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FALSIM
1. Introduction to FALSIM:

FALSIM is the name of the software application which consists of the
FALCON-A assembler and the FALCON-A simulator. It runs under
Windows XP.

FALCON-A Assembler:

Figure 1 shows a snapshot of the FALCON-A Assembler. This tool loads a
FALCON-A assembly file with a (.asmfa) extension and parses it. It shows
the parse results in an error log, lets the user view the assembled file’s
contents in the file listing and also provides the features of printing the
machine code, an Instruction Table and a Symbol Table to a FALCON-A
listing file. It also allows the user to run the FALCON-A Simulator.

The FALCON-A Assembler has two main modules, the 1st-pass and the
2nd-pass. The 1st-pass module takes an assembly file with a (.asmfa)
extension and processes the file contents. It then creates a Symbol Table
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which corresponds to the storage of all program variables, labels and data
values in a data structure at the implementation level. If the Ist-pass
completes successfully a Symbol Table is produced as an output, which is
used by the 2nd-pass module. Failures of the 1st-pass are handled by the
assembler using its exception handling mechanism.

The 2nd-pass module sequentially processes the .asmfa file to interpret the
instruction opcodes, register opcodes and constants using the symbol table.
It then produces a list file with a .Istfa extension independent of successful
or failed pass. If the pass is successful a binary file with a .binfa extension is

produced which contains the machine code for the program in the assembly
file.

FALCON-A Simulator:

Figure 6 shows a snapshot of the FALCON-A Simulator. This tool loads a
FALCON-A binary file with a (.binfa) extension and presents its contents
into different areas of the simulator. It allows the user to execute the
program to a specific point within a time frame or just executes it, line by
line. It also allows the user to view the registers, /O port values and memory
contents as the instructions execute.

FALSIM Features:
The FALCON-A Assembler provides its user with the following features:

Select Assembly File: Labeled as “1” in Figure 1, this feature enables the
user to choose a FALCON-A assembly file and open it for processing by the
assembler.

Assembler Options: Labeled as “2” in Figure 1.

e Print Symbol Table
This feature if selected writes the Symbol Table (produced after the
execution of the Ist-pass of the assembler) to a FALCON-A list file with an
extension of (.Istfa). The Symbol Table includes data members, data
addresses and labels with their respective values.

o Print Instruction Table
This feature if selected writes the Instruction Table to a FALCON-A list file
with an extension of (.Istfa).
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List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed
insight of the FALCON-A listing file, which is produced as a result of the
execution of the Ist and 2nd-pass. It shows the Program Counter value in
hexadecimal and decimal formats along with the machine code generated for
every line of assembly code. These values are printed when the 2nd-pass is
completed.

Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user
about the errors and their respective details, which occurs in any of the
passes of the assembler.

Search: Search is labeled as “5” in Figure 1 and helps the user to search for
a certain input with the options of searching with “match whole” and
“match any” parts of the string. The search also has the option of checking
with/without considering “case-sensitivity”. It searches the List File area
and highlights the search results using the yellow color. It also indicates the
total number of matches found.

Start Simulator: This feature is labeled as “6” in Figure 1. The FALCON-A
Simulator is run using the FALCON-A Assembler’s Start Simulator option.
The FALCON-A Simulator is invoked by the user from the FALCON-A
Assembler. Its features are detailed as follows:

Load Binary File: The button labeled as “11” in Figure 6, allows the user to
choose and open a FALCON-A binary file with a (.binfa) extension. When a
file is being loaded into the simulator all the register, constants (if any) and
memory values are set.

Registers: The area labeled as “12” in Figure 6. enables, the user to see
values present in different registers before during and after execution.

Instruction: This area is labeled as “13” in Figure 6 and contains the value of
PC, address of an instruction, its representation in Assembly, the Register
Transfer Language, the op-code and the instruction type.

1/0 Ports: 1/0 ports are labeled as “14” in Figure 6. These ports are available
for the user to enter input operation values and visualize output operation
values whenever an I/O operation takes place in the program. The input
value for an input operation is given by the user before an instruction
executes. The output values are visible in the I/O port area once the
instruction has successfully executed.
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Memory: The memory is divided into 2 areas and is labeled as “15” in
Figure 6, to facilitate the view of data stored at different memory locations
before, during and after program execution.

Processor’s State: Labeled as “16” in Figure 6, this area shows the current
values of the Instruction register and the Program Counter while the program
executes.

Search: The search option for the FALCON-A simulator is labeled as “17”
in Figure 6. This feature is similar to the way the search feature of the
FALCON-A Assembler works. It offers to highlight the search string which
goes as an input, with the “All *“ and * Part ““ option. The results of the search
are highlighted in the color yellow. It also indicates the total number of
matches.

The following is a description of the options available on the button panel
labeled as “18” in Figure 6.

Single Step: “Single Step” lets the user execute the program, one instruction
at a time. The next instruction is not executed unless the user does a “single
step” again. By default, the instruction to be executed will be the one next in
the sequence. It changes if the user specifies a different PC value using the
Change PC option (explained below).

Change PC: This option lets the user change the value of PC
(Program Counter). By changing the PC the user can execute the
instruction to which the specified PC points.

Execute: By choosing this button the user is able to execute the
instructions with the options of execution with/without breakpoint
insertion (refer to Fig. 5). In case of breakpoint insertion, the user has
the option to choose from a list of valid breakpoint values. It also has
the option to set a limit on the time for execution. This “Max
Execution Time” option restricts the program execution to a time
frame specified by the user, and helps the simulator in exception
handling.

Change Register: Using the Change Register feature, the user can
change the value present in a particular register.
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Change Memory Word: This feature enables the user to change values
present at a particular memory location.

Display Memory: Display Memory shows an updated memory area,
after a particular memory location other than the pre-existing ones is
specified by the user.

Change 1/O: Allows the user to give an I/O port value if the
instruction to be executed requires an I/O operation. Giving in the
input in any one of the I/O ports areas before instruction execution,
indicates that a particular I/O operation will be a part of the program
and it will have an input from some source. The value given by the
user indicates the input type and source.

Display I/0O: Display I/O works in a manner similar to Display
Memory. Here the user specifies the starting index of an 1/O port. This
features displays the I/O ports stating from the index specified.

2. Preparing source files for FALSIM:

In order to use the FALCON-A assembler and simulator, FALSIM,
the source file containing assembly language statements and directives
should be prepared according to the following guidelines:

e The source file should contain ASCII text only. Each line should be
terminated by a carriage return. The extension .asmfa should be used
with each file name. After assembly, a list file with the original
filename and an extension .Istfa, and a binary file with an extension
.binfa will be generated by FALSIM.

e Comments are indicated by a semicolon (;) and can be placed anywhere
in the source file. The FALSIM assembler ignores any text after the
semicolon.

e Names in the source file can be of one of the following types:

e Variables: These are defined using the .equ directive. A value must
also be assigned to variables when they are defined.

e Addresses in the “data and pointer area” within the memory: These
can be defined using the .dw or the .sw directive. The difference
between these two directives is that when .dw is used, it 1S not
possible to store any value in the memory. The integer after .dw
identifies the number of memory words to be reserved starting at the
current address. (The directive .db can be used to reserve bytes in
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memory.) Using the .sw directive, it is possible to store a constant or
the value of a name in the memory. It is also possible to use pointers
with this directive to specify addresses larger than 127. Data tables
and jump tables can also be set up in the memory using this directive.

e Labels: An assembly language statement can have a unique label
associated with it. Two assembly language statements cannot have the
same name. Every label should have a colon (:) after it.

e Use the .org 0 directive as the first line in the program. Although the use
of this line is optional, its use will make sure that FALSIM will start
simulation by picking up the first instruction stored at address 0 of the
memory. (Address 0 is called the reset address of the processor). A jump
[first] instruction can be placed at address 0, so that control is transferred
to the first executable statement of the main program. Thus, the label
first serves as the identifier of the “entry point” in the source file. The
.org directive can also be used anywhere in the source file to force code
at a particular address in the memory.

e Address 2 in the memory is reserved for the pointer to the Interrupt
Service Routine (ISR). The .sw directive can be used to store the address
of the first instruction in the ISR at this location.

e Address 4 to 125 can be used for addresses of data and pointers'.
However, the main program must start at address 126 or less’, otherwise
FALSIM will generate an error at the jump [first] instruction.

e The main program should be followed by any subprograms or
procedures. Each procedure should be terminated with a ret instruction.
The ISR, if any, should be placed after the procedures and should be
terminated with the iret instruction.

e The last line in the source file should be the .end directive.

e The .equ directive can be used anywhere in the source file to assign
values to variables.

e It is the responsibility of the programmer to make sure that code does not
overwrite data when the assembly process is performed, or vice versa. As
an example, this can happen if care is not exercised during the use of the
.org directive in the source file.

w

. Using FALSIM:

" Any address between 4 and 14 can be used in place of the displacement field in load or
store instructions. Recall that the displacement field is just 5 bits in the instruction word.
? This restriction is because of the face that the immediate operand in the movi
instruction must fit an 8-bit field in the instruction word.
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e To start FALSIM (the FALCON-A assembler and simulator), double
click on the FALSIM icon. This will display the assembler window,
as shown in the Figure 1.

e Select one or both assembler options shown on the top right corner of
the assembler window labeled as *“2”. If no option is selected, the

symbol table and the instruction table will not be generated in the list
(.Istfa) file.

e Click on the select assembly file button labeled as “1”. This will open
the dialog box as shown in the Figure 2.

e Sclect the path and file containing the source program that is to be
assembled.

e C(lick on the open button. FALSIM will assemble the program and
generate two files with the same filename, but with different
extensions. A list file will be generated with an extension .Istfa, and a
binary (executable) file will be generated with an extension .binfa.
FALSIM will also display the list file and any error messages in two
separate panes, as shown in Figure 3.

e Double clicking on any error message highlights and displays the
corresponding erroneous line in the program listing window pane for
the user. This is shown in Figure 4. The highlight feature can also be
used to display any text string, including statements with errors in
them. If the assembler reported any errors in the source file, then these
errors should be corrected and the program should be assembled again
before simulation can be done. Additionally, if the source file had
been assembled correctly at an earlier occasion, and a correct binary
(.binfa) file exists, the simulator can be started directly without
performing the assembly process.

e To start the simulator, click on the start simulation button labeled as
“6”. This will open the dialog box shown in Figure 6.

e Select the binary file to be simulated, and click open as shown in
Figure 7.

e This will open the simulation window with the executable program
loaded in it as shown in Figure 8. The details of the different panes in
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this window were given in section 1 earlier. Notice that the first
instruction at address O is ready for execution. All registers are
initialized to 0. The memory contains the address of the ISR (i.e., 64h
which is 100 decimal) at location 2 and the address of the printer
driver at location 4. These two addresses are determined at assembly
time in our case. In a real situation, these addresses will be
determined at execution time by the operating system, and thus the
ISR and the printer driver will be located in the memory by the
operating system (called re-locatable code). Subsequent memory
locations contain constants defined in the program.

e Click single step button labeled as “19”. FALSIM will execute the
jump [main] instruction at address 0 and the PC will change to 20h
(32 decimal), which is the address of the first instruction in the main
program (1.e., the value of main).

o Although in a real situation, there will be many instructions in the
main program, those instructions are not present in the dummy calling
program. The first useful instruction is shown next. It loads the
address of the printer driver in r6 from the pointer area in the memory.
The registers r5 and r7 are also set up for passing the starting address
of the print buffer and the number of bytes to be printed. In our
dummy program, we bring these values in to these registers from the
data area in the memory, and then pass these values to the printer

driver using these two registers. Clicking on the single step button twice,
executes these two instructions.

e The execution of the call instruction simulates the event of a print
request by the user. This transfers control to the printer driver. Thus,
when the call r4, r6 instruction is single stepped, the PC changes to
32h (50 decimal) for executing the first instruction in the printer
driver.

e Double click on memory location 000A, which is being used for
holding the PB (printer busy) flag. Enter a 1 and click the change
memory button. This will store a 0001 in this location, indicating that
a previous print job is in progress. Now click single step and note that
this value is brought from memory location 000E into register rl.
Clicking single step again will cause the jnz r1, [message] instruction
to execute, and control will transfer to the message routine at address
0046h. The nop instruction is used here as a place holder.
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e Click again on the single step button. Note that when the ret r4
instruction executes, the value in 4 (i.e., 28h) is brought into the PC.
The blue highlight bar is placed on the next instruction after the call
r4, r6 instruction in the main program. In case of the dummy calling
program, this is the halt instruction.

e Double click on the value of the PC labeled as “20. This will open a
dialog box shown below. Enter a
value of the PC (ie, 26h) EeUELIRGe

corresponding to the call r4, ré Erter Hew Value for PC Hex
instruction, S0 tha.t it can . be 5500 =
executed again. A “list” of possible

PC values can also be pulled down x| Corcel_|

using, and 0026h can be selected
from there as well.

Click single step again to enter the printer driver again.

Change memory location 000A to a 0, and then single step the first
instruction in the printer driver. This will bring a 0 in r1, so that when
the next jnz r1, [message]| instruction is executed, the branch will not
be taken and control will transfer to the next instruction after this
instruction. This 1s mivi rl, 1 at address 0036h.

e Continue single stepping.

e Notice that a 1 has been stored in memory location 000A, and rl
contains 11h, which is then transferred to the output port at address
3Ch (60 decimal) when the out rl1, controlp instruction executes.
This can be verified by double clicking on the top left corner of the
I/O port pane, and changing the address to 3Ch. Another way to
display the value of an I/O port is to scroll the /O window pane to
the desired position.

e Continue single stepping till the int instruction and note the changes
in different panes of the simulation window at each step.

e When the int instruction executes, the PC changes to 64h, which is the
address of the first instruction in the ISR. Clicking single step executes
this instruction, and loads the address of temp (i.e., 0010h) which is a
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temporary memory area for storing the environment. The five store
instructions in the ISR save the CPU environment (working registers)
before the ISR change them.

Single step through the ISR while noting the effects on various registers,
memory locations, and I/O ports till the iret instruction executes. This will
pass control back to the printer driver by changing the PC to the address of
the jump [finish] instruction, which is the next instruction after the int
instruction.

Double click on the value of the PC. Change it to point to the int
instruction and click single step to execute it again. Continue to single step
till the in r1, statusp instruction is ready for execution.

Change the I/0O port at address 3Ah (which represents the status port at
address 58) to 80 and then single step the in r1, statusp instruction. The
value in r1 should be 0080.

Single step twice and notice that control is transferred to the movi r7,
FFFF’ instruction, which stores an error code of —1 in rl.

* The instruction was originally movi r7, -1. Since it was converted to machine language
by the assembler, and then reverse assembled by the simulator, it became movi r7,
FFFF. This is because the machine code stores the number in 16-bits after sign-
extension. The result will be the same in both cases.
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4. FALCON-A assembly language programming techniques:
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e If a signed value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to
+15), FALSIM will report an error with a load r1, [x] or a store r1, [x]
instruction. To overcome this problem, use movi r2, x followed by load
rl, [r2].

e If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range -
128 to +127), even the previous scheme will not work. FALSIM will
report an error with the movi r2, x instruction. The following instruction
sequence should be used to overcome this limitation of the FALCON-A.
First store the 16-bit address in the memory using the .sw directive. Then
use two load instructions as shown below:

a: Sw X
load r2, [a]
load r1, [r2]

This 1s essentially a “memory-register-indirect” addressing. It has been
made possible by the .sw directive. The value of a should be less than 15.

e A similar technique can be used with immediate ALU instructions for
large values of the immediate data, and with the transfer of control (call
and jump) instructions for large values of the target address.

e Large values (16-bit values) can also be stored in registers using the mul
instruction combined with the addi instruction. The following
instructions bring a 201 in register r1.

movi r2, 10

movi r3, 20

mul rl, r2, r3 ; r1 contains 200 after this instruction
addirl, ri, 1 ; r1 now contains 201

e Moving from one register to another can be done by using the instruction
addir2, r1, 0.

e Bit setting and clearing can be done using the logical (and, or, not, etc)
instructions.

e Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the
multiplier or divisor is a power of 2.
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Lecture Handout

Computer Architecture

Lecture No. 1

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 1
Computer Systems Design and Architecture 1.1,1.2,13,1.4,1.5
Summary

1) Distinction between computer architecture, organization and design
2) Levels of abstraction in digital design

3) Introduction to the course topics

4) Perspectives of different people about computers

5) General operation of a stored program digital computer

6) The Fetch-Execute process

7) Concept of an ISA(Instruction Set Architecture)

Introduction
This course is about Computer Architecture. We start by explaining a few key terms.
The General Purpose Digital Computer
How can we define a ‘computer’? There are several kinds of devices that can be termed
“computers”: from desktop machines to the microcontrollers used in appliances such as a
microwave oven, from the Abacus to the cluster of tiny chips used in parallel processors,
etc. For the purpose of this course, we will use the following definition of a computer:
“an electronic device, operating
under the control of instructions
stored in its own memory unit, that
can accept data (input), process data
arithmetically and logically, produce
output from the processing, and store
the results for future use.” [1]

Electrical
Systems

Thus, when we use the term computer, Systems

we actually mean a digital computer. General Purpose

There are many digital computers, Digital Computers )

which have dedicated purposes, for ”m
example, a computer used in an

automobile that controls the spark Notion of a System

Last Modified: 01-Nov-06 Page 16



Advanced Computer Architecture-CS501

timing for the engine. This means that when we use the term computer, we actually mean
a general-purpose digital computer that can perform a variety of arithmetic and logic
tasks.
The Computer as a System
Now we examine the notion of a system, and the place of digital computers in the general
universal set of systems. A “system” is a collection of elements, or components, working
together on one or more inputs to produce one or more desired outputs.
There are many types of systems in the world. Examples include:

* Chemical systems

* Optical systems

» Biological systems

* Electrical systems

* Mechanical systems, etc.
These are all subsets of the general universal set of “systems”. One particular subset of
interest is an “electrical system”. In case of electrical systems, the inputs as well as the
outputs are electrical quantities, namely voltage and current. “Digital systems” are a
subset of electrical systems. The inputs and outputs are digital quantities in this case.
General-purpose digital computers are a subset of digital systems. We will focus on
general-purpose digital computers in this course.
Essential Elements of a General Purpose Digital Computer
The figure shows the block diagram of

a modern general-purpose digital VAN
computer.
We observe from the diagram that a
Memory [ CPU
general-purpose computer has three syl | | (uP)
main  components: a  memory
subsystem, an input/ output subsystem,
and a central processing unit.
Programs are stored in the memory, 5 L1
. Subsystem
the execution of the program Ferpheras | A
instructions takes place in the CPU, 4
and the communication with the N\ Address Bus

~

external world is achieved through the
I/O  subsystem  (including the
peripherals).

Architecture

Now that we understand the term “computer” in our context, let us focus on the term
architecture. The word architecture, as defined in standard dictionaries, is “the art or
science of building”, or “a method or style of building”. 2]

Computer Architecture

This term was first used in 1964 by Amdahl, Blaauw, and Brooks at IBM [3]. They
defined it as

“the structure of a computer that a machine language programmer must understand to
write a correct (time independent) program for that machine.”

By architecture, they meant the programmer visible portion of the instruction set. Thus, a

Block Diagram of a Computer System
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family of machines of the same architecture should be able to run the same software
(instructions). This concept is now so common that it is taken for granted. The x86
architecture is a well-known example.
The study of computer architecture includes

¢ astudy of the structure of a computer

¢ astudy of the instruction set of a computer

e astudy of the process of designing a computer
Computer Organization versus Computer Architecture
It is difficult to make a sharp distinction between these two. However, architecture refers
to the attributes of a computer that are visible to a programmer, including

e The instruction set

e The number of bits used to represent various data types

¢ [/O mechanisms

e Memory addressing modes, etc.
On the other hand, organization refers to the operational units of a computer and their
interconnections that realize the architectural specifications. These include

e The control signals

e Interfaces between the computer and its peripherals

e Memory technology used, etc.
It is an architectural issue whether a computer will have a specific instruction or not,
while it is an organizational issue how that instruction will be implemented.
Computer Architect
We can conclude from the discussion above that a computer architect is a person who
designs computers.
Design
Design is defined as
“the process of devising a system, component, or process to meet desired needs.”
Most people think of design as a “sketch”. This is the usage of the term as a noun.
However, the standard engineering usage of the term, as is quite evident from the above
definition, is as a verb, i.e., “design is a process”. A designer works with a set of stated
requirements under a number of constraints to produce the best solution for a given
problem. Best may mean a “cost-effective” solution, but not always. Additional or
alternate requirements, like efficiency, the client or the designer may impose robustness,
etc.. Therefore, design is a decision-making process (often iterative in nature), in which
the basic sciences, mathematical concepts and engineering sciences are applied to convert
a given set of resources optimally to meet a stated objective.
Knowledge base of a computer architect
There are many people in the world who know how to drive a car; these are the “users” of
cars who are familiar with the behavior of a car and how to operate it. In the same way,
there are people who can use computers. There are also a number of people in the world
who know how to repair a car; these are “automobile technicians”. In the same way, we
have computer technicians. However, there are a very few people who know how to
design a car; these are “automobile designers”. In the same way, there are only very few
experts in the world who can design computers. In this course, you will learn how to
design computers!

These computer design experts are familiar with
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e the structure of a computer

e the instruction set of a computer

e the process of designing a computer
as well as few other related things.
At this point, we need to realize that it is not the job of a single person to design a
computer from scratch. There are a number of levels of computer design. Domain experts
of that particular level carry out the design activity for each level. These levels of
abstraction of a digital computer’s design are explained below.
Digital Design: Levels of Abstraction
Processor-Memory-Switch level (PMS level)
The highest is the processor-memory-switch level. This is the level at which an architect
views the system. It is simply a description of the system components and their
interconnections. The components are specified in the form of a block diagram.
Instruction Set Level
The next level is instruction set level. It defines the function of each instruction. The
emphasis is on the behavior of the system rather than the hardware structure of the
system.
Register Transfer Level
Next to the ISA (instruction set architecture) level is the register transfer level. Hardware
structure is visible at this level. In addition to registers, the basic elements at this level are
multiplexers, decoders, buses, buffers etc.
The above three levels relate to “system design”.
Logic Design Level
The logic design level is also called the gate level. The basic elements at this level are
gates and flip-flops. The behavior is less visible, while the hardware structure
predominates.
The above level relates to “logic design”.
Circuit Level
The key elements at this level are resistors, transistors, capacitors, diodes etc.

Mask [evel

The lowest level is mask level dealing with the silicon structures and their layout that
implement the system as an integrated circuit.

The above two levels relate to “circuit design”.

The focus of this course will be the register transfer level and the instruction set level,
although we will also deal with the PMS level and the Logic Design Level.

Objectives of the course

This course will provide the students with an understanding of the various levels of
studying computer architecture, with emphasis on instruction set level and register
transfer level. They will be able to use basic combinational and sequential building
blocks to design larger structures like ALUs (Arithmetic Logic Units), memory
subsystems, I/O subsystems etc. It will help them understand the various approaches used
to design computer CPUs (Central Processing Units) of the RISC (Reduced Instruction
Set Computers) and the CISC (Complex Instruction Set Computers) type, as well as the

principles of cache memories.
Important topics to be covered
* Review of computer organization
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* Classification of computers and their instructions
* Machine characteristics and performance
* Design of a Simple RISC Computer: the SRC
* Advanced topics in processor design
* Input-output (I/O) subsystems
» Arithmetic Logic Unit implementation
* Memory subsystems
Course Outline

Introduction:
e Distinction between Computer Architecture, Organization and design
e Levels of abstraction in digital design
e Introduction to the course topics

Brief review of computer organization:
e Perspectives of different people about computers
e General operation of a stored program digital computer
e The Fetch — Execute process
e (Concept of an ISA

Foundations of Computer Architecture:

¢ A taxonomy of computers and their instructions
e Instruction set features

o Addressing Modes

e RISC and CISC architectures

e Measures of performance

An example processor: The SRC:
e Introduction to the ISA and instruction formats
¢ Coding examples and Hand assembly
e Using Behavioral RTL to describe the SRC
e Implementing Register Transfers using Digital Logic Circuits

ISA: Design and Development
e Outline of the thinking process for ISA design
e Introduction to the ISA of the FALCON — A
e Solved examples for FALCON-A
e [earning Aids for the FALCON-A

Other example processors:

e FALCON-E

e EAGLE and Modified EAGLE
e Comparison of the four ISAs
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CPU Design:

The Design Process

A Uni-Bus implementation for the SRC
Structural RTL for the SRC instructions
Logic Design for the 1-Bus SRC

The Control Unit

The 2-and 3-Bus Processor Designs
The Machine Reset

Machine Exceptions

Term Exam — |

Advanced topics in processor design:

e Pipelining

e Instruction-Level Parallelism

e Microprogramming

Input-output (I/0):

e [/O interface design

e Programmed [/O

e Interrupt driven I/O

e Direct memory access (DMA)

Term Exam — 11

Arithmetic Logic Shift Unit (ALSU) implementation:

e Addition, subtraction, multiplication & division for integer unit
e Floating point unit

Memory subsystems:

e Memory organization and design
e Memory hierarchy
e (Cache memories
e Virtual memory
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A brief review of Computer Organization

Perceptions of Different People about Computers

There are various perspectives that a computer can take depending on the person viewing
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it. For example, the way a child perceives a computer is quite different from how a
computer programmer or a designer views it. There are a number of perceptions of the
computer, however, for the purpose of understanding the machine, generally the
following four views are considered.

The User’s View
A user is the person for whom the machine is designed, and who employs it to perform
some useful work through application software. This useful work may be composing
some reports in word processing software, maintaining credit history in a spreadsheet, or
even developing some application software using high-level languages such as C or Java.
The list of “useful work™ is not all-inclusive. Children playing games on a computer may
argue that playing games is also “useful work”, maybe more so than preparing an internal
office memo.
At the user’s level, one is only concerned with things like speed of the computer, the
storage capacity available, and the behavior of the peripheral devices. Besides
performance, the user is not involved in the implementation details of the computer, as
the internal structure of the machine is made obscure by the operating system interface.
The Programmer’s View
By “programmer” we imply machine or assembly language programmer. The machine or
the assembly language programmer is responsible for the implementation of software
required to execute various commands or sequences of commands (programs) on the
computer. Understanding some key terms first will help us better understand this view,
the associated tasks, responsibilities and tools of the trade.
Machine Language
Machine language consists of all the primitive instructions that a computer understands
and is able to execute. These are strings of 1s and 0s.Machine language is the computer’s
native language. Commands in the machine language are expressed as strings of 1s and
0s. It is the lowest level language of a computer, and requires no further interpretation.
Instruction Set
A collection of all possible machine language commands that a computer can understand
and execute is called its instruction set. Every processor has its own unique instruction
set. Therefore, programs written for one processor will generally not run on another
processor. This is quite unlike programs written in higher-level languages, which may be
portable. Assembly/machine languages are generally unique to the processors on which
they are run, because of the differences in computer architecture.
Three ways to list instructions in an instruction set of a computer:

* by function categories

* by an alphabetic ordering of mnemonics

* Dby an ascending order of op-codes
Assembly Language
Since it is extremely tiring as well as error-prone to work with strings of 1s and Os for
writing entire programs, assembly language is used as a substitute symbolic
representation using “English like” key words called mnemonics. A pure assembly
language is a language in which each statement produces exactly one machine
instruction, i.e. there is a one-to-one correspondence between machine instructions and
statements in the assembly language. However, there are a few exceptions to this rule, the

Pentium jump instruction shown in the table below serves as an example.
Example
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The table provides us with some assembly statement and the machine language

equivalents of the Intel x 86 processor Ty T
111 Asrgemihly Mar hine L. L Instruction
famllleg. . ' i privioi e T | e
Alpha is a label, and its value will be
add ex, dx 0000 0001 1101 0001 0ol Arithmetie

determined by the position of the jmp
instruction in the program and the position

mov alx, 3¢h | 1011 1000 00110100 0000 0000 | BE34 00 | Data iransfer

of the instruction whose address is alpha. |xwraxhx 00110001 11011000 31D | Logk
So the second byte in the last instruction [jmp apha |1110 101111111100 EBFC | Condrol

can be different for different programs.

Hence there is a one-to-many correspondence of the assembly to machine language in
this instruction.
Users of Assembly Language

The machine designer

The designer of a new machine needs to be familiar with the instruction sets of
other machines in order to be able to understand the trade-offs implicit in the
design of those instruction sets.

The compiler writer

A compiler is a program that converts programs written in high-level languages to
machine language. It is quite evident that a compiler writer must be familiar with
the machine language of the processor for which the compiler is being designed.
This understanding is crucial for the design of a compiler that produces correct
and optimized code.

The writer of time or space critical code

A complier may not always produce optimal code. Performance goals may force
program-specific optimizations in the assembly language.

Special purpose or embedded processor programmer

Higher-level languages may not be appropriate for programming special purpose
or embedded processors that are now in common use in various appliances. This
is because the functionality required in such applications is highly specialized. In
such a case, assembly language programming is required to implement the
required functionality.

Useful tools for assembly language programmers

The assembler:

Programs written in assembly language require translation to the machine
language, and an assembler performs this translation. This conversion process is
termed as the assembly process. The assembly process can be done manually as
well, but it is very tedious and error-prone.

An “assembler” that runs on one processor and translates an assembly language
program written for another processor into the machine language of the other
processor is called a “cross assembler”.

The linker:

When developing large programs, different people working at the same time can
develop separate modules of functionality. These modules can then be ‘linked’ to

form a single module that can be loaded and executed. The modularity of
programs, that the linking step in assembly language makes possible, provides the
same convenience as it does in higher-level languages; namely abstraction and
separation of concerns. Once the functionality of a module has been verified for
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correctness, it can be re-used in any number of other modules. The programmer
can focus on other parts of the program. This is the so-called “modular” approach,
or the “top-down” approach.
e The debugger or monitor:
Assembly language programs are very lengthy and non-intuitive, hence quite
tedious and error-prone. There is also the disadvantage of the absence of an
operating system to handle run-time errors that can often crash a system, as
opposed to the higher-level language programming, where control is smoothly
returned to the operating system. In addition to run-time errors (such as a divide-
by-zero error), there are syntax or logical errors.
A “debugger”, also called a “monitor”, is a computer program used to aid in
detecting these errors in a program. Commonly, debuggers provide functionality
such as
o The display and altering of the contents of memory, CPU registers and flags
o Disassembly of machine code (translating the machine code back to assembly
language)
o Single stepping and breakpoints that allow the examination of the status of the
program and registers at desired points during execution.
While syntax errors and many logical errors can be detected by using debuggers,
the best debugger in the world can catch not every logical error.
e The development system
The development system is a complete set of (hardware and software) tools
available to the system developer. It includes
o Assemblers

o Linkers and loaders

o Debuggers

o Compilers

o Emulators

o Hardware-level debuggers

o Logic analyzers, etc.

Difference between Higher-Level Languages and Assembly Language

Higher-level languages are generally used to develop application software. These high-
level programs are then converted to assembly language programs using compilers. So it
is the task of a compiler writer to determine the mapping between the high-level-
language constructs and assembly language constructs. Generally, there is a “many-to-
many” mapping between high-level languages and assembly language constructs. This
means that a given HLL construct can generally be represented by many different
equivalent assembly language constructs. Alternately, a given assembly language
construct can be represented by many different equivalent HLL constructs.

High-level languages provide various primitive data types, such as integer, Boolean and a
string, that a programmer can use. Type checking provides for the verification of proper

usage of these data types. It allows the compiler to determine memory requirements for
variables and helping in the detection of bad programming practices.

On the other hand, there is generally no provision for type checking at the machine level,
and hence, no provision for type checking in assembly language. The machine only sees
strings of bits. Instructions interpret the strings as a type, and it is usually limited to
signed or unsigned integers and floating point numbers. A given 32-bit word might be an
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instruction, an integer, a floating-point number, or 4 ASCII characters. It is the task of the
compiler writer to determine how high-level language data types will be implemented
using the data types available at the machine level, and how type checking will be
implemented.

The Stored Program Concept

This concept is fundamental to all the general-purpose computers today. It states that the
program is stored with data in computer’s memory, and the computer is able to
manipulate it as data. For example, the computer can load the program from disk, move it
around in memory, and store it back to the disk.

Even though all computers have unique machine language instruction sets, the ‘stored
program’ concept and the existence of a ‘program counter’ is common to all machines.
The sequence of instructions to perform some useful task is called a program. All of the
digital computers (the general purpose machine defined above) are able to store these
sequences of instructions as stored programs. Relevant data is also stored on the
computer’s secondary memory. These stored programs are treated as data and the
computer is able to manipulate them, for example, these can be loaded into the memory
for execution and then saved back onto the storage.

General Operation of a Stored Program Computer

The machine language programs are brought into the memory and then executed
instruction by instruction. Unless a branch instruction is encountered, the program is
executed in sequence. The instruction that is to be executed is fetched from the memory
and temporarily stored in a CPU register, called the instruction register (IR). The
instruction register holds the instruction while it is decoded and executed by the central
processing unit (CPU) of the computer. However, before loading an instruction into the
instruction register for execution, the computer needs to know which instruction to load.
The program counter (PC), also called the instruction pointer in some texts, is the register
that holds the address of the next instruction in memory that is to be executed.

When the execution of an instruction is completed, the contents of the program counter
(which is the address of the next instruction) are placed on the address bus. The memory
places the instruction on the corresponding address on the data bus. The CPU puts this
instruction onto the IR (instruction register) to decode and execute. While this
instruction is decoded, its length in bytes is determined, and the PC (program counter)
is incremented by the length, so that the PC will point to the next instruction in the
memory. Note that the length of the instruction is not determined in the case of RISC
machines, as the instruction length is fixed in these architectures, and so the program
counter is always incremented by a fixed number. In case of branch instructions, the
contents of the PC are replaced by the address of the next instruction contained in the
present branch instruction, and the current status of the processor is stored in a register
called the Processor Status Word (PSW). Another name for the PSW is the flag register.
It contains the status bits, and control bits corresponding to the state of the processor.
Examples of status bits include the sign bit, overflow bit, etc. Examples of control bits
include interrupt enable flag, etc. When the execution of this instruction is completed, the
contents of the program counter are placed on the address bus, and the entire cycle is
repeated. This entire process of reading memory, incrementing the PC, and decoding the
instruction is known as the Fetch and Execute principle of the stored program computer.
This is actually an oversimplified situation. In case of the advanced processors of this
age, a lot more is going on than just the simple “fetch and execute” operation, such as
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pipelining etc. The details of some of these more involved techniques will be studied later
on during the course.
The Concept of Instruction Set Architecture (ISA)
Now that we have an understanding of some of the relevant key terms, we revert to the
assembly language programmer’s perception of the computer. The programmer’s view is
limited to the set of all the assembly instructions or commands that can the particular
computer at hand execute understood/, in addition to the resources that these instructions
may help manage. These resources include the memory space and the entire programmer
accessible registers. Note that we use the term ‘memory space’ instead of memory,
because not all the memory space has to be filled with memory chips for a particular
implementation, but it is still a resource available to the programmer.
This set of instructions or operations and the resources together form the instruction set
architecture (ISA). It is the ISA, which serves as an interface between the program and
the functional units of a computer, i.e., through which, the computer’s resources, are
accessed and controlled.
The Computer Architect’s View
The computer architect’s view is concerned with the design of the entire system as well
as ensuring its optimum performance. The optimality is measured against some
quantifiable objectives that are set out before the design process begins. These objectives
are set on the basis of the functionality required from the machine to be designed. The
computer architect
e Designs the ISA for optimum programming utility as well as for optimum
performance of implementation
e Designs the hardware for best implementation of instructions that are made
available in the ISA to the programmer
e Uses performance measurement tools, such as benchmark programs, to verify that
the performance objectives are met by the machine designed
e Balances performance of building blocks such as CPU, memory, I/O devices, and
interconnections
e Strives to meet performance goals at the lowest possible cost
Useful tools for the computer architect
Some of the tools available that facilitate the design process are
e Software models, simulators and emulators
Performance benchmark programs
Specialized measurement programs
Data flow and bottleneck analysis
Subsystem balance analysis
Parts, manufacturing, and testing cost analysis
The Logic Designer’s View
The logic designer is responsible for the design of the machine at the logic gate level. It is
the design process at this level that determines whether the computer architect meets cost
and performance goals. The computer architect and the logic designer have to work in
collaboration to meet the cost and performance objectives of a machine. This is the
reason why a single person or a single team may be performing the tasks of system’s
architectural design as well as the logic design.
Useful Tools for the Logic Designer
Some of the tools available that aid the logic designer in the logic design process are
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e CAD tools
= Logic design and simulation packages
= Printed circuit layout tools
= IC (integrated circuit) design and layout tools
e Logic analyzers and oscilloscopes
e Hardware development systems
The Concept of the Implementation Domain
The collection of hardware devices, with which the logic designer works for the digital
logic gate implementation and interconnection of the machine, is termed as the
implementation domain. The logic gate implementation domain may be
VLSI (very large scale integration) on silicon
e TTL (transistor-transistor logic) or ECL (emitter-coupled logic) chips
e Gallium arsenide chips
e PLAs (programmable-logic arrays) or sea-of-gates arrays
¢ Fluidic logic or optical switches
Similarly, the implementation domains used for gate, board and module interconnections
are
e Poly-silicon lines in ICs
¢ Conductive traces on a printed

circuit board ﬂ S
e Electrical cable o L o
e Optical fiber, etc. ]
At the lower levels of logic design, the "

designer is concerned mainly with the
functional details represented in a
symbolic form. The implementation

details are not considered at these EM 015—_|_
lower levels. They only become an SEL - S =
issue at higher levels of logic design. Aya A0 §.—

An example of a two-to-one AT
multiplexer in various implementation v EE’ 5
domains will illustrate this point. g cp L
Figure (a) is the generic logic gate 1 c1 2
(abstract domain) representation of a o2yp 257 g % 10
2-to-1 multiplexer. bt = 1
Figure (b) shows the 2-to-1

multiplexer logic gate implementation (b) TTL implementation domain

in the domain of TTL (VLSI on Silicon) logic using part number ‘257, with
interconnections in the domain of printed circuit

board traces.

Figure (c) is the implementation of the 2-to-1 O IO
multiplexer with a fiber optic directional coupler E— —11
switch, which has an interconnection domain of

optical fiber. \—'—‘

Classical logic design versus computer logic g

design L ( ¢ ) Optical switch implerentation
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We have already studied the sequential circuit design concepts in the course on Digital
Logic Design, and thus are familiar with the techniques used. However, these traditional
techniques for a finite state machine are not very practical when it comes to the design of
a computer, in spite of the fact that a computer is a finite state machine. The reason is that
employing these techniques is much too complex as the computer can assume hundreds
of states.
Sequential Logic Circuit Design
When designing a sequential logic circuit, the problem is first coded in the form of a state
diagram. The redundant states may be eliminated, and then the state diagram is translated
into the next state table. The minimum number of flip-flops needed to implement the
design is calculated by making “state assignments” in terms of the flip-flop “states”. A
“transition table” is made using the state assignments and the next state table. The flip-
flop control characteristics are used to complete a set of “excitation tables”. The
excitation equations are determined through minimization. The logic circuit can then be
drawn to implement the design. A detailed discussion of these steps can be found in most
books on Logic Design.
Computer Logic Design
Traditional Finite State Machine (FSM) design techniques are not suitable for the design
of computer logic. Since there is a natural separation between the data path and the
control path in case of a digital computer, a modular approach can be used in this case.
The data path consists of the storage cells, the arithmetic and logic components and their
interconnections. Control path is the circuitry that manages the data path information
flow. So considering the behavior first can carry out the design. Then the structure can be
considered and dealt with. For this purpose, well-defined logic blocks such as
multiplexers, decoders, adders etc. can be used repeatedly.
Two Views of the CPU Program Counter Register
The view of a logic designer is more detailed than that of a programmer. Details of the
mechanism used to control the machine are unimportant to the programmer, but of vital
importance to the logic designer. This can be illustrated through the following two views
of the program counter of a machine.
As shown in figure (a), to a programmer the program counter is just a register, and in this
case, of length 32 bits or 4 bytes.

31 0

D

(a) Program Counter: Programmer’s view

Figure (b) illustrates the logic designer’s view of a 32-bit program counter, implemented
as an array of 32 D flip-flops. It shows the contents of the program counter being gated
out on ‘A bus’ (the address bus) by applying a control signal PC,y. The contents of the
‘B bus’ (also the address bus), can be stored in the program counter by asserting the
signal PC;i, on the leading edge of the clock signal CK, thus storing the address of the
next instruction in the program counter.

32 32
A Bus /H Q n B Bus

PC
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Pcout

CK PCi,

(b) Program Counter: Logic Designer’s View
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Lecture Handout

Computer Architecture

Lecture No. 2

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3
Computer Systems Design and Architecture 2.1,2.2,3.2
Summary

1) A taxonomy of computers and their instructions
2) Instruction set features

3) Addressing modes

4) RISC and CISC architectures

Foundations Of Computer Architecture
TAXONOMY OF COMPUTERS AND THEIR INSTRUCTIONS

Processors can be classified on the basis of their instruction set architectures. The
instruction set architecture, described in the previous module gives us a ‘programmer’s
view’ of the machine. This module discussed a number of topics related to the
classifications of computers and their instructions.
CLASSES OF INSTRUCTION SET ARCHITECTURE:
The mechanism used by the CPU to store instructions and data can be used to classify the
ISA (Instruction Set Architecture). There are three types of machines based on this
classification.

* Accumulator based machines

» Stack based machines

» General purpose register (GPR) machines
ACCUMULATOR BASED MACHINES
Accumulator based machines use special registers called the accumulators to hold one
source operand and also the result of the arithmetic or logic operations performed. Thus
the accumulator registers collect (or ‘accumulate’) data. Since the accumulator holds one
of the operands, one more register may be required to hold the address of another
operand. The accumulator is not used to hold an address. So accumulator based machines
are also called 1-address machines. Accumulator machines employ a very small number

Last Modified: 01-Nov-06 Page 30



Advanced Computer Architecture-CS501

of accumulator registers, generally only one. These machines were useful at the time
when memory was quite expensive; as they used one register to hold the source operand

as well as the result of the operation. However, now that the memory is relatively
inexpensive, these are not considered very useful, and their use is severely limited for the
computation of expressions with many operands.

STACK BASED MACHINES

A stack is a group of registers organized as a last-in-first-out (LIFO) structure. In such a
structure, the operands stored first, through the push operation, can only be accessed last,
through a pop operation; the order of access to the operands is reverse of the storage
operation. An analogy of the stack is a “plate-dispenser” found in several self-service
cafeterias. Arithmetic and logic operations successively pick operands from the top-of-
the-stack (TOS), and push the results on the TOS at the end of the operation. In stack
based machines, operand addresses need not be specified during the arithmetic or logical
operations. Therefore, these machines are also called 0-address machines.

GENERAL-PURPOSE-REGISTER MACHINES

In general purpose register machines, a number of registers are available within the CPU.
These registers do not have dedicated functions, and can be employed for a variety of
purposes. To identify the register within an instruction, a small number of bits are
required in an instruction word. For example, to identify one of the 64 registers of the
CPU, a 6-bit field is required in the instruction.

CPU registers are faster than cache memory. Registers are also easily and more
effectively used by the compiler compared to other forms of internal storage. Registers
can also be used to hold variables, thereby reducing memory traffic. This increases the
execution speed and reduces code size (fewer bits required to code register names
compared to memory) .In addition to data, registers can also hold addresses and pointers
(i.e., the address of an address). This increases the flexibility available to the
programmer.

A number of dedicated, or special purpose registers are also available in general-purpose
machines, but many of them are not available to the programmer. Examples of
transparent registers include the stack pointer, the program counter, memory address
register, memory data register and condition codes (or flags) register, etc.

We should understand that in reality, most machines are a combination of these machine
types. Accumulator machines have the advantage of being more efficient as these can
store intermediate results of an operation within the CPU.

INSTRUCTION SET

An instruction set is a collection of all possible machine language commands that are
understood and can be executed by a processor.

ESSENTIAL ELEMENTS OF COMPUTER INSTRUCTIONS:

There are four essential elements of an instruction; the type of operation to be performed,
the place to find the source operand(s), the place to store the result(s) and the source of
the next instruction to be executed by the processor.

Type of operation

In module 1, we described three ways to list the instruction set of a machine; one way of
enlisting the instruction set is by grouping the instructions in accordance with the
functions they perform. The type of operation that is to be performed can be encoded in
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the op-code (or the operation code) field of the machine language instruction. Examples
of operations are mov, jmp, add; these are the assembly mnemonics, and should not be

confused with op-codes. Op-codes are simply bit-patterns in the machine language format
of an instruction.

Place to find source operands

An instruction needs to specify the place from where the source operands will be
retrieved and used. Possible locations of the source operands are CPU registers, memory
cells and I/O locations. The source operands can also be part of an instruction itself; such
operands are called immediate operands.

Place to store the results

An instruction also specifies the location in which the result of the operation, specified by
the instruction, is to be stored. Possible locations are CPU registers, memory cells and
I/O locations.

Source of the next instruction

By default, in a program the next instruction in sequence is executed. So in cases where
the next-in-sequence instruction execution is desired, the place of next instruction need
not be encoded within the instruction, as it is implicit. However, in case of a branch, this
information needs to be encoded in the instruction. A branch may be conditional or
unconditional, a subroutine call, as well as a call to an interrupt service routine.

Example

The table provides examples of assembly language commands and their machine
language equivalents. In the instruction Mac hine

add cx, dx, the contents of the 10cation | Lo N e ase Loiouee | Dretmaetion
dx are added to the contents of the —F—Timemertorom TR e

location cx, and the result is stored in
cx. The instruction type is arithmetic,

mov al, 34h | 1011 1000 0011 0100 0000 0000 | BE 3400 | Data transier

and the op-code for the add instruction |™F %P |01 001 H0L1%0 el ks
1s 0000, as shown in this example. jmp alpha | 1110 1011 1111 1100 EBFC | Conirol
CLASSIFICATIONS OF

INSTRUCTIONS:

We can classify instructions according to the format shown below.

* 4-address instructions

* 3-address instructions

* 2-address instructions

* l-address instructions

* 0-address instructions
The distinction is based on the fact that some operands are accessed from memory, and
therefore require a memory address, while others may be in the registers within the CPU
or they are specified implicitly.

4-address instructions
The four address instructions specify the addresses of two source operands, the address of
the destination operand and the next instruction address.

4-address —

. . op code destination source 1 source 2 next address
Instructions are not

very common

because the next
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instruction to be executed is sequentially stored next to the current instruction in the

memory. Therefore, specifying its address is redundant. These instructions are used in
the micro-coded control unit, which will be studied later.

3-address instruction
A 3-address instruction
specifies the addresses of two
operands and the address of the
destination operand.

2-address instruction
A 2-address instruction has three fields; one for the op-code, the second field specifies
the address of one of the source operands as op code destination | source 2
well as the destination operand, and the last source 1
field is used for holding the address of the
second source operand. So one of the fields serves two purposes; specifying a source
operand address and a destination operand address.

1-address instruction
A 1-address instruction has a dedicated CPU register,

op code destination source 1 source 2

op code source 2
called the accumulator, to hold one operand and to store "

the result. There is no need of encoding the address of the accumulator register to access
the operand or to store the result, as its usage is implicit. There are two fields in the
instruction, one for specifying a source operand address and a destination operand

address.

0-address instruction
A 0-address instruction uses a stack to hold both the operands and the
result. Operations are performed on the operands stored on the top of the op code
stack and the second value on the stack. The result is stored on the top of
the stack. Just like the use of an accumulator register, the addresses of
the stack registers need not be specified, their usage is implicit. Therefore, only one field
is required in 0-address instruction; it specifies the op-code.

COMPARISON OF INSTRUCTION FORMATS:
Basis for comparison
Two parameters are used as the basis for comparison of the instruction sets discussed
above. These are
e Code size
Code size has an effect on the storage requirements for the instructions; the
greater the code size, the larger the memory required.
e Number of memory accesses
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The number of memory accesses has an effect on the execution time of
instructions; the greater the number of memory accesses, the larger the time
required for the execution cycle, as memory accesses are generally slow.
Assumptions
We make a few assumptions, which are
e A single byte is used for the op code, so 256 instructions can be encoded using
these 8 bits, as 28 =256
e The size of the memory address space is 16 Mbytes
e A single addressable memory unit is a byte

e Size of operands is 24 bits. As the memory size is 16Mbytes, with byte-
addressable memory, 24 bits are required to encode the address of the operands.
e The size of the address bus is 24 bits
e Data bus size is 8 bits
Discussion4-address instruction
* The code size

. op code destination source 1 source 2 next address
is 13 bytes
(143+3+3+3
= 13 bytes) 1 byte 3 bytes 3 bytes 3 bytes 3 bytes
e Number of
bytes

accessed from memory is 22 (13 bytes for instruction fetch + 6 bytes for source
operand fetch + 3 bytes for storing destination operand = 22 bytes)
Note that there is no need for an additional memory access for the operand corresponding
to the next instruction, as it has already been brought into the CPU during instruction
fetch.
3-address instruction
« The code size is 10 bytes |2F code destination source 1 source 2
(1+3+3+3 = 10 bytes)
* Number of bytes accessed
from memory is 22
(10 bytes for instruction fetch
+ 6 bytes for source operand fetch + 3 bytes for storing destination operand = 19

1 byte 3 bytes 3 hytes 3 bytes

bytes)
2-address instruction
* The code size is 7 bytes (14343 =7 [gpcoge destination | source 2
bytes) source 1
* Number of bytes accessed from
memory is 16(7 bytes for instruction |1 tyte 3 hytes 3 bytes

fetch + 6 bytes for source operand
fetch + 3 bytes for storing destination operand = 16
bytes) op code source 2
1-address instruction
» The code size is 4 bytes (1+3= 4 bytes)
* Number of bytes accessed from memory is 7
(4 bytes for instruction fetch + 3 bytes for source
operand fetch + 0 bytes for storing destination operand = 7 bytes)

1 byte 3 hytes
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0-address instruction op code
» The code size is 1 byte
* Number of bytes accessed from memory is 10

(1 byte for instruction fetch + 6 bytes for source operand fetch + 3 1yt
bytes for storing destination operand = 10 bytes)
The following table summarizes this information
HALF ADDRESSES Instruction Format Code Number of
In the preceding discussion we have size memory bytes
: 4-address instruction 13 22
ta}ked gbout memory gddresses. This E Y T ppr——— 0 T
dls(?u5510n also applies to CPU 5 ddress instruction 5 16
registers. However, to specify/ encode [ 1-address instruction 4 7
a CPU register, less number of bits is [ U-address instruction 1 10

required as compared to the memory addresses. Therefore, these addresses are also called
“half-addresses”. An instruction that specifies one memory address and one CPU register
can be called as a 1)5-address instruction
Example

mov al, [34h]
THE PRACTICAL SITUATION

Real machines are not as simple as the classifications presented above. In fact, these
machines have a mixture of 3, 2, 1, 0, and 1%-address instructions. For example, the
VAX 11 includes instructions from all classes.

CLASSIFICATION OF MACHINES ON THE BASIS OF OPERAND
AND RESULT LOCATION:

A distinction between machines can be made on the basis of the ALU instructions;
whether these instructions use data from the memory or not. If the ALU instructions use
only the CPU registers for the operands and result, the machine type is called “load-
store”. Other machines may have a mixture of register-memory, or memory-memory
instructions.

The number of memory operands supported by a typical ALU instruction may vary from
0 to 3.

Example

The SPARC, MIPS, Power PC, ALPHA: 0 memory addresses, max operands allowed = 3
X86, 68x series: 1 memory address, max operands allowed = 2

LOAD- STORE MACHINES

These machines are also called the register-to-register machines. They typically use the
12 address instruction format. Only the load and store instructions can access the
memory. The load instruction fetches the required data from the memory and temporarily
stores it in the CPU registers. Other instructions may use this data from the CPU
registers. Then later, the results can be stored back into the memory by the store
instruction. Most RISC computers fall under this category of machines.
Advantages (of register-register instructions)
Register-register instructions use 0 memory operands out of a total of 3 operands. The
advantages of such a scheme is:

e The instructions are simple and fixed in length
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e The corresponding code generation model is simple
e All instructions take similar number of clock cycles for execution
Disadvantages (register-register instructions)
e The instruction count is higher; the number of instructions required to complete a
particular task is more as separate instructions will be required for load and store
operations of the memory

e Since the instruction size is fixed, the instructions that do not require all fields
waste memory bits
Register-memory machines
In register-memory machines, some operands are in the memory and some are in
registers. These machines typically employ 1 or 1 address instruction format, in which
one of the operands is an accumulator or a general-purpose CPU registers.
Advantages
Register-memory operations use one memory operand out of a total of two operands. The
advantages of this instruction format are
e Operands in the memory can be accessed without having to load these first
through a separate load instruction
¢ Encoding is easy due to the elimination of the need of loading operands into
registers first
e Instruction bit usage is relatively better, as more instructions are provided per
fixed number of bits
Disadvantages
e Operands are not equivalent since one operand may have two functions (both
source operand and destination operand), and the source operand may be
destroyed
e Different size encoding for memory and registers may restrict the number of
registers
e The number of clock cycles per instruction execution vary, depending on the
operand location operand fetch from memory is slow as compared to operands in
CPU registers
Memory-Memory Machines
In memory-memory machines, all three of the operands (2 source operands and a
destination operand) are in the memory. If one of the operands is being used both as a
source and a destination, then the 2-address format is used. Otherwise, memory-memory
machines use 3-address formats of instructions.
Advantages
e The memory-memory instructions are the most compact instruction where
encoding wastage is minimal.
e As operands are fetched from and stored in the memory directly, no CPU registers
are wasted for temporary storage
Disadvantages
e The instruction size is not fixed; the large variation in instruction sizes makes
decoding complex
e The cycles per instruction execution also vary from instruction to instruction
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e Memory accesses are generally | 3-Address | 2 Address | 1 Address | 0-Address
slow, so too many references |adda. b, c [loada,b |Ildab push b
cause performance degradation |MPYa. a.d jadda,c add ¢ push ¢

E le 1 suba,a,e |mpya,d mpy d add
Xample . . suba, e sub e push d
The expression a = (b+c)*d — e is sta a mpy
evaluated with the 3, 2, 1, and 0- push e
address machines to provide a sub
pop a

comparison of their advantages and disadvantages discussed above. The instructions
shown in the table are the minimal instructions required to evaluate the given expression.
Note that these are not machine language instructions, rather the pseudo-code.

Example 2

The instruction z = 4(a +b) — 16(c+58) is with the 3, 2, 1, and 0-address machines in the
table.

Functional classification of [ addrese |2-Addrese 1-Address 0-Address
instruction sets:
Instructions can be classified into the [addxatb |leadya |;omderchangedtoreduce codesize | pushe
. . muly, x, 4 add v, b ldac fush 52
following four categories based on | .7 . |awya |eddes add
their functionality. malsr, 16 |loads,c  |mulald push 16
1 subz v, s add s, 58 stas mul
* Data processing ‘ o 16 |idae puh e
» Data storage (main memory) subys  |addab addbioace pushs
« Data movement (I/O) storezy |muled add
suba s subtract acc from s push 4
*  Program flow control g -
These are discussed in detail sub
« Data processing L

Data processing instructions are the ones that perform some mathematical or logical
operation on some operands. The Arithmetic Logic Unit performs these operations,
therefore the data processing instructions can also be called ALU instructions.

* Data storage (main memory)
The primary storage for the operands is the main memory. When an operation needs to be
performed on these operands, these can be temporarily brought into the CPU registers,
and after completion, these can be stored back to the memory. The instructions for data
access and storage between the memory and the CPU can be categorized as the data
storage instructions.

* Data movement (I/0)
The ultimate sources of the data are input devices e.g. keyboard. The destination of the
data is an output device, for example, a monitor, etc. The instructions that enable such
operations are called data movement instructions.

* Program flow control
A CPU executes instructions sequentially, unless a program flow-change instruction is
encountered. This flow change, also called a branch, may be conditional or unconditional.
In case of a conditional branch, if the branch condition is met, the target address is loaded
into the program counter.
ADDRESSING MODES:
Addressing modes are the different ways in which the CPU generates the address of
operands. In other words, they provide access paths to memory locations and CPU
registers.
Effective address
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An “effective address” is the address (binary bit pattern) issued by the CPU to the
memory. The CPU may use various ways to compute the effective address. The memory
may interpret the effective address differently under different situations.

COMMONLY USED ADDRESSING MODES

Some commonly used addressing modes are explained below.

Immediate addressing mode
In this addressing mode, data is the part of the instruction itself, and so there is no need of
address calculation. However, immediate addressing mode is used to hold source
operands only; cannot be used for storing results. The range of the operands is limited by
the number of bits available for encoding the operands in the instruction; for n bit fields,
the range is -2 to +(2™"-1). .
Example: 1da 123 IR [0pcode | 123 | Memory =

In this example, the immediate —ata
operand, 123, is loaded onto the -
accumulator. No address calculation is
required.

Direct Addressing Mode

The address of the operand is specified
as a constant, and this constant is
coded as part of the instruction. The address space that can be accessed is 11m1ted address
space by the operand field size (27" €14 5¢ |ocations).

Example: 1da [123] Memory

As shown in the figure, the address of

the operand is stored in the instruction. L_/—,
The operand is then fetched from that address 456|123

memory address. acc| 256 | %/

Indirect Addressing Mode

The address of the location where the
address of the data is to be found is
stored in the instruction as the operand.
Thus, the operand is the address of a memory location, which holds the address of the
operand. Indirect addressing mode can access a large address space (2Meme™ “ord size
locations). To fetch the operand in this addressing mode, two memory accesses are
required. Since memory accesses are slow, this is not efficient for frequent memory
accesses. The indirect addressing mode

may be used to implement pointers. Memary
Example: 1da [[123]]

ACC | 123 |

Mo memory access needed

=] |Opcnde| 123 |

. Opeod 123
As shown in the figure, the address of " [opcovg | .
- Address of pointer
the memory location that holds the k_//\_ w58 1123
address of the data in the memory is Address(of data :
part of the instruction. acc | 5 HN 789|456

Register (Direct) Addressing Mode

The operand is contained in a CPU register, and the address of this register is encoded in
the instruction. As no memory access is needed, operand fetch is efficient. However,
there are only a limited number of CPU registers available, and this imposes a limitation
on the use of this addressing mode.
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Example: lda R2
This load instruction specifies the address of the register and the operand is fetched from
this register. As is clear from the diagram, no memory access is involved in this
addressing mode.

REGISTER INDIRECT

ADDRESSING MODE :
In the register indirect mode, the R | Oncode) address oz Memory ;
address of memory location that s

contains the operand is in a CPU R2 1234 "

register. The address of this CPU R

register is encoded in the instruction. A R data

large address space can be accessed  acc 1234

using this addressing mode (27¢€"ter sz
locations). It involves fewer memory
accesses compared to indirect addressing.
Example: 1da [R1]

Mo memary access needed

. Memory
The address of the register that IR [Opcode|  AddressofR1 |
. ; - - - register
contains the address of memory the Instruction points to a CPLregister ¢ otains
location holding the operand is B
“R1 173 456 123

encoded in the instruction. There is R2
one memory access involved. R3
Displacement addressing mode Re
The displacement-addressing mode is
also called based or indexed
addressing mode. Effective memory address is calculated by adding a constant (which is
usually a part of the instruction) to the value in a CPU register. This addressing mode is
useful for accessing arrays. The addressing mode may be called ‘indexed’ in the situation
when the constant refers to the first element of the array (base) and the register contains
the ‘index’. Similarly, ‘based’ refers to the situation when the constant refers to the offset
(displacement) of an array element with respect to the first element. The address of the
first element is stored in a register.

Example: 1da [R1 + 8] Memory

In this example, R1 is the address of 1R [Opcode]  Address of R (8]

. 1]
the register . that' holds a memory gl Lares s
address, which is to be wused to Index 456|123

calculate the effective address of the R1 | 120
operand. The constant (8) is added to CPUregisters

this address held by the register and acc | 158
this effective address is used to

retrieve the operand.

Relative addressing mode

The relative addressing mode is similar to the indexed addressing mode with the
exception that the PC holds the base address. This allows the storage of memory

CPU Registers

data
AcC | 456 |

data

operands at a fixed offset from the Memory
current instruction and is useful for ®[ Opcoce | 4 |

‘short” jumps. e et

Example: jump 4 Next instruction |1 24
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The constant offset (4) is a part of the instruction, and it is added to the address held by
the Program Counter.

RISC and CISC architectures:

Generally, computers can be classified as being RISC machines or CISC machines. These
concepts are explained in the following discussion.

RISC (Reduced instruction set computers)

RISC is more of a philosophy of computer design than a set of architectural features. The
underlying idea is to reduce the number and complexity of instructions. However, new
RISC machines have some instructions that may be quite complex and the number of
instructions may also be large. The common features of RISC machines are

* One instruction per clock period
This is the most important feature of the RISC machines. Since the program execution
depends on throughput and not on individual execution time, this feature is achievable by
using pipelining and other techniques. In such a case, the goal is issuing an average of
one instruction per cycle without increasing the cycle time.

» Fixed size instructions
Generally, the size of the instructions is 32 bits.

* CPU accesses memory only for Load and Store operations
This means that all the operands are in the CPU registers at the time these are used in an
instruction. For this purpose, they are first brought into the CPU registers from the
memory and later stored back through the load and store operation respectively.

* Simple and few addressing modes
The disadvantage associated with using complex addressing modes is that complex
decoding is required to calculate these addresses, which reduces the processor
performance as it takes significant time. Therefore, in RISC machines, few simple
addressing modes are used.

* Less work per instruction
As the instructions are simple, less work is done per instruction, and hence the clock
period T can be reduced.

* Improved usage of delay slots
A ‘delay slot’ is the waiting time for a load or store operation to access memory or for a
branch instruction to access the target instruction. RISC designs allow the execution of
the next instruction after these instructions are issued. If the program or compiler places
an instruction in the delay slot that does not depend on the result of the previous
instruction, the delay slot can be used efficiently. For the implementation of this feature,
improved compilers are required that can check the dependencies of instructions before
issuing them to utilize the delay slots.

+ Efficient usage of Pre-fetching and Speculative Execution Techniques
Pre-fetching and speculative execution techniques are used with a pipelined architecture.
Instruction pipelining means having multiple instructions in different stages of execution
as instructions are issued before the previous instruction has completed its execution;
pipelining will be studied in detail later. The RISC machines examine the instructions to
check if operand fetches or branch instructions are involved. In such a case, the operands
or the branch target instructions can be ‘pre-fetched’. As instructions are issued before
the preceding instructions have completed execution, the processor will not know in case
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of a conditional branch instruction, whether the condition will be met and the branch will
be taken or not. But instead of waiting for this information to be available, the branch can
be “speculated” as taken or not taken, and the instructions can be issued. Later if the

speculation is found to be wrong, the results can be discarded and actual target
instructions can be issued. These techniques help improve the performance of processors.
CISC (Complex Instruction Set Computers)
The complex instruction set computers does not have an underlying philosophy. The
CISC machines have resulted from the efforts of computer designers to efficiently utilize
memory and minimize execution time, yet add in more instruction formats and
addressing modes. The common attributes of CISC machines are discussed below.

*  More work per instruction
This feature was very useful at the time when memory was expensive as well as slow; it
allows the execution of compact programs with more functionality per instruction.

*  Wide variety of addressing modes
CISC machines support a number of addressing modes, which helps reduce the program
instruction count. There are 14 addressing modes in MC68000 and 25 in MC68020.

* Variable instruction lengths and execution times per instruction

The instruction size is not fixed and so the execution times vary from instruction to

instruction.

¢ CISC machines attempt to reduce the “semantic gap”
‘Semantic gap’ is the gap between machine level instruction sets and high-level language
constructs. CISC designers believed that narrowing this gap by providing complicated
instructions and complex-addressing modes would improve performance. The concept
did not work because compiler writes did not find these “improvements” useful. The
following are some of the disadvantages of CISC machines.

* Clock period T, cannot be reduced beyond a certain limit
When more capabilities are added to an instruction the CPU circuits required for the
execution of these instructions become complex. This results in more stages of logic
circuitry and adds propagation delays in signal paths.
This in turn places a limit on the smallest possible value of T and hence, the maximum
value of clock frequency.

* Complex addressing modes delay operand fetch from memory
The operand fetch is delayed because more time is required to decode complex
instructions.

* Difficult to make efficient use of speedup techniques
These speedup techniques include
Pipelining
Pre-fetching (Intel 8086 has a 6 byte queue)
Super scalar operation
Speculative execution
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1) Measures of performance

2) Introduction to an example processor SRC
3) SRC:Notation

4) SRC features and instruction formats

Measures of performance:
Performance testing
To test or compare the performance of machines, programs can be run and their
execution times can be measured. However, the execution speed may depend on the
particular program being run, and matching it exactly to the actual needs of the customer
can be quite complex. To overcome this problem, standard programs called “benchmark
programs” have been devised. These programs are intended to approximate the real
workload that the user will want to run on the machine. Actual execution time can be
measured by running the program on the machines.
Commonly used measures of performance
The basic measure of performance of a machine is time. Some commonly used measures
of this time, used for comparison of the performance of various machines, are

* Execution time

«  MIPS

« MFLOPS

*  Whetstones

* Dhrystones

+ SPEC
Execution time
Execution time is simply the time it takes a processor to execute a given program. The
time it takes for a particular program depends on a number of factors other than the
performance of the CPU, most of which are ignored in this measure. These factors
include waits for I/O, instruction fetch times, pipeline delays, etc.
The execution time of a program with respect to the processor, is defined as

Execution Time =IC x CPI x T
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Where, IC = instruction count
CPI = average number of system clock periods to execute an instruction
T =clock period

Strictly speaking, (ICxCPI) should be the sum of the clock periods needed to execute
each instruction. The manufacturers for each instruction in the instruction set usually
provide such information. Using the average is a simplification.
MIPS (Millions of Instructions per Second)
Another measure of performance is the millions of instructions that are executed by the
processor per second. It is defined as
MIPS = IC/ (ET x 10%
This measure is not a very accurate basis for comparison of different processors. This is
because of the architectural differences of the machines; some machines will require
more instructions to perform the same job as compared to other machines. For example,
RISC machines have simpler instructions, so the same job will require more instructions.
This measure of performance was popular in the late 70s and early 80s when the VAX
11/780 was treated as a reference.
MFLOPS (Millions of Floating Point Instructions per Second)
For computation intensive applications, the floating-point instruction execution is a better
measure than the simple instructions. The measure MFLOPS was devised with this in
mind. This measure has two advantages over MIPS:

e Floating point operations are complex, and therefore, provide a better picture of

the hardware capabilities on which they are run
e Overheads (operand fetch from memory, result storage to the memory, etc.) are
effectively lumped with the floating point operations they support

Whetstones
Whetstone is the first benchmark program developed specifically as a benchmark
program for performance measurement. Named after the Whetstone Algol compiler, this
benchmark program was developed by using the statistics collected during the compiler
development. It was originally an Algol program, but it has been ported to FORTRAN,
Pascal and C. This benchmark has been specifically designed to test floating point
instructions. The performance is stated in MWIPS (millions of Whetstone instructions per
second).
Dhrystones
Developed in 1984, this is a small benchmark program to measure the integer instruction
performance of processors, as opposed to the Whetstone’s emphasis on floating point
instructions. It is a very small program, about a hundred high-level-language statements,
and compiles to about 1~ 1'% kilobytes of code.
Disadvantages of using Whetstones and Dhrystones
Both Whetstones and Dhrystones are now considered obsolete because of the following
reasons.

e Small, fit in cache

e Obsolete instruction mix

e Prone to compiler tricks

¢ Difficult to reproduce results

e Uncontrolled source code
We should note that both the Whetstone and Dhrystone benchmarks are small programs,
which encourage ‘over-optimization’, and can be used with optimizing compilers to
distort results.
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SPEC
SPEC, System Performance Evaluation Cooperative, is an association of a number of
computer companies to define standard benchmarks for fair evaluation and comparison of
different processors. The standard SPEC benchmark suite includes:
e A compiler
¢ A Boolean minimization program
e A spreadsheet program
e A number of other programs that stress arithmetic processing speed
The latest version of these benchmarks is SPEC CPU2000.
Advantages
It provides for ease of publication.
Each benchmark carries the same weight.
SPEC ratio 1s dimensionless.
It is not unduly influenced by long running programs.
It is relatively immune to performance variation on individual benchmarks.
e [t provides a consistent and fair metric.
An example computer: the SRC: “simple RISC computer”
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC
* The SRC contains 32 General Purpose Registers: RO, R1, ..., R31; each register is
of size 32-bits.
» Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)
*  Memory word size is 32 bits
«  Memory space size is 2°% bytes
«  Memory organization is 2°* x 8 bits, this means that the memory is byte aligned
* Memory is accessed in 32 bit words ( i.e., 4 byte chunks)
* Big-endian byte storage isused ---——-————-——-—- 1

| 31 0 |
' Ro ' 7 1]
Programmer’s View of the SRC i R1 i 0
The figure shows the attributes of the | : | ;
SRC; the 32 ,32-bit registers that area [P ] |
part of the CPU, the two additional | Register file |
CPU registers (PC & IR), and the main | I
memory which is 2°% 1-byte cells. IR ] l
SRC Notation I : 2324
We examine the notation used for the i el ] i
SRC with the help of some examples. -———--—2—--——-—-~ .
* R[3] mealrl)s contents of ré)gister CPU Main memory
3 (R for register)
*  M][8] means contents of memory location 8§ (M for memory)
* A memory word at address 8 is
defined as the 32 bits at address & 0 0 « .
g WiEl ne memory “word
T a1 MM
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8,9,10 and 11 in the memory. This is shown in the figure.

* A special notation for 32-bit memory words is
M[8]<31...0>=M[8]OM[9]|©OM[10]OM[11]
© 1s used for concatenation.

Some more SRC Attributes

* All instructions are 32 bits long (i.e., instruction size is 1 word)

* All ALU instructions have three operands

* The only way to access memory is through load and store operations

*  Only a few addressing modes are supported

SRC: Instruction Formats 31 27 76 0
Four types of instructions are Tire A Op-code unused

supported ‘ by. the SRC. Their N 798 22 91 .
representation is given in the figure Tyos B op-code - ¥

shown.

Bef0r§ discu;sing these instruction - 3736 231 1718 .
types in detail, we take a look at the Type © Op-code - o2
encoding of general purpose registers

(the ra, b and rc fields). 31 26 2721 1716 1211 0
Encoding of the General Purpose ., . Op-code a | - .3
Registers

The encoding for the general purpose |- — - B Mt e U -
registers is shown in the table; it will K _____ .< ,,,,, K K

be used in place of ra, rb and rc in the — T TR BT m
instruction formats shown above. Note K =

that this is a simple 5 bit encoding. ra, wo | wm mr | aom | wm

b and rc are names of fields used as s e we e =
“place-holders”, and can represent any S S R R

one of  these 32 registers. An |~ | ° S N

exception is rb = 0; it does not mean the register R0, rather it means no operand. This will
be explained in the following discussion.
Type A 31 2726 0
Type A is used for only two
instructions:
e No operation or nop, for which the op-code = 0. This is useful in pipelining
e Stop operation stop, the op-code is 31 for this instruction.
Both of these instructions do not need an operand (are 0-operand instructions).

Qp-code unused

Type B
Type B format includes three 31 2726 22 21 0
instructions; all three use relative Op-code ra e

addressing mode. These are
e The Idr instruction, used to load register from memory using a relative address.
(op-code = 2).
o Example:
Idr R3, 56
This instruction will load the register R3 with the contents of the memory
location M [PC+56]

e The lar instruction, for loading a register with relative address (op-code = 6)
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O

Example:
lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).

e The str is used to store register to memory using relative address (op-code = 4)

O

Example:

str R8, 34

This instruction will store the register R8 contents to the memory location
M [PC+34]

The effective address is computed at run-time by adding a constant to the PC. This makes
the instructions ‘re-locatable’.

Type C 31 27368 2221 1718 0
Type C format has three load/store Op-code ra th c2
instructions,  plus  three = ALU

instructions. These load/ store instructions are
¢ 1d, the load register from memory instruction (op-code = 1)

O

Example 1:

1d R3, 56

This instruction will load the register R3 with the contents of the memory
location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This
is an example of direct addressing mode.

Example 2:

1d R3, 56(RS)

The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field # 0. This is an instance of indexed addressing
mode.

e la is the instruction to load a register with an immediate data value (which can be
an address) (op-code =5)

O

O

Examplel:

la R3, 56

The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.

Example 2:

la R3, 56(R5)

The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.

e The st instruction is used to store register contents to memory (op-code = 3)

O

Example 1:

st R8, 34

This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]

Example 2:

st RS, 34(R6)

An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])

The ALU instructions are
e addi, immediate 2’s complement addition (op-code = 13)

O

Example:
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addi R3, R4, 56
R[3] «— R[4]+56 (b field = R4)
andi, the instruction to obtain immediate logical AND, (op-code =42 )
o Example:
andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)
ori, the instruction to obtain immediate logical OR (op-code =23)
o Example:
ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)
Note:
1. Since the constant c2 field is 17 bits,
= For direct addressing mode, only the first 2'® bytes of memory can
be accessed (or the last 2'° bytes if ¢2 is negative)
= In case of the la instruction, only constants with magnitudes less
than +2'° can be loaded
* During address calculation using c2, sign extension to 32 bits must
be performed before the addition
2. Type C instructions, with some modifications, may also be used for
shift instructions. Note 3y 3726 3721 1716 4 0
the modification in the
following figure.

Op-code ra th unused  [count

The four shift instructions are

shr is the instruction used to shift the bits right by using value in (5-bit) c3
field(shift count)
(op-code = 26)
o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3. Immediate addressing mode is used.
shra, arithmetic shift right by using value in c3 field (op-code = 27)
o Example:
shra R3, R4, 7
This instruction has the effect of shift R4 right 7 times in to R3. Immediate
addressing mode is used.
The shl instruction is for shift left by using value in (5-bit) ¢3 field (op-code = 28)
o Example:
shl R8, RS, 6
shift RS left 6 times in to R8. Immediate addressing mode is used.
shc, shift left circular by using value in ¢3 field (op-code = 29)
o Example:
shc R3,R4, 3
shift R4 circular 3 times in to R3. Immediate addressing mode is used.
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Lecture Handout
Computer Architecture

Lecture No. 4

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2
Computer Systems Design and Architecture 2.3, 2.4,slides
Summary

1) Introduction to ISA and instruction formats
2) Coding examples and Hand assembly

An example computer: the SRC: “simple RISC computer”
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC
» The SRC contains 32 General Purpose Registers: RO, R1, ..., R31; each register is
of size 32-bits.
» Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)
*  Memory word size is 32 bits
Memory space size is 2** bytes
«  Memory organization is 2°* x 8 bits, this means that the memory is byte aligned
* Memory is accessed in 32 bit |=——r-——————r-- 1

words ( 1.e., 4 byte chunks) i RO 2 " i 7 0

* Big-endian byte storage isused | R ! 0
Programmer’s View of the | : | ;
SRC [ Ju—
The figure below shows the attributes i Register file |
of the SRC; the 32 ,32-bit registers that ! |
are a part of the CPU, the two | R[] |
additional CPU registers (PC & 1R), | | 2321
and the main memory which is 2** 1- | el ] |
byte cells. CPU Main memory
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SRC Notation
We examine the notation used for the SRC with the help of some examples.
* R[3] means contents of register 3 (R for register)
* M]8] means contents of memory location 8 (M for memory)

* A memory word at address 8 is
defined as the 32 bits at address

o
. % 7 a i n
8,9,10 and 11 in the memory. £ = [_WE One memory “word
. . . o= g+ W[
This is shown in the figure =3I} M[ED]] |31 24|23 15|15 3|? n|
i (8] 9] h[10] M[11]
below. & a+3 [ M)
5
.

. . . MS Byte LS Byte
* A special notation for 32-bit L’_’/
memory words is
M[8]<31...0>=M[8]OM[9]©OM[10]OM[11]
© 1s used for concatenation.
Some more SRC Attributes
* All instructions are 32 bits long (i.e., instruction size is 1 word)
* All ALU instructions have three operands
* The only way to access memory is through load and store operations

* Only a few addressing modes 31 37 76 0
are supported Type A Op-code unused
SRC: Instruction Formats
. . 31 2726 22 0
Four types of instructions are - 1
supported by the SRC. Their Op-code ° -
representation is given in the following
. . | 27T 26 2221 1716 0
figure. Before discussing these
. . . . Type © Op-cade ra rh 02
instruction types in detail, we take a
look at the encoding of general-
. 31 W26 2721 1716 1211 0
purpose registers (the ra, rb and rc
Type D op-code ra rh rc c3
fields).
Encoding of the General Purpose S S S
Registers B S S A i M
The encoding for the general purpose : =
registers is shown in the following W | e | o | e
table; it will be used in place of ra, rb wo] e we e =
and rc in the instruction formats shown S B S e M B s
above. Note that this is a simple 5 bit |~ | “ . S -

encoding. ra, tb and rc are names of fields used as “place-holders”, and can represent any
one of these 32 registers. An exception is rb = 0; it does not mean the register RO, rather
it means no operand. This will be explained in the following discussion.

Type A

Type A is used for only two instructions:

e No operation or nop, for which 31 2726 a
the op-code = 0. This is useful Op-code Unused
in pipelining
e Stop operation stop, the op-code is 31 for this instruction.

Last Modified: 01-Nov-06 Page 49



Advanced Computer Architecture-CS501

Both of these instructions do not need an operand (are 0-operand instructions).

Type B
Type B format includes three 21 T8 22 M ]
instructions; all three wuse relative Op-code ra e

addressing mode. These are
e The Idr instruction, used to load register from memory using a relative address.
(op-code = 2).
o Example:
1dr R3, 56
This instruction will load the register R3 with the contents of the memory
location M [PC+56]
e The lar instruction, for loading a register with relative address (op-code = 6)
o Example:
lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).
e The str is used to store register to memory using relative address (op-code = 4)
o Example:
str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]
The effective address is computed at run-time by adding a constant to the PC. This makes
the instructions ‘re-locatable’.
Type C 31 2726 22 31 1716 0
Type C format has three load/store Op-code ra b o2
instructions,  plus  three = ALU
instructions. These load/ store instructions are
e 1d, the load register from memory instruction (op-code = 1)
o Example 1:
1d R3, 56
This instruction will load the register R3 with the contents of the memory
location M [56]; the rb field is O in this instruction, i.e., it is not used. This
is an example of direct addressing mode.
o Example 2:
1d R3, 56(R5)
The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field # 0. This is an instance of indexed addressing
mode.
e la is the instruction to load a register with an immediate data value (which can be
an address) (op-code =5)
o Examplel:
laR3, 56
The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.
o Example 2:
la R3, 56(R5)
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The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.
e The st instruction is used to store register contents to memory (op-code = 3)
o Example 1:
st R8, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]
o Example 2:
st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])
The ALU instructions are
e addi, immediate 2’s complement addition (op-code = 13)
o Example:
addi R3, R4, 56
R[3] <« R[4]+56 (rb field = R4)
e andi, the instruction to obtain immediate logical AND, (op-code =21 )
o Example:
andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)
e ori, the instruction to obtain immediate logical OR (op-code =23 )
o Example:
ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)

Note:
1. Since the constant c2 field is 17 bits,
»  For direct addressing mode, only the first 2'® bytes of memory can
be accessed (or the last 2'° bytes if ¢2 is negative)
= In case of the la instruction, only constants with magnitudes less
than £2'° can be loaded
= During address calculation using c2, sign extension to 32 bits must
be performed before the addition
2. Type C instructions, with some modifications, may also be used for
shift instructions. Note
the modification in the 31 27 36 22 21 1716 4 0
following figure. Op-code ra b unused  (count
The four shift instructions are
e shr is the instruction used to shift the bits right by using value in (5-bit) c3
field(shift count) (op-code = 26)
o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3 and shifts zeros in from the left as the value
is shifted right. Immediate addressing mode is used.
e shra, arithmetic shift right by using value in ¢3 field (op-code = 27)
o Example:
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shra R3, R4, 7

This instruction has the effect of shift R4 right 7 times in to R3 and copies
the msb into the word on left as contents are shifted right. Immediate

addressing mode is used.

e The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28)

o Example:
shl R8, RS, 6

shift RS left 6 times in to R8 and shifts zeros in from the right as the value

is shifted left. Immediate addressing mode is used.

e shc, shift left circular by using value in ¢3 field (op-code = 29)

o Example:
shc R3,R4, 3

shift R4 circular 3 times in to R3 and copies the value shifted out of the
register on the left is placed back into the register on the right. Immediate

addressing mode is used.

Type D

Type D includes four ALU
instructions, four register based shift
instructions, two logical instructions
and two branch instructions.

31

AT 26 22

1716

1211 a

Qp-code

ra

rb

I

unused

The four ALU instructions are given below

e add, the instruction for 2’s complement register addition (op-code = 12)
o Example:
add R3, R5, R6
result of 2’s complement addition R[5] + R[6] is stored in R3. Register
addressing mode is used.
e sub, the instruction for 2’s complement register subtraction (op-code = 14)
o Example:
sub R3, R5, R6
R3 will store the 2’s complement subtraction, R[5] - R[6]. Register
addressing mode is used.
e and, the instruction for logical AND operation between registers (op-code = 20)
o Example:
and R&, R3, R4
R8 will store the logical AND of registers R3 and R4. Register addressing
mode is used.
e or the instruction for logical OR operation between registers (op-code = 22)
o Example:
or R8, R3, R4
R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and
R4. Register addressing mode is used.

The four register based shift instructions use register addressing mode. These use a
modified form of type D, as shown in

ﬁgure 31 736 2z 1716 121 54 0
e shr, shift right by using value in Op-code ra b re |unused [10000
register rc (op-code = 26)
o Example:
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shr R3, R4, R5
This instruction will shift R4 right in to R3 using number in RS
e shra, the arithmetic shift right by using register rc (op-code = 27)
o Example:
shra R3, R4, R5
A shift of R4 right using RS, and the result is stored in R3
e shl is shift left by using register rc (op-code = 28)
o Example:
shl R8, RS, R6
The instruction shifts R5 left in to R8 using number in R6
e shc, shifts left circular by using register rc (op-code = 29)
o Example:
shc R3, R4, R6
This instruction will shift R4 circular in to R3 using value in R6
The two logical instructions also use a modified form of the Type D, and are the
following.

o neg stores the 2’s complement 31 27 26 2221 1716 1211 a
of register rc in ra (op-code = Op-cade ra  |unused| re unused
15)

o Example:
neg R3, R4

Negates (obtains 2’s complement) of R4 and stores in R3. 2-address
format and register addressing mode is used.
e not stores the 1’s complement of register rc in ra (op-code = 24)
o Example:
not R3, R4
Logically inverts R4 and stores in R3. 2-address format with register
addressing mode is

used. el 2726 2221 1716 1211 52 0
Type D has two-branch instruction, Op-code  |unused| b re |unused | cond
modified forms of type D.

e br, the instruction to branch to address in rb depending on the condition in rc.
There are five possible conditions, explained through examples. (op-code = 8).
All branch instructions use register-addressing mode.

o Example 1:

brzr R3, R4

Branch to address in R3 (if R4 == 0)
o Example 2:

brnz R3, R4

Branch to address in R3 (if R4 # 0)
o Example 3:

brpl R3, R4

Branch to address in R3 (if R4 > 0)
o Example 4:

brmi R3, R4

Branch to address in R3 (if R4 < 0)
o Example 5:
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br R3, R4

Branch to address in R3 (unconditional)
e Brl the instruction to branch to address in rb depending on condition in rc.
Additionally, it copies the PC in to ra before branching (op-code = 9)

o Example 1:
brlzr R1,R3, R4

R1 will store the contents of PC, then branch to address in R3 (if R4 == 0)

o Example 2:
brlnz R1,R3, R4

R1 stores the contents of PC, then a branch is taken, to address in R3 (if

R4 #0)
o Example 3:
brlpl R1,R3, R4

R1 will store PC, then branch to address in R3 (if R4> 0)

o Example 4:
brlmi R1,R3, R4

R1 will store PC and then branch to address in R3 (if R4 < 0)

o Example 5:

brl R1,R3, R4

R1 will store PC, then it
will ALWAYS branch to

address in R3
o Example 6:
brlnv R1,R3, R4
R1 just stores the

contents of PC but a
branch i1s not taken
(NEVER BRANCH)

Mnemonic c3<2..0x Branch Condition
hrlny 000 Link but never hranch*
hr, hrl ool Tnconditdonal hranch
brzr, brlzr ol0 Branch if re is zero
hrnz, hrinz o1l Branch if rc is not zera
hrpl, hrlpl 100 Branch if re is positive
hrmi, brlmi 101 Branch if re is negative

In the modified type D instructions for branch, the bits <2..0> are used for specifying the
condition; these condition codes are shown in the table.

The SRC Instruction Summary

The instructions implemented by the SRC are listed, grouped on functionality basis.

Functional Groups of Instructions

Logic Opcode
Shift right by count shr 11 1 0] 1| O [Arithmetic Opcode
Shift right by count in a register shr 11 1] 0f 1| 0] [2°s complement addition add o] 1 1 o] o
AShift right by count shra 11 1] 0] 1] 1] [Immadiata 2'< camnlamant addn JEER nl 1l a0 nl
AShift right by count in a register shra 1 1] 0f 1] 1 %Imnemgnig BIE IR e _--| la ol o) 1joj1
Shiftleft by count shl 1 1] 1] o o L_eg lar ofo] 1] 1] D
Shift Ieft by count in a register snl | 1] 1] 1] 0[ 0| fr=2 - 14 |olololo[
Shiftcirc. bycount_ _ she 1 1 1| 0] 1 E ~3a T 11070 1dr ololol1lo
Shift circ. by count in a register she 10 1] 1] 0] 1] [imm 1= oj 1] 1] 11 1
[Not addi of 1{ 11 o] 1
[Not nep | DD [0]D]D
. . . and 101010 mot | 1] 10/ 0] 0
Alphabetical Listing based on SRC mai | 1] 0] 1]0] 1 T L]
Mnemonics rerrd B oj1jojojo PTI I r a
, LU - AERRE h IEIEINE
Notice that the op code field for all br | FSo—13 1ol ol py ey ey v ey ) AT D
. . . : . [Noo | Lrimi she ol 1ol ol 0
instructions is the same. The difference is [gzr [ &zinw | 0] 1] 0] 0] 1 w1 [0 0 5ot s
in the condition code field, which is in brins | O] 1 0] 0] shl : } El 'i' g o[ 1] o[ o o
. Dats h
effect, an op code extension. Data | bripl g : E E 1 e
|| &r1
Examples Loac = E.I shra ol 1 1ol 1) ol of 4
= brmi gof 1 ojofao
Loac shra |11 O0 1 o[ 1] o] of 1
Last Modified: 01-Nov-06 Stor, | T gpjojolo ot ol ol o] 1 1] o0 ol ol
stor| brn= O U OJ OO0 P n T[T 1] a[a[ o] o[ 1
Loac | brEl pj1jofojo ser Ol 0[ ] o] o|o ol o1
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Some examples are studied in this section to enhance the student’s understanding of the
SRC.

Example 1: Expression Evaluation

Write an SRC assembly language program to evaluate the expression:

z=4(a +b) — 16(c+58)

Your code should not change the source operands.

Solution A: Notice that the SRC does not have a multiply instruction. We will make use
of the fact that multiplication with powers of 2 can be achieved by repeated shift left
operations. A possible solution is give below:

IdR1, ¢ ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

IdR5,b

add R6, R4, R5 ; R6 contains (a+b)

shl R&, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.

A semicolon ¢;’ is used for comments in assembly language.

Solution B:

We may solve the problem by assuming that a multiply instruction, similar to the add
instruction, exists in the instruction set of the SRC. The shl instruction will be replaced
by the mul instruction as given below.

IdR1, ¢ ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

mul R7, R3, 4 : R7 contains 16(c+58)

Id R4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

mul R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.

Solution C:

We can perform multiplication with a multiplier that is not a power of 2 by doing
addition in a loop. The number of times the loop will execute will be equal to the
multiplier.

Example 2: Hand Assembly

Convert the given SRC assembly language program in to an equivalent SRC machine
language program.

IdR1, ¢ ; ¢ 1s a label used for a memory location

addi R3, R1, 58 ; R3 contains (c+58)
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shl R7, R3, 4 ; R7 contains 16(c+58)

IdR4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

This program uses memory labels a,b,c and z. We need to define them for the assembler
by using assembler directives like .dw or .equ etc. in the source file.
Assembler Directives
Assembler directives, also called pseudo op-codes, are commands to the assembler to
direct the assembly process. The directives may be slightly different for different
assemblers. All the necessary directives are available with most assemblers. We explain
the directives as we encounter them. More information on assemblers can be looked up in
the assembler user manuals.
Source program with directives

.ORG 200 ; start the next line at address 200

a: .DW 1 ; reserve one word for the label a in the memory
b: .DW 1 ; reserve a word for b, this will be at address 204
c: .DW 1 ; reserve a word for ¢, will be at address 208

z: .DW 1 ; reserve one word for the result

.ORG 400 ; start the code at address 400
; all numbers are in decimal unless otherwise stated

IdR1,c ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z

This is the way an assembly program will appear in the source file. Most assemblers
require that the file be saved with an .asm extension.
Solution:
Observe the first line of the program
ORG 200 ; start the next line at address 200
This is a directive to let the following code/ variables ‘originate’ at the specified address
of the memory, 200 in this case.
Variable statements, and another .ORG directive follow the .ORG directive.

a: .DW 1 ; reserve one word for the label a in the memory

b: .DW 1 ; reserve a word for b, this will be at address 204

c: .DW 1 ; reserve a word for ¢, will be at address 208

z .DW 1 ; reserve one word for the result

.ORG 400 ; start the code at address 400

We conclude the following from the above statements: Label | Address | Value
a 200 unknown
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The code starts at address 400 and each instruction takes 32 bits in the memory. The
memory map for the program is shown in given table.
Memory Map for the SRC example program

Memonr Memonr
Address Cordents

0 b
04 bz
03 bt
212 bt

400 MEL«c

404 addi B3 R1, 58
402 shl BT B3, 4
412 11E4.a

416 MESb

420 add RS, B4, RS
424 shl B2 R, 2
423 sub B9 BT RS
432 L ROz

We have to convert these instructions to machine language. Let us start with the first

instruction:
Id R1, ¢
Notice that this is a type C instruction with the rb field missing.

1. We pick the op-code for this load instruction from the SRC instruction tables
given in the SRC instruction summary section. The op-code for the load register
‘1d’ instruction is 00001.

2. Next we pick the register code corresponding to register R1 from the register table
(given in the section ‘encoding of general Y T—— T a— Heradorimal
purpose registers’). The register code for | Addes Conterts Mencay Canterts
R11is 00001.

3. The b field is missing, so we place zeros o0 |wdmonn
in the field: 00000 SO i

. . a0z hi S chiy

4. The value of c¢ is provided by the o
assembler, and should be converted to 17
bits. As ¢ has been assigned the memory 00 |MERLe TEATOD0 K
address 208, the binary value to be 404 [addiR5.RL5
encoded is 00000 0000 1101 0000. 408 |SRLESS

5. So the instruction 1d R1, ¢ is 00001 00001 HE | Mo | e
00000 00000 0000 1101 0000 in the :Z
machine language. yor 1w

6. The hexadecimal representation of this e T Fere—
instructionis 0 84000 D 0 h. e a2 |wiaew

We can update the memory map with these ot R
values. 404 addiR3,R1, 58 620200345
We consider the next instruction, :?2 :R‘f;m“‘
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addi R3, R1, 58.
Notice that this is a type C instruction.

1. We pick the op-code for the instruction addi from the SRC instruction table. It is
01101
2. We pick the register codes for the registers R3 and R1, these codes are 00011 and
00001 respectively
3. For the immediate data, 58, we use the binary value, 00000 0000 0011 1010
4. So the complete instruction becomes: 01101 00011 00001 00000 0000 0011 1010
5. The hexadecimal representation of the instruction Hery T — Hemadocial
is68C2003Ah I R i
We update the memory map, as shown in table. ETTR rw—
The next instruction is shl R7,R3, 4, at address 408. AR i
Again, this is a type C instruction. 232 m
1. The op-code for the instruction shl is picked from
the SRC instruction table. It is 11100 S R~
2. The register codes for the registers R7 and R3 T T EICo004E
from the register table are 00111 and 00011 S
respectively R P
3. For the immediate data, 4, the corresponding i
binary value 00000 0000 0000 0100 is used. e i
4. We can place these codes in accordance with the

type C instruction format to obtain the complete instruction: 11100 00111 00011

00000 0000 0000 0100

5. The hexadecimal representation of the instruction is E1C60004

The memory map is updated, as shown in table.

The next instruction, ld R4, a, is also a type C instruction. e Cotens MHm:EcoTn:
Rb field is missing in this instruction. To obtain the MR
machine equivalent, we follow the steps given below. FTTR e v—
1. The op-code of the load instruction ‘1d” is 00001 i
2. The register code corresponding to the register R4 S i
is obtained from the register table, and it is 00100 W0 [mRLC TEAOID0L
3. As the 5 bit rb field is missing, we can encode A e o
Zeros in its place: 00000 412 1dR4,; - 090000CE 1
4. The value of a is provided by the assembler, and R
is converted to 17 bits. It has been assigned the :zi ﬁ:::;:j
memory address 200, the binary equivalent of 6 |sRROELES
which is: 00000 0000 1100 1000 M
5. The complete instruction becomes: 00001 00100 00000 00000 0000 1100 1000
6. The hexadecimal equivalent of the instructionis 090000 C8h

Memory map can be updated with this value.

The next instruction is also a load type C instruction, with | Merew ey ——
the rb field missing.
ld RS, b 200 wikroan
The machine language conversion steps are G
1. The op-code of the load instruction is obtained 2w
from the SRC instruction table; it is 00001 S - R
2. The register code for RS5, obtained from the Wor [wumRL SeCaeER
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register table, is 00101 405

shlR7,E3,4

E1CA0004 b

412

LAY

090000CE h

416

RS

094000CCh

420

234 R, R4, RS

424

shl R R, 2

4218

cub RO, RT. RS

432

s R9.z
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(98]

Again, the 5 bit rb field is missing. We encode zeros in its place: 00000

4. The value of label b is provided by the assembler, and should be converted to 17
bits. It has been assigned the memory address 204, so the binary value is: 00000
0000 1100 1100

5. The complete instruction is: 00001 00101 00000 00000 0000 1100 1100

6. The hexadecimal value of this instruction is 0 9 4

Memowy Memory Hexaderinal
000CCh Address Contents Merory Corterts
Memory map is then updated with this value. —
The next instruction is a type D-add instruction, with the W |wiaon
constant field missing: S i
add R6,R4,R5
The steps followed to obtain the assembly code for this s JuRLe DE400L0%
instruction are e e
1. The op-code of the instruction is obtained from i 09000008 1
the SRC instruction table; it is 01100 - LMR: e o
2. The register codes for the registers R6, R4 and RS N
are obtained from the register table; these are T b

00110, 00100 and 00101 respectively.
3. The 12 bit constant field is unused in this instruction, therefore we encode zeros
in its place: 0000 0000 0000
4. The complete instruction becomes: 01100 00110 00100 00101 0000 0000 0000
5. The hexadecimal value of the instructionis6 1 885000 h
Memory map is then updated with this value.

The instruction shl R8,R6, 2 is a type C instruction with | Mexex Yucry ]
the rc field missing. The steps taken to obtain the
machine code of the instruction are a0 |wimew
1. The op-code of the shift left instruction ‘shl’, S i
obtained from the SRC instruction table, is 11100 [
2. The register codes of R8 and R6 are 01000 and
00110 respectively N T
3. Binary code is used for the immediate data 2: 0 | FLC6000¢
00000 0000 0000 0010 s stk
4. The complete instruction becomes: 11100 01000 T TN TN TR
00110 00000 0000 0000 0010 M ok e
5. The hexadecimal equivalent of the instruction is E = ﬂm;im
20C0002

Memory map is then updated with this value.
The instruction at the memory address 428 is sub R9, R7, R8. This is a type D

instruction. Hanery r— Henatacial
We decode it into the machine language, as follows: Comarte | e Gt
1. The op-code of the subtract instruction ‘sub’ is TR vy
01110 PTYR Ferm—y

208 i

2. The register codes of R9, R7 and RS, obtained o T
from the register table, are 01001, 00111 and

400 WERLc 05400000 b

01000 respeCtlvely 404 addi B3, R1,5% GEC2005 480

3. The 12 bit immediate data field is not used, zeros TR FYrr ELCo000t R
are encoded in its place: 0000 0000 0000 MG s DODOONES 1

416 WESL 0340000 Ch

420 add RA, R4, ES 61385000

424 shl B8, R6.2 ECo002h
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4. The complete instruction becomes: 01110 01001 00111 01000 0000 0000 0000

5.

The hexadecimal equivalentis 724 E8000h

We again update the memory map

The last instruction is is a type C instruction with the rb
field missing:

st R9, z

The machine equivalent of this instruction is obtained
through the following steps:

1.

2.
3.

3.
6.

The op-code of the store instruction ‘st’, obtained
from the SRC instruction table, is 00011

The register code of R9 is 01001

Notice that there is no register coded in the 5 bit
rb field, therefore, we encode zeros: 00000

The value of the label z is provided by the
assembler, and should be converted to 17 bits.
Notice that the memory address assigned to z is
212. The 17 bit binary equivalent is: 00000 0000
1101 0100

Memoxy
A ddress

Memory
Conterds

Hexadecimal

Memory Cortarts

200

04

a0z

212

400

HELc

034M0T0 R

404

2341 B3, R, 5%

GECA00ZAL

402

shlRT. B34

E1CA0004 1

412

R4

0200000 T

416

1A RS.b

024000 C Tk

420

234 R, R4, RS

al5s5000h

424

shl R R, 2

E20C0002 1

4218

sub B9, BT, RS

TIAES0 b

432

RSz

14400004 h

The complete instruction becomes: 00011 01001 00000 00000 0000 1101 0100
The hexadecimal form of this instructionis 1 A4000D 4 h
The memory map, after the conversion of all the instructions, is

We have shown the memory map as an array of 4 byte cells in the above solution.
However, since the memory of the SRC is arranged in 8 bit cells (i.e. memory is byte
aligned), the real representation of the memory map is :

Example 3: SRC instruction analysis

Identify the formats of following SRC instructions and specify the values in the fields

Solution:
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Instruction

fortmat

th

rc

cl

cd

c3

negtl, 12

add flr2 13

fop

1d 2,6

shidlrl 3

Instruction

format

cl

o2

c3

negtl, 12

add f0.+2 ¢3

nop

1d+2,8

shidl r] .3

Il
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Lecture Handout

Computer Architecture

Lecture No. 5

Reading Material
Handouts Slides

Summary
1) Reverse Assembly
2) Description of SRC in the form of RTL
3) Behavioral and Structural description in terms of RTL

Reverse Assembly
Typical Problem:

Given a machine language instruction for the SRC, it may be required to find the
equivalent SRC assembly language instruction
Example:
Reverse assemble the following SRC machine language instructions:
68C2003A h
E1C60004 h
61885000 h

724E8000 h

1A4000D4 h

084000DO0 h
Solution:
1. Write the given hexadecimal instruction in binary form
68C2003A h — 0110 1000 1100 0010 0000 0000 0011 1010 b
2. Examine the first five bits of the instruction, and pick the corresponding mnemonic
from the SRC instruction set listing arranged according to ascending order of op-codes
01101 b > 13 d — addi — add immediate
3. Now we know that this instruction uses the type C format, the two 5-bit fields after the
op-code field represent the destination and the source registers respectively, and that the
remaining 17-bits in the instruction represent a constant
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0110 IFOO 1100 OOI}O 0000 0000 0011 1010 Db
op-code'ra field' rb field 17-bit c1 field

Vool \
addi R3 Rl 3Ah=58d

4. Therefore, the assembly language instruction is
addi R3, R1, 58

Summary

Given machine language instnaction Equivalent assembly language instraction

68C2003Ah addi R3,R1, 58
E1C60004 h
61885000 h
724E8000 h
1A4000D4 h
084000D0 h

Given v ivetrnction in bi
instraction fn Equivalent instruction in binary
hexadecimal

E1C60004 h 1110 0001 1100 0110 0000 0000 0000 0100 b
61835000 h 0110 0001 1000 1000 0101 0000 0000 0000 b
T24E£000 h 0111 0010 0100 1110 1000 0000 0000 0000 b

14400004 h 0001 1010 0100 0000 0000 0000 1101 0100 b

03400000 h 0000 1000 0100 0000 0000 0000 1101 0000 b

Step 2: Pick up the op code for each instruction

Grveninstructionin | Op-code field MrEmonic
hexadecimal
E1C60004 h ook shl
A1885000 h oo oh add
T24E2000 h 01 ok sub
14400004 b 000l 1 b st
02400000 h 0000 1 b 4

Step 3: Determine the instruction type for each instruction

Giver instraction ity htettLOnic Instraction type
hexadercimal

E1CE0004 b shi

61835000 h achd

T2AEE000 b sub

14400004 h st

02400000 h 1d

We can do it a bit faster now! Step1: Here is stepl for all instructions
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The meaning of the remaining fields will depend on the instruction type (i.e., the
instruction format)

Summary
Given machine language instnaction Equivalent assembly language instraction

68C2003Ah addi R3,R1, 58
E1C60004 h
61885000 h
724E8000 h
1A4000D4 h
084000D0 h

Note:Rest of the fields of above given tables are left as an exercise for
students.

Using RTL to describe the SRC
RTL stands for Register Transfer Language. The Register Transfer Language provides a
formal way for the description of the behavior and structure of a computer. The RTL
facilitates the design process of the computer as it provides a precise, mathematical
representation of its functionality. In this section, a Register Transfer Language is
presented and introduced, for the SRC (Simple ‘RISC’ Computer), described in the
previous discussion.
Behavioral RTL
Behavioral RTL is used to describe the ‘functionality’ of the machine only, i.e. what the
machine does.
Structural RTL
Structural RTL describes the ‘hardware implementation’ of the machine, i.e. how the
functionality made available by the machine is implemented.
Behavioral versus Structural RTL:
In computer design, a top-down approach is adopted. The computer design process
typically starts with defining the behavior of the overall system. This is then broken down
into the behavior of the different modules. The process continues, till we are able to
define, design and implement the structure of the individual modules. Behavioral RTL is
used for describing the behavior of machine whereas structural RTL is used to define the
structure of machine, which brings us to the some more hardware features.
Using RTL to describe the static properties of the SRC
In this section we introduce the RTL by using it to describe the various static properties
of the SRC.
Specifying Registers
The format used to specify registers is
Register Name<register bits>
For example, IR<31..0> means bits numbered 31 to 0 of a 32-bit register named “IR”
(Instruction Register).
“Naming” using the := naming operator:
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The := operator is used to ‘name’ registers, or part of registers, in the Register Transfer
Language. It does not create a new register; it just generates another name, or “alias” for
an already existing register or part of a register. For example,

Op<4..0>: = IR<31..27> means that the five most significant bits of the register IR will
be called op, with bits 4..0.

Fields in the SRC instruction

In this section, we examine the various fields of an SRC instruction, using the RTL.
op<4..0>:=1R<31..27>;  operation code field

The five most significant bits of an SRC instruction, (stored in the instruction register in
this example), are named op, and this field is used for specifying the operation.

ra<4..0>: =[R<26..22>;  target register field

The next five bits of the SRC instruction, bits 26 through 22, are used to hold the address
of the target register field, i.e., the result of the operation performed by the instruction is
stored in the register specified by this field.

<4..0>: =IR<21..17>;  operand, address index, or branch target register

The bits 21 through 17 of the instruction are used for the rb field. rb field is used to hold
an operand, an address index, or a branch target register.

rc<4..0>: =[R<16..12>;  second operand, conditional test, or shift count register

The bits 16 through 12, are the rc field. This field may hold the second operand,
conditional test, or a shift count.

c1<21..0>: =1R<21..0>; long displacement field

In some instructions, the bits 21 through 0 may be used as long displacement field.
Notice that there is an overlap of fields. The fields are distinguished in a particular
instruction depending on the operation.

c2<16..0>: =IR<16..0>;  short displacement or immediate field

The bits 16 through 0 may be used as short displacement or to specify an immediate
operand.

¢3<11..0>: =1IR<11..0>;  count or modifier field

The bits 11 through 0 of the SRC instruction may be used for count or modifier field.
Describing the processor state using RTL

The Register Transfer Language can be used to describe the processor state. The
following registers and bits together form the processor state set.

PC<31..0>; program counter (it holds the memory address of next
instruction to be executed)

IR<31..0>; instruction register, used to hold the current instruction

Run; one bit run/halt indicator

Strt; start signal

R [0..31]<31..0>; 32, 32 bit general purpose registers

SRC in a Black Box

Connectors &
the back (o be
added later on)

Indicators
{include the RUN
indicatar)
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Difference between our notation and notation used by the text (H&J)

Our Meaning Symbols || Cur Symbol or Ivleaning symbol used
Symbols in text terminology by H&J
: Conditional transfer > RTL Fegister Transfer Language RTH
: Secuential statements ) Behavioral RTL Abstract RTN
\ Conmutent staterments : Structural RTL Concrste BTH
— Ep——— _ irplermentation mﬁ?tiszfm
— assi t - i
ss1lgn.men MAER Memory Lddress Register A
& Logical AND n MEE Ileraory Buffer Register LD
— Logical OR v
| Logical HOT -
Coneatenation #
o Replication @
[ Remaitider after division (moclo) fohe

Difference between “,” and *“;” in RTL

(134

Statements separated by a “,” take place during the same clock pulse. In other words, the
order of execution of statements separated by “,” does not matter.

On the other hand, statements separated by a “;” take place on successive clock pulses. In
other words, if statements are separated by “;” the one on the left must complete before
the one on the right starts. However, some things written with one RTL statement can
take several clocks to complete.

So in the instruction interpretation, fetch-execute cycle, we can see that the first
statement. ! Run & Strt : Run < 1, executes first. After this statement has executed and
set run to 1, the statements IR «— M [PC] and PC « PC + 4 are executed concurrently.
Note that in statements separated by “,”, all right hand sides of Register Transfers are
evaluated before any left hand side is modified (generally though assignment).

Using RTL to describe the dynamic properties of the SRC

The RTL can be used to describe the dynamic properties.

Conditional expressions can be specified through the use of RTL. The following example
will illustrate this

(op=14) : R [ra] < R [rb]-R[rc];

The < operator is the RTL assignment operator. ‘;’ is the termination operator. This
conditional expression implies that “IF the op field is equal to 14, THEN calculate the
difference of the value in the register specified by the rb field and the value in the register
specified by the rc field, and store the result in the register specified by the ra field.”
Effective address calculations in RTL (performed at runtime)
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In some instructions, the address of an operand or the destination register may not be
specified directly. Instead, the effective address may have to be calculated at runtime.
These effective address calculations can be represented in RTL, as illustrated through the

examples below.

Displacement address
disp<31..0> := ((tb=0) : c2<16..0> {sign extend},
(rb#0) : R [rb] + ¢2<16..0> {sign extend}),
The displacement (or the direct) address is being calculated in this example. The “,”
operator separates statements in a single instruction, and indicates that these statements
are to be executed simultaneously. However, since in this example these are two disjoint
conditions, therefore, only one action will be performed at one time.
Note that register RO cannot be added to displacement. rb = 0 just implies we do not need
to use the R [rb] field.
Relative address
rel<31..0> := PC<31..0> + c¢1<21..0> {sign extend},
In the above example, a relative address is being calculated by adding the displacement
after sign extension to the contents of the program counter register (that holds the next
instruction to be executed in a program execution sequence).
Range of memory addresses
The range of memory addresses that can be accessed using the displacement (or the
direct) addressing and the relative addressing is given.
¢ Direct addressing (displacement with rb=0)
o If ¢2<16>=0 (positive displacement) absolute addresses range from
00000000h to 0000FFFFh
o If ¢2<16>=1 (negative displacement) absolute addresses range from
FFFF0000h to FFFFFFFFh
e Relative addressing
o The largest positive value of C1<21..0> is 2*'-1 and its most negative
value is -2%', so addresses up to 2%'-1 forward and 2*' backward from the
current PC value can be specified
Instruction Interpretation
(Describing the Fetch operation using RTL)
The action performed for all the instructions before they are decoded is called ‘instruction
interpretation’. Here, an example is that of starting the machine. If the machine is not
already running (—Run, or ‘not’ running), AND (&) it the condition start (Strt) becomes
true, then Run bit (of the processor state) is set to 1 (i.e. true).
instruction_Fetch := (
! Run & Strt: Run <« 1 ; instruction_Fetch
Run : (IR — M [PC], PC — PC +4; instruction_Execution ) );
The := is the naming operator. The ; operator is used to add comments in RTL. The ,
operator, specifies that the statements are to be executed simultaneously, (i.e. in a single
clock pulse). The ; operator is used to separate sequential statements. <— is an assignment
operator. & is a logical AND, ~ is a logical OR, and ! is the logical NOT. In the
instruction interpretation phase of the fetch-execute cycle, if the machine is running (Run
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is true), the instruction register is loaded with the instruction at the location M [PC] (the
program counter specifies the address of the memory at which the instruction to be
executed is located). Simultaneously, the program counter is incremented by 4, so as to
point to the next instruction, as shown in the example above. This completes the
instruction interpretation.
Instruction Execution
(Describing the Execute operation using RTL)
Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following, we denote instruction Fetch by “iF” and instruction execution by
“1E”.
iE:= (

(op<4..0>=1) : R [ra] < M [disp],

(op<4..0>=2) : R [ra] «<— M [rel],

(op<4..0>=31) : Run < 0,); iF);
As shown above, Instruction Execution can be described by using a long list of
conditional operations, which are inherently “disjoint”.
One of these statements is executed, depending on the condition met, and then the
instruction fetch statement (iF) is invoked again at the end of the list of concurrent
statements. Thus, instruction fetch (iF) and instruction execution statements invoke each
other in a loop. This is the fetch-execute cycle of the SRC.

Concurrent Statements

The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below.
Load-Store Instructions
(op<4..0>=1) : R [ra] < M [disp], load register (1d)
This instruction is to load a register using a displacement address specified by the
instruction, i.e. the contents of the memory at the address ‘disp’ are placed in the register
R [ra].

(op<4..0>=2) : R [ra] < M [rel], load register relative (I1dr)
If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, ‘rel’. The relative address calculation has been
explained in this section earlier.
(op<4..0>=3) : M [disp] < R [ra], store register (st)
If the op-code is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location ‘disp’.
(op<4..0>=4) : M|rel] <— R|ra], store register relative (str)
If the op-code is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location ‘rel’.
(op<4..0>=5) : R [ra] < disp, load displacement address (1a)
For op-code 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).
(op<4..0>=6) : R [ra] < rel, load relative address (lar)
For op-code 6, the relative address rel is loaded to the register R (specified by the target
register address ra).
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Branch Instructions
(op<4..0>=8) : (cond : PC < R [rb]), conditional branch (br)
If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition ‘cond’ is true.
(op<4..0>=9) : (R [ra] — PC,

cond : (PC <— R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
rb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these ‘conditional’ branches depend on are specified by the field c3
that has 3 bits. This simply means that when ¢3<2..0> is equal to one of these six values.
We substitute the expression on the right hand side of the : in place of cond
These conditions are explained here briefly.

cond :=(
c3<2..0>=0:0, never
If the ¢3 field is 0, the branch is never taken.
¢3<2..0>=1:1, always
If the field is 1, branch is taken
¢3<2..0>=2 : R [rc]=0, if register is zero
If ¢3 = 2, a branch is taken if the register rc = 0.
¢3<2..0>=3 : R [rc] #0, if register is nonzero

If ¢3 = 3, a branch is taken if the register rc is not equal to 0.
¢3<2..0>=4 : R [rc]<31>=0 if positive or zero
If ¢3 is 4, a branch is taken if the register value in the register specified
by rc is greater than or equal to 0.
¢3<2..0>=5: R [rec]<31>=1), if negative
If ¢3 =5, a branch is taken if the value stored in the register specified by
rc is negative.
Arithmetic and Logical instructions
(op<4..0>=12) : R [ra] — R [rb] + R [rc],
If the op-code is 12, the contents of the registers tb and rc are added and the result is
stored in the register ra.
(op<4..0>=13) : R [ra] < R [rb] + ¢2<16..0> {sign extend},
If the op-code is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.
(op<4..0>=14) : R [ra] «<— R [rb] - R [rc],
If the op-code is 14, the content of the register rc is subtracted from that of rb, and the
result is stored in ra.
(op<4..0>=15) : R [ra] < -R [rc],
If the op-code is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] <— R [rb] & R [rc¢],
If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=21) : R [ra] < R [rb] & ¢2<16..0> {sign extend},
If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.
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(op<4..0>=22) : R [ra] < R [rb] ~R [rc],

If the op field equals 22, logical OR of the contents of the registers b and rc is obtained
and the result is stored in register ra.

(op<4..0>=23) : R [ra] < R [rb] ~ ¢2<16..0> {sign extend},

If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.

(op<4..0>=24) : R [ra] — —Rrc],

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.

Shift instructions

(op<4..0>=26): R [ra]<31..0 > «— (n a 0) © R [rb] <31..n>,

If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. Os are added in their place, i.e. n number
of Os is added (or concatenated) with the register contents. The result is copied to the
register ra.

(0p<4..0>=27) : R [ra]<31..0 > — (n a R [rb] <31>) © R [rb] <31..n>,

For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of
the register rb are shifted right n times, with the most significant bit, bit 31, of the register
b added in their place. The result is copied to the register ra.

(0p<4..0>=28) : R [ra]<31..0 > — R [rb] <31-n..0> © (n a 0),

For op-code 28, the contents of the register tb are shifted left n bits times, similar to the
shift right instruction. The result is copied to the register ra.

(op<4..0>=29) : R [ra]<31..0 > «— R [rb] <31-n..0> © R [rb]<31..32-n >,

The instruction corresponding to op-code 29 is the shift circular instruction. The contents
of the register rb are shifted left n times, however, the bits that move out of the register in
the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.

where

n:=( (¢3<4..0>=0) : R [rc],
(€3<4..0>!=0) : c3 <4..0>),

Notation: o means replication

© Means concatenation

Miscellaneous instructions
(op<4..0>=0), No operation (nop)
If the op-code is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>=31) : Run < 0, Halt the processor (Stop)

);  iF );
If the op-code is 31, run is set to 0, that is, the processor is halted.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetch-execute cycle

continues.

Flow diagram Instruction Fetch
Flow diagram is the symbolic

representation of Fetch-Execute cycle. Its

top block indicates instruction fetch and Instruction Decode
then next block shows the instruction

decode by looking at the first 5-bits of the Op-code =31 . Op-code =

) appropriate
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fetched instruction which would represent op-code which may be from 0 to
31.Depending upon the contents of this op-code the appropriate processing would take
place. After the appropriate processing, we would move back to top block, next
instruction is fetched and the same process is repeated until the instruction with op-code
31 would reach and halt the system.

Note:For SRC Assembler and Simulator consult Appendix.
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Advanced Computer Architecture
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e Using Behavioral RTL to Describe the SRC (continued)
e Implementing Register Transfer using Digital Logic Circuits

Using behavioral RTL to Describe the SRC (continued)

Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following discussion, we denote instruction fetch by “iF” and instruction
execution by “iE”.

iE:=(
(op<4..0>=1) : R [ra] «<— M [disp],
(op<4..0>=2) : R [ra] < M [rel],

(0p<4..0>=31) : Run < 0,); iF);

As shown above, instruction execution can be described by using a long list of
conditional operations, which are inherently “disjoint”. Only one of these statements is
executed, depending on the condition met, and then the instruction fetch statement (iF) is
invoked again at the end of the list of concurrent statements. Thus, instruction fetch (iF)
and instruction execution statements invoke each other in a loop. This is the fetch-execute
cycle of the SRC.

Concurrent Statements
The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below:

Load-Store Instructions

(op<4..0>=1) : R [ra] < M [disp], load register (1d)

This instruction is to load a register using a displacement address specified by the
instruction, i.e., the contents of the memory at the address ‘disp’ are placed in the register
R [ra].

(op<4..0>=2) : R [ra] < M [rel], load register relative (Idr)
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If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, ‘rel’. The relative address calculation has been
explained in this section earlier.

(op<4..0>=3) : M [disp] < R [ra], store register (st)

If the op-code is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location ‘disp’.

(op<4..0>=4) : M|rel] < RJra], store register relative (str)

If the op-code is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location ‘rel’.

(op<4..0>=5) : R [ra] < disp, load displacement address (1a)

For op-code 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).

(op<4..0>=6) : R [ra] < rel, load relative address (lar)

For op-code 6, the relative address rel is loaded to the register R (specified by the target
register address ra).

Branch Instructions
(op<4..0>=8) : (cond : PC — R [rb]), conditional branch (br)
If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition ‘cond’ is true.
(op<4..0>=9) : (R [ra] < PC,

cond : (PC < R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
tb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these ‘conditional” branches depend on, are specified by the field ¢3
that has 3 bits. This simply means that when ¢3<2..0> is equal to one of these six values,
we substitute the expression on the right hand side of the : in place of cond.
These conditions are explained here briefly.

cond :=(
¢3<2..0>=0:0, never
If the ¢3 field is 0, the branch is never taken.
c3<2..0>=1:1, always
If the field is 1, branch is taken
¢3<2..0>=2 : R [rc]=0, if register is zero
If ¢3 = 2, a branch is taken if the register rc = 0.
¢3<2..0>=3 : R [rc] #0, if register is nonzero

If ¢3 = 3, a branch is taken if the register rc is not equal to 0.
¢3<2..0>=4 : R [rc]<31>=0 if positive or zero

If c3 is 4, a branch is taken if the register value in the register specified
by rc is greater than or equal to 0.

¢3<2..0>=5: R [rc]<31>=1), if negative

If ¢3 =5, a branch is taken if the value stored in the register specified by
rc is negative.
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Arithmetic and Logical instructions

(op<4..0>=12) : R [ra] < R [rb] + R [r¢],

If the op-code is 12, the contents of the registers rb and rc are added and the result is
stored in the register ra.

(op<4..0>=13) : R [ra] < R [rb] + ¢2<16..0> {sign extended},

If the op-code is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.

(op<4..0>=14) : R [ra] <— R [rb] — R [r¢],

If the op-code is 14, the content of the register rc is subtracted from that of rb, and the
result is stored in ra.

(op<4..0>=15) : R [ra] < -R [rc],

If the op-code is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] — R [rb] & R [rc],

If the op field equals 20, logical AND of the contents of the registers b and rc is obtained
and the result is stored in register ra.

(op<4..0>=21) : R [ra] < R [rb] & ¢2<16..0> {sign extended},

If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.

(op<4..0>=22) : R [ra] < R [rb] ~R [rc],

If the op field equals 22, logical OR of the contents of the registers b and rc is obtained
and the result is stored in register ra.

(op<4..0>=23) : R [ra] < R [rb] ~ ¢2<16..0> {sign extended},

If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.

(op<4..0>=24) : R [ra] < !R [rc],

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.

Shift instructions
(op<4..0>=26): R [ra]<31..0 > «— (n a 0) © R [rb] <31..n>,
If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. Os are added in their place, i.e. n number
of Os is added (or concatenated) with the register contents. The result is copied to the
register ra.
(op<4..0>=27) : R [ra]<31..0 > «— (n a R [rb] <31>) © R [rb] <31..n>,
For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of
the register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the
register rb added in their place. The result is copied to the register ra.
(op<4..0>=28) : R [ra]<31..0 > «— R [rb] <31-n..0> © (n a 0),
For op-code 28, the contents of the register rb are shifted left n bits times, similar to the
shift right instruction. The result is copied to the register ra.
(op<4..0>=29) : R [ra]<31..0 > — R [rb] <31-n..0> © R [rb]<31..32-n >,
The instruction corresponding to op-code 29 is the shift circular instruction. The contents
of the register rb are shifted left n times, however, the bits that move out of the register in
the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.
where

n := ( (¢3<4..0>=0) : R [rc],
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(€3<4..0>1=0) : ¢3 <4..0>),

Notation:
o means replication
© means concatenation

Miscellaneous instructions
(op<4..0>=0), No operation (nop)
If the op-code is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>=31) : Run <« 0, Halt the processor (Stop)
);  iF );
If the op-code is 31, run is set to 0, that is, the processor stops execution.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetch-execute cycle continues.

Implementing Register Transfers using Digital Logic Circuits

We have studied the register transfers in the previous sections, and how they help in
implementing assembly language. In this section we will review how the basic digital
logic circuits are used to implement instructions register transfers. The topics we will
cover in this section include:

1. A brief (and necessary) review of logic circuits
Implementing simple register transfers
Register file implementation using a bus
Implementing register transfers with mathematical operations
The Barrel Shifter
Implementing shift operations

AT

Review of logic circuits
Before we study the implementation of register transfers using logic circuits, a brief
overview of some of the important logic circuits will prove helpful. The topics we review
in this section include

1. The basic D flip flop

2. The n-bit register

3. The n-to-1 multiplexer

4. Tri-state buffers

The basic D flip flop

A flip-flop is a bi-stable device, Data Input _1p Q Q Output
capable of storing one bit of Input -
Information. Therefore, flip-flops EN

are used as the building blocks of a

computer’s memory as well as CPU Clock Input_ C

registers. R
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There are various types of flip-flops; most common type, the D flip-flop is shown in the
figure given. The given truth table for this positive-edge triggered D flip-flop shows that
the flip-flop is set (i.e. stores a 1) when the data input is high on the leading (also called
the positive) edge of the clock; it is reset (i.e., the flip-flop stores a 0) when the data input
is 0 on the leading edge of the clock. The clear input will reset the flip-flop on a low
input.

The n-bit register

A n-bit register can be formed by
grouping n flip-flops together. So a
register is a device in which a

group of flip-flops operate E N D Q
synchronously. o \V4 \Y4
A register is useful for storing
binary data, as each flip-flop can

oo

store one bit. The clock input of e D BCau0
the flip-flops is  grouped Cg

together, as is the enable input. [

As shown in the figure, using m

the input lines a binary number = D B Outd

can be stored in the register by
applying the corresponding
logic level to each of the flip-

=
[ %]
n< r:u

flops simultaneously at the "R E Eooue
positive edge of the clock. C
The next figure shows the | | | |
symbol of a 4-bit register used |
for an integrated circuit. In0 rE F&"E 'E
through In3 are the four input _ .
lines, Out0 through Out3 are the - Elnk 4-bit red Fd
four output lines, Clk is the AT ot
clock input, and En is the enable .5 5 S S
NN

line. To get a  better
understanding of this register,
consider the situation where we want 4-bit Register Symbol

to store the binary number 1000 in the

register. We will apply the number to

the input lines, as shown in the figure given.

On the leading edge of the clock, the number will be stored in the register. The enable
input has to be high if the number is to be stored into the register.
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The n-to-1 multiplexer

A multiplexer is a device, constructed
through combinational logic, which
takes n inputs and transfers one of
them as the output at a time. The input
that is selected as the output depends
on the selection lines, also called the
control input lines. For an n-to-1
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multiplexer, there are n input lines, log,n control lines, and 1 output line. The given
figure shows a 4-to-1 multiplexer. There are 4 input lines; we number these lines as line 0
through line 3. Subsequently, there are 2 select lines (as log,4 = 2).

For a better understanding, let us consider a case where we want to transfer the input of
line 3 to the output of the multiplexer. We will need to apply the binary number 11 on the
select lines (as the binary number 11 represents the decimal number 3). By doing so, the
output of the multiplexer will be the input on line 3, as shown in the test circuit given.
Timing waveform

F 0
4
& 1 Ul Uy LUUUUUL
i | Ll U
I n i L
0 I ] S 11y - 111 ]
o Ml ML M =LA

Timing Waveform for MUX

Tri-state buffers
The tri-state buffer, also called the three- C(Control)
state buffer, is another important

component in the digital logic domain. It ENB N y (output)
has a single input, a single output, and -
an enable line. The input is concatenated a(lnpUt) ‘
to the output only if it is enabled through

the enable line, otherwise it gives a high

impedance output, i.e. it is tri-stated, or Tri_ctata huiffar
electrically disconnected from the input
These buffers are available both in the
inverting and the non-inverting form. The
inverting tri-state buffers output the
‘inverted’ input when they are enabled,
as opposed to their non-inverting
counterparts that simply output the input
when enabled. The circuit symbol of the
tri-state buffers is shown. The truth table

—_ == OO OO
- O = O
- O N N|=<
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further clarifies the working of a non-inverting tri-state buffer.

We can see that when the enable input (or the control input) ¢ is low (0), the output is
high impedance Z. The symbol of a 4-bit tri-state buffer unit is shown in the figure. There
are four input lines, an equal number of

output lines, and an enable line in this
unit. If we apply a high on the input 3
and 2, and a low on input 1 and 0, we — ||"||:| [:| |_|'t|:| A—
get the output 1100, only when the
epable input is high, as shown in the — ||'-|1 [::l |_|-t1 —
2 ou2 |-
- — |3 Quta —
0-— R -
1 L
In0 Ot
e |
1- fl Lt
O0- In3 Ot
’_ - Tri-state buffer symbol
1= L]
0- L L) Lo | |Lo
1:—
00—

Test circuit for Tri-state buffer

Implementing simple register transfers
We now build on our knowledge of the primitive logic circuits to understand how register
transfers are implemented. In this section we will study the implementation of the
following

e Simple conditional transfer

e Concept of control signals
Two-way transfers
Connecting multiple registers
Buses
Bus implementations
Simple conditional transfer
In a simple conditional transfer, a condition is checked, and if it is true, the register
transfer takes place. Formally, a conditional transfer is represented as

Cond: RD « RS

This means that if the condition ‘Cond’ is true, the contents of the register named RS (the
source register) are copied to the register RD (the destination register). The following
figure shows how the registers may be interconnected to achieve a conditional transfer. In
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this circuit, the output of the source register RS is connected to the input of the
destination registers RD. However, notice that the transfer will not take place unless the
enable input of the destination register is activated. We may say that the ‘transfer’ is
being controlled by the enable line (or the control signal). Now, we are able to control the
transfer by selectively enabling the control signal, through the use of other combinational
logic that may be the equivalent of our condition. The condition is, in general, a Boolean
expression, and in this example, the condition is equivalent to LRD =1.

Two-way transfers

In the above example, only one-way transfer was possible, i.e., we could only copy the
contents of RS to RD if the condition was met. In order to be able to achieve two-way
transfers, we must also provide a path from the output of the register RD to input of
register RS. This will enable us to implement

Inpul valuee to S
1- =

clock

1- IR OdsE
- [l ]

i—onditional Trasnfer

Condl: RD <+ RS

Cond2: RS < RD

Connecting multiple registers

We have seen how two registers can be connected. However, in a computer we need to
connect more than just two registers. In order to connect these registers, one may argue
that a connection between the input and output of each be provided. This solution is
shown for a scenario where there are 5 registers that need to be interconnected.

We can see that in this solution, an m-bit register requires two connections of m-wires
each. Hence five m-bit registers in a “point-to-point” scheme require 20 connections;
each with m wires. In general, n registers in a point to point scheme require n (n-1)
connections. It is quite obvious that this solution is not going to scale well for a large
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number of registers, as is the case in real machines. The solution to this problem is the
use of a bus architecture, which is explained in the following sections.

Buses

A bus is a device that provides a shared data
path to a number of devices that are connected (@l
to it, via a °‘set of wires’ or a ‘set of
conductors’. The modern computer systems
extensively employ the bus architecture.
Control signals are needed to decide which two
entities communicate using the shared medium,
i.e. the bus, at any given time. This control
signals can be open collector

gate based, tri-state buffer

based, or they can Dbe

B
Al

Multiple register connections

implemented using

multiplexers.

Register file implementation ek,

using the bus architecture L[ Ao TE4

A number of registers can be e anitm L b Cue
inter-connected to form a L i o — el
register file, through the use of a 3 T"i'q | &
bus. The given diagram shows

eight 4-bit registers (RO, R1, ..., '~ Foou
R7) interconnected through a 4-

: . . . K £.0.TH
bit bus using 4-bit tri-state rFrE o
buffer units (labeled AA TS4). T e I N e F
The contents of a particular " E E“J | abl
register can be transferred onto | =
the bus by applying a logical V=
high input on the enable of the :
corresponding tri-state buffer.

For instance, R1out can be used
to enable the tri-state buffers of
the register RI, and in turn
transfer the contents of the nTH

L
register on the bus. s b Cue

Once the contents of a particular 1o CEr #ltrem Lo

. LEr aazu
register are on the bus, the 284 “ " :"“ ]
contents may be transferred, or I

read into any other register.
More than one register may be Rifend
written in this manner; however, Register Fila
only one register can write its

value on the bus at a given time.
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Implementing register transfers with mathematical operations

We have studied the implementation of simple register transfers; however, we frequently
encounter register transfers with mathematical operations. An example is

(opc=1): R4 R3 + R2;

These mathematical operations may be achieved by introducing appropriate
combinational logic; the above operation can be implemented in hardware by including a

4-bit adder with the register files connected through the bus. There are two more registers
in this configuration, one for holding one of the operands, and the other for holding the
result before it is transferred to the destination register. This is shown in the figure below.

] —
| ].3 -

[ u}
-
-~
u el
TR ) —

—

n
o
=

£

Piol
| L 00 THY
=
| Y [ 1= ]
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We now take a look at
the steps taken for the

(conditional, Titne step | Opetation to be petformed | Control signals tobe
mathematical)  transfer structural RTL) activated
(opc=1): R4« R3 + R2. 1 &+ R3 L4, Float

First of all, if the

condition opc = 1 is met, 2 Ce h+F2 LC, R2out

the contents of the first

operand register, R3, are 3 R4« C LE4, Cout
transferred to the

:ﬁﬁ%;frtyhe lr)i%fs%rns 2 Structural RTL: add operation

done by  activating

R3out. It lets the contents of the register R3 to be loaded on the bus. At the same time,
applying a logical high input to LA enables the load for the register A. This lets the
binary number on the bus (the contents of register R3) to be loaded into the register A.
The next step is to enable R2out to load the contents of the register R2 onto the bus. As
can be observed from the figure, the output of the register A is one of the inputs to the 4-
bit adder; the other input to the adder is the bus itself. Therefore, as the contents of
register R2 are loaded onto the bus, both the operands are available to the adder. The
output can then be stored to the register RC by enabling its write. So a high input is
applied to LC to store the result in register RC.

The third and final step is to store (transfer) the resultant number in the destination
register R4. This is done by enabling Cout, which writes the number onto the bus, and
then enabling the read of the register R4 by activating the control signal to LR4. These
steps are summarized in the given table.

The barrel shifter

Shift operations are frequently used operations, as shifts can be used for the
implementation of multiplication and division etc. A bi-directional shift register with a
parallel load capability can be used to perform shift operations. However, the delays in
such structures are dependent on the number of shifts that are to be performed, e.g., a 9
bit shift requires nine clock periods, as one shift is performed per clock cycle. This is not
an optimal solution. The barrel shifter is an alternative, with any number of shifts
accomplished during a single clock period. Barrel shifters are constructed by using
multiplexers. An n-bit barrel shifter is a combinational circuit implemented using n
multiplexers. The barrel provides a shifted copy of the input data at its output. Control
inputs are provided to specify the number of times the input data is to be shifted. The
shift process can be a simple one with Os used as fillers, or it can be a rotation of the input
data. The corresponding figure shows a barrel shifter that shifts right the input data; the
number of shifts depends on the bit pattern applied on the control inputs S0, S1.

The function table for the barrel shifter is given. We see from the table that in order to
apply single shift to the input number, the control signal is 01 on (S1, S0), which is the
binary equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10
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(on S1, S0) is applied; 10 is the binary
equivalent of the decimal number 2. A
control input of 11 shifts the number 3
places to the right.

Now we take a look at an example of
the shift operation being implemented
through the use of the barrel shifter:
R4« ror R3 (2 times);

The shift functionality can be
incorporated into the register file

Barrel Shifter
L 1 1 |
e =g
—51 - - - -
Bshifterd
—s0S S5 5 S
o O O ©
P10 1 1

circuit with the bus architecture we
have been building, by introducing the
barrel shifter, as shown in the given
figure.

To perform the operation,

R4« ror R3 (2 times),

the first step is to activate R3out, nbl
and LC. Activating R3out will load the
contents of the register R3 onto the bus.
Since the bus is directly connected to
the input of the barrel shifter, this
number is applied to the input side. nb1
and nb0 are the barrel shifter’s control
lines for specifying the number of shifts
to be applied. Applying a high input to
nbl and a low input to nb0 will shift the
number two places to the right.
Activating LC will load the shifted
output of the barrel shifter into the
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Function table: Barrel shifter
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Shift operation using Barrel Shifter

register C. The second step is to transfer the contents of the register C to the register R4.
This is done by activating the control Cout, which will load the contents of register C
onto the data bus, and by activating the control LR4, which will let the contents of the
bus be written to the register R4. This will complete the conditional shift-and-store
operation. These steps are summarized in the table shown below.

Time step Operaticn to be performed Control signalstobe
(structural RTL) activated
1 C «— B3 [after rotating right terice) F3omt, nbl, LC
2 R4 C LE4, Cont
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8) Outline of the thinking process for ISA Design
9) Introduction to the ISA of FALCON-A

Instruction Set Architecture (ISA) Design: Outline of the thinking

process

In this module we will learn to appreciate, understand and apply the approach adopted in
designing an instruction set architecture. We do this by designing an ISA for a new
processor. We have named our processor FALCON-A, which is an acronym for First
Architecture for Learning Computer Organization and Networks (version A). The term
Organization is intended to include Architecture and Design in this acronym.

Elements of the ISA

Before we go onto designing the instruction set architecture for our processor FALCON-
A, we need to take a closer look at the defining components of an ISA. The following
three key components define any instruction set architecture.

1. The operations the processor can execute

2. Data access mode for use as operands in the operations defined

3. Representation of the operations in memory
We take a look at all three of the components in more detail, and wherever appropriate,
apply these steps to the design of our sample processor, the FALCON-A. This will help
us better understand the approach to be adopted for the ISA design of a processor. A
more detailed introduction to the FALCON-A will be presented later.

The operations the processor can execute

All processors need to support at least three categories (or functional groups) of
instructions

— Arithmetic, Logic, Shift

— Data Transfer

— Control
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ISA Design Steps — Step 1

We need to think of all the instructions of each type that ought to be supported by our
processor, the FALCON-A. The following are the instructions that we will include in the
ISA for our processor.

Arithmetic:

add, addi (and with an immediate operand), subtract, subtract-immediate,
multiply, divide
Logic:

and, and-immediate, or, or-immediate, not
Shift:

shift left, shift right, arithmetic shift right
Data Transfer:

Data transfer between registers, moving constants to registers, load operands from
memory to registers, store from registers to memory and the movement of data between
registers and input/output devices
Control:

Jump instructions with various conditions, call and return from subroutines,
instructions for handling interrupts
Miscellaneous instructions:

Instructions to clear all registers, the capability to stop the processor, ability to
“do nothing”, etc.

ISA Design Steps — Step 2

Once we have decided on the instructions that we want to add support for in our
processor, the second step of the ISA design process is to select suitable mnemonics for
these instructions. The following mnemonics have been selected to represent these
operations.

Arithmetic:

add, addi, sub ,subi ,mul ,div

Logic:

and, andi, or, ori, not

Shift:

shiftl, shiftr, asr

Data Transfer:

load, store, in, out, mov, movi

Control:

jpl, jmi, jnz, jz, jump, call, ret, int.iret

Miscellaneous instructions:

nop, reset, halt

ISA Design Steps — Step 3

The next step of the ISA design is to decide upon the number of bits to be reserved for
the op-code part of the instructions. Since we have 32 instructions in the instruction set, 5
bits will suffice (as 2° =32) to encode these op-codes.

ISA Design Steps — Step 4

The fourth step is to assign op-codes to these instructions. The assigned op-codes are
shown below.
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Arithmetic:

add (0), addi (1), sub (2), subi (3), mul (4),div (5)
Logic:

and (8), andi (9), or (10), ori (11), not (14)

Shift:

shiftl (12), shiftr (13), asr (15)
Data Transfer:

load (29), store (28), in (24), out (25), mov (6), movi (7)

Control:

jpl (16), jmi (17), jnz (18), jz (19), jump (20), call (22), ret (23), int (26), iret (27)
Miscellaneous instructions:

nop (21), reset (30), halt (31) 00000 | add || 01000 | and || 10000 | jpl || 11000 | in

Now we list these instructions with oot | wss || o0t | s || 10000 | i || 1001 | e

their op-codes in the binary form, as
they Would appear in the maChine ono1o b 01010 ot 10010 jhz 11010 it
instructions of the FALCON-A.

ool subi 001t ot 10011 iz 11011 itet

Data access mode for
. aoon mul n11on shiftl 10100 Jump 11100 store

operations
As mentioned earlier, the instruction e | e | I B A e
set architecture of a processor defines 010 | mov || 0110 | met || 10110 | eall || 11110 | reset
a number of things besides the

ool maovi 0111t ast 10111 ret 11111 halt

instructions implemented; the

resources each instruction can access,

the number of registers available to the processor, the number of registers each
instruction can access, the instructions that are allowed to access memory, any special
registers, constants and any alternatives to the general-purpose registers. With this in
mind, we go on to the next steps of our ISA design.

ISA Design Steps — Step 5
We now need to select the number and types of operands for various instructions that we
have selected for the FALCON-A ISA.

ALU instructions may have 2 to 3 registers as operands. In case of 2 operands, a constant
(an immediate operand) may be included in the instruction.

For the load/store type instructions, we require a register to hold the data that is to be
loaded from the memory, or stored back to the memory. Another register is required to
hold the base address for the memory access. In addition to these two registers, a field is
required in the instruction to specify the

constant that is the displacement to the base Regiriers Encoding
address. kD oo
In jump instructions; we require a field for Fl ool
specifying the register that holds the value that B2 o010
is to be compared as the condition for the = -
branch, as well as a destination address, which

is specified as a constant. F4 100
Once we have decided on the number and ES 101
types of operands that will be required in each Fg 110
of the instruction types, we need to address the E7 111
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issue of assigning specific bit-fields in the instruction for each of these operands. The
number of bits required to represent each of these operands will eventually determine the
instruction word size. In our example processor, the FALCON-A, we reserve eight
general-purpose registers. To encode a register in the instructions, 3 bits are required (as
2% =8). The registers are encoded in the binary as shown in the given table.

Therefore, the instructions that we will add support for FALCON-A processor will have
the given general format. The instructions 15 110 § 7 54 21 0
in the FALCON-A processor are going to Op-code ra th e junused
be variations of this format, with four
different formats in all. The exact format is dependent on the actual number of operands
in a particular instruction.

ISA Design Steps — Step 6

The next step towards completely defining the instruction set architecture of our
processor is the design of memory and its organization. The number of the memory cells
that we may have in the organization depends on the size of the Program Counter register
(PC), and the size of the address bus. This is because the size of the program counter and
the size of the address bus put a limitation on the number of memory cells that can be
referred to for loading an instruction for execution. Additionally, the size of the data bus
puts a limitation on the size of the memory word that can be referred to in a single clock
cycle.

ISA Design Steps — Step 7

Now we need to specify which instructions will be allowed to access the memory. Since
the FALCON-A is intended to be a RISC-like machine, only the load/ store instructions

will be allowed to access the memory. [ Addressing Mode Format Example
ISA Design Steps — Step |

direct [constant or label] [10] o [a]
§ displacemert [register + constant or label] [Fl+ 8] or
Next we need to select the memory- [2+4]
addressing modes. The given table lists [regserindueat | gegisten ]
the types of addressing modes that will

be supported for the load/store
instructions.

FALCON-A: Introduction

FALCON stands for First Architecture for Learning Computer Organization and
Networks. It is a ‘RISC-like’ general-purpose processor that will be used as a teaching
aid for this course. Although the FALCON-A is a simple machine, it is powerful enough
to explain a variety of fundamental concepts in the field of Computer Architecture .

Programmer’s view of the FALCON-A
FALCON-A, an example of a GPR ittt

(General Purpose Register) computer, | ro 7 07 0
is the first version of the FALCON : ® E : ' '1]
processor. The programmer’s view of | e[ ] | 2 2
the FALCON-A is given in the figure |  Registerfie : -
shown. As it is clear from the figure, : |
the CPU contains a register file of 8 [ R o Inputioutput
registers, nqmed RO thropgh R7. Each : S :
of these registers is 16 bits in length. b a

CPU Main memory
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Aside from these registers, there are two special-purpose registers, the Program Counter
(PC), and the Instruction Register (IR). The main memory is organized as 2'° x 8 bits, i.e.
2'% cells of 1 byte each. The memory word size is 2 bytes (or 16 bits). The input/output

space is 256 bytes (8 bit I/O ports). The storage in these registers and memory is in the
big-endian format.
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1) Introduction to the ISA of the FALCON-A
2) Examples for the FALCON-A

Introduction to the ISA of the FALCON-A

We take a look at the notation that we are going to employ when studying the FALCON-
A. We will refer to the contents of a register by enclosing in square brackets the name of
the register, for instance, R [3] refers to the contents of the register 3. Memory contents
are to be referred to in a similar fashion; for instance, M [8] refers to the contents of
memory at location 8 (or the 8"
memory cell).

Since memory is organized into cells
of 1 byte, whereas the memory word
size is 2 bytes, two adjacent memory
cells together make up a memory ITEEE
word. So, memory word at the

memory address 8 would be defined

\_’_/‘ MSByte LS Byte
as 1 byte at address 8 and 1 byte at

address 9. To refer to 16-bit memory Fig Big- Endian Notation
words, we make use of a special '

notation, the concatenation of two memory locations. Therefore, to refer to the 16-bit
memory word at location 8, we would write M[8]OM[9]. As we employ the big-endian
format,

M [8]<15...0>:=M[8]©M[9]

So in our notation © is used to represent concatenation.

Little endian puts the smallest numbered byte at the least-significant position in a word,
whereas in big endian, we place the largest numbered byte at the most significant
position. Note that in our case, we use the big-endian convention of ordering bytes.
However, within each byte itself, the ordering of the bits is little endian.

FALCON-A Features

The FALCON-A processor has fixed-length instructions, each 16 bits (2 bytes) long.
Addressing modes supported are limited, and memory is accessed through the load/store
instructions only.

7 0
WME | x One memory “word”

ME] | x+ 15 57 0

€ hemory addresses
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FALCON-A Instruction Formats
Three categories of instructions are going to be supported by the FALCON-A processor;
arithmetic, control, and data transfer instructions. Arithmetic instructions enable
mathematical computations. Control instructions help change the flow of the program as
and when required. Data transfer operations move data between the processor and
memory. The arithmetic category also includes the logical instructions. Four different
types of instruction formats are used to specify these instructions. A brief overview of the
various fields in these instructions formats follows.

Type I instruction format is shown in
the given figure. In it, 5 bits are
reserved for the op-code (bits 11 Op-code unused
through 15). The rest of the bits are
unused in this instruction type,
which means they are not
considered.

Type II instruction shown in the
given figure, has a 5-bit op-code
field, a 3-bit register field, and an 8-bit
constant (or immediate operand) field. 15 M0 8 7 &4 o
Type I instructions contain the 5-bit
op-code field, two 3-bit register fields
for source and destination registers,
and an immediate operand field of
length 5 bits.

Type IV instructions contain the op-
code field, two 3-bit register fields, a
constant filed on length 3 bits as well
as two unused bits. This format is shown in
the given figure.

Encoding of registers

We have a register file comprising of
eight general-purpose registers in the Regisiers Encoding
CPU. To encode these registers in the RO 000
binary, so they can be referred to in
various instructions, we require log,(8)
= 3 bits. Therefore, we have already
allocated three bits per register in the F3 o011
instructions, as seen in the various

15 11 10 0

15 1110 8 7 0
Op-code ra o

Op-code ra rb cl

15 1110 8 7 5 4 21 1]

Op-code ra rh I unused

Rl aal1

Rz Q1o

instruction formats. The encoding of - o
registers in the binary format is shown B 101

in the given table. k& 10

It is important to note here that the R7 111
register RO has special usage in some

cases. For instance, in load/ store F|g Register Encodings

operations, if register RO is used as a
second operand, its value is considered to be zero. RO has special usage in the multiply
and divide (mul & div) instructions as well.
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Instructions and instruction formats
We return to our discussion of instruction formats in this section. We will now classify
which instructions belong to what instruction format types.

Type I

Five of the instructions included in the instruction set of FALCON-A belong to type |
instruction format. These are

1.

Sl el

5

nop (op-code =21)

This instruction is to instruct the processor to ‘do nothing’, or, in other words, do
‘no operation’. This instruction is generally useful in pipelining. We will study
pipelining later in the course.

reset (op-code = 30)

halt  (op-code=31)

int (opcode=26)

iret  (op-code=27)

All of these instructions take no operands, therefore, besides the 5 bits used for the op-
code, the rest of the bits are unused.

Type 11

There are nine FALCON-A instructions that belong to this type. These are listed below.

1.

movi (op-code =7 )

The movi instruction loads a register with the constant (or the immediate value)
specified as the second operand. An example is

movi R3, 56 R[3] « 56

This means that the register R3 will have the value 56 stored in it as this instruction
is executed.

2.

in (op-code = 24)

This instruction is to load the specified register from input device. An example
and its interpretation in register transfer language are

in R3, 57 R [3] « 10 [57]

out (op-code = 25)

The ‘out’ instruction will move data from the register to the output device
specified in the instruction, as the example demonstrates:

out R7, 34 10 [34] < R [7]

ret (op-code=23)

This instruction is to return control from a subroutine. This is done using a
register, where the return address is stored. As shown in the example, to return
control, the program counter is assigned the contents of the register.

ret R3 PC «— R [3]

. jz (op-code=19)

When this instruction is executed, the value of the register specified in the field ra
is checked, and if it is equal to zero, the Program Counter is advanced by the
jump(value) specified in the instruction.

jz 13, [4] (R[3]=0): PC+— PC+ 4;
In this example, register r3’s value is checked, and if found to be zero, PC is
advanced by 4.

jnz (op-code= 18) This instruction is the reverse of the jz instruction, i.e., the
jump (or the branch) is taken, if the contents of the register specified are not equal
to zero.
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jnz r4, [variable] (R[4]#£0): PC«— PC+ variable;

7. jpl (op-code= 16) In this instruction, the value contained in the register specified
in the field ra is checked, and if it is positive, the jump is taken.
jpl 13, [label] (R[3]>0): PC «— PC+ (label-PC);

8. jmi (op-code= 17) In this case, PC is advanced (jump/branch is taken) if the
register value is negative
jmi r7, [address] (R[7]<0): PC«— PC+ address;

Note that, in all the instructions for jump, the jump can be specified by a constant, a
variable, a label or an address (that holds the value by which the PC is to be advanced).
A variable can be defined through the use of the ‘.equ’ directive. An address (of data) can
be specified using the directive ‘.db’ or ‘.dw’. A label can be specified with any
instruction. In its usage, we follow the label by a colon ‘:” before the instruction itself.
For example, the following is an instruction that has a label ‘alfa’ attached to it
alfa: movi 13 r4
Labels implement relative jumps, 128 locations backwards or 127 locations forward
(relative to the current position of program control, i.e. the value in the program counter).
The compiler handles the interpretation of the field c2 as a constant/ variable/ label/
address. The machine code just contains an 8-bit constant that is added to the program
counter at run-time.
9. jump (op-code= 20)
This instruction instructs the processor to advance the program counter by the
displacement specified, unconditionally (an unconditional jump). The assembler
allows the displacement (or the jump) to be specified in any of the following ways
jump [ra + constant]
jump [ra + variable]
jump [ra + address]
jump [ra + label]
The types of unconditional jumps that are possible are
Direct
Indirect
PC relative (a ‘near’ jump)
Register relative (a ‘far’ jump)
The c2 field may be a constant, variable, an address or a label.
A direct jump is specified by a PC-label.
An indirect jump is implemented by using the C2 field as a variable.
In all of the above instructions, if the value of the register ra is zero, then the Program
Counter is incremented (or decremented) by the sign-extended value of the constant
specified in the instruction. This is called the PC-relative jump, or the ‘near’ jump. It is
denoted in RTL as:
(ra=0):PC«+— PC+(8aC2<7>)©(C2<7..0>;
If the register ra field is non-zero, then the Program Counter is assigned the sum of the
sign-extended constant and the value of register specified in the field ra. This is known as
the register-relative, or the ‘far’ jump. In RTL, this is denoted as:
(ra#0):PC— Rra]+(8aC2<7>)©C2<7..0>;
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Note that C2 is computed by sign extending the constant, variable, address, or (label —
PC). Since we have 8 bits available for the C2 field (which can be a constant, variable,
address or a PC-label), the range for the field is -128 to + 127. Also note that the compiler
does not allow an instruction with a negative sign before the register name, such as ‘jump
[-r2]. If the C2 field is being used as an address, it should always be an even value for
the jump instruction. This is because our instruction word size is 16 bits, whereas in
instruction memory, the instruction memory cells are of 8 bits each. Two consecutive
cells together make an instruction.

Type 111

There are nine instructions of the FALCON-A that belong to Type III. These are:

1.

andi  (op-code =9)
The andi instruction bit-wise ‘ands’ the constant specified in the instruction with
the value stored in the register specified in the second operand register and stores
the result in the destination register. An example is:
andir4, 13,5
This instruction will bit-wise and the constant 5 and R[3], and assign the value
thus obtained to the register R[4], as given .
R[4] <« RJ[3]&5

addi  (op-code =1)
This instruction is to add a constant value to a register; the result is stored in a
destination register. An example:
addi r4,13,4 R[4] <« R[3]+4
subi  (op-code = 3)
The subi instruction will subtract the specified constant from the value stored in a
source register, and store to the destination register. An example follows.
subir5,r7,9 R[5] <« R[7]-9
ori (op-code=11)
Similar to the andi instruction, the ori instruction bit-wise ‘ors’ a constant with a
value stored in the source register, and assigns it to the destination register. The
following instruction is an example.
oritd, 17,3 R[4] <« R[7]~3
shiftl (op-code = 12)
This instruction shifts the value stored in the source register (which is the second
operand), and shifts the bits left as many times as is specified by the third
operand, the constant value. For instance, in the instruction
shiftl r4, 13, 7
The contents of the register are shifted left 7 times, and the resulting number is
assigned to the register r4.
shiftr (op-code = 13)
This instruction shifts to the right the value stored in a register. An example is:
shiftr r4, r3,9
asr (op-code = 15)

An arithmetic shift right is an operation that shifts a signed binary number
stored in the source register (which is specified by the second operand), to the
right, while leaving the sign-bit unchanged. A single shift has the effect of
dividing the number by 2. As the number is shifted as many times as is specified
in the instruction through the constant value, the binary number of the source
register gets divided by the constant value times 2. An example is
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asrrl, 12,5
This instruction, when executed, will divide the value stored in 12 by 10, and
assign the result to the register rl.
load (op-code=29)
This instruction is to load a register from the memory. For instance, the
instruction
load r1, [r4 +15]
will add the constant 15 to the value stored in the register r4, access the memory
location that corresponds to the number thus resulting, and assign the memory
contents of this location to the register r1; this is denoted in RTL by:
R[1] « M[R[4]+15]
store  (op-code= 28)
This instruction is to store a value in the register to a particular memory location.
In the example:
store 16, [r7+13]
The contents of the register r6 are being stored to the memory location that
corresponds to the sum of the constant 13 and the value stored in the register r7.
M[R[7]+13] <« RJ[6]

Type III Modified
There are 3 instructions in the modified form of the Type III instructions. In the modified
Type 111 instructions, the field c1 is unused.

1.

mov (op-code=16)

This instruction will move (copy) data of a source register to a destination
register. For instance, in the following example, the contents of the register r3 are
copied to the register r4.

mov r4, 13

In RTL, this can be represented as

R[4] <« R[3]

2. not (op-code=14)

This instruction inverts the contents of the source register, and assigns the value
thus obtained to the destination register. In the following example, the contents of
register r2 are inverted and assigned to register r4.
not r4, r2
In RTL:

R[4] <« IR[2]

call  (op-code=22)

Procedure calls are often encountered in programming languages. To add support

for procedure (or subroutine) calls, the instruction call is used. This instruction

first stores the return address in a register and then assigns the Program Counter a

new value (that specifies the address of the subroutine). Following is an example

of the call instruction

call r4, r3

This instruction saves the current contents (the return address) of the Program

Counter into the register r4 and assigns the new value to the PC from register r3.
R[4] <« PC, PC <« R[3]

Type IV
Six instructions belong to the instruction format Type IV. These are
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1. add (op-code=0)
This instruction adds contents of a register to those of another register, and
assigns to the destination register. An example:
and r4, 13, r5
R[4] <« R[3] +R][5]
2. sub  (op-code=2)
This instruction subtracts value of a register from another the value stored in
another register, and assigns to the destination register. For example,
sub r4, r3, r5
In RTL, this is denoted by
R[4] < R[3]-R][5]
3. mul (op-code=4)
The multiply instruction will store the product of two register values, and stores in
the destination register. An example is
mul 15, r7, rl
The RTL notation for this instruction will be
R[0] © R[5] < R[7]*R[1]
4. div  (op-code=15)
This instruction will divide the value of the register that is the second operand, by the
number in the register specified by the third operand, and assign the result to the
destination register.
divr4, 17,12 R[4]«R[0] ©R[7]/R[2],R[0]«R[0] ©OR[7]%R[2]
5. and  (op-code= 8)
This ‘and’ instruction will obtain a bit-wise ‘and’ of the values of two registers and
assigns it to a destination register. For instance, in the following example, contents of
register r4 and r5 are bit-wise ‘anded’ and the result is assigned to the register rl.
and rl, r4, r5
In RTL we may write this as
R[1] <« R[4] & R[5]
6. or (op-code= 10)
To bit-wise ‘or’ the contents of two registers, this instruction is used. For instance,
or ro, r7,r2
In RTL this is denoted as
R[6] < R[7] ~R[2]

FALCON-A: Instruction Set Summary

We have looked at the various types of instruction formats for the FALCON-A, as well as
the instructions that belong to each of these instruction format types. In this section, we
have simply listed the instructions on the basis of their functional groups; this means that
the instructions that perform similar class of operations have been listed together.
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Data Transfer Mnemonic opcode
Instructions

move mov 00110 &)
Mowe tnmediate movi o011l 7
Input to register n 11000 (243
Chatpart froan vegister ot 11001 (25
Load from memory load 11101 2%
Store into memory store 11100 (28

Fig. Data Transfer Instructions

jump instruction Mnemonic opcode
qunp if positive jpl 1000 (1&)
Jamp if negative Jrmd 1ooal (17
Jump if not zero nz 10010 (18)
qump if Zero = 10011 (1%
famp ump 10100 ¢20)

Fig.

Last Modified: 01-Nov-06
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Coniroel Instruction Muemonic opcode
Mo operation nop 10101 21
call call 10110 (22)
retirn et 10111 (23)
intermpt int 11010 (26)
Inteript rehurn iret 11011 @20
resat resat 11110 (30
halt halt 11111 (31)

Fig. Control Instructions
Examples for FALCON-A

In this section we take up a few sample problems related to the FALCON-A processor.
This will enhance our understanding of the FALCON-A processor, as well as of the
general concepts related to general processors and their instruction set architectures. The
problems we will look at include

1. Identification of the instruction types and operands

2. Addressing modes and RTL description

3. Branch condition and status of the PC

4. Binary encoding for instructions

Example 1:

Identify the types of given FALCON-A instructions and specify the values in the fields

Instruction Type ra th rec cl c

o 1], 2

add 11,1213

nop

load 12, [t5 + @]

jz 40, [3]

Fig. Example 1

Solution
The solution to this problem is quite straightforward. The types of these instructions, as
well as the fields, have already been discussed in the preceding sections.
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Instruction Type ra th cl c2

movitl, 2 1I tl - 2
add 11,6213 I 1l 12 3 -
fog I - - -
load 12,[t5 + 6] I 2 th - & -
jz 40, [3] II 1) i 3

Fig. Solution 1

We can also find the machine code for these instructions. The machine code (in the

hexadecimal representation) is given for these instructions in the given table.

Instruction Machine |(ra th e cl c2
Code

movirl, 2 3902h 1l - 2

add 1,12 173 014Ch 1l 12 ]

nop AZOTR -

load £2,[t5 + 6] EALER 12 o]

iz, [3] 22803h 1 - 3
Fig. Machine Code

Example 2:

Identify the addressing modes and Register Transfer Language (RTL) description

(meaning) for the given FALCON-A instructions
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Instruction

Addressing mode

RTL description

load £2,[rd + 2]

inz 11, [54]

shiftl £ 12 4

addi 13,182

sub rl, £F 12

Solution

Fig. Example

2

Addressing modes relate to the way architectures specify the address of the objects they
access. These objects may be constants and registers, in addition to memory locations.

Instruction Addressing mode RTL description
load £2 [+4+ £] Dizplacemert R[2]~—D]I[R[4]+E]
jnztl, [54] Relative (R[L]#0:
PC+~—FC+54

ghiftl 11,12 4 Immediate Ahift 12 1eft 4 times and
store intl

addi #3162 Itnume diate REP—FR[E]+2

gub 1], 1712 Register Rl —FR[7]-R[Z]

Fig. Solution 2

Example 3: Specify the condition for the branch instruction and the status of the PC after
the branch instruction executes with a true branch condition
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Instruction

Condition

PC status

iz £2,[35]

Jump [12]

jrz s, 3]

iplel, [45]

jmi 12, [20]

Solution

We have looked at the various jump instructions in our study of the FALCON-A. Using
that knowledge, this problem can be solved easily.

Fig. Example 3

Instruction Condition PC status

jz £2,[35] IfR[2]==0 PC =— P35

jung [12] alwrayrs PC *— PC+I2

jnz, [3] IfR[E] #0 PC =— P43

ipltl, [45] IfR[1]z0 PC +— P45

jmird, [20] IfR[Z] =0 PC +— PC+I0
Fig. Solution 3

Example 4: Specify the binary encoding of the different fields in the given FALCON-A

instructions.
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Instruction TYPE aponde ra h re CLiE hiis)
OR

C2{E hiis)

store ¥, [x1+8]

sub ¥3 16 5

shaftr 1 15 9

Jump [10]

halt

Fig. Example 4

Solution

We can solve this problem by referring back to our discussion of the instruction format
types. The op-codes for each of the instructions can also be looked up from the tables. ra,
tb and rc (where applicable) registers’ values are obtained from the register encoding
table we looked at. The constants C1 and C2 are there in instruction type III and II
respectively. The immediate constant specified in the instruction can also be simply
converted to binary, as shown.

Instruction TYPE opuoie ra h rc C1iE hits)
OR
C2iE hits)
store ¥, [l+8] I 11100 100 ool . 01000
sub £3,26, 13 T 00010 D1l 110 101
shiftr 1,169 m 01101 100 110 . 01001
famp [10] i 10100 . . . 0000 1010
halt I 11111

Fig. Solution 4
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Advanced Computer Architecture

Lecture No. 9

Reading Material
Handouts Slides
Summary
4) Use of Behavioral Register Transfer Language (RTL) to describe the
FALCON-A

5) The EAGLE
6) The Modified EAGLE

Use of Behavioral Register Transfer Language (RTL) to describe the

FALCON-A

The use of RTL (an acronym for the Register Transfer Language) to describe the
FALCON-A is discussed in this section. FALCON-A is the sample machine we are
building in order to enhance our understanding of processors and their architecture.
Behavior vs. Structure

Computer design involves various levels of abstraction. The behavioral description of a
machine is a higher level of abstraction, as compared with the structural description. Top-
down approach is adopted in computer design. Designing a computer typically starts with
defining the behavior of the overall system. This is then broken down into the behavior of
the different modules. The process continues, till we are able to define, design and
implement the structure of the individual modules.

As mentioned earlier, we are interested in the behavioral description of our machine, the
FALCON-A, in this section.

Register Transfer Language

The RTL is a formal way of expressing the behavior and structure of a computer.
Behavioral RTL

Behavioral Register Transfer Language is used to describe what a machine does, i.e. it is
used to define the functionality the machine provides. Basically, the behavioral
architecture describes the algorithms used in a machine, written as a set of process
statements. These statements may be sequential statements or concurrent statements,
including signal assignment statements and wait statements.

Structural RTL

Structural RTL is used to describe the hardware implementation of the machine. The
structural architecture of a machine is the logic circuit implementation (components and
their interconnections), that facilitates a certain behavior (and hence functionality) for
that machine.

Using RTL to describe the static properties of the FALCON-A

We can employ the RTL for the description of various properties of the FALCON-A that
we have already discussed.
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Specifying Registers

In RTL, we will refer to a register by its abbreviated, alphanumeric name, followed by
the number of bits in the register enclosed in angle brackets ‘< >’. For instance, the
instruction register (IR), of 16 bits (numbered 0 to 15), will be referred to as,

IR<15..0>

Naming of the Fields in a Register

We can name the different fields of a register using the := notation. For example, to name
the most significant bits of the instruction register as the operation code (or simply op),
we may write:

op<4..0> :=[R<I15..11>

Note that using this notation to name registers or register fields will not create a new copy
of the data or the register fields; it is simply an alias for an already existing register, or
part of a register.

Fields in the FALCON-A Instructions

We now use the RTL naming operator to name the various fields of the RTL instructions.
Naming the fields appropriately helps us make the study of the behavior of a processor
more readable.

op<4..0>:= IR<15..11>: operation code field

ra<2..0> := IR<10..8>: target register field

rb<2..0> := IR<7..5>: operand or address index

re<2..0> :=IR<4..2>: second operand

c1<4..0> := [R<4..0>: short displacement field

€2<7..0> := IR<7..0>: long displacement or the immediate field

We are already familiar with these fields, and their usage in the various instruction
formats of the RTL.

Describing the Processor State using RTL

The processor state defines the contents of all the register internal to the CPU at a given
time. Maintaining or restoring the machine or processor state is important to many
operations, especially procedure calls and interrupts; the processor state needs to be
restored after a procedure call or an interrupt so normal operation can continue.

Our processor state consists of the following:

PC<15..0>: program counter (the PC holds the memory address of the next
instruction)

IR<15..0>: instruction register (used to hold the current instruction)

Run: one bit run/halt indicator

Strt: start signal

R [0..7]<15..0>: 8 general purpose registers, each consisting of 16 bits

Connectors at
the back o be
added later on)

Indicatars
{include the RN
indicatar)

FALCON-A in a black
box

The given figure shows
what a processor appears as
to a user. We see a start
button that is basically used
to start up the processor,
and a run indicator that
turns on when the processor
is in the running state.

Other switches
may be added
later on
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There may be several other indicators as well. The start button as well as the run indicator
can be observed on many machines.

Using RTL to describe the dynamic properties of the FALCON-A

We have just described some of the static properties of the FALCON-A. The RTL can
also be employed to describe the dynamic behavior of the processor in terms of
instruction interpretation and execution.

Conditional expressions can be specified using the RTL. For instance, we may specify a

conditional subtraction operation employing RTL as

(op=2) : R[ra] < R[rb] - R[rc];
This instruction means that “if” the operation code of the instruction equals 2 (00010 in
binary), then subtract the value stored in register rc from that of register rb, and store the
resulting value in register ra.
Effective address calculations in RTL (performed at runtime)
The operand or the destination address may not be specified directly in an instruction,
and it may be required to compute the effective address at run-time. Displacement and
relative addressing modes are instances of such situations. RTL can be used to describe
these effective address calculations.
Displacement address
A displacement address is calculated, as shown:
disp<15..0> := (R[rb]+ (11a c1<4>)O c1<4..0>);
This means that the address is being calculated by adding the constant value specified by
the field ¢l (which is first sign extended), to the value specified by the register rb.
Relative address
A relative address is calculated by adding the displacement to the contents of the program
counter register (that holds the instruction to be executed next in a program flow). The
constant is first sign-extended. In RTL this is represented as,
rel<15..0>:=PC+(8ac2<7>)©c2<7..0>;

Range of memory addresses

Using the displacement or the relative addressing modes, there is a specific range of
memory addresses that can be accessed.
e Range of addresses when using direct addressing mode (displacement with rb=0)
o If c1<4>=0 (positive displacement) absolute addresses range: 00000b to
01111b (0 to +15)
o If c1<4>=1 (negative displacement) absolute addresses range: 11111b to
10000b (-1 to -16)
e Address range in case of relative addressing
o The largest positive value that can be specified using 8 bits (since we have
only 8 bits available in ¢2<7..0>), is 2’-1, and the most negative value that
can be represented using the same is 2”. Therefore, the range of addresses
or locations that can be referred to using this addressing mode is 127
locations forward or 128 locations backward from the Program Counter
(PC).
Instruction Fetch Operation (using RTL)
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We will now employ the notation that we have learnt to understand the fetch-execute

cycle of the FALCON-A processor.

The RTL notation for the instruction fetch process is
instruction_Fetch = (
'Run&Strt : Run « 1,
Run : (IR <« M[PC], PC < PC + 2;
instruction_Execution) );

This is how the instruction-fetch phase of the fetch-execute
cycle for FALCON-A can be represented using RTL. Recall
that “:=’ is the naming operator, “!I” implies a logical NOT, “&”

“.”

implies a logical AND, “— represents a transfer operation, “;
is used to separate sequential statements, and concurrent

statements are separated by “,”. We can observe that in the
instruction Fetch phase, if the machine is not in the running
state and the start bit has been set, then the run bit is also
set to true. Concurrently, an instruction is fetched from the
instruction memory; the program counter (PC) holds the next
instruction address, so it is used to refer to the memory
location from where the instruction is to be fetched.
Simultaneously, the PC is incremented by 2 so it will point to
the next instruction. (Recall that our instruction word is 2
bytes long, and the instruction memory is organized into 1-
byte cells). The next step is the instruction execution phase.
Difference between “,” and “;” in RTL

(I3 2] €«

We again highlight the difference between the “,” and *;”. Statements separated by a “,
take place during the same clock pulse. In other words, the order of execution of
statements separated by “,” does not matter.

On the other hand, statements separated by a “;” take place on successive clock pulses. In
other words, if statements are separated by “;” the one on the left must complete before
the one on the right starts. However, some things written with one RTL statement can
take several clocks to complete.

We return to our discussion of the instruction-fetch phase. The statement

IRun&Strt : Run 1
is executed when ‘Run’ is 0, and ‘Strt’ is 1, that is, Strt has been set. It is used to set the
Run bit. No action takes place when both ‘Run’ and Strt’ are 0.
The following two concurrent register transfers are performed when ‘Run’ is set to 1, (as
‘’ 1s a conditional operator; if the condition is met, the specified action is taken).
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IR « M[PC]
PC — PC +2

Since these instructions appear concurrent, and one of the instructions is using the value
of PC that the other instruction is updating, a question arises; which of the two values of
the PC is used in the memory access? As a rule, all right hand sides of the register
transfers are evaluated before the left hand side is evaluated/updated. In case of
simultaneous register transfers (separated by a ,”), all the right hand side expressions are
evaluated in the same clock-cycle, before they are assigned. Therefore, the old, un-
incremented value of the PC is used in the memory access, and the incremented value is
assigned to the PC afterwards. This corresponds to “master-slave” flip-flop operation in
logic circuits.

This makes the PC point to the next instruction in the instruction memory. Once the
instruction has been fetched, the instruction execution starts. We can also use 1.F for
instruction_Fetch and i.E for instruction Execution. This will make the Fetch operation
easy to write.

iF := ('Run&Strt : Run « 1, Run : (IR < M[PC], PC «— PC + 2;

iE));
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Instruction Execution (Describing the Execute operation using RTL)
Once an instruction has been fetched from the instruction memory, and the program
counter has been incremented to point to the next instruction in the memory, instruction
execution commences. In the instruction fetch-execute cycle we showed in the preceding
discussion, the entire instruction execution code was aliased 1iE (or
instruction Execution), through the assignment operator “:=”. Now we look at the
instruction execution in detail.
iE :=(

(op<4..0>=1) : R[ra] < R[rb]+ (11a ¢1<4>)©O c1<4..0>,

(op<4..0>=2) : R[ra] — R[rb]-R|r¢],

(op<4..0>=31) : Run « 0,); iF);
As we can see, the instruction execution can be described in RTL by using a long list of
concurrent, conditional operators that are inherently ‘disjoint’. Being inherently
disjointed implies that at any instance, only one of the conditions can be met; hence one
of the statements is executed. The long list of statements is basically all of the
instructions that are a part of the FALCON-A instruction set, and the condition for their
execution is related to the operation code of the instruction fetched. We will take a closer
look at the entire list in our subsequent discussion. Notice that in the instruction execute
phase, besides the long list of concurrent,
disjoint instructions, there is also the
instruction fetch or iF sequenced at the
end. This implies that once one of the
instructions from the list is executed, the
instruction fetch is called to fetch the next

Instruction Fetch

Instruction Decode

instruction. As shown Dbefore, the Op-code = 31 oot 0
instruction fetch will call the instruction anpropriate
execute after fetching a certain instruction, Op-code = 30 Op'wd
hence the instruction fetch-execute cycle Place
continues. Ll | l

The instruction fetch-execute cycle is shown schematically in the above given figure.

We now see how the various instructions in the execute code of the fetch-execute cycle
of FALCON-A, are represented using the RTL. These instructions form the instruction
set of the FALCON-A.

jump instructions

Some of the instructions listed for the instruction execution phase are jump instruction, as

shown. (Note “. . .” implies that more instructions may precede or follow, depending on
whether it is placed before the instructions shown, or after).
iE :=(

If op-code is 20, the branch is taken unconditionally (the jump instruction).
(op<4..0>=20) : (cond : PC — R[ra]+C2(sign extended)),

If the op-code is 16, the condition for branching is checked, and if the condition is being
met, the branch is taken; otherwise it remains untaken, and normal program flow will
continue.

Last Modified: 01-Nov-06 Page 109



Advanced Computer Architecture-CS501

(op<4..0>=16) : cond : (PC — PC+C2 (sign extended ))

Arithmetic and Logical Instructions
Several instructions provide arithmetic and logical operations functionality. Amongst the
list of concurrent instructions of the iE phase, the instructions belonging to this category
are highlighted:

iE :=(

If op-code is 0, the instruction is ‘add’. The values in register rb and rc are added and the
result is stored in register rc
(op<4..0>=0) : R[ra] < R[rb] + R]rc],
Similarly, if op-code is 1, the instruction is addi; the immediate constant specified by the
constant field C1 is sign extended and added to the value in register tb. The result is
stored in the register ra.
(0p<4..0>=1) : R[ra] <R|rb] + (11a C1<4>)© C1<4..0>,
For op-code 2, value stored in register rc is subtracted from the value stored in register rb,
and the result is stored in register ra.
(op<4..0>=2) : R[ra] < R]rb] - R|rc],
If op-code is 3, the immediate constant C1 is sign-extended, and subtracted from the
value stored in rb. Result is stored in ra.
(0p<4..0>=3) : R[ra] — R[rb]- (11a C1<4>)© C1<4..0>,
For op-code 4, values of rb and rc register are multiplied and result is stored in the
destination register.
(op<4..0>=4) : R[ra] < R][rb] * R[rc],
If the op-code is 5, contents of register rb are divided by the value stored in rc, result is
concatenated with Os, and stored in ra. The remainder is stored in RO.
(0p<4..0>=5) : R[ra] — R[0] ©R|[rb]/R][rc],

R[0] — R[0] ©R[rb]%R]rc],
If op-code equals 8, bit-wise logical AND of rb and rc register contents is assigned to ra.
(op<4..0>=8) : R[ra] — R[rb] & R]rc],
If op-code equals 8, bit-wise logical OR of b and rc register contents is assigned to ra.
(op<4..0>=10) : R[ra] — R|[rb] ~ R]c],

For op-code 14, the contents of register specified by field rc are inverted (logical NOT is
taken), and the resulting value is stored in register ra.
(op<4..0>=14) : R[ra] < ! R[rc],

Shift Instructions
The shift instructions are also a part of the instruction set for FALCON-A, and these are
listed in the instruction execute phase in the RTL as shown.

iE :=(
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If the op-code is 12, the contents of the register tb are shifted right N bits. N is the
number specified in the constant field. The space that has been created due to the shift out
of bits is filled with Os through concatenation. In RTL, this is shown as:

(0p<4..0>=12) : R[ra]<15..0> — R [rb]<(15-N)..0>©(Na0),

If op-code is 13, rb value is shifted left, and Os are inserted in place of shifted out
contents at the right side of the value. The result is stored in ra.

(0p<4..0>=13) : R[ra]<15..0> — (Na0)CR [rb]<(15)..N>,

For op-code 15, arithmetic shift right operation is carried out on the value stored in rb.
The arithmetic shift right shifts a signed binary number stored in the source register to the
right, while leaving the sign-bit unchanged. Note that o means replication, and © means
concatenation.

(op<4..0>=15) : R[ra]<15..0> — Na(R [rb]<15>)© (R [rb]|<15..N>),

Data transfer instructions
Several of the instructions belong to the data transfer category.
iE = (

Op-code 29 specifies the load instruction, i.e. a memory location is referenced and the
value stored in the memory location is copied to the destination register. The effective
address of the memory location to be referenced is calculated by sign extending the
immediate field, and adding it to the value specified by register rb.

(op<4..0>=29) : R[ra]«— M[R][rb]+ (11a C1<4>)© C1<4..0>],

A value is stored back to memory from a register using the op-code 28. The effective
address in memory where the value is to be stored is calculated in a similar fashion as the
load instruction.

(0p<4..0>=28) : M[R[rb]+ (11a C1<4>)© C1<4..0>] — R [ra],

The move instruction has the op-code 6. The contents of one register are copied to
another register through this instruction.

(op<4..0>=6) : R[ra] — R]rb],

To store an immediate value (specified by the field C2 of the instruction) in a register, the
op-code 7 is employed. The constant is first sign-extended.

(op<4..0>=7) : R[ra] «— (8aC2<7>)O0C2<7..0>,

If the op-code is 24, an input is obtained from a certain input device, and the input word
is stored into register ra. The input device is selected by specifying its address through the

constant C2.

(op<4..0>=24) : R[ra] — 10[C2],

Unconditional branch (jump)If the op-code is 25, an output (the register ra value) is sent
to an output device (where the address of the output device is specified by the constant
C2).

(op<4..0>=25) : 10[C2] «— R|ra],
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Miscellaneous instructions
Some more instruction included in the FALCON-A are
iE :=(

The no-operation (nop) instruction, if the op-code is 21. This instructs the processor to do
nothing.

(op<4..0>=21): ,

If the op-code is 31, setting the run bit to 0 halts the processor.

(op<4..0>=31) : Run «— 0, Halt the processor (halt)

At the end of this concurrent list of instructions, there is an instruction i.F (the instruction
fetch). Hence when an instruction is executed, the next instruction is fetched, and the
cycle continues, unless the processor is halted.

);  iF )3
Note: For Assembler and Simulator Consult Appendix.

The EAGLE

(Original version)

Another processor that we are going to study is the EAGLE. We have developed two
versions of it, an original version, and a modified version that takes care of the limitations
in the original version. The study of multiple processors is going to help us get
thoroughly familiar with the processor design, and the various possible designs for the
processor. However, note that these machines are simplified versions of what a real
machine might look like.

Introduction

The EAGLE is an accumulator-based machine. It is a simple processor that will help us
in our understanding of the processor design process.

EAGLE is characterized by the following:

e FEight General Purpose Registers of the CPU. These are named RO, R1...R7. Each
register is 16-bits in length.

e Two 16-bit system registers transparent to the programmer are the Program
Counter (PC) and the Instruction Register (IR). (Being transparent to the
programmer implies the programmer may not directly manipulate the values to
these registers. Their usage is the same as in any other processor)

e Memory word size is 16 bits

e The available memory space size is 216 bytes

e Memory organization is 216 x 8 bits. This means that there are 210 memory cells,
each one byte long.

e Memory is accessed in 16 bit words (i.e., 2 byte chunks)

e Little-endian byte storage is employed.
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Programmer’s View of the EAGLE
The programmer’s view of the [——————+—
EAGLE processor is shown by
means of the given figure.

EAGLE: Notation

Let us take a look at the
notation that will be employed
for the study of the EAGLE.
Enclosing the register name in
square  brackets refers to
register contents; for instance,
R[3] means contents of register CPU Main memory Input/Outpyt
R3.

Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to
memory contents. Hence M [8] means contents of memory location 8.

As little endian storage is employed, a
memory word at address x is defined
as the 16 bits at address x +1 and x.
For instance, the bits at memory
location 9,8 define the memory word at
location 8. So employing the special
notation for 16-bit memory words, we
have

M [8]<15...0>:=M [9]CM 8]

Where © is used to represent concatenation

| |
| |
I : |
I e—
| Register file |
| |
| |
| |
| |

2161

7 0
D M[E] One instruction

1 9] 15 g7 0
[ Mel [ MEL |

M3 Byte LS Byte

N

& Memory addresses

EAGLE Features
The following features characterize the EAGLE.
e Instruction length is variable. Instructions are either 8 bits or 16 long, i.e.,
instruction size is either 8-bits or 16-bits.
e The instructions may have either one or two operands.
e The only way to access memory is through load and store instructions.

e Limited addressing modes are supported
EAGLE: Instruction Formats
There are five instruction formats for the EAGLE. These are

Type Z Instruction Format

The Z format instructions are half-word (1 byte) 7 0
instructions, containing just the op-code field of 8 bits, Type Z opcode

as shown

Type Y Instruction Format 7 11 0
The type Y instructions are also half-word. There is Type ¥ | opcode ra

an op-code field of 5 bits, and a register operand field

ra.

Type X Instruction Format 7 & 8 3 4 a
Type X instructions are also half-word instructions, L¥ype X |opcods| g rh

Last Modified: 01-Nov-06 Page 113



Advanced Computer Architecture-CS501

with a 2-bit op-code field, and two 3-bit operand register fields, as shown.
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Type W instruction format

The instructions in this type are 1-
word (16-bit) in length. 8 bits are
reserved for the op-code, while the remaining 8 bits form the constant (immediate value)
field.

15 8 0
T}rpe W| opcode | constant ‘

Type V instruction format

Type V instructions are also 1-word 15 w87 0
instructions, containing an op-code Type ¥V | opcode | ra | constant

field of 5 bits, an operand register field

of 3 bits, and 8 bits for a specifying a constant.
Encoding of the General Purpose Registers

The encoding for the eight Register Code Register Code
GPRs is shown in the table.

These binary codes are to RO 0o R4 100

be used in place of the

‘place-holders’ ra, rb in the R1 oot R5 10

actual instructions of the

processor EAGLE. R2 010 RB 110

Listing of EAGLE R3 011 R7 11

instructions with respect to

instruction formats

The following is a brief introduction to the various instructions of the processor EAGLE,
categorized with respect to the instruction formats.

Type Z
There are four type Z instructions,
e halt(op-code=250)
This instruction halts the processor
e nop(op-code=249)
nop, or the no-operation instruction stalls the processor for the time of execution
of a single instruction. It is useful in pipelining.
e init(op-code=251)
This instruction is used to initialize all the registers, by setting them to 0
e reset(op-code=248)
This instruction is used to initialize the processor to a known state.In this
instruction the control step counter is set to zero so that the operation begins at the
start of the instruction fetch and besides this PC is also set to a known value so
that machine operation begins at a known instruction.

Type Y
Seven instructions of the processor are of type Y. These are
e add(op-code=11)
The type Y add instruction adds register ra’s contents to register RO. For example,
add rl
In the behavioral RTL, we show this as
R[0] < R[1]+R[0]
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e and(op-code=19)
This instruction obtains the logical AND of the value stored in register specified
by field ra and the register R0, and assigns the result to R0, as shown in the
example:
and r5
which is represented in RTL as
R[0] « R[1]&R][0]
e div(op-code=16)
This instruction divides the contents of register RO by the value stored in the
register ra, and assigns result to RO. The remainder is stored in the divisor
register, as shown in example,
div r6
In RTL, this is
R[0] « R[0]/R[6]
R[6] < R[0]%R[6]
e mul (op-code = 15)
This instruction multiplies the values stored in register RO and the operand
register, and assigns the result to R0O). For example,
mul r4
In RTL, we specify this as
R[0] <« RJ[0]*R[4]
e not (op-code = 23)
The not instruction inverts the operand register’s value and assigns it back to the
same register, as shown in the example
not r6
R[6] < ! R[6]
e or (op-code=21)
The or instruction obtains the bit-wise OR of the operand register’s and R0’s
value, and assigns it back to R0. An example,
or r5
R[0] < R[0] ~R][5]
e sub (op-code=12)
The sub instruction subtracts the value of the operand register from RO value,
assigning it back to register R0O. Example:
sub r7
In RTL:
R[0] < R[0] — R[7]

Type X
Only one instruction falls under this type. It is the ‘mov’ instruction that is useful for
register transfers
e mov (op-code = 0)
The contents of one register are copied to the destination register ra.

Example: mov 15, rl
RTL Notation: R[5]« R[1]
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Type W
Again, only one instruction belongs to this type. It is the branch instruction

br (op-code = 252)

This is the unconditional branch instruction, and the branch target is specified by
the 8-bit immediate field. The branch is taken by incrementing the PC with the
new value. Hence it is a ‘near’ jump. For instance,

br 14

PC — PC+14

Type V
Most of the instructions of the processor EAGLE are of the format type V. These are

addi (op-code = 13)

The addi instruction adds the immediate value to the register ra, by first sign-
extending the immediate value. The result is also stored in the register ra. For
example,

addi r4, 31

In behavioral RTL, this is

R[4] < R[4]+(80c<7>)Oc<7...0>;

andi (op-code =20 )

Logical ‘AND’ of the immediate value and register ra value is obtained when this
instruction is executed, and the result is assigned back to register ra. An example,
andi 16, 1

R[6] «— R[6] &1

in (op-code=29)

This instruction is to read in a word from an 1O device at the address specified by
the immediate field, and store it in the register ra. For instance,

inrl, 45

In RTL this is

R[1] « IO[45]

load (op-code=8)

The load instruction is to load the memory word into the register ra. The
immediate field specifies the location of the memory word to be read. For
instance,

load r3, 6

R[3] — M]6]

brn (op-code = 28)

Upon the brn instruction execution, the value stored in register ra is checked, and
if it is negative, branch is taken by incrementing the PC by the immediate field
value. An example is

brnr4, 3

In RTL, this may be written as

if R[4]<0, PC «— PC+3

brnz (op-code = 25)

For a brnz instruction, the value of register ra is checked, and if found non-zero,
the PC-relative branch is taken, as shown in the example,

brnz r6, 12

Which, in RTL is

if R[6]!=0, PC « PC+12
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e brp (op-code=27)
brp is the ‘branch if positive’. Again, ra value is checked and if found positive, the
PC-relative near jump is taken, as shown in the example:
brp rl, 45
In RTL this is
if R[1]>0, PC «— PC+45
e brz (op-code=8)
In this instruction, the value of register ra is checked, and if it equals zero, PC-relative
branch is taken, as shown,
brz r5, 8
In RTL:
if R[5]=0, PC «— PC+8

¢ loadi (op-code=9)
The loadi instruction loads the immediate constant into the register ra, for
instance,
loadi r5,54
R[5] « 54

e ori (op-code=22)
The ori instruction obtains the logical ‘OR’ of the immediate value with the ra
register value, and assigns it back to the register ra, as shown,
orir7, 11
In RTL,
R[7] < R[7]~11

e out (op-code=30)
The out instruction is used to write a register word to an IO device, the address of
which is specified by the immediate constant. For instance,
out 32,15
In RTL, this is represented by
10[32] < R[5]

e shiftl (op-code=17)
This instruction shifts left the contents of the register ra, as many times as is
specified through the immediate constant of the instruction. For example:
shiftl r1, 6

e shiftr( op-code=18)
This instruction shifts right the contents of the register ra, as many times as is
specified through the immediate constant of the instruction. For example:
shiftrr2, 5

e store (op-code=10)
The store instruction stores the value of the ra register to a memory location
specified by the immediate constant. An example is,
store r4, 34
RTL description of this instruction is
M[34] <« R[4]

e subi (op-code=14)
The subi instruction subtracts the immediate constant from the value of register
ra, assigning back the result to the register ra. For instance,
subir3, 13
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RTL description of the instruction
R[3] « R[3]-13

(ORIGINAL) ISA for the EAGLE
(16-bit registers, 16-bit PC and IR, 8-bit memory)

opcode |operandljoperand2iconstant|
mnemonic Format [Behavioral RTL
3 bits 3 bits 8 bits
add 01011 ra - - Y R [0] < R [ra]+R [0];
addi 01101 ra - c \ R [ra] < R [ra]+(8ac<7>)Oc;
and 10011 ra - - Y R[0] < R[ra]&R[0];
andi 10100 ra - c \ R [ra] < R [ra]& (8ac<7>)Oc;
br 11111100 |- - c W PC «— PC+(8ac<7>)Cc;
brnv 11100 ra - c \ (R [ra]<0): PC «— PC+(8ac<7>)Oc;
brnz 11001 ra - c \ (R [ra]<>0): PC < PC+(8ac<7>)Oc;
brpl 11011 ra - c \ (R [ra]>0): PC « PC+(8ac<7>)Oxc;
brzr 11010 ra - c \ (R [ra]=0): PC « PC+(8ac<7>)Oxc;
div 10000 ra - - Y R [0] < R [0]/R [a], R [ra] <R [0]%R [ra],
halt 11111010 |- - - V4 RUN<« 0;
in 11101 ra - c Y R [ra] <IO]c];
init 11111011 | - - 4 R[7...0] < 0;
load 01000 ra - c \ R [ra] <—M[c];
loadi 01001 ra - c \ R [ra] <« (8ac<7>)Oc;
mov 00 ra rb - X R [ra] < R [1b];
mul 01111 ra - - Y R [ra] © R [10] < R [ra]*R [0];
nop 11111001 | - - 4 ;
not 10111 ra - - Y R [ra] <! (R [ra]);
or 10101 ra - - Y R [0] < R [ra]~R [0];
ori 10110 ra - c \ R [ra] < R [ra]~ (8ac<7>)Cc;
out 11110 ra - c \ 10[c] <R [ra];
reset 11111000 [ - - 4 TBD;
shiftl 10001 ra - c \ R [ra] < R [ra]<(7-n)..0>O(na0);
shiftr 10010 ra - c \ R [ra] < (na0)OR [ra]<7...n>;
store 01010 ra - c \ Mc]«< R [ra];
sub 01100 ra - - Y R [0] < R [0]-R [a];
subi 01110 ra - c \ R [ra] < R [ra]- (8ac<7>)Oc;
Symbol | Meaning Symbol Meaning
o Replication % Remainder after integer division
© Concatenation & Logical AND
: Conditional constructs (IF-THEN) ~ Logical OR
H Sequential constructs ! Logical NOT or complement
s Concurrent constructs — LOAD or assignment operator
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Limitations of the ORIGINAL EAGLE ISA
The original 16-bit ISA of EAGLE has severe limitations, as outlined below.
1. Use of RO as accumulator

In most cases, the reqgister RO is being used as one of the
source operands as well as the destination operand. Thus,
RO has essentially become the accumulator. However, this
will require some additional instructions for use with the
accumulator. That should not be a problem since there are

some unused op-codes available in the ISA.
2. Unequal and inefficient op-code assignment

The designer has apparently tried to extend the number of
operations in the ISA by op-code extension. Op-code 11111
combine three additional bits of the instruction for five
instructions: unconditional branch, nop, halt, reset and
init.while there is a possibility of including three more
instructions in this scheme, notice that op-code 00 for
reqister to register mov is causing a “loss” of eight “slots” in
the original 5-bit op-code assignment. (The mov instruction
is, in effect, using eight op-codes). A better way would be to
assign a 5-bit op-code to mov and use the remaining op-

codes for other instructions.
3. Number of the operands

Looking at the mov instruction again, it can be noted that
this is the only instruction that uses two operands, and thus
requires a separate format (Format#1) for instruction
enoding. If the job of this instruction is given to two
instructions (copy register to accumulator, and copy
accumulator to reqister), the number of instruction formats
can be reduced thereby, simplifying the assembler and the
compiler needed for this ISA.

4. Use of registers for branch conditions
Note that one of the GPRs is being used to hold the branch condition. This would require
that the result from the accumulator be copied to the particular GPR before the branch
instruction. Including flags with the ALSU can eliminate this restriction

The Modified EAGLE
The modified EAGLE is an improved version of the processor EAGLE. As we have
already discussed, there were several limitations in EAGLE, and these have been
remedied in the modified EAGLE processor.
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Introduction

The modified EAGLE is also an accumulator-based processor. It is a simple, yet complex
enough to illustrate the various concepts of a processor design.

The modified EAGLE is characterized by

A special purpose register, the 16-bit accumulator: ACC

8 General Purpose Registers of the CPU: RO, R1, ..., R7; 16-bits each

Two 16-bit system registers transparent to the programmer are the Program
Counter (PC) and the Instruction Register (IR).

Memory word size: 16 bits

Memory space size: 2'® bytes

Memory organization: 2'° x 8 bits

Memory is accessed in 16 bit words (i.e., 2 byte chunks)

Little-endian byte storage is employed
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Programmer’s View of the Modified EAGLE

The given figure is the

programmer’s view of the [ 15— o
- I 7 0 7 0
modified EAGLE processor. I :‘1’ | 0
Notation | : | 1
The notation that is employed for /[ 1 |
the study of the modified EAGLE : Registerfile |
is the same as the original EAGLE | acc[ ] :
rocessor. Recall that we know ]
?hat- : " | 211
L . . el ]I
Enclosing the register name in |_ _______ ]
square brackets refers to register cPU Main memory Input/Output

contents; for instance, R [3] means contents of register R3.

Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to
memory contents. Hence M [8] means contents of memory location 8.

As little endian storage is employed, a memory word at address x is defined as the 16
bits at address x+1 and x. For instance, the bits at memory location 9,8 define the
memory word at location 8. So employing the special notation for 16-bit memory words,
we have

M[8]<15...0>:=M[9]OM]§]

Where © is used to represent
concatenation

The memory word access and copy to a
register is shown in the figure.

Features
The following features characterize the
modified EAGLE processor.
e Instruction length is variable. Instructions are either 8 bits or 16 long, i.e.,
instruction size is either half a word or 1 word.
e The instructions may have either one or two operands.
e The only way to access

7 i
0 W] One instruction

1 MIE] 15 57 1]
[ W@ | W@ |

MS Byie LS Byte

7

& Memary addresses

_ 7 32 0
memory is through load and
. . Type Z | opcode unuzec
store instructions
e Limited addressing modes are 7 iz O
supported Type ¥ | opeode Fa
Note that these properties are the same
as the original EAGLE processor = S .
Type X | opcode | ra | constart |
Instruction formats
. . 15 11 10 g7 i}
There are four instruction format types Type W | opcode |unuse dl Constart |

in the modified EAGLE processor as
well. These are
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Encoding of the General Purpose Registers

The encoding for the eight

GPRs is shown in the table. Register Code Register Code
The;se are binary cpdes = 00 = o0
assigned to the registers
that will be used in place of > oo e 0
the ra, rb in the actual
instructions of the modified R 010 PR 110
processor EAGLE.
R3 011 R 111
ISA  for the Modified
EAGLE
(16-bit registers, 16-bit ACC, PC and IR, 8-bit wide memory, 256 /O ports)
Mnemonic [Op-code ?blzf:andgg?tsstantFormat Behavioral RTL
Unused 00111
addi 00100  fra Cl X ACC « RJra] +(8aC1<7>)OC1;
subi 00101 ra C1 X ACC « R[ra] - (8aC1<7>)OCI1;
shiftl 01010 ra C1 X R[ra] < R[ra]<(15-n)..0>0O(na0);
shiftr 01011 ra C1 X R[ra] < (na0)OR[ra]<15...n>;
andi 01100  fra Cl X ACC « Rra] & (80aC1<7>)©OCI;
ori 01101 ra Cl X ACC « RJra] ~ (8aCI1<7>)©OCI;
asr 01110 ra C1 X R[ra] « (noR[ra}<15>)OR[ra]<15...n>;
in 10001 ra Cl X R[ra] <IO[C1];
Idacc 10010  Jra Cl X ACC «—M[R[ra] +(8aC1<7>)OC1];
movir 10100  fra Cl X R[ra] « (8aC1<7>)OCI,
out 10101 ra Cl X 10[C1] «R]ra];
stacc 10111 ra Cl X M[R[ra] +(8aC1<7>)©C1]«— ACC,;
movia 10011 Cl W ACC « (8aC1<7>)OCI;
br 11000 | Cl W PC «— PC + 8aC1<7>)OCl1;
brn 11001 Cl W (S=1): PC « PCH+(8aC1<7>)OCI;
brnz 11010 Cl W (Z=0): PC «— PC+(80C1<7>)OCl1;
brp 11011 Cl W (S=0): PC « PC+(8aC1<7>)OC1;
brz 11100 Cl W (Z=1): PC < PCH8aC1<7>)OCI,;
add 00000 ra - Y ACC «— ACC + R[ra];
sub 00001 ra - Y ACC «— ACC - R]a];
ACC < (R[ra] ©ACC)/R[a],
div 00010  fra - Y
R[ra] « (R[ra] ©ACC)%R]a];
mul 00011 ra - Y R[ra] © ACC « R[ra]*ACC,;
and 01000  fra - Y ACC «— ACC & RJra];
or 01001 ra - Y ACC «— ACC ~ R]ra];
not 01111 ra - Y ACC « I(R]ra]);
a2r 10000 fra - Y R[ra] < ACC
r2a 10110 ra Y ACC «— RJra]
cla 00110 V4 ACC « 0;
halt 11101 - - V4 RUN<« 0;
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nop 11110 - - V4 ;

reset 11111 - - 7 TBD;

Symbol | Meaning Symbol Meaning

o Replication % Remainder after integer division

© Concatenation & Logical AND

: Conditional constructs (IF-THEN) ~ Logical OR

; Sequential constructs ! Logical NOT or complement
Concurrent constructs — LOAD or assignment operator
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Computer Architecture

Lecture No. 10

Reading Material
Handouts Slides

Summary
3) The FALCON-E
4) Instruction Set Architecture Comparison
THE FALCON-E
INTRODUCTION
FALCON stands for First Architecture for Learning Computer Organization and
Networks. We are already familiar with our example processor, the FALCON-A, which
was the first version of the FALCON processor. In this section we will develop a new
version of the processor. Like its predecessor, the FALCON-E is a General-Purpose
Register machine that is simple, yet is able to elucidate the fundamentals of computer
design and architecture.
The FALCON-E is characterized by the following
e FEight General Purpose Registers (GPRs), named RO, R1...R7. Each registers is 4
bytes long (32-bit registers).
e Two special purposes registers, named BP and SP. These registers are also 32-bit
in length.
e Two special registers, the Program Counter (PC) and the Instruction Register
(IR). PC points to the next instruction to be executed, and the IR holds the current

instruction.
o : e .
e Memory word size is 32 bits (4 | JEL 0 i ; 0 . o
bytes). | Ri ! 0
e Memory space is 2°* bytes | : I ;12
e Memory is organized as 1-byte | Wﬁl | :
cells, and hence it is 2** x 8 i Bp|9:| i
bits. ) N
e Memory is accessed in 32-bit i R[] i 2724
words (4-byte chunks, or 4 P |
consecutive cells) L | Main memory InputOutput
e Byte storage format is little Fig. Programmer’s View

endian.

Programmer’s view of the FALCON-E

The programmer’s view of the FALCON-E is shown in the given figure.

FALCON-E Notation

We take a brief look at the notation that we will employ for the FACLON-E.

Register contents are referred to in a similar fashion as the FALCON-A, i.e. the register
name in square brackets. So R[3] means contents of register R3.
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Memory contents (or the memory E 5 [ W] : One memory “word”
location) can be referred to in a similar & 2 M“'[EQU]] 3 413 115 87 i
way. Therefore, M[8] means contents £ 11 [ w1 VNN N N R L
of memory location 8. N S Bte LS Bite

v
A memory word is stored in the w

memory in the little endian format. Fig. FALCON-E Notation
This means that the least significant
byte is stored first (or the little end comes first!). For instance, a memory word at address
8 is defined as the 32 bits at addresses 11, 10, 9, and 8 (little-endian). So we can employ a
special notation to refer to the memory words. Again, we will employ © as the
concatenation operator. In our notation for the FALCON-E, the memory word stored at
address 8 is represented as:
M[8]<31...0>=M[11]OM[10]©OM[9]OM] 8]
The shown figure will make this easier to understand.
FALCON-E Features
The following features characterize the FALCON-E

e Fixed instruction size, which is 32 bits. So the instruction size is 1 word.

e All ALU instructions have three operands

e Memory access is possible only through the load and store instructions. Also, only

a limited addressing modes are supported by the FALCON-E

FALCON-E Instruction Formats
Four different instruction formats are supported by the FALCON-E. These are
Type A instructions
The type A instructions have 5 bits reserved for the operation code (abbreviated op-code),
and the rest of the bits are either not used or specify a displacement.

3l 47 20 0
Type A Opeode Displacement /Mot Used

Type B instructions
The type B instructions also have 5 bits (27 through 31) reserved for the op-code. There
is a register operand field, ra, and an immediate or displacement field in addition to the

op-code field.
31 2726 24123 0

Typ g B Opeode Ta Displacermert / Inmmed 1ate

Type C instructions

Type C instructions have the 5-bit op-code field, two 3-bit operand registers (rb is the
source register, ra is the destination register), a 17-bit immediate or displacement field, as
well as a 3-bit function field. The function field is used to differentiate between
instructions that may have the same op-code, but different operations.

F1 aT36 2423 3130 1]
TypeC Crpoode ra i Displacement / Inumediate

Type D instructions
Type D instructions have the 5-bit op-code field, three 3-bit operand registers, 14 bits are
unused, and a 3-bit function field.
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31 AT 16

423 2120

18 17

43

Opeode

ra

] w

Umased

Type D

Encoding for the General Purpose Registers (GPRs)

In the instruction formats discussed above, we used register operands ra, rb and rc. It is
important to know that these are merely placeholders, and not the real register names. In
an actual instruction, any one of the 8 registers of our general-purpose register file may
be used. We need to encode our registers so we can refer to them in an instruction. Note
that we have reserved 3 bits for each of the register field. This is because we have 8
registers to represent, and they can be completely represented by 3 bits, since 2° = 8. The
following table shows the binary encoding of the general-purpose registers.

Register Code Register Code
RO oo R4 100
R1 001 RS 101
R2 010 R6 10
R3 011 R7 111

Fig. Encoding of the GPRs

There are two more special registers that we need to represent; the SP and the BP. We
will use these registers in place of the operand register rb in the load and store
instructions only, and therefore, we may encode these as

Regisier Code
sP Qoo
EF 0ol

Fig. Special Registers Encoding

Instructions, Instruction Formats

The following is a brief introduction to the various instructions of the FALCON-E,
categorized with respect to the instruction formats.

Type A instructions
Four instructions of the FALCON-E belong to type A. These are
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nop (op-code = 0)

This instruction instructs the processor to do nothing. It is generally useful in
pipelining. We will study more on pipelining later in the course.

ret (op-code = 15)

The return instruction is used to return control to the normal flow of a program
after an interrupt or a procedure call concludes

iret (op-code =17)

The iret instruction instructs the processor to return control to the address
specified by the immediate field of the instruction. Setting the program counter to
the specified address returns control.

near jmp (op-code = 18)

A near jump is a PC-relative jump. The PC value is incremented (or decremented)
by the immediate field value to take the jump.

Type B instructions
Five instructions belong to the type B format of instructions. These are:

push (op-code = 8)

This instruction is used to push the contents of a register onto the stack. For
instance, the instruction,

push R4

will push the contents of register R4 on top of the stack

pop (op-code = 9)

The pop instruction is used to pop a value from the top of the stack, and the value
is read into a register. For example, the instruction

pop R7

will pop the upper-most element of the stack and store the value in register R7

Id (op-code = 10)

This instruction with op-code (10) loads a memory word from the address
specified by the immediate filed value. This word is brought into the operand
register ra. For example, the instruction,

1d R7, 1254h

will load the contents of the memory at the address 1254h into the register R7.

st (op-code = 12)

The store instruction of (opcode 12) stores a value contained in the register
operand into the memory location specified by the immediate operand field. For
example, in

st R7, 1254h

the contents of register R7 are saved to the memory location 1254h.

Type C instructions

There are four data transfer instructions, as well as nine ALU instructions that belong to
type C instruction format of the FALCON-E.
The data transfer instructions are

Ids (op-code = 4)

The load instruction with op-code (4)loads a register from the memory, after
calculating the address of the memory location that is to be accessed. The
effective address of the memory location to be read is calculated by adding the
immediate value to the value stored by the register rb. For instance, in the
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example below, the immediate value 56 is added to the value stored by the
register R4, and the resultant value is the address of the memory location which is
read
1ds R3, R4(56)
In RTL, this can be shown as
R[3] <« M[R [4]+56]

e sts (op-code =5)
This instruction is used to store the register contents to the memory location, by
first calculating the effective memory address. The address calculation is similar
to the 1ds instruction. An example:
sts R3, R4 (56)
In RTL, this is shown as
MIR [4]+56] <« R[3]

e in (op-code = 6)
This instruction is to load a register from an input/output device. The effective
address of the I/O device has to be calculated before it is accessed to read the
word into the destination register ra, as shown in the example:
in RS, R4(100)

In RTL:
R[5] <« IO[R[4]+100]

e out (op-code =7)
This instruction is used to write / store the register contents into an input/output
device. Again, the effective address calculation has to be carried out to evaluate
the destination I/O address before the write can take place. For example,
out R8, R6 (36)
RTL representation of this is
IO[R [6]+36] « R [8]

Three of the ALU instructions that belong to type C format are

e addi (op-code =2)
The addi instruction is to add a constant to the value of operand register rb, and
assign the result to the destination register ra. For example, in the following
instruction, 56 is added to the value of register R4, and result is assigned to the
register R3.
addi R3, R4, 56
In RTL this can be shown as
R[3] <« R[4]+56
Note that if the immediate constant specified was a negative number, then this
would become a subtract operation.

e andi (op-code = 2)
This instruction is to calculate the logical AND of the immediate value and the rb
register value. The result is assigned to destination register ra. For instance
andi R3, R4, 56
R[3] <« R[4]&56
Note that the logical AND is represented by the symbol ‘&’

e ori(op-code =2)
This instruction calculates the logical OR of the immediate field and the value in
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operand register rb. The result is assigned to the destination register ra. Following
is an example:

ori R3, R4, 56

The RTL representation of this instruction:

R [3] « R [4]~56

Note that the symbol ‘~’ is used to represent logical OR.

Type D Instructions

Four of the instructions that belong to this instruction format type are the ALU
instructions shown below. There are other instructions of this type as well, listed in the
tables at the end of this section.
e add (op-code =1)
This instruction is used to add two numbers. The numbers are stored in the registers
specified by rb and rc. Result is stored into register ra. For instance, the instruction,
add R3, R5, R6
adds the numbers in register R5, R6, storing the result in R3. In RTL, this is given by
R[3] «R[5]+R[6]
e sub (op-code=1)
This instruction is used to carry out 2’s complement subtraction. Again, register
addressing mode is used, as shown in the example instruction
sub R3, R5, R6
RTL representation of this is
R[3] « R[5] - R[6]
e and (op-code =1)
For carrying out logical AND operation on the values stored in registers, this
instruction is employed. For instance
and R8, R3, R4
In RTL, we can write this as
R[8] « R[3] &R [4]
e or (op-code=1)
For evaluating logical OR of values stored in two registers, we use this
instruction. An example is
or R8, R3, R4
In RTL, this is
R[8] « R[3]~R[4]

Falcon-E

Instruction Summary

The following are the tables that list the instructions that form the instruction set of the
FALCON:-E. These instructions have been grouped with respect to the functionality they
provide.
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Opcode Function
Control Instructions | Mnemonic
Dec Bin Dec | Bin
Mo Operation nop 0 00000 -
Fig. Control Instructions
::;Tr;:;fl i Mnemonic Opc “"“’j Funmior_l
Dec Bin Dec Bin
Add add 1 ooooi 0 0000
Add Immediate addi 2 00010 0 0000
Subtract sub 1 ooom 1 oom
Subtract Immediate subi P ooo10 1 oo
Multiply mul 1 ooom 2 o010
Multiply Immediate muli 2 00010 2 o010
Divide div 1 oooom 3 oo
Divide Immediate divi 2 ooo1o 3 o011

Fig.

Last Modified: 01-Nov-06

Arithmetic Instructions
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Opcode Function
Logic Instructions | Mnemonic
Dec Bin Dec Bin
And and 1 oQo01 4 0100
And Imme diate andi z 00010 4 0100
Or or 1 00001 5 0101
Or Imme diate ori z 00010 5 0101
Xor HZor 1 00001 & 0110
Xor Immediate wori z 00010 & 0110
Fig. Logic Instructions
i Opcode Function
Shit a"i’ Rotate Mnemonic P
Instructions Dec Bin Dec Bin
Shift Left shil 1 Qoo a 1000
Shift Left Immediate :
Count shli 2 Qo010 8 1000
Rotate Left rol 1 0oom g 1001
Rotate Left Immediate roli 2 00010 g 1001
Count
Shift Right shr 1 Qoo 10 1010
Shift Right Immediate .
Count shn 2 Qoo10 10 1010
Shift Right Arithrmetic sra 1 Qoo 11 1011
Shift Right Arithrmetic -
Immediate Count srail 2 o010 11 1011
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Opcode Function
Mnemonic -

Data Transfer Instructions Dec Bin Dec Bin

Move Immediate to GPR rmovi 3 00011

Load Special Purpose

Register from GPR Its 4 00100

Store Special Purpose

Register to GPR sts 3 00101

Load Register fram 10 in B oo110

Store Register to 1O out 7 00111

Fush GPR to Stack push B 01000

Pop GPR from Stack pop 9 010M

Load GPR from Memory

(Direct Addressing) Id 10 01010

Load GPR from Memory

(Displacement Addressing Id " 01011

Store GPR to Memory (Direct

Addressing) st 12 01100

Store GFR to Memaory

(Displacement Addressing) st 13 oo

Fig. Data Transfer Instructions
Opcode Function
Procedure .
Callsinterrupts Mnemonic
Dec Bin Dec Bin

Call call 14 01110 -
Return ret 15 01111 -
Interrupt int 16 10000 -
Interrupt Return iret 17 10001 -
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Instruction Set Architecture Comparison

Opcode Function
Branch Instructions Mnemonic . N
Dec Bin Dec Bin
Mear Jump (Relative) jrmp 18 10010
Far Jump (Direct jmp 19 10011
Branch IfEgual (Relative) bre 20 10100 0 o0noo
Branch If Equal (Direct) hre 21 101 0 oooo
Branch If Mot Equal (Relative) bne 20 10100 1 ooo
Branch If Not Equal {Direct) bne 21 101 1 o001
Branch If Less (Relative) bl 20 10100 2 on10
Branch If Less (Direct) bl 21 10101 2 o010
Branch If Greater (Relative) b 20 10100 3 0011
Branch If Greater (Direct) b 21 101mM 3 0011

Fig. Branch Instructions

In this lecture, we compare the instruction set architectures of the various processors we
have described/ designed up till now. These processors are:

EAGLE
FALCON-A
FALCON-E
SRC

Classifying Instruction Set Architectures
In the design of the ISA, the choice of some of the parameters can critically affect the
code density (which is the number of instructions required to complete a given task),
cycles per instruction (as some instructions may take more than one clock cycle, and the
number of cycles per instruction varies from instruction to instruction, architecture to
architecture), and cycle time (the total cycle time to execute a given piece of code).
Classification of different architectures is based on the following parameters.

Operand storage in CPU

Where are they stored other than memory?

choices for the opeodes?

Mumber of explicit One, two or three operands?

operands in an

mstraction

Addressing Modes How the effective address for operands 15
caleulated?

Operations What operation are possible and what are the

Type and size of
operands.

How the size is specified for operands?

Fig. ISA Comparison Parameters

Instruction Length
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With reference to the instruction lengths in a particular ISA, there are two decisions to be
made; whether the instruction will be fixed in length or variable, and what will be the
instruction length or the range (in case of variable instruction lengths).

Fixed versus variable

Fixed instruction lengths are desirable when simplicity of design is a goal. It provides
ease of implementation for assembling and pipelining. However, fixed instruction length
can be wasteful in terms of code density. All the RISC machines use fixed instruction
length format

Instruction Length

The required instruction length mainly depends on the number of instruction required to
be in the instruction set of a processor (the greater the number of instructions supported,
the more bits are required to encode the operation code), the size of the register file
(greater the number of registers in the register file, more is the number of bits required to
encode these in an instruction), the number of operands supported in instructions (as
obviously, it will require more bits to encode a greater number of operands in an
instruction), the size of immediate operand field (the greater the size, the more the range
of values that can be specified by the immediate operand) and finally, the code density
(which implies how many instructions can be encoded in a given number of bits).

A summary of the instruction lengths of our processors is given in the table below.

EAGLE FALCON-A |FALCON-E |SEC
Fixed Fixed Fixed Fixed
16 bits 16 bits 32 bits 32 bits

Fig. Instruction Length

Instruction types and sub-types

The given table summarizes the number of instruction types and sub-types of the
processors we have studied. We have already studied these instruction types, and their
sub-types in detail in the related sections.

EAGLE | FALCON-A | FALCON-E SRC
Types 4 4 4 4
Sub-types - 2 4 3

Number of operands in the instructions

The number of operands that may be required in an instruction depends on the type of
operation to be performed by that instruction; some instruction may have no operands,
other may have up to 3. But a limit on the maximum number of operands for the
instruction set of a processor needs to be defined explicitly, as it affects the instruction
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EAGLE

FALCON-A

FALCON-E

SRC

2

3

3

3

Fig. Number of Operands per instructions

length and code density. The maximum number of operands supported by the instruction
set of each processor under study is given in the given table. So FALCON-A, FALCON-
E and the SRC processors may have 3, 2, 1 or no operands, depending on the instruction.
EAGLE has a maximum number of 2 operands; it may have one operand or no operands
in an instruction.

Explicit operand specification in an instruction gives flexibility in storage. Implicit
operands like an accumulator or a stack reduces the instruction size, as they need not be
coded into the instruction. Instructions of the processor EAGLE have implicit operands,
and we saw that the result is automatically stored in the accumulator, without the
accumulator being specified as a destination operand in the instruction.

Number and Size of General Purpose Registers

While designing a processor, another decision that has to be made is about the number of
registers present in the register file, and the size of the registers.

Increasing the number of registers in the register file of the CPU will decrease the
memory traffic, which is a desirable attribute, as memory accesses take relatively much
longer time than register access. Memory traffic decreases as the number of registers is
increased, as variables are copied into the registers and these do not have to be accessed
from memory over and over again. If there is a small number of registers, the values
stored previously will have to be saved back to memory to bring in the new values; more
registers will solve the problem of swapping in, swapping out. However, a very large
register file is not feasible, as it will require more bits of the instruction to encode these
registers. The size of the registers affects the range of values that can be stored in the
registers.

The number of registers in the register file, along with the size of the registers, for each of
the processors under study, is in the given table.

EAGLE FALCON-A |FALCON-E |SRC

Eight Eight Eight Thirty-two
registers, registers, registers, |registers
16 bit wide |16 bit wide |32 bit wide |32 bit wide

Fig. Number and size of GPRS

Memory specifications

Memory design is an integral part of the processor design. We need to decide on the
memory space that will be available to the processor, how the memory will be organized,
memory word size, memory access bus width, and the storage format used to store words
in memory. The memory specifications for the processor under comparison are:
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Memory EAGLE FALCON-A | FALCON-E SRC
Specs.
Memory 21 6 216 232 232
Space

Memory 216 * g 2'16 * 9 232 * g 232 *8

Organization

Memory 16 bit | 16 bit | 32 bit | 32 bit

Word Size

Memory 16 bits | 16 bits | 32 bits | 32 bits
Access

Memory Little-Endian | Big Endian | Little-Endian | Big Endian
Storage

Fig. Memory Specifications

Data transfer instructions

Data needs to be transferred between storage devices for processing. Data transfers may
include loading, storing back or copying of the data. The different ways in which data
transfers may take place have their related advantages and disadvantages. These are listed
in the given table.

Data Transfer |Advantage Disadvantage

Register to Simple, faster, constant CPI, | Higher instruction

Register Easier to pipeline. count, longer program
codes

Register to Separate load instruction Variable CPI due to

Memury eliminated, good code different operand

density locations

Memory to Most compact, small number | Varniable CPI, variable

Me mory of registers required instruction size,
memory bottleneck.

Fig. Data Transfer Modes

Following are the data transfer instructions included in the instruction sets of our
processors.

Register to register transfers

As we can see from the given table on the next page, in the processor EAGLE, register to
register transfers are of two types only: register to accumulator, or accumulator to
register. Accumulator is a special-purpose register.

FALCON-A has a mov instruction, which can be used to move data of any register to any
other register. FALCON-E has the instructions ‘lds’ and ‘sts’ which are used to load/store
a register from/to memory after effective address calculation.

SRC does not provide any instruction for data movement between general-purpose
registers. However, this can be accomplished indirectly, by adopting either of the
following two approaches:
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e A register’s contents can be loaded into another register via memory. First storing
the content of a register to a particular memory location, and then reading the
contents of the memory from that location into the register we want to copy the
value to can achieve this. However, this method is very inefficient, as it requires
memory accesses, which are inherently slow operations.

e A better method is to use the addi instruction with the constant set to 0.

Data Transfer Instructions

Instructions EAGLE FALCON-A FALCON-E SRC

Register to azr, r2a mov Ids, sts lar

Register (only from PC)
Register to Idacc, stacc | load, store Id, st Id, st

Memory

Memory to - - - -

Memory

Register to memory

EAGLE has instructions to load values from memory to the special purpose register,
names the accumulator, as well as saving values from the accumulator to memory. Other
register to memory transfers is not possible in the EAGLE processor. FALCON-A,
FALOCN-E and the SRC have simple load, store instructions and all register-memory
transfers are supported.

Memory to memory

In any of the processors under study, memory-to-memory transfers are not supported.
However, in other processors, these may be a possibility.

Control Flow Instructions
All processors have instructions to control the flow of programs in execution. The general
control flow instructions available in most processors are:
e Branches (conditional)
Jumps (unconditional)
Calls (procedure calls)
Returns (procedure returns)
Conditional Branches
Whereas jumps, calls and call returns changes the control flow in a specific order,
branches depend on some conditions; if the conditions are met, the branch may be taken,
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otherwise the program flow may continue linearly. The branch conditions may be
specified by any of the following methods:

e Condition codes

e Condition register

e Comparison and branching
Condition codes
The ALU may contain some special bits (also called flags), which may have been set (or
raised) under some special circumstances. For instance, a flag may be raised if there is an
overflow in the addition results of two register values, or if a number is negative. An
instruction can then be ordered in the program that may change the flow depending on
any of these flag’s values. The EAGLE processor uses these condition codes for branch
condition evaluation.
Condition register
A special register is required to act as a branch register, and any other arbitrary register
(that is specified in the branch instruction), is compared against that register, and the
branching decision is based on the comparison result of these two registers. None of the
processors under our study use this mode of conditional branching.
Compare and branch
In this mode of conditional branching, comparison is made part of the branching
instruction. Therefore, it is somewhat more complex than the other two modes. All the
processors we are studying use this mode of conditional branching.
Size of jumps
Jumps are deviations from the linear program flow by a specified constant. All our
processors, except the SRC, support PC-relative jumps. The displacement (or the jump)
relative to the PC is specified by the constant field in the instruction. If the constant field
is wider (i.e. there are more bits reserved for the constant field in the instruction), the
jump can be of a larger magnitude. Shown table specifies the displacement size for
various processors.

Processor Displacement size

EAGLE 8 hits for both conditional and unconditional.

FALCON-A 8 hits for both conditional and unconditional.

FALCON-E 27 bits (unconditional jump),

21 or 32 hits (conditional jumps)

SRC 32 bits for both conditional and unconditional jumps.

Fig. Size of Jumps

Addressing Modes

All processors support a variety of addressing modes. An addressing mode is the method
by which architectures specify the address of an object they will access. The object may
be a constant, a register or a location in memory.

Common addressing modes are
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e Immediate
An immediate field may be provided in instructions, and a constant value may be
given in this immediate field, e.g. 123 is an immediate value.

e Register
A register may contain the value we refer to in an instruction, for instance,
register R4 may contain the value being referred to.

e Direct
By direct addressing mode, we mean the constant field may specify the location
of the memory we want to refer to. For instance, [123] will directly refer to the
memory location 123’s contents.

e Register Indirect
A register may contain the address of memory location to which we want to refer
to, for example, M [R3].

e Displacement
In this addressing mode, the constant value specified by the immediate field is
added to the register value, and the resultant is the index of memory location that
is referred to, e.g. M [R3+123]

e Relative
Relative addressing mode implies PC-relative addressing, for example, [PC+123]
will refer to the memory location that is 123 words farther than the memory index
currently stored in the program counter.

e Indexed or scaled
The values contained in two registers are added and the resultant value is the
index to the memory location we refer to, in the indexed addressing mode. For
example, M [[R1]+[R2]]. In the scaled addressing mode, a register value may be
scaled as it is added to the value of the other register to obtain the index of
memory location to be referred to.

e Auto increment/ decrement
In the auto increment mode, the value held in a register is used as the index to
memory location that holds the value of operand. After the operand’s value is
retrieved, the register value is automatically increased by 1 (or by any specified
constant). e.g. M [R4]+, or M [R4]+d. In the auto decrement mode, the register
value is first decremented and then used as a reference to the memory location
that referred to in the instruction, e.g. -M [R4].

As may be obvious to the reader, some of these addressing modes are quite simple, others
are relatively complex. The complex addressing modes (such as the indexed) reduce the
instruction count (thus improving code density), at the cost of more complex
implementation.

The given table lists the addressing modes supported by the processors we are studying.
Note that the register-addressing mode is a special case of the relative addressing mode,
with the constant equal to 0, and only the PC can be used as a source. Also note that, in
the shown table, relative implies PC-relative.
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EAGLE FALCON-A | FALCON-E SRC

Immediate Immediate Immediate Immediate
- Direct Direct

Register Register Register Register *

Register Indirect

Register Indirect

Fegister Indirect

Register Indirect

Relative®®

Displacement

Displacement

Displacement

Displacement

Fig. Addressing Modes Comparison
Displacement addressing mode
We have already talked about the displacement-addressing mode. We look at this
addressing mode at length now.
The displacement-addressing mode is the most common of the addressing mode used in
general purpose processors. Some other modes such as the indexed based plus index,
scaled and register indirect are all slightly modified forms of the displacement-addressing
mode. The size of displacement plays a key role in efficient address calculation. The
following table specifies the size of the displacement field in different processors under
study.

Size of displacement field

Processor Number of hits in displacement field

SRC 17 or 22 bits depending on the instruction type.
FALCON-E 21 or 24 bits depending on the instruction type.
FALCON-A 5 bits for load and store instruction

EAGLE 8 bits for Idacc and stacc instructions

The given table lists the size of the immediate field in our processors.
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Processor Number of bits in the immediate field

EAGLE 8 bits

FALCON-A |5 or 8 bits

FALCON-E 17 or 24 bits depending on the
instruction

SRC 17 or 22 bits

Fig. Immediate Field Bits Comparison
Instructions common to all Instruction Set Architectures
In this section we have listed the instructions that are common to the Instruction Set
Architectures of all the processors under our study.
e Arithmetic Instructions
add, addi & sub.
e Logic Instructions
and, andi, or, ori, not.
e Shift Instructions.
Right shift, left shift & arithmetic right shift.
e Data movement Instructions.
Load and store instructions.
e Control Instructions
Conditional and unconditional branches, nop & reset.
The following tables list the assembly language instruction codes of these common

instructions for all the processors under comparison.
Common Arithmetic Instructions

Instruction |FAGLE |FALCON-A |[FALCON-E |[SRC
Add add add add add
Add addi addi addi addi
Immediate

Subtract sub sub sub sub
Subtract subi subi subi R
Immediate

Multiply mul mul mul -
Divide div div div -
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Common data movement Instructions

Instruction EAGLE FALCON-A FALCON-E SRC
Load Idacc load Id Id
Store stacc store st st
Move mov mov - -
Move immediate mMovi movi movi la
In in in in -
Out out out out -
Common Logical Instructions

Instruction | EAGLE |FALCON-A |FALCON-E |SRC

And and and and and

And andi andi andi andi

Immediate

Or or or or or

Or ari ari ori orl

Immediate

Mot not not not niot

Meg neg neg - -
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Common Shift Instructions

Instruction |EAGLE |FALCON-A |[FALCON-E [SRC
Shift right shiftr shiftr - shr

Shift right - - srai shr

immediate

Circular - - rol shc
shift

Shift left shiftl shiftl - shl

Shift right asr asr sra shra
arithmetic

Common Branch Instructions

Instruction EAGLE FALCON-A FALCON-E SRC
Unconditional br jump jmp br
branch

Branch if zero brz iz brzr
Branch if non brnz jnz brnz
zero

Branch if brp ipl brpl
positive

Branch if brn jmi brmi
negative
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Common Call and Interrupt Instructions

Instruction |EAGLE |[FALCON-A |FALCON-E |SRC
Procedure - call call brl
call
Interrupt - int int ?
Interrupt - iret iret ?
return

Common Control Instructions
Instruction |EAGLE |[FALCON-A |FALCON-E |SRC
No nop nop nop nop
operation
Halt halt halt - stop
Reset reset reset - -

Instructions unique to each processor
Now we take a look at the instructions that are unique to each of the processors we are
studying.
EAGLE
The EAGLE processor has a minimal instruction set. Following are the instructions that
are unique only to the EAGLE processor. Note that these instructions are unique only
with reference to the processor set under our study; some other processors may have
these instructions.
e movia
This instruction is for moving the immediate value to the accumulator (the special
purpose register)

e alr
This instruction is for moving the contents of the accumulator to a register
e 1a
For moving register contents to the accumulator
e cla
For clearing (setting to zero) the value in the accumulator
FALCON-A
There is only one instruction unique to the FALCON-A processor;
e ret

This instruction is used to return control to a calling procedure. The calling
procedure may save the PC value in a register ra, and when this instruction is
called, the PC value is restored. In RTL, we write this as

PC €< R [ra];
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FALCON-E
The instructions unique to the FALCON-E processor are listed:

SRC

push

To push the contents of a specified general purpose register to the stack
pop

To pop the value that is at the top of the stack

ldr

To load a register with memory contents using displacement addressing mode
str

To store a register value into memory, using displacement addressing mode
bl

To branch if source operand is less than target address

bg

To branch if source operand is greater than target address

muli

To multiply an immediate value with a value stored in a register

divi

To divide a register value by the immediate value

XOr, X0ri
To evaluate logical ‘exclusive or’
ror, rori

Following are the instructions that are unique to the SRC processor, among of the
processors under study

ldr

To load register from memory using PC-relative address

lar

To load a register with a word from memory using relative address

str

To store register value to memory using relative address

brinv

This instruction is to tell the processor to ‘never branch’ at that point in program.
The instruction saves the program counter’s contents to the register specified
brlpl

This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register’s value is positive.
Return address is saved before branching.

brlmi

This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register’s value is negative.
Return address is saved before branching.

brlzr

This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register’s value equals zero.
Return address is saved before branching.
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e brinz
This instruction instructs the processor to branch to the location specified by a
register given in the instruction, if the condition register’s value does not equal
zero. Return address is saved before branching.
Problem Comparison
Given is the code for a simple C statement:
a=(b-2)+4c
The given table gives its implementation in all the four processors under comparison.
Note that this table highlights the code density for each of the processors; EAGLE, which
has relatively fewer specialized instructions, and so it takes more instructions to carry out
this operation as compared with the rest of the processors.
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Last Modified: 01-Nov-06

Fig. Problem Comparison

EAGLE | FALCON-A | FALCON-E |  SRC
org 100 org 100 0rg 100 org 100
a w1 a w1 a w1 w1
0rg 200 0rg 200 0rg 200 org 200
ldacc b
Az load 1,1 b dri,b
subirt 2 supi2, n. 2 supir2,n 2 addir2 1.2
azr I0adr3, ¢ Idrd,c dr3,c
dacc ¢ shiftl13,3,2 mulird 3, 4 sl 13,13, 2
ar? atdrd 2r3 addrd, 1312 add rdr2r3
shir2, 2 storerd, 3 store rd a strd, 3
2312
addri
stace a
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Lecture Handouts

Computer Architecture

Lecture No. 11

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 3
Computer Systems Design and Architecture 33,34
Summary

5) A CISC microprocessor:The Motorola MC68000
6) A RISC Architecture:The SPARC

Material of this Lecture is included in the above-mentioned sections of Chapter 3.
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Lecture Handouts

Computer Architecture

Lecture No. 12

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.1,4.2,43
Summary

7) The design process
8) A Uni-Bus implementation for the SRC
9) Structural RTL for the SRC instructions

Central Processing Unit Design

This module will explore the design of the central processing
unit from the logic designer’s view. A unibus implementation
of the SRC is discussed in detail along with the Data Path
Design and the Control Unit Design.

The topics covered in this module are outlined below:
The Design Process
Unibus Implementation of the SRC
Structural RTL for the SRC
Logic Design for one bus SRC
The Control Unit
2-bus and 3-bus designs
The machine reset

8. The machine exceptions
As we progress through this list of topics, we will learn how to convert the earlier
specified behavioral RTL into a concrete structural RTL. We will also learn how to
interconnect various programmer visible registers to get a complete data path and how to
incorporate various control signals into it. Finally, we will add the machine reset and
exception capability to our processor.
The design process
The design process of a processor starts with the specification of the behavioral RTL for
its instruction set. This abstract description is then converted into structural RTL which
shows the actual implementation details. Since the processor can be divided into two
main sub-systems, the data path and the control unit, we can split the design procedure
into two phases.

Nk =
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1. The data path design

2. The control unit design Pe
It is important that the design activity of these . Alf | —
important components of the processor be carried e I ::T CPU
out with the pros and cons of adopting different Subsytem L_l f_;' hl ‘[ (nP)
approaches in mind. N hED
As we know, the execution time is dependent on ' - 1§
the following three factors. - :“
ET=ICxCPIxT rery |
During the design procedure we specify the ' N

\_ =
[

implementation details at an advanced level.
These details can affect the clock cycle per
instruction and the clock cycle time. Hence Block Diagram of Computer System
following things should be kept in mind during the design phase.

e Effect on overall performance

e Amount of control hardware

e Development time

Processor Design

Let us take a look at the steps involved in the processor design procedure.

1. ISA Design
The first step in designing a processor is the specification of the instruction set of
the processor. ISA design includes decisions involving number and size of
instructions, formats, addressing modes, memory organization and the
programmer’s view of the CPU i.e. the number and size of general and special
purpose registers.

2. Behavioral RTL Description
In this step, the behavior of processor in response to the specific instructions is
described in register transfer language. This abstract description is not bound to
any specific implementation of the processor. It presents only those static
(registers) and dynamic aspects (operations) of the machine that are necessary to
understand its functionality. The unit of activity here is the instruction execution
unlike the clock cycle in actual case. The functionality of all the instructions is
described here in special register transfer notation.

3. Implementation of the Data Path
The data path design involves decisions like the placement and interconnection of
various registers, the type of flip-flops to be used and the number and kind of the
interconnection buses. All these decisions affect the number and speed of register
transfers during an operation. The structure of the ALU and the design of the
memory-to-CPU interface also need to be decided at this stage. Then there are the
control signals that form the interface between the data path and the control unit.
These control signals move data onto buses, enable and disable flip-flops, specify
the ALU functions and control the buses and memory operations. Hence an
integral part of the data path design is the seamless embedding of the control
signals into it.

4. Structural RTL Description
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In accordance with the chosen data path implementation, the structural RTL for every
instruction is described in this step. The structural RTL is formed according to the
proposed micro-architecture which includes many hidden temporary registers
necessary for instruction execution. Since the structural RTL shows the actual
implementation steps, it should satisfy the time and space requirements of the CPU as
specified by the clocking interval and the number of registers and buses in the data
path.

5. Control Unit Design

The control unit design is a rather tricky process as it involves timing and
synchronization issues besides the usual combinational logic used in the data path
design. Additionally, there are two different approaches to the control unit design; it
can be either hard-wired or micro-programmed. However, the task can be made
simpler by dividing the design procedure into smaller steps as follows.

a. Analyze the structural RTL and prepare a list of control signals to be
activated during the execution of each RTL statement.
Develop logic circuits necessary to generate the control signals

c. Tie everything together to complete the design of the control unit.

Processor Design
A Uni-bus Data Path Implementation for the SRC

In this section, we will discuss the uni-bus implementation of the data path for the SRC.
But before we go onto the design phase, we will discuss what a data path is. After the
discussion of the data path design, we will discuss the timing step generation, which
makes possible the synchronization of the data path functions.

The Data Path

The data path is the arithmetic portion of the Von Neumann architecture. It consists of
registers, internal buses, arithmetic units and shifters. We have already discussed the
decisions involved in designing the data path. Now we shall have an overview of the 1-
Bus SRC data path design. As the name suggests, this implementation employs a single
bus for data flow. After that we develop each of its blocks in greater detail and present

the gate level implementation. a o .

Overview of the Unibus SRC Data RO

Path Rl Greneral 32 lines

The 1-bus implementation of the SRC regetors J'
data path is shown in the figure given. (2-bits each)

The control signals are omitted here

for the sake of simplicity. Following = a o
units are present in the SRC data path.
. . [’
1. The Register File
The general-purpose register MER
) . — ¢ 1]
file includes 32 registers RO to e v :
R31 each 32 bit wide. These CPU bus Internal processor bus

registers communicate with
other components via the internal processor bus.

2. MAR
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The Memory Address Register takes input from the ALSU as the address of the
memory location to be accessed and transfers the memory contents on that
location onto the memory sub-system.

3. MBR
The Memory Buffer Register has a bi-directional connection with both the
memory sub-system and the registers and ALSU. It holds the data during its
transmission to and from memory.

4. PC
The Program Counter holds the address of the next instruction to be executed. Its
value is incremented after loading of each instruction. The value in PC can also be
changed based on a branch decision in ALSU. Therefore, it has a bi-directional
connection with the internal processor bus.

5. IR
The Instruction Register holds the instruction that is being executed. The
instruction fields are extracted from the IR and transferred to the appropriate
registers according to the external circuitry (not shown in this diagram).

6. Registers A and C
The registers A and C are required to hold an operand or result value while the
bus is busy transmitting some other value. Both these registers are programmer
invisible.

7. ALSU
There is a 32-bit Arithmetic Logic Shift Unit, as shown in the diagram. It takes
input from memory or registers via the bus, computes the result according to the
control signals applied to it, and places it in the register C, from where it is finally
transferred to its destination.

Timing Step Generator
To ensure the correct and

controlled execution of instructions AoBdecader | o
in a program, and all the related T
operations, a timing device is I
required. This is to ensure that the A Tbi o I
operations of essentially different (7t binary counter I
instructions do not mix up in time. 2 I
There exists a ‘timing step

generator’ that provides mutually — "
exclusive and sequential timing clear —

intervals. This is analogous to the
clock cycles in the actual processor. A possible implementation of the timing step
generator is shown in the figure.

Each mutually exclusive step is carried out in one timing interval. The timing intervals
can be named TO, T1...T7. The given figure is helpful in understanding the ‘mutual
exclusiveness in time’ of these timing intervals.

. dock [ [ LT LT LI LI LT
Processor demgn n_ —
— [
T
Structural RTL descriptions of selected B | .Zlﬁ?ﬂ:.v’;
SRC instructions - time
5 — steps
Structural RTL for the SRC
T4
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The structural RTL describes how a particular operation is performed using a specific
hardware implementation. In order to present the structural RTL we assume that there
exists a “timing step generator”, which provides mutually exclusive and sequential timing
intervals, analogous to the clock cycles in actual processor.

Structural RTL for Instruction Fetch

The instruction fetch procedure takes three time steps as shown in the table. During the
first time step, TO, address of the

instruction is moved to the Memory Step RTL
Address Register (MAR) and value of mn MAR « PC, C«PC+4
PC is incremented. In T1 the Instruction T MER < MMAR] FC < C.

Fetch

instruction is brought from the
memory into the Memory Buffer
Register(MBR), and the incremented
PC is updated. In the third and final time-step of the instruction fetch phase, the
instruction from the memory buffer register is written into the IR for execution. What
follows the instruction fetch phase, is the instruction execution phase. The number of
timing steps taken by the execution phase generally depends on the type and function of
instruction. The more complex the instruction and its implementation, the more timing
steps it will require to complete execution. In the following discussion, we will take a
look at various types of instructions, related timing steps requirements and data path
implementations of these in terms of the structural RTL.

T2 IR «MEBR;

Structural RTL for Arithmetic/Logic Instructions

The arithmetic/logic instructions come in two formats, one with the immediate operand
and the other with register operand. Examples of both are shown in the following tables.
Register-to-Register sub
Register-to-register subtract (or sub) will take three timing steps to complete execution,
as shown in the table. Here we have assumed
that the instruction given is:

sub ra, rb, rc
Here we assume that the instruction fetch T3 [A« R}

Step RTL
TO-TZ Instruction fetch

L. T4 C o« A- R[rc];
process has taken up the first three timing

TS Rlra] « ;

steps. In step T3 the internal register A

receives the contents of the register rb. In the next timing step, the value of register rc is
subtracted (since the op-code is sub) from A. In the final step, this result is transferred
into the destination register ra. This concludes the instruction fetch-execute cycle and at

the end of it, the timing step generator is initialized to TO.
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31 0 <310

RO
The given figure refreshes our B Genera T2tines
knowledge of the data path. Notice that (32-bits sack)
we can visualize how the steps that we = .
have just outlined can be carried out, if —

: , , HEE

appropriate control signals are applied

To external v

CPU bus Internal processor bus

at the appropriate timing.

As will be obvious, control signals need to be applied to the ALSU, based on the

decoding of the op-code field of an instruction. The given table lists these control signals:

Note that we have used uppercase

alphabets for naming the ALSU ALSU Needed for the following

functions. This is to differentiate these [ **5:mnel Function instructions/operations
. : ADD add, addi, address calculation for disp and rel

control signals from the actual Jonifer U5 Temt

operation-code mnemonics we have ned. 0> NEG neg, applies to the B input ofthe ALSU

been using for the instructions.

The SHL, SHR, SHC and the SHRA

signas AND  |and, andi
available
OR or, o
functions are listed assuming that a SHL
. . . SHR shr Use uppetcase for cantrol
barrel shifter is available to the signals, because lowercase

ag well
NOT not; applies tathe B input of the ALSL

. . . . SHC she | “was used for mnemonics
processor with signals to differentiate [SHRA  [shra
between the various types of shifts that c=8 o load from the bus directly into C© _
IMC4 to incrernent the PC by 4, applies to the B input;

are to be performed.

Structural RTL for Register-to-Register add
To enhance our understanding of the instruction execution phase implementation, we will
now take a look at some more instructions of
the SRC. The structural RTL for a simple add
instruction add ra, rb, rc is given in table.
The first three instruction fetch steps are T3 A« Rirb]
common to all instructions. Execution of T4 |CeA+Rlr]
instruction starts from step T3 where the first
operand is moved to register A. The second
step involves computation of the sum and
result is transferred to the destination in step T5. Hence the complete execution of the add
instruction takes 6 time steps. Other arithmetic/logic instructions having the similar
structural RTL are “sub”, “and” and “or”. The only difference is in the T4 step where
the sign changes to (-), ("), or (~) according to the opcode.

Structural RTL for the not instruction

The first three steps TO to T2 are used up in fetching the instruction as usual. In step T3,
the value of the operand specified by the register is brought into the ALSU, which will
use the control function NOT, negate the value (i.e. invert it), and the result moves to the
register C. In the time step R4, this result is assigned to the destination register through
the internal bus. Note that we need control signals to coordinate all of this; a control
signal to allow reading of the instruction-specified source register in T3, control signal
for the selection of appropriate function to be carried out at the ALSU, and control signal

Step RTL

TO-T2 Instruction fetch

15 Rra] < C;
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to allow only the instruction-specified

destination register to read the result value Step |RTL

from the data bus. TO-T2 | Instruction fetch
The tab}e shown outlines these steps for the ™ [C < IR
mstruction: not ra, rb = OIS
Structural RTL for the addi instruction e

Again, the first three time steps are for the
instruction fetch. Next, the first operand is brought into ALSU in step T3 through register
A. The step T4 is of interest here as the second operand c2 is extracted from the
instruction in IR register, sign extended to 32 bits, added to the first operand and written
into the result register C. The execution of instruction completes in step TS when the
result is written into the destination register. The sign extension is assumed to be carried
out in the ALSU as no separate extension unit is provided.

Sign extension for 17-bit c2 is the same as:(150IR<16> ©IR<16..0>)

Sign extension for 22-bit c1 is the same as:(10aIR<21> ©IR<21..0>)

The given table outlines the time steps for the instruction addi:

Other instructions that have the same Step RTL

structural RTL are subi, andi and ori.
RTL for the load (Id) and store (st)

T0-T2 Instruction fetch
T3 A R[rb];

instructions :

The syntax of load instructions is: T |© A cakign exend),

1d ra, c2(rb) ™ |Rlel<t

And the syntax of store instructions is: s [RiTo e

St ra’ cz(rb) TO-T2 | Instruction fetch Instruction fetch

The given table outlines the time steps in TR =00 ADRD A (=000, 00 20: I

T4 Ce A+ (100lR=16= IH}]E U(i); Ce A+ (150IR=16= @R=16.0=);

fetching and executing a load and a store
instruction. Note that the first 6 time steps (TO
to TS) for both the instructions are the same.

T Rira] « MBR, M[MAR] & MBR;
The first three steps are those of instruction _
fetch. Next, the register A gets the value of [ adencion
register rb, in case it is not zero. In time step T4, the constant is sign-extended, and added
to the value of register A using the ALSU. The result is assigned to register C. Note that
in the RTL outlined above, we are sign extending a field of the Instruction Register(32-
bit). It is so because this field is the constant field in the instruction, and the Instruction
Register holds the instruction in execution. In step TS, the value in C is transferred to the
Memory Address Register (MAR). This completes the effective address calculation of the
memory location to be accessed for the load/ store operation.If it is a load instruction in
time step T6, the corresponding memory location is accessed and result is stored in
Memory Buffer Register (MBR). In step T7, the result is transferred to the destination
register ra using the data bus.If the instruction is to store the value of a register, the time
step T6 is used to store the value of the register to the MBR. In the next and final step, the
value stored in MBR is stored in the memory location indexed by the MAR.We can look
at the data-path figure and visualize how all these steps can take place by applying
appropriate control signals. Note that, if more time steps are required, then a counter with
more bits and a larger decoder can be used, e.g., a 4-bit counter along with a 4-to-16
decoder can produce up to 16 time steps.

T |MAR < C, MAR « C;

T6 MBR + M[MAR]; MBR « R [ra];
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Advanced Computer Architecture

Lecture No. 13

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.2.2, slides
Summary

e Structural RTL Description of the SRC (continued...)
e Structural RTL Description of the FALCON-A

This lecture is a continuation of the previous lecture.

Structural RTL for branch instructions
Let us take a look at the structural RTL for branch instructions. We know that there are
several variations of the branch instructions including unconditional branch and different
conditional branches. We look at the RTL for ‘branch if zero’ (brzr) and ‘branch and link
if zero’ brlzr’ conditional branches.
The syntax for the branch if zero (brzr) is:
brzr rb, rc
As you may recall, this instruction
instructs the processor to branch to the Step RTL
instruction at the address held in
register tb, if the value stored in T0-T2 Instruction Fetch
register rc is zero. Time steps for this
instruction are outlined in the table. T3 CON+— cond(R][rc]);
The first three steps are of the ) ;
instruction fetch phase. Next, the value T4 CON: PC«—RIrb];
of register rc is checked and depending
on the result, the condition flag CON is set. In time step T4, the program counter is set to
the register rb value, depending on the CON bit (the condition flag).
The syntax for the branch and link if zero (brlzr) is:
brlzr ra, rb, rc
This instruction is the same as the |SteP RTL
instruction brzr but additionally the
return address is saved (linking T0-T2 Instruction Fetch
procedure). The time steps for this

instruction are shown in the table. T3 CON «— cond(R[re]);
Notice that the steps for this T4 CON: R[ra] «— PC;
instruction are the same as the

instruction brzr with an additional step T5 CON: PC «— R[rb];

after the condition bit is set; the current
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value of the program counter is saved to register ra.

Structural RTL for shift instructions

Shift instructions are rather
complicated in the sense that they
require extra hardware to hold and
decrement the count. For an ALSU
that can perform only single bit shifts,
the data must be repeatedly cycled
through the ALSU and the count
decremented until it reaches zero. This
approach  presents some timing
problems, which can be overcome by
employing multiple-bit shifts using a
barrel shifter.

Step RTL
TO-T2 | Instruction fetch
T3 n<4..0=<«—|R<4.0>
T4 (N =0): (n<4..0> «— R[rc]<4..0>);
T5 C «—(Na0) © R[rb]<31..N>;
T6 R[ra] — C;

The structural RTL for shr ra, rb, rc or shr ra, rb, ¢3 is given in the corresponding
table shown. Here n represents a 5-bit register; IR bits 0 to 4 are copied in to it. N is the
decimal value of the number in this register. The actual shifting is being done in step T5.
Other instructions that will have similar tables are: shl, shc, shra
e.g., for shra, T5 will have C«— (NoR [rb] <31>) © R[rb] <31...N>;

Structural RTL Description of FALCON-A Instructions

Uni-bus data path implementation

Comparing the uni-bus implementation of FALCON-A with that of SRC results in the

following differences:

o FALCON-A processor bus has 16 lines or is 16-bits wide while that of SRC is

32-bits wide.

e All registers of FALCON-A are of 16-bits while in case of SRC all registers are

32-bits.

e Number of registers in FALCON-A are 8 while in SRC the number of registers is

32.

e Special registers i.e. Program Counter (PC) and Instruction Register (IR) are 16-
0

. . . 15
bit registers while -

in SRC these are Bl
32-bits.
e Memory Address

Register  (MAR)

and Memory Buffer

Register (MBR) are R7

also of 16-bits 15

while in SRC these

are of 32-bits.
MAR and MBR are dual
port registers. At one side
they are connected to
internal bus and at other
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side to external memory in order to point to a particular address for reading or writing
data from or to the memory and MBR would get the data from the memory.

ALSU functions needed

ALSU of FALCON-A has slightly different functions. These functions are given in the
table.

Note that mul and div

are two significant ALSU
instructions in this

Needed for the following

) ) —. Function instructions/operations
instruction set. So assuming’y

whenever one of these aaﬂ?f[gfl ADD add, addi

instructions is activated, | with five 5UB sub, subi

the ALSU unit would g‘i‘g“n-éﬂlg MUL il

take the operand from available DIy div

its input and provide the ', _as wel AMD and, andi

output immediately, if i OR or, ofi

we neglect the XQ‘ NOT not; applies to the B input of the ALSL
propagation delays to [ SHIFTL shift

its output. In case of ~ SHIFTR shiftr

FACON-A, we have L AR 57
two registers A and AH =B to [oad from the bus directly into C

each of 16-bits. AH IMC2 to incrementthe PC by 2; applies to the B input;
would contain the

higher 16-bits or most significant 16-bits of a 32-bit operand. This means that the ALSU
provides the facility of using 32-bit operand in certain instructions. At the output of
ALSU we could have a 32-bit result and that can not be saved in just one register C so we
need to have another one that is CH. CH can store the most significant 16-bits of the
result.

Why do we need to add AH and CH?

This is because we have mul and div instructions in the instruction set of the FALCON-
A. So for that case, we can implement the div instruction in which, at the input, one of the
operand which is dividend would be 32-bits or in case of mul instruction the output
which is the result of multiplication of two 16-bit numbers, would be 32-bit that could be
placed in C and CH. The data in these 2 registers will be concatenated and so would be
the input operand in two registers AH and A. Conceptually one could consider the A and
AH together to represent 32-bit operand.

Structural RTL for subtract Step RTL
instruction
sub ra, rb, rc TO-T2 Instruction fetch

In sub instruction three registers are

involved. The first three steps will T3 A e RIm],

fetch the sub instruction and in T3, T4 C e A-R[rc],
T4, TS5 the steps for execution of

the sub instruction will be TS Rlra] «
performed.
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Structural RTL for addition
instruction

add ra, rb, rc
The table of add instruction is
almost same as of sub instruction

except in timing step T4 we have +

sign for addition instead of — sign

Step |RTL
TO-TZ | Instruction fetch
T3 |A — R[]
T4 T« A +R[rc],
T5  |R[ra] « C;

as in sub instruction. Other instructions that belong to the same group are ‘and’, ‘or’ and

‘sub’.

Structural RTL for multiplication instruction

mul ra, rb, rc

This instruction is only present in this processor and not in SRC. The first three steps are

exactly same as of other
instructions and would fetch the
mul instruction. In step T3 we will
bring the contents of register R [rb]
in the buffer register A at the input

of ALSU. In step T4 we take the

Step |RTL
TO-T2 |Instruction fetch
T3  |A < R[]
T4 CHBC « A™ R[],
T5  |R[0]« CH;
TG Rlra] « C;

multiplication of A with the contents of R[rc] and put it at the output of the ALSU in two

registers C and CH. CH would contain the higher 16-bits while register C would contain

the lower 16-bits. Now these two registers cannot transfer the data in one bus cycle to the

registers, since the width is 16-bits. So we need to have 2 timing steps, in TS we transfer

the higher byte to register R[0] and in T6 the lower 16-bits are transferred to the

placeholder R[a]. As a result of multiplication instruction we need 3 timing steps for

Instruction Fetch and 4 timing steps for Instruction Execution and 7 steps altogether.

Structural RTL for division instruction
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div ra, l'b, rc Step RTL
In this instruction first three steps

TO-TZ | Instruction fetch

are the same. In step T3 the T3 A —R[0]

contents of register rb are placed in T4 AH — R[O];

buffer register A and in step T4 we 5 CH  (AHBA 1% R[rc], C — (AHDA) /

R[rc]
T6  |R[ra] —C;

take the contents of register R[0] in

to the register AH. We assume T R[0] «— CH;

before using the divide instruction that we will place the higher 16-bits of dividend to
register R[0]. Now in T5 the actual division takes place in two concurrent operations. We
have the dividend at the input of ALSU unit represented by concatenation of AH and A.
Now as a result of division instruction, the first operation would take the remainder. This
means divide AH concatenated with A with the contents given in register rc and the
remainder is placed in register CH at the output of ALSU. The quotient is placed in C. In
T6 we take C to the register R[ra] and in T7 remainder available in CH is taken to the
default register R[0] through the bus. In divide instruction 5 timing steps are required to

execute the instruction while 3 to fetch the instruction.

Note: Corresponding to mul and div instruction one should be careful about the
additional register R[0] that it should be properly loaded prior to use the instructions e.g.
if in the divide instruction we don’t have the appropriate data available in R[0] the result
of divide instruction would be wrong.

Structural RTL for not instruction
not ra, rb

In this instruction first three steps
will fetch the instruction. In T3 we Step |[RTL
perform the not operation of
contents in R[rb] and transfer them
in to the buffer register C. It is
simply the one’s complement
changing of 0’s to 1’s and 1’s to T4 R[ra] «— C;
0’s. In timing step T4 we take the
contents of register C and transfer to register R[ra] through the bus as shown in its
corresponding table.

TO-TZ | Instruction fetch

T3 | C—R[b];
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Structural RTL for add immediate instruction

addi ra, rb, cl
In this instruction cl is a constant as a part of the instrucion. First three steps are for
Instruction Fetch operation. In T3 Step RTL

we take the contents of register R
[rb] in to the buffer register A. In To-T2  |Instruction fetch
T4 we add up the contents of A
with the conztant cl after sign T A < RIrel
extension and bring it to C. T4 €« A +C1(sign extend),
Sign extension of 5-bit c1 and T5  |R[ra] « C;

8-bit constant c2

Sign extension for 5-bit ¢l 1s: (11alR<4> ©IR<4.. 0>)
We have immediate constant c1 in the form of lower 5-bits and bit number 4 indicates the
sign bit. We just copy it to the left most 11 positions to make it a 16-bit number.

Sign extension for 8-bit c2 is: (8aIR<7> ©OIR<7.. 0>)
In the same way for constant ¢2 we need to place the sign bit to the left most 8 position to
make it 16-bit number.

Step |RTL for Id RTL for st
Structural RTL for the load : :
and store instruction TO-T2 |Instruction fetch Instruction fetch
T3 |A < Rm]; A R

Tables for load and store

SRC except a slight = E;tug_); RO
difference in the notation. ' '

So when we have square Té  |MBR < MMAR], MBR « R [ral,
brackets [R [rb]tel], it ™37 e —wer; M[MAR] — MER,

corresponds to the base
address in R[rb] and an offset taken from c1.

Structural RTL for conditional jump

instructions

jZ ra, [02] Step RTL
In first three steps of this table, the
instruction is fetched. In T3 we set a 1- TO-T2 Instruction Fetch
bit register “CON” to true if the :
condition is met. T3 CON -« cond(R[ra])
How do we test the condition? T4 A — PC:
This is tested by the contents given by ik €« A+ c2(sign extend);
the register ra. So condition within T6 PC « C:
square brackets is R[ra]. This means

test the data given in register ra. There

are different possibilities and so the data could be positive, negative or zero. For this
particular instruction it would be tested if the data were zero. If the data were zero, the
“CON” would be 1.
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In T4 we just take the contents of the PC into the buffer register A. In T5 we add up the
contents of A to the constant c2 after sign extension. This addition will give us the
effective address to which a jump would be taken. In T6, this value is copied to the PC.
In FALCON-A, the number of conditional jumps is more than in SRC. Some of which
are shown below:
e jz (op-code= 19) jump if zero
jz 13, [4] (R[3]=0): PC«— PC+2;
e jnz (op-code= 18) jump if not zero
jnz r4, [variable] (R[4]#£0): PC«— PC+ variable;
e jpl (op-code=16) jump if positive
jpl r3, [label] (R[3]>0): PC « PC+ (label-PC);
e jmi (op-code= 17) jump if negative
jmi r7, [address] (R[7]<0): PC«+ PC+ address;
The unconditional jump instruction will be explained in the next lecture.
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Advanced Computer Architecture
Lecture No. 14

Reading Material

Handouts Slides

Summary

e Structural RTL Description of the FALCON-A (continued...)
e External FALCON-A CPU Interface

This lecture is a continuation of the previous lecture.

Un-conditional jump instruction
jump  (op-code= 20)

In the un-conditional jump with op-code 20, the op-code is followed by a 3-bit identifier
for register ra and then followed by an 8-bit constant c2.
Forms allowed by the assembler to define the jump are as follows:

jump [ra + constant]

jump [ra + variable]

jump [ra + address]

jump [ra + label]

For all the above instructions:
(ra=0):PC«— PCH+(8aC2<7>)©C2<7..0>,
(ra0):PC— R[ra]H(8aC2<7>)0C2<7..0>;"

In the case of a constant, variable, an address or (label-PC) the jump ranges from —128 to 127 because of the restriction on 8-bit
constant c¢2. Now, for example if we have jump [rO+a], it means jump to a. On the other hand if we have jump [ r2] that is not
allowed by the assembler. The target address should be even because we have each instruction with 2 bytes. So the types available for
the un-conditional jumps are either direct, indirect, PC-relative or register relative. In the case of direct jump the constant ¢2 would
define the target address and in the case of indirect jump constant c2 would define the indirect location of memory from where we
could find out the address to jump. While in the case of PC-relative if the contents of register ra are zero then we have near jump and
the type of jump for this would be PC-relative. If ra is not be zero then we have a far jump and the contents of register ra will be added
with the constant c2 after sign-extension to determine the jump address.

* ¢2 is computed by sign extending the constant,variable,address or (label-PC)
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Structural RTL description for un-conditional jump instruction
jump [ra+c2]

In first three steps, TO-T2, we would fetch the jump instruction, while in T3 we would either take the contents of PC and place them in
a temporary register A if the condition given in jump instruction is true, that is if the ra field is zero, otherwise we would place the
contents of register ra in the temporary register A. Comma °,” indicates that these two instructions are concurrent and only one of them
would execute at a time. If the ra field is zero then it would be PC-relative jump otherwise it would be register-relative jump. In step
T4 we would add the constant c2 after sign-extension to the contents of temporary register A. As a result we would have the effective
address in the buffer register C, to which

we need to jump. In step T5 we will take

the contents of C and load it in the PC,
which would be the required address for Step RTL
the j . .
€ Jump TO-T2 Instruction Fetch
Structural RTL for the shift . . .
instruction T3 (ra=0):. A— PC, (ra#0): A — R[ra];

shiftr ra, rb, c1 T4 C «— A+ c2(sign extend);
First three steps would fetch the shift T5 PC — Cs

instruction. cl is the count field. It is a 5-

bit constant and is obtained from the lower 5-bits of the instruction register IR. In step T3 we would load the 5-bit register ‘n’ from the
count field or the lower 5-bits of the IR and then in T4 depending upon the value of ‘N’ which indicates the decimal value of ‘n’, we
would take the contents of register tb and shift right by N-bits which would indicate how many shifts are to be performed. ‘n’
indicates the register while ‘N’ indicates the decimal value of the bits present in the register ‘n’. So as a result we need to copy the
zeros to the left most bits, this shows that zeros are replicated ‘N’ times and are concatenated with the shifted bits that are actually
15...N. In T5, we take the contents from

C through the bus and feed it to the Step RTL
register ra which is the destination

register. Other instructions that would TO-T2 Instruction fetch

have similar tables are ‘shift]” and ‘asr’.

In case of asr, when the data is shifted T3 n<d 0> [R=4 0=

right, instead of copying zeros on the left

side, we would copy the sign bit from the T4 C— iNad) © R[rb]=15..N=;

original data to the left-most position.

Ta Rlra] — C;

Other instructions

Other instructions are mov, call and ret.
Note that these instructions were not available with the SRC processor.
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Structural RTL for the mov instruction

mov ra, rb

In mov instruction the data in register rb, which is
the source register, is to be moved in the register ra, StEp RTL
which is the destination register. In first three steps, >
mov instruction is fetched. In step T3 the contents of T0-T2 Instruction fetch
register rb are placed in buffer register C through the
ALSU unit while in step T4 the buffer register C T3 e R[rh]'
transfers the data to register ra through internal uni- '
bus.

T4 Rlra] — ;
Structural RTL for the mov immediate
instruction

movi ra, c2

L o Step |RTL

In this instruction ra is the destination register and

constant c2 is to be moved in the ra. First three steps TO-T2 Instruction fetch
would fetch the move immediate instruction. In step
T3 we would take the constant c2 and place it into the
buffer register C. Buffer register C is 16-bit register T3 O [Bocl<?=) @ c2<7 0=,
and c2 is 8-bit constant so we need to concatenate the
remaining leftmost bits with the sign bit which is bit
7’ shown within angle brackets. This sign bit which is T4 H[ra] = L
the most significant bit would be ‘1’ if the number is
negative and ‘0’ if the number is positive. So
depending upon this sign bit the remaining 8-bits are replicated with this sign bit to make a 16-bit constant to be placed in the buffer
register C. In step T4 the contents of C are taken to the destination register ra.

In case of FALCON-A, ‘in’ and ‘out’ instructions are present which are not present in the SRC processor. So, for this we assume that
there would be interconnection with the input and output addresses up to 0..255.

Structural RTL for the in instruction

Step |RTL

in ra, c2

First three steps would fetch the instruction In step T3
we take the 10 [c2] which indicates that go to IO TO-TZ | Instruction fetch
address indicated by c¢2 which is a positive constant in
this case and then data would be taken to the buffer
register C. In step T4 we would transfer the data from T3 0 e |[:|[I22]'
C to the destination register ra. !

Structural RTL for the out instruction

T4 |R[ra] =G

out ra, c2

This instruction is opposite to the ‘in’ instruction.

First three instructions [\)Jvould fetch the instruction. In Step RTL
step T3 the contents of register ra are placed in to the
buffer register C and then in Step T4 from C the data
is placed at the output port indicated by the c2
constant. So this instruction is just opposite to the ‘in’
instruction.

T0-T2 Instruction fetch

T3 C— R[ra];

Structural RTL for the call instruction

call ra, rb

T4 |I0[c2] —C

In this instruction we need to give the control to the
procedure, sub-routine or to another address specified
in the program. First three steps would fetch the call L__
instruction. In step T3 we store the present contents of

PC in to the buffer register C and then from C we transfer Step RTL
the data to the register ra in step T4. As a result register ra
would contain the original contents of PC and this would
be a pointer to come back after executing the sub-routine

and it would be later used by a return instruction. In step T0-T2 Instruction Fetch
T5 we take the contents of register rb, which would
actually indicate to the point where we want to go. So in T3 C — PC;

step T6 the contents of C are placed in PC and as a result
PC would indicate the position in the memory from where
new execution has to begin. T4 R[ra] — C;

T5 C < R[b];
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Structural  RTL for return

instruction Step RTL
retra

After instruction fetch in first 3 steps

TO-T2, the register data in ra is placed

in the buffer register C through ALSU T0-T2 Instruction Fetch
unit. PC is loaded with contents of this
buffer register in step T4. Assuming T3 C — R[ra];

that bus activity is synchronized,
appropriate  control  signals are
available to us now. T4 PC — C;
Control signals required at different
timing steps of FALCON-A
instructions

The following table shows the details of the control signals needed. The first column is
the time step, as before. In the second column the structural RTLs for the particular step

1s given, and the -
given, | Step |RTL Control Signals
corresponding
control signals are TO MAR «— PC,CePC+ 2 [PCout, LMAR, INC2, LG
shown in the third :
column. Internal bus T MBR «— M[MAR], PC« C; LMBR, MRead, MARout, Cout, LPC
1S active in step TO’ T2 IR+ MBR, MBRout, LIR
causing the contents T3 Instruction Execution
of the PC to be

placed in the Memory Address register MAR and simultaneously the PC is incremented
by 2 and placed it in the buffer register C. Recalling previous lectures, to write data in to
a particular register we need to enable the load signal. In case of fetch instruction in step
TO, control signal LMAR is enabled to cause the data from internal bus to be written in to
the address register. To provide data to the bus through tri-state buffers we need to
activate the ‘out’ control signal named as ‘PCout’, making contents of the PC available to
the ALSU and so control unit provides the increment signal ‘INC2’ to increment the PC.
As the ALSU is the combinational circuit, the PCout signal causes the contents over the
2nd input of ALSU incremented by 2 and so the data is available in buffer register C.
Control signal “LC” is required to write data into the buffer register C form the ALSU
output. Now note that ‘INC2’ is one of the ALSU functions and also it is a control signal.
So knowing the control signals, which need to be activated at a particular step, is very
important.

So, at step TO the control signal ‘PCout’ is activated to provide data to the internal bus.
Now control signal ‘LMAR’ causes the data from the bus to be read into the register
MAR. The ALSU function ‘INC2’ increments the PC to 2 and the output are stored in the
buffer register C by the control signal ‘LC’. The data from memory location addressed by
MAR is read into Memory Buffer Register MBR in the next timing step T1. In the mean
time there is no activity on the internal bus, the output from the buffer register C (the
incremented value of the PC) is placed in the PC through bus. For this the control signal
‘LPC’ is activated.

To enable tri-state buffer of Memory Address Register MAR, we need control signal
‘MARout’. Another control signal is required in step T1 to enable memory read i.e.
‘MRead’. In order to enable buffer register C to provide its data to the bus we need
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‘Cout’ control signal and in order to enable the PC to read from C we need to enable its
load signal, which is ‘LPC’. To read data coming from memory into the Memory Buffer
Register MBR, ‘LMBR ’control signal is enabled. So in T2 we need 5 control signals, as
shown.

In T2, the instruction register IR is loaded with data from the MBR, so we need two-
control signals,”MBRout’ to enable its tri-state buffers and the other signal required is the
load signal for IR register ‘LIR’. Fetch operation is completed in steps TO-T2 and
appropriate control signals are generated. Those control signals, which are not shown,
would remain de-activated. All control signals are activated simultaneously so the order
of these controls signals is immaterial. Recall that in SRC the fetch operation is
implemented in the same way, but ‘INC4’ is used instead of ‘INC2’ because the
instruction length is 4 bytes.

Now we take a look at other examples for control signals required during execution
phase.

For various instructions, we will define other control signals needed in the execution
phase of each instruction but fetch cycle will be the same for all instructions.

Another important fact is the interface of the CPU with an external memory and the I/O
depending upon whether the I/O is memory mapped or non-memory mapped. The
processor will generate some control signals, used by the memory or I/O to read/write
data to/from the I/O devices or from the memory. Another assumption is that the memory
read is fast enough. Therefore data from memory must be available to the processor in a
fixed time interval, which in this particular example is T2.

For a slow data transfer, the concept of handshaking is used. Some idle states are
introduced and buffer is prepared until the data is available. But for simplicity, we will
assume that memory is fast enough and data is available in buffer register MBR to the
CPU.

External FALCON-A CPU Interface
This figure is a symbolic

16-hit
address hus

. 16-kit data bus
representation of the
L5

FALCON-A in the form of ﬁ

CPU

a chip. The external

7

interface consists of a 16-
FOUR Contral
hus signals:
MRead
hlbrite
I0ORead
10yrite

bit address bus, a 16-bit
data bus and a control bus

on which different control signals like MRead, MWrite, [ORead, IOWrite are present.
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Example Problem

Instruction

RTL equivalent

Address Bus
%15..0=>

Data Bus
=15..0=>

MRead

MWATite

load r#, [12+r5]

addir2, r4, 31

jump [52]

store r1,[ r3+17]

subro, rv, ré

shiftr r2, rG, 4

movr3, re

izrd, [-32]

(a) What will be the logic levels on the external FALCON-A buses when each of the

given FALCON-A
instruction is executing
on the processor?
Complete the table
given. All numbers are
in the decimal number
system, unless noted
otherwise.
(b) Specify memory-
addressing modes for
each of the FALCON-
A instructions given.
Assumptions
For this  particular
example we  will
assume that all memory
contents are properly

Memory | Memory

Address | Content
0020k Dzh
0021h 96k
0022h 4%
0023h 2Fh
300k 44h
C301h 23h
C302h E3h
C303h D5h

C340h 51h
C341h CAh
C343h D5h
C344h E2h
1240k 07h
1241h 85h
1242h Es5h
1243h 3Dh

aligned, i.e. memory addresses start at address divisible by 2.

PC=C348h

This table contains a partial memory map showing the addresses and the corresponding

data values.

The next table shows the register map showing the contents of all the CPU registers.

Another important thing to note is that memory storage is big-endian.
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Register {Content
Name
E[0] A54Bh
E[1] 4CE&h
E[2] 492Fh
E[3] ZZ2EFh
E[4] 2301h
E[5] 1234h
E[6] 00200
E[7] ZD7Fh
Solution:
FALCON-A RTL equivalent Address Bus* Data Bus M
Instruction <15.0> <15.0> W
load r7, [r5+12] | R[7] — M[12+R[5]] 1240h 0785h 0
addir2, r4, 31 R[2] «—— R[4]+31 Unknown 27?77 ?
jump [52] PC «—— PC +52 Linknown 27?7 ?
store r1, [r3+17] | M[R[3]+17] «— R[1] C300h 4423h 1
sub r5, 17, ré R[5] «— R[7]-R[6] Linknown 927 ?
shiftr r2, r6, 4 R[2] — Unknown ???? ?
(400)2R[6]<15...4>
mov r3, r2 R[3] — R[2] Unknown ???? ?
jz 4, [-32] R[4]=0:PC«——PC-32 Unknown 27?7 ?

In this table the second column contains the RTL descriptions of the instructions. We
have to specify the address bus and data bus contents for each instruction execution. For
load instruction the contents of register r5+12 are placed on the address bus. From
register map shown in the previous table we can see that the contents of r5 are 1234h.
Now contents of r5 are added with displacement value 12 in decimal .In other words the
address bus will carry the hexadecimal value 1234h+ Ch = 1240h.Now for load
instruction, the contents of memory location at address 1240h will be placed on the data
bus. From the memory map shown in the previous table we can see that memory location
1240h contains 785h. Now to read this data from this location, MRead control signal will
be activated shown by 1 in the next column and MWrite would be 0.Similarly RTL
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description is given for the 2nd instruction. In this instruction, only registers are involved
so there is no need to activate external bus. So data bus, address bus and control bus
columns will contain ‘?” or ‘unknown’. The next instruction is jump. Here PC is
incremented by the jump offset, which is 52 in this case. As before, the external bus will
remain inactive and control signals will be zero. The next instruction is store. Its RTL
description is given. For store instruction, the register contents have to be placed at
memory location addressed by R [3] +17. As this is a memory write operation, the
MWrite will be 1 and MRead will be zero. Now the effective address will be determined
by adding the contents of R [3] with the displacement value 17 after its conversion to the
hexadecimal. The resulting effective address would be C300h. In this way we can

complete the table for other instructions.

Addressing Modes

This table lists the addressing mode for each instruction given in the previous example.

FALCON-A Addressing
Instruction Mode
load r7, [r5+12] |Displacement

addir2, rd4, 31 Immediate
jump [562] Relative

store 1, [r3+17] |Displacement
sub s, 17, 16 Register
shiftr r2, 16, 4 Register

mov t3, r2 Register
jzrd, [32] Relative
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Advanced Computer Architecture

Lecture No. 15

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.4
Summary

1) Logic Design for the Uni-bus SRC
2) Control Signals Generation in SRC

Logic Design for the Uni-bus SRC
In the previous sections, we have looked at both the behavioral and structural RTL for
the SRC. We saw that there is a need for some control circuitry for ensuring the proper
and synchronized functioning of the components of the data path, to enable it to carry out
the instructions that are part of the Instruction Set Architecture of the SRC. The control
unit components and related signals make up the control path. In this section, we will talk
about

e Identifying the control signals required

e The external CPU interface

e Memory Address Register (MAR), and Memory Buffer Register (MBR) circuitry

e Register Connections
We will also take a look at how sign extension is performed. This study will help us
understand how the entire framework works together to ensure that the operations of a
simple computer like the SRC are carried out in a smooth and consistent fashion.

Identifying control signals

For any of the instructions that are a part of the instruction set of the SRC, there are
certain control signals required; these control signals may be to select the appropriate
function for the ALU to be performed, to select the appropriate registers, or the
appropriate memory location.

Any instruction that is to be executed is first fetched into the CPU. We look at the control
signals that are required for the fetch operation.

Control signals for the fetch operation

Table 1 lists the control signals that are needed to ensure the synchronized register
transfers in the instruction fetch phase. Note that we use uppercase for control signals as
we have been using lowercase for the instruction mnemonics, and we want to distinguish
between the two. Also note that control signals during each time slot are activated
simultaneously, and that the control signals for successive time slots are activated in
sequence. If a particular control signal is not shown, its value is zero.
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Step RTL Control Signals
TO MAR < PC, C& PC + 4, PCout, LMAER, INC4, LC
Tl MEBE < M[MAR], PC « C, | LMEE, MEzad, MAFRout,
Cout, LPC
v IR « MEE; MERout, LIR
Tahle:1

As shown in the Table: 1, some control signals are to let register values to be written onto
buses, or read from the buses. Similarly, some signals are required to read/ write memory
contents onto the bus. The memory is assumed to be fast enough to respond during a
given time slot; if that is not true, wait states have to be inserted. We require four control
signals to be issued in the time step TO:

PCout: This control signal allows the contents of the Program Counter register to be

written onto the internal processor bus.

LMAR: This signal enables write onto the memory address register (MAR), thus the

value of PC that is on the bus, is copied into this register

INC4: It lets the PC value to be incremented by 4 in the ALSU, and result to be

stored in C. Notice that the value of PC has been received by the ALSU as an

operand. This control signal allows the constant 4 to be added to it.

The ALSU is assumed to include an INC4 function

LC: This enables the input to the register C for writing the incremented value of PC

onto it.

During the time step T1, the following control signals are applied:

LMBR: This enables the “write” for the register MBR. When this signal is activated,

whatever value is on the bus, can be written into the MBR.

MRead: Allow memory word to be gated from the external CPU data bus into the

MBR.

MAROout: This signal enables the tri-state buffers at the output of MAR.

Cout: This will enable writing of the contents of register C onto the processor’s

internal data bus.

LPC: This will enable the input to the PC for receiving a value that is currently on the

internal processor bus. Thus the PC will receive an incremented value.

At the final time step, T2, of the instruction fetch phase, the following control signals

are issued:

MBRout: To enable the tri-state buffers with the MBR.

LIR: To allow the IR read the value from the internal bus. Thus the instruction stored

in the MBR is read into the Instruction Register (IR).

Uni-bus SRC implementation

The uni-bus implementation of the SRC data path is given in the Fig.1. We can now
visualize how the control signals in mutually exclusive time steps will allow the
coordinated working of instruction fetch cycle.
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A 0 <3] [
R A
i Cretveral } 532 limes
PHpose
r:asl,ms
(3-bats each)
K31
3l 0
IR j———
To external "’
CF1T bus Internal processor bus
Fig.1

Similar control signals will allow the instruction execution as well. We have already
mentioned the external CPU buses that read from the memory and write back to it. In the
given figure, we had not shown these external (address and data buses) in detail. Fig.2
will help us understand this external interface.

32-bit
address bus

32-bit data bus

M¥Vrite

Contral bus
signals

Fig.2

External CPU bus activity

Let us take up a sample problem to further enhance our understanding of the external
CPU interface. As mentioned earlier, this interface consists of the data bus/ address bus,
and control signals for enabling memory read and write.

Example problem:

(a) What will be the logic levels on the external SRC buses when each of the given SRC
instruction is executing on the processor? Complete Table: 2. all numbers are in the
decimal number system, unless noted otherwise.

(b) Specify memory addressing modes for each of the SRC instructions given in Table: 2.
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SRC Instruction

R TL equivalent

Addrss Bus
431..00

Data Bus
£31..00

MR ead

Dol it

Id r7, 124r5)

Idr232

la 3,32

ldr ri2,-4

lar r30

st r20irE)

strr3, 8

strd32

Assumptions:
All memory content is aligned properly.
= In other words, all the memory accesses start at addresses divisible by 4.
= Value in the PC = 000DC348h

Memory map with assumed values

Memory Memory
Address Content
00000020k Dih
00000021 h Déh
00000022k 45k
00000023k 2Fh
Q00D 300k 44k
0OODC301h 23h
000DC302h E3h
DO0DZ3030 D5k

Register map with assumed values

Last Modified: 01-Nov-06
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000D C3 40k S1lh
000DC34lh CaAh
000DC343h Dih
000DnC= 44k Eih
ODABIZ40h 07h
00AB1241h 25h
00AB1242h ESh
00AELZ43h 3Dk

Fig.3
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Register Name Content
E[0] N01ZA54ER
E[1] 10234CEER
E[2] D296492Fh
E[3] 0014000k
E[4] BE7432301h
R[5] D0AR1224h
E[6] 000000200
E]7] 01432D7Fh
E[%] 00B34821h
E[9] O0CDATASh
E[10] D0Z1A0FOR
E[11] 01242460
E[12] DOOFAB1Th

Fig.4

Solution Part (a):

SRC Instruction RTL equivalent Address DataBus |M | M
Bus* <31 0> R |W
<31.0>

Id r7, 12(rS) RI7] « M[12+R|5]] | 00AB1240n | O785E530N | 1| O

Idrz, 32 RI2] — M[32] 00000020n | D296492Fh |1 | O

larg, 32 9] - 32 LInknon Unknown [ 7| 2

ldrri2, 4 Ri12] « M[PC-4] |000DC344h| 4423E3D5h |1 | O

larr3, 0 R[3] — PC LInknown Unknown 77

strz, 0(re) MIRIE]] «— F{2] 00000020n | D296452Fh (D | 1

strr3, @ MIPC-B] « R[3] 000DC:340h0 | 001400C0H |0 | 1

strd, 32 M32] = R[4] 000000200 | B74323010 (D | 1

Table:3

(Note that the SRC uses the big-endian storage format).

Solution part (b):
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SRC Addressing
Instruction Mode
Id r7, 12(r5) Displacement
Idr2, 32 Direct
lar9, 32 Immediate
Idr r12, -4 FPC Relative
lar r3, 0 Register
str2, O(r6) Register Indirect
str r3. 8 PC Relative
strd. 32 Register Direct
Fig:5
Notes:
* Relative addressing is always PC relative in the SRC

**%  Displacement addressing mode is the same as Based or Indexed in the SRC. It is
also the same as Register Relative addressing mode

Memory address register circuitry

We have already talked about the functionality of the MAR. It provides a temporary
storage for the address of memory location to be accessed. We now take a detailed look
at how it is interconnected with other components. The MAR 1is connected directly to the
CPU internal bus, from which it is loaded (receives a value). The LMAR signal causes
the contents of the internal CPU bus to be loaded into the MAR. It writes onto the CPU
external address bus. The MARout signal causes the contents of the MAR to be placed on
the address bus. Thus, it provides the addresses for the memory and I/O devices over the
CPU’s address bus. A set of tri-state buffers is provided with these connections; the tri-
state buffers are controlled by the control signals, which in turn are issued when the
corresponding instruction is decoded. The whole circuitry is shown in Fig.6.

WRead
fraom CPLU's
data bus s 3. ctate buffers h
LaR - M.F\R'

L 3-state buffers [==—jp= 10 Intemal buz

i AR out

Fig:6

Memory buffer register circuitry

The Memory Buffer Register (MBR) holds the value read from the memory or I/O
device. It is possible to load the MBR from the internal CPU bus or from the external
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CPU data bus. The MBR also drives the internal CPU bus as well as the external CPU
data bus. Similar to the MAR register, tri-state buffers are provided at the connection
points of the MBR, as illustrated in the Fig.7.

MRead INTZMER

k4 h. 4

from CPLU's

dats bus w3 ctate buffers ¢ Jstate buffers fe—rom intermal bus

LMBR — WMER

tu:ll:laltdapruu: = 3-state buffers ¢ 3-state buffers M= 10 internal bus

a [

M ¥yrite MBERouUt
Fig:7

Register connections

The register file containing the General Purpose Registers is programmer visible.
Instructions may refer to any of these registers, as source operands in an operation or as
the destination registers. Appropriate circuitry is needed to enable the specified register
for read/ write. Intuitively, we can tell that we require connections of the register to the
CPU internal bus, and we need control signals that will enable specified registers to be
read/ write enabled as a corresponding instruction is decoded. Fig.8 illustrates the register
connections and the control signals generation in the uni-bus data path of the SRC. We
can see from this figure that the ra, rb and rc fields of the Instruction Register specify the
destination and source registers. The control signals RAE, RBE and RCE can be applied
to select any of the ra, rb or rc field respectively to apply its contents to the input of 5-to-
32 decoder. Through the decoder, we get the signal for the specific register to be
accessed. The BUS2R control signal is activated if it is desired to write into the register.
On the other hand, if the register contents are to be written to the bus, the control signal
R2BUS is activated.

Last Modified: 01-Nov-06 Page 179



Advanced Computer Architecture-CS501

IRIDP"-'lrathlrcl 'R

Control signials to register file

Rlout R0 \I— |
ro =" A
3 5-10-32 decoder Riout § LR1

=D iR — >

EE R
L L

7

—.'-11_|5 | LR
=k} _D_ %HTI

R2BUS | BUS2R
Fig.8

Alternate control circuitry for register selection

Fig.9 illustrates an alternate circuitry that implements the register connections with the
internal processor bus, the instruction register fields, and the control signals required to
coordinate the appropriate read/write for these registers. Note that this implementation is
somewhat similar to our earlier implementation with a few differences. It illustrates the
fact that the implementations we have presented are not necessarily the only solutions,
and that there may be other possibilities.
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In this alternate circuitry, there is a separate 5-to-32 decoder for each of the register fields
of the instruction register. The output of these decoders is allowed to be read out and
enables the decoded register, if the control signal (RAE, RBE or RCE) is active.
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Control signals Generation in SRC
We take a few example instructions to study the control signals that are required in the
instruction execution phase.

Control signals for the add instruction

The add instruction has the following syntax:

add ra, rb, rc

Table: 4 lists the control signals that are applied at each of the time steps. The first three
steps are of the instruction fetch phase, and we have already discussed the control signals
applied at this phase.

Step RTL Control Signals
TO — T2 | Instruction Fetch As before
T3 A «— R[rb]; RBE, R2BUS, LA
T4 C — A+R[rc]; RCE, R2BUS, ADD, LC
T5 R[ra] «— C; Cout. RAE, BUS2R
Table: 4

At time step T3, the control RBE is applied, which will enable the register tb to write its
contents onto the internal CPU bus, as it is decoded. The writing from the register onto
the bus is enabled by the control signal R2BUS. Control signal LA allows the bus
contents to be transferred to the register A (which will supply it to the ALSU). At time
step T4, the control signals applied are RCE, R2BUS, ADD, LC, to respectively enable
the register rc, enable the register to write onto the internal CPU bus (which will supply
the second operand to the ALSU from the bus), select the add function of the ALSU
(which will add the values) and enable register C (so the result of the addition operation
is stored in the register C). Similarly in TS5, signals Cout, RAE and BUS2R are activated.

Sign extension
When we copy constant values to registers that are 32 bits wide, we need to sign extend
the values first. These values are in the 2’s complement form, and to sign-extend these

values, we need to copy the most significant bit to all the additional bits in the register.
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We consider the field c2, which is a 17 bit constant. Sign extension of c2 requires that we
copy c2<16> to all the left-most bits of the destination register, in addition to copying the
original constant values to the register. This means that bus<31...17> should be the same
as ¢2<16>. A 15 line tri-state buffer can perform this sign extension. So we apply c2<16>
to all the inputs of this tri-state buffer as illustrated in the Fig.10.

3 s e 16 e+ oo 0
||=| | c2 | tt
17
? Tri-state dus=1b..0»
1 huffers 17 - -
’ N 7
I iy /:(_,z
Enable
o | Bus=31.17=
&
14 r
Tri-ctate 15 p f;f
buffers Ll |
A
Sign extension of the 22 bit constant¢1|  Enable
will be done In the same way Tt
cZout
Fig:10

Structural RTL for the addi instruction

We now return to our study of the control signals required in the instruction execute
phase. We have already looked at the add instruction and the corresponding signals. Now
we take a look at the addi (add immediate) instruction, which has the following syntax:
addi ra, rb, c2

Table: 5 lists the RTL and the control signals for the addi instruction:

Step RTL for addi Control signals
TO-T2 Instruction fetch As before
T3 A~ R[rb], RBE, R2BUS, LA
T4 e A+ c2(sign extend), cZout, ADD, L
TS Rlral « C: Cout RAE, BUSZR

Table:5

The table shows that the control signals for the addi instruction are the same as the add
instruction, except in the time step T4. At this time step, the control signals that are
applied are c2out, ADD and LC, to respectively do the following:

Enable the read of the constant ¢2 (which is sign extended) onto the internal processor
bus. Add the values using the ALSU and finally assign the result to register C by
enabling write for this register.

To place a 0 on the bus
When the field rb is zero, for instance, in the load and store instructions, we need to
place a zero on the bus. The given circuit in Fig.11 can be used to do this.
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Note that, by default, the value of register RO is 0 in some cases. So, when the selected
register turns out to be 0 (as rb field is 0), the line connecting the output of the register RO
is not enabled, and instead a hardwired 0 is output from the tri-state buffer onto the CPU
internal bus. An alternate circuitry for achieving the same is shown in the Fig.12.
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Control signals for the Id instruction

Now we take a look at the control signals for the load instruction. The syntax of the
instruction is:

Id ra, c2 (rb)

Table: 6 outlines the control signals as well as the RTL for the load instruction in the
SRC.

The first three steps are of the instruction fetch phase. Next, the control signals issued

arc:
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Step RTL tor Id Control Signals

TO-T2 |Instruction fetch As before

T3 |A « ((b=0):0, (b £0): Rirb]; |RBE, RZBUS, LA

T4 |C« A+ (16alR<16= @IR=15_0»), |CZ2out ADD, LC

T5 WMAR « C; Cout, LMAR

TG WMER « M[MAR]; MARout, MRead, LMBR

T7 Rlral «— MBR; WEBRout, RAE, BUS2R
Tahle:6

RBE is issued to allow the register b value to be read

R2BUS to allow the bus to read from the selected register

LA to allow write onto the register A. This will allow the CPU bus contents to be written
to the register A.

At step T4 the control signals are:

c2out to allow the sign extended value of field c2 to be written to the internal CPU bus
ADD to instruct the ALSU to perform the add function.

LC to let the result of the ALSU function be stored in register C by enabling write of
register C.

Control signals issued at step T5:

Cout is to read the register C, this copies the value in C to the internal CPU bus.

LMAR to enable write of the Memory Address Register (which will copy the value
present on the bus to MAR). This is the effective address of memory location that is to be
accessed to read (load) the memory word.

During the time step T6:

MARout to read onto the external CPU bus (the address bus, to be more specific), the
value stored in the MAR. This value is an index to memory location that is to be
accessed.

MRead to enable memory read at the specified location, this loads the memory word at
the specified location onto the CPU external data bus.

LMBR is the control signal to enable write of the MBR (Memory Buffer Register). It
will obtain its value from the CPU external data bus.

Finally, the control signals issued at the time step T7 are:

MBRout is the control signal to allow the contents of the MBR to be read out onto the
CPU internal bus.

RAE is the control signal for the destination register field ra. It will let the actual index of
the ra register be encoded, and

BUS2R will let the appropriate destination register be written to with the value on the
CPU internal bus.
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Lecture No. 16

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.2.2,4.6.1
Summary

e Control Signals Generation in SRC (continued...)
e The Control Unit
e 2-Bus Implementation of the SRC Data Path

This section of lecture 16 is a continuation of the previous lecture.

Control signals for the store instruction

st ra, c2(rb)
The store time step operations are similar to the load instruction, with the exception of
steps T6 and T7. However, one can easily interpret these now. These are outlined in the
given table.

Step [(RTL for st Control Signals
TO-T2 [Instruction fetch AS Derore
T3 |A « ((m=0:.0 (M0 RBE, R2BUS, BAout, LA
Rlrb])
T4 |C+= A +(160lIR<16> C2out, ADD LT
SIR<15 0)
T8 |MAR &« Cout, LMAR
Té |MBR « R |ra], RAE, R2BUS, INT2MBR, LMBR
T7  |M[MAR] — MBR; MARoUt, Mwrite

Control signals for the branch and branch link instructions
Branch instructions can be either be simple branches or link-and-then-branch type. The
syntax for the branch instructions is

brzr rb, rc

This is the branch and zero instruction we looked at earlier. The control signals for this
instruction are:

As usual, the first three steps are for the instruction fetch phase. Next, the following
control signals are issued:
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Step RTL for br Control signals
TO-T2 |Instruction Fetch As before
T3 CON «— cond(R[rc]), | LCON, RCE, R2BUS
T4 CON: PC « R[rb] REE, R2BUS, LPC {if CON=1)

LCON to enable the CON circuitry to operate, and instruct it to check for the appropriate
condition (whether it is branch if zero, or branch if not equal to zero, etc.)

RCE to allow the register rc value to be read.

R2BUS allows the bus to read from the selected register.

At step T4:

RBE to allow the register b value to be read. rb value is the branch target address.
R2BUS allows the bus to read from the selected register.

LPC (if CON=1): this control signal is issued conditionally, i.e. only if CON is 1, to
enable the write for the program counter. CON is set to 1 only if the specified condition is
met. In this way, if the condition is met, the program counter is set to the branch address.
Branch and link instructions

The branch and link instruction is similar to the branch instruction, with an additional
step, T4. Step T4 of the simple conditional branch instruction becomes the step T5 in this
case.

Step |RTL Control signals
TO-T2 |Instruction Fetch As befome

T3 |CON« cond(Rfrc]), |LCON, RCE, R2BUS

T4 |COM R[ra]« PC. |RAE, BUSZR, PCout (if
CON=1)

TS CON: PC « R[rh], RBE, R2BUS, LPC (if CON=1)

The syntax of the instruction ‘branch and link if zero’ is

brlzr ra, rb, rc
Table that lists the RTL and control signals for the store instruction of the SRC is given:
The circuitry that enables the condition checking for the conditional branches in the SRC
is illustrated in the following figure:
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Control signals for the shift right instruction

The given table illustrates the RTL and the control signals for the shift right ‘shr’
instruction. This is implemented by applying the five bits of n (nb4, nb3, nb2, nbl, nb0)
to the select inputs of the barrel shifter and activating the control signal SHR as explained

in an earlier lecture.

Step |RTL for shr Control signals
T0-T2 | Instruction Fetch As before
T3 n<4..0><— |R<4..0>; LN
T4 (N=0):(n<4..0> «— LN(N=0), RCE, R2BUS

R[rc]<4..0>);
T5 C «— (Na0) ©R[rb]<31.N>; |LC, SHR(N)

16 Rlra] — C; Cout, RAE, BUS2ZR
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Generating the Test Condition N=0

3 4 0
=] e count

The Control Unit

The control unit is responsible for generating control signals as well as the timing signals.
Hence the control unit is responsible for the synchronization of internal as well as
external events. By means of the control signals, the control unit instructs the data path
what to do in every clock cycle during the execution of instructions.

Control Unit Design
Since the control unit performs quite complex tasks, its design must be done very
carefully. Most errors in processor design are in the Control Unit design phase. There are
primarily two approaches to design a control unit.

1. Hardwired approach

2. Micro programming

Hardwired approach is relatively faster, however, the final circuit is quite complex. The
micro-programmed implementation is usually slow, but it is much more flexible.

“Finite-state machine” concepts are usually used to represent the CU. Every state
corresponds to one “clock cycle” i.e., 1 state per clock. In other words each timing step
could be considered as just 1 state and therefore from one timing step to other timing
step, the state would change. Now, if we consider the control unit as a black box, then
there would be four sets of inputs to the control unit. These are as follows:
1. The output of timing step generator (There are 8 disjoint timing steps in our
example TO-T7).
2. Op-code (op-code is first given to the decoder and the output of the decoder is
given to the control unit).
3. Data path generated signals, like the “CON” control signal,
4. Signals from external events, like “Interrupt” generated by the Interrupt generator.

The complexity of the control is a function of the
e Number of states
e Number of inputs to the CU
e Number of the outputs generated by the CU
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Hardwired Implementation of the Control Unit

The accompanying block diagram shows the inputs to the control unit. The output control
signals generated from control unit to the various parts of the processor are also shown in
the figure.

w e
3 = 'r-— signals
E ﬂ A from the
data path
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‘_E?f:“ { -~ Control «— gtz
o Unit R
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timing step generator

Example Control Unit for the FALCON-A

The following figure shows how the operation code (op-code) field of the Instruction
Register is decoded to generate a set of signals for the Control unit.

10..8
Op-code| ra T Instruction Register

O for add

0

1 0P for addi
2 0OP2 forsub

3 0P3 forsubi
4 OP4 for mul
|5 OP5 for div

£ to 32
decoder

L
L
L

Fnable 31 OF31 for halt
|

l Logic 1"

This is an example for the FALCON-A processor where the instruction is 16-bit long.
Similar concepts will apply to the SRC, in which case the instruction word is 32 bits and
IR <31...27> contains the op-code. Similar concepts will apply to the SRC, in which case
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the instruction word is 32 bits and IR<31..27> contains the opcode. The most significant
5 bits represent the op-code. These 5-bits from the IR are fed to a 5-to-32 decoder. These
32 outputs are numbered from 0-to-31 and named as op0, opl up to op31. Only one of
these 32 outputs will be active at a given time .The active output will correspond to
instruction executing on the processor.

To design a control unit, the next step is to write the Boolean Equations. For this we need
to browse through the structural descriptions to see which particular control signals occur
in different timing steps. So, for each instruction we have one such table defining
structural RTL and the control signals generated at each timing step. After browsing we
need to check that which control signal is activated under which condition. Finally we
need to write the expression in the form of a logical expression as the logical combination
of “AND” and “OR” of different control signals. The given table shows Boolean
Equations for some example control signals.

Step RTL Control Signals
T0 |MAR<— PC; PCout, LMAR, C=B;
T1 |MBR<— M[MAR], PCout, INC4, LPC, MRead,
PC«—PC + 4: MARout, LMBR;
T2 |IR+— MBR; MBRout, C=B, LIR;
T3 |Instruction Execution

For example, PCout would be active in every TO timing step. Then in timing interval T3
the output of the PC would be activated if the op-code is 20 or 22 which represent jump
and sub-routine call. In step T4 if the op-code is 16, 17, 18 or 19, again we need PCout
activated and these 4 instructions correspond to the conditional jumps. We can say that in
other words in step T1, PCout is always activated “OR” in T3 it is activated if the
instruction is either jump or sub-routine call “OR” in T4 if there is one of the conditional
jumps. We can write an equation for it as

PCout=T0+T3.(OP20+0P22)+T4.(0OP16+OP17+OP18+0P19)
In the form of logic circuit the implementation is shown in the figure. We can see that we
“OR” the op-ode 20 and 22 and “AND” it with T3, then “OR” all the op16 up to op19

and “AND” it with T4, then TO and the “AND” outputs of T3 and T4 are “OR” together
to obtain the PCout.
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In the same way the logic circuit for LPC control signal is as shown and the equation
would be :

LPC=T1+T5.0P20+T6.CON.(OP16+OP17+OP18+0OP19)

T1

T8 N
oP20 | -

TG

oP16 —{
OP17 —
oPi18
OP19

We can formulate Boolean equations and draw logic circuits for other control signals in
the same way.

Effect of using “real” Gates

We have assumed so far that the gates are ideal and that there is no propagation delay. In
designing the control unit, the propagation delays for the gates can not be neglected. In
particular, if different gates are cascaded, the output of one gate forms the input of other.
The propagation delays would add up. This, in turn would place an upper limit on the
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frequency of the clock which controls the generation of the timing intervals TO, T1... T7.
So, we can not arbitrarily increase the frequency of this clock. As an example consider
the transfer of the contents of a register R1 to a register R2. The minimum time required
to perform this transfer is given by

tmin = tg + tbp + tcomb + t1

The details are explained in the text with reference to Fig 4.10. Thus, the maximum clock
frequency based on this transfer will be 1/t Students are encouraged to study example
4.1 of the text.

2-Bus Implementation of the SRC Data Path

In the previous sections, we studied the uni-bus implementation of the data path in the
SRC. Now we present a 2-bus implementation of the data path in the SRC. We observe
from this figure that there is a bus provided for data that is to be written to a component.
This bus is named the ‘in’ bus. Another bus is provided for reading out the values from
these components. It is called the ‘out’ bus.

{-"i.“.t“]g”} 32 R_u (‘D“th“’“)
_ ] &
§ 3 ___ General __| s2¥
Purpose
Regkiers

Both
buses are
“Intamal
processor
buses”

. E

Structural RTL for the ‘sub’ instruction using the 2-bus data path implementation
Next, we look at the structural RTL as well as the control signals that are issued in
sequence for instruction execution in a 2-bus implementation of the data path. The given
table illustrates the Register Transfer Language representation of the operations for
carrying out instruction fetch, and execution for the sub instruction.
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Step RTL
TO MAR <« PC:
“'GFETL:E;'% T1 MBR « M[MAR], PC « PC + 4;
L = 1

T2 IR «— MBR;
T3 A« R[rb],
Instruction
e T4 R[ra] « A- R[rc),

Y

The first three steps belong to the instruction fetch phase; the instruction to be executed is
fetched into the Instruction Register and the PC value is incremented to point to the next-
in-line instruction. At step T3, the register R[rb] value is written to register A. At the time
step T4, the subtracted result from the ALSU is assigned to the destination register R[ra].
Notice that we did not need to store the result in a temporary register due to the
availability of two buses in place of one. At the end of this sequence, the timing step
generator is initialized to TO.

Control signals for the fetch operation

The control signals for the instruction fetch phase are shown in the table. A brief
explanation is given below:

Step RTL Control Signals
T0 |MAR<— PC; PCout, LMAR, C=B;
T1 |MBR<— M[MAR], PCout, INC4, LPC, MRead,
PC«—PC + 4: MARout, LMBR;
T2 |IR~— MBR; MBRout, C=B, LIR;
T3 | Instruction Execution

At time step TO, the following control signals are issued:

e PCout: This will enable read of the Program Counter, and so its value will be
transferred onto the ‘out’ bus

e LMAR: To enable the load for MAR

e (C=B: This instruction is used to copy the value on the ‘out’ bus to the ‘in’ bus, so
it can be loaded into the Memory Address Register. We can observe in the data-
path implementation figure given earlier that, at any time, the value on the ‘out’
bus makes up the operand B for the ALSU. The result C of ALSU is connected to
the “in” bus, and therefore, the contents transfer from one bus to the other can
take place.
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At time step T1:

PCout: Again, this will enable read of the Program Counter, and so its value will
be transferred onto the CPU internal ‘out’ bus

INC4: To instruct the ALSU to perform the increment-by-four operation.

LPC: This control signal will enable write of the Program Counter, thus the new,
incremented value can be written into the PC if it is made available on the “in”
bus. Note that the ALSU is assumed to include an INC4 function.

MRead: To enable memory word read.

MARout: To supply the address of memory word to be accessed by allowing the
contents of the MAR (memory address register) to be written onto the CPU
external (address) bus.

LMBR: The memory word is stored in the register MBR (memory buffer
register) by applying this control signal to enable the write of the MBR.

At time step T2:

MBRout: The contents of the Memory Buffer Register are read out onto the
‘out’ bus, by means of applying this signal, as it enables the read for the MBR.
C=B: Once again, this signal is used to copy the value from the ‘out’ bus to the
‘in’ bus, so it can be loaded into the Memory Address Register.

LIR: This instruction will enable the write of the Instruction Register. Hence the
instruction that is on the ‘in’ bus is loaded into this register.

At time step T3, the execution may begin, and the control signals issued at this stage
depend on the actual instruction encountered. The control signals issued for the
instruction fetch phase are the same for all the instructions.

Note that, we assume the memory to be fast enough to respond during a given time slot.
If that is not true, wait states have to be inserted. Also keep in mind that the control
signals during each time slot are activated simultaneously, while those for successive
time slots are activated in sequence. If a particular control signal is not shown, its value is

Z€ro.
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A 3-bus Implementation for the SRC

Cbus i T 0 Ry Abus Bhus
Let us now look at a 3- T T e | 24 324
. . I TIe; 1
bus implementation of the Purpose
data-path for the SRC as — Registers —
shown in the figure. Two
buses, ‘A’ and ‘B’ bus for B3l
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all the special purpose as =

MER.
well as the general
purpose registers have The ! V
register A
two read ports and one | =~ \/ B
write port. have 2 ALU
read ports C To Exiernal
and one | CPU Bus

write port

Structural RTL for the Subtract Instruction using the 3-bus Data Path
Implementation

We now consider how instructions are fetched and executed in 3-bus architecture. For
this purpose, the same ‘sub’ instruction example is followed.

The syntax of the subtract instructions is

subra, rb, rc
The structural RTL for implementing this instruction is given in the table. We observe
that in this table, only two time steps are required for the instruction fetch phase. At
time step TO, the Memory Address Register receives the value of the Program Counter.
This is done in the initial phase of the time step T0. Then, the Memory Buffer Register
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receives the memory word indexed by the MAR, and the PC value is incremented. At
time step T1, the instruction register is assigned the instruction word that was loaded
into the MBR in the previous time step. This concludes the instruction fetch and now
the instruction execution can commence.

Step RTL
T0 |MAR—PC; MBR — M[MAR], PC — PC +4;
Instruction
Feteh T |IR «— MBR:

Execute

Iﬂstru':tinrul T2 |RIra] — RIrb] - Rrc],

In the next time step, T2, the instruction is executed by subtracting the values of
register rc from rb, and assigning the result to the register ra.
At the end of each sequence, the timing step generator is initialized to TO

Control Signals for the Fetch Operation
The given table lists the control signals in the instruction fetch phase. The control
signals for the execute phase can be written in a similar fashion.

Step |RTL Control Signals
TO MAR«—PC; MEBR «— M[MAR], PCout, INC4, LPC, LbmAR , MRead,
PC «— PC +4;
T IR+—MBR, MBRout, C=B, LIR,
T2 [Instruction_ Execution

The Machine Reset

In this section, we will discuss the following
e Reset operation

e Behavioral RTL for SRC reset

e Structural RTL for SRC reset

The reset operation

Reset operation is required to change the processor’s state to a known, defined value.
The two essential features of a reset instruction are clearing the control step counter and
reloading the PC to a predefined value. The control step counter is set to zero so that
operation is restarted from the instruction fetch phase of the next instruction. The PC is
reloaded with a predefined value usually to execute a specific recovery or initializing
program.

In most implementations the reset instruction also clears the interrupt enable flags so as
to disable interrupts during the initialization operation. If a condition code register is
present, the reset instruction usually clears it, so as to clear any effects of previously
executed instructions. The external flags and processor state registers are usually
cleared too.
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The reset instruction is mainly used for debugging purposes, as most processors halt
operations immediately or within a few cycles of receiving the reset instruction. The
processors state may then be examined in its halted state.

Some processors have two types of reset operations. Soft reset implies initializing PC
and interrupt flags. Hard reset initializes other processor state registers in addition to
PC and interrupts enable flags. The software reset instruction asserts the external reset
pin of the processor.

Reset operation in SRC

Hard Reset

The SRC should perform a hard reset upon receiving a start (Strt) signal. This initializes
the PC and the general registers.

Soft Reset

The SRC should perform a soft reset upon receiving a reset (rst) signal. The soft reset
results in initialization of PC only.

The reset signal in SRC is assumed to be external and asynchronous.

PC Initialization

There are basically two approaches to initialize a PC.

1. Direct Approach

The PC is loaded with the address of the startup routine upon resetting.

2. Indirect Approach

The PC is initialized with the address where the address of the startup routine is
located. The reset instruction loads the PC with the address of a jump instruction. The
jump instruction in turn contains the address of the required routine.

An example of a reset operation is found in the 8086 processor. Upon receiving the
reset instruction the 8086 initializes its PC with the address FFFFOH. This memory
location contains a jump instruction to the bootstrap loader program. This program
provides the system initialization

Behavioral RTL for SRC Reset
The original behavioral RTL for SRC without any reset operation is:
Instruction_Fetch :=(! Run&Strt: (Run < 1; instruction_Fetch,

Run : (IR <~ M [PC]; PC <« PC+4;instruction_execution)),
instruction_execution:= (Id (:=op=1...) ;
This recursive definition implies that each instruction at the address supplied by PC is
executed. The modified RTL after adding the reset capability is
Instruction_Fetch:=(! Run&Strt :( Run « 1,

PC,R [0..31] < 0),

Run&!Rst :( IR <— M [PC],

PC < PC+4, instruction_execution);

Run&Rst:( Rst «— 0, PC <« 0);

instruction_Fetch),
The modified definition includes testing the value of the “rst” signal after execution of
each instruction. The processor may not be halted in the midst of an instruction in the
RTL definition
To actually implement these changes in the SRC, the following modification are
required to add the reset operation to the structural RTL for SRC:
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e A check for the reset signal on each clock cycle
e A control signal for clearing the PC
e A control signal to load zero to control step counter

Example: The sub instruction with RESET processing
To actually reset the processor in the midst of an instruction, the “Rst” condition must
be tested after each clock cycle.

Step RTN Control Sequence

TO IRst: (MA «— PC C & PC+4), | IRst:(PCup LMAR, INC4, LC
Rst:(Rst «0.PC 0T MRead), Rst:(CIrPC, Gotod);
0)

T1 IRst:(MD « M[MAJPC « |IRst:(C,q LPC. Wait),
C Rst :(CIfPC, Gotol);
Rst:(Rst « 0PC « 0T «
0)

T2 IRst:(IR « MD), IRst:(MER, . LIR),
Rst(Rst <0 PC < 0T« |Rst: (CIiPC, Gotol);
0)

T3 IRst: (A « R[rb]), IRst:(RBE, R2ZBUS, LA),
Rst:(Rst « 0. PC «0: T« |Rst: (CIiPC, Gotol),
0

T4 IRst:(C « A - R[rc]), IRst:(RCE, R2ZBUS, SUB, LC),
Rst:(Rst «0: PC «0:T &« |Rst:(CIrPC, Gotol);
0)

TS IRst:(R[ra] « C), IRst:(LC: RAE, BUS2R: End),
Rst:(Rst «0:PC «0: T &« |Rst: (CIfPC, Gotad);
0)

Let us examine the contents of each phase in the given table. In step TO, if the Rst
signal is not asserted, the address of the new instruction is delivered to memory and the
value of PC is incremented by 4 and stored in another register. If the “Rst” signal is
asserted, the “Rst” signal is immediately cleared, the PC is cleared to zero and T, the
step counter is also set to zero. This behavior (in case of ‘Rst” assertion) is the same for
all steps. In step T1, if the rst signal is not asserted, the value stored at the delivered
memory word is stored in the memory data register and the PC is set to its incremented
value.

In step T2, the stored memory data is transferred to the instruction register.

In step T3, the register operand values are read.

In step T4, the mathematical operation is executed.

In step TS5, the calculated value is written back to register file.

During all these steps if the Rst signal is asserted, the value of PC is set to 0 and the
value of the step counter is also set to zero.
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Machine Exceptions

* Anything that interrupts the normal flow of execution of instructions in the
processor is called an exception.

» Exceptions may be generated by an external or internal event such as a mouse
click or an attempt to divide by zero etc.

» External exceptions or interrupts are generally asynchronous (do not depend on
the system clock) while internal exceptions are synchronous (paced by internal
clock)

The exception process allows instruction flow to be modified, in response to internal or
external events or anomalies. The normal sequence of execution is interrupted when an
exception is thrown.

Exception Processing

A generalized exception handler should include the following mechanisms:

1. Logic to resolve priority conflicts. In case of nested exceptions or an exception
occurring while another is being handled the processor must be able to decide
which exception bears the higher priority so as to handle it first. For example, an
exception raised by a timer interrupt might have a higher priority than keyboard
input.

2. Identification of interrupting device. The processor must be able to identify the

interrupting device that it can to load the appropriate exception handler routine.
There are two basic approaches for managing this identification: exception
vectors and “information” register. The exception vector contains the address of
the exception handling routine. The interrupting process fills the exception vector
as soon as the interruption is acknowledged. The disadvantage of this approach is
that a lot of space may be taken up by vectors and exception handler codes.
In the information register, only one general purpose exception handler is used.
The PC is saved and the address of the general purpose register is loaded into the
PC. The interrupting process must fill the information register with information to
allow identification of the cause and type of exception.

3. Saving the processor state. As stated earlier the processor state must be saved
before jumping to the exception handler routine. The state includes the current
value of the PC, general purpose registers, condition vector and external flags.

4. Exception disabling during critical operation. The processor must disable
interrupts while it is switching context from the interrupted process to the
interrupting process, so that another exception might not disrupt the transition.

Examples of Exceptions

* Reset Exception
Reset operation is treated as an exception by some machines e.g. SPARC and
MC68000.

* Machine Check
This is an external exception caused by memory failure

» Data Access Exception
This exception is generated by memory management unit to protect against illegal
accesses.

* Instruction Access Exception
Similar to data access exception
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* Alignment Exception
Generated to block misaligned data access

Types of Exception

* Program Exceptions
These are exceptions raised during the process of decoding and executing the
instruction. Examples are illegal instruction, raised in response to executing an
instruction which does not belong to the instruction set. Another example would
be the privileged instruction exception.

* Hardware Exceptions
There are various kinds of hardware exceptions. An example would be of a timer
which raises an exception when it has counted down to zero.

* Trace and debugging Exceptions
Variable trace and debugging is a tricky task. An easy approach to make it
possible is through the use of traps. The exception handler which would be called
after each instruction execution allows examination of the program variables.

* Nonmaskable Exceptions
These are high priority exceptions reserved for events with catastrophic
consequences such as power loss. These exceptions cannot be suppressed by the
processor under any condition. In case of a power loss the processor might try to
save the system state to the hard drive, or alert an alternate power supply.

* Interrupts (External Exceptions)
Exception handlers may be written for external interrupts, thus allowing programs
to respond to external events such as keyboard or mouse events.
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Advanced Computer Architecture

Lecture No. 18

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 4
Computer Systems Design and Architecture 4.8
Summary

SRC Exception Processing Mechanism
Introduction to Pipelining
Complications Related to Pipelining
Pipeline Design Requirements

Correction: Please note that the phrase “instruction fetch” should be used where the
speaker has used “instruction interpretation”.

SRC Exception Processing Mechanism

Interrupt Request Interrupt Disable
Acknowledge —
ireq: g Interrupt
iack: Flag IE:
Load PC with L
Exception Vector I . 'f Save PC
Ivect<31..0> :;;"“0: T inIPC<31...0>

The following tables on the next few pages summarize the changes needed in the SRC
description for including exceptions:

Behavioral RTL for Exception Processing
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Instruction_Fetch:=

('Run&Strt: Run « 1, Start

Run & !(ireq&IE):(IR «~M[PC], Normal Fetch

PC <~ PC + 4;

Instruction_Execution),

Run&(ireq&IE): (IPC « PC<31..0>, Interrupt, PC copied

II is loaded with the info.

I1<15..0> « Isrc_info<15..0>, X
- PC loaded with new address

IE < 0: PC « Ivect<31..0>,
iack < 1; iack < 0),
Instruction_Fetch);

Additional Instructions to Support Interrupts

Mnemonic Behavioral RTL Meaning

svi (op=16) R[ra]<15..0> « II<15..0>, | Save Il and IPC
R[rb] <« IPC<31..0>;

ri (op=17) [1<15..0> < R[ra]<15..0>, | Restore II and IPC
IPC<31..0> «— R[rb];

een (op=10) IE « 1; Exception enable

edi (op=11) IE « 0; Exception disable

rfi (op=30) PC « IPC, IE « 1; Return from interrupt

Structural RTL for the Fetch Phase including Exception Processing

Step Structural RTL for the 1-bus SRC
TO l(ireq&IE): (MA «— PC, C <~ PC + 4);
(ireq&IE): (IPC «— PC,I1« Isrc info,
IE < 0,PC « (220 0)O(Isrc_vect<7..0>)© 00, iack <« 1;
iack <— 0, End) ;

T1 MD < M[MA], PC « C;
T2 IR < MD;
T3 Instruction Execution,;

Combining the RTL for Reset and Exception

Last Modified: 01-Nov-06 Page 202



Advanced Computer Architecture-CS501

Instruction_Fetch:= Events
(Run&!Rst&!(ireq&IE):(IR <~ M[PC], PC «— PC+4; Normal
Instruction_Execution), Fetch
Run&Rst: (Rst <0, IE < 0, PC <« 0; Instruction Fetch), Soft Reset

'Run&Strt: (Run <1, PC < 0, R[0..31] < 0; Instruction_Fetch), Hard Reset

Run&!Rst&(ireq&IE): (IPC «— PC<31..0>, Interrupt
[1<15..0> «Isrc_info<15..0>, IE «— 0, PC « Ivect<31..0>,
iack < 1; iack < 0; Instruction Fetch) );

Introduction to Pipelining

Pipelining is a technique of overlapping multiple instructions in time. A pipelined
processor issues a new instruction before the previous instruction completes. This results
in a larger number of operations performed per unit of time. This approach also results in
a more efficient usage of all the functional units present in the processor, hence leading to
a higher overall throughput. As an example, many shorter integer instructions may be
executed along with a longer floating point multiply instruction, thus employing the
floating point unit simultaneously with the integer unit.

Executing machine instructions with and without pipelining
We start by assuming that a given processor can be split in to five different stages as
shown in the diagram below,

and as explained later in this 4N
: h : Fetch Fetch ALLL Mermaory Register
section. Eac Stage receives Inst. Operand Qperation T Access T Wyrite

its input from the previous
stage and provides its result
to the next stage. It can be
easily seen from the diagram

add rd r2, r3

Only one
functional

- Without Pipelining
unit busy

N

that in case of a non- aE 0 N i 4
. . . . Fetch Fetch ALY Mermory Register
plpehﬂed machine there is a In=t. QOperand Opetation ACcEsSS Wirite

single instruction add r4, r2,
r3 being processed at a given
time, while in a pipelined
machine, five different
instructions are being processed simultaneously. An implied assumption in this case is
that at the end of each stage, we have some sort of a storage place (like temporary
registers) to hold the results of the present stage till they are used by the next stage.

e, & str2 h add rd, r2,r3 sub B 7, ra shir r2, 4
All
functional

unhits busy

With Pipelining

Description of the Pipeline Stages
In the following paragraphs, we discuss the pipeline stages mentioned in the previous
example.
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1. Instruction fetch
As the name implies, the instruction is fetched from the Fetoh
instruction memory in this stage. The fetched instruction bits lrt, & | st
are loaded into a temporary pipeline register.

I

2. Instruction decode/operand fetch o1z, p rEich
In this stage the operands for the instruction are fetched from g T
the register file. If the instruction is add rl, r2, r3 the

registers r2 and r3 will be read into the temporary pipeline

registers. add v, 12, 13

I.

AL
Operation

3. ALU® operation i

In this stage, the fetched operand values are fed into the ALU e
along with the function which is required such as addition, BB TS ness
subtraction, etc. The result is stored into temporary pipeline
registers. In case of a memory access such as a load or a store

instruction, the ALU calculates the effective memory address Register
. . sherl v2,4 Bhnnse
in this stage.

{

4. Memory access

For a load instruction, a memory read operation takes place. For a store instruction, a
memory write operation is performed. If there is no memory access involved in the
instruction, this stage is simply bypassed.

5. Register write
The result is stored in the destination register in this stage.

Latency & throughput

Latency is defined as the time required to process a single instruction, while throughput is
defined as the number of instructions processed per second. Pipelining cannot lower the
latency of a single instruction; however, it does increase the throughput. With respect to
the example discussed earlier, in a non-pipelined machine there would be one instruction
processed after an average of 5 cycles, while in a pipelined machine, instructions are
completed after each and every cycle (in the steady-state, of course!!!). Hence, the overall
time required to execute the program is reduced.

Remember that the performance gain in a pipeline is limited by the slowest stage in the
pipeline.

Complications Related to Pipelining

Certain complications may arise from pipelining a processor. They are explained below:
Data dependence

This refers to the situation when an instruction in one stage of the pipeline uses the results
of an instruction in the previous stage. As an example let us consider the following two
instructions

> The ALU is also called the ALSU in some cases, in particular, where its “shifting” capabilities need to be
highlighted. ALSU stands for Arithmetic Logic Shift Unit.
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S1: add r3,r2, r1
S2: sub r4, r5, r3

There is a data-dependence among the above two instructions. The register R3 is being
written to in the instruction S1, while it is being read from in the instruction S2. If the
instruction S2 is executed before instruction S1 is completed, it would result in an
incorrect value of R3 being used.

Resolving the dependency
There are two methods to remedy this situation:

1. Pipeline stalls

These are inserted into the pipeline to block instructions from entering the pipeline until
some instructions in the later part of the pipeline have completed execution. Hence our
modified code would become

S1:add r3,r2,r1
stall®
stall
stall
S2: sub r4, r5, r3

2. Data forwarding

When using data forwarding, special hardware is added to the processor, which allows
the results of a particular pipeline stage to be transferred directly to another stage in the
pipeline where they are required. Data may be forwarded directly from the execute stage
of one instruction to the decode stage of the next instruction. Considering the above
example, S1 will be in the execute stage when S2 will be decoded. Using a comparator
we can determine that the destination operand of S1 and source operand of S2 are the
same. So, the result of S1 may be directly forwarded to the decode stage.

Other complications include the “branch delay” and the “load delay”. These are
explained below:

Branch delay

Branches can cause problems for pipelined processors. It is difficult to predict whether a
branch will be taken or not before the branch condition is tested. Hence if we treat a
branch instruction like any normal instruction, the instructions following the branch will
be loaded in the stages following the stage which carries the branch instruction. If the
branch is taken, then those instructions would need to be removed from the pipeline and
their effects if any, will have to be undone. An alternate method is to introduce stalls, or
nop instructions, after the branch instruction.

Load delay

® A pipeline stall can be achieved by using the nop instruction.
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Another problem surfaces when a value is loaded into a register and then immediately
used in the next operation. Consider the following example:

S1: load r2, 34(r1)
S2: add r5, r2, r3

In the above code, the “correct” value of R2 will be available after the memory access
stage in the instruction S1. Hence even with data forwarding a stall will need to be placed
between S1 and S2, so that S2 fetches its operands only after the memory access for S1
has been made.

Pipeline Design Requirements

For a pipelined design, it is important that the overall meaning of the program remains
unchanged, i.e., the program should produce the same results as it would produce on a
non-pipelined machine. It is also preferred that the data and instruction memories are
separate so that instructions may be fetched while the register values are being stored
and/or loaded from data memory. There should be a single data path so as not to
complicate the flow of instructions and maintain the order of program execution. There
should be a three port register file so that if the register write and register read stages
overlap, they can be performed in parallel, i.e., the two register operands may be read
while the destination register may be written. The data should be latched in between each
pipeline stage using temporary pipeline registers. Since the clock cycle depends on the
slowest pipeline stage, the ALU operations must be able to complete quickly so that the
cycle time is not increased for the rest of the pipeline.

Designing a pipelined implementation
In this section we will discuss the various steps involved in designing a pipeline. Broadly
speaking they may be categorized into three parts:

1. Adapting the instructions to pipelined execution

The instruction set of a non-pipelined processor is generally different from that of a
pipelined processor. The instructions in a pipelined processor should have clear and
definite phases, e.g., add rl, r2, r3. To execute this instruction, the processor must first
fetch it from memory, after which it would need to read the registers, after which the
actual addition takes place followed by writing the results back to the destination register.
Usually register-register architecture is adopted in the case of pipelined processors so that
there are no complex instructions involving operands from both memory and registers.
An instruction like add r1, r2, a would need to execute the memory access stage before
the operands may be fed to the ALU. Such flexibility is not available in a pipelined
architecture.

2. Designing the pipelined data path

Last Modified: 01-Nov-06 Page 206



Advanced Computer Architecture-CS501

Once a particular instruction set has been chosen, an appropriate data path needs to be
designed for the processor. The data path is a specification of the steps that need to be
followed to execute an instruction. Consider our two examples above

For the instruction add r1, r2, r3: Instruction Fetch — Register Read — Execute — Register
Write,

whereas for the instruction add r1, r2, a (remember a represents a memory address), we
have Instruction Fetch — Register Read — Memory Access — Execute — Register Write

The data path is defined in terms of registers placed in between these stages. It specifies
how the data will flow through these registers during the execution of an instruction. The
data path becomes more complex if forwarding or bypassing mechanism is added to the
processor.

3. Generating control signals

Control signals are required to regulate and direct the flow of data and instruction bits
through the data path. Digital logic is required to generate these control signals.
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e Pipelined Version of the SRC
e Adapting SRC instructions for Pipelined Execution
e Control Signals for Pipelined SRC

Pipelined Version of the SRC

In this lecture, a pipelined version of the SRC is presented. The SRC uses a five-stage
pipeline. Those five stages are given below:

1. Instruction Fetch

2. Instruction decode/operand fetch
3. ALU operation

4. Memory access

5. Register write

As shown in the next diagram, there are several registers between each stage.

After the instruction has been fetched, it is stored in IR2 and the incremented value of the
program counter is held in PC2. When the register values have been read, the first
register value is stored in X3, and the second register value is stored in Y3. IR3 holds the
opcode and ra. If it is a store to memory instruction, MD3 holds the register value to be
stored.

After the instruction has been executed in the ALU, the register Z4 holds the result. The
op-code and ra are passed on to IR4. During the write back stage, the register Z5 holds the
value to be stored back into the register, while the op-code and ra are passed into IRS.
There are also two separate memories and several multiplexers involved in the pipeline
operation. These will be shown at appropriate places in later figures.

The number after a particular register name indicates the stage where the value of this
register is used.
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Pipeline Stages "“——-_._______* Instruction
M~ Fetch
——il'—dpcﬂ— —_——

Decode and
Operand

Read
—:/,,Jﬁl' ﬁ _MD3}—
Pipeline Registers ALL

Operation
* a
—--—--—--—‘_Itl_l—--’JM[MI_

hlemary

! f ACCESS

Reqister
Writehack

Adapting SRC Instructions for Pipelined Execution
As mentioned earlier, the SRC instructions fall into the following three categories:

1. ALU Instructions
2. Load/Store instructions
3. Branch Instructions

We will now discuss how to design a common pipeline for all three categories of
instructions.

1. ALU instructions
ALU instructions are usually of the form:

op-code ra, rb, rc
or
op-code ra, rb, constant.

In the diagram shown, X3 and Y3 are temporary registers to hold the values between
pipeline stages. X3 is loaded with operand value from the register file. Y3 is loaded with
either a register value from the register file or a constant from the instruction. The
operands are then available to the ALU. The ALU function is determined by decoding the
op-code bits. The result of the ALU operation is stored in register Z4, and then stored in
the destination register in the register write back stage. There is no activity in the memory
access stage for ALU instructions. Note that Z5, IR3, IR4, and IR5 are not shown
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explicitly in the figure. The purpose of not including these registers is to keep the
drawing simple. However, these registers will transfer values as instructions progress
through the pipeline. This comment also applies to some other figures in this discussion.

ALU Instruction [ Instruction I

Memory ]
Instruction
Fetch
Register File «— reqgwrite
Op code| ra €2 || Rirb] RIre] Rlra] l—
! l | Decode and
Mpa— MUX Operand Read
T ALU
ALU Operation
' Z4
Memory
Access
Register
Writeback

2. Load/Store instructions
Load/Store instructions are usually of the form:
op-code ra, constant(rb)

The instruction is loaded into IR2 and the incremented value of the PC is loaded in PC2.
In the next stage, X3 is loaded with the value in PC2 if the relative addressing mode is
used, or the value in rb if the displacement addressing mode is used. Similarly, C1 is
transferred to Y3 for the relative addressing mode, and ¢2 is transferred to Y3 for the
displacement addressing mode. The store instruction is completed once memory access
has been made and the memory location has been written to. The load instruction is
completed once the loaded value is transferred back to the register file. The following
figure shows the schematic for a load instruction. A similar schematic can be drawn for
the store instruction.
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Instruction
Fetch

Op codejra |c1 - Register File  |«— regwrite
‘ d | | ‘ | RIrb] Rirc] Rlra] fe=—

Load Instruction
Instruction @ ‘_“—

(Id, Idr, la, lar)

Decode and
Operand Read

ALU
Operation

Memory
Access

Register
Writeback

3. Branch Instructions

Branch Instructions usually involve calculating the target address and evaluating a
condition. The condition is evaluated based on the c2 field of the IR and by using the
value in R[rc]. If the condition is true, the PC is loaded with the value in R[rb], otherwise
it is incremented by 4 as usual. The following figure shows these details.

Branch Instruction [~ Instruction | __ (&
Memory H—J =1

Une4 J—| Instruction
1— Fetch
Register File regwrite
‘Op °°de‘ ra ‘ ‘ (2 ‘ PC2]| Rprb] Rire] Rira] 4
——J Decode and
Branch Logic P Operand Read
ALU
Operation
Memory
Access
Register
Writeback

The complete pipelined data path

The pipelined data path implementation diagrams shown earlier for the three SRC
instruction categories must be combined and refined to get a working system. These
details get complicated very quickly. A detailed combined diagram is shown in Figure
5.7 of the text book.
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Control Signals for the Pipelined SRC

We define the following signals for the SRC by grouping similar op-codes:

Control signals for pipeline stages

. branch = br ~brl

* cond = (IR2=2. 0==11~{IR2=2. 1 ==1)&]R2=0=ER[rc]=0Y~
* MIR2=2.1==2ER2=0= & R[rc]=31=1)

. shi=shr~shra~shl~shc

* alu=add~addi~suh~neg~and~andi~ar~ari~not~sh
* imm:=addi~andi~ori~{sh &{R=4.  0=1=07)

. load=Id~Idr

. ladr=la~lar

. store=st~str

. l-==load~ladr~store

* rechwrite:=load~ladr~arl~alu

* dzp=ld~st~a

. r:=Idr~str-lar

In most cases, the signals defined above are used in the same stage where they are
generated. If that is not the case, a number used after the signal name indicates the stage
where the signal is generated.

Using these definitions, we can develop RTL statements for describing the pipeline
activity as well as the equations for the multiplexer select signals for different stages of
the pipeline. This is shown in the next diagram.

Control Signals for different pipeline Stages

Consider the RTL description of the Mp1 signal, which controls the input to the PC. It
simply means that if the branch and cond signals are not activated, then the PC is

incremented by 4, otherwise if both are activated then the value of R1 is copied in to the
PC.

The multiplexer Mp2 is used to decide which registers are read from the register file. If
the store signal is activated then R[rb] from the instruction bits is read from the register
file so that its value may be stored into memory, otherwise R[rc] is read from the register
file.

The multiplexer Mp3 is used to decide which registers are read from the register file for
operand 2. If either rl or branch is activated then the updated value of PC2 is transferred
to X3, otherwise if dsp or alu is activated, the value of R[ra] from the register file is
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transferred to the x3. In the same way, multiplexer Mp4 is used to select an input from
Y3.

In the same way, multiplexer Mp4 is used to select an input for Y3.

Control signals for pipeline stages

MP 1 +=— (I{branch2&cond)incd), Inztruction
((branch2&cond):R1) Fetch

WPz +— [lstorerc)[starera)

MP3  *— (rl~branchPC2), Decade and
[d=pr-alu: Rl Cperand Read

MP4 +— o) fdsp~imm c2) aludlimmR2)

AL
Cperation

MBS (lnad:mem data) e

Fegizter
Wiritehack

The multiplexer MP5 is used to decide which value is transferred to be written back to
the register file. If the load signal is activated data from memory is transferred to Z5,
however if the load signal is not activated then data from Z4 (which is the result of ALU)
is transferred to Z5 which is then written back to the register file.
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Summary

Structural RTL for Pipeline Stages
Instruction Propagation Through the Pipeline
Pipeline Hazards

Data Dependence Distance

Data Forwarding

Compiler Solution to Hazards

SRC Hazard Detection and Correction

RTL for Hazard Detection and Pipeline Stall

Structural RTL for Pipeline Stages

The Register Transfer Language for each phase is given as follows:
Instruction Fetch

IR2 < M [PC];
PC2 « PC+4;

Instruction Decode & Operand fetch
X3« I1-s2:(rel2:PC2,disp2:(rb=0):?,(rb!=0):R[1b]),brI2:PC2,alu2:R[rb],
Y3 « I-s2:(rel2:cl,disp2:c2),alu2:(imm2:c2,!imm?2:R[rc]),
MD3 <«—store2:R[ra],IR3 <— IR2, stop2:Run < 0,
PC « !branch2:PC+4,branch2:(cond(IR2,R[rc]):R[rb],!cond(IR2,R[rc]):PC+4;

ALU operation

74 <« (I-s3: X3+Y3, brl3: X3, Alu3: X3 op Y3,
MD4 «<— MD3,
IR4 < IR3;

Memory access

75 < (load4: M [Z4], ladr4~branch4~alu4:74),
store4: (M [Z4] <~ MD4),
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IRS «IR4;

Write back

regwriteS: (R[ra] < Z5);

Instruction Propagation through the Pipeline

Consider the following SRC code segment flowing through the pipeline. The instructions
along with their addresses are

200: add r1,r2, r3
204: 1d r5, [4(r7)
208: br ré

212: str r4, 56

400
We shall review how this chunk of code is executed.

First Clock Cycle
Add instruction enters the pipeline in the first cycle. The value in PC is
incremented from 200 to 204.

Second Clock Cycle

Add moves to decode stage. Its operands are fetched from the register file and
moved to X3 and Y3 at the end of clock cycle, meanwhile the Instruction 1d 5,
[4+17] is fetched in the first stage and the PC value is incremented from 204 to
208.

Third Clock Cycle

Add instruction moves to the execute stage, the results are written to Z4 on the
trailing edge of the clock. Ld instruction moves to decode stage. The operands
are fetched to calculate the displacement address. Br instruction enters the
pipeline. The value in PC is incremented from 208 to 212.

Fourth Clock Cycle

Add does not access memory. The result is written to Z5 at the trailing edge of
clock. The address is being calculated here for 1d. The results are written to Z4.
Br is in the decode stage. Since this branch is always true, the contents of PC are
modified to new address. Str instruction enters the pipeline. The value in PC is
incremented from 212 to 216.

Fifth Clock Cycle
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The result of addition is written into register r1. Add instruction completes. Ld
accesses data memory at the address specified in Z4 and result stored in Z5 at
falling edge of clock. Br instruction just propagates through this stage without
any calculation. Str is in the decode stage. The operands are being fetched for
address calculation to X3 and Y3. The instruction at address 400 enters the
pipeline. The value in PC is incremented from 400 to 404.

Instruction  Instruction AL MEMOry Reqister
Fetch decode Operation ACCess Writeback

H ",.-"-'_'_"--,‘\
CC1 | Ldr748 | {add r1r2,r3 [Bunr2rard [ strr332 | [shirera2)

cc2 | Ldrras |jadd i r2rd [Bub r2rard | strraaz |

CC3 | Ldr748 |jadd 1 r2rd

cca | Larraa | [Addrir2g
ces | ew [ Lor7as ||addr1r23]

Pipeline Hazards

The instructions in the pipeline at any given time are being executed in parallel. This
parallel execution leads to the problem of instruction dependence. A hazard occurs when
an instruction depends on the result of previous instruction that is not yet complete.

Classification of Hazards

There are three categories of hazards
1. Branch Hazard
2. Structural Hazard
3. Data Hazard

Branch hazards
The instruction following a branch is always executed whether or not the branch is taken.

This is called the branch delay slot. The compiler might issue a nop instruction in the
branch delay slot. Branch delays cannot be avoided by forwarding schemes.

Structural hazards
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A structural hazard occurs when attempting to access the same resource in different ways
at the same time. It occurs when the hardware is not enough to implement pipelining
properly e.g. when the machine does not support separate data and instruction memories.

Data hazards

Data hazard occur when an instruction attempts to access some data value that has not yet
been updated by the previous instruction. An example of this RAW (read after write) data
hazard is;

200: addr2,13, 14
204: subr7, 12, 16

The register 12 is written in clock cycle 5 hence the sub instruction cannot proceed
beyond stage 2 until the add instruction leaves the pipeline.

Data Hazard Detection & Correction

Data hazards can be detected easily as they occur when the destination register of an
instruction is the same as the source register of another instruction in close proximity. To
remedy this situation, dependent instructions may be delayed or stalled until the ones
ahead complete. Data can also be forwarded to the next instruction before the current
instruction completes, however this requires forwarding hardware and logic. Data can be
forwarded to the next instruction from the stage where it is available without waiting for
the completion of the instruction. Data is normally required at stage 2 (operand fetch)
however data is earliest available at stage 3 output (ALU result) or stage 4 output
(memory access result). Hence the forwarding logic should be able to transfer data from
stage 3 to stage 2 or from stage 4 to stage 2.

Data Dependence Distance

Designing a data forwarding unit requires the study of dependence distances. Without
forwarding, the minimum spacing required between two data dependent instructions to
avoid hazard is four. The load instruction has a minimum distance of two from all other
instructions except branch. Branch delays cannot be removed even with forwarding.
Table 5.1 of the text shows numbers related to dependence distances with respect to some
important instruction categories.

Compiler Solution to Hazards

Hazards can be detected by the compiler, by analyzing the instruction sequences and
dependencies. The compiler can inserts bubbles (nop instruction) between two
instructions that form a hazard, or it could reorder instructions so as to put sufficient
distance between dependent instructions. The compiler solution to hazards is complex,
expensive and not very efficient as compared to the hardware solution
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SRC Hazard Detection and Correction
The SRC uses a hazard detection unit. The hazard can be resolved using either pipeline
stalls or by data forwarding.

Pipeline stalls

Consider the following sequence of instructions going
through the SRC pipeline

200: shl r6,r3, 2

204: strr3, 32

208: subr2, r4,r5

212: add rl,r2,r3

216: 1d 17, 48

There is a data hazard between instruction three and four
that can be resolved by using pipeline stalls or bubbles

When using pipeline stalls, nop instructions are placed in between dependent instructions.
The logic behind this scheme is that if opcode in stage 2 and 3 are both alu, and if ra in
stage 3 is the same as rb or rc in stage 2, then a pause signal is issued to insert a bubble
between stage 3 and 2. Similar logic is used for detecting hazards between stage 2 and 4
and stage 4 and 5.

Data Forwarding

By adding data forwarding mechanism to the SRC data path, the stalls can be completely
eliminated at least for the ALU instructions. The hazard detection is required between
stages 3 and 4, and between stages 3 and 5. The testing and forwarding circuits employ
wider IRs to store the data required in later stages. The logic behind this method is that if
the ALU is activated for both 3 and 5 and ra in 5 is the same as rb in 3 then Z5 which
hold the currently loaded or calculated result is directly forwarded to X3. Similarly, if
both are ALU operations and instruction in stage 3 does not employ immediate operands
then value of Z5 is transferred to Y3. Similar logic is used to forward data between stage
3 and 4.

RTL for Hazard Detection and Pipeline Stall

The following RTL expression detects data hazard between stage 2 and 3, then stalls
stage 1 and 2 by inserting a bubble in stage 3

alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm?2)):
(pause2, pausel, op3<«-0)

Meaning:

If opcode in stage 2 and 3 are both ALU, and if ra in stage 3 is same as rb or rc in stage 2,
issue a pause signal to insert a bubble between stage 3 and 2
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Following is the complete RTL for detecting hazards among ALU instructions in
different stages of the pipeline

Data Hazard RTL for detection and stalling

between

Stage 2 and 3 alu3&alu2&((ra3=rb2)~((ra3=rc2)&!imm?2)):
(pause2, pausel, op3<-0)

Stage 2 and 4 alud&alu2&((rad=rb2)~((rad=rc2)&!imm?2)):
(pause2, pausel, op3<-0)

Stage 2 and 5 aluS&alu2&((ra5=rb2)~((rad=rc2)&!imm?2)):
(pause2, pausel, op3<—0)
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Advanced Computer Architecture

Lecture 21

Reading Material
Vincent P. Heuring&Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 5.2

Summary

Data Forwarding Hardware

Instruction Level Parallelism

Difference between Pipelining and Instruction-Level Parallelism
Superscalar Architecture

Superscalar Design

VLIW Architecture

Maximum Distance between two instructions

Example

Read page no. 219 of Computer System Design and Architecture (Vincent
P.Heuring, Harry F. Jordan)

Data forwarding Hardware

The concept of data forwarding was introduced in the previous lecture.

Instruction
Fetch
PC2
Decode and
Operand
Recd
| IR3 |
AL
Operation
| IR4 !
™ Hazard hEmOry
Detforward ACCESS
unit
IRS LZ5 ]
o| Hazard Register
JIDatforward )
T wiiteback
RTL for data
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forwarding in case of ALU instructions

Dependence RTL

Stage 3-5 aluS&alu3:((rad5=rb3):X«7Z5,
(raS=rc3)&!imm3: Y « Z5);
Stage 3-4 alu4&alu3:((rad=rb3): X<«74,

(rad4=rc3)&!imm3: Y « Z4);

Instruction-Level Parallelism

Increasing a processor’s throughput

There are two ways to increase the number of instructions executed in a given time by a
processor

¢ By increasing the clock speed

e By increasing the number of instructions that can execute in parallel

Increasing the clock speed

* Increasing the clock speed is an IC design issue and depends on the advancements in
chip technology.

» The computer architect or logic designer can not thus manipulate clock speeds to
increase the throughput of the processor.

Increasing parallel execution of instructions

The computer architect cannot increase the clock speed of a microprocessor however
he/she can increase the number of instructions processed per unit time. In pipelining we
discussed that a number of instructions are executed in a staggered fashion, i.e. various
instructions are simultaneously executing in different segments of the pipeline. Taking
this concept a step further we have multiple data paths hence multiple pipelines can
execute simultaneously. There are two main categories of these kinds of parallel
instruction processors VLIW (very long instruction word) and superscalar.

The two approaches to achieve instruction-level parallelism are
— Superscalar Architecture
A scalar processor that can issue multiple instructions simultaneously is said to be
superscalar
— VLIW Architecture
A VLIW processor is based on a very long instruction word. VLIW relies on
instruction scheduling by the compiler. The compiler forms instruction packets which can
run in parallel without dependencies.
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Difference between Pipelining and Instruction-Level Parallelism

Pipelining

Instruction-Level Parallelism

Single functional unit

Multiple functional units

Instructions are issued sequentially

Instructions are issued in parallel

Throughput increased by overlapping the
instruction execution

Instructions are not overlapped but
executed in parallel in multiple functional
units

Very little extra hardware required to
implement pipelining

Multiple functional units within the CPU
are required

Superscalar Architecture

A superscalar machine has following typical features
» It has one or more IUs (integer units) , FPUs (floating point units), and BPUs (branch

prediction units)
» It divides instructions into three classes
o Integer
o Floating point
o Branch prediction

The general operation of a superscalar processor is as follows

* Fetch multiple instructions

* Decode some of their portion to determine the class
» Dispatch them to the corresponding functional unit

As stated earlier the superscalar design uses multiple pipelines to implement instruction

level parallelism.

Operation of Branch Prediction Unit

* BPU calculates the branch target address ahead of time to save CPU cycles

» Branch instructions are routed from the queue to the BPU where target address is
calculated and supplied when required without any stalls

» BPU also starts executing branch instructions by speculating and discards the results

if the prediction turns out to be wrong

Superscalar Design

The philosophy behind a superscalar design is

» to prefetch and decode as many instructions as possible before execution
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» and to start several branch instruction streams speculatively on the basis of this
decoding
+ and finally, discarding all but the correct stream of execution

The superscalar architecture uses multiple instruction issues and uses techniques such as
branch prediction and speculative instruction execution, i.e. it speculates on whether a
particular branch will be taken or not and then continues to execute it and the following
instructions. The results are not written back to the registers until the branch decision is
confirmed. Most superscalar architectures contain a reorder buffer. The reorder buffer
acts like an intermediary between the processor and the register file. All results are
written onto the reorder buffer and when the speculated course of action is confirmed, the
reorder buffer is committed to the register file.

Superscalar Processors
Examples of superscalar processors

o PowerPC 601
o Intel P6
o DEC Alpha 21164

VLIW Architecture

VLIW stands for “Very Long Instruction Word” typically 64 or 128 bits wide. The longer
instruction word carries information to route data to register files and execution units.

The execution-order decisions are made at the compile time unlike the superscalar design
where decisions are made at run time. Branch instructions are not handled very efficiently
in this architecture. VLIW compiler makes use of techniques such as loop unrolling and
code reordering to minimize dependencies and the occurrence of branch instructions.
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Advanced Computer Architecture

Lecture No. 22

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 5
Computer Systems Design and Architecture 53
Summary

e Microprogramming

Working of a General Microcoded Controller
Microprogram Memory

Generating Microcode for Some Sample Instructions
Horizontal and Vertical Microcode Schemes
Microcoded 1-bus SRC Design

The SRC Microcontroller

Microprogramming

In the previous lectures, we have discussed how to implement logic circuitry for a control
unit based on logic gates. Such an implementation is called a hardwired control unit. In a
micro programmed control unit, control signals which need to be generated at a certain
time are stored together in a control word. This control word is called a microinstruction.
A collection of microinstructions is called a microprogram. These microprograms
generate the sequence of necessary control signals required to process an instruction.
These microprograms are stored in a memory called the control store.

As described above microprogramming or microcoding is an alternative way to design
the control unit. The microcoded control unit is itself a small stored program computer
consisting of

= Micro-PC

= Microprogram memory

= Microinstruction word

Comparison of hardwired and microcoded control unit

Hardwired Control Unit Microcoded Control Unit

The relationship between controllThe control signals here are stored as words
inputs and control outputs is a seriesfin a microcode memory.
of Boolean functions.

Hardwired control units are generally]Microcode units simplify the computer logic
faster. but it is comparatively slower.
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Working of a general microcoded controller

A microcoded controller works in the same way as a small general purpose computer.
1. Fetch a micro-instruction and increment micro-PC.

2. Execute the instruction present in micro-IR.

3. Fetch the next instruction and so on...

The microcoded control unit is like

a small computer in itself. It Starting
ist f . address fram Clk Othar
consists 0 a  microprogram Evtermnal spuree spoode
memory, which is read using a — Il —
micro program counter. The micro .| Mig;if:;?;m
PC is controlled by the "’“1“ T
1 Cire
microprogram controller. Values of Braneh Y=
the micro PC depends on a 4 to 1 Address et |
MUX. The source may be the Microprogram | Micw-Branch
Contral

incremented micro PC value, or a bemary
calculated branch value, or a value m
derived by decoding an opcode for

an instruction. The microprogram

. Contral
memory writes the control word at Signals

the chosen address into the micro

instruction register. This control word is basically the set of all the control signals needed
to execute the instruction at that particular instant.

Fields in the micro instruction

Micro-IR ]

C Bits
These form the control signal
field

M Bits
These form the branch address
field

1

¢ hits control m bits branch b bits branch
signal field address field control field
B Bits '

These form the branch control
field.

Loading the micro-PC

The micro-PC can be loaded from one of the four possible sources

+ Simple increment Steps sequentially from microinstruction to microinstruction

* Lookup table A lookup table maps the opcode field to the starting address of the
microcode routine that generates control signals.
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» External source Initializes micro-PC to begin an operation e.g. interrupts service, reset
etc.

* Branch addresses Jumps anywhere in the microprogram memory on the basis of
conditional or unconditional branch.

Microprogram Memory

* This small memory contains microroutines for all the instructions in the ISA

* The micro-PC supplies the address and it returns the control word stored at that
address

» It is much faster and smaller than a typical main memory

Layout of a typical microprogram memory

fliCro- Memory
Address Contents
] Microcode for instruction fetch

Microcode for load instruction

Microcode for add instruction

Microcode for br instruction

2n Microcode for reset instruction

Generating Microcode for Some Sample Instructions

* The control word for an instruction is used to generate the equivalent microcode
sequence

* Each step in RTL corresponds to a microinstruction executed to generate the control
signals.

Each bit in the control words in the microprogram memory represents a control signal.
The value of that bit decides whether the signal is to be activated or not.

Example: Control Signals for the sub Instruction

The first three addresses from 100 to 102 represent microcode for instruction fetch and
the last three addresses from 203 to 205 represent microcode for sub instruction. In the
first cycle at address 100, the control signal PCout, LMAR, LC, and INC4 are activated
and all other signals are deactivated. All these control signals are for the SRC processor.
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So, if the micro-PC contains 100, the contents of microprogram memory are copied into
the micro IR. This corresponds to the structural RTL description of the TO clock during
instruction fetch phase. In the same way, the content of address 101 corresponds to T1,
and the content of address 102 corresponds to T2.

L -
100 1 10 (0 o1 (1jafojojof{r|o o (o oo (o (0|0
101 o {1 (0 (00 |Oo{1{of{ojafoft |1 (1 |00 0 (O (0O
102 ... oo |1 (oo oot jofo(of{o o (o (oo (o (oo
203 | ... o oo (10 oo (1 {of(ocf{ojo (o f{of(o (1 (0|0
204 | ... o oo (110 |1jo(ojofo(ocf{o o (o {1 (o (o (1 (0o
205 | ... o |1 |0 (o0 jojofajof1r{of{oc o (o o1 (O (0|1

Microprogram Controller functions: Branching and looping

* Microprogram controller
controls the sequence of
the flow of
microinstructions.

* The inputs to the
microcontroller are from
the branch control fields
specified in the microcode
word.

* Its output controls the 4
to 1 multiplexer inside the
microcoded control unit.

o It implements
conditional execution and
both  conditional and
unconditional branch

Neg flag
N Z :_J Zero flag

External Branch
3 AddresT From IR Address

; Micro-PC
T Microprogram ; 1
Controller

Microprogram
Memory

‘0‘0‘0‘0‘0‘0‘O‘ControISignals‘ BR‘
2 TT1]

If a branch instruction is encountered within the microprogram hardwired logic selects
the branch address as the source of micro-PC using 4 to 1 mux. This hardwired logic
caters for all branch instructions including branch if zero.
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4-1 Multiplexer

The multiplexer supplies one of the four possible values to the micro-PC
The incremented value of the micro-PC is used when dealing with the normal flow of

microinstructions.
The opcode from the instruction is used to set the micro-PC when a microroutine is

initially being loaded.

External address is used when it is required to reset the microprogram controller.
Branch address is set into the micro-PC when a branch microinstruction is encountered.

Muzx Control Select
oo Increment micro-FPC
01 Opcode from IR
10 External address
11 Branch address
External Branch
,-:L.j.erSI From IR Address
2 b
bMuz Control —=—o Mix u"ﬂ
Micro-FLC —

|
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How to form a branch

Lecture 22

A branch can be implemented by choosing one alternative from each of the following

two lists.

* This scheme provides flexibility in choosing branches as we can form any combination
of conditions and addresses.

Condition
uncondition al Address
not zero Fram IR
ZETD External Address
positive
: Branch Address
negatrve
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Microcode Branching Examples

Following is an example of branch instructions in microcode

S : :
= Brapchlng Equivalent
g 8 = 3 s éActlon C -
5 |z |8 g el e g s|2 2 construc
:Cj S |a|s|s|s|s|o (%0 s ;?
400 100 |0 |0 [0 [0 |0 |... |xxx |[No branch,goto next|{...};
address in sequence-401
401 |01 |1 |0 [0 |0 |0 xxx [To the address supplied{...}; goto
by opcode initial address;
402 {10 10 |10 |1 |0 |0 |... |xxx [To external address if Z|{...}; if Z then|
flag is set goto Ext. Add.
403 |11 |0 |0 [0 [0 |1 |... [200 [To 200 if N flag is set){...}; if N then
else to 404 goto Labell;
404 |11 [0 J0 |0 |1 |0 [000 406 [To 406 if N is false, elsefWhile (N)
to 405 {.};
405 111 |1 0 10 |0 |0 |... 404 [Branch to 404 While contd...

Similarity between microcode and high level programs

* Any high level construct such as if-else, while, repeat etc. can be implemented using
microcode

* A variety of microcode compilers similar to the high level compilers are available that
allow easier programming in microcode

» This similarity between high level language and microcode simplifies the task of
controller design.

Horizontal and vertical microcode schemes

In horizontal microcode schemes, there are no intermediate decoders and the control
word bits are directly connected to their destination i.e. each bit in the control word is
directly connected to some control signal and the total number of bits in the control word
is equal to the total number of control signals in the CPU.

Vertical microcode schemes employ an extra level of decoding to reduce the control
word width. From an n bit control word we may have 2" bit signal values.
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However, a completely vertical scheme is not feasible because of the high degree of fan
out.

Horizontal Microcode Scheme

[Coeore T ieroprogra
|
Micropragram

Memory

T

Ui
nadd
NI

Vertical Microcode Scheme

Verical

Microprograrm
blermory

¥ W W [rata Path

nto 2ndecoder

FCout

INCS

T

Microcoded 1-bus SRC design

In the SRC the bits from the opcode in the instruction register are decoded to fetch the
address of the suitable microroutine from the microprogram memory. The microprogram
controller for the SRC microcoded control unit employs the logic for handling exceptions
and reset process. Since the SRC does not have any condition codes, we use the CON and
n signals instead of N and Z flags to control branches in case of branch if equal to zero or
branch if less than instructions.

The SRC Microprogram Controller
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* The microprogram controller for the SRC microcoded control unit employs the logic
for handling exceptions and reset process

» Since the SRC does not have any condition codes, we use the CON and n signals
instead of N and Z flags to control branches

Starting address (rom
OO

Clk il
Extermal source l l
Yy
SRC Kicro-onninmller
AL
Branch Address
wogrogan | ez
Kiermory
t
| Micro-1R l
EEEER
Comirol Sighats
COM n=0
: Externs Branch
] : % :ﬂddrEEf From IR Addres=s
i
1
: l "f
3,2"'-| 2
T S\
i Puf L1,
i
B o
Microprogram
I R Controller _ _ _ ¢
¥
Micza-PC [
M uzContraol
Branch l
BrCON=0)
Brn=1)
Brn=0
END
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Microcode for some SRC instructions

E s RTL
2 | & Zl=la 5 g
< = AARIAIA I~ O AR A
300 fo0 o Jofofo ot n kxx [MAR€ PC: C € PC +4;
301 o0 fo joJofo Jo o fo kxx [MBR€ M[MAR]: PC € C;
302 fo1 [t joJofo Jofo o xxx [[R,Micro-PC€MBR<31...27>;
400 00 Jo Jo fo o Jo Jo Jo xxx |A € R[rb];
401 oo Jo Jo fo fo Jo Jo Jo xxx |C € A+ Rrc];
402 11 Jt Jo fo fo |t Jo Jo 300 [R[ra] € C; Micro-PC € 300;

Assume the first control word at address 300. The RTL of this instruction is MAR < PC
combined with C €PC+4. To facilitate these actions the PCout signal bit and the LMAR
signal bit are set to one, so that the value of the PC may be written to the internal
processor bus and written onto the MAR. The instructions at 300, 301 and 302 form the
microcode for instructions fetch. If we examine the RTL we can see all the functionality
of the fetch instruction. The value of PC is incremented, the old value of PC is sent to
memory, the instruction from the sent address is loaded into memory buffer register.
Then the opcode of the fetched instruction is used to invoke the appropriate microroutine.

Alternative approaches to microcoding

Bit ORing

Nanocoding

Writable Microprogram Memory
Subroutines in Microprogramming
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Advanced Computer Architecture

Lecture No. 23

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.1, 8.2
Summary

Introduction to I/O Subsystems

Major Components of an I/O Subsystems
Computer Interface

Memory Mapped I/O versus Isolated 1/O
Considerations during I/O Subsystem Design
Serial and Parallel Transfers

I/O Buses

Introduction to I/O Subsystems

This module is about the computer’s input and output. As we have seen in the case of
memory subsystems, that when we use the terms “ read” and “write”, then these terms
are from the CPU’s point of view. Similarly, when we use the terms “input” and “output”
then these are also from the CPU’s point of view. It means that when we are talking about
an input cycle, then the CPU is receiving data from a peripheral device and the peripheral
device is providing data. Similarly, when we talk about an output cycle then the CPU is
sending data to a peripheral device and the peripheral device is receiving data. 1/O
Subsystems are similar to memory subsystems in many aspects. For example, both
exchange bits or bytes. This transfer is usually controlled by the CPU. The CPU sends
address information to the memory and the I/O subsystems. Then these subsystems
decode the address and decide which device should be involved in the transfer. Finally
the appropriate data is exchanged between the CPU and the memory or the I/O device.
Memory and I/O subsystems differ in the following ways:
1. Wider range of data transfer speed:
I/O devices can be very slow such as a keyboard in which case the interval between
two successive bytes (or keystrokes) can be in seconds. On the other extreme, I/O
devices can be very fast such as a disk drive sending data to the CPU or a stream of
packets arriving over a network, in which case the interval between two successive
bytes can be in microseconds or even nanoseconds. While I/O devices can have such
a wide range of data transfer speed compared to the CPU’s speed, the case of memory
devices is not so. Even if a memory device is slow compared to the CPU, the CPU’s
speed can be made compatible by inserting wait states in the bus cycle.
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2. Asynchronous activity:

Memory subsystems are almost always synchronous. This means that most memory

transfers are governed by the CPU’s clock. Generally this is not the case with I/O

subsystems. Additional signals, called handshaking signals, are needed to take care of

asynchronous I/O transfers.

3. Larger degradation in data quality:

Data transferred by I/O subsystems can carry more noise. As an example, telephone

line noise can become part of the data transferred by a modem. Errors caused by

media defects on hard drives can corrupt the data. This implies that effective error

detection and correction techniques must be used with I/O subsystems.

4. Mechanical nature of many 1/O devices:

Many I/O devices or a large portion of I/O devices use mechanical parts which

inherently have a high failure rate. In case an I/O device fails, interruptions in data

transfer will occur, reducing the throughput. As an example, if a printer runs out of

paper, then additional bytes cannot be sent to it. The CPU’s data should be buffered

(or kept in a temporary place) till the paper is supplied to the printer, otherwise the

CPU will not be able to do anything else during this time.
To deal with these differences, special software programs called device drivers are made
a part of the operating system. In most cases, device drivers are written in assembly
language.
You would recall that in case of memory subsystems, each location uses a unique address
from the CPU’s address space. This is generally not the case with I/O devices. In most
cases, a group or block of contiguous addresses is assigned to an I/O device, and data is
exchanged byte-by-byte. Internal buffers (memory) within the device store this data if
needed.
In the past, people have paid a lot of attention to improve the CPU’s performance, as a
result of which the performance improvement of I/O subsystems was ignored. (I/O
subsystems were even called the “orphans” of computer architecture by some people).
Perhaps, many benchmark programs and metrics that were developed to evaluate
computer systems focused on the CPU or the memory performance only. Performance of
I/O subsystems is as important as that of the CPU or the memory, especially in today’s
world. For example, the transaction processing systems used in airline reservation
systems or the automated teller machines in banks have a very heavy I/O traffic,
requiring improved I/O performance. To illustrate this point, look at the following
example.
Suppose that a certain program takes 200 seconds of elapsed time to execute. Out of
these 200 seconds, 180 seconds is the CPU time and the rest is I/O time. If the CPU
performance improves by 40% every year for the next seven years because of
developments in technology, but the I/O performance stays the same, let us look at the
following table, which shows the situation at the end of each year. Remember that
Elapsed time = CPU time + /O time.
This gives us the I/O time = 200 — 180 = 20 seconds at the beginning, which is 10 % of
the elapsed time.
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Year # | CPU | I/O | Elapsed I/O0 Time x100 %
Time | Time | Time Elapsed Time

0 180 20 200 10 %

1 129 20 149 13.42 %
2 92 20 112 17.85 %
3 66 20 86 23.25%
4 47 20 67 29.85 %
5 34 20 54 37.03 %
6 24 20 44 45.45 %
7 17 20 37 54.05 %

It can be easily seen that over seven years, the I/O time will become more than 50 % of
the total time under these conditions. Therefore, the improvement of I/O performance is
as important as the improvement of CPU performance. I/O performance will also be
discussed in detail in a later section.

Major components of an I/O ;Lﬂj kol
=Pl &

subsystem R 1
I

I/O subsystems have two major parts:

° The I/O interface, which is the

electronic circuitry that connects S—————
the CPU to the I/O device. | ‘
° Peripherals, which are the P

devices used to communicate with the
CPU, for example, the
keyboard, the monitor, etc.

Peripherals

Computer Interface

A Computer Interface is a piece of hardware whose primary purpose is to connect
together any of the following types of computer elements in such a way that the signal
levels and the timing requirements of the elements are matched by the interface. Those
elements are:

e The processor unit

e The memory subsystem(s)

e Peripheral (or I/O) devices

e The buses (also called "links")
In other words, an interface is an electronic circuit that matches the requirements of the
two subsystems between which it is connected. An interface that can be used to connect
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the microcomputer bus to peripheral devices is called an I/O Port. I/O ports serve the
following three purposes:

e Buffering (i.e., holding temporarily) the data to and from the computer bus.

e Holding control information that dictates how a transfer is to be conducted.

e Holding status information so that the processor can monitor the activity of the
interface and its associated I/O element.

This control information is usually provided by the CPU and is used to tell the device
how to perform the transfer, e.g., if the CPU wants to tell a printer to start a new page,
one of the control signals from the CPU can be used for a paper advance command,
thereby telling the printer to start printing from the top of the next page. In the same way
the CPU may send a control signal to a tape drive connected in the system asking it to
activate the rewind mechanism so that the start of the tape is positioned for access by the
CPU. Status information from various devices helps the CPU to know what is going on in
the system. Once again, using the printer as an example, if the printer runs out of paper,
this information should be sent to the CPU immediately. In the same way, if a hard drive
in the system crashes, or if a sector is damaged and cannot be read, this information
should also be conveyed to the CPU as soon as possible
The term “buffer” used in the above discussion also needs to be understood. In most
cases, the word buffer refers to I/O registers in an interface where data, status or control
information is temporarily stored. A block of memory locations within the main memory
or within the peripheral devices is also called a buffer if it is used for temporary storage.
Special circuits used in the interfaces
for voltage/current matching, at the
input and the output, are also called
buffers.
The given figure shows a block
diagram of a typical I/O subsystem EE— e e
connected with the other components 3 3
in a computer. The thick horizontal System Bus | 1
line is the system bus that serves as a ) i 1
back-bone in the entire computer y '
system. It is used to connect the Memory 10 Module 10 Module
memory subsystems as well as the 1/0
subsystems together. The CPU also [ ceyboara | wouse | | monitor |
connects to this bus through a “bus
interface unit”, which is not shown in
this figure. Four VO modules are  pataijaq Structure of /0 Modules
shown in the figure. One module is
used to connect a keyboard and a PP .
mouse to the system bus. A second tines,  Hines ines
module connects a monitor to the ! I
system bus. Another module is used Delﬁing«ﬂ%{
with a hard disk and a fourth 1/O Logic Data Registers

module is used by a modem. All these I I 1

Device Device Device
Interface Interface i Interface
Logic Logic Logic
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modules are examples of I/O ports. A somewhat detailed view of these modules is shown
in the next figure.

As we already know that the system bus actually consists of three buses, namely the
address bus, the data bus and the control bus. These three buses are being applied to the
I/O module in this figure. At the bottom, we see a set of data, status and control lines
from each “device interface logic” block. Each of these sets connects to a peripheral
device. 1/0 decoding logic is also shown in this figure.

Memory Mapped I/0 versus Isolated 1/O0

Although this concept was explained earlier as
well, it will be useful to review it again in this Isolated 1/O
context. In isolated I/O, a separate address

space of the CPU is reserved for 1/O Address Bus
operations. This address space is totally :‘ Data Burs
different from the address space used for 14 Control Bus 4

v

v

v

memory devices. In other words, a CPU has
two distinct address spaces, one for memory
and one for input/output. Unique CPU

instructions are associated with the I/O space, MEMRE Memory | g
which means that if those instructions are MEMV# Iows#
executing on the CPU, then the accessed
address space will be the I/O space and hence
the devices mapped on the I/O space.

The x86 family with the in and the out PENTIUM ADDRESS SPACE
instructions is a well known example _ PENTIUMVOMAPGAK)

of this situation. Using the in 000Th || G008 | G00Sh|| 9004 | 0% | S002h | S|
instruction, the Pentium processor can
receive information from a peripheral {FPFF] (v [FPFoR] [Feecn] [Frer] [Freew] Crreen] reree
device, and using the out instruction, PENTIUM MEMORY MAP
the Pentium processor can send h
information to a peripheral device.
Thus, the I/O devices are mapped on
the I/O space in case of the Pentium
processor. In some processors, like the
SRC, there is no separate I/O space. In rerrreen——1——1 ||| J—J——JJrreerere
thlS CaSG, some address SpaCC Out Of BANKT BANKE BANKS BANKA BEANKI BANKZ BANK1 BANKD

the memory address space must be used to map I/O devices. The benefit will be that all
the instructions which access memory can be used for I/O devices. There is no need for
including separate I/O instructions in the ISA

of the processor. However, the disadvantage Programmer’s view of the FALCON-A
will be that the I/O interface will become r——=———————

\ A J

l{e}

l Yy

ODOFFFFFh O000FFFF&h

- . . 15 0 |
complex. If partial decoding is used to reduce I RO : 7 0 7
the complexity of the I/O interface, then a lot | R1 | . L : :
of memory addresses will be consumed. The 1 g, . : 2 2
given figure shows the memory address space I Register file : "
' |
! |
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as well as the I/O address space for the Pentium processor. The I/O space is of size 64
Kbytes, organized as eight banks of 8 Kbytes each.

A similar diagram for the FALCON-A was shown earlier and is repeated here for easy
reference.

The next question to be answered is how the CPU will differentiate between these two
address spaces. How will the system components know whether a particular transfer is
meant for memory or an I/O device? The answer is simple: by using signals

from the control bus, the CPU will indicate which address space is meant during a
particular transfer. Once again, using the Pentium as an example, if the in instruction is
executing on the processor, the IOR# signal will become active and the MEMR# signal
will be deactivated. For a mov instruction, the control logic will activate the MEMR#
signal instead of the IOR# signal.

Considerations during I/O Subsystem Design

Certain things must be taken care of during the design of an I/O subsystem.

Data location:

The designer must identify the device where the data to be accessed is available, the
address of this device and how to collect the data from this device. For example, if a
database needs to be searched for a record that is stored in the fourth sector of the second
track of the third platter on a certain hard drive in the system, then this information is
related to data location. The particular hard drive must be selected out of the possibly
many hard drives in the system, and the address of this record in terms of platter number,
track number and sector number must be given to this hard drive.

Data transfer:

This includes the direction of transfer of data; whether it is out of the CPU or into the
CPU, whether the data is being sent to the monitor or the hard drive, or whether it is
being received from the keyboard or the mouse. It also includes the amount of data to be
transferred and the rate at which it should be transferred. If a single mouse click is to be
transferred to the CPU, then the amount of data is just one bit; on the other hand, a block
of data for the hard drive may be several kilo bytes. Similarly, the rate of the transfer of
data to a printer is very different from the transfer rate needed for a hard drive.

Data synchronization:

This means that the CPU should input data

from an input device only when the device is

ready to provide data and send data to an Cycle time
output device only when it is ready to receive of master
data.

There are three basic schemes which can be
used for synchronization of an I/O data
transmission:
e Synchronous transmission Data(S) W
e Semi-synchronous transmission
e Asynchronous transmission
Synchronous transmission:

Read(M)

Enable{h)
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This can be understood by looking at the waveforms shown in Figure A.

M stands for the bus master and S stands for the slave device on the bus. The master and
the slave are assumed to be permanently connected together, so that there is no need for
the selection of the particular slave device out of the many devices that may be present in
the system. It is also assumed that the slave device can perform the transfer at the speed
of the master, so no handshaking signals are needed.

At the start of the transfer operation, the master activates the Read signal, which indicates
to the slave that it should respond with data. The data is provided by the slave, and the
master uses the Enable signal to latch it. All

activity takes place synchronously with the Figure A

system clock (not shown in the figure). A

familiar example of synchronous transfer is a register-to-register transfer within a CPU.
Semi-synchronous transmission:

Figure B explains this type of transfer. All activity is still synchronous with the system
clock, but in some situations, the slave device |-_ Cycle time Cycle time _.|
may not be able to provide the data to the of master Extension
master within the allotted time. The additional 7
time needed by the slave, can be provided by Readv) | I

adding an integral number of clock periods to Figure A

the master’s cycle time. Data (S) valid data
The slave indicates its readiness by activating

the complete signal. Upon receiving this

signal, the master activates the Enable signal Complete(s)
to latch the data provided by the slave.
Transfers between the CPU and the main
memory are examples of semi-synchronous

Enable(M)

transfer.
Asynchronous transmission: Semisynchronous data transfer
This type of transfer does not require a

common clock. The master and the slave Figure B
operate at different speeds. Handshaking
signals are necessary in this case, and are used
to coordinate the data transfer between the ~— Ready(M) [~ i

~
master and the slave as shown in the Figure C. (
When the master wants to initiate a data \‘
transfer, it activates its Ready signal. The Acknowledge Sy T
slave detects this signal, and if it can provide Hatets)
data to the master, it does so and also activates valid data
its Acknowledge signal. Upon receiving the

Acknowledge signal, the master uses the

Enable signal to latch the incoming data .The

Enable{M)

master then deactivates its Ready line, and in
response to it, the slave removes its data and Asynchronous data transfer
deactivates its Acknowledge line.

In all the three cases discussed above, the
Figure C
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waveforms correspond to an “input” or a “read”

operation. A similar explanation will apply to an “output” or a “write” operation. It
should also be noted that the latching of the incoming data can be done by the master
either by using the rising edge of the Enable signal or by using its falling-edge. This will
depend on the way the intermediate circuitry between the master and the slave is
designed.

Serial and Parallel Transfers

There are two ways in which data can be transferred between the CPU and an I/O device:
serial and parallel.
Serial Transfer, or serial communication of data between the CPU and the I/O devices,
refers to the situation when all the data bits in a "piece of information", (which is a byte
or word mostly), are transferred one bit at a time, over a single pair of wires.
Advantages:
e Easy to implement, especially by using UARTs’ or USARTS".
e Low cost because of less wires.
e Longer distance between transmitter and receiver.
Disadvantages:
e Slow by its very nature.
e Inefficient because of the associated overhead, as we will see when we discuss the
serial wave forms.
Parallel Transfer, or parallel communication of data between the CPU and the I/O
devices, refers to the situation when all the bits of data (8 or 16 usually), are transferred
over separate lines simultaneously, or in parallel.
Advantages:
e Fast (compared to serial communication)
Disadvantages:
e High cost (because of more lines).
e Cost increases with distance.
e Possibility of interference (noise) increases with distance.
Remember that the terms "serial" and "parallel" are with respect to the computer 1/O
ports and not with respect to the CPU. The CPU always transfers data in parallel.
Types of serial communication
There are two types of serial communication:
Asynchronous:
e Special bit patterns separate the characters.
e "Dead time" between characters can be of any length.
e Clocks at both ends need not have the same frequency (within permissible
limits).
Synchronous:

7 Universal Asynchronous Receiver Transmitter.
¥ Universal Synchronous Asynchronous Receiver Transmitter.
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e Characters are sent back to back.

e Must include special "sync" characters at the beginning of each message.

e Must have special "idle" characters in the data stream to fill up the time
when no information is being sent.

e (Characters must be precisely spaced.

e Activity at both ends must be coordinated by a single clock. (This implies
that the clock must be transmitted with data).

The "maximum information rate" of a synchronous line is higher than that of an
asynchronous line with the same "bit rate", because the asynchronous transmission must
use extra bits with each character. Different protocols are used for serial and parallel
transfer. A protocol is a set of rules understood by both the sender and the receiver. In
some cases, these protocols can be predefined for a certain system. As an alternate,
some available standard protocols can be used.

Error conditions related to serial communication

(Some related to synchronous transmission, some to asynchronous, and some to both).

I/0 Buses

The block diagram of a general purpose
computer system that has been referred to o ! <1 -
repeatedly in this course has three buses
in addition to the three most important
blocks. These three buses are collectively
referred to as the system bus or the e

computer bus’. The block diagram is

Framing Error: is said to occur when a 0 is received instead of a stop bit (which is
always a 1). It means that after the detection of the beginning of a character with a
start bit, the appropriate number of stop bits was not detected. [A]

Parity Error: is said to occur when the parity* of the received data is not the same
as it should be. [B] (PARITY is equivalent to the number of 1's; it is either EVEN
or ODD. A PARITY BIT is an extra bit added to the data, for the purpose of error
detection and correction. If even parity is used, the parity bit is set so that the total
number of 1’s, including the parity bit, is even. The same applies to odd parity.)
Overrun Error: means that the prior character that was received, was not yet read
from the USART's "receive data register" by the CPU, and is overwritten by the
new received character. Thus the first character was lost, and should be
retransmitted. [A]

Under-run Error: If a character is not available at the beginning of an interval, an
under-run is said to occur. The transmitter will insert an idle character till the end

Computer Bus o
System Bus

)

of the interval. [S]

Subsytem | [ (uP)

The bus interface

Subsystem

(Periphersly) |y unit is usually
v\ between the CPU
% In some cases, the external CPU bus is the same as ~ and System bus.

dedicated systems. However, for most systems, there

system bus. The bus interface unit is not shown in the

Block Diagram of a Computer System
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repeated here for an easy reference in Figure 1.

Another organization that is used in modern computers is shown in Figure 2. It has a
memory bus for connecting the CPU to the memory subsystem. This bus

is separate from the I/O bus that is used to connect peripherals and I/O devices to the
system. Figure 1

Examples of I/O buses include the PCI bus and the ISA bus. These I/O buses provide an
“abstract interface” that can be used for interfacing a large variety of peripherals to the
system with minimum hardware. It is also possible to standardize I/O buses, as done by
several agencies, so that third party manufacturers can build add-on sub systems for
existing architectures.

The location of these I/O buses may be different in different
computers.
Earlier generation computers used a 11O Sub System
single bus over which the CPU could
communicate with the memory as well e on
as the I/O devices. This meant that the EXTERNAL
bandwidth of the bus was shared BUS
between the memory and I/O devices. CD-ROM > INTERFACE
However, with the passage of time,
computer architects drifted towards
separate memory and I/O buses, S vioEo
thereby giving more flexibility to users MEMORY
wanting to upgrade their existing ES

systems.

A main disadvantage of I/O buses (and

the buses in general) is that every bus has a fixed bandwidth whi ) is sehfred by all
devices on the bus. Additionally, electrical constraints like transmissioft line effects and
bus length further reduce the bandwidth. As a result of this, the designer has to make a
decision whether to sacrifice interface simplicity (by connecting more devices to the bus)
at the cost of bandwidth, or connect fewer devices to the bus and keep things simple to
get a better bandwidth. This can be explained with the help of an example.

Example # 1

Problem statement:

Consider an I/O bus that can transfer 4 bytes of data in one bus cycle. Suppose that a
designer is considering to attach the following two components to this bus:

Hard drive, with a transfer rate of 40 Mbytes/sec

Video card, with a transfer rate of 128 Mbytes/sec.

What will be the implications?

Solution:

The maximum frequency of the bus is 30 MHz'. This means that the maximum
bandwidth of this bus is 30 x 4 = 120 Mbytes/sec. Now, the demand for bandwidth from
these two components will be 128 + 40 =168 Mbytes/sec which is more than the 120

CPU

HARD DISK

MEMORY BUS

' These numbers correspond to an I/O bus that is relatively old. Modern systems use much faster buses
than this.
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Mbytes/sec that the bus can provide. Thus, if the designer uses these two components
with this bus, one or both of these components will be operating at reduced bandwidth.
Bus arbitration:

Arbitration is another issue in the use of I/O buses. Most commercially available 1/0O
buses have protocols defining a number of things, for example how many devices can
access the bus, what will happen if multiple devices want to access the bus at the same
time, etc. In such situations, an “arbitration scheme” must be established. As an example,
in the SCSI'" specifications, every device in the system is assigned an ID which identifies
the device to the “bus arbiter”. If multiple devices send a request for the bus, the device
with the highest priority will be given access to the bus first. Such a scheme is easy to
implement because the arbiter can easily decide which device should be given access to
the bus, but its disadvantage is that the device with a low priority will

not be able to get access to the bus'®. An alternate scheme would be to give the highest
priority to the device that has been waiting for the longest time for the bus. As a result of
this arbitration, the access time, or the latency, of such buses will be further reduced.
Details about the PCI and some other buses will be presented in a separate section.
Example # 2

Problem statement:

If a bus requires 10 nsec for bus requests, 10 nsec for arbitration and the average time to
complete an operation is 15 nsec after the access to the bus has been granted, is it
possible for such a bus to perform 50 million IOPS?

Solution:

For 50 million IOPS, the average time for each IOP is 1 / (50 x 10°) =20 nsec. Given the
information about the bus, the sum of the three times is 10 + 10 + 15 = 35 nsec for a
complete I/O operation. This means that the bus can perform a maximum of 1 / (35 x 10°
%) =28.6 million IOPS.

Thus, it will not be able to perform 50 million IOPS.

" Small Computer System Interface.
12 Such a situation is called “starvation”.
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Designing Parallel 1/O Ports

This section is about designing parallel input and output ports. As you already know
from the previous discussion, an interface that is used to connect the computer bus with
I/O devices is called an I/O port. This I/O port can be connected directly to the computer
bus (also called the system bus) or through an intermediate bus called the I/O bus. This
intermediate bus is also called the expansion bus or the peripheral bus. In any case, the
following general information about I/O bus cycles on a typical CPU should be kept in
mind: At the start of a particular bus cycle (which will be an I/O bus cycle in this case),
the CPU places an address on its address bus. This address will identify the I/O device to
be involved in the transfer. After some time the CPU will activate certain control signals,
which will indicate whether the particular I/O bus cycle, is an I/O read or an 1/O write
cycle. Based on these control signals, in case of I/O read cycle, the CPU will be
expecting data from the selected input device over the data bus, and for an I/O write cycle
the CPU will provide data to the selected device over the data bus. At the end of this I/O
bus cycle, the address (and data) information will be removed from the buses and the
control signals will be reset. It can be easily understood from this discussion that we
must match the timing requirements of the I/O ports to be designed with the timing
parameters of the given CPU. Additionally, the voltage and current requirements of the
I/O ports must be matched with the voltage and current specifications of the CPU. For
simplicity, we ignore the voltage and current matching details in this discussion and only
focus on the logic levels and timing aspects of the design. Voltage and current related
discussions are the topic of an electronics course.

Thus, there are two important functions which should be built into I/O ports.

1. Address decoding
2. Data isolation for input ports or data capturing for output ports.
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1. Address decoding: Since every I/O port has a unique identifier associated with it,
(which is called its address, and no other port in the system should have the same
address), by monitoring the system address bus, the I/O port knows when it is its turn to
participate in a transfer. At this time, the address decoder within the I/O port generates

an asserted output which can be applied to the enable input of tri-state buffers in input
ports or the latch enable input of latches in output ports.

Our definition of an address decoder:

An "Address Decoder" is a combinational (logic) )

circuit with » + r inputs and a single output, Block dlagram of an address decoder

where

n = the number of address lines into the *—} .
decoder, and address
r = the number of control lines into the ) e
decoder. fo ADDRESS
The output fp is active only when the RECORER — |
corresponding address is present on the n address : contrl
lines and the corresponding r control lines hold

the "proper" (active or inactive) value. fp is
inactive for all other situations.

Suggestions for address decoder design:

1.1 Start by thinking of the address decoder as a
“big AND gate”. We will call this a “skeleton
address decoder” or SAD. The output of the SAD will be active only when the correct
address is present on the system address bus and the relevant control bus signals hold the
proper values. At all other times, the output of the SAD should be deactivated.

1.2 Always write the port address of the port to be designed in binary. Associate the
CPU’s address lines with each bit. Those lines which are zero will be inverted before
being fed into the “big AND gate”; other address lines will not be inverted.

1.3 List the relevant control signals for the system to which the port is to be attached. If
the “proper” value of the signal is 0, it should be inverted before applying to the SAD,
otherwise it is fed directly into the SAD.

1.4 Determine whether the decoder output should be active high or low. This will depend
on the type of latch or buffer used in the design. If an active low decoder output is
needed, invert the output from the “big AND gate”.

1.5 Once the logic for the address decoder is established, the SAD can be implemented
using any of the available methods of logic design. For example, HDL code in Verilog or
VHDL can be generated and the address decoder can be implemented using PLDs.
Alternately, the SAD can be implemented using SSI building blocks.

2. Data isolation or capturing: For input ports, the in coming data should be placed on
the data bus only during the I/O read bus cycle. At all other times, this data should be
isolated from the data bus otherwise it will cause “bus contention”. Tri-state buffers are
used for this purpose. Their input lines are connected to the peripheral device supplying
data and their output lines are connected to the data bus. The common enable line of such
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buffers is driven with the output of the SAD. If this enable is active low, the output of the
big AND gate in the SAD should be inverted, as described earlier.

For output ports, data is made available for the peripheral device at the data bus during
the I/0O write bus cycle. During other bus cycles, this data will be removed from the data
bus by the processor. Latches (or registers) are used for this purpose. Their input lines are
connected to the system data bus and their output lines are connected to the peripheral
device receiving data. The common clock (or latch enable) line of such latches is driven
with the output of the SAD. If this clock is active low, the output of the big AND gate in
the SAD should be inverted.

Example # 1

Problem Statement:

Design a 16-bit parallel output port mapped on address DEh of the I/O space of the
FALCON-A CPU.

Solution:

Using the guidelines mentioned above, we start with a
“big AND gate” (SAD) and write the address to be
decoded (DEh) in binary.

Thus, DEh — 1101 1110 b. Associating one CPU address
line with each bit, we get A0 = 0, A1=1, etc as shown in
the table below.

Because the 1/O space on the FALCON-A is only 256
bytes, address lines A15 .. A8 are don’t cares, and will not be
used in this design.

1 1 (0 |1 1 1 1 |0
A7 | A6 | AS | A4 | A3 | A2 | Al | AD

Thus, A0 and A5 will be applied to the “big AND gate” after inversion. The remaining
address lines will be connected directly to the inputs of the SAD.

Next, we look at the relevant control signals. The only signal which should be used in this
case is IOW#. A logic 0 (zero) on this line indicates that

it is active. Thus, it should be inverted before being
applied to the input of the SAD.

We can easily see that our SAD intuitively conforms to

the way we defined an address decoder. Its output is a 1

only when the address (xxxx xxxx 1101 1110 b) is
present on the FALCON-A’s address bus during an 1/0O

write cycle (By the way, this will take place when the
instruction out reg, addr with addr=DEh or 222d is
executing on the FALCON-A). At all other times, its output will
be inactive.

To make things simple, we use a circle (or a bubble) to indicate
an inverter, as shown .Since this is a 16-bit output port, we will
use two 8-bit registers to capture data from the FALCON-A’s
data bus. The output of the SAD will be connected to the enable
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inputs of the two registers. The D-inputs of the registers will be connected to the data bus
and the Q outputs of the registers will be connected to the peripheral device.

Practical implementation of the SAD

Our SAD in this design is an AND gate with 9 inputs. Using SSI chips, we can
implement this SAD using an 8-input AND gate and a 2-input AND gate as shown in the
figure shown below.

Displaying output data using LED branches:

An “LED branch” is a combination of a resistor and a light emitting diode (LED) in
series. Sixteen LED branches can be used to display the output data captured by the
registers as shown in the figure below.

High BYTE @DEh

CLK L15
oy o=
DE  os—1E=
From FALCON's Bi gi—g
data bus D3 a3 =
:| -
= L A0
= 21
Le A2
= A3
fa—
55

[

L7

5 07 Q7= A7
o D6 Q5=
- D5 Qe— = |- 10w A15..A9 unused
3 D4 od—) far /0 parts
= D3 Q= . .
- 02 oz From FALCON's From FALCON's
oo D ) e [ control bus address bus

Do Qo= .

- Lo -

Bt eGSer ) ow BYTE @DFh

A 16-bit parallel output port for the FALCON-A at address DEh and DFh

Example # 2
Problem statement:
Given a 16-bit parallel output port attached with the FALCON-A CPU as shown in the
figure. The port is mapped onto address DEh of the FALCON-A’s I/O space. Sixteen
LED branches are used to display the data being received from the FALCON-A’s data
bus. Every LED branch is wired in such a way that when a 1 appears on the particular
data bus bit, it turns the LED on; a 0 turns it off.
Which LEDs will be ON when the instruction

outr2,222 "
executes on the CPU? Assume 12 contains 1234h.
Solution:

" Depending on the way the assembler is written, the syntax of the out instruction may allow only the
decimal form of the port address, or only the hexadecimal form, or both. Our version of the assembler for
the FALCON-A allows the decimal form only. It also requires that the port address be aligned on 16-bit
“word boundaries”, which means that every port address should be divisible by 2.
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Since 12 contains 1234h, the bit pattern corresponding to this value will be sent out to the
output port at address 222 (or DEh). This is the address of the output port in this
example. Writing the bit pattern in binary will help us determine the LEDs which will be
ON.

Now 1234h gives us the following bit associations with the data bus

0 0 0 1 0 0 1 0] 001 1011070

D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | DI | DO

MSB at address DEh LSB at address DFh

Note that the 8-bit register which uses lines D15 .. D8 of the FALCON-A’s data bus is
actually mapped onto address DEh of the 1/O space. This is because the architect of the
FALCON-A had chosen a “byte-wide” (i.e., x8) organization of the address space, a 16-
bit data bus width, and the “big-endian” data format at the ISA design stage.
Additionally, data bus lines D15...D8 will transfer the data byte of higher significance
(MSB) using address DEh, and D7...D0 will transfer the data byte of lower significance
(LSB) using address DFh. Thus the LEDs at L12, L9, L5, L4 and L2 will turn on.

The NUXI Problem

It can be easily understood from the previous example that the big-endian format results
in the least significant byte being transferred over the most significant side of the data
bus, and vice versa. The situation will be exactly opposite when the little-endian format
is used. In this case, the least significant byte will be transferred over the least side of the
data bus. Now imagine a computer using the little-endian format exchanging data with a
computer using the big-endian format over a 16-bit parallel port. (this may be the case
when we have a network of different types of computer, for example). The data
transmitted by one will be received in a “swapped” form by the other, eg., the string
“UN” will be received as “NU” and the string “IX” will be received as “XI”. So UNIX
changes to NUXI --- hence the name NUXI problem. Special software is used to resolve
this problem.

Variation in the Implementation of the Address Decoder

The implementation of the address decoder shown in Example #1(lec24) assumes that the
FALCON-A does not allow the use of some part of its data bus during an I/O (or
memory) transfer. Another restriction that was imposed by the assembler was that all port
addresses should be divisible by 2. This implies that address line A0 will always be zero.
If the FALCON-A architect had allowed the use some of part of its data bus (eg, 8-bits)
during a transfer, the situation would be different.

The logic diagram shown in the next figure is a 16-bit parallel output port at the same
address (DEh) for the FALCON-A assuming that part of its data bus (D15..D8) or
(D7..D0) can be used independently during an I/O transfer. Note that the enable inputs of
the two 8-bit registers are not connected together in this case. Moreover, since the 16-bit
port uses two addresses, address line AO will be at a logic 0 for address DEh, and at a
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logic 1 for address DFh. This means that it cannot be used at the input of the big AND
gate. So, A0 has been used in a different position with the two 2-input AND gates. The
2-input AND gate where A0 is applied after inversion will generate a 1 at its output when
A0 = 0. Thus, this output will enable the 8-bit register mapped on the even address DEh.
In case of the other AND gate, A0 is not inverted. So the corresponding 8-bit register will
be mapped on the odd address DFh. The input that became available after removing AQ
from its old position can be used for the IOW# control signal. The rest of the circuit is the
same as it was in the previous figure.

High BYTE @DEh

CLK L15
07 of— =
OB Qs—C=
From FALCON's [ O ey [
— o A From FALCON's
= °<
control bus
g I
I:I B g &1

g-hit register A3
( :
AS

L
I

1=

&

[ = AT

[m=

% A0 A15.AB unused
for YO ports

= ;

| From FALCON's

[ address bus

[m=

TGS ) ow BYTE @DFh

A 16-bit parallel output port for the FALCON-A at address DEh and DFh

We can understand from the above discussion that the decisions made at the time of [SA
design have a strong bearing on the implementation details and the working of the
computer. Suppose we assume that the assembler developer had decided not to restrict
the port addresses to even values, then what will be the implications?

As an example, consider the execution of the instruction out r2, 223 assuming r2
contains 1234h. This is a 16-bit transfer at address 223 (DFh) and 224 (EOh).

For the output port (shown in the first figure) where the CPU does not allow the use of
some part of its data bus in a transfer, none of the registers will be enabled as a result of
this instruction because the output of the 8-input AND gate will be a zero for both
addresses DFh and EOh. Thus, that output port cannot be used.

In the second figure, where the CPU has allowed to use a portion of its data bus in an I/O
transfer, the register at the address DEh will not be enabled. The CPU will send the high
data byte(12h) to the register at the address DFh (because it will be enabled at that time
due to the address DFh) over data lines D7...D0. The fact that data lines D7...D0 should
be used for the transfer of high byte, will be taken care of by the hardware, internal to the
CPU.

Now the question is where the low data byte (i.e. 34h) present at D15...D8 data lines
would be placed? If there exists an output port at address EOh in the system, then 34h will
be placed there (in the next bus cycle), otherwise it will be lost. Again, it is the CPU’s
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responsibility to check whether the next address in the system exists or not and if exists
then enable that port so that the low byte of data can be placed there.
A possible option for the architect in this case would be to revisit the design steps and
allow the use of part of the CPU registers (or at least for some of them) for I/O transfers.
The logic diagram shown below shows an 8-bit parallel output port at address FEF2h of
the Pentium’s I/O address space. Since the Pentium allows the use of some part of its
data bus during a transfer, we can use the BE2# signal in the address decoder to enable
the 8-bit register. The following instructions will access this output port.

mov dx, OFEF2h

mov al, 12h

out dx, al

From PENTIUM Control Bus

L Gl = Gl =V

a1
Enable a0

Bbitreg e -
From PENTIUM Data Bus BYTE®FEFZh
{D63..024) and (D15..D0Y Logic 1 From PENTIUM

unused for this 8-hit port Address Bus
(A16..431) Unused
For 'O ports

An B-bhit Parallel Qutput Port for the PENTIUM Processor
at address FEF2h of the I/0 space

The Pentium does allow the use of some part of its 32-bit accumulator register EAX. In
case only 8-bits are to be transferred, register AL can be used, as shown in the program
fragment above. The data byte 12h will be sent to the 8-bit register over lines D23..D16.
Since 12h corresponds to 0001 0010 in binary, this will cause the LEDs L4 and L1 to turn
on.

Example # 3

Problem statement:

Write an assembly language program to turn on the 16 LEDs one by one on the output
port of Example #1(lec24). Each LED should stay on for a noticeable duration of time.
Repeat from the first LED after the last LED is turned on.

Solution:
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The solution is shown in the text box with a filename: Example 3.asmfa. The working of

this program is explained below:

The first two instructions turn all the LEDs off by sending a 0 to each bit of the output

port at address 222.
mov rl,0
outrl,222

Then a 1 is sent to LO causing it to turn on, and the program enters a loop which executes

15 times to cause the other LEDs
(L1 through L15) to turn on, one by
one in sequence. Register 15 is
being used as loop counter. The
following three instructions
introduce a  delay between
successive bit patterns sent to the
output port, so that each LED stays
on for a noticeable duration of time.
delayl:movi 12,0
againl:subi r2,r2,1
jnz r2,[again]]

Starting with a value of 0 in 12 ',
this value is decremented to FFFFh
when the againl loop is entered.
The jnz instruction will cause 12 to
decrement again and again; thereby
executing the loop 65,535 times. An
estimate of the delay interval is
presented at the end of this section.
After this delay, all the LEDs are
turned off, and a second delay loop
executes. Finally, the next LED on
the left, in sequence, is turned on by
the following two instructions:

shiftl r1,r1,1

outrl, 222
After the left most LED is turned
on, the process starts all over again
because of the last jump
instruction. The outermost loop
executes indefinitely.

Estimating the Delay

Interval

; filename: Example_3.asmfa

;ALL LEDS ARE turned Off initially
movirl,0
outrl,222
;First LED will be turned on each time
start: movirl,l
outrl,222

movi r5,15
;DELAY LOOP

delayl: movi 12,0
againl: subi r2,r2,1
jnz 12, [again]]
movi 3,0 ; TURN OFF ALL LEDS
outr3,222

delay2: movi 12,0
again2: subi r2,12,1
jnz r2, [again2]

shiftl r1,r1,1
outrl,222

subi r5,r5,1
jnz 15, [delay1]
jump [start]
halt

; next LED ON

' this is necessary because the immediate operand with the movi instruction of the FALCON-A has a
range of Oh to FFh. This will not give us the large loop counter that we need here. So we use the above
software trick. An alternate way would be to use nested loops, but that will tie up additional CPU registers.
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To make things simple, assume that the FALCON-A is operating at a clock frequency of
1 MHz. Also, assume that the subi and the jnz instructions take 3 and 4 clock periods,
respectively, to execute. Since these two instructions execute 65,535 times each, we can
use the following formula to compute the execution time of this loop:

ET=CPIxICxT=CPIxIC/f

where
CPI = clocks per instruction
IC = instruction count
T = time period of the clock, S
( stat )
and -
f = frequency of the clock. Initialize the ports

All LEDs off at DEh

Using the assumed values, we get

[ Turn on right most LED |
ET = (3+4) x 65535/ (1x10°) = 0. Ewr
459 sec [ Tum oﬂléli LEDs |
Since the movi r2, 0 instruction executes IW
only once, the time it takes to execute is [Turn on next LED on the Tef]
negligible and has been ignored in this Py
eul : —

calculation.

~it? -
o
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The Centronics Parallel Printer Interface

Designing a parallel input port

The following example illustrates a number of important concepts.

Example # 1

Problem statement:

Design an 16-bit parallel input port mapped on address 7Eh of the I/O space of the
FALCON-A CPU.

Solution:

The process of designing a parallel input port is very similar to the design of a parallel
output port except for the following differences:

1. The address in this case is 7Eh, which is different from the previous value.
Hence, the address decoder will have the inputs A7 and AO inverted, while the
other address lines at its input will not be inverted.

2. Control bus signal IOR# will be used instead of the signal [OW#.

3. A set of sixteen tri-state buffers will be used for data isolation. Their common
enable line will be connected to the output of the big AND gate (in the figure, fp
is being inverted because Enable is active low). The input of these buffers can be
connected to the input device and the output is connected to the FALCON-A’s
data bus.

In this example, switches S15...S0 are used to simulate the input data. The complete logic
circuit is shown in the next two figures.
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Sixteen switches
to simulate input data

High BYTE @7Eh  Low BYTE @7Fh
515 S8 57 S1 S0

= o+ oA od odA Al
[ [ | [ |

| / 1 ‘{ Rk

75 AF
—; AT
mam \_.: amn Cﬂ» IOR# AT5. A unused

for KO ports

From FALCON's
address bus

o
alalalolalalo

_
-

[]

—la From FALCON's
alg control bus

Ln:r|m|w
=|=|=|=
alolalc

gy
] )

To FALCON's data bus

A 16-hit parallel input port for the FALCON-A at address 7Eh and 7Fh

In the second figure, the CPU is assumed to allow the use of some part of its data bus
during a transfer, while in the first figure it is not allowed.

Sixteen switches
to simulate input data

High BYTE @7Eh  Low BYTE @7Fh From FALCON's
515 S8 57 51 S0 al control bus
(= o+ o+ oA od —%

L Lo IOR#
wnm _§
aEn A1
. — )
T A3
24
(| —

vl I

_ Al AS d
:? T Al for /O pDLrI‘[nsUSE
2 5-'| §|‘-

239952 o gz
To FALCON's data bus
A 16-bit parallel input port for the FALCON-A at address 7Eh and 7Fh

From FALCON's
address bus

0".||N|‘—C|
al al & O

Example # 2

Problem statement:

Given a FALCON-A processor with a 16-bit parallel input port at address 7Eh and a 16-
bit parallel output port at address DEh. Sixteen LED branches are used to display the
data at the output port and sixteen switches are used to send data through the input port.
Write an assembly language program to continuously monitor the input port and blink the
LED or LED(s) corresponding to the switch (es) set to logic 1. For example, if SO and S2
are set to 1, then only the LEDs L0 and L2 should blink. If S7 is also set to logic 1 later,
then L7 should also start blinking.
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Solution:
The program is shown in the text box with | .filename: Example 2.asmfa
filename: Example 2. It works as explained | :Notes:
below: ; rl is used as an I/O register
The first two instructions read the input port at | . 12 is used as a delay counter
address 7Eh and send this bit pattern to the | .
output port at address DEh. This will cause the | start: inrl, 126 : 126d = 7Eh
LEDs corresponding to the switches that are set outrl,222  ;222d=DEh
to a I to turn on. Next, the program waits for a | .
suitable amount of time, and then turns all movi r2, 0
LEDs off and waits again. delayl: subir2, 12, 1
After the second wait, the program reads the jnz r2, [delayl]
input port again. The LEDs that will be turn on | .
at the output port will now be according to the movirl, 0 - all LEDs off
new switch settings at the input port. The outrl, 222
process repeats indefinitely. Please see the | .

movir2, 0

delay2: subi r2, 12, 1
jnz r2, [delay2]

+
‘ Read switch settings from 7Eh ‘ ’ .
] Jump [start]

Send bit patterns of switches ;
to turn LEDs on

| Tumall LEDsoff |

}

halt

flowchart also.

It is also possible to use a single
address for both the input and the
output port. The following diagram
shows an address decoder for a 16-
bit parallel input/output port at
address 2Ch of the FALCON-A’s
I/O space. Note that the control bus lines IOW# and IOR# will differentiate between the
register and the tri-state buffer.

From FALCON-A's

To Enable address bus

LW
sutput port ﬂ 1 From FALCON-A's

control bus

—(_ s

To Enable
input port

._G: :I 10R#

From FALCON-A's
control bus

4 AT
A5 A5 unused
for 10 ports
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Memory mapped I/O ports

If it is desired to map the 16-bit
output port of Example #1(lec24)
on the memory space of the
FALCON-A, the following
changes would be needed.

1. Replace the IOW# signal
with the MEMW# signal.

2. Use the entire CPU address
bus at the input of the
address decoder, as shown
in the next figure. This
address decoder uses the
addresses 00ODEh and OODFh of the
FALCON-A’s memory space.

3. Use the store instruction instead of the
out instruction for sending data to the
output port (for memory mapped input
ports, use the load instruction instead of
the in instruction).

The program for Example #2(lec25) is rewritten
for the case of a memory mapped output port,
and is shown in the attached text box. The
advantage will be that more than 256 ports are
available, but the disadvantage is that the
address decoder will become more complex,
resulting in increased hardware costs.

To avoid the increase in hardware complexity,
many architects use what is called “partial
decoding”. This is explained in the next section.

Partial decoding and the
around” effect

“wrap

Partial decoding is a technique in which some
of the CPU’s address lines forming an input to
the address decoder are ignored. This reduces
the complexity of the address decoder, and also
lowers the cost. As an example, if the address
lines A8...A15 from the FALCON-A are not
used in the address decoder of the previous
figure, this will save eight inverters and two
AND gates. Partial decoding is an attractive
choice in small systems, where the size of the
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To enable of registers

E:[E&%f[

.

%

W
a0

MAE MW

From FALCON's
control bus

From FALCON's
address bus

Address Decoder for a memory mapped 16-hit parallel output port
for the FALCON-A at address 00DEh and 00DFh

;filename: Example_2MM.asmfa
;Notes:

; For MEMORY MAPPED
; output port at 00DEh

; 16 holds the output address
; r7 holds the input address

movir6, 111
add 16, r6, r6

movir7, 126

; rl is used as an I/O register
; r2 is used as a delay counter

load r1,[r7] ;126d =7Eh
store rl, [r6] ;222d = DEh

movir2, 0
delayl: subir2, r2, 1
jnz 12, [delay1]

movirl, 0
store rl, [r6]

; all LEDs off

movir2, 0
delay2: subi 12, 12, 1
jnz 12, [delay2]

jump [start]

halt
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address space is large but most of the memory is unimplemented. However, partial
decoding has its price as well. Consider the memory map for the

FALCON-A, shown again in the next figure. With 16 address lines, the total address
space is 2'® = 64 Kbytes. When the

b 8bits ——|

upper eight address lines are unused, 000K

they become don’t cares. The port

shown in the previous figure will be Foo
accessed for address O0DEh. But, it :

will also be accessed for address 01FFh
01DEh, 02DEh,......, FFDEh. In fact, :
the 64 Kbyte address space has been :
reduced to a 256 byte space. It FE00n
“wrapped around” itself 256 times. If ceren |

we only left 6 address lines, i.e., Al5 AL

... A10, unconnected, then we will still S

have a “wrap around”, but of a
different type. Now a 1 Kbyte (= 2'%)
address area will wrap around itself 64 times (= 2%).

Data bus multiplexing

Data bus multiplexing refers to the situation when one part of the data bus is connected to
the peripheral’s data bus at one time and the second part of the data bus is connected to
the peripheral’s data bus at a different time in such a way that at one time, only one 8-bit
portion of the data bus is connected to the peripheral.

It
D4
It
L2

[WiE]
:;ﬂ Enable _ i a0
: ]
N TN TN TN TN T T8 From FALCON's
control bus
) ) ) ’ ) ; ] IR L7 LED branches o #
I R
07 o] Al
From D Of % a2
FALCON's =) ‘ ]
data bus 03 QI
02 az—el E— A
D1 ol a5
00 ao—=l
% L 2B
— Zl“? Z:Q & Z& B-hit register w a7
or ] ‘ ar 1
o8 petipheral device A15. AR unused
oS ° ° e ° ‘ ’ ° for 10 ports
o From FALCON's
o Enable address bus
02
20

A Data Bus Multiplexer for an 8-bit Peripheral
using address DCh and DDh.
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Consider the situation where an 8-bit peripheral is to be interfaced with a CPU that has a
16-bit (or larger) data bus, but a byte-wide address space. Each byte transferred over the
data bus will have a separate address associated with it. For such CPUs, data bus
multiplexing can be used to attach 8-bit peripherals requiring a block of addresses. Tri-
state buffers can be used for this

purpose as shown in the attached figure. The logic circuit shown is for an 8-bit parallel
output port using addresses DCh and DDh of the FALCON’s I/O address space. It is
assumed that the CPU allows the use of a part of its data bus during a transfer, and that
each 16-bit general purpose register can be used as two separate 8-bit registers, e.g., rl
can be split as r1L and r1H such that

r1L<7..0> :=r1<7..0>, and

rlH<7..0> :=r1<15..8>
The LED branches and the 8-bit register shown in the diagram serve as a place holder,
and can be replaced by a peripheral device in actual practice. For an even address, A0=0,
and the upper group of the tri-state buffers is enabled, thereby connecting D<15..8> of
the CPU to the peripheral, while for an odd address from the CPU, A0=1, and the lower
group of the tri-state buffers is enabled. This causes D<7..0> of the CPU to be connected
with the peripheral device. In such systems the instruction out r1H,220 will access the
peripheral device using D<15..8>, while the instruction out r1L,221 will access it using
D<7..0>. The instruction out r1,220 will send r1H to the peripheral and the contents of
r1L will be lost. Why? This is left as an exercise for the student. The advantage of data
bus multiplexing is that all addresses are utilized and none of them is wasted, while the
disadvantage is the increased complexity and cost of the interface.

A generic I/0O interface — ﬁmmm ZH: s:m "

Most parallel /O ports used with prraod Reglsmu ‘2 U o‘ e

peripheral devices are mapped on a Status Register | | = | || | 5859

range of contiguous addresses. The Teffrom 15 210

following figure shows the block bamer [ Register | | o | [ | ] o0st

diagram of part of an interface that can () AT |15| ‘2 ‘1‘ i 6263

be used with a typical parallel printer.

It used eight consecutives addresses: ]___Téﬂféfea"d

address 56 to 63. A similar interface ADDRESS DECODER K=t vt B

can be used with the FALCON-A. The q From o'
ontrol Bus

registers shown within the interface are
associated with some parallel device, and have some pre-defined functions. For example,
the 16 bit register at addresses 56 and 57 can be used as a “data out” register for sending
data bytes to the parallel device. In the same way, the register at addresses 60 and 61 can
be used by the CPU to send control bits to the device. The double arrow shown at the top
corresponds to the data bus connection of the interface with the CPU. The address
decoder shown at the bottom receives address and control information from the CPU and
generates enable signals for these registers. These abstract concepts are further explained
in Example #3(lec25).

Last Modified: 01-Nov-06 Page 259



Advanced Computer Architecture-CS501

The Centronics Parallel Printer Interface

The Centronics Parallel Printer Interface is an example of a real, industry standard, set of
signal specifications used by most printer manufacturers. It was originally developed for
Centronics printers and can be used by devices having a uni-directional, byte-wide
parallel interface. Table 1 shows the important signals and their functions as defined by
the Centronics standard. Note that the direction of the signals is with respect to the printer
and not with respect to the CPU.

Typically, the printer (or any other similar device) is connected to the CPU via a cable
which has a 25-pin connector at the CPU side and a 36-pin connector at the printer side.
Every data bit in the 8-bit data bus D<7...0> uses a twisted pair for suppressing
transmission-line effects, like radiation and noise. The return path of these pins should
always be connected to signal ground. Additionally, the entire printer cable should be
shielded, and connected to chassis ground on each side. The three signals STROBE#,
BUSY and ACKNLG# form a set of handshaking signals. By using these signals, the
CPU can communicate asynchronously with the printer, as shown in the accompanying
timing waveforms. When the printer is ready for printing, the CPU starts data transfer to
the printer by placing the 8-bit data (corresponding to the ASCII value of the character to
be printed) on the printer’s data bus (pin 2 through 9 on the 36-pin connector, as shown in
Table 1). After this, a negative pulse of duration at least 0.5us is applied to the STROBE#
input (pinl) of the printer. The minimum set-up and hold times of the latches within the
printer are specified as 0.5us each, and these timing requirements must be observed by
the CPU (the interface designer should make sure that these specifications are met). As
soon as STROBE# goes low, the printer activates its BUSY line (pin 11) which is an
indication to the CPU that additional bytes cannot be accepted. The CPU can monitor this
status signal over an input port (a detailed assignment of these signals to I/O port bits is
given in Table 2).

Table 1: The Centronics Parallel Printer Interface
(power and ground signals are not shown)

Pin# Pin#
Signal Direction Function (25-DB) (36-DB)
Name W.r.t. Summary CPU Printer
Printer side side
D<7..0> Input 8-bit data bus 9,8,....2 9,8,....2
1-bit control signal
STROBE# Input High: default value. 1 1
Low: read-in of data is
performed.
1-bit status signal
Low: data has been received
ACKNLG# | Output | and the printer is ready to 10 10
accept new data.
High: default value.
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BUSY

Output

1-bit status signal
Low: default value
High: see note#1

11

11

PE#

Output

1-bit status signal

High: the printer is out of
paper.

Low: default value.

12

12

INIT#

Input

1-bit control signal

Low: the printer controller is
reset to its initial state and
the print buffer is cleared.
High: default value.

16

31

SLCT

Output

1-bit status signal
High: the printer is in
selected state.

13

13

AUTO
FEED XT#

Input

1-bit control signal
Low: paper is automatically
fed after one line.

14

14

SLCT IN#

Input

1-bit control signal

Low: data entry to the
printer is possible.

High: data entry to printer is
not Possible.

17

36

ERROR#

Output

1-bit status signal
Low: see note#2.
High: default value.

15

32

Note#1

The printer can not read data due to one of the following reasons:

1) During data entry

2) During data printing
3) In offline state
4) During printer error status

Note#2

When the printer is in one of the following states:
1) Paper end state
2) Offline state
3) Error state

When this

character

received, the ACKNLG# signal (pin 10)
goes low, indicating that the transfer is
complete. Soon after this, the BUSY signal
returns to logic zero, indicating that a new
transfer can be initiated. The BUSY signal
is more suitable for level-triggered
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systems, while the ACKNLG# signal is better for edge-triggered systems.

The interface will typically use two eight bit parallel output ports of the CPU, one for the
ASCII value of the character byte and the other for the control byte. It also specifies an 8-
bit parallel input port for the printer’s status information that can be checked by the CPU.

Table 2: Centronics Bit Assignment For 1/0 Ports

Logic | Descript 7 6 5 4 3 2 1 0
al ion
Addre
ss

0 8-bit D<7>| D<6> |D<5 |D<4>| D<3> | D<2>|D<I>| D<0>
output >
port for
DATA

1 8-bit BUS | ACKNL | PE# | SLC | ERRO | Unus | Unus | Unused
input Y G# T R# ed ed
port for
STATUS

2 8-bit Unus | Unused | DIR | IRQE | SLCT | INIT | Auto | STROB
output ed 13 N IN# # Feed E#

port for XT#

CONTR
OL

Example # 3:

Problem statement:

Design a Centronics parallel printer interface for the FALCON-A CPU. Map this
interface starting at address 38h (56 decimal) of the FALCON-A’s I/O address space.
Solution:

The Centronics interface requires at least three I/O addresses. However, since the
FALCON-A has a 16-bit data bus, and since we do not want to implement data bus
multiplexing (to keep things simple), we will use three contiguous even addresses, i.e.,
38h, 3Ah and 3Ch for the address

. . F FALCON"
decoder design. This arrangement also el bue
conforms to the requirements of our oW IOR#
assembler. Moreover, we will connect 21
; Sel 56 a2
data bus lines D7....DO of the <_ﬁ Lagt ! Erom FALCON's
FALCON-A to the 8-bit data bus of J address bus
Sel 58 =i q 40
| (R —
As
15 This bit, when set, enables the bidirectional mo _le%
—Lo<]—m
Last Modified: 01-Nov-06 Sel B0 (
A5 A3 d
— ] for 10 L;IJr;LrItSse

Address decoder for three parallel ports for the FALCON-A
at addresses 38h, 3Ah, and 3Ch
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the printer (i.e. pins 9, 8, ..., 2 of the printer cable) and leave lines D15...D8 unconnected.
Since the FALCON-A uses the big-endian format, this will make sure that the low byte of
CPU registers will be transferred to the printer. (Recall that these bytes will actually be
mapped on addresses 39h, 3Bh and 3Dh). The logic diagram of the address decoder for
this interface is shown in the given figure.
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Advanced Computer Architecture

Lecture No. 26

Reading Material

Vincent P. Heuring & Harry F. Jordan
Computer Systems Design and Architecture

Summary

The Centronic Parallel Printer Interface (Cont.)

The Centronic Parallel Printer Interface(Cont.)
Programmed Input/Output

Examples of Programmed I/O for FALCON-A and SRC
Comparisons of FALCON-A, SRC examples

Table 1: The Centronics Parallel Printer Interface
(power and ground signals are not shown)

(The explanation of this table is provided in lecture 25 also)

Chapter 8
8.2.2

Pin# Pin#
Signal Direction Function (25-DB) (36-DB)
Name Ww.r.t. Summary CPU Printer
Printer side side
D<7..0> Input 8-bit data bus 9,8,....2 9,8,....2
1-bit control signal
STROBE# Input High: default value. 1 1
Low: read-in of data is
performed.
1-bit status signal
Low: data has been received
ACKNLG# | Output | and the printer is ready to 10 10
accept new data.
High: default value.
1-bit status signal
BUSY Output | Low: default value 11 11
High: see note#1
1-bit status signal
PE# Output | High: the printer is out of 12 12
paper.
Low: default value.
1-bit control signal
Low: the printer controller is
INIT# Input reset to its initial state and 16 31
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the print buffer is cleared.
High: default value.
1-bit status signal
SLCT Output | High: the printer is in 13 13
selected state.
1-bit control signal
AUTO Input Low: paper is automatically 14 14
FEED XT# fed after one line.
1-bit control signal
Low: data entry to the
SLCT IN# Input | printer is possible. 17 36
High: data entry to printer is
not Possible.
1-bit status signal
ERROR# Output | Low: see note#2. 15 32
High: default value.
Table 2: Centronics Bit Assignment For 1/0 Ports
Logical | Description 7 6 5 4 3 2 1 0
Address
0 8-bit output | D<7> D<6> D<5> | D<4> D<3> D<2> | D<I> D<0>
port for
DATA
1 8-bitinput | BUSY | ACKNLG# | PE# | SLCT | ERROR# | Unused | Unused | Unused
port for
STATUS
2 8-bit output | Unused | Unused | DIR'®|IRQEN | SLCT | INIT# | Auto | STROBE#
port for IN# Feed
CONTROL XT#

' This bit, when set, enables the bidirectional mode.
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Example # 1
Problem statement:
Assuming that a Centronics parallel printer

is interfaced to the FALCON-A processor, m

as shown in example 3 of lecture 25, write

an assembly language program to send an [Intialize the printer’
80 character line to the printer. Assume Make sure thfélt STROBER

that the line of characters is stored in the
memory starting at address 1024.

and INIT# are high.

i
Solution: inter
The flowchart for the solution is shown in Checke pilnters el
given figure and the program listing is 4@, YES
shown in the textbox with filename: N :
Example_1. |Load Character byte from memory|
The first thing that needs to be done is the t .
initialization of the printer. This means |Send CharaCtir to the printer| “ Iciudes e olowing
that a “reset” command should be sent to ‘Activate STROBE# for 05US‘ ‘Reset prier
the printer. Using the information from ! Set buffer size in 15
Table 1, this can be done by writing a 0 to |Set STR?BE# to ] +Set mask to detect busy
bit 2 (i.e., INIT#) of the control register [Increment buffer pointer | +3et control port value for
having logical address 2. In our example, e
this maps onto address 60 of the [ Decrement loop counter | ‘Setoop colnferfo NOB
FALCON-A. (Remember to set this bit to
logic 1 for normal operation of the — L=

printer). Then we make STROBE# high by
placing logic 1 in bit 0 of the control register. Bit 1 and bit 3 should be 0 because we
want to activate auto line feed and keep the printer in selected mode. Additionally, bit 4
and bit 5 should be 0 so that interrupts are disabled and the bi-directional mode is not
selected. The complete control word is 0000 0001 and this value has been assigned to the
variable reset in the program. The following instruction pair performs the reset
operation:

movirl, reset

out rl, controlp
As it is given that the starting address of the printer buffer is 1024'", so we place this
address in r5. The mask to test the BUSY flag is placed in r3. The value for the mask is
80h. This corresponds to a logic 1 in bit 7 and logic zeros elsewhere for the status register
having address 58 (logical address 1 in Table 1). Then the program enters a loop, called
the polling loop, to test the status of the printer. If the printer is busy, the loop repeats.
The following three instructions form the polling loop:

in rl, statusp
andrl, rl, r3
jnz rl, [again]

7 The mul instruction is used for this purpose because the 8-bit immediate operand in the movi instruction
can only be within the range —128 and +127. Using the mul instruction in this way overcomes the
limitation of the FALCON-A. Similarly, the shiftl instruction is used to bring 80h in register r3.
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The status of the printer is placed in register r1, and bit 7 is tested for logic 0. If not so,
the program repeats the status check operation.

When the printer is ready to accept a new character, it clears bit 7 (i.e., the BUSY bit) of
the status register. At this time, the program picks the next character from the memory
and sends it to the printer. The STROBE# line is activated and then it is deactivated to
generate the necessary pulse on this input of the printer. Finally, the buffer pointer is
advanced, the loop counter is decremented and the process repeats. When all the
characters have been printed, the program halts.

A number of equates have been used in the program to make it flexible as well as easily
readable. The program is shown on the next page.
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filename: Example 1.asmfa

This program sends an 80 character line
to a FALCON-A parallel printer

Notes:
1. 8-bit printer data bus connected to
D<7...0> of the FALCON-A (remember big-endian)
Thus, the printer actually uses addresses 57, 59 & o6l

; 2. one character per l6-bits of data xfered
.org 400

NOB: .equ 80

movi r5, 32
mul r5, r5, r5 ; r5 holds 1024 temporarily

movi r3, 1
shiftl r3, r3, 7 ; to set mask to 0080h

datap: .equ 56
statusp: .equ 58
controlp: .equ 60
reset: .equ 1

’
’

’

used to set unidirectional, no interrupts,
auto line feed, and strobe high

strb H: .equ 5
strb L: .equ 4

’

movi rl reset ; use rl for data xfer
out rl, controlp

movi r7, NOB ; use r/7 as character counter
again: in rl, statusp

and rl, rl, r3 ; test if BUSY = 17

jnz rl, [again] ; wait if BUSY = 1

load rl, [r5]
out rl, datap
movi rl, strb L
out rl, controlp
movi rl, strb H
out rl, controlp
addi r5, r5, 2
subi r7, r7, 1
jnz r7, [again]
halt
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I/0 techniques:

There are three main techniques using which a CPU can exchange data with a peripheral
device, namely

e Programmed I/O

e Interrupt driven I/O

e Direct Memory Access (DMA).

In this section, we present the first one.

Programmed Input/Output

Programmed 1/O refers to the situation when all I/O operations are performed under the
direct control of a program running on the CPU. This program, which usually consists of
a “tight loop”, controls all I/O activity, including device status sensing, issuing read or
write commands, and transferring the data'®. A subsequent I/O operation cannot begin
until the current I/O operation to a certain device is complete. This causes the CPU to
wait, and thus makes the scheme extremely inefficient. The solution to Example #
3(lec24), Example #2(lec25), and Example #1(lec26) are examples of programmed
input/output. We will analyze the program for Example #1(lec26) to explain a few things
related to the programmed I/O technique.

Timing analysis of the program in Example # 1(lec26)

The main loop of the program given in the solution to Example #1(lec26) executes 80
times. This is equal to the number of characters to be printed on one line. This portion of
the program is shown again with the execution time of each instruction listed in brackets
with it. The numbers shown are for a uni-bus

CPU implementation. A complete list of movi r7, NOB [2]
execution times for all the FALCON-A’s |
instructions is given in Appendix A. A | again: inrl, statusp [3]
number of things can be noted now. andrl, rl, 13 [3]
1. Assuming that the output at the jnz rl, [again] [4]
hardware pins changes at the end of | 3
the (I/O write) bus cycle, the load r1, [r5] [5]
STROBE# signal will go from logicl outrl, datap [3]
to logic 0 at the end of the instruction movirl, strob_L [2]
pair. out rl, controlp [3]
movirl,strob H [2]
movirl, strb L [2] out r1, controlp [3]
out rl, controlp [3] addir5, 15, 2 (3]
subi 17,17, 1 [3]
jnz 17, [again] [4]
halt

' The I/0 device has no direct access to the memory or the CPU, and transfer 1s generally done by using
the CPU registers.
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The execution time for these two instructions is 2+3 = 5 clock periods. Therefore,
STROBE# stays at logicl for at least 5 clock periods i.e., during these two instructions.
For a 10MHz FALCON-A CPU, this will correspond to 5x100 = 500nsec = 0.5usec.
Since the data to the printer is being sent by the CPU using the two instructions (load r1,
[r5] and out r1, datap) which are before the first movi instruction, the printer’s data
setup time requirement is satisfied as long as we do not increase the clock frequency
beyond 10MHz.

After these two instructions, the next two instructions in the program cause STROBE# to
go to logic 1 again.

movirl, sttb H [2]
out rl, controlp [3]

These two instructions also take 5 clock periods, or 0.5usec, to execute. Thus, the timing
requirement of the STROBE# pulse width will also be satisfied as long as we do not
increase the clock frequency beyond 10MHz. In case the frequency is greater than
10MHz, other instruction can be used in between these two pairs of instructions.

The printer’s data hold time requirement is easily satisfied because there are a number of
instructions after this out instruction which do not change the control port, and the
character value is already present in the data register within the interface since the end of
the out r1, datap instruction.

2. The three instructions given below:
again: inrl, statusp [3]
andrl, rl,r3 [3]
jnz rl, [again] [4]

form what is called a “polling loop”. The process of periodically checking the status of a
device to see if it is ready for the next I/O operation is called “polling”. It is the simplest
way for an I/O device to communicate with the CPU. The device indicates its readiness
by setting certain bits in a status register, and the CPU can read these bits to get
information about the device. Thus, the CPU does all the work and controls all the 1/0
activities. The polling loop given above takes 10 clock periods. For a I0MHz FALCON-
A CPU, this is 10x100=1psec. One pass of the main loop takes a total of
3+3+4+5+3+2+3+2+3+3+3+4 = 38 clock periods which is 38x100 = 3.8usec. This is the
time that the CPU takes to send one character to the printer. If we assume that a 1000
character per second (cps) printer is connected to the CPU, then this printer has the
capability to print one character in every lmsec or every 1000usec. So, after sending a
character in 3.8usec to the printer, the CPU will wait for about 996pusec before it can send
the next character to the printer. This implies that the polling loop will be executed about
996 times for each character. This is indeed a very inefficient way of sending characters
to the printer.

Last Modified: 01-Nov-06 Page 270



Advanced Computer Architecture-CS501

An improved way of doing this would be to include a memory of suitable size within the
printer. This memory is also called a buffer, as explained earlier. The CPU can fill this
buffer in a single “burst” at its own speed, and then do something else, while the printer
picks up one character at a time from this buffer and prints it at its own speed. This is
exactly the situation with today’s printers. The task of generating the STROBE# pulse
will also be done by the electronic circuits within the printer. In effect, a dedicated
processor within the printer will do this job. However, if the buffer within the printer fills
up, the CPU will still not be able to transfer additional data to it. A different handshaking
scheme will then be needed to make the CPU to communicate asynchronously with the
buffer in the printer, resulting in an inefficient operation again. This is explained below.

Assume that the printer has a FIFO type buffer of size 64 bytes that can be filled up
without any delay at the time when the printer is not printing anything. When one or
more character values are present in the buffer, the printer will pick up one value at a
time and print it. Remember we have a 1000 cps printer, so it takes Imsec to print a
character. The program for Example #1(lec26) is modified for this situation and is given
below. All the assumptions are the same, unless otherwise mentioned.

again: inrl, statusp [3]
andrl, r1, 13 [3]
jnz rl, [again][4]
load rl, [r5] [5]
outrl, datap [3]
addir5,15,2 [3]
subir7,r7,1 [3]
jnz 17, [again] [4]

Note that while the instructions for generating the STROBE# pulse have been eliminated,
the polling loop is still there. This is necessary because the BUSY signal will still be
present, although it will have a different meaning n now. In this case, BUSY =1 will
mean that the buffer within the printer is full and it can not accept additional bytes.

The main loop shown in the program has an execution time of 28 clock periods, which is
2.8usec for a 10MHz FALCON-A CPU. The polling loop still takes 10 clock periods or
Iusec. Assuming that this program starts when the buffer in the printer is empty, the
outer loop will execute 64 times before the CPU encounters a BUSY=1 condition. After
that the situation will be the same as in the previous case. The polling loop will execute
for about 996 times before BUSY goes to logic 0. This situation will persist for the
remaining 16 characters (remember we are sending an 80 character line to the printer).

One can argue that the problem can be solved by increasing the buffer size to more than
80 bytes. Well, first of all, memory is not free. So, a large buffer will increase the cost of
the printer. Even if we are willing to pay more for an improved printer, the larger buffer
will still fill up whenever the number of characters is more than the buffer size. When
that happens, we will be back to square one again.
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A careful analysis of the situation reveals that there is something wrong with the scheme
that is being used to send data to the printer. This problem of having a larger overhead of
polling was recognized long ago, and therefore, interrupts were invented as an alternate
to programmed I/O. Interrupt driven I/O will be the topic of the next lecture.

Programmed I/0O in SRC

In this section, we will discuss some more examples of programmed I/O with our
example processor SRC which uses the memory mapped I/O technique.

Program for Character Output
To understand how programmed [/O works in SRC, we will discuss a program which
outputs the character to the printer. The first instruction loads the branch target and the
second instruction loads the character into lower 8 bits of register r2. The 2-instruction
loop reads the status register and tests the ready signal by checking its sign bit. It
executes until the ready signal becomes logic one. On exit from the loop, the character is
written to the device data register by the store instruction.

lar r3, wait

Idr 12, char

wait: 1d r1, COSTAT

brpl 13, r1

str2, COUT
A 10 MIPS, SRC would execute 10,000 instructions waiting for a 1,000 character/sec
printer.

Program Fragment to Print 80-Character Line
The next example for the SRC is of a program which sends an 80-character line to a line
printer with a command register. There are two nested loops starting at label wait. The
two instruction inner loop, which waits for ready and the outer seven instruction loop
which performs the following tasks.

e Outputs a character

e Advance the buffer pointer

e Decrement the register containing the number of characters left to print

e Repeat if there are more characters left to send.
The last two instructions issue the command to print the line.
The next example discussed from the book is of a driver program for 32-character input
devices (Figure 8.10, Page 388).

Comparisons of the SRC and FALCON-A Examples

The FALCON-A and SRC programmed I/O examples discussed are similar with some
differences. In the first example discussed for the SRC (i.e. Character output), the control
signal responsible for data transfer by the CPU is the ready signal while for FALCON-A
Busy (active low)signal is checked. In the second example for the SRC, the instruction
set, address width and no. of lines on address is different.

Although different techniques have been used to increase the efficiency of the
programmed I/O, overheads due to polling can not be completely eliminated.
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Advanced Computer Architecture

Lecture No. 27

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.2.2
Summary

e Programmed I/O Driver for SRC
e Interrupt Driven I/O

Programmed I/0O Driver for SRC

Please refer to Figure 8.10 of the text and its associated explanation.

Interrupt Driven I/O:

Introduction:

An interrupt is a request to the CPU to suspend normal processing and temporarily divert
the flow of control through a new program. This new program to which control is
transferred is called an Interrupt Service Routine or ISR. Another name for an ISR is an
Interrupt Handler.

* Interrupts are used to demand attention from the CPU.

* Interrupts are asynchronous breaks in program flow that occur as a result of events
outside the running program.

* Interrupts are usually hardware related, stemming from events such as a key or button
press, timer expiration, or completion of a data transfer.
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The basic purpose of interrupts
is to divert CPU processing only
when it is required. As an
example let us consider the
example of a user typing a - Program Flow
document on word-processing 1
software running on a multi

Program Flow

Main Program

tasking operating system. It is

up to the software to displaya = | |

character when the user presses

a key on the keyboard. To fulfill “::;‘1;’}’ S “I:e'r‘?:;ﬁ

this responsibility the processor

can repeatedly poll the keyboard to check if the user has pressed a key. However, the
average user can type at most 50 to 60 words in a minute. The rate of input is much
slower than the speed of the processor. Hence, most of the polling messages that the
processor sends to the keyboard will be wasted. A significant fraction of the processor’s
cycles will be wasted checking for user input on the keyboard. It should also be kept in
mind that there are usually multiple peripheral devices such as mouse, camera, LAN card,
modem, etc. If the processor would poll each and every one of these devices for input, it
would be wasting a large amount of its time. To solve this problem, interrupts are
integrated into the system. Whenever a peripheral device has data to be exchanged with
the processor, it interrupts the processor; the processor saves its state and then executes
an interrupt handler routine (which basically exchanges data with the device). After this
exchange is completed, the processor resumes its task. Coming back to the keyboard
example, if it takes the average user approximately 500 ms to press consecutive keys a
modern processor like the Pentium can execute up to 300,000,000 instructions in these
500 Ms. Hence, interrupts are an efficient way to handle I/O compared to polling.

Advantages of interrupts:
» Useful for interfacing I/O devices with low data transfer rates.
* CPU is not tied up in a tight loop for polling the I/O device.

Program Flow for an interrupt driven interface:

The attached figure shows the program flow executing on a processor with interrupts
enabled. As we can see, the program is interrupted in several locations to service various
types of interrupts.

Types of Interrupts:
The general categories of interrupts are as follows:
* Internal Interrupts
» External Interrupts
* Hardware Interrupts
» Software Interrupts

Internal Interrupts:
* Internal interrupts are generated by the processor.
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» These are used by processor to handle the exceptions generated during instruction
execution.
Internal interrupts are generated to handle conditions such as stack overflow or a divide-
by-zero exception. Internal interrupts are also referred to as traps. They are mostly used
for exception handling. These types of interrupts are also called exceptions and were
discussed previously.

External Interrupts:
External interrupts are generated by the devices other than the processor. They are of two
types.

» Hardware interrupts are generated by the external hardware.

» Software interrupts are generated by the software using some interrupt instruction.

As the name implies, external interrupts are generated by devices external to the CPU,
such as the click of a mouse or pressing a key on a keyboard. In most cases, input from
external sources requires immediate attention. These events require a quick service by the
software, e.g., a word processing software must quickly display on the monitor, the
character typed by the user on the keyboard. A mouse click should produce immediate
results. Data received from the LAN card or the modem must be copied from the buffer
immediately so that pending data is not lost because of buffer overflow, etc.

Hardware interrupts:

Hardware interrupts are generated by external events specific to peripheral devices. Most
processors have at least one line dedicated to interrupt requests. When a device signals on
this specific line, the processor halts its activity and executes an interrupt service routine.
Such interrupts are always asynchronous with respect to instruction execution, and are
not associated with any particular instruction. They do not prevent instruction completion
as exceptions like an arithmetic overflows does. Thus, the control unit only needs to
check for such interrupts at the start of every new instruction. Additionally, the CPU
needs to know the identification and priority of the device sending the interrupt request.

There are two types of hardware interrupt:
= Maskable Interrupts
* Non-maskable Interrupts

Maskable Interrupts:
» These interrupts are applied to the INTR pin of the processor.
» These can be blocked by resetting the flag bit for the interrupts.

Non-maskable Interrupts:
* These interrupts are detected using the NMI pin of the processor.
» These can not be blocked or masked.

» Reserved for catastrophic event in the system.

Software interrupts:
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Software interrupts are usually associated with the software. A simple output operation in
a multitasking system requires software interrupts to be generated so that the processor
may temporarily halt its activity and place the data on its data bus for the peripheral
device. Output is usually handled by interrupts so that it appears interactive and
asynchronous. Notification of other events, such as expiry of a software timer is also
handled by software interrupts. Software interrupts are also used with system calls. When
the operating system switches from user mode to supervisor mode it does so through
software interrupts. Let us consider an example where a user program must delete a file.
The user program will be executing in the user mode. When it makes the specific system
call to delete the file, a software interrupt will be generated, this will cause the processor
to halt its current activity (which would be the user program) and switch to supervisor
mode. Once in supervisor mode, the operating system will delete the file and then control
will return to the user program. While in supervisor mode the operating system would
need to decide if it could delete the specified file with out harmful consequences to the
systems integrity, hence it is important that the system switch to supervisor mode at each
system call.

I/0 Software System Layers:

User Level 1/O Software

Device-Independent Operating System Software

Device Drivers

Interrupt Handlers

Hardware

The above diagram shows the various software layers related to I/O. At the bottom lies
the actual hardware itself, i.e. the peripheral device. The peripheral device uses the
hardware interrupts to communicate with the processor. The processor responds by
executing the interrupt handler for that particular device. The device drivers form the
bridge between the hardware and the software. The operating system uses the device
drivers to communicate with the device in a hardware independent fashion, e.g., the
operating system need not cater for a specific brand of CRT monitors, or keyboards, the
specific device driver written for that monitor or keyboard will act as an intermediary
between the operating system and the device. It would be clear from the previous
statement that the operating system expects certain common functions from all brands of
devices in a category. Actually implementing these functions for each particular brand or
vendor is the responsibility of the device driver. The user programs run at top of the
operating system.

Interrupt Service Routine (ISR):
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» Itis a routine which is executed when an interrupt occurs.

* Also known as an Interrupt Handler.

* Deals with low-level events in the hardware of a computer system, like a tick of a

real-time clock.

As it was mentioned earlier, an interrupt once generated must be serviced through an
interrupt service routine. These routines are stored in the system memory ready for
execution. Once the interrupt is generated, the processor must branch to the location of
the appropriate service routine to execute it. The branch address of the ISR is discussed
next.

Branch Address of the ISR:

There are two ways used to choose the branch address of an Interrupt Service Routine.
= Non-vectored Interrupts

=  Vectored Interrupts

Non-vectored Interrupts:

In non-vectored interrupts, the branch address of the interrupt service routine is fixed.
The code for the ISR is loaded at fixed memory location. Non-vectored interrupts are
very easy to implement and not flexible at all. In this case, the number of peripheral
devices is fixed and may not be increased. Once the interrupt is generated the processor
queries each peripheral device to find out which device generated the interrupt. This
approach is the least flexible for software interrupt handling.

Vectored Interrupts:

Interrupt vectors are used to specify the address of the interrupt service routine. The code
for ISR can be loaded anywhere in the memory. This approach is much more flexible as
the programmer may easily locate the interrupt vector and change its addresses to use
custom interrupt servicing routines. Using vectored interrupts, multiple devices may
share the same interrupt input line to the processor. A process called daisy chaining is
then used to locate the interrupting device.

Interrupt Vector:
Interrupt vector is a fixed size structure that stores the address of the first instruction of
the ISR.

Interrupt Vector Table:
» All of the interrupt vectors are stored in the memory in a special table called
Interrupt Vector Table.

* Interrupt Vector Table is loaded at the memory location 0 for the 8086/8088.

Interrupts in Intel 8086/8088:
* Interrupts in 8086/8088 are vector interrupts.
+ Interrupt vector is of 4 bytes to store IP and CS.
* Interrupt vector table is loaded at address 0 of main memory.
» There is provision of 256 interrupts.
Branch Address Calculation:
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* The number of interrupt is the number of interrupt vector in the interrupt vector
table.

» Since size of each vector is 4 bytes and interrupt vector starts from address 0,
therefore, the address of interrupt vector can be calculated by simply multiplying
the number by 4.

Interrupt Vector Example:
In 8086/8088 machines the size of interrupt vector is 4 bytes that holds IP and CS of ISR.

Code Segment Register Value
at3 (Most Significant Byte)

Code Segment Register Value
a+2 (Least Significant Byte)

Instruction Pointer Value
atl (Most Significant Byte)

Instruction Pointer Value
a (Least Significant Byte)

Returning from the ISR:

Every ISA should have an instruction, like the IRET instruction, which should be
executed when the ISR terminates. This means that the IRET instruction should be the
last instruction of every ISR. This is, in effect, a FAR RETURN in that it restores a
number of registers, and flags to their value before the ISR was called. Thus the previous
environment is restored after the servicing of the interrupt is completed.

Interrupt Handling:
The CPU responds to the interrupt request by completing the current instruction, and then
storing the return address from PC into a memory stack. Then the CPU branches to the
ISR that processes the requested operation of data transfer. In general, the following
sequence takes place.

Hardware Interrupt Handling:

= Hardware issues interrupt signal to the CPU.

=  CPU completes the execution of current instruction.

= CPU acknowledges interrupt.

= Hardware places the interrupt number on the data bus.

= (CPU determines the address of ISR from the interrupt number available on the data
bus.
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= CPU pushes the program status word (flags) on the stack along with the current value
of program counter.

= The CPU starts executing the ISR.

= After completion of the ISR, the environment is restored; control is transferred back
to the main program.

Interrupt Latency:

Interrupt Latency is the time needed by the CPU to recognize (not service) an interrupt
request. It consists of the time to perform the following:

Finish executing the current instruction.

Perform interrupt-acknowledge bus cycles.

Temporarily save the current environment.

Calculate the IVT address and transfer control to the ISR.

If wait states are inserted by either some memory module or the device supplying the
interrupt type number, the interrupt latency will increase accordingly.

Interrupt Latency for external interrupts depends on how many clock periods remain in
the execution of the current instruction.

On the average, the longest latency occurs when a multiplication, division or a variable-
bit shift or rotate instruction is executing when the interrupt request arrives.

Response Deadline:
It is the maximum time that an interrupt handler can take between the time when interrupt
was requested and when the device must be serviced.

Expanding Interrupt Structure:
When there is more than one device that can interrupt the CPU, an Interrupt Controller is
used to handle the priority of requests generated by the devices simultaneously.

Interrupt Precedence:
Interrupts occurring at the same time i.e. within the same instruction are serviced
according to a pre-defined priority.

e In general, all internal interrupts have priority over all external interrupts; the
single-step interrupt is an exception.

e NMI has priority over INTR if both occur simultaneously.

e The above mentioned priority structure is applicable as far as the recognition of
(simultaneous) interrupts is concerned. As far as servicing (execution of the
related ISR) is concerned, the single-step interrupt always gets the highest
priority, then the NMI, and finally those (hardware or software) interrupts that
occur last. If IF is not 1, then INTR is ignored in any case. Moreover, since any
ISR will clear IF, INTR has lower "service priority" compared to software
interrupts, unless the ISR itself sets IF=1.
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Simultaneous Hardware Interrupt Requests:
The priority of the devices requesting service at the same time is resolved by using two
ways:

= Daisy-Chained Interrupt

= Parallel Priority Interrupt

Daisy-Chaining Priority:

* The daisy-chaining method to resolve the priority consists of a series connection of
the devices in order of their priority.

* Device with maximum priority is placed first and device with least priority is placed
at the end.

Daisy-Chain Priority Interrupt
* The devices interrupt the CPU.
» The CPU sends acknowledgement to the maximum priority device.
» If the interrupt was generated by the device, the interrupt for the device is
serviced.
* Otherwise the acknowledgement is passed to the next device.

If the higher priority devices are going to interrupt continuously then the device with the
lower priority is not serviced. So some additional circuitry is also needed to introduce
fairness.

Priority In
Interrupt .
Acknowledge Device 1
(Max Priority)
CPU Device 2
Device 3
L (Min Priority)
Priority Out
VVAD stands .
for Vector To Next Device
Address

Parallel Priority:
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 Parallel priority method for resolving the priority uses individual bits of a priority
encoder.

» The priority of the device is determined by position of the input of the encoder
used for the interrupt.

Parallel Priority Interrupt:

Interrupt0 ————— a v
— A
Interrupt1 ————— b D
Priority 0
——— ¢t
Interrupt2 —— Encoder

0 _—
Interrupt3 ——— . D
0 a
t
Y a
0 B
Interrupt 3 has maximum priority T u
Interrupt 0 has minimum priority L | s
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Advanced Computer Architecture

Lecture No. 28

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.3
Summary

e Comparison of Interrupt driven I/O and Polling

e Design Issues

e Interrupt Handler Software

e Interrupt Hardware

e Interrupt Software

Comparison of Interrupt driven I/O and Polling

Interrupt driven I/O is better than polling. In the case of polling a lot of time is wasted in
questioning the peripheral device whether it is ready for delivering the data or not. In the
case of interrupt driven I/O the CPU time in polling is saved.

Now the design issues involved in implementation of the interrupts are twofold. There
would be a number of interrupts that could be initiated. Once the interrupt is there, how
the CPU does know which particular device initiated this interrupt. So the first question is
evaluation of the peripheral device or looking at which peripheral device has generated
the interrupt. Now the second important question is that usually there would be a number
of interrupts simultaneously available. So if there are a number of interrupts then there
should be a mechanism by which we could just resolve that which particular interrupt
should be serviced first. So there should be some priority mechanism.

Design Issues

There are two design issues:
1. Device Identification
2. Priority mechanism

Device Identification

In this issue different mechanisms could be used.
e Multiple interrupt lines
e Software Poll
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e Daisy Chain
1. Multiple Interrupt Line

This is the most straight forward approach, and in this method, a number of interrupt
lines are provided between the CPU and the I/O module. However, it is impractical to
dedicate more than a few bus lines or CPU pins to interrupt lines. Consequently, even if
multiple lines are used, it is likely that each line will have multiple I/O modules attached
to it. Thus on each line, one of the other technique would still be required.

2. Software Poll

CPU polls to identify the interrupting module and branches to an interrupt service routine
on detecting an interrupt. This identification is done using special commands or reading
the device status register. Special command may be a test I/O. In this case, CPU raises
test I/O and places the address of a particular I/O module on the address line. If I/O
module sets the interrupt then it responds positively. In the case of an addressable status
register, the CPU reads the status register of each I/O module to identify the interrupting
module. Once the correct module is identified, the CPU branches to a device service
routine which is specific to that particular device.

Simplified Interrupt Circuit for an I/O Interface

For above two techniques
the implementation might Inte rrupt Irte rrupt

require some hardware. Data (23...16) il Ved(...0) request enahle
The hardware would be oo Doa

specific to the processor  [Diata{0..15) Info (15....0) B B
which is being used. For p_® p_®
example, for the case of

SRC, simple hardware req i o

machanism is indicated.

Now the basic technique fack

is handshaking and in this

case of handshaking, the peripheral device would initiate an interrupt. This interrupt
needs to be enabled. We will have a mechanism of ANDing the two signals. One is
interrupt enable and other is interrupt request. Now these two requests would be passed
on the CPU. The CPU passes on the acknowledge signal to the device. The acknowledge
signal is shared and it goes on to different devices.

The information about interrupt vector is given in 8-bits, from bit 0 to 7, which is
translated to bit 16 to 23 on the data bus. Now the other 16-bits, from 0 to 15 are mapped
to the data lines from 0 to 15. Now both of these are available through the tri-state
buffers, which would be enabled through interrupt acknowledge.
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3. Daisy Chain

The wired or interrupt signal allows several devices to request interrupt simultaneously.
However, for proper operation one and only one requesting device must receive an
acknowledge signal, otherwise if we have more than one devices, we would have a data
bus contention and the interrupt information would not be resolved. The usual solution is
called a daisy chain. Assuming that if we have jth devices requesting for interrupt then
first device 0 would receive the acknowledge signal, so therefore, iackO=iack. The next
device would only receive an acknowledge i.e., the jth device would receive an
acknowledge if the previous device that means j-1 does not have an enabled interrupt
request, that

means interrupt 0 bus

was not initiated data —
by the previous ireq —

device. Now the igck
figure shows this l y l )
concept in the 0 device W) device W0 device
form of a a 1 i
connection from
device 0 to 1. From 0, we see the acknowledge is generated for device 1, device 1
generates acknowledge for device2 and so on. So this signal propagates from one device
to other device. Logically we could write it in the form of equation:

lack;= 1ack j.;(req;.;enb j.;)

As we said that the previous device should not have generated an interrupt, that
means its interrupt was not enabled and therefore, it passes on the acknowledge
signal from its output to he next device.

Disadvantages of Software Poll and Daisy Chain

The software poll has a disadvantage is that it consumes a lot of time, while the daisy
chain is more efficient. The daisy chain has the disadvantage that the device nearest to the
CPU would have highest priority. So, usually those devices which require higher priority
would be connected nearer to the CPU. Now in order to get a fair chance for other
devices, other mechanisms could be initiated or we could say that we could start instead

of device 0 from that device where the CPU finishes the last interrupt and could have a
cyclic provision to different devices.

Interrupt Handler Software

Example using SRC

(Read from Book, Jordan page395)
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Example using FALCON-A

As an example of interrupt-driven I/O, consider an output device, such as a parallel
printer connected to the FALCON-A CPU. Now suppose that we want to print a
document while using an application program like a word processor or a spread sheet. In
this section, we will explain the important aspects of hardware and software for
implementing an interrupt driven parallel printer interface for the FALCON-A. During
this discussion, we will also explain the differences and similarities between this interface
and the one discussed earlier. To make things simple, we have made the assumption that
only one interrupt pin is available on the FALCON-A, and only one interrupt is possible
at a given time with this CPU. Implications of allowing only one interrupt at a time are
that

No NMI is possible

No nesting of interrupts is possible

No priority structure needed for multiple devices

No arbitration needed for simultaneous interrupts

No need for vectored interrupts, therefore, no need of interrupt vectors and
interrupt vector tables

e Effect of software initiated interrupts and internal interrupts (exceptions) has to
be ignored in this discussion

Along with the previous assumption, the following assumptions have also been used:

e Hardware sets and clears the interrupt flag, in addition to handling other
things like saving PC, etc.

e The address of the ISR is stored at absolute address 2 in memory.

e The ISR will set up a stack in the memory for saving the CPU’s environment

e One ASCII character stored per 16-bit word in the FALCON-A’s memory and
one character transferred during a 16-bit transfer.

e The calling program will call the ISR for printing the first character through
the printer driver.

e Printer will activate ACKNLG# only when not BUSY.

Interrupt Hardware:

The logic diagram for the interrupt

hardware is shown in the Figure. The F
interrupt request is synchronized by FALCON-A 2 Logie 1
handshaking signals, called IREQ CPU J s ACKNLGH
and IACK. The timing diagram for IREQ DFF 1= E—
the handshaking signals used in the 'ACKT ? from IRQEN

interrupt driven I/O is shown in the o

next Figure. The printer will assert
IREQ as soon as the ACKNLG# Logic Diagram for Interrupt Driven /O
on the FALCON-A CPU
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signal goes low (i.e. as soon as the printer is ready to accept new data) provided that
IREQN=I1. The processor will complete the current instruction and respond by
executing the interrupt service routine. The inverting tri-state buffer at the clock input
of the D flip flop is enabled by IRQEN. This will make sure that after the current print
job is complete, additional requests on IREQ are disabled. This can happen as a result
of the printer being available even through the user may not have requested a print
operation. The IACK line from the CPU is connected to the asynchronous reset, R, of
the D flip flop so that the same interrupt request from the printer is not presented again
to the CPU. The asynchronous set input of the D flip flop, labeled S in the diagram, is
permanently connected to logic 1.

This will make sure that the flip flop ~ACKNLG#
will never be set asynchronously.

The D input is also permanently

connected to logic 1, as a result of 4
which the flip flop will always be set QUREQ) |
synchronously in response to
ACKNLG# provided IRQEN=I.
Recall that IRQEN is bit 4 on the IACK
centronics control port at logical
address 2, and this is mapped onto Timing Diagram for Interrupt Driven 11O
address 60 of the FALCON-A’s 1/0 on the FALCON-A CPU

space. The rest of the hardware is

case of the same as in the case of the programmed I/O example.

Interrupt Software:

Our software for the interrupt driven printer example consists of three parts:
1). Dummy calling program
2). Printer Driver
3). ISR

We are assuming that normal processing is taking place' e.g., a word processor is
executing. The user wants to print a document. This

" Since only one interrupt is possible, a question may arise about the way the print command is presented
to the word processor. It can be assumed that polling is used for the input device in this case.
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Main Program (e.g. Word) in progress

User invokes

. J 51t B
Print command se 13 to pass Bufp,

r7 to pass NOB , and
| rd to pass return address

Call Printer Driver to the printer driver

Retum with error code
mnr7

NO ERROR?
(r7=07)

Send Error message

and invoke Error Routine

Y
(r7=0)
Resume Normal Processing
document is placed in a buffer by the word processor. This buffer is usually present
somewhere else in the memory. The responsibility of the calling program is to pass the
number of bytes to be printed and the starting address of the buffer where these bytes are
stored to the printer driver. The calling program can also be called the main program.
Suppose that the total number of bytes to be printed are 40. (They are placed in a buffer
having the starting address 1024.) When the user invokes the print command, the calling
program calls the printer driver and passes these two parameters in r7 and r5 respectively.
The return address of the calling program is stored in r4. A dummy calling program code
is given below.
Bufp, NOB, PB, and temp are the spaces reserved in memory for later use in the program.
The first instruction is jump [main]. It is stored at absolute memory address 0 by using
the .org 0 directive. It will transfer control to the main program. The first instruction of
the main program is placed at address “main”, which is the entry point in this example.
Note that the entry point is different in this case from the reset address, which is address 0
for the FALCON-A. Also note that the address of the first instruction in the printer driver
is stored at address “a4PD” using the .sw directive. This value is then brought into r6.
The main program calls the printer driver by using the instruction call r4, ré. In an actual
program, after returning from the printer driver, the normal processing resumes and if
there are any error conditions, they will be handled at this point. Next, consider the code
for the printer driver, shown in the attached text box.
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; filename: Example Falcon-A .asmfa
;This program sends a single character
;to a FALCON-A parallel printer
;using an interrupt driven I/O interface
; Notes:
; 1. 8-bit printer data bus connected to
; D<7..0> of the FALCON-A (remember big-endian)
;  Thus, the printer actually uses addresses 57, 59 & 61
; 2. one character per 16-bits of data xfered ;
.org 0
jump [main]
a4ISR: .sw beginISR
a4PD: .sw Pdriver

dvl: .sw 1024
dv2: .sw 40
Bufp: dw 1

NOB: dw 1

PB: dw 1

temp: .dw 6

; Dummy Calling Program, e.g., a word processor
.org 32
main: load r6, [a4PD] ;t6 holds address of printer driver
; user invokes print command here
load r5, [dv1] ;Prepare registers for passing
load r7, [dv2] ; information about print buffer.
; call printer driver
call r4, r6
; Handle error conditions, if any , upon return.
; Normal processing resumes

9

halt

The printer driver is loaded at address 50. Initialization of the variables includes setting
of port addresses, variables for the STROBE# pulse, initializing the printer and enabling
its IRQEN. The variables can be defined anywhere in the program because they reserve
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no memory space. When the printer driver starts, the PB flag is tested to make sure that a
previous print job is not in progress. If so, the ISR is not invoked and a message is
returned to the main program indicating that printing is in progress. This may display a
“printer busy” icon on the user’s screen, or cause some other appropriate action. If the
printer is available, it is initialized by the driver. The following activities are also
performed by the driver (see the attached flow chart also).

Set port addresses

Set up variables for the STROBE# puls

Initialize printer and enable its IRQEN.

Set up printer ISR by pointing to the buffer and initializing counter
Make sure that the previous print job is not in progress

Set PB flag to block further print jobs till current one is complete
Invoke ISR for the first time

Pass error message to main program if ISR reports an error

Return to main program

The code and flow chart for the interrupt service routine (ISR) are discussed in the next
few paragraphs.

The Printer Driver

 Initialization of the variables®|

*datap: .equ 56

| Check the PB flag | statusp: .equ 58
A message controlp: .equ 60
indicating printin = reset: .equ 17
in rg F:eSS g ~1E ﬂ§9 2 disable: .equ &
Prog —YES strb_H: .equ 21

| Set the PB flag | strb_L: .equ 20

|Initialize the printer and enable interrupt|
:

|Store the address of the character buffer in Bufp|

1
| Store the total number of bytes to be printed in NOB |

Call ISR ISR

L Return
| Return to the Caller |  from ISR
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; Printer driver

b

.org 50 ; starting address of Printer driver
datap: .equ 56
statusp: .equ 58
controlp: .equ 60
reset: .equ 17 ;or 11h

; used to set unidirectional, enable interrupts,
; auto line feed, and strobe high

disable: .equs
strb_H: .equ 21 ; or 15h
strb_L: .equ 20 ; or 14h

b

; check PB flag first, if set,
; return with message.
Pdriver: load r1, [PB]

jnz rl, [message]

movirl, 1
store r1, [PB] ; a 1 in PB indicates Print In Progress
movi rl, reset ; use rl for data xfer

out rl, controlp
store 15, [Bufp]
store r7, [NOB]

int

jump [finish]
message: nop ; in actual situation, put a message routine here
;to indicate print in progress
finish: ret r4

2

We have assumed that the address of the ISR is stored at absolute memory address 2 by
the operating system. One way to do that is by using the .sw directive (as done in the
dummy calling program). The symbol sw stands for “storage of word”. It enables the user
to identify storage for a constant, or the value of a variable, an address or a label at a
fixed memory location during the assembly process.
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|Save the CPU environment]

ISR .

IRecover buffgr information]|
|Read the printer's status|

[Error messagg-—YES
3 NO

Load character from the buffer,
and send to the printer
[Activate STROBE#]

\ Update buffer pointer and character counter |

Test the counter]
NO

Coun;}er =0
2 YES
Disable the interrup:cs and clear PB flag|

| Restore the environment and quit |
[Return to the Calling Program]

These values become part of the binary file and are then loaded into the memory when
the binary file is loaded and executed. In response to a hardware interrupt or the software
interrupt int, the control unit of the FALCON-A CPU will pick up the address of the first
instruction in the ISR from memory location 2, and transfer control to it. This effectively
means that the behavioral RTL of the int instruction will be as shown below:

int IPC« PC, PC « M[2], IF « 0

The IPC register in the CPU is a holding place for the current value of the PC. It is
invisible to the programmer. Since the iret instruction should always be the last
instruction in every ISR, its behavior RTL will be as shown below:

iret PC —IPC, IF « 1

The saving and restoring of the other elements of the CPU environment like the general
purpose registers should be done within the ISR. The five store instructions at the
beginning are used to save these registers into the memory block starting at address
temp, and the five load instructions at the end are used to restore these registers to their
original values.

; ISR starts here
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.org 100

beginISR: movi r6, temp

store rl, [r6]
store 13, [r6+2]
store 4, [r6+4]
store 15, [r6+6]
store 17, [r6+8]
movir3, 1
shiftl r3,r3,7
load 15, [Bufp]
load r7, [NOB]
in rl, statusp
and rl,r1,r3
jnz rl, [error]
load r1, [r5]

; to set mask to 0080h
; not necessary to use r5 & r7 here
; using r7 as character counter

;test if BUSY =17
; error if BUSY =1
; get char from printer buffer

out rl, datap

movirl, strb L
out rl, controlp
movirl, sttb H
out rl, controlp

addir5, 15, 2
store 15, [Bufp] ; update buffer pointer
subi 17,17, 1 ; update character counter

store r7, [NOB]
jz 17, [suspend]
jump [last]
suspend: store 17, [PB]
movi rl, disable
out rl, controlp
jump [last]
error: movi r7, -1
; other error codes go here

; clear PB flag
; disable future interrupts till
; printer driver called again

; error code in 17

last: load r1, [r6]
load 13, [r6+2]
load r4, [r6+4]
load 15, [r6+6]
load r7, [r6+8]
iret
.end

After setting the mask to 80h in 13, the current value of the buffer pointer and the number
of bytes to be printed are brought from the memory into r5 and r7 respectively. After a
byte is printed, these values are updated in the memory for use by the ISR when it is
invoked again. The rest of the code in the ISR is the same as it was in case of the
programmed /O example. Note that we are testing the printer’s BUSY flag within the
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ISR also. However, the difference here is that this testing is being done for a different
reason, and it is done only once for each call to the ISR.

Memory Map for our ISR
Entry Point
Address of ISR
4 Data and Pointer Area
32 Main Program
(Dummy Calling Program )
50 Printer Driver
100 ISR
1024 Print Buffer

The memory map for this program is as shown in the Figure. The point to be noted here
is that the ISR can be loaded anywhere in the memory but its address will be present at
memory location 2 i.e. M[2].
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Reading Material
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Summary

Introduction to FALSIM

Preparing source files for FALSIM

Using FALSIM

FALCON-A assembly language techniques

Introduction to FALSIM:
FALSIM is the name of the software application which consists of the FALCON-A
assembler and the FALCON-A simulator. It runs under Windows XP.

FALCON-A Assembler:

Figure 1 shows a snapshot of the graphical user interface (GUI) for the FALCON-A
Assembler. This tool loads a FALCON-A assembly file with a (.asmfa) extension and
parses it. It shows the parsed results in an error log, lets the user view the assembled file’s
contents in the file listing and also provides the features of printing the machine code, an
Instruction Table and a Symbol Table to a FALCON-A listing file. It also allows the user
to run the FALCON-A Simulator.

The FALCON-A Assembler source code has two main modules, the 1st-pass module and
the 2nd-pass module. The Ist-pass module takes an assembly file with a (.asmfa)
extension and processes the file contents. It then generates a Symbol Table which
corresponds to the storage of all program variables, labels and data values in a data
structure at the implementation level. The Symbol Table is used by the 2nd-pass module.
Failures of the Ist-pass are handled by the assembler using its exception handling
mechanism.

The 2nd-pass module sequentially processes the .asmfa file to interpret the instruction op-
codes, register op-codes and constants using the Symbol Table. It then produces a list file
with a .Istfa extension independent of successful or failed pass. If the pass is successful a
binary file with a .binfa extension is produced which contains the machine code for the
program contained in the assembly file.

FALCON-A Simulator:

Figure 6 shows a snapshot of the GUI for the FALCON-A Simulator. This tool loads a
FALCON-A binary file with a (.binfa) extension and presents its contents into different
areas of the simulator. It allows the user to execute the program to a specific point within
a time frame or just executes it, line by line. It also allows the user to view the registers,
I/O port values and memory contents as the instructions execute.
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FALSIM Features:
The FALCON-A Assembler provides its user with the following features:
Select Assembly File: Labeled as “1” in Figure 1, this feature enables the user to choose
a FALCON-A assembly file and open it for processing by the assembler.
Assembler Options: Labeled as “2” in Figure 1.

e Print Symbol Table
This feature, if selected, writes the Symbol Table (produced after the execution of the 1st-
pass of the assembler) to a FALCON-A list file with an extension of (.Istfa). The Symbol
Table includes variables, addresses and labels with their respective values.

e Print Instruction Table
This feature, if selected, writes the FALCON-A instructions along with their op-codes at
the end of the list file.
List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed insight of the
FALCON-A listing file, which is produced as a result of the execution of the 1st and 2nd-
pass. It shows the Program Counter value in hexadecimal and decimal formats along with
the machine code generated for every line of assembly code. These values are printed
when the 2nd-pass is completed.
Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user about the
errors and their respective details, which occurs in any of the two passes of the
assembler. The size of this window can be changed by dragging the boundary line up or
down.
Highlight: This feature is labeled as “5” in Figure 1 and helps the user to search for a
certain input with the options of searching with “match whole” and “match any” parts
of the string. The search also has the option of checking with/without considering “case-
sensitivity”. It searches the List File area and highlights the search results using the
yellow color. It also indicates the total number of matches found.
Start Simulator: This feature is labeled as “6” in Figure 1. The FALCON-A Simulator is
run using the FALCON-A Assembler’s “Start Simulator” option. Its features are detailed
as follows:
Load Binary File: The button labeled as “11” in Figure 6, allows the user to choose and
open a FALCON-A binary file with a (.binfa) extension. When a file is being loaded into
the simulator all the register, constants (if any) and memory values are set.
Registers: The area labeled as “12” in Figure 6. enables, the user to see values present in
different registers before, during and after execution.
Instruction: This area is labeled as “13” in Figure 6 and contains the value of PC, address
of an instruction, its representation in Assembly, the Register Transfer Language, the op-
code and the instruction type.
1/0 Ports: 1/0 ports are labeled as “14” in Figure 6. These ports are available for the user
to enter input operation values and visualize output operation values whenever an 1/O
operation takes place in the program. The input value for an input operation is given by
the user before an instruction executes. The output values are visible in the I/O port area
once the instruction has successfully executed.
Memory: The memory is divided into two areas and is labeled as “15” in Figure 6, to
facilitate the view of data stored at different memory locations before, during and after
program execution.
Processor’s State: Labeled as “16” in Figure 6, this area shows the current values of the
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Instruction Register and the Program Counter while the program executes.
Highlight: The highlight option for the FALCON-A simulator is labeled as “17” in
Figure 6. This feature is similar to the way the highlight feature of the FALCON-A
Assembler works. It offers to highlight the search string which is entered as an input,
with the “All “ and ““ Part “ option. The results of the search are highlighted using the
yellow color. It also indicates the total number of matches.
The following is a description of the options available on the button panel labeled as “18”
in Figure 6.
Single Step: “Single Step” lets the user execute the program, one instruction at a time.
The next instruction is not executed unless the user does a “single step” again. By default,
the instruction to be executed will be the one next in the sequence. It changes if the user
specifies a different PC value using the Change PC option (explained below).
Change PC: This option lets the user change the value of PC (Program Counter).
By changing the PC the user can execute the instruction to which the specified PC
points. The value in the PC must be an even address.
Execute: By choosing this button, the user is able to execute the loaded program
with the options of execution with/without breakpoint insertion. In case of
breakpoint insertion, the user has the option to choose from a list of valid
breakpoint values. It also has the option to set a limit on the time for execution.
This “Max Execution Time” option restricts the program execution to a time
frame specified by the user.
Change Register: Using the Change Register feature, the user can change the
value present in a particular register.
Change Memory Word: This feature enables the user to change values present at a
particular memory location.
Display Memory: Display Memory shows an updated memory area, after a
particular memory location other than the pre-existing ones is specified by the
user.
Change I/0: Allows the user to give an I/O port value if the instruction to be
executed requires an I/O operation. Giving in the input in any one of the I/O ports
areas before instruction execution, indicates that a particular I/O operation will be
a part of the program and it will have an input from some source. The value given
by the user indicates the input type and source.
Display I/0: Display I/0 works in a manner similar to Display Memory. Here the
user specifies the starting index of an I/O port. This features displays the 1/O ports
stating from the index specified.

2. Preparing Source Files for FALSIM:

In order to use the FALCON-A assembler and simulator, FALSIM, the source file
containing assembly language statements and directives should be prepared
according to the following guidelines:

e The source file should contain ASCII text only. Each line should be terminated by
a carriage return. The extension .asmfa should be used with each file name. After
assembly, a list file with the original filename and an extension .Istfa, and a
binary file with an extension .binfa will be generated by FALSIM.
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e Comments are indicated by a semicolon (;) and can be placed anywhere in the
source file. The FALSIM assembler ignores any text after the semicolon.

e Names in the source file can be of one of the following types:

e Variables: These are defined using the .equ directive. A value must also be
assigned to variables when they are defined.

e Addresses in the “data and pointer area” within the memory: These can be defined
using the .dw or the .sw directive. The difference between these two directives is
that when .dw is used, it is not possible to store any value in the memory. The
integer after .dw identifies the number of memory words to be reserved starting at
the current address. (The directive .db can be used to reserve bytes in memory.)
Using the .sw directive, it is possible to store a constant or the value of a name in
the memory. It is also possible to use pointers with this directive to specify
addresses larger than 127. Data tables and jump tables can also be set up in the
memory using this directive.

e Labels: An assembly language statement can have a unique label associated with
it. Two assembly language statements cannot have the same name. Every label
should have a colon (:) after it.

e Use the .org 0 directive as the first line in the program. Although the use of this
line is optional, its use will make sure that FALSIM will start simulation by
picking up the first instruction stored at address 0 of the memory. (Address O is
called the reset address of the processor). A jump [first] instruction can be placed
at address 0, so that control is transferred to the first executable statement of the
main program. Thus, the label first serves as the identifier of the “entry point” in
the source file. The .org directive can also be used anywhere in the source file to
force code at a particular address in the memory.

e Address 2 in the memory is reserved for the pointer to the Interrupt Service
Routine (ISR). The .sw directive can be used to store the address of the first
instruction in the ISR at this location.

e Address 4 to 125 can be used for addresses of data and pointers*’. However, the
main program must start at address 126 or less®', otherwise FALSIM will
generate an error at the jump [first] instruction.

e The main program should be followed by any subprograms or procedures. Each
procedure should be terminated with a ret instruction. The ISR, if any, should be
placed after the procedures and should be terminated with the iret instruction.

e The last line in the source file should be the .end directive.

e The .equ directive can be used anywhere in the source file to assign values to
variables.

e [t is the responsibility of the programmer to make sure that code does not
overwrite data when the assembly process is performed, or vice versa. As an
example, this can happen if care is not exercised during the use of the .org
directive in the source file.

2 Any address between 4 and 14 can be used in place of the displacement field in load or store instructions.
Recall that the displacement field is just 5 bits in the instruction word.

2! This restriction is because of the fact that the immediate operand in the movi instruction must fit an 8-bit
field in the instruction word.
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3. Using FALSIM:

To start FALSIM (the FALCON-A assembler and simulator), double click on the
FALSIM icon. This will display the assembler window, as shown in the Figure 1.
Select one or both assembler options shown on the top right corner of the
assembler window labeled as “2”. If no option is selected, the symbol table and
the instruction table will not be generated in the list (.Istfa) file.
Click on the select assembly file button labeled as “1”. This will open the dialog
box as shown in the Figure 2.
Select the path and file containing the source program that is to be assembled.
Click on the open button. FALSIM will assemble the program and generate two
files with the same filename, but with different extensions. A list file will be
generated with an extension .Istfa, and a binary (executable) file will be generated
with an extension .binfa. FALSIM will also display the list file and any error
messages in two separate panes, as shown in Figure 3.
Double clicking on any error message highlights and displays the corresponding
erroneous line in the program listing window pane for the user. This is shown in
Figure 4. The highlight feature can also be used to display any text string,
including statements with errors in them. If the assembler reported any errors in
the source file, then these errors should be corrected and the program should be
assembled again before simulation can be done. Additionally, if the source file
had been assembled correctly at an earlier occasion, and a correct binary (.binfa)
file exists, the simulator can be started directly without performing the assembly
process.
To start the simulator, click on the start simulation button labeled as “6”. This will
open the dialog box shown in Figure 6.
Select the binary file to be simulated, and click Open as shown in Figure 7. (It is
also possible to open the file by double clicking on the file name in the “Open”
window).
This will open the simulation window with the executable program loaded in it as
shown in Figure 8. The details of the different panes in this window were given in
section 1 earlier. Notice that the first instruction at address 0 is ready for
execution. All registers are initialized to 0. The memory contains the address of
the ISR (i.e., 64h which is 100 decimal) at location 2 and the address of the
printer driver at location 4. These two addresses are determined at assembly time
in our case. In a real situation, these addresses will be determined at execution
time by the operating system, and thus the ISR and the printer driver will be
located in the memory by the operating system (called re-locatable code).
Subsequent memory locations contain constants defined in the program.
Click single step button labeled as “19”. FALSIM will execute the jump [main]
instruction at address 0 and the PC will change to 20h (32 decimal), which is the
address of the first instruction in the main program (i.e., the value of main).
Although in a real situation, there will be many instructions in the main program,
those instructions are not present in the dummy calling program. The first useful
instruction is shown next. It loads the address of the printer driver in r6 from the
pointer area in the memory. The registers r5 and r7 are also set up for passing the
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starting address of the print buffer and the number of bytes to be printed. In our
dummy program, we bring these values in to these registers from the data area in
the memory, and then pass these values to the printer driver using these two
registers. Clicking on the single step button twice, executes these two instructions.

e The execution of the call instruction simulates the event of a print request by the
user. This transfers control to the printer driver. Thus, when the call r4, ré
instruction is single stepped, the PC changes to 32h (50 decimal) for executing the
first instruction in the printer driver.

e Double click on memory location 000A, which is being used for holding the PB
(printer busy) flag. Enter a 1 and click the change memory button. This will store
a 0001 in this location, indicating that a previous print job is in progress. Now
click single step and note that this value is brought from memory location 000E
into register rl. Clicking single step again will cause the jnz rl, [message]
instruction to execute, and control will transfer to the message routine at address
0046h. The nop instruction is used here as a place holder.

e Click again on the single step button. Note that when the ret r4 instruction
executes, the value in r4 (i.e., 28h) is brought into the PC. The blue highlight bar
is placed on the next instruction after the call r4, r6 instruction in the main
program. In case of the dummy calling program, this is the halt instruction.

e Double click on the value of the PC labeled as “20”. This will open a dialog box
shown below. Enter a value of the PC (i.e.,
26h) corresponding to the call r4, r6 Fala¥-1s ge PC
instruction, so that it can be executed
again. A “list” of possible PC values can

Enter Mew Walue for PC [Hex]

also be pulled down using, and 0026h can o000 —
be selected from there as well.
e Click single step again to enter the printer ok | Carcel |

driver again.

e Change memory location 000A to a 0, and then single step the first instruction in
the printer driver. This will bring a 0 in rl, so that when the next jnz rl,
[message] instruction is executed, the branch will not be taken and control will
transfer to the next instruction after this instruction. This is movi rl, 1 at address
0036h.

¢ Continue single stepping.

e Notice that a 1 has been stored in memory location 000A, and rl contains 11h,
which is then transferred to the output port at address 3Ch (60 decimal) when the
out r1, controlp instruction executes. This can be verified by double clicking on
the top left corner of the I/O port pane, and changing the address to 3Ch. Another
way to display the value of an I/O port is to scroll the I/O window pane to the
desired position.

e Continue single stepping till the int instruction and note the changes in different
panes of the simulation window at each step.

e When the int instruction executes, the PC changes to 64h, which is the address of
the first instruction in the ISR. Clicking single step executes this instruction, and
loads the address of temp (i.e., 0010h) which is a temporary memory area for
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storing the environment. The five store instructions in the ISR save the CPU
environment (working registers) before the ISR change them.

e Single step through the ISR while noting the effects on various registers, memory
locations, and I/O ports till the iret instruction executes. This will pass control
back to the printer driver by changing the PC to the address of the jump [finish]
instruction, which is the next instruction after the int instruction.

e Double click on the value of the PC. Change it to point to the int instruction and
click single step to execute it again. Continue to single step till the in r1, statusp
instruction is ready for execution.

e Change the I/O port at address 3Ah (which represents the status port at address
58) to 80 and then single step the in rl, statusp instruction. The value in rl
should be 0080.

Single step twice and notice that control is transferred to the movi r7, FFFF**
instruction,which stores an error code of —1 in rl.

= M=)
Azsembler Oplions
Saler Prird Instruction Table ’vzp—
Assembly File { Print Symbol Table | EAT LCOMN
f- | Hex | Der. | Machine | Line Mo, | Sowce Stabament

ft

Case Sensitve

Higniignt | Total Match ] chVWhole © MBlth ANY gy cimuasin Avout Bt
Figure 1

*2 The instruction was originally movi r7, -1. Since it was converted to machine language by the assembler,
and then reverse assembled by the simulator, it became movi r7, FFFF. This is because the machine code
stores the number in 16-bits after sign-extension. The result will be the same in both cases.
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Figure 2
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Figure 3

FALCON-A Assembler
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4. FALCON-A assembly language programming techniques:

If a signed value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to +15),
FALSIM will report an error with a lead r1, [x] or a store r1, [x] instruction. To
overcome this problem, use movi r2, x followed by load rl1, [r2].
If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range  -128 to +127),
even the previous scheme will not work. FALSIM will report an error with the movi
r2, x instruction. The following instruction sequence should be used to overcome this
limitation of the FALCON-A. First store the 16-bit address in the memory using the
.sw directive. Then use two load instructions as shown below:
a: SW X

load r2, [a]

load r1, [r2]
This is essentially a “memory-register-indirect” addressing. It has been made possible
by the .sw directive. The value of a should be less than 15.
A similar technique can be used with immediate ALU instructions for large values of
the immediate data, and with the transfer of control (call and jump) instructions for
large values of the target address.
Large values (16-bit values) can also be stored in registers using the mul instruction
combined with the addi instruction. The following instructions bring a 201 in register
rl.
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movi r2, 10

movi r3, 20

mul r1, r2, r3 ; rl contains 200 after this instruction
addirl, r1, 1 ; rl now contains 201

Moving from one register to another can be done by using the instruction addi r2,
rl, 0.

Bit setting and clearing can be done using the logical (and, or, not, etc) instructions.
Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the multiplier or
divisor is a power of 2.
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Advanced Computer Architecture

Lecture No. 30

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.3.3,8.4
Summary

e Nested Interrupts
e Interrupt Mask

e DMA

Nested Interrupts

(Read from Book, Jordan Page 397)
Interrupt Mask

(Read from Book, Jordan Page 397)
Priority Mask

(Read from Book, Jordan Page 398)
Examples

Example # 1

Assume that three I/O devices are connected to a 32-bit, 10 MIPS CPU. The first device
is a hard drive with a maximum transfer rate of 1MB/sec. It has a 32-bit bus. The second
device is a floppy drive with a transfer rate of 25KB/sec over a 16-bit bus, and the third
device is a keyboard that must be polled thirty times per second. Assuming that the
polling operation requires 20 instructions for each I/O device, determine the percentage
of CPU time required to poll each device.

Solution:
The hard drive can transfer 1MB/sec or 250 K 32-bit words every second. Thus, this hard
drive should be polled using at least this rate.

Using 1K=2'" the number of CPU instructions required would be

250 x 2'° x 20 = 5120000 instructions per second.

2 Adopted from [H&P org]
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Percentage of CPU time required for polling is

(5.12 x 10%)/ (10 x10°%) = 51.2%

The floppy disk can transfer 25K/2= 12.5 x 2'° half-words per second. It should be
polled with at least this rate. The number of CPU instructions required will be 12.5 x 2"
x 20 = 256,000 instructions per second.

Therefore, the percentage of CPU time required for polling is

(0.256 x 10°)/ (10 x 10°) = 2.56%.

For the keyboard, the number of instructions required for polling is

30 x 20 = 600 instructions per second.

Therefore, the percentage of CPU time spent in polling is

600 / (10 x 10°) = 0.006%

It is clear from this example that while it is acceptable to use polling for a keyboard or a
floppy drive, it is very risky to use polling for the hard drive. In general, for devices with
a high data rate, the use of polling is not adequate.

Example # 2°

a.

What should be the polling frequency for an I/O device if the average delay
between the time when the device wants to make a request and the time when it is
polled, is to be at most 10 ms?

b. If it takes 10,000 cycles to poll the I/O device, and the processor operates at
100MHz, what % of the CPU time is spent polling?
c. What if th**e system wants to provide an average delay of Imsec?
Solution:
a. Assuming that the I/O requests are distributed evenly in time, the average time

that a device will have to wait for the processor to poll is half the time between
polling attempts. Therefore, to provide an average delay of 10 ms, the processor
will have to poll every 20 ms, or 50 times per second.

If each polling attempt takes 10,000 cycles, then the processor will spend 500,000
cycles polling each second. The % of CPU time spent in polling is then
(0.5x10°)/(100x10%=0.5%

To provide an average delay of 1ms, the polling frequency must be increased. The
processor will have to poll every 2ms, or 500 times per second. This will consume
5,000,000 cycles for polling. The % of CPU time spent polling then becomes
5/100=5%.

** Adopted from [Schaum]
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Example # 3%

What percentage of time will a 20MIPS processor spend in the busy wait loop of an 80-
character line printer when it takes 1 msec to print a character and a total of 565
instructions need to be executed to print an 80 character line. Assume that two
instructions are executed in the polling loop.

Solution:

Out of the total 565 instructions executed to print a line, 80x2=160 are required for
polling. For a 20MIPS processor, the execution of the remaining 405 instructions takes
405/ (20x10°% = 20.25psec. Since the printing of 80 characters takes 80ms, (80-0.02025)
=79.97msec is spent in the polling loop before the next 80 characters can be printed. This
is 79.97/80=99.96% of the total time.

Example # 4%

Consider a 20 MIPS processor with several input devices attached to it, each running at
1000 characters per second. Assume that it takes 17 instructions to handle an interrupt. If
the hardware interrupt response takes lpsec, what is the maximum number of devices
that can be handled simultaneously?

Solution:
A service for one character requires 17/ (20x10°) +1psec=1.85pusec. Since each device
runs at 1000 characters per second, 1.85 ms of handling time is required by each device

every second. Therefore the maximum number of devices that can be handled is 1/
(1.85x107%) = 540.

Example # 5%

Assume that a floppy drive having a transfer rate of 25KB per second is attached to a 32
bit, 10MIPS CPU using an interrupt driven interface. The drive has a 16-bit data bus.
Assume that the interrupt overhead is 20 instructions. Calculate the fraction of CPU time
required to service this drive when it is active.

Solution:

Since the floppy drive has a 16-bit data bus, it can transfer two bytes at one time. Thus its
transfer rate is 25/2 = 12.5K half-words (16-bits each) per second. This corresponds to an
overhead of 20 instructions or 12.5K x 20 = 12.5 x 2'° x 20 = 256000 instructions per
second.

Example # 6
A processor with a 500 MHz clock requires 1000 clock cycles to perform a context

switch and start an ISR. Assume each interrupt takes 10,000 cycles to execute the ISR

3 Adopted from
26 Adopted from
27 Adopted from
% Adopted from

H&J]
H&J]
H&P org]
Schaum]

— e e
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and the device makes 200 interrupt requests per second. Also, assume that the processor

polls every 0.5msec during the time when there are no interrupts. Further assume that

polling an I/O device requires 500 cycles. Compute the following:

a. How many cycles per second does the processor spend handling I/O from the
device if only interrupts are used?

b. What fraction of the CPU time is used in interrupt handling for part (a)?

c. How many cycles per second are spent on I/O if polling is also used with
interrupts?

d. How often should the processor poll so that polling incurs the same overhead as
interrupts?

Solution:

a. The device makes 200 interrupt requests per second, each of which takes
10,000 + 2x1000 (context switching to the ISR and back from it)
= 12,000 cycles.
Thus, a total of 200x12,000=2,400,000 cycles per second are spent handling 1/O
using  interrupts.

b. The percentage of the processor time used in interrupt handling is

2,400,000/(500x100) or 0.48%.
c. There are 200 interrupt requests per second, or one interrupt request every 5 ms.

Every interrupt consumes a total of 12,000 cycles, as calculated in part (a). For a
500 MHz CPU, this is

12000/(500 x 10°) = 24 microseconds.
For 200 interrupts per second, this is 4.8 msec.
This leaves 1000 - 4.8 = 995.2 msec for polling.

Since the processor polls once every 0.5 msec during the time when there is no
interrupt, this corresponds to

995/0.5 = 1990 times per second.
The total number of cycles required for polling is
1990 x 500 = 995,000 cycles per second.

Thus, the total time spent on I/O when using polling with  interrupts is
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2,400,000 + 995,000 = 3,395,000 cycles per second.

d. The interrupt overhead is 1000 cycles per second for a context switch to the ISR
and 1000 cycles per second back from it. This is a total of 2 x 1000 cycles per
second. With 200 interrupts per second, this is
200 x 2000 = 400,000 cycles per second.

The polling overhead is 500 cycles per second. Thus, for the same overhead as
interrupts, the polling operation should be performed

400,000 / 500 = 800 times per second,

or 1/800 = every 1.25 msec.

Direct Memory Access (DMA)

Direct memory access is a technique, where by the CPU passes its control to the memory
subsystem or one of its peripherals, so that a contiguous block of data could be
transferred from peripheral device to memory subsystem or from memory subsystem to
peripheral device or from one peripheral device to another peripheral device.

Advantage of DMA

The transfer rate is pretty fast and conceptually you could imagine that through disabling
the tri-state buffers, the system bus is isolated and a direct connection is established
between the I/O subsystem and the memory subsystem and then the CPU is free. It is idle
at that time or it could do some other activity. Therefore, the DMA would be quite useful,
if a large amount of data needs to be transferred, for example from a hard disk to a printer
or we could fill up the buffer of a printer in a pretty short time.

As compared to interrupt driven I/O or the programmed I/O, DMA would be much faster.
What is the consequence? The consequence is that we need to have another chip, which is
a DMA controller. “A DMA controller could be a CPU in itself and it could control the
total activity and synchronize the transfer of data”. DMA could be considered as a
technique of transferring data from I/O to memory and from memory to I/O without the
intervention of the CPU. The CPU just sets up an I/O module or a memory

subsystem, so that it passes control and the data could be passed on from I/O to memory
or from memory to I/O or within the memory from one subsystem to another subsystem
without interaction of the CPU. After this data transfer is complete, the control is passed
from I/O back to the CPU.

Now we can illustrate further the advantage of DMA using following example.

Example of DMA
If we write instruction load as follows:
load [2], [9]

This instruction is illegal and not available in the SRC processor. The symbols [2] and [9]
represent memory locations. If we want to have this transfer to be done then two steps
would be required. The instruction would be:

load rl, [9]

store rl, [2]
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Thus it is not possible to transfer from one memory location to another without involving
the CPU. The same applies to transfer between memory and peripherals connected to I/O
ports. For example we cannot have:

out [6], datap
It has to be done again in two steps:

load r1, [6]

out rl, datap
Similar comments apply to the “in” instruction. Thus the real cause of the limited transfer
rate is the CPU itself. It acts as an unnecessary middle man. The example illustrates that
in general, every data word travels over the system bus twice and this is not necessary,
and therefore, the DMA in such cases is pretty useful.

DMA Approach

The DMA approach is to turn off i.e. through tri-state buffers and therefore, electrically
disconnect from the system bus, the CPU and let a peripheral device or a memory
subsystem or any other module or another block of the same module communicate
directly with the memory or with another peripheral device. This would have the
advantage of having higher transfer rates which could approach that of limited by the
memory itself.

Disadvantage of DMA

The disadvantage however, would be that an additional DMA controller would be
required, that could make the system a bit more complex and expensive. Generally, the
DMA requests have priority over all other bus activities including interrupts. No
interrupts may be recognized during a DMA cycle.
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Advanced Computer Architecture
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Vincent P. Heuring & Harry F. Jordan Chapter 8
Computer Systems Design and Architecture 8.4
Summary

e Direct Memory Access (DMA):

Direct Memory Access (DMA):

Introduction
Direct Memory Access is a technique which allows a peripheral to read from and/or write
to memory without intervention by the CPU. It is a simple form of bus mastering where
the I/O device is set up by the CPU to transfer one or more contiguous blocks of memory.
After the transfer is complete, the I/0 device gives control back to the CPU.
The following DMA transfer combinations are possible:

e Memory to memory

e Memory to peripheral

e Peripheral to memory

e Peripheral to peripheral
The DMA approach is to "turn off" (i.e., tri-state and electrically disconnect from the
system buses) the CPU and let a peripheral device (or memory - another module or
another block of the same module) communicate directly with the memory (or another
peripheral).
ADVANTAGE: Higher transfer rates (approaching that of the memory) can be achieved.
DISADVANTAGE: A DMA Controller, or a DMAC, is needed, making the system
complex and expensive.
Generally, DMA requests have priority over all other bus activities, including interrupts.
No interrupts may be recognized during a DMA cycle.

Reason for DMA:
The instruction load [2], [9] is illegal. The symbols [2] and [9] represent memory
locations. This transfer has to be done in two steps:

e load r1,[9]

e store rl,bx
Thus, it is not possible to transfer from one memory location to another without involving
the CPU. The same applies to transfer between memory and peripherals connected to I/O
ports. e.g., we cannot have out [6], datap. It has to be done in two steps:
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e load r1,[6]

e out rl, datap
Similar comments apply to the in instruction.
Thus, the real cause of the limited transfer rate is the CPU itself. It acts as an
unnecessary "middleman". The above discussion also implies that, in general, every
data word travels over the system bus twice.

Some Definitions:

e MASTER COMPONENT: A component connected to the system bus and
having control of it during a particular bus cycle.

e SLAVE COMPONENT: A component connected to the system bus and with
which the master component can communicate during a particular bus cycle.
Normally the CPU with its bus control logic is the master component.

e QUALIFICATIONS TO BECOME A MASTER: A Master must have the
capability to place addresses on the address bus and direct the bus activity during
a bus cycle.

e QUALIFIED COMPONENTS:

o Processors with their associated bus control logic.
o DMA controllers.
e CYCLE STEALING: Taking control of the system bus for a few bus cycles.

Data Transfer using DMA:

Data transfer using DMA takes place in three steps.

1% Step:

in this step when the processor has to transfer data it issues a command to the DMA
controller with the following information:

= (Qperation to be performed i.e., read or write operation.

= Address of I/O device.

= Address of memory block.

= Size of data to be transferred.

Agter this, the processor becomes free and it may be able to perform other tasks.

2" Step:

In this step the entire block of data is transferred directly to or from memory by the DMA
controller.

3" Step:

In this, at the end of the transfer, the DMA controller informs the processor by sending an
interrupt signal.

See figure 8.18 on the page number 400 of text book.

The DMA Transfer Protocol:

Most processors have a separate line over which an external device can send a request
for DMA. There are various names in use for such a line. HOLD, RQ, or Bus Request
(BR), etc. are examples of these names.
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The DMA cycle usually begins with the alternate bus master requesting the system bus
by activating the associated Bus Request line and, of course, satisfying the setup and hold
times. The CPU completes the current bus cycle, in the same way as it does in case of
interrupts, and responds by floating the address, data and control lines. A Bus Grant
pulse is then output by the CPU to the same device from where the request occurred.
After receiving the Bus Grant pulse, and waiting for the "float delay" of the CPU, the
requesting device may drive the system bus. This precaution prevents bus contention. To
return control of the bus to the CPU, the alternate bus master relinquishes bus control and
issues a release pulse on the same Bus Request line. The CPU may drive the system bus
after detecting the release pulse. The alternate bus master should be tri-stated off the local
bus and have other CPU interface circuits re-enabled within this time.

DMA has priority over Interrupt driven I/O:

In interrupt driven I/O the 1/O transfer depends upon the speed at which the processor
tests and service a device. Also, many instructions are required for each I/O transfer.
These factors become bottleneck when large blocks of data are to be transferred. While in
the DMA technique the I/O transfers take place without the intervention by the CPU,
rather CPU pauses for one bus cycle. So DMA technique is the more efficient technique
for I/O transfers.

DMA Configurations:
* Single Bus Detached DMA
» Single Bus Integrated DMA
 I/OBus

Single Bus Detached DMA

In the example provided by the above diagram, there is a single bidirectional bus
connecting the processor, the memory,
the DMA module and all the 1/O
modules. When a particular I/O ‘Processor‘ ‘ Memory ‘ ‘ DMA ‘ ‘ 10 ‘ s ‘ 10 ‘
module needs to read or write large
amounts contiguous data it requests the processor for direct memory access. If permission
is granted by the processor, the I/O module sends the read or write address and the size of
data needed to be read or written to the DMA module. Once the DMA module
acknowledges the request, the I/O module is free to read or write its contiguous block of
data from or onto main memory. Even though in this situation the processor will not be
able to execute while the transfer is going on (as there is a just a single bus to facilitate
transfer of data), DMA transfer is much faster then having each word of memory being
read by the processor and then being written to its location.
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Single Bus Integrated DMA
In this configuration the DMA and one

or more I/O modules are integrated Processor] | Memory | [ 0w P~
without the inclusion of system bus o
functioning as the part of /O module [0 | [ o |
or may be as a separate module
controlling the I/O module.

System Bus

IO Bus

In this configuration we integrate the
DMA and I/O modules through an I/O [Processar| | wemary | | owa |
bus. So it will cut the number of 1/O 10 Bus

interfaces required between DMA and
I/O module.

Example

An /0O device transfers data at a rate of 10MB/s over a 100MB/s bus. The data is
transferred in 4KB blocks. If the processor operates at S00MHz, and it takes a total of
5000 cycles to handle each DMA request, find the fraction of CPU time handling the data
transfer with and without DMA.

Solution.
Without DMA

The processor here copies the data into memory as it is sent over the bus. Since
the I/0 device sends data at a rate of 10MB/s over the 100MB/s bus, 10 % of each second
is spent transferring data. Thus 10% of the CPU time is spent copying data to memory.
With DMA

Time required in handling each DMA request is 5000 cycles. Since 2500 DMA
requests are issued (10MB/4KB) the total time taken is 12,500,000 cycles. As the CPU

clock is 5S00MHZ, the fraction of CPU time spent is 12,500,000/(500x106) or 2.5%.

Example

A hard drive with a maximum transfer rate of 1Mbyte/sec is connected to a 32-bit,
10MIPS CPU operating at a clock frequency of 100 MHz. Assume that the I/O interface
is DMA based and it takes 500 clock cycles for the CPU to set-up the DMA controller.
Also assume that the interrupt handling process at the end of the DMA transfer takes an
additional 300 CPU clock cycles. If the data transfer is done using 2 KB blocks, calculate
the percentage of the CPU time consumed in handling the hard drive.

Solution
Since the hard drive transfers at IMB/sec, and each block size is 2KB, there are

1000/2= 500 blocks transferred/sec

Every DMA transfer uses 500+300=800 CPU cycles. This gives us
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800x500 = 400,000 = 400x 10’ cycles/sec
For the 100 MHz CPU, this corresponds to

(400x10%) / (100x10°)= 4x10 = 0.4%

This would be the case when the hard drive is transferring data all the time. In actual
situation, the drive will not be active all the time, and this number will be much smaller
than 0.4%.

Another assumption that is implied in the previous example is that the DMA controller is
the only device accessing the memory. If the CPU also tries to access memory, then
either the DMAC or the CPU will have to wait while the other one is actively accessing
the memory. If cache memory is also used, this can free up main memory for use by the
DMAC.

Cycle Stealing
The DMA module takes control of the bus to transfer data to and from memory by
forcing the CPU to temporarily suspend its operation. This approach is called Cycle
Stealing because in this approach DMA steals a bus cycle.

Instruction cycle

DMA and Interrupt breakpoints [* g
dlll‘illg an iIlStl'llCtiOll CYCIe Processor|Processor|Processor |Processor |Processor|Processor
The figure shows that the CPU suspends  [S¥tle | Cycle | Cycle | Gyele || Cycle |, Cycle
or pauses for one bus cycle when it Fech | Decode | Fetch | Execute | Store | Process

needs a bus cycle, transfers the data and Instruction|Instruction| Operand [Instruction| Result | Interrupt
then returns the control back to the CPU. t t
I/0 processors Interrupt

p . \\ DhiA Breakpaint
When /O module has its own local Breakpoints

memory to control a large number of I/O
devices without the involvement of CPU is called I/O processor.

I/0 Channels

When an I/O module has a capability of executing a specific set of instructions for
specific I/O devices in the memory without the involvement of CPU is called I/O
channel.

1I/0 channel architecture:

Types of I/O channels:
DMA Selector

Processor
Selector Channel Agﬂ:fr:s
It is the DMA controller that can do
block transfers for several devices but |||
only one at a time. Memary

‘ Device 1 ‘ ‘ Device 2 ‘ ‘ Device 3 ‘ me=
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Multiplexer Channel
It is the DMA controller that can do Processor W’
block transfers for several devices at Cou |
once. Address 2
Count 2

Types of Multiplexer Channel Memory

* Byte Multiplexer y—‘

* Block Multiplexer ‘ Device 1 ‘ ‘ Device 2 ‘ ‘ Device 3 ‘
Byte Multiplexer

* Byte multiplexer accepts or transmits characters.
» Interleaves bytes from several devices.
» Used for low speed devices.

Block Multiplexer
» Block multiplexer accepts or transmits block of characters.
» Interleaves blocks of bytes from several devices.
» Used for high speed devices.

Virtual Address:
Virtual address is generated be the logical by the memory management unit for
translation.

Physical Address:
Physical address is the address in the memory.

DMA and memory system
DMA disturbs the relationship between the memory system and CPU.

Direct memory access and the memory system

Without DMA, all memory accesses are handled by the CPU, using address translation
and cache mechanism. When DMA is implemented into an I/O system memory accesses
can be made without intervening the CPU for address translation and cache access. The
problems created by the DMA in virtual memory and cache systems can be solved using
hardware and software techniques.

Hardware Software Interface

One solution to the problem is that all the I/O transfers are made through the cache to
ensure that modified data are read and updated in the cache on the I/O write. This method
can decrease the processor performance because of infrequent usage of the I/O data.
Another approach is that the cache is invalidated for an I/O read and for an I/O write,
write-back (flushing) is forced by the operating system. This method is more efficient
because flushing of large parts of cache data is only done on DMA block accesses.

Third technique is to flush the cache entries using a hardware mechanism, used in
multiprogramming system to keep cache coherent.
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SOME clarifications:

e The terms "serial" and "parallel" are with respect to the computer I/O ports --- not
with respect to the CPU. The CPU always transfers data in parallel.

e The terms "programmed I/O", "interrupt driven I/O" and "DMA" are with respect
to the CPU. Each of these terms refers to a way in which the CPU handles I/O, or
the way data flow through the ports is controlled.

e The terms "simplex" and "duplex" are with respect to the transmission medium or
the communication link.

e The terms "memory mapped I/O" and "independent I/O" are with respect to the
mapping of the interface, i.e., they refer to the CPU control lines used in the
interface.
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Summary

e Hard Disk
Static and Dynamic Properties
Examples
Mechanical Delays and Flash Memory
Semiconductor Memory vs. Hard Disk

Hard Disk

Peripheral devices connect the outside world with the central processing unit through the
I/O modules. One important feature of these peripheral devices is the variable data rate.
Peripheral devices are important because of the function they perform.

A hard disk is the most frequently used peripheral device. It consists of a set of platters.
Each platter is divided into tracks. The track is subdivided into sectors. To identify each
sector, we need to have an address. So, before the actual data, there is a header and this
header consisting of few bytes like 10 bytes. Along with header there is a trailer. Every
sector has three parts: a header, data section and a trailer.

Static Properties

The storage capacity can be determined from the number of platters and the number of
tracks. In order to keep the density same for the entire surface, the trend is to use more
number of sectors for outer tracks and lesser number of sectors for inner tracks.

Dynamic Properties

When it is required to read data from a particular location of the disk, the head moves
towards the selected track and this process is called seek. The disk is constantly rotating
at a fixed speed. After a short time, the selected sector moved under the head. This
interval is called the rotational delay. On the average, the data may be available after half
a revolution. Therefore, the rotational latency is half revolution.

The time required to seek a particular track is defined by the manufacturer. Maximum,
minimum and average seek times are specified. Seek time depends upon the present
position of the head and the position of the required sector. For the sake of calculations,
we will use the average value of the seek time.
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e Transfer rate
When a particular sector is found, the data is transferred to an I/O module. This would
depend on the transfer rate. It would typically be between 30 and 60 Mbytes/sec defined
by the manufacturer.

e Overhead time
Up till now, we have assumed that when a request is made by the CPU to read data, then
hard disk is available. But this may not be the case. In such situation we have to face a
queuing delay. There is also another important factor: the hard disk controller, which is
the electronics present in the form of a printed circuit board on the hard disk. So the time
taken by this controller is called over head time.
The following examples will clarify some of these concepts.

Example 1
Find the average rotational latency if the disk rotates at 20,000 rpm.

Solution
The average latency to the desired data is halfway round the disk so
Average rotational latency =0.5/(20,000/60)
=1.5ms
Example 2
A magnetic disk has an average seek time of 5 ms. The transfer rate
is 50 MB/sec. The disk rotates at 10,000 rpm and the controller overhead is 0.2 msec.
Find the average time to read or write 1024 bytes.

Solution
Average Tseek=5ms
Average Trot=0.5*60/10,000=3 ms
Ttransfer=1KB/50MB=0.02ms
Tcontroller=0.2ms
The total time taken= Tseek +Trot+ Ttsfr +Tctr
=5+3+0.02+0.2
=8.22 ms
Example 3
A hard disk with 5 platters has 1024 tracks per platter,512 sectors
per track and 512 bytes/sector. What is the total capacity of the
disk?

Solution

512 bytes x 512

sectors=0.2MB/track

0.2MB x 1024 tracks=0.2GB/platter

Therefore the hard disk has the total capacity of 5 x 0.2=1GB
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Example 4
How many platters are required for a 40GB disk if there are 1024
bytes/sector, 2048 sectors per track and 4096 tracks per platter

Solution

The capacity of one platter

= 1024 x 2048 x 4096

=8GB

For a 40GB hard disk, we need 40/8
=5 such platters.

Example 5

Consider a hard disk that rotates at 3000 rpm. The seek time to move

the head between adjacent tracks is 1 ms. There are 64sectors per

track stored in linear order.

Assume that the read/write head is initially at the start of sector 1 on track 7.
a. How long will it take to transfer sector 1 on track 7 to sector 1 on track 9?
b. How long will it take to transfer all the sectors on track 12 to corresponding

sectors on track 13?

Solution

Time for one revolution=60/3000=20ms

a. Total transfer time=sector read time+head
movement time+rotational delay+sector write time

Time to read or write on sector=20/64=0.3 1ms/sector
Head movement time from track 7 to track 9=1msx2=2ms

After reading sector 1 on track 7, which takes .31ms, an additional 19.7 ms of
rotational delay is needed for the head to line up with sector 1 again.

The head movement time of 2 ms gets included in the19.7 ms. Total
transfer time=0.3 1ms+19.7ms+0.3 1ms=20.3ms

b. The time to transfer all the sectors of track 12 to track 13 can be computed in the
similar way. Assume that the memory buffer can hold an entire track. So the time
to read or write an entire track is simply the rotational delay for a track, which is
20 ms. The head movement time is 1ms, which is also the time for 1/0.3=3.3~ 4
sectors to pass under the head. Thus after reading a track and repositioning the
head, it is now on track 13, at four sectors past the initial sector that was read on
track 12. (Assuming track 13 is written starting at sector 5)
therefore total transfer time= 20+1+20=41ms.

If writing of track 13 start at the first sector, an additional 19 ms  should be
added, giving a total transfer time= 60 ms
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Example 6

Calculate time to read 64 KB (128 sectors) for the following disk parameters.
—180 GB, 3.5 inch disk

—12 platters, 24 surfaces

—7,200 RPM; (4 ms avg. latency)

—6 ms avg. seek (1/w)

—64 to 35 MB/s (internal)

—0.1 ms controller time

Solution

Disk latency = average seek time + average rotational delay + transfer time +
controller overhead

=6 ms + 0.5 x 1/(7200 RPM) /(60000ms/M)) + 64 KB / (64 MB/s) + 0.1 ms
=6+42+1.0+0.1ms=11.3ms

Mechanical Delay and Flash Memory

Mechanical movement is involved in data transfer and causes mechanical delays which
are not desirable in embedded systems. To overcome this problem in embedded systems,
flash memory is used. Flash memory can be thought of a type of electrically erasable
PROM. Each cell consists of two MOSFET and in between these two transistors, we have
a control gate and the presence/absence of charge tells us that it is a zero or one in that
location of memory.

The basic idea is to reduce the control overheads, and for a FLASH chip, this control
overhead is low. Furthermore flash memory has low power dissipation. For embedded
devices, flash is a better choice as compared to hard disk. Another important feature is
that read time is small for flash. However the write time may be significant. The reason is
that we first have to erase the memory and then write it. However in embedded system,
number of write operations is less so flash is still a good choice.

Example 7
Calculate the time to read 64 KB for the previous disk, this time using 1/3 of quoted seek
time, 3/4 of internal outer track bandwidth

Solution

Disk latency = average seek time + average rotational delay + transfer time + controller
overhead

=(0.33* 6 ms) + 0.5 * 1/(7200 RPM)

+ 64 KB/ (0.75* 64 MB/s) + 0.1 ms

=2ms + 0.5 /(7200 RPM/(60000ms/M))

+ 64 KB / (48 KB/ms) + 0.1 ms

=2+42+13+0.1 ms="7.6 ms
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Semiconductor Memory vs. Hard Disk

At one time developers thought that development of semiconductor memory would
completely wipe out the hard disk. There are two important features that need to be kept
in mind in this regard:

1. Cost
It is low for hard disk as compared to semi-conductor memory.
2. Latency

Typically latency of a hard disk is in milliseconds. For SRAM, it is 10° times lower as
compared to hard disk.
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Introduction to ALSU *

ALSU is a combinational circuit so inside an ALSU, we have AND, OR, NOT and other
different gates combined together in different ways to perform addition, subtraction, and,
or, not, etc. Up till now, we consider ALSU as a “black box” which takes two operands, a
and b, at the input and has c at the output. Control signals whose values depend upon the
opcode of an instruction were associated with this black box.

In order to understand the operation of the ALSU, we need to understand the basis of the
representation of the numbers. For example, a designer needs to specify how many bits
are required for the source operands and how many will be needed for the destination
operand after an operation to avoid overflow and truncation.

Radix Conversion

Now we will consider the conversion of numbers from a representation in one base to
another. As human works with base 10 and computers with base 2, this radix conversion
operation is important to discuss here. We will use base c¢ notion for decimal
representation and base b for any other base. The following figure shows the algorithm of
converting from base b to base c:

% In our discussion we have used ALU and ALSU for the same thing. We use ALSU when the shift aspect
also needs to be emphasized.
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Converting from Base b to Base ¢

Start with base b Initialize base ¢ Get next

. e Going from
representation value xto 0 left to right
Xoq--- X1 Xq

Convert (x),
P rumer ©)
9 by using table

[ l

Update the base ¢
value by
X=X, + D,

Initialize base ¢
value xto 0

Example 1

Convert the hexadecimal number B3¢ to base 10.
Solution

According to the above algorithm,

X=0

X=x+B (=11) =11

X=16*11+3=179

Hence B316:17910

The following figure shows the algorithm of converting from base c to base b:

Converting from Base c to Base b

Set =vmod b
And wlwb |
Canvert (T L4 (x4 n

Start with hase o Initialize i=0 -
integer and v=x

Setisi+l
If wl=0, repeat
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Example 2

Convert 390, to base 16.
Solution

According to the above algorithm
390/16 =24( rem=6), x0=6
24/16= 1(rem=8), x1=8, x2=1
Thus 3901():18616

Fixed Point Numbers

Suppose we have a number with a radix point. For example, in 16.12, there are two digits
on the left side and two digits on the right of the decimal point. In this case, the radix
point is a decimal point because we suppose that given number is a decimal number.

If we have an integer, then this decimal point will be on the right most position i.e.
1612.0 and if it is in fraction then decimal will be at the left most position i.e. 0.1612
There are situations when we shift the position of the radix point. Shifting of the radix
point towards left or right is called scaling and we could have multiplication with a base
or division by a base respectively.

The following figure shows the algorithm of converting a base b fraction to base c:

Converting a Base b fraction to
Base c

Convert to Base ¢
Start with baze b Initialize =00 and number ),

representation Seti=-m by using table
fofo f

R t fo
Ho ¥ K XM K :I'I:'jiagngr
until i=0

L Update f=(f+Dyt  *—

And =i+

Example 3
Convert (.4cd) 16to Base 10.
Solution

F=0
F=(0+13)/16=0.8125
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F=(0.8125+12)/16=0.80078125
F=(0.80078125+4)/16=(0.3000488) 1,

The following figure shows the algorithm of converting fraction from base c to base b:

Converting a fraction from Base c to Base b

Start with fraction L Set 0 b |
. Initialize i=1

fin Base o — dvet =+  andw=hy- [}

andu= Convert [y tof,

Seti=i+1
If wi=0 repeat
Until enough digits
are generated

Example 4
Convert 0.24, to base 2.
Solution

0.24*2=0.48, f,=0
0.48%2=0.96, £,=0
0.96*2=1.92, f5=1
0.92%2=1.84, f,=1
0.84*2=1.68, f5=1,...
Thus 0.24,0=(0.00111)

Representation of Numbers
There are four possibilities to represent integers.

Sign magnitude form

Radix complement form
Diminished radix complement form
Biased representation

P

Sign magnitude form
» This is the simplest form for representing a signed number

* A symbol representing the sign of the number is appended to the left of the

number
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» This representation complicates the arithmetic operations

Radix complement form
» This is the most common representation.
* Given an m-digit base b number X, the radix complement of x is
x“=(b"™=x) mod b"
» This representation makes the arithmetic operations much easier.

Diminished radix complement form
* The diminished radix complement of an m-digit number x is
x“=b"-1-x
» This complement is easier to compute than the radix complement.
* The two complement operations are interconvertible, as
x= (x“+1)mod b™

Table 6.1 of the text book shows the complement representation of negative numbers for
radix complement and diminished radix complement form:

Table 6.2 of the text book shows the base 2 complement representation for 8-bit 2’s and
1’s complement numbers.

Example 5
The following table shows the decimal values in 2’s complement, 1’s complement, sign
magnitude, 16’s complement and in unsigned form:

Decimal |2's 1's Sign- 16's Unsigned
complement complement magnitude | complement

27 011011 011011 011011 1B 11011

A7 0.00101011 0.00101011 0.00101011 | 0.2B 0.00101011

26 100110 100101 111010 E6 -

057 1.01101110 1.01101101 1.10010010 | F6E -

Multiplication and Division using Shift Operation
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Shift left and shift right are two important operations used for various purposes. One
typical example could be multiplication or division by base b. The following examples
explain multiplication and division by using shift operation.

Example 6

6x4
001 102 X 41() =1 10002=2410

Overflow would occur if we will use 4 bits instead of 5 bits here.

60/16
0111100,/161=0000011,=3¢

The fractional portion of the result is lost.

Example 7

-6x4

-6 =(11010),

-6x4 = (01000) ;=8 which is wrong!
using less no. of bits might change sign

So, -6 =(111010)

-6x4 = (101000), = -24

Example 8

Multiplication and division of negative numbers

Solution

-24x2

-24=(101000) ,

-24x2=(010100),= 20
-24x2=(110100), =-12

Changing the size of the number,

24= 011000 (n=6) to 00011000 (n=8)
-24=101000 (n=6) to 11101000 (n=8)

Unsigned Addition Operation
The following diagram shows the digit
wise procedure for adding m-digit base
b numbers, x and y:

Example 9

Unsigned addition in base 2 and
basel6.

Solution

Last Modified: 01-Nov-06

Unsigned addition operation

Initialize digit j=0 and c-in ¢,=0

l

Compute j sum g=(X+y;+c;)mod b

And carry c+1=L(x+y+c) ]/

Increment j=j+1
Repeat if j<xm
|

b
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Base 16 addition

Base 2 addition

AB42
+31C1
catry 0100

Sum DD0316

100011 »
+011011 ,

carry 000110
sum 111110,

The following diagram shows the logic
circuit for 1-bit half adder. It takes two
1-bit inputs x and y and as a result, we
get a 1-bit sum and a 1-bit carry. This
circuit is called a half adder because it
does not take care of input carry. In
order to take into account the effect of
the input carry, a 1-bit full adder is
used which is also shown in the figure.
We can add two m-bit numbers by
using a circuit which is made by
cascading m 1-bit full adders.

1-bit half adder
X TS “D, sum
¥ ?

:.—carrg,r

The situation, when addition of unsigned m-bit numbers results in an m+1 bit number, is
called overflow. Overflow is treated as exception in some processors and the overflow
flag is used to record the status of the result.
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Overflow

When two m-bit numbers are added and the result exceeds the capacity of an m-bit
destination, this situation is called an overflow. The following example describes this
condition:

Example 1
Overflow in fixed point addition:

Base 2 Base 8 Base 16
1011.1 7.25 C36.A
+1110.0 +6.76 +72B.3
¢ 1100 c11.1 ¢ 1010
s (11001.1 s/16.23 s (1361.D

In these three cases, the fifth position is not allowed so this results in an overflow.
Different Implementations of the Adder

For a binary adder, the sum bit is obtained by following equation:
S = XjYiCitXyiCitXjyicitXjyic;

and the equation for carry bit is
Ci1=XjYi TX|CiTYiCi

where x and y are the input bits.
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The sum can be computed by the two methods:

* Ripple Carry Adder
* Carry Look ahead Adder

Ripple Carry Adder

In this adder circuit, we feed carry out from the previous stage to the next stage and so
on. For 64 bit addition, 126 logic levels are required between the input and output bits.
The logic levels can be reduced by using a higher base (Base 16). This is a relatively slow
process.

Complement Adder/Subtractor

We can perform subtraction using an unsigned adder by
*  Complement the second input
* Supply overflow detection hardware

2’s Complement Adder/Subtractor

A combined adder/subtractor can be built using a mux to select the second adder input. In
this case, the mux also determines the carry-in to the adder. The equation for mux output
1s

qi=yirtyr

Carry Look ahead Adder
The basic idea in carry look ahead is to speed up the ripple carry by determining whether
the carry is generated at the j position after addition, regardless of the carry-in at that
stage or the carry is propagated from input to output in the digit.
This results in faster addition and lesser propagation delay of the carry bits. It divides the
carry into two logical variables G;j (generate) and P; (propagate). These variables are
defined as:

Gj=X;jy;

Pi=xjty;
Hence the carry out will be

cj+1=Gj+Pjc;
Here the G and P each require one gate, and the sum bit needs two more gates in the full
adder. This results in a less complexity i.e. log(m) which is much less as compare to
ripple carry adder where complexity is m (m is the number of bits of a digit to be added).
Ripple carry and look ahead schemes are can be mixed by producing a carry-out at the
left end of each look ahead module and using ripple carry to connect modules at any level
of the look ahead tree.

Unsigned Multiplication

The general schema for unsigned multiplication in base b is shown in Figure 6.5 of the
text book.
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Parallel Array Multiplier

Figure 6.6 of the text book shows the structure of a fully parallel array multiplier for base
b integers. All signal lines carry base b digits and each computational block consists of a
full adder with an AND gate to form the product x;y;. In case of binary, m” full adders are
required and the signals will have to pass through almost 4m gates.

Series parallel Multiplier

A combination of parallel and sequential hardware is used to build a multiplier. This
results in a good speed of operation and also saves the hardware.

Signed Multiplication

The sign of a product is easily computed from the sign of the multiplier and the
multiplicand. The product will be positive if both have same sign and negative if both
have different sign. Also, when two unsigned digits having m and n bits respectively are
multiplied, this results in a (m+n) —bit product, and (m+n+1)-bit product in case of sign
digits. There are three methods for the multiplication of sign digits:

1. 2’s complement multiplier
2. Booth recoding
3. Bit-Pair recoding

2’s complement Multiplication

If numbers are represented in 2’s complement form then the following three
modifications are required:

1. Provision for sign extension

2. Overflow prevention

3. Subtraction as well as addition of the partial product

Booth Recoding

The Booth Algorithm makes multiplication simple to implement at hardware level and
speed up the procedure. This procedure is as follows:

1. Start with LSB and for each 0 of the original number, place a 0 in the recorded
number until a 1 in indicated.
2. Place a 1 for lin the recorded table and skip any succeeding 1’s until a 0 is
encountered.
3. Place a 0 with 1 and repeat the procedure.
Example 2

Recode the integer 485 according to Booth procedure.
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Solution

Original number:
00111100101=256+128+64+32+4+1=485
Recoded Number:

01000101111=+512-32+8-4+2-1=485
Bit-Pair Recoding

Booth recoding may increase the number of additions due to the number of isolated 1s.
To avoid this, bit-pair recoding is used. In bit-pair recoding, bits are encoded in pairs so
there are only n/2 additions instead of n.

Division
There are two types of division:

e Integer division
e Fraction division

Integer division
The following steps are used for integer division:

1. Clear upper half of dividend register and put dividend in lower half. Initialize
quotient counter bit to 0

2. Shift dividend register left 1 bit

If difference is +ve, put it into upper half of dividend and shift 1 into quotient. If —

ve, shift 0 into quotient

4. If quotient bits<m, goto step 2

5. m-bit quotient is in quotient register and m-bit remainder is in upper half of
dividend register

(98]

Example 3

Divide 47,0 by 51o.

Solution

D=000000 101111, d=000101
D 000001 011110

d 000101

Diff(-) q 0
D 000010 111100
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d 000101

Diff(-) q 00

D 000101 111000

d 000101

Diff(+) q 001

D 000001 110000

d 000101

Diff(-) q 0010
D 000011 100000

d 000101

Diff(-) q 00100
D 000111 000000

d 000101

Diff(+)000010 q 001001

Hence remainder = (000010), = 29
Quotient = (001001), =99

Fraction Division
The following steps are used for fractional division:

1. Clear lower half of dividend register and put dividend in upper half. Initialize
quotient counter bit to 0

2. If difference is +ve, report overflow

Shift dividend register left 1 bit

4. If difference is +ve, put it into upper half of dividend and shift 1 into quotient. If

negative, shift 0 into quotient

If quotient bits<m, go to step 3

6. m-bit quotient has decimal at the left end and remainder is in upper half of
dividend register

[98)

9]

Branch Architecture

The next important function perform by the ALU is branch. Branch architecture of a
machine is based on

1. condition codes
2. conditional branches

Condition Codes

Condition Codes are computed by the ALU and stored in processor status register. The
‘comparison’ and ‘branching’ are treated as two separate operations. This approach is not
used in the SRC. Table 6.6 of the text book shows the condition codes after subtraction,
for signed and unsigned x and y. Also see the SRC Approach from text book.
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Usually implementation with flags is easier however it requires status registers. In case of
branch instructions, decision is based on the branch itself.

Note: For more information on this topic, please see chapter 6 of the text book.
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NxN Crossbar Design for Barrel Rotator

Figure 6.11 of the text book

The figure shows an NxN crossbar design for barrel rotator. x indicates the input. So
x0,x1,...,xn-1 are applied to the rows. The vertical lines are indicated by y1, y2,...yn-1
where y shows the output. So this forms a cross of x and y and the number of cross points
are NxN. There is also a connection between each input and output using a tri-state
buffer. At the input, we have a decoder which is used to select the shift count. Each
output from the decoder is connected diagonally to the tri-state buffers. This arrangement
requires N2 gates.

Barrel Shifter with Logarithmic Number of Stages

Another alternate to an NxN crossbar barrel rotator is a logarithmic barrel shifter. This
design is time-space trade-off. In this case, the number of shifts required is eight, and
then there will be three stages for this purpose. Now a word is passed as input to the
shifter. There are two possibilities. First the input word is passed to the next stage without
any shift. This process is called bypass and second option is shift. The word is passed to
the next stage after shift.

For the first stage, we have 1-bit right shift, for second stage, 2-bit right shift and so on.
There is also a shift count unit which controls the number of shifts. For example, if 1-bit
shift is required then only sO will be one and other signals from shift count will be zero. If
we want a 3-bit shift, then sO and s1 will be 1 and all other signals will be zero.

The figure also shows one shift/bypass cell which is a combinational logic circuit. A
shift/bypass signal decides whether the input word should be shifted or bypassed. This
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design requires only O (NlogN) switches but propagation delay has increased i.e. from
O(1) to O(logN).

Figure 6.12 of the text book

ALU Design

ALU is a combination of arithmetic, logic and shifter unit along with some multiplexers
and control unit. The idea is that based on the op-code of an instruction, appropriate
control signals are activated to perform required ALU operation.

Figure 6.13 of the text book

The diagram shows two inputs x and y and one output z. All these are of n-bits. The
inputs x and y are simultaneously provided to arithmetic, logic and shifter unit. There is a
control unit which accepts op-code as input. Based on the op-code, it provides control
signals to arithmetic, logic and shifter unit. The control unit also provides control signals
to the two multiplexers. One mux has three inputs; each from arithmetic, logic and shifter
unit and its output is z. The second mux provides status output corresponding to
condition codes.

Floating Point Representations
Example

-0.5 x 10-3

Sign = -1

Significand= 0.5

Exponent= -3

Base = 10= fixed for given type of representation
Significand is also called mantissa.
In computers, floating-point representation uses binary numbers to encode significant,
exponent and their sign in a single word.
The diagram on Page 293 of the text shows an m-bit floating point number where s
represents the sign of the floating point number. If s = 1 then the floating-point number
will be a positive number; if s= 0 then it will be a negative number. The e field shows the
value of exponent. To represent the exponent, a biased representation is used. So we
represent e instead of e to show biased representation. In this technique, a number is
added to the exponent so that the result is always positive. In general floating point
numbers are of the form.
(-1)s x fx2e
Normalization
A normalized, non zero floating point number has a significand whose left-most digit is
non- zero and is a single number.
Example

0.56 x 10-3........... (Not normalized)

5.6 x10-3........... (Normalized form)

Same is the case for binary.

IEEE Floating-Point Standard
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IEEE floating -point standard has the following features.

Single-Precision Binary Floating Point Representation
e 1-bitsign
e  8-bit exponent
e  23-bit fraction
e A bias of 127 is used.
Figure 6.15 of the text book

Double precision Binary Floating Point Representation
e 1-bitsign
e 11-bit exponent
e  52-bit fraction
e Exponent bias is 1023
Figure 6.16 of the text book.

Overflow

In table 6.7 of the text book, e"= 255, denotes numbers with no numeric value including
+ o and - « and called Not-a-Number or NaN. In computers, a floating-point number
ranges from 1.2 x 10-38 < x < 3.4 x 1038 can be represented. If a number does not lie in
this range, then overflow can occur.

Overflow occurs when the exponent is too large and can not be represented in the
exponent field.

Floating —Point Addition and Subtraction

The following are the steps for floating-point addition and subtraction.
e Unpack sign , exponent and fraction fields

Shift the significand

Perform addition

Normalize the sum

Round off the result

Check for overflow

Figure 6.17 of the text book.

Example 1

Perform addition of the following floating-point numbers.
0.510 , -0.437510

Binary:

0.51() = 1/21(): 0.12: 1.000 x 2-1
-0.437510=-7/1610=-7/24=-0.0111, =- 1.110 x 2-2

Align: -1.110x 2-2 — -0.111 x 2-1

Addition: 1.000 x 2-1 + (-0.111 x 2-1) = 0.001 x 2-1
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Normalization of Sum:
0.001 , x2-1=0.010, x 2-2
=1.000,x2-4

Hardware Structure for Floating-Point Add and Subtract
Figure 6.17 of the text book.

Floating-Point Multiplication

The floating-point multiplication uses the following steps:
e Unpack sign, exponent and significands
e Apply exclusive-or operation to signs, add exponents and then multiply
significands.
e Normalize, round and shift the result.
e Check the result for overflow.
e Pack the result and report exceptions.

Floating-Point Division

The floating-point division uses the following steps:
e Unpack sign, exponent and significands
e Apply exclusive-or operation to signs, subtract the exponents and then divide the
significands.
e Normalize, round and shift the result.
e Check the result for overflow.
e Pack the result and report exceptions.
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CPU to Memory Interface

The memory address register (MAR) is m-bits wide and contains memory address
generated by the CPU directly connected to the m-bit wide address bus. The memory
buffer register (MBR) is w-bit wide and contains a data word, directly connected to the
data bus which is b-bit wide. The register file is a collection of 32, 32-bit wide registers
used for data transfer between memory and the CPU. Memory address ranges from 0 to

2™-1.There also exist three control signals: BW  REQUEST, and COMPLETE. When

EfW signal is high, this would correspond to a read operation equivalent to having an
input data to the CPU and output from the memory. If this signal is low then it would be a
write operation and data would come from the CPU as an output and it would be written
into a portion in the memory. In this case, the REQUEST signal coming from the CPU
telling the memory that some interaction is required between the CPU and memory. As a
result of this request (either read/write), along with the signal on the control and the
address on the address bus, we might have the corresponding data on the data bus for a
read operation and after the operation is complete, the memory would issue a control
signal which corresponds in this case to COMPLETE.

Figure 7.1 of the text book.

Static RAM Cell Organization and Operation

A Typical Memory Cell

A memory cell provides four functions: Select, Dataln, DataOut, and Read/Write. Dataln
means input and DataOut means output. The select signal would be enabled to get an
operation of Read/Write from this cell.

Figure 7.3 of the text book.

1x8 Memory Cell Array (1D)
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In this arrangement, each block is connected through a bi-directional data bus
implemented with 2 tri-state buffers. EW and Select signals are common to all these
cells. This 1-dimentional memory array could not be very efficient, if we need to have a
very large memory.

4x8 Memory Cell Array (2D)

In this arrangement, 4x8 memory cell array is arranged in 2-dimensions. At the input, we
have a 2x4 decoder. Two address bits at the input A0 and A1 would be decoded into 4
select lines. The decoder selects one of four rows of cells and then BW signal specifies
whether the row will be read or written.

A 64kx1 Static RAM Chip

The cell array is indicated as 256 x 256. So, there would be 256 rows and 256 columns.
A 64k x 1 cell array requires 16 address lines, a read/write line, /W | a chip select line,
CS, and only a single data line. The lower order 8-address lines select one of the 256
rows using an 8-t0-256 line row decoder. Thus the selected row contains 256 bits. The
higher order 8-address lines select one of those 256 bits. The 256 bits in the row selected
flow through a 256-to-1 line multiplexer on a read. On a memory write, the incoming bit
flows through a 1-to-256 line demultiplexer that selects the correct column of the 256
possible columns.

A 16kx4 Static RAM Chip

In this case, memory is arranged in the form of four 64x256 memory cells. Four bits can
be read and written at a time. For this, we use one 8-256 row decoder, four 64-1 muxes
and four 1-64 de muxes. The lower address lines (A0-A7) are decoded into 2° lines, 2°
lines from these 2° are used to select row from one of the four 64x256 cell array and the
remaining 2° lines are used to select one of the 64x256 cell array. Now the upper address
lines (A8-A13) are input into the 4 muxes and their output is used to select the required
column from the four 64x256 cell arrays. Control lines read/write, BIW chip select, CS,
are just similar to previous arrangement.

Matrix and Tree Decoders

A typical one level decoder has n inputs and 2" output, using one level of gates, each with
a fan-in of n. Two level decoders are limited in size because of high gate fan-in. In order
to reduce the gate fan-in to a value of 8 or 6, tree and matrix decoders are utilized.

Six Transistor SRAM Cell

In this arrangement, the cross connection is through inverters to make the latch, the basic
storage cell. This implementation uses six transistor cells. One transistor is used to
implement each of the two inverters, two transistors are used to control access to the
inverters for reading and writing, and two are used as active loads.

SRAM Read Operation

First of all, the CPU provides the address on the external address bus. The read/write
signal becomes active high. After time "tas", the data becomes available on the data bus.
The chip retains this data on the data lines until the control signals are de asserted.
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SRAM Write Operation

In the case of write cycle, the major difference is that along with the address the CPU has
also provided the data on the data bus. The chip select, CS, is immediately provided and
write signal is made low. The E/W line must be held valid for a minimum time interval
tw , the write time, until data, address, and control information have been propagated to
the cell and strobe into it. During this period the data lines must be driven with the data to
be written.

Dynamic RAM

As an alternate to the SRAM cell, the data can be stored in the form of a charge on a
capacitor (a charging/discharging transistor that can become a valid memory element),
and this type of memory is called dynamic memory. The capacitor has to be refreshed
and recharged to avoid data loss.

Dynamic RAM Cell Operation

In a DRAM cell, the storage capacitor will discharge in around 4-15ms. Refreshing the
capacitor by reading or sensing the value on bit line, amplifying it, and placing it back on
to the bit line is required. The need to refresh the DRAM cell complicates the DRAM
system design.

For details, refer to Chapter 7 of the text book.
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Vincent P. Heuring & Harry F. Jordan Chapter 7
Computer Systems Design and Architecture 7.2.6,7.3
Summary

e Memory Modules
e Read Only Memory (ROM)
e Cache

Memory Module

Static RAM chips can be assembled into systems without changing the timing
characteristics of a memory access. Dynamic RAM chips, however, have enough timing
complexity that a memory module built from dynamic RAM chips will have complex
control. The cause of timing complexity is the time-multiplexed row and column
addresses, and the refresh operation.

Word Assembly from Narrow Chips

Chips can be combined to expand the memory word size while keeping the same number
of words. Address, chip select, and R/W signals are connected in parallel to all the chips.
Only the data signals are kept separate, with those from each chip supplying different bits
of the wider word. For high capacity memory chips, narrow words are used. This is
because adding a data pin to a chip with 2™ words of s bits increases the number of bits it
can store by only a factor of (s+1)/s, while adding an address pin always doubles the
capacity.

Dynamic RAM Module with Refresh Control

For Dynamic RAM chips the total address is divided into row and column address. Row
address strobe signal RAS and a column strobe signal CAS are used to differentiate
between these two signals.

Read Only Memory (ROM)

ROM is the read-only memory which contains permanent pattern of data that cannot be
changed. ROM is nonvolatile i.e. it retains the information in it when power is removed
from it. Different types of ROMs are discussed below.

PROM
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The PROM stands for Programmable Read only Memory. It is also nonvolatile and may
be written into only once. For PROM, the writing process is performed electrically in the
field. PROMs provide flexibility and convenience.

EPROM

Erasable Programmable Read-only Memory or EPROM chips have quartz windows and
by applying ultraviolet light erase the data can be erased from the EPROM. Data can be
restored in an EPROM after erasure. EPROMs are more expensive than PROMs and are
generally used for prototyping or small-quantity, special purpose work.

EEPROM

EEPROM stands for Electrically Erasable Programmable Read-only Memory. This is a
read-mostly memory that can be written into at any time without erasing prior contents;
only the byte or bytes addressed are updated. The write operation takes considerably
longer than the read operation. It is more expensive than EPROM.

Flash Memory

An entire flash memory can be erased in one or a few seconds, which is much faster than
EPROM. In addition, it is possible to erase just blocks of memory rather than an entire
chip.

Cache

Cache by definition is a place for safe storage and provides the fastest possible storage
after the registers. The cache contains a copy of portions of the main memory. When the
CPU attempts to read a word from memory, a check is made to determine if the word is
in the cache. If so, the word is delivered to the CPU. If not, a block of the main memory,
consisting of some fixed number of words, is read into the cache and then the word is
delivered to the CPU.

Spatial Locality

This would mean that in a part of a program, if we have a particular address being
accessed then it is highly probable that the data available at the next address would be
highly accessed.

Temporal Correlation
In this case, we say that at a particular time, if we have utilized a particular part of the
memory then we might access the adjacent parts very soon.

Cache Hit and Miss
When the CPU needs some data, it communicates with the cache, and if the data is
available in the cache, we say that a cache hit has occured. If the data is not available in
the cache then it interacts with the main memory and fetches an appropriate block of data.
This is a cache miss.
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e (Cache Organization and Functions
e (Cache Controller Logic
e Cache Strategies

Cache Organization and Functions:

The working of the cache is based on the principle of locality which has two aspects.
Spatial Locality: refers to the fact when a given address has been referenced, the next
address is highly probable to be accessed within a short period of time.

Temporal Locality refers to the fact that once a particular data item is accessed, it is
likely that it will be referenced again within a short period of time.

To exploit these two concepts, the data is transferred in blocks between cache and the
main memory. For a request for data, if the data is available in the cache it results in a
cache hit. And if the requested data is not present in the cache, it is called a cache miss. In
the given example program segment, spatial locality is shown by the array ALPHA, in
which next variable to be accessed is adjacent to the one accessed previously. Temporal
locality is shown by the reuse of the loop variable 100 times in For loop instruction.

Int ALPHA [100], SUM;

SUM=0;

For (i=0; i<100; i++)

{SUM= SUM+ALPHA[i];}

Cache Management
To manage the working of the cache, cache control unit is implemented in hardware,
which performs all the logic operations on the cache. As data is exchanged in blocks
between main memory and cache, four important cache functions need to be defined.

e Block Placement Strategy

e Block Identification

e Block Replacement

e Write Strategy

Cache
Block Diagram of a Cache System
Contral Logic
Determine
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In the figure, the block diagram of a system using cache is shown. It consists of two
components.

e Fast Memory

e Control Logic Unit
Control logic is further divided into two parts.
Determine and Comparison Unit: For determining and comparisons of the different
parts of the address and to evaluate hit or miss.
Tag RAM: Second part consists of tag memory which stores the part of the memory
address (called tag) of the information (block) placed in the data cache. It also contains
additional bits used by the cache management logic.
Data Cache: is a block of fast memory which stores the copies of data and instructions
frequently accessed by the CPU.

Cache Strategies
In the next section we will discuss various cache functions, and strategies used to
implement these functions.

Block Placement

Block placement strategy needs to be defined to specify where blocks from main memory
will be placed in the cache and how to place the blocks. Now various methods can be
used to map main memory blocks onto the cache .One of these methods is the associative
mapping explained below.

Associative Mapping:
In this technique, block of data from main memory can be placed at any location in the
cache memory. A given block in cache is identified uniquely by its main memory block
number, referred to as a tag, which is stored inside a separate tag memory in the cache.
To check the validity of the cache blocks, a valid bit is stored for each cache entry, to
verify whether the information in the corresponding block is valid or not.
Main memory address references have two fields.

* The word field becomes a “cache address” which specifies where to find the word

in the cache.
* The tag field which must be compared against every tag in the tag memory.

Associative Mapping Example

Refer to Book Ch.7 Section (7.5) Figure 7.31(page 350-351) for detailed explanation.
Mechanism of the Associative Cache Operation

For details refer to book Ch.7, Section 7.5, Figure 7.32 (Page 351-352).

Direct Mapping
In this technique, a particular block of data from main memory can be placed in only one
location into the cache memory. It relies on principle of locality.
Cache address is composed of two fields:
*  Group field
*  Word field
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Valid bit specifies that the information in the selected block is valid.
For a direct mapping example, refer to the book Ch.7, Section 7.5, Figure 7.33 (page 352
—353).

Logic Implementation of the Controller for Direct Mapping
Logic design for the direct mapping is simpler as compared to the associative mapping.
Only one tag entry needs to be compared with the part of the address called group field.

Tasks Required For Direct Mapping Cache:
For details refer to the book Ch. 7, Section 7.5, Figure 7.34 (Page 353-354).

Cache Design: Direct Mapped Cache

To understand the principles of cache design, we will discuss an example of a direct
mapped cache.

The size of the main memory is 1 MB. Therefore 20 address bits needs to be specified.
Assume that the block size is 8 bytes. Cache memory is assumed to be 8 KB organized as
1 K lines of cache memory. Cache memory addresses will range from 0 up to 1023. Now
we have to specify the number of bits required for the tag memory. The least significant
three bits will define the block. The next 10 bits will define the number of bits required
for the cache. The remaining 7 bits will be the width of the tag memory.

Main memory is organized in rectangular form in rows and columns. Number of rows
would be from 0 up to 1023 defined by 10 bits. Number of rows in the main memory will
be the same as number of lines in the cache. Number of columns will correspond to 7 bits
address of the tag memory. Total number of columns will be 128 starting from 0 up to
127. With direct mapping, out of any particular row only one block could be mapped into
the cache. Total number of cache entries will be 1024 each of 8 bytes.

Advantage:

Simplicity
Disadvantage:

Only a single block from a given group is present in cache at any time. Direct
map Cache imposes a considerable amount of rigidity on cache organization.

Set Associative Mapping

In this mapping scheme, a set consisting of more than one block can be placed in the
cache memory.

The main memory address is divided into two fields. The Set field is decoded to select
the correct group. After that the tags in the selected groups are searched. Two possible
places in which a block can reside must be searched associatively. Cache group address is
the same as that of the direct-mapped cache.

For details of the Set associative mapping example, refer to the book Ch.7, Section 7.5,
Figure 7.35 (Page 354-355).

Replacement Strategy
For a cache miss, we have to replace a cache block with the data coming from main
memory. Different methods can be used to select a cache block for replacement.
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Always Replacement: For Direct Mapping on a miss, there is only one block which
needs replacement called always replacement.
For associative mapping, there are no unique blocks which need replacement .In this case
there are two options to decide which block is to be replaced.
¢ Random Replacement: To randomly select the block to be replaced
e LFU: Based on the statistical results, the block which has been least used in the
recent past, is replaced with a new block.

Write Strategy
When a CPU command to write to a memory data will come into cache, the writing into
the cache requires writing into the main memory also.
Write Through: As the data is written into the cache, it is also written into the main
memory called Write Through. The advantages are:

e Read misses never result in writes to the lower level.

e Easy to implement than write back

Write Back: Date resides in the cache, till we need to replace a particular block then the
data of that particular block will be written into the memory if that needs a write, called
write back. The advantages are:
e Write occurs at the speed of the cache
e Multiple writes with in the same block requires only one write to the lower
memory.
e This strategy uses less memory bandwidth, since some writes do not go to the
lower level; useful when using multi processors.

Cache Coherence

Multiple copies of the same data can exist in memory hierarchy simultaneously. The
Cache needs updating mechanism to prevent old data values from being used. This is the
problem of cache coherence. Write policy is the method used by the cache to deal with
and keep the main memory updated.

Dirty bit is a status bit which indicates whether the block in cache is dirty (it has been
modified) or clean (not modified). If a block is clean, it is not written on a miss, since
lower level contains the same information as the cache. This reduces the frequency of
writing back the blocks on replacement.

Writing the cache is not as easy as reading from it e.g., modifying a block can not begin
until the tag has been checked, to see if the address is a hit. Since tag checking can not
occur in parallel with the write as is the case in read, therefore write takes longer time.
Write Stalls: For write to complete in Write through, the CPU has to wait. This wait state
is called write stall.

Write Buffer: reduces the write stall by permitting the processor to continue as soon as
the data has been written into the buffer, thus allowing overlapping of the instruction
execution with the memory update.

Write Strategy on a Cache Miss

On a cache miss, there are two options for writing.
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Write Allocate: The block is loaded followed by the write. This action is similar to the
read miss. It is used in write back caches, since subsequent writes to that particular block
will be captured by the cache.

No Write Allocate: The block is modified in the lower level and not loaded into the
cache. This method is generally used in write through caches, because subsequent writes
to that block still have to go to the lower level.
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e Virtual Memory
e Virtual Memory Organization

Virtual Memory

Introduction

Virtual memory acts as a cache between main memory and secondary memory. Data is
fetched in advance from the secondary memory (hard disk) into the main memory so that
data is already available in the main memory when needed. The benefit is that the large
access delays in reading data from hard disk are avoided.

Pages are formulated in the secondary memory and brought into the main memory. This
process is managed both in hardware (Memory Management Unit) and the software (The
operating systems is responsible for managing the memory resources).

The block diagram shown (Book Ch.7, Section 7.6, and figure 7.37) specifies how the
data interchange takes place between cache, main memory and the disk. The Memory
Management unit (MMU) is located between the CPU and the physical memory. Each
memory reference issued by the CPU is translated from the logical address space to the
physical address space, guided by operating system controlled mapping tables. As
address translation is done for each memory reference, it must be performed by the
hardware to speed up the process. The operating system is invoked to update the
associated mapping tables.

Memory Management and Address Translation

The CPU generates the logical address. During program execution, effective address is
generated which is an input to the MMU, which generates the virtual address. The virtual
address is divided into two fields. First field represents the page number and the second
field is the word field. In the next step, the MMU translates the virtual address into the
physical address which indicates the location in the physical memory.

Advantages of Virtual Memory
e Simplified addressing scheme: the programmer does not need to bother
about the exact locations of variables/instructions in the physical memory.
It is taken care of by the operating system.
e For a programmer, a large virtual memory will be available, even for a
limited physical memory.
e Simplified access control.
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Virtual Memory Organization

Virtual memory can be organized in different ways. This first scheme is segmentation.
Segmentation:

In segmentation, memory is divided into segments of variable sizes depending upon the
requirements. Main memory segments identified by segments numbers, start at virtual
address 0, regardless of where they are located in physical memory.

In pure segmented systems, segments are brought into the main memory from the
secondary memory when needed. If segments are modified and not required any more,
they are sent back to secondary memory. This invariably results in gap between
segments, called external fragmentation i.e. less efficient use of memory. Also refer to
Book Ch.7, Section 7.6, Figure 7.38.

Addressing of Segmented Memory

The physical address is formed by adding each virtual address issued by the CPU to the
contents of the segment base register in the MMU. Virtual address may also be compared
with the segment limit register to keep track and avoiding the references beyond the
specified limit. By maintaining table of segment base and limit registers, operating
system can switch processes by switching the contents of the segment base and limit
register. This concept is used in multiprogramming. Refer to book Ch.7, Section 7.6, and
Figure 7.39

Paging:
In this scheme, we have pages of fixed size. In demand paging, pages are available in
secondary memory and are brought into the main memory when needed.
Virtual addresses are formed by concatenating the page number with the word number.
The MMU maps these pages to the pages in the physical memory and if not present in the
physical memory, to the secondary memory. (Refer to Book Ch.7, Section 7.6, and
Figure 7.41)
Page Size: A very large page size results in increased access time. If page size is small, it
may result in a large number of accesses.
The main memory address is divided into 2 parts.

e Page number: For virtual address, it is called virtual page number.

e Word Field

Virtual Address Translation in a Paged MMU:
Virtual address composed of a page number and a word number, is applied to the MMU.
The virtual page number is limit checked to verify its availability within the limits given
in the table. If it is available, it is added to the page table base address which results in a
page table entry. If there is a limit check fault, a bound exception is raised as an interrupt
to the processor.
Page Table
The page table entry for each page has two fields.

= Page field

* Control Field: This includes the following bits.

e Access control bits: These bits are used to specify read/write, and execute
permissions.
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e Presence bits: Indicates the availability of page in the main memory.

e Used bits: These bits are set upon a read/ write.
If the presence bit indicates a hit, then the page field of the page table entry contains the
physical page number. It is concatenated with the word field of the virtual address to
form a physical address.
Page fault occurs when a miss is indicated by the presence bit. In this case, the page field
of the page table entry would contain the address of the page in the secondary memory.
Page miss results in an interrupt to the processor. The requesting process is suspended
until the page is brought in the main memory by the interrupt service routine.
Dirty bit is set on a write hit CPU operation. And a write miss CPU operation causes the
MMU to begin a write allocate (previously discussed) process. (Refer to book Ch.7,
Section 7.6, and Figure 7.42)

Fragmentation:
Paging scheme results in unavoidable internal fragmentations i.e. some pages (mostly last
pages of each process) may not be fully used. This results in wastage of memory.

Processor Dispatch -Multiprogramming
Consider the case, when a number of tasks are waiting for the CPU attention in a
multiprogramming, shared memory environment. And a page fault occurs. Servicing the
page fault involves these steps.

1. Save the state of suspended process

2. Handle page fault

3. Resume normal execution

Scheduling: If there are a number of memory interactions between main memory and
secondary memory, a lot of CPU time is wasted in controlling these transfers and number
of interrupts may occur.

To avoid this situation, Direct Memory Access (DMA) is a frequently used technique.
The Direct memory access scheme results in direct link between main memory and
secondary memory, and direct data transfer without attention of the CPU. But use of
DMA in virtual memory may cause coherence problem. Multiple copies of the same page
may reside in main memory and secondary memory. The operating system has to ensure
that multiple copies are consistent.

Page Replacement

On a page miss (page fault), the needed page must be brought in the main memory from
the secondary memory. If all the pages in the main memory are being used, we need to
replace one of them to bring in the needed page. Two methods can be used for page
replacement.

Random Replacement: Randomly replacing any older page to bring in the desired page.
Least Frequently Used: Maintain a log to see which particular page is least frequently
used and to replace that page.

Translation Lookaside buffer

Identifying a particular page in the virtual memory requires page tables (might be very
large) resulting in large memory space to implement these page tables. To speed up the
process of virtual address translation, translation Lookaside buffer (TLB) is implemented
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as a small cache inside the CPU, which stores the most recent page table entry reference
made in the MMU. It contents include

o A mapping from virtual to physical address

. Status bits i.e. valid bit, dirty bit, protection bit
It may be implemented using a fully associative organization
Operation of TLB
For each virtual address reference, the TLB is searched associatively to find a match
between the virtual page number of the memory reference and the virtual page number in
the TLB. If a match is found (TLB hit) and if the corresponding valid bit and access
control bits are set, then the physical page mapped to the virtual page is concatenated.
(Refer to Book Ch.7, Section 7.6, and Figure 7.43)

Working of Memory Sub System

When a virtual address is issued by the CPU, all components of the memory subsystem
interact with each other. If the memory reference is a TLB hit, then the physical address
is applied to the cache. On a cache hit, the data is accessed from the cache. Cache miss is
processed as described previously. On a TLB miss (no match found) the page table is
searched. On a page table hit, the physical address is generated, and TLB is updated and
cache is searched. On a page table miss, desired page is accessed in the secondary
memory, and main memory, cache and page table are updated. TLB is updated on the
next access (cache access) to this virtual address. (Refer to Book Ch.7, Section 7.6, and
Figure 7.44).

To reduce the work load on the CPU and to efficiently use the memory sub system,
different methods can be used. One method is separate cache for data and instructions.
Instruction Cache: It can be implemented as a Translation Lookaside buffer.

Data Cache: In data cache, to access a particular table entry, it can be implemented as a
TLB either in the main memory, cache or the CPU.
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Numerical Examples related to

« DRAM
* Pipelining, Pre-charging and Parallelism
* Cache

» Hit Rate and Miss Rate
* Access Time

Example 1

If a DRAM has 512 rows and its refresh time is 9ms, what should be the frequency of
row refresh operation on the average?

Solution

Refresh time= 9ms

Number of rows=512

Therefore we have to do 512 row refresh operations in a 9 ms interval, in other words
one row refresh operation every (9x107)/512 =1.76x10seconds.

Example 2

Consider a DRAM with 1024 rows and a refresh time of 10ms.
a. Find the frequency of row refresh operations.
b. What fraction of the DRAM’s time is spent on refreshing if each refresh takes 100ns.

Solution

Total number of rows = 1024

Refresh period = 10ms

One row refresh takes place after every

10ms/1024=9.7micro seconds

Each row refresh takes 100ns, so fraction of the DRAM’s time taken by row refreshes is,
100ns/9.7 micro sec= 1.03%
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Example 3

Consider a memory system having the following specifications. Find its total cost and

cost per byte of memory.

Memory type Total bytes Cost per byte
SRAM 256 KB 308 per MB
DRAM 128 MB 1$ per MB

Disk 1 GB 10$ per GB

Solution

Total cost of system

256 KB( % MB) of SRAM costs =30 x 4= $7.5
128 MB of DRAM costs= 1 x 128=$128

1 GB of disk space costs= 10 x 1=$10

Total cost of the memory system
=7.5+128+10=%$145.5

Cost per byte

Total storage= 256 KB + 128 MB + 1 GB
=256 KB + 128x1024KB + 1x1024x1024KB
=1,179,904 KB

Total cost = $145.5

Cost per byte=145.5/(1,179,904x1024)
=$1.2x107$/B

Example 4

Find the average access time of a level of memory hierarchy if the hit rate is 80%. The

memory access takes 12ns on a hit and 100ns on a miss.
Solution

Hit rate =80%

Miss rate=20%

Thitz 12 ns

Tmiss=100ns

Average Tpccess=(hit rate™ Tpi)+(miss rate™ Tpy;ss)
=(0.8*12ns)+(0.2*100ns)
=29.6ns
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Example 5

Consider a memory system with a cache, a main memory and a virtual memory. The
access times and hit rates are as shown in table. Find the average access time for the
hierarchy.

Main memory cache virtual memory
Hit rate 99% 80% 100%
Access time 100ns 5ns 8ms

Solution

Average access time for requests that reach the main memory
= (100ns*0.99)+(8ms*0.01)

= 80,099 ns

Average access time for requests that reach the cache
=(5ns*0.8)+(80,099ns*0.2)

=16,023.8ns

Example 6

Given the following memory hierarchy, find the average memory access time of the
complete system

Memory type Average access time Hit rate
SRAM Sns 80 %
DRAM 60ns 80%

Disk 10ms 100%

Solution
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For each level, average access time=( hit rate x access time for that level) + ((1-hit rate) x
average access time for next level)

Average access time for the complete system

= (0.8x5ns) + 0.2 x((0.8x60ns) + (0.2)(1x10ms))

=4+ (0.2(48+2000000)

=4 + 400009.6

=400013.6 ns

Example 7

Find the bandwidth of a memory system that has a latency of 25ns, a pre charge time of
5ns and transfers 2 bytes of data per access.

Solution

Time between two memory references
=latency + pre charge time

=25 ns+ 5ns

= 30ns

Throughput = 1/30ns

=3.33x10’ operations/second
Bandwidth =2x 3.33x10’
=6.66x10" bytes/s

Example 8

Consider a cache with 128 byte cache line or cache block size. How many cycles does it
take to fetch a block from main memory if it takes 20 cycles to transfer two bytes of data?

Solution

The number of cycles required for the complete transfer of the block
=20 x 128/2

= 1280 cycles

Using large cache lines decreases the miss rate but it increases the amount of time a
program takes to execute as obvious from the number of clock cycles required to transfer
a block of data into the cache.

Example 9

Find the number of cycles required to transfer the same 128 byte cache line if page-mode
DRAM with a CAS-data delay of 8 cycles is used for main memory. Assume that the
cache lines always lie within a single row of the DRAM, and each line lies in a different

row than the last line fetched.

Solution
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Memory requests to fetch each cache line=128/2= 64

Only the first fetch require the complete 20 cycles, and the other 63 will take only 8 clock
cycles. Hence the no. of cycles required to fetch a cache line

=20+ 8 x 63

=524

Example 10
Consider a 64KB direct-mapped cache with a line length of 32 bytes.
a. I?etermine the number of bits in the address that refer to the byte within a cache
b. g:t:.ermine the number of bits in the address required to select the cache line.
Solution

Address breakdown

n=log, of number of bytes in line
m=log, of number of lines in cache

a. For the given cache, the number of bits in the address to determine the byte
within the line=n =1og,32 =5

b. There are 64K/32= 2048 lines in the given cache. The number of bits required to
select the required line = m =log;2048 = 11

Hence n=5 and m=11 for this example.
Example 11
Consider a 2-way set-associative cache with 64KB capacity and 16 byte lines.
a. How many sets are there in the cache?
b. How many bits of address are required to select a set in the cache?
c. Repeat the above two calculations for a 4-way set-associative cache with
same size.

Solution

a. A 64KB cache with 16 byte lines contains 4096 lines of data. In a 2-way set
associative cache, each set contains 2 lines, so there are 2048 sets in the cache.

b. Logy(2048)=11. Hence 11 bits of the address are required to select the set.

c. The cache with 64KB capacity and 16 byte line has 4096 lines of data. For a 4-
way set associative cache, each set contains 4 lines, so the number of sets in the
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cache would be 1024 and Log ;> (1024) =10. Therefore 10 bits of the address are
required to select a set in the cache.

Example 12

Consider a processor with clock cycle per instruction (CPI) = 1.0 when all memory
accesses hit in the cache. The only data accesses are loads and stores, and these constitute
60% of all the instructions. If the miss penalty is 30 clock cycles and the miss rate is
1.5%, how much faster would the processor be if all instructions were cache hits?

Solution

Without any misses, the computer performance is

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle

=(IC x CPI+ 0)x Clock cycle = IC x 1.0 x Clock cycle

Now for the computer with the real cache, first we compute the number of memory stall
cycles:

Memory accesses ~ =IC x Instruction x Miss Rate x Miss Penalty

Memory stall cycles

=ICx (1+0.6)x0.015x 30
=1Cx0.72

where the middle term (1 + 0.6) represents one instruction access and 0.6 data accesses
per instruction. The total performance is thus

CPU execution time cache = (IC x 1.0 + IC x 0.72) x Clock cycle
= 1.72 x IC x Clock cycles

The performance ratio is the inverse of the execution times

CPU execution time cache = 1.72 x IC x clock cycle
CPU execution time 1.0 x IC x clock cycle

The computer with no cache misses is 1.72 times faster
Example 13

Consider the above example but this time assume a miss rate of 20 per 1000 instructions.
What is memory stall time in terms of instruction count?

Solution
Re computing the memory stall cycles:

Memory stall cycles=Number of misses x Miss penalty
=[C * Misses * Miss penalty
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Instruction

=[C /1000 * Misses * Miss penalty
Instruction * 1000

=IC /1000 * 20 * 30

=1C /1000 * 600=1C * 0.6

Example 14
What happens on a write miss?
Solution

The two options to handle a write miss are as follows:

Write Allocate

The block is allocated on a write miss, followed by the write hit actions. This is just like
read miss.

No-Write Allocate

Here write misses do not affect the cache. The block is modified only in the lower level
memory.

Example 15

Assume a fully associative write-back cache with many cache entries that starts empty.
Below is a sequence of five memory operations (the address is in square brackets):

Write Mem[300];
Write Mem([300];
Read Mem[400];
Write Mem[400];
WriteMem([300];

What is the number of hits and misses when using no-write allocate versus write allocate?
Solution

For no-write allocate, the address 300 is not in the cache, and there is no allocation on
write, so the first two writes will result in misses. Address 400 is also not in the cache, so
the read is also a miss. The subsequent write to address 400 is a hit. The last write to 300
is still a miss. The result for no-write allocate is four misses and one hit.

For write allocate, the first accesses to 300 and 400 are misses, and the rest are hits since
300 and 400 are both found in the cache. Thus, the result for write allocate is two misses
and three hits.

Example 16
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Which has the lower miss rate?
a 32 KB instruction cache with a 32 KB data cache or a 64 KB unified cache?
Use the following Miss per 1000 instructions.

size Instruction Data cache Unified
cache cache

32 KB 1.5 40 42.2
64 KB 0.7 38.5 41.2

Assumptions

* The percentage of instruction references is about 75%.

» Assume 40% of the instructions are data transfer instructions.

* Assume a hit takes 1 clock cycle.

* The miss penalty is 100 clock cycles.

* A load or store hit takes 1 extra clock cycle on a unified cache if there is only one
cache port to satisfy two simultaneous requests.

* Also the unified cache might lead to a structural hazard.

» Assume write-through caches with a write buffer and ignore stalls due to the write
buffer.

What is the average memory access time in each case?
Solution

First let's convert misses per 1000 instructions into

miss rates.
Misses
Miss rate = 1000 Instructions
Memory accesses
Instruction

Since every instruction access has exactly one memory access to fetch the instruction, the
instruction miss rate is

Miss rate32 KB instruction = 1.5/1000 = 0.0015

1.00
Since 40% of the instructions are data transfers, the data miss rate is
Miss Rate 32 kb data= 40 /1000 = 0.1
0.4
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The unified miss rate needs to account for instruction and data accesses:
Miss Rate 64 kb unified = 42.2/1000 = 0.031
1.00+ 04

As stated above, about 75% of the memory accesses are instruction references. Thus, the
overall miss rate for the split caches is

(75% x 0.0015) + (25% x 0.1) = 0.026125

Thus, a 64 KB unified cache has a slightly lower effective miss rate than two 16 KB
caches. The average memory access time formula can be divided into instruction and data
accesses:

Average memory access time

= 9% instructions x (Hit time + Instruction miss rate x Miss Penalty) + % data x (Hit time
+ Data miss rate x Miss Penalty)

Therefore, the time for each organization is:

Average memory access time split

= 75%x(1 +0.0015x 100) + 25%x(1 +0.1x100)

=(75%x 1.15) + (25% x 11)

=0.8625+2.75=3.61

Average memory access time unified

=75% x (1+0.031 x 100) +25% x (1 + 1+0.031 x 100)

=(75% x 4.1) + (25% x 5.1) = 3.075+1.275

=435

Hence split caches have a better average memory access time despite having a worse
effective miss rate. Split cache also avoids the problem of structural hazard present in a
unified cache.
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Introduction

Consider a producer-server model. A buffer (or queue) is present between them. Tasks
are being received and when one task is finished (i.e. served) then the second task is
taken up by the server. Now latency and the response time depend upon how many tasks
are present in the queue and how quickly they are served. If there is no task, ahead in the
queue the latency would be low and response time would be shorter.

Through put depends upon the average number of calls and the service time taken by a
particular server.

Performance of I/O Subsystems

There are three methods to measure I/O subsystem performance:
e Straight away calculations using execution time
e Simulation
¢ Queuing Theory

Loss System
Loss system is a simple system having no buffer so it does not have any provision for the
queuing. In a loss system, provision is time in term of how many switches we do need,

then provide some redundancy how many individuals I/O controllers we do need, then
how many CPUs are there. It is also called dimension of a loss system.

Delay System
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This system provides additional facilities. If we find some call party busy, we can have
provision of call waiting. If we have more than one call waiting, then once we finish the
first call, we may receive the second call.

Single Server Model

Consider a black box. Suppose it represents an I/O controller. At the input, we have
arrival of different tasks. As one task is done, we have a departure at the output. So in the
black box, we have a server. Now if we expand and open-up the black box, we could see
that incoming calls are coming into the buffer and the output of the buffer is connected to
the server. This is an example of “single server model”.

Little’s Law

For a system with multiple independent requests for I/O service and input rate equal to
output rate, we use Little’s law to find the mean number of tasks in the system and Time
sys such that

Mean number of tasks = Arrival Rate x Mean Response time
and

Timegys = Timeq + Time,

where

Time; = Average time to serve task

Time, = Average time per task in the queue
Timeys = Aver time /task

Arrival Rate = A = Average number of arriving tasks
Lengths = Average number of task in service
Length, = Average length of queue

and

Lengthy,= Lengthy +Length,

Server Utilization
Server Utilization = Arrival Rate x Time,
Server utilization is also called traffic intensity and its value must be between 0 and 1.
Server utilization depends upon two parameters:
1. Arrival Rate
2. Average time required to serve each task
So, we can say that it depends on the I/O bandwidth and arrival rate of calls into the

system.

Example 1
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Suppose an I/O system with a single disk gets (on average) 100 I/O requests/second.
Assume that average time for a disk to service an I/O request is Sms. What is the
utilization of the I/O system?

Solution

Time for an I/O request = Sms
=0.005sec

Server utilization = 100 x 0.005

=0.5
Poisson distribution

In order to calculate the response time of an I/O system, we make the following
assumptions:

1. Arrival is random

2. System is memory less. It means that incoming calls are not correlated.
For characterize random events, according to above two assumptions, we use Poisson
distribution:
Probability (k)= (¢® x a*) /k!

a= Rate of events x Elapsed time
= Arrival rate x t

also
Variance
Cc? =
(Arithmetic mean time)*
and

Average Residual Service Time =4 x weighted mean time x (1+C?)
Example 2

For the system of previous example having server utilization of 0.5, what is the mean
number of I/O requests in the queue?
Solution

(Server utilization) >

Lengthy =
(1- Server utilization)

Length, = (0.5) > / (1-0.5)=0.5
Assumptions about Queuing Model
Poisson distribution is assumed
The system is in equilibrium

The length of the queue is infinity
The system has only one server

b s
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5. The server will start the next task after finishing the previous one.

Example 3

Suppose a processor sends 10 disks I/O per second, these requests are exponentially
distributed, and the average service time of an older disk is 10ms. Answer the following

questions:

e What is the number of requests in the queue?
e What is the average time a spent in the queue?
e What is the average response time for a disk request?

Solution

Average number of arriving tasks/second = 20
Average disk time = 10ms = 0.01sec

Sever utilization = 20 x 0.01=0.2

Timeq = 10ms x 0.2/(1-0.2) = 2.5ms

Average response time = 2.5+10=22.5ms

M/M/m model of queuing theory

A system which has multiple servers is called M/M/m model.

The following formulas are used for M/M/m model:
Arrival Rate x Time;
Utilization =

N

Length = Arrival Rate x Time,q

(Times X (Ptasks>: NS))
Time, =

N; x (1- utilization)

N, x utilization
Pr Obtasks>= Ns = X PrObOtasks
Ng! x (1-utilization)

Example#4

Suppose instead of a new, faster disk, we add a second slow disk, and duplicate the data
so that read can be serviced by either disk. Let’s assume that the requests are all reads.

Recalculate the answers to the earlier questions, this time using an M/M/m queue.

Solution

The average utilization of the two disks is given as;
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Arrival rate x Time,
Server utilization =

N
=(20x0.01)/2
=0.1
(2 x utilization) > (2 x utilization )"
Proboasks =[1+ + 17
2! x (1- utilization) n!
(2x 0.1)
Probogss = [ 1 + -=-mmmmmmmmmmmme +2x0.D]"
21x (1-0.1)

=(1+.022+02)""
=1.222"
(2 x utilization) >

Probigs>= Ny = X Proboasks
2! x (1- utilization)

21x (1-0.1)

0.018

PrObtasks>: N;

Timeq = Time; x
N; x (1- utilization)

=0.01x0.018/(2x0.9)
= (0.1lmsec

Average response time = 10msec + 0.1msec
= 10.01msec

Benchmarks programs

In order to measure the performance of real systems and to collect the values of
parameters needed for prediction, Benchmark programs are used.

Types of Benchmark programs

Two types of benchmark programs are used:

TPC-C

SPEC
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Asynchronous I/0 and operating system
In order to improve the I/O performance, parallelism is used.
For this, two approaches are available:

e Synchronous I/0O

e Asynchronous I/O
Synchronous IO
In this approach, operating system requests data and switches to another process. Until
the desire data arrived. Then the operating system switches back to the requesting
process.
Asynchronous 1/0
This model is of the process to continue after making a request and it is not blocked until
it tries to read requested data.
Bus versus switches
Consider a LAN, using bus topology. If we replace the bus with a switch, the speed of the
data transfer will be improved to a great extent.
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Physical Media

Introduction to Computer Networks

A computer architect should know about computer networks because of the two main
reasons:

1. Connectivity

Connection of components with in a single computer follows the same principles used for
the connection of different computers. It is important for the computer architect to know
about connectivity for better sharing of bandwidth

Sharing of resources

Consider a lab with 50 computers and 2 printers using a network, all these 50 computers
can share these 2 printers.

Protocol

A set of rules followed by different components in a network. These rules may be defined
for hardware and software.

Host

It is a computer with a modem, LAN card and other network interfaces. Hosts are also
called nodes or end points. Each node is a combination of hardware and software and all
nodes are interconnected by means of some physical media.

Difference between Distributed Computing and Computer Networks
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In distributed computing, all elements which are interconnected operate under one
operating system. To a user, it appears as a virtual uni-processor system.

In a computer network, the user has to specify and log in on a specific machine. Each
machine on the network has a specific address. Different machines communicate by
using the network which exists among them.

Classification of Networks
We can classify a network based on the following two parameters:
e The number and type of machines to be interconnected
e The distance between these machines
Based on these two parameters, we have the following type of networks:
SAN (System/Storage Area Network)
It refers to a cluster of machines where large disk arrays are present. Typical distances
could be tens of meters.
LAN (Local Area Network)
It refers to the interconnection of machines in a building or a campus. Distances could be
in Kilometers.
WAN (Wide Area Network)
It refers to the interconnection between LANS.

Interconnectivity in WAN

Two methods are used to interconnect WANS:

1. Circuit switching
It is normally used in a telephone exchange. It is not an efficient way.

2. Packet switching
A block (an appropriate number of bits) of data is called a packet. Transfer of data in
the form packets through different paths in a network is called packet switching.
Additional bits are usually associated with each packet. These bits contain
information about the packet. These additional bits are of two types: header and
trailer. As an example, a packet may have the form shown below:

Header Word to be transferred Trailer

If we use a 1- bit header, we may have the following protocol:

Header = 0, it means it is a request

Header = 0, Reply

By reading these header bits, a machine becomes able to receive data or supply data.

To transfer data by using packets through hardware is very difficult. So all the transfer is
done by using software. By using more number of bits, in a header, we can send more
messages. For example if n bits are used as header then 2" is the number of messages that
can be transmitted over a network by using a single header.

For a 2 bit header: we may have 4 types of messages:
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00= Request

01= Reply

10= Acknowledge request
11= Acknowledge reply

Error detection

The trailer can be used for error detection. In the above example, a 4 bit checksum can be
used to detect any error in the packet. The errors in the message could be due to the long
distance transmission. If the error is found in some message, then this message will be
repeated. For a reliable data transmission, bit error rate should be minimum.

Software steps for sending a message:

» Copy data to the operating system buffer.
* Calculate the checksum, include in trailer and star timer.
* Send data to the hardware for transmission.

Software steps for message reception:

» Copy data to the operating system buffer.
» Calculate the checksum; if same, send acknowledge and copy data to the user area
otherwise discard the message.

Response of the sender to acknowledgment:

» Ifacknowledgment arrives, release copy of message from the system buffer.
*  When timer expires, resend data and restart the time.

Performance Issues

1. Bandwidth
It is the maximum rate at which data could be transmitted through networks. It is
measured in bits/sec.
2. Latency
In a LAN, latency (or delay) is very low, but in a WAN, it is significant and this is
due to the switches, routers and other components in the network
3. Time of flight
It is the time for first bit of the message to arrive at the receiver including delays.
Time of the flight increases as the distance between the two machines increases.
4. Transmission time
The time for the message to pass through the network, not including the time of
flight.
5. Transport latency
Transport latency= time of flight + transmission time
6. Sender overhead
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It is the time for the processor to inject message in to the network.
7. Receiver overhead
It is the time for the processor to pull the message from the network.
8. Total latency
Total latency = Sender overhead + Time of flight + Message size/Bandwidth + Receiver
overhead
9. Effective bandwidth
Effective bandwidth = Message size/Actual Bandwidth
Actual bandwidth may be larger than the effective bandwidth.

Example#1

Assume a network with a bandwidth of 1500Mbits/sec. It has a sending overhead of
100usec and a receiving overhead of 120usec. Assume two machines connected together.
It is required to send a 15,000 byte message from one machine to the other (including
header), and the message format allows 15, 00 bytes in a single message. Calculate the
total latency to send the message from one machine to another assuming they are 20m
apart (as in a SAN). Next, perform the same calculation but assume the machines are
700m apart (as in a LAN). Finally, assume they are 1000Km apart (as in a WAN).
Assume that signals propagate at 66% of the speed of light in a conductor, and that the
speed of light is 300,000Km/sec.

Solution
By using the assumption, we get:

Distance between two machines in Km

Time of flight =
2/3 x 300,000Km/sec

Total Latency = Sender overhead + Time of flight + Message size/bandwidth
+ Receiver overhead
For SAN:

Total latency = 100usec
+(0.020Km/(2/3 x 300,000Km/sec))
+ 15,000bytes/ 1500Mbits/sec
+ 120usec
= 100usec + 0.1psec + 80usec + 120usec
=300.1pusec
For LAN

Total latency = 100usec
+ (0.7Km/(2/3 x 300,000Km/sec))
+ 15,000bytes/ 1500Mbits/sec + 120usec
= 100usec + 3.5usec + 80usec + 120usec
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=303.1usec
For WAN

Total latency = 100usec
+ (1000Km/(2/3 x 300,000Km/sec))
+ 15,000bytes/ 1500Mbits/sec
+ 120usec
= 100usec + 5000usec + 80usec + 120usec
=5300usec

Effective bandwidth versus Message size

Effective bandwidth is always less than the raw bandwidth. If the effective bandwidth is
closer to the raw bandwidth, the size of the message will be larger. If the message size is
larger then network will be more effective.

If large number of the messages are present then a queue will be formed, and the user has
to face delay. To minimize the delay, it is better to use packets of small size.

Physical Media

Copper

Twisted pair  Co-axial cable

Twisted pair does not provide good quality of transmission and has less bandwidth. To
get high performance and larger bandwidth, we use co-axial cable. For increased
performance, better performance, we use fiber optic cables, which are usually made of
glass. Data transmits through the fiber in the form of light pulses. Photo diodes and
sensors are used to produce and receive electronic pulses.
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Modem

To interconnect different computers by using twisted pair copper wire, an interface is
used which is called modem. Modem stands for modulation/demodulation. Modems are
very useful to utilize the telephone network (i.e. 4 KHz bandwidth) for data and voice
transmission.

Quality of Telephone Line

Data transfer rate depends upon the quality of telephone line. If telephone line is of fine
quality, then data transfer rate will be sufficiently high. If the phone line is noisy then
data transfer rate will be decreased.

Classification of Fiber Optic Cables
Fiber optic cables can be classified into the following types.

Multimode fiber
This fiber has large diameter. When light is injected, it disperses, so the effective data
rate decreases.

Mono mode Fiber
Its diameter is very small. So dispersion is small and data rate is very high.

Wavelength —Division Multiplexing (WDM)
Waves of different wavelengths are simultaneously sent through fiber. So as a result,
throughput increases.

Wireless Transmission
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This is another effective medium for data transfer. Data is transferred in the form of
electromagnetic waves. It has the following features:

e Data rate is in Mbits/Sec.
e Very effective because of flexibility.
e Band width is much less than fiber.

Example 1

Suppose we have 20 magnetic tapes, each containing 40GB. Assume that there are
enough tape readers to keep any network busy. How long will it take to transmit the data
over a distance of SKm? The choices are category 5 twisted-pair wires at 100Mbits/sec,
multimode fiber at 1500Mbits/sec and single-mode fiber at 3000Mbits/sec. (Adapted
from CA3: H&P)

Solution

The total amount of data
= total no. of mag. tapes x capacity of each tape
=20 x 40GB= 800GB

The time for each medium:
Twisted pair = 800GB/100Mbits/sec
= 65536 sec=18.2 hr
Multimode Fiber = 800GB/1500Mbits/sec
=4369.06sec = 1.213 hr

Single mode Fiber = 800GB/3000Mbits/sec
=2184.55sec
= 0.66hr

Car = time to load car + transport time + time to unload car
=250sec + SKm/30Kph + 250sec
=500.16 sec = 0.13hr

Shared/Switched Medium

Shared Medium

If a number of computers are connected with a single physical medium (i.e. coaxial or
fiber), this situation is called shared medium. Because of many computers, collision takes
place and affects the data transfer rate. As the number of machines on a physical medium
increases, the data transfer rate decreases.

Switched Medium

To increase the throughput, a switched medium is used.
Example 2
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Compare 20 nodes connected in three different ways: a single 100Mbits/sec shared
medium; a switch connected via cat5, each segment running at 100Mbits/sec; and a
switch connected via optical fiber, each segment running at 1500Mbits/sec. The shared
medium is 700m long, and the average length of each segment to a switch is 55m. Both
switches can support full bandwidth. Assume each switch adds 6usec to the latency, and
the average message size is 200bytes. Ignore the overhead of sending or receiving a
message and contention for the network.

Solution

First we will calculate the aggregate bandwidth:
For shared medium

Aggregate bandwidth = 100Mbits/sec
For switched twisted pair

Aggregate bandwidth = 20 x 100Mbits/sec
= 2000Mbits/sec
For switched optical fiber

Aggregate bandwidth = 20 x 1500Mbit/sec
= 30,000Mbits/sec

Transport time = Time of flight + (message size/BW)

(700/1000)Km
Transport time shared = x 10%usec
(2/3 x 300,000)Km
+ (200 x 8bits / 100Mbits/sec)

=3.5usec + 16usec = 19.5usec
For the switches, the distance is twice the average segment. We must also add latency for
the switch.

(55/1000)Km
Transport time switch = 2x x 10%us
(2/3 x 300,000)Km
+ 6busec

+ (200 x 8bits / 100Mbits/sec)

= 0.55usec + 6usec +16usec
=22.55pusec
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(55/1000)Km
Transport time fiber =2x x 10°us
(2/3 x 300,000)Km
+ 6usec
+ (200 x 8bits / 1500Mbits/sec)

= 0.55usec + 6usec +1.06usec
=7.61usec

Although the bandwidth of the switch is many times that of the shared medium, the
latency for unloaded networks is comparable.

Connection Oriented vs. Connection less Communication

Connection Oriented Communication
¢ In this method, same path is always taken for the transfer of messages.
e [t reserves the bandwidth until the transfer is complete. So no other server could
use that path until it becomes free.
e Telephone exchange and circuit switching is the example of connection oriented
communication.

Connection less Communication
e Here message is divided into packets with each packet having destination address.
e FEach packet can take different path and reach the destination from any route by
looking at its address.
e Postal system and packet switching are examples of connection less
communication.

Network Topologies
Computers in a network can be connected together in different ways. The following three
topologies are commonly used:

¢ Bus topology

e Star topology

¢ Ring topology

Bus Topology
In this arrangement, computers are connected via a single shared physical medium.

Star topology
Computers are connected through a hub. All messages are broad cast because the hub is
not an intelligent device.

Ring Topology

All computers are connected through a ring. Only one computer can transmit data at one
time, having a pass called “Token”.
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Seven Layer OSI Model

There are seven layers in this model.
1. Physical Layer

Data Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Nowvwkwd

OSI Model Characteristics

e An interface is present between any two layers.

A layer may use the data present in another layer.

Each layer is abstracted from other layers.

The service provided by one layer can be used by the other layer.

Two layers can provide same service e.g. Check Sum calculated at different

layers.

e On two machines, six layers are logically connected except the physical layer.
The physical layers of two machines are physically connected.

Internet and Packet Switching

Internet works on the concept of packet switching. Application layer passes data to the
lower layer and that lower layer passes data to the next lower layer and on so on. In this
data passing process through different layers, different headers are attached with the data
which shows the source and destination addresses, number of data bytes in packet, type
of message etc. At physical layer, this packet is transmitted into the network. At
reception, reverse procedure is adopted.

Fragmentation

When a packet is lost in the network, it is re-transmitted. If the size of the packet is large
then retransmission of packet is wastage of resources and it also increases the delay in the
network. To minimize this delay, a large packet is divided into small fragments. Each
fragment contains a separate header having destination address and fragment number.
This fragmentation effectively reduces the queuing delay. At destination, these fragments
are re-assembled and data is sent to the application layer.

Routing

Routing works on store-and-forward policy. There are three methods used for routing:
e Source-based routing
e  Virtual Circuit
e Destination-based routing

TCP/IP

Internet uses TCP/IP protocol. In the TCP/IP model, session and presentation layers are
not present, so Store-Forward routing is used.
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