1 and  M  E2 
  
Recall the semantic actions associated with this rule: 
 

E → E1 and M  E2 

{  
 backpatch(E1.truelist, M.quad);  
 E.truelist = E2.truelist; 
 E.falselist =  merge(E1.falselist, E2.falselist); 
} 
 

The six quadruples generated so far are 
 
 100: if a < b goto _ 
 101: goto _ 
 102: if c < d goto _ 
 103: goto _ 
 104: if e < f goto _ 
 105: goto _ 
 
The semantic action calls 
 
  backpatch({102},104)  
 
The backpatch fills in 104 as the target of the goto in quad 102.   
 
 100: if a < b goto _ 
 101: goto _ 
 102: if c < d goto 104 
 103: goto _ 
 104: if e < f goto _ 
 105: goto _ 
 
The next two semantic actions define E.truelist and E.falselist. This way, the 
synthesized attributes propagate the attributes up the parse tree. 
 
We now reduce by the production  



 

Sohail Aslam  Compiler Construction Notes Set:6-117 

117

 
 E → E1 or M  E2 
 
The semantic action calls 
 
  backpatch({101},102)  
 
which fills in 102 in statement 101: 
 
 100: if a < b goto _ 
 101: goto 102 
 102: if c < d goto 104  
 103: goto _ 
 104: if e < f goto _ 
 105: goto _ 
 
The remaining goto’s will have their targets backpatched later in the parse. The attributed 
parse tree at this stage is 

 
 

    
 

E.t = {100, 104}
E.f = {103, 105}

E.t = {100} 
E.f = {101} 

E.t = {104} 
E.f = {103, 105} 

E.t = {102}
E.f = {103}

E.t = {104}
E.f = {105}

c        <         d

a       <         b 

e        <          f

M.q = 104

M.q = 102or 

and

ε 

ε 



 

Sohail Aslam  Compiler Construction Notes Set:6-118 

118

LLeeccttuurree  4411  
Flow-of-Control Statements 

We now use backpatching to translate flow-of-control statements in one pass. We will 
use the same list-handling procedures as before.  
 
 S → if E then S 
  |  if E then S else S 
  |  while E do S 
  |  begin L end 
  |  A 
 
 L  → L ; S 
  |  S 
 
The semantic actions associated with each production are 
 

1. S → if E then M1 S1 N else M2 S2 

{  
 backpatch(E.truelist, M1.quad);  
 backpatch(E.falselist, M2.quad);  
 S.nextlist =  merge(S1.nextlist, merge( N.nextlist,S2.nextlist)); 
} 
 

2. N → ε  
{  
  N.nextlist = makelist(nextQuad());  
  emit(‘goto_’);  
} 
 

3. M → ε  
{  
  M.quad = nextQuad();  
} 
 

4. S → if E then M S1  
{  
 backpatch(E.truelist, M.quad);  
 S.nextlist = merge(E.falselist,S1.nextlist); 
} 
 

5. S → while M1 E do M2 S1  
{  



 

Sohail Aslam  Compiler Construction Notes Set:6-119 

119

 backpatch(S1.nextlist, M1.quad);  
 backpatch(E.truelist, M2.quad);  
 S.nextlist = E.falselist; emit( ‘goto’ M1.quad); 
} 

6. S → begin L end  
{  
  S.nextlist = L.nextlist;  
} 
 

7. S → A 
{  
  S.nextlist = nil;  
} 
 

8. S → L1 ; M S  
{  
 backpatch(L1.nextlist, M.quad);  
 L.nextlist = S.nextlist; 
} 
 

9. L → S 
{  
  L.nextlist = S.nextlist;  
} 

 
Example: Let go through the example with the following input statement 
 

if a < b or c < d and e < f then x = y+z else x = y-z  
 
The bottom-up parse will reduce the compound boolean expression  
a < b or c < d and e < f to E1 or M E2 which we have already covered in the previous 
example. We thus assume that the quads for the boolean expression have been generated. 
The sentential form at this stage is 
 

if E1 or M E2 then x = y+z else x = y-z  
 
The reduction E → E1 or M E2 yields  
 

if E then x = y+z else x = y-z  
  
The semantic actions define the synthesized attributes E.truelist=[100,104] and 
E.falselist=[103,105]. 



 

Sohail Aslam  Compiler Construction Notes Set:6-120 

120

We now trace the remaining bottom up parse and execute the semantic actions: 
 
 

if E then M1 x=y+z else x=y-z M1 → ε   
 { M1.quad = 106 } 
 
⇒ if E then M1 A else x=y-z A → x=y+z   
 { emit(‘x=y+z’) } 
 
⇒ if E then M1 S1 else A  S1 → A  
 { S1.nextlist = nil} 
 
⇒ if E then M1 S1 N else x=y-z N → ε   
 { N.nextlist = [107] 
  emit(‘goto _’ } 
 
⇒ if E then M1 S1 N else M2 x=y-z M2 → ε   
 { M2.quad = 108 } 
 
⇒ if E then M1 S1 N else M2 A A → x=y-z 
  { emit(‘x=y-z’) } 
 
⇒ if E then M1 S1 N else M2 S2 S2 → A  
 { S2.nextlist = nil } 
⇒ S  
 { backpatch([100,104],106) 
   backpatch([103,105],108) 
  S.nextlist=[107]} 
 

 
The array of quadruples at this stage will contain 
 

100 if a < b goto 106 
101 goto 102 
102 if c < d goto 104 
103 goto 108 
104 if e < f goto 106 
105 goto 108 
106 x=y+z 
107 goto _ 
108 x=y-z 
109  

 



 

Sohail Aslam  Compiler Construction Notes Set:6-121 

121

Semantic Actions in YACC 

The syntax-directed translation statements can be conveniently specified in YACC 
The %union will require more fields because the attributes vary. The actual mechanics 
will be covered in the handout for the syntax-directed translation phase of the course 
project 
 
 



 122

LLeeccttuurree  4422  
Code Generation 

The code generation problem is the task of mapping intermediate code to machine code.       
The generated code must be correct for obvious reasons. It should be efficient both in 
terms of memory space and execution time.  
 
The input to the code generation module of compiler is intermediate code (optimized or 
not) and its task is typically to produce either machine code or assembly language code 
for a target machine. 
 
The code generation module has to tackle a number of issues.  
 

• Memory management: mapping names to data objects in the run-time system.  
 

• Instruction selection: the assembly language instructions to choose to encode  
intermediate code statements 
 

• Instruction scheduling: instruction chosen must utilize the CPU resources 
effectively. Hardware stalls must be avoided. 
 

• Register allocation: operands are placed in registers before executing machine 
operation such as ADD, MULTIPLY etc. Most processors have a limited set of 
registers available. The code generator has to make efficient use of this limited 
resource 

 
For our discussion, we will target a machine that has the following general 
characteristics. Most actual processors are similar to such architecture. 
 
The machine is byte-addressable with 4-byte words.  It has N general -purpose registers. 
It uses two-address instructions of the form op source, destination. The target assembly 
language operations are:      
 

• MOV source, destination        
• ADD source, destination        
• SUB source, destination   (dest = dest – source) 
• GOTO address        
• CJ  conditional jump 

 
More instruction will be added to the instruction set as needed.  
 

Sohail Aslam  Compiler Construction Notes Set:7-122 



 123

The following table presents the addressing modes for source or destination operands. 
 

MODE FORM ADDRESS ADDED COST
absolute M M 1 
register R R 0 
indexed c(R) c + contents(R) 1 
indirect register *R contents(R) 0 
indirect indexed *c(R) contents(c+contents(R)) 1 
literal #c c 1 
stack SP SP 0 
indexed stack c(SP) c + contents(SP) 1 

 
We associate a cost with each instruction. This will allow us to compute the cost of 
generated code. The cost corresponds to length of instruction. For example the instruction 
 

MOV R0,R1   ; R0 = c(R1) 
 
has cost 1 while  
 

MOV R5,M     ; M = c(R5) 
 
has cost 2: 1 for instruction, 1 additional for memory address. The column title “ADDED 
COST” indicates this additional cost. 

 
Simple Code Generation 

We start with a simple code generation strategy: define a target code sequence for each 
intermediate code (such as 3-address code) statement type.  Thus, 
 

Intermediate code becomes… 

a = b MOV b,a 
a = b[c] MOV addr(b),R0 

ADD c, R0 
MOV *R0,a 

a = b + c MOV b,a 
ADD c,a 

a[b] = c MOV addr(a),R0 
ADD b,R0 
MOV c,*R0 

 

Sohail Aslam  Compiler Construction Notes Set:7-123 



 124

Consider the C statement:   a[i] = b[c[j]]; the simple code generator will emit 
 
 t1 := c[j] MOV addr(c), R0        
                      ADD j, R0        
                      MOV *R0, t1    
 t2 := b[t1]       MOV addr(b), R0        
                      ADD t1, R0        
                      MOV *R0, t2    
 a[i] := t2         MOV address(a), R0       
                      ADD i, R0        
                      MOV t2, *R0     
  
The cost of this code is 18 and we are forced to allocate space for two temporaries. 
While the simple approach works, it does not produce good code. There a number of 
reasons for this. The generator considers each IR (3-address in this case) alone and makes 
local decision.  It does not take temporary variables into account. One optimization 
possible is to get rid of the temporaries:  
 

MOV addr(c), R0      
ADD j, R0      
MOV addr(b), R1      
ADD *R0, R1      
MOV addr(a), R2      
ADD i, R2      
MOV *R1, *R2    

 
The cost of this code is 12. We can optimize further: 
 

MOV addr(c), R0      
ADD j, R0      
MOV addr(a), R2      
ADD i, R2      
MOV *addr(b)(R0), *R2    

 
The cost of this code is 10. What is needed is a way to generate machine code based on 
past and future use of the data.     
 

    
 

Sohail Aslam  Compiler Construction Notes Set:7-124 



 125

LLeeccttuurree  4433  
Control Flow Graph - CFG 

A control flow graph is the triplet CFG = < V, E, Entry >, where V = vertices or nodes, 
representing an instruction or basic block (group of statements), E = (V x V) edges, 
potential flow of control. Entry is an element of V, the unique program entry. 
 
Basic Blocks 

A basic block is a sequence of consecutive statements with single entry/single exit. Flow 
of control only enters at the beginning and only leaves at the end. The can be variants of 
basic blocks with single entry/multiple exit, multiple entry/single exit. 
 
Generating CFGs 

In order to generate a CFG, we partition the intermediate code (3-address code, for 
example) into basic blocks. Edges are added corresponding to control flow between 
blocks. An unconditional goto in the IR will lead to a single edge to another or the same 
block. A conditional goto will lead to multiple edges. If there is no goto at the end of a 
block, the control passes to first statement of next block. 
 
Here is the algorithm for partitioning intermediate code into basic blocks. The input to 
the algorithm is a sequence of three-address statements. The algorithm will output a list 
of basic blocks with each three-address statements in exactly one block. 
 
Algorithm: partition 3-address statements into basic blocks: 
  

1. Determine the set of leaders – the first statements of basic blocks. The rules are: 
 

• The first statement is a leader 
• Any statement that is the target of a conditional or unconditional goto is a 

leader 
• Any statement that immediately follows a goto or conditional goto is a 

leader 
 

2. For each leader, its basic block consists of the leader and all statements up to but 
not including the next leader or the end of the program 

 

Sohail Aslam  Compiler Construction Notes Set:7-125 



 126

Example: consider the C fragment for computing dot product aT b of two vectors a and b 
of length 20 
 
  aTb= a1b1 + a2b2 + ......... + a20b20 
 

prod = 0; 
i = 1; 
do { 
 prod = prod + a[i]*b[i]; 
 i = i + 1; 
} while ( i <= 20 ); 

 
The 3-address code for the dot product with the two leaders highlighted  
 

1 prod = 0 
2 i = 1 
3 t1 = 4*i    /* offset */ 
4 t2 = a[t1]  /* a[i] */ 
5 t3 = 4*i 
6 t4 = b[t3]  /* b[i] */ 
7 t5 = t2*t4 
8 t6 = prod+t5 
9 prod = t6 
10 t7 = i+1 
11 i = t7 
12 if i <= 20 goto (3) 

 
The two basic blocks are 

 
1 prod = 0 
2 i = 1 
3 t1 = 4*i    /* offset */ 
4 t2 = a[t1]  /* a[i] */ 
5 t3 = 4*i 
6 t4 = b[t3]  /* b[i] */ 
7 t5 = t2*t4 
8 t6 = prod+t5 
9 prod = t6 
10 t7 = i+1 
11 i = t7 
12 if i <= 20 goto (3) 

BB1

BB2

 

Sohail Aslam  Compiler Construction Notes Set:7-126 



 127

This yields the following CFG; note that the target of the condition goto at the end of the 
second block has been replaced by reference to block 2. 
 

prod = 0 
i = 1 

t1 = 4*i 
t2 = a[t1]  
t3 = 4*i 
t4 = b[t3] 
t5 = t2*t4 
t6 = prod+t5 
prod = t6 
t7 = i+1 
i = t7 
if i <= 20 goto B2 

B1 

B2 

 
 
 
Let us consider a more complex example. Here is the quicksort algorithm encoded as a 
recursive function in C++ 
 

i = 1 
Quick Sort 
void quicksort(int m, int n) 
{ 
 int i,j,v,x;  
 if( n <= m ) return; 
 i=m-1; j=n; v=a[n]; 
 while(true) { 
  do i=i+1; while( a[i] < v); 
  do j=j-1; while( a[j] > v); 
  i( i >= j ) break; 
  x=a[i]; a[i]=a[j]; a[j]=x; 
 } 
 x=a[i]; a[i]=a[n]; a[n]=x; 
 quicksort(m,j); quicksort(i+1,n); 
} 

 

Sohail Aslam  Compiler Construction Notes Set:7-127 



 128

The 3-address for the highlighted portion of the routine (the recursive calls have been left 
out) with the leaders highlighted and the resulting CFG is 
 

(1) i := m – 1   (16)  t7 := 4 * i   
(2) j := n     (17)  t8 := 4 * j    
(3) t1 := 4 * n   (18)  t9 := a[t8]    
(4) v := a[t1]               (19)  a[t7] := t9    
(5) i := i + 1               (20)  t10 := 4 * j    
(6) t2 := 4 * i              (21)  a[t10] := x    
(7) t3 := a[t2]              (22)  goto (5)    
(8) if t3 < v goto (5)      (23)  t11 := 4 * i    
(9) j := j - 1               (24)  x := a[t11]    
(10) t4 := 4 * j              (25)  t12 := 4 * i    
(11) t5 := a[t4]              (26)  t13 := 4 * n    
(12) If t5 > v goto (9) 
(13) if i >= j goto (23)     (28)  a[t12] := t14    

     (27)  t14 := a[t13]    

(14) t6 := 4*i                (29)  t15 := 4 * n    
(16) x := a[t6]               (30)  a[t15] := x     

 
 

 
Basic Block Code Generation 

The code generation can carried out at the basic block level. A number of strategies are 
available to generate code from a basic block. The three we will discuss are  
 

1. Basic  - using liveness information  
2. Using DAGS  - node numbering  
3. Register Allocation  

 
In case of the basic code generation strategy, the generator deals with each basic block 
individually to emit machine code for the block using liveness information. At the end of 
the block, the generator emits code to save any live values left in registers.  
 
Computing Live/Next Use Information 

For the statement:  
 
  x = y + z   
x has a next use if there is a statement s that references x and there is some way for 
control to flow from the original statement to s.      
 

 x = y + z   
  ...... 
  ...... 
s t1 = x – t3 

Sohail Aslam  Compiler Construction Notes Set:7-128 



 129

 
A variable is live at a given point in time if it has a next use. Liveness tells us whether we 
care about the value held by a variable. Here is the algorithm for computing live status of 
variables in a basic block” 
 
Algorithm: Computing live status 
Input:  
 A basic block.    
Output:  
 For each statement, set of live variables 
 
Method: 
 
1. Initially all non-temporary variables go into live set.  
2. for i = last statement to first statement:    
  for statement i:  x = y op z  

attach to statement i, current live set. 
remove x from set.  
add y and z to set.  

    
 

Sohail Aslam  Compiler Construction Notes Set:7-129 



 130

LLeeccttuurree  4444  
Example: let us apply the algorithm to the following segment of 3-address code: 
 
 a = b + c    
 t1 = a * a    
 b = t1 + a    
 c = t1 * b    
 t2 = c + b    
 a = t2 + t2     

  
 live =  {b,c}  
a = b + c    
 live =  {a} 
t1 = a * a    
 live =  {a,t1} 
b = t1 + a    
 live = { b,t1} 
c = t1 * b    
 live =  {b,c} 
t2 = c + b    
 live = {b,c,t2}  
a = t2 + t2     
 live = {a,b,c} 

 
Basic Code Generation 

With live/next use information computed, the basic code generation algorithm proceeds 
as follows. Process the 3-address instructions from beginning to end of a block. For each 
instruction, use machine registers to hold operands whenever possible. A non-live value 
in a register can be discarded, freeing that register. The code generator uses two data 
structures for keeping track of register usage: 
    

1. Register descriptor  - register status (empty, inuse) and contents (one or more 
"values")  

2. Address descriptor  - the location (or locations) where the current value for a 
variable can be found (register, stack, memory) 

 
Instruction type: x = y op z 
 
1. If y is non-live and in register R (alone) then generate  
 
  OP z’, R  
 

Sohail Aslam  Compiler Construction Notes Set:7-130 



 131

where z’ = best location for z. i.e., lookup address descriptor for z. Prefer register location 
if z is present in a register. 
 
 
2. If operation is commutative, z is non-live and is in register R (alone), generate  
 
  OP y’, R  
 
(y’ = best location for y) 
 
3. If there is a free register R, generate  
  
 MOV y’, R  
 OP z’, R  
 
4. Use a memory location. Generate  
  
 MOV y’,x  
 OP z’,x 
 
After generating machine instructions, update information about the current best location 
of x. If x is in a register, update that register’s information (descriptor). If y and/or z are 
not live after this instruction, update register and address descriptors according. 
 
Let us return to the 3-address code example and apply the basic code generation 
algorithm. Recall the basic block with liveness information: 
 

 live =  {b,c} 
a = b + c    
 live =  {a} 
t1 = a * a    
 live =  {a,t1} 
b = t1 + a    
 live = { b,t1} 
c = t1 * b    
 live =  {b,c} 
t2 = c + b    
 live = {b,c,t2}  
a = t2 + t2     
 live = {a,b,c} 

 
Initially  

three registers:  
      ( -, -, -) all empty     
current values:  
 (a,b,c,t1,t2) = (m,m,m, -, -)  

Sohail Aslam  Compiler Construction Notes Set:7-131 



 132

1: a = b + c,   
Live = a  
getreg(): L = R1 
 MOV b,R1 
ADD c,R1       ; R1 := R1 + c             
Registers: (a, -, -)             
current values: (R1,m,m, -, -)  

 
2: t1 = a * a,  

Live = a,t1  
L = R2 (since a is live)    
 MOV R1,R2 
 MUL R2,R2  ; R2 = R2* R2             
Registers: (a,t1, -)          
current values: (R1,m,m,R2, -)  

 
3: b = t1 + a,  

Live = b,t1  
Since a is not live L = R1    
  
 ADD R2,R1    ; R1 = R1+R2        
 
Registers: (b,t1, -)       
current values: (m,R1,m,R2, -)   

 
4: c = t1 * b,  

Live = b,c     
Since t1 is not live L = R2    
 MUL R1,R2    ; R2 = R1*R2        
Registers: (b,c, -)      
current values: (m,R1,R2, -, -)  

 
5: t2 = c + b,  

Live = b,c,t2     
L = R3    
 MOV R2,R3    
 ADD R1,R3     ; R3 = R1+R2       
Registers: (b,c,t2)       
current values: (m,R1,R2, -,R3)   

 
6: a = t2 + t2,  

Live = a,b,c  
 ADD R3,R3     
Registers: (b,c,a)       
current values: (R3,R1,R2,-,R3) 

 

Sohail Aslam  Compiler Construction Notes Set:7-132 



 133

End of block  
move all live variables to memory:       
 MOV R3,a       
 MOV R1,b       
 MOV R2,c       
all registers available  

 
Thus the machine code (assembly language) generated is 

 
; a := b + c    

LOAD b,R1 
ADD c,R1        ; R1 := R1 + c 

; t1 := a * a    
 MOV R1,R2 
 MUL R2,R2    ; R2 = R2* R2   
; b := t1 + a    
 ADD R2,R1     ; R1 = R1+R2   
; c := t1 * b    
 MUL R1,R2     ; R2 = R1*R2   
; t2 := c + b    
 MOV R2,R3 
 ADD R1,R3      ; R3 = R1+R2 
; a := t2 + t2     
 ADD R3,R3  
 MOV R3,a  ; mov live       

MOV R1,b  ; var to memory 
 MOV R2,c  

    
 

Sohail Aslam  Compiler Construction Notes Set:7-133 



 134

LLeeccttuurree  4455  
Liveness information allows us to keep values in registers if they will be used later. An 
obvious concern is why do we assume all variables are live at the end of blocks? Why do 
we need to save live variables at the end?  It seems reasonable to perceive that we might 
have to reload them in the next block. To do this, we need to determine live/next use 
information across blocks and not just within a block. This requires global data-flow 
analysis. 
 
Global Data-Flow Analysis 

A Directed Acyclic Graph (DAG) for a basic block has the following labels for the 
nodes: 
 

• Leaves are labeled by unique identifiers.  
• Interior nodes are labeled by operator symbols.  
• Nodes can have multiple labels since they represent computed values.  

 
Algorithm: Generate DAG from 3-address code 
 
For statement i: x = y op z 

• if y op z node exists,  
 add x to the label for that node.  
else  
 add node for y op z.  

• if y or z exist in the dag,  
 point to existing locations  
else  
 add leaves for y and/or z and have 
 the op node point to them.  

 
• label the op node with x. 

  
• if x existed previously as a leaf,  

 subscript that previous entry.  
• if x is associated with other interior nodes, 

  remove them from that list.    
 

Sohail Aslam  Compiler Construction Notes Set:7-134 



 135

Here and an example of the DAG generated for the 3-address code 
 

  
 
 
 a = b + c               
 t1 = a * a 
 b = t1 + a 
 c = t1 * b 
 t2 = c + b 
 a = t2 + t2 

 

 

b’ 

t1 

c’ 

t2 

+

* 

+ b 

* 

+ 

+ 

c 

a 

 
 

 
Here is another example  
 

 
 t1 = 4 * i 
 t2 = a[t1] 
 t3 = 4 * i 
 t4 = b[t3] 
 t5 = t2 * t4 
 t6 = p + t5 
 p = t6 
 t7 = i + 1 
 i = t7 
 if i <20 goto (1) 

 
 
  

 
 

a                b           4               i’           1 

+ * 

< [ ] [ ] 

* 

+ 

p’ t5 

t2 t4 

t1,t3 
t7,i 

(1) 

t6,p 

20 

 

Sohail Aslam  Compiler Construction Notes Set:7-135 



 136

 
DAGs and optimization 

DAGs play an important role in code optimization. It is possible to detect common sub-
expressions and eliminate them; a node in the DAG with more than one parent is 
common sub-expression. 
 
The order in which the DAG is traversed can lead to better code. For example, the 
following DAG can be traversed in two ways: 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The code generated for order one with 2 registers is 

 
MOV a, R0 
ADD b,R0 
MOV c, R1 
ADD D, R1 
MOV R0,t1 
MOV e, R0 
SUB R1,R0 
MOV t1,R1 
SUB R0, R1 
MOV R1,t4 

 
Ten machine instructions are generated.  

 

+a b e 

c d 

t2 t3 

t4 

t1 

- 

- + 

Order 1  Order 2 
 t1 = a + b  t2 = c + d 
 t2 = c + d  t3 = e – t2 
 t3 = e – t2  t1 = a + b 
 t4 = t1 – t3  t4 = t1 – t3 
  

Sohail Aslam  Compiler Construction Notes Set:7-136 



 137

Whereas, order #2 with 2 registers leads to 
 

MOV c, R0 
ADD D, R0 
MOV e, R1 
SUB R0,R1 
MOV a,R0 
ADD b, R0 
MOV R0,t4 
 

Only seven instructions are required, a saving of three machine instructions.  
Reordering improved code because computation of t4 immediately followed 
computation of t1, its left operand. t1 must be in a register and it is. 

 
 
Register Allocation 

Registers in a machine are a scarce resource. The issue faced by the code generator is this 
how to best use the bounded number of registers. The matter is complicated by the fact 
that a few registers are reserved for special purposes. For example, the program counter is 
kept in a registers. A register is used for the keeping track of the top of the function call 
stack. Certain operators require multiple registers, often in pairs. Division is an example 
of such an operator. 
 
The general register allocation problem is NP-complete. Heuristic algorithms exist to 
solve the problem. One such strategy is the by using the graph coloring algorithm: given 
a graph, color the nodes with different colors such that no two nodes that have an edge 
between them have the same color. Here is how the graph coloring algorithm can be used 
to compute register allocation for K registers in a machine. 
 
Algorithm: K registers allocation with graph coloring 
 

1. Compute liveness information. 
 

2. Create interference graph G 
 

3. one node for each variable, an edge connects two variables if one is live at a point 
where the other is defined 
 

4. Simplify: for any node m with less than K neighbors, remove it from the graph 
and push it onto a stack. If (G - m ) can be colored  with K colors, so can G.  If we 
reduce the entire graph, goto step 5. 
 

5. Spill: if we get to the point where we are left with only nodes with degree >= K, 
mark some node for potential spilling (to memory).  Remove and push onto stack.  
Back to step 3. 

Sohail Aslam  Compiler Construction Notes Set:7-137 



 138

6. Assign colors: starting with empty graph, rebuild graph by popping elements off 
the stack and assigning a color different from neighbors. Potential spill nodes may 
or may not be colorable.  

 
Process may require iterations and rewriting of some of the code to create more 
temporaries.  
 
Let us apply the algorithm to the following 3-address code 
 
    live 

a  = b +  c {a} 
t1  = a * a   {t1,a}  
b  = t1 + a  {b,t1} 
c  = t1 * b  {b,c} 
t2  = c + b  {b,c,t2} 
a  = t2 + t2  {a,b,c} 

                  
The interference graph generated is 
 

a 

b 

t1 

c 

t2 

 
 
 
 
Upon coloring the nodes, the final register allocation assuming 3 registers is 
 

c 

 
 
 
 

a 

b 

t1 

t2 
R1 R3 

R1 R2 

Sohail Aslam  Compiler Construction Notes Set:7-138 


	Lecture 01.unlocked
	Lecture 02.unlocked
	Lecture 03.unlocked
	Lecture 04.unlocked
	Lecture 05.unlocked
	Lecture 06.unlocked
	Lecture 07.unlocked
	Lecture 08.unlocked
	Lecture 09.unlocked
	Lecture 10.unlocked
	Lecture 11.unlocked
	Lecture 12.unlocked
	Lecture 13.unlocked
	Lecture 14.unlocked
	Lecture 15.unlocked
	Lecture 16.unlocked
	Lecture 17.unlocked
	Lecture 18.unlocked
	Lecture 19.unlocked
	Lecture 20.unlocked
	Lecture 21.unlocked
	Lecture 22.unlocked
	Lecture 23
	Lecture 24
	Lecture 25
	Lecture 26
	Lecture 27
	Lecture 28
	Lecture 29
	Lecture 30
	Lecture 31.unlocked
	Lecture 32.unlocked
	Lecture 33.unlocked
	Lecture 34.unlocked
	Lecture 35.unlocked
	Lecture 36.unlocked
	Lecture 37.unlocked
	Lecture 38.unlocked
	Lecture 39.unlocked
	Lecture 40.unlocked
	Lecture 41.unlocked
	Lecture 42.unlocked
	Lecture 42 
	Code Generation 
	Simple Code Generation 

	  


	Lecture 43.unlocked
	Lecture 43 
	Control Flow Graph - CFG 
	Basic Blocks 
	Generating CFGs 
	Basic Block Code Generation 
	Computing Live/Next Use Information 

	  


	Lecture 44.unlocked
	Lecture 44 
	Basic Code Generation 
	  


	Lecture 45.unlocked
	Lecture 45 
	Global Data-Flow Analysis 
	DAGs and optimization 
	Register Allocation 




