Advanced Computer Architecture-CS501

Lecture Handouts

Computer Architecture

Appendix

Reading Material
Handouts

Summary

1. Introduction to FALSIM

2. Preparing source files for FALSIM

3. Using FALSIM

4. FALCON-A assembly language techniques

FALSIM
1. Introduction to FALSIM:

FALSIM is the name of the software application which consists of the
FALCON-A assembler and the FALCON-A simulator. It runs under
Windows XP.

FALCON-A Assembler:

Figure 1 shows a snapshot of the FALCON-A Assembler. This tool loads a
FALCON-A assembly file with a (.asmfa) extension and parses it. It shows
the parse results in an error log, lets the user view the assembled file’s
contents in the file listing and also provides the features of printing the
machine code, an Instruction Table and a Symbol Table to a FALCON-A
listing file. It also allows the user to run the FALCON-A Simulator.

The FALCON-A Assembler has two main modules, the 1st-pass and the
2nd-pass. The 1st-pass module takes an assembly file with a (.asmfa)
extension and processes the file contents. It then creates a Symbol Table

Last Modified: 01-Nov-06 Page 1

Advanced Computer Architecture-CS501

which corresponds to the storage of all program variables, labels and data
values in a data structure at the implementation level. If the Ist-pass
completes successfully a Symbol Table is produced as an output, which is
used by the 2nd-pass module. Failures of the 1st-pass are handled by the
assembler using its exception handling mechanism.

The 2nd-pass module sequentially processes the .asmfa file to interpret the
instruction opcodes, register opcodes and constants using the symbol table.
It then produces a list file with a .Istfa extension independent of successful
or failed pass. If the pass is successful a binary file with a .binfa extension is

produced which contains the machine code for the program in the assembly
file.

FALCON-A Simulator:

Figure 6 shows a snapshot of the FALCON-A Simulator. This tool loads a
FALCON-A binary file with a (.binfa) extension and presents its contents
into different areas of the simulator. It allows the user to execute the
program to a specific point within a time frame or just executes it, line by
line. It also allows the user to view the registers, /O port values and memory
contents as the instructions execute.

FALSIM Features:
The FALCON-A Assembler provides its user with the following features:

Select Assembly File: Labeled as “1” in Figure 1, this feature enables the
user to choose a FALCON-A assembly file and open it for processing by the
assembler.

Assembler Options: Labeled as “2” in Figure 1.

e Print Symbol Table
This feature if selected writes the Symbol Table (produced after the
execution of the Ist-pass of the assembler) to a FALCON-A list file with an
extension of (.Istfa). The Symbol Table includes data members, data
addresses and labels with their respective values.

o Print Instruction Table
This feature if selected writes the Instruction Table to a FALCON-A list file
with an extension of (.Istfa).

Last Modified: 01-Nov-06 Page 2

Advanced Computer Architecture-CS501

List File: Labeled as “3”, in Figure 1, the List File feature gives a detailed
insight of the FALCON-A listing file, which is produced as a result of the
execution of the Ist and 2nd-pass. It shows the Program Counter value in
hexadecimal and decimal formats along with the machine code generated for
every line of assembly code. These values are printed when the 2nd-pass is
completed.

Error Log: The Error Log is labeled as “4” in Figure 1. It informs the user
about the errors and their respective details, which occurs in any of the
passes of the assembler.

Search: Search is labeled as “5” in Figure 1 and helps the user to search for
a certain input with the options of searching with “match whole” and
“match any” parts of the string. The search also has the option of checking
with/without considering “case-sensitivity”. It searches the List File area
and highlights the search results using the yellow color. It also indicates the
total number of matches found.

Start Simulator: This feature is labeled as “6” in Figure 1. The FALCON-A
Simulator is run using the FALCON-A Assembler’s Start Simulator option.
The FALCON-A Simulator is invoked by the user from the FALCON-A
Assembler. Its features are detailed as follows:

Load Binary File: The button labeled as “11” in Figure 6, allows the user to
choose and open a FALCON-A binary file with a (.binfa) extension. When a
file is being loaded into the simulator all the register, constants (if any) and
memory values are set.

Registers: The area labeled as “12” in Figure 6. enables, the user to see
values present in different registers before during and after execution.

Instruction: This area is labeled as “13” in Figure 6 and contains the value of
PC, address of an instruction, its representation in Assembly, the Register
Transfer Language, the op-code and the instruction type.

1/0 Ports: 1/0 ports are labeled as “14” in Figure 6. These ports are available
for the user to enter input operation values and visualize output operation
values whenever an I/O operation takes place in the program. The input
value for an input operation is given by the user before an instruction
executes. The output values are visible in the I/O port area once the
instruction has successfully executed.

Last Modified: 01-Nov-06 Page 3

Advanced Computer Architecture-CS501

Memory: The memory is divided into 2 areas and is labeled as “15” in
Figure 6, to facilitate the view of data stored at different memory locations
before, during and after program execution.

Processor’s State: Labeled as “16” in Figure 6, this area shows the current
values of the Instruction register and the Program Counter while the program
executes.

Search: The search option for the FALCON-A simulator is labeled as “17”
in Figure 6. This feature is similar to the way the search feature of the
FALCON-A Assembler works. It offers to highlight the search string which
goes as an input, with the “All *“ and * Part ““ option. The results of the search
are highlighted in the color yellow. It also indicates the total number of
matches.

The following is a description of the options available on the button panel
labeled as “18” in Figure 6.

Single Step: “Single Step” lets the user execute the program, one instruction
at a time. The next instruction is not executed unless the user does a “single
step” again. By default, the instruction to be executed will be the one next in
the sequence. It changes if the user specifies a different PC value using the
Change PC option (explained below).

Change PC: This option lets the user change the value of PC
(Program Counter). By changing the PC the user can execute the
instruction to which the specified PC points.

Execute: By choosing this button the user is able to execute the
instructions with the options of execution with/without breakpoint
insertion (refer to Fig. 5). In case of breakpoint insertion, the user has
the option to choose from a list of valid breakpoint values. It also has
the option to set a limit on the time for execution. This “Max
Execution Time” option restricts the program execution to a time
frame specified by the user, and helps the simulator in exception
handling.

Change Register: Using the Change Register feature, the user can
change the value present in a particular register.

Last Modified: 01-Nov-06 Page 4

Advanced Computer Architecture-CS501

Change Memory Word: This feature enables the user to change values
present at a particular memory location.

Display Memory: Display Memory shows an updated memory area,
after a particular memory location other than the pre-existing ones is
specified by the user.

Change 1/O: Allows the user to give an I/O port value if the
instruction to be executed requires an I/O operation. Giving in the
input in any one of the I/O ports areas before instruction execution,
indicates that a particular I/O operation will be a part of the program
and it will have an input from some source. The value given by the
user indicates the input type and source.

Display I/0O: Display I/O works in a manner similar to Display
Memory. Here the user specifies the starting index of an 1/O port. This
features displays the I/O ports stating from the index specified.

2. Preparing source files for FALSIM:

In order to use the FALCON-A assembler and simulator, FALSIM,
the source file containing assembly language statements and directives
should be prepared according to the following guidelines:

e The source file should contain ASCII text only. Each line should be
terminated by a carriage return. The extension .asmfa should be used
with each file name. After assembly, a list file with the original
filename and an extension .Istfa, and a binary file with an extension
.binfa will be generated by FALSIM.

e Comments are indicated by a semicolon (;) and can be placed anywhere
in the source file. The FALSIM assembler ignores any text after the
semicolon.

e Names in the source file can be of one of the following types:

e Variables: These are defined using the .equ directive. A value must
also be assigned to variables when they are defined.

e Addresses in the “data and pointer area” within the memory: These
can be defined using the .dw or the .sw directive. The difference
between these two directives is that when .dw is used, it 1S not
possible to store any value in the memory. The integer after .dw
identifies the number of memory words to be reserved starting at the
current address. (The directive .db can be used to reserve bytes in

Last Modified: 01-Nov-06 Page 5

Advanced Computer Architecture-CS501

memory.) Using the .sw directive, it is possible to store a constant or
the value of a name in the memory. It is also possible to use pointers
with this directive to specify addresses larger than 127. Data tables
and jump tables can also be set up in the memory using this directive.

e Labels: An assembly language statement can have a unique label
associated with it. Two assembly language statements cannot have the
same name. Every label should have a colon (:) after it.

e Use the .org 0 directive as the first line in the program. Although the use
of this line is optional, its use will make sure that FALSIM will start
simulation by picking up the first instruction stored at address 0 of the
memory. (Address 0 is called the reset address of the processor). A jump
[first] instruction can be placed at address 0, so that control is transferred
to the first executable statement of the main program. Thus, the label
first serves as the identifier of the “entry point” in the source file. The
.org directive can also be used anywhere in the source file to force code
at a particular address in the memory.

e Address 2 in the memory is reserved for the pointer to the Interrupt
Service Routine (ISR). The .sw directive can be used to store the address
of the first instruction in the ISR at this location.

e Address 4 to 125 can be used for addresses of data and pointers'.
However, the main program must start at address 126 or less’, otherwise
FALSIM will generate an error at the jump [first] instruction.

e The main program should be followed by any subprograms or
procedures. Each procedure should be terminated with a ret instruction.
The ISR, if any, should be placed after the procedures and should be
terminated with the iret instruction.

e The last line in the source file should be the .end directive.

e The .equ directive can be used anywhere in the source file to assign
values to variables.

e It is the responsibility of the programmer to make sure that code does not
overwrite data when the assembly process is performed, or vice versa. As
an example, this can happen if care is not exercised during the use of the
.org directive in the source file.

w

. Using FALSIM:

" Any address between 4 and 14 can be used in place of the displacement field in load or
store instructions. Recall that the displacement field is just 5 bits in the instruction word.
? This restriction is because of the face that the immediate operand in the movi
instruction must fit an 8-bit field in the instruction word.

Last Modified: 01-Nov-06 Page 6

Advanced Computer Architecture-CS501

e To start FALSIM (the FALCON-A assembler and simulator), double
click on the FALSIM icon. This will display the assembler window,
as shown in the Figure 1.

e Select one or both assembler options shown on the top right corner of
the assembler window labeled as *“2”. If no option is selected, the

symbol table and the instruction table will not be generated in the list
(.Istfa) file.

e Click on the select assembly file button labeled as “1”. This will open
the dialog box as shown in the Figure 2.

e Sclect the path and file containing the source program that is to be
assembled.

e C(lick on the open button. FALSIM will assemble the program and
generate two files with the same filename, but with different
extensions. A list file will be generated with an extension .Istfa, and a
binary (executable) file will be generated with an extension .binfa.
FALSIM will also display the list file and any error messages in two
separate panes, as shown in Figure 3.

e Double clicking on any error message highlights and displays the
corresponding erroneous line in the program listing window pane for
the user. This is shown in Figure 4. The highlight feature can also be
used to display any text string, including statements with errors in
them. If the assembler reported any errors in the source file, then these
errors should be corrected and the program should be assembled again
before simulation can be done. Additionally, if the source file had
been assembled correctly at an earlier occasion, and a correct binary
(.binfa) file exists, the simulator can be started directly without
performing the assembly process.

e To start the simulator, click on the start simulation button labeled as
“6”. This will open the dialog box shown in Figure 6.

e Select the binary file to be simulated, and click open as shown in
Figure 7.

e This will open the simulation window with the executable program
loaded in it as shown in Figure 8. The details of the different panes in
Last Modified: 01-Nov-06 Page 7

Advanced Computer Architecture-CS501

this window were given in section 1 earlier. Notice that the first
instruction at address O is ready for execution. All registers are
initialized to 0. The memory contains the address of the ISR (i.e., 64h
which is 100 decimal) at location 2 and the address of the printer
driver at location 4. These two addresses are determined at assembly
time in our case. In a real situation, these addresses will be
determined at execution time by the operating system, and thus the
ISR and the printer driver will be located in the memory by the
operating system (called re-locatable code). Subsequent memory
locations contain constants defined in the program.

e Click single step button labeled as “19”. FALSIM will execute the
jump [main] instruction at address 0 and the PC will change to 20h
(32 decimal), which is the address of the first instruction in the main
program (1.e., the value of main).

o Although in a real situation, there will be many instructions in the
main program, those instructions are not present in the dummy calling
program. The first useful instruction is shown next. It loads the
address of the printer driver in r6 from the pointer area in the memory.
The registers r5 and r7 are also set up for passing the starting address
of the print buffer and the number of bytes to be printed. In our
dummy program, we bring these values in to these registers from the
data area in the memory, and then pass these values to the printer

driver using these two registers. Clicking on the single step button twice,
executes these two instructions.

e The execution of the call instruction simulates the event of a print
request by the user. This transfers control to the printer driver. Thus,
when the call r4, r6 instruction is single stepped, the PC changes to
32h (50 decimal) for executing the first instruction in the printer
driver.

e Double click on memory location 000A, which is being used for
holding the PB (printer busy) flag. Enter a 1 and click the change
memory button. This will store a 0001 in this location, indicating that
a previous print job is in progress. Now click single step and note that
this value is brought from memory location 000E into register rl.
Clicking single step again will cause the jnz r1, [message] instruction
to execute, and control will transfer to the message routine at address
0046h. The nop instruction is used here as a place holder.

Last Modified: 01-Nov-06 Page 8

Advanced Computer Architecture-CS501

e Click again on the single step button. Note that when the ret r4
instruction executes, the value in 4 (i.e., 28h) is brought into the PC.
The blue highlight bar is placed on the next instruction after the call
r4, r6 instruction in the main program. In case of the dummy calling
program, this is the halt instruction.

e Double click on the value of the PC labeled as “20. This will open a
dialog box shown below. Enter a
value of the PC (ie, 26h) EeUELIRGe

corresponding to the call r4, ré Erter Hew Value for PC Hex
instruction, S0 tha.t it can . be 5500 =
executed again. A “list” of possible

PC values can also be pulled down x| Corcel_|

using, and 0026h can be selected
from there as well.

Click single step again to enter the printer driver again.

Change memory location 000A to a 0, and then single step the first
instruction in the printer driver. This will bring a 0 in r1, so that when
the next jnz r1, [message]| instruction is executed, the branch will not
be taken and control will transfer to the next instruction after this
instruction. This 1s mivi rl, 1 at address 0036h.

e Continue single stepping.

e Notice that a 1 has been stored in memory location 000A, and rl
contains 11h, which is then transferred to the output port at address
3Ch (60 decimal) when the out rl1, controlp instruction executes.
This can be verified by double clicking on the top left corner of the
I/O port pane, and changing the address to 3Ch. Another way to
display the value of an I/O port is to scroll the /O window pane to
the desired position.

e Continue single stepping till the int instruction and note the changes
in different panes of the simulation window at each step.

e When the int instruction executes, the PC changes to 64h, which is the
address of the first instruction in the ISR. Clicking single step executes
this instruction, and loads the address of temp (i.e., 0010h) which is a

Last Modified: 01-Nov-06 Page 9

Advanced Computer Architecture-CS501

temporary memory area for storing the environment. The five store
instructions in the ISR save the CPU environment (working registers)
before the ISR change them.

Single step through the ISR while noting the effects on various registers,
memory locations, and I/O ports till the iret instruction executes. This will
pass control back to the printer driver by changing the PC to the address of
the jump [finish] instruction, which is the next instruction after the int
instruction.

Double click on the value of the PC. Change it to point to the int
instruction and click single step to execute it again. Continue to single step
till the in r1, statusp instruction is ready for execution.

Change the I/0O port at address 3Ah (which represents the status port at
address 58) to 80 and then single step the in r1, statusp instruction. The
value in r1 should be 0080.

Single step twice and notice that control is transferred to the movi r7,
FFFF’ instruction, which stores an error code of —1 in rl.

* The instruction was originally movi r7, -1. Since it was converted to machine language
by the assembler, and then reverse assembled by the simulator, it became movi r7,
FFFF. This is because the machine code stores the number in 16-bits after sign-
extension. The result will be the same in both cases.

Last Modified: 01-Nov-06 Page 10

Advanced Computer Architecture-CS501

2/FALCON-A Assembler e X
™ seient ::T:;n?:nu:nmn ‘ﬁ
Assambly File / I~ Prirt ymbol Table | AT COMN
r' Hax J Der.] Marhing | LLine Mo, | Sowre _./ J

A
Q/

Case Sensitve
Higniignt Total Makn Winole Matth Any shﬂsmml Moot Exit ||

V

A -

Figure 1

i FALCON-A Assembler

Select
Assembly File

Hex | Dec. | Machine | Line Mo, | Source Statement

Open @

Look it |[E3 My Documents ;I = £ Ev

Assembler Optians
™ PrintInstruction Table -_
™ Print Symbol Table | EAT CON

L Example_11-10 9Feb04ISR4FALCONA

& ol 38

File: name: |Example_11-1 0_SFeb04ISR4FALCOMA Open I
Files of type: IFaIcon-A Aszzembly Files [*.asmfa) ;I Cancel |

Options—————————————————
[~ Case Sensitive
" Matchihole © Match Any stanSimmator“ About || Exit ||

Highlight Total Mateh |

Figure 2

Last Modified: 01-Nov-06 Page 11

Advanced Computer Architecture-CS501

FALCON-A Assembler
o lcaDocuments and i-lisse.mbleromi.ons |

ncsorits File || SetingsyavariaDesklopExample_11-10_7FebD4ISR4FALCONA as | Print Instruction Tahle | | -

]| | T Print Symbol Table IFALCON

Hex l Dec. I iachine | Line Mo, | Source Statement | ~
ooon nooo ooon 1 filename: Example_11-10
ooon nooo ooon 2 This program sends a single character 5
ooon nooo noon 3 10 a FALCOM-A parallel printer

0000 0000 gefnon : Licinoae st deivan Lo intou

ooon nooo

pecodmpenet D [2FalconA_7Feb04

ooon nooo

0ooo - 0000 Q 1 Error(s) During Second Pass

gggg gggg See C\Documents and

Q000 0000 Settings\javariaiDesktop\Example_11-10_7Feb04ISRAFALCONA. Istfa

Qooo oooo

ooon nooo

ooz nooz

ooo4 o004 T oms L] I W Paner B
Errar: Line B2: Undefined variable "r2'

~ Options
[Case Sensitive

Highlight Total Match | 0 € MatchWhale C Match Any | g Simulamr“ Apout " Exit "

Figure 3

FALCON-A Assembler
Assembler Options
Select e e [~ Print Instrupctiun Tahle -
Assembly File SettingsjavarialDesktopiExample_11-10_TFeb04|SR4FALCOMNA asH i
™ Print Symbol Table | EALCON

Hex | Dec. | Machine | Line Mo, | Source Staterment | ~
o032z o050 oooo 52 disahle: .equ g
o032z o050 oooo 53 ;
o3z nosn oo a4 strh_H: equ 21 ;ar1sh
o3z nosn oo a4 strh_L. equ 20 ;ar14h
o032z o050 oooo 56 ;
o3z nosn oo ar ccheck PB flag first, if set,
o3z nosn oo ag s return with message.
o032z o050 oooo 59 ; i |
o032z o050 E90A 0 Pdriver: oad r1, [PB]
0034 nosz 9112 61 jnz rl, [message]
(0036 | 0054 movi 11, 12
0036 0054 E104 63 store r1, [PB] ;a1inPBindicates PrintIn Progress
no3s 0056 34811 64 mavi i1, reset cuse r1 for data xfer
003A nosa CH3C [i14] out r1, controlp
003C 0060 ES0A a3 stare ra, [Bufp]
003E 0062 E708 67 stare r7, [MOB] |
Erraor: Line 62: Undefinec

Options
[~ Case Sensitive

Highiight Total Match | 0 (r‘ MatchWhals ¢ Match Any Stawimmamr" pr— ||
Figure 4

Last Modified: 01-Nov-06 Page 12

Advanced Computer Architecture-CS501

FALCON-A Assembler

i CaDocuments and Settingsyjavariaihly Iisse.mblerOpn.ons [
ncsomen File | DOCUMeNtsiExample_11-10_8FehD4ISRAFALCONA asmfa Efildl i bl ;‘%—
SRR I~ PrintSymbol Table | EATCON
Hex | Dec. | fachine | Line Mo, | Source Statement | ~|
oo aooon ujululi} 1 ;filename: Example_11-10.asmfa T|
oo aooon ooon 2 This program sends a sinale character i |
0000 0000 000g = T .
LTI D igFalconA_7Feb04
0000 0000 000
0000 0000 000
0000 0000 000 f: Following Files are Generated Successfully:
0booD - 0000 00Oq & C:A\Documents and Settings\javariaiMy
ugonm: | |nomn 0ol DocurnentsiExample_11-10_9Feb04ISRAFALCONA. |stfa
0000 0000 000 ; e
0000 0000 0004 ChDocuments and SettingshjavariaiMy
gooo oono oood DocumentsiExample_11-10_9Feb04ISR4FALCONA binfa
ooon oooo oo
0o0n 0000 A0
0004 0004 003 el
Options
[Case Sensitive
Highlight TotalMatch | 0 © Match'Whole © Match Any | i Simulamr" o || i ||
Figure 5
(l FALCON-A Simulator A X
S TotalMakh Highlghl | RewmTo 17
1 2 Binary Fila D [Makch [Case T Wl [~ Pan _ASS
Feqisters ernorg (ODF-800H)
Reg®| Valbe | Value value | valse | - - .
i -
1 3 Instruction
[adoress [nstuction [Assemby | RTL a

FALCON-A Simulator

Load | Total Match | Highlight | Return To
TR [0 [Wateh [Gase|” Al [~ pan _fssembler
~Reaisters Mermory {10h-200k)
14 Reg#| wvawe | vawe | walue | wvale | ‘ | memory| 0-1 s | 4-5 | B-7
~Instruction = :
1 6 Address | Instruction | Lookin: | (L) My Documents =l e e Ev
Example_l1-10_9Feb04ISR4FALCONA
EjprinterDri\e‘er
Flgllr 72 1] | >
e 6 & i = — || 4-s -7
File name: IExampIe_1 1-10_9Feb04ISRAFALCONA Open I
D Ports (00h-FFh)
Part#| 0-1 | 2-3| Fiesoftype: [Falconst Bin Files [binfa) | ﬂlﬂ
Last Modifie
Flotesonlslale | Chanoe Register || Display Memony || Chanoe Mermony Wards || Help |
I | Ik | 5 | Rl Execute || Single Step || Change PG || Change @ || Display o |

Advanced Computer Architecture-CS501

Figure 7
FALCON-A Simulator s X
CDacurmers and Beflingslavarn sy Totaimaich | Highiight | Rt
H'IL:'Fh DocumenlsiExample_11-10_IF ebD8ISRAFALCONA binfa ' mﬁl
0 |Match | Case ™ AN i~ Pat L
Realsters ‘Mermory (00h-B00h)
Reg#| valve | wvawe | wale | wvawe | Mernary| 0.1 1:3 -5 | 8.1 |&
03 0000 0000 anan o000 oooo ADIO (T 0032 400 =
&7 DOOD a0 oooo] 0ooe Do 000 000 000
oo [alii} uelii} el el
Ingtruction om@ 0aoo 0ona 000a 0a0g
Address | instruction | Assambly | ATl & oo20 EED4 EDDS EFOR BaCO
0o0a A0z JunF | 207 PCe-PCe 0oz Fecd oaoa b oo
oooz] ADD RO A R Rj0]=R[3] 030 nopa E%0a 12 F@m
oood miz ADD RO, A1, R R0 = R[1] ooag E10a 1| CRIC ESOC
0008 040 ADDRA RO RD R|4]=R{0] 0040 ETOE Dooo AQR A0
pops poxa ADD RO, A1, R2 R0 =R[1] nnas Beoa nana papa 000D
OO0A] ADDROD A0, RO R|O0]=R[O] 0050 Dapd tooa o ooog -
nonc napa ADD RO, RO, 70 RI0]=R[O] 'y
00DE a0 ADDRO,RO, R0 R|0)=R{O]*
L3 ¥ wamary| 0-1 | 2-3 | a-§ | &7 |
- e oo00 00%2 [T
10 Pfta (OD4-FF i o0ga P gong
Pote| 0.4 | 2-3 | 46 | &7 |&|| |oow il e 00
a noon] ooan opap el noa
8 nooo 0000 oooo ooon EFOR Baca
m uijeli] Uil anoo opan] el Dona
18 nooon 0a0d oooo 000 012 190
0 noon 0000 L] 00g 1 9 _ CA3C ES0C
Processor's Btale 3 o I Hean J
R | oo |Pc| o | TR

Figure 8

4. FALCON-A assembly language programming techniques:

Last Modified: 01-Nov-06

Page 14

Advanced Computer Architecture-CS501

e If a signed value, x, cannot fit in 5 bits (i.e., it is outside the range -16 to
+15), FALSIM will report an error with a load r1, [x] or a store r1, [x]
instruction. To overcome this problem, use movi r2, x followed by load
rl, [r2].

e If a signed value, x, cannot fit in 8 bits (i.e., it is outside the range -
128 to +127), even the previous scheme will not work. FALSIM will
report an error with the movi r2, x instruction. The following instruction
sequence should be used to overcome this limitation of the FALCON-A.
First store the 16-bit address in the memory using the .sw directive. Then
use two load instructions as shown below:

a: Sw X
load r2, [a]
load r1, [r2]

This 1s essentially a “memory-register-indirect” addressing. It has been
made possible by the .sw directive. The value of a should be less than 15.

e A similar technique can be used with immediate ALU instructions for
large values of the immediate data, and with the transfer of control (call
and jump) instructions for large values of the target address.

e Large values (16-bit values) can also be stored in registers using the mul
instruction combined with the addi instruction. The following
instructions bring a 201 in register r1.

movi r2, 10

movi r3, 20

mul rl, r2, r3 ; r1 contains 200 after this instruction
addirl, ri, 1 ; r1 now contains 201

e Moving from one register to another can be done by using the instruction
addir2, r1, 0.

e Bit setting and clearing can be done using the logical (and, or, not, etc)
instructions.

e Using shift instructions (shiftl, asr, etc.) is faster that mul and div, if the
multiplier or divisor is a power of 2.

Last Modified: 01-Nov-06 Page 15

Advanced Computer Architecture-CS501

Lecture Handout

Computer Architecture

Lecture No. 1

Reading Material

Vincent P. Heuring & Harry F. Jordan Chapter 1
Computer Systems Design and Architecture 1.1,1.2,13,1.4,1.5
Summary

1) Distinction between computer architecture, organization and design
2) Levels of abstraction in digital design

3) Introduction to the course topics

4) Perspectives of different people about computers

5) General operation of a stored program digital computer

6) The Fetch-Execute process

7) Concept of an ISA(Instruction Set Architecture)

Introduction
This course is about Computer Architecture. We start by explaining a few key terms.
The General Purpose Digital Computer
How can we define a ‘computer’? There are several kinds of devices that can be termed
“computers”: from desktop machines to the microcontrollers used in appliances such as a
microwave oven, from the Abacus to the cluster of tiny chips used in parallel processors,
etc. For the purpose of this course, we will use the following definition of a computer:
“an electronic device, operating
under the control of instructions
stored in its own memory unit, that
can accept data (input), process data
arithmetically and logically, produce
output from the processing, and store
the results for future use.” [1]

Electrical
Systems

Thus, when we use the term computer, Systems

we actually mean a digital computer. General Purpose

There are many digital computers, Digital Computers)

which have dedicated purposes, for ”m
example, a computer used in an

automobile that controls the spark Notion of a System

Last Modified: 01-Nov-06 Page 16

Advanced Computer Architecture-CS501

timing for the engine. This means that when we use the term computer, we actually mean
a general-purpose digital computer that can perform a variety of arithmetic and logic
tasks.
The Computer as a System
Now we examine the notion of a system, and the place of digital computers in the general
universal set of systems. A “system” is a collection of elements, or components, working
together on one or more inputs to produce one or more desired outputs.
There are many types of systems in the world. Examples include:

* Chemical systems

* Optical systems

» Biological systems

* Electrical systems

* Mechanical systems, etc.
These are all subsets of the general universal set of “systems”. One particular subset of
interest is an “electrical system”. In case of electrical systems, the inputs as well as the
outputs are electrical quantities, namely voltage and current. “Digital systems” are a
subset of electrical systems. The inputs and outputs are digital quantities in this case.
General-purpose digital computers are a subset of digital systems. We will focus on
general-purpose digital computers in this course.
Essential Elements of a General Purpose Digital Computer
The figure shows the block diagram of

a modern general-purpose digital VAN
computer.
We observe from the diagram that a
Memory [CPU
general-purpose computer has three syl | | (uP)
main components: a memory
subsystem, an input/ output subsystem,
and a central processing unit.
Programs are stored in the memory, 5 L1
. Subsystem
the execution of the program Ferpheras | A
instructions takes place in the CPU, 4
and the communication with the N\ Address Bus

~

external world is achieved through the
I/O subsystem (including the
peripherals).

Architecture

Now that we understand the term “computer” in our context, let us focus on the term
architecture. The word architecture, as defined in standard dictionaries, is “the art or
science of building”, or “a method or style of building”. 2]

Computer Architecture

This term was first used in 1964 by Amdahl, Blaauw, and Brooks at IBM [3]. They
defined it as

“the structure of a computer that a machine language programmer must understand to
write a correct (time independent) program for that machine.”

By architecture, they meant the programmer visible portion of the instruction set. Thus, a

Block Diagram of a Computer System

Last Modified: 01-Nov-06 Page 17

Advanced Computer Architecture-CS501

family of machines of the same architecture should be able to run the same software
(instructions). This concept is now so common that it is taken for granted. The x86
architecture is a well-known example.
The study of computer architecture includes

¢ astudy of the structure of a computer

¢ astudy of the instruction set of a computer

e astudy of the process of designing a computer
Computer Organization versus Computer Architecture
It is difficult to make a sharp distinction between these two. However, architecture refers
to the attributes of a computer that are visible to a programmer, including

e The instruction set

e The number of bits used to represent various data types

¢ [/O mechanisms

e Memory addressing modes, etc.
On the other hand, organization refers to the operational units of a computer and their
interconnections that realize the architectural specifications. These include

e The control signals

e Interfaces between the computer and its peripherals

e Memory technology used, etc.
It is an architectural issue whether a computer will have a specific instruction or not,
while it is an organizational issue how that instruction will be implemented.
Computer Architect
We can conclude from the discussion above that a computer architect is a person who
designs computers.
Design
Design is defined as
“the process of devising a system, component, or process to meet desired needs.”
Most people think of design as a “sketch”. This is the usage of the term as a noun.
However, the standard engineering usage of the term, as is quite evident from the above
definition, is as a verb, i.e., “design is a process”. A designer works with a set of stated
requirements under a number of constraints to produce the best solution for a given
problem. Best may mean a “cost-effective” solution, but not always. Additional or
alternate requirements, like efficiency, the client or the designer may impose robustness,
etc.. Therefore, design is a decision-making process (often iterative in nature), in which
the basic sciences, mathematical concepts and engineering sciences are applied to convert
a given set of resources optimally to meet a stated objective.
Knowledge base of a computer architect
There are many people in the world who know how to drive a car; these are the “users” of
cars who are familiar with the behavior of a car and how to operate it. In the same way,
there are people who can use computers. There are also a number of people in the world
who know how to repair a car; these are “automobile technicians”. In the same way, we
have computer technicians. However, there are a very few people who know how to
design a car; these are “automobile designers”. In the same way, there are only very few
experts in the world who can design computers. In this course, you will learn how to
design computers!

These computer design experts are familiar with

Last Modified: 01-Nov-06 Page 18

Advanced Computer Architecture-CS501

e the structure of a computer

e the instruction set of a computer

e the process of designing a computer
as well as few other related things.
At this point, we need to realize that it is not the job of a single person to design a
computer from scratch. There are a number of levels of computer design. Domain experts
of that particular level carry out the design activity for each level. These levels of
abstraction of a digital computer’s design are explained below.
Digital Design: Levels of Abstraction
Processor-Memory-Switch level (PMS level)
The highest is the processor-memory-switch level. This is the level at which an architect
views the system. It is simply a description of the system components and their
interconnections. The components are specified in the form of a block diagram.
Instruction Set Level
The next level is instruction set level. It defines the function of each instruction. The
emphasis is on the behavior of the system rather than the hardware structure of the
system.
Register Transfer Level
Next to the ISA (instruction set architecture) level is the register transfer level. Hardware
structure is visible at this level. In addition to registers, the basic elements at this level are
multiplexers, decoders, buses, buffers etc.
The above three levels relate to “system design”.
Logic Design Level
The logic design level is also called the gate level. The basic elements at this level are
gates and flip-flops. The behavior is less visible, while the hardware structure
predominates.
The above level relates to “logic design”.
Circuit Level
The key elements at this level are resistors, transistors, capacitors, diodes etc.

Mask [evel

The lowest level is mask level dealing with the silicon structures and their layout that
implement the system as an integrated circuit.

The above two levels relate to “circuit design”.

The focus of this course will be the register transfer level and the instruction set level,
although we will also deal with the PMS level and the Logic Design Level.

Objectives of the course

This course will provide the students with an understanding of the various levels of
studying computer architecture, with emphasis on instruction set level and register
transfer level. They will be able to use basic combinational and sequential building
blocks to design larger structures like ALUs (Arithmetic Logic Units), memory
subsystems, I/O subsystems etc. It will help them understand the various approaches used
to design computer CPUs (Central Processing Units) of the RISC (Reduced Instruction
Set Computers) and the CISC (Complex Instruction Set Computers) type, as well as the

principles of cache memories.
Important topics to be covered
* Review of computer organization

Last Modified: 01-Nov-06 Page 19

Advanced Computer Architecture-CS501

* Classification of computers and their instructions
* Machine characteristics and performance
* Design of a Simple RISC Computer: the SRC
* Advanced topics in processor design
* Input-output (I/O) subsystems
» Arithmetic Logic Unit implementation
* Memory subsystems
Course Outline

Introduction:
e Distinction between Computer Architecture, Organization and design
e Levels of abstraction in digital design
e Introduction to the course topics

Brief review of computer organization:
e Perspectives of different people about computers
e General operation of a stored program digital computer
e The Fetch — Execute process
e (Concept of an ISA

Foundations of Computer Architecture:

¢ A taxonomy of computers and their instructions
e Instruction set features

o Addressing Modes

e RISC and CISC architectures

e Measures of performance

An example processor: The SRC:
e Introduction to the ISA and instruction formats
¢ Coding examples and Hand assembly
e Using Behavioral RTL to describe the SRC
e Implementing Register Transfers using Digital Logic Circuits

ISA: Design and Development
e Outline of the thinking process for ISA design
e Introduction to the ISA of the FALCON — A
e Solved examples for FALCON-A
e [earning Aids for the FALCON-A

Other example processors:

e FALCON-E

e EAGLE and Modified EAGLE
e Comparison of the four ISAs

Last Modified: 01-Nov-06 Page 20

Advanced Computer Architecture-CS501

CPU Design:

The Design Process

A Uni-Bus implementation for the SRC
Structural RTL for the SRC instructions
Logic Design for the 1-Bus SRC

The Control Unit

The 2-and 3-Bus Processor Designs
The Machine Reset

Machine Exceptions

Term Exam — |

Advanced topics in processor design:

e Pipelining

e Instruction-Level Parallelism

e Microprogramming

Input-output (I/0):

e [/O interface design

e Programmed [/O

e Interrupt driven I/O

e Direct memory access (DMA)

Term Exam — 11

Arithmetic Logic Shift Unit (ALSU) implementation:

e Addition, subtraction, multiplication & division for integer unit
e Floating point unit

Memory subsystems:

e Memory organization and design
e Memory hierarchy
e (Cache memories
e Virtual memory
References

[1] Shelly G.B., Cashman T.J., Waggoner G.A., Waggoner W.C., Complete Computer
Concepts: Microcomputer and Applications. Ferncroft Village Danvers, Massachusetts:
Boyd & Fraser, 1992.
[2] Merriam-Webster Online; The Language Centre, May 12, 2003 (http:/www.m-
w.com/home.htm).
[3] Patterson, D.A. and Hennessy, J.L., Computer Architecture- A Quantitative
Approach, ond ed., San Francisco, CA: Morgan Kauffman Publishers Inc., 1996.
[4] Heuring V.P. and Jordan H.F., Computer Systems Design and Architecture. Melano
Park, CA: Addison Wesley, 1997.
A brief review of Computer Organization

Perceptions of Different People about Computers

There are various perspectives that a computer can take depending on the person viewing

Last Modified: 01-Nov-06 Page 21

Advanced Computer Architecture-CS501

it. For example, the way a child perceives a computer is quite different from how a
computer programmer or a designer views it. There are a number of perceptions of the
computer, however, for the purpose of understanding the machine, generally the
following four views are considered.

The User’s View
A user is the person for whom the machine is designed, and who employs it to perform
some useful work through application software. This useful work may be composing
some reports in word processing software, maintaining credit history in a spreadsheet, or
even developing some application software using high-level languages such as C or Java.
The list of “useful work™ is not all-inclusive. Children playing games on a computer may
argue that playing games is also “useful work”, maybe more so than preparing an internal
office memo.
At the user’s level, one is only concerned with things like speed of the computer, the
storage capacity available, and the behavior of the peripheral devices. Besides
performance, the user is not involved in the implementation details of the computer, as
the internal structure of the machine is made obscure by the operating system interface.
The Programmer’s View
By “programmer” we imply machine or assembly language programmer. The machine or
the assembly language programmer is responsible for the implementation of software
required to execute various commands or sequences of commands (programs) on the
computer. Understanding some key terms first will help us better understand this view,
the associated tasks, responsibilities and tools of the trade.
Machine Language
Machine language consists of all the primitive instructions that a computer understands
and is able to execute. These are strings of 1s and 0s.Machine language is the computer’s
native language. Commands in the machine language are expressed as strings of 1s and
0s. It is the lowest level language of a computer, and requires no further interpretation.
Instruction Set
A collection of all possible machine language commands that a computer can understand
and execute is called its instruction set. Every processor has its own unique instruction
set. Therefore, programs written for one processor will generally not run on another
processor. This is quite unlike programs written in higher-level languages, which may be
portable. Assembly/machine languages are generally unique to the processors on which
they are run, because of the differences in computer architecture.
Three ways to list instructions in an instruction set of a computer:

* by function categories

* by an alphabetic ordering of mnemonics

* Dby an ascending order of op-codes
Assembly Language
Since it is extremely tiring as well as error-prone to work with strings of 1s and Os for
writing entire programs, assembly language is used as a substitute symbolic
representation using “English like” key words called mnemonics. A pure assembly
language is a language in which each statement produces exactly one machine
instruction, i.e. there is a one-to-one correspondence between machine instructions and
statements in the assembly language. However, there are a few exceptions to this rule, the

Pentium jump instruction shown in the table below serves as an example.
Example

Last Modified: 01-Nov-06 Page 22

Advanced Computer Architecture-CS501

The table provides us with some assembly statement and the machine language

equivalents of the Intel x 86 processor Ty T
111 Asrgemihly Mar hine L. L Instruction
famllleg. . ' i privioi e T | e
Alpha is a label, and its value will be
add ex, dx 0000 0001 1101 0001 0ol Arithmetie

determined by the position of the jmp
instruction in the program and the position

mov alx, 3¢h | 1011 1000 00110100 0000 0000 | BE34 00 | Data iransfer

of the instruction whose address is alpha. |xwraxhx 00110001 11011000 31D | Logk
So the second byte in the last instruction [jmp apha |1110 101111111100 EBFC | Condrol

can be different for different programs.

Hence there is a one-to-many correspondence of the assembly to machine language in
this instruction.
Users of Assembly Language

The machine designer

The designer of a new machine needs to be familiar with the instruction sets of
other machines in order to be able to understand the trade-offs implicit in the
design of those instruction sets.

The compiler writer

A compiler is a program that converts programs written in high-level languages to
machine language. It is quite evident that a compiler writer must be familiar with
the machine language of the processor for which the compiler is being designed.
This understanding is crucial for the design of a compiler that produces correct
and optimized code.

The writer of time or space critical code

A complier may not always produce optimal code. Performance goals may force
program-specific optimizations in the assembly language.

Special purpose or embedded processor programmer

Higher-level languages may not be appropriate for programming special purpose
or embedded processors that are now in common use in various appliances. This
is because the functionality required in such applications is highly specialized. In
such a case, assembly language programming is required to implement the
required functionality.

Useful tools for assembly language programmers

The assembler:

Programs written in assembly language require translation to the machine
language, and an assembler performs this translation. This conversion process is
termed as the assembly process. The assembly process can be done manually as
well, but it is very tedious and error-prone.

An “assembler” that runs on one processor and translates an assembly language
program written for another processor into the machine language of the other
processor is called a “cross assembler”.

The linker:

When developing large programs, different people working at the same time can
develop separate modules of functionality. These modules can then be ‘linked’ to

form a single module that can be loaded and executed. The modularity of
programs, that the linking step in assembly language makes possible, provides the
same convenience as it does in higher-level languages; namely abstraction and
separation of concerns. Once the functionality of a module has been verified for

Last Modified: 01-Nov-06 Page 23

Advanced Computer Architecture-CS501

correctness, it can be re-used in any number of other modules. The programmer
can focus on other parts of the program. This is the so-called “modular” approach,
or the “top-down” approach.
e The debugger or monitor:
Assembly language programs are very lengthy and non-intuitive, hence quite
tedious and error-prone. There is also the disadvantage of the absence of an
operating system to handle run-time errors that can often crash a system, as
opposed to the higher-level language programming, where control is smoothly
returned to the operating system. In addition to run-time errors (such as a divide-
by-zero error), there are syntax or logical errors.
A “debugger”, also called a “monitor”, is a computer program used to aid in
detecting these errors in a program. Commonly, debuggers provide functionality
such as
o The display and altering of the contents of memory, CPU registers and flags
o Disassembly of machine code (translating the machine code back to assembly
language)
o Single stepping and breakpoints that allow the examination of the status of the
program and registers at desired points during execution.
While syntax errors and many logical errors can be detected by using debuggers,
the best debugger in the world can catch not every logical error.
e The development system
The development system is a complete set of (hardware and software) tools
available to the system developer. It includes
o Assemblers

o Linkers and loaders

o Debuggers

o Compilers

o Emulators

o Hardware-level debuggers

o Logic analyzers, etc.

Difference between Higher-Level Languages and Assembly Language

Higher-level languages are generally used to develop application software. These high-
level programs are then converted to assembly language programs using compilers. So it
is the task of a compiler writer to determine the mapping between the high-level-
language constructs and assembly language constructs. Generally, there is a “many-to-
many” mapping between high-level languages and assembly language constructs. This
means that a given HLL construct can generally be represented by many different
equivalent assembly language constructs. Alternately, a given assembly language
construct can be represented by many different equivalent HLL constructs.

High-level languages provide various primitive data types, such as integer, Boolean and a
string, that a programmer can use. Type checking provides for the verification of proper

usage of these data types. It allows the compiler to determine memory requirements for
variables and helping in the detection of bad programming practices.

On the other hand, there is generally no provision for type checking at the machine level,
and hence, no provision for type checking in assembly language. The machine only sees
strings of bits. Instructions interpret the strings as a type, and it is usually limited to
signed or unsigned integers and floating point numbers. A given 32-bit word might be an

Last Modified: 01-Nov-06 Page 24

Advanced Computer Architecture-CS501

instruction, an integer, a floating-point number, or 4 ASCII characters. It is the task of the
compiler writer to determine how high-level language data types will be implemented
using the data types available at the machine level, and how type checking will be
implemented.

The Stored Program Concept

This concept is fundamental to all the general-purpose computers today. It states that the
program is stored with data in computer’s memory, and the computer is able to
manipulate it as data. For example, the computer can load the program from disk, move it
around in memory, and store it back to the disk.

Even though all computers have unique machine language instruction sets, the ‘stored
program’ concept and the existence of a ‘program counter’ is common to all machines.
The sequence of instructions to perform some useful task is called a program. All of the
digital computers (the general purpose machine defined above) are able to store these
sequences of instructions as stored programs. Relevant data is also stored on the
computer’s secondary memory. These stored programs are treated as data and the
computer is able to manipulate them, for example, these can be loaded into the memory
for execution and then saved back onto the storage.

General Operation of a Stored Program Computer

The machine language programs are brought into the memory and then executed
instruction by instruction. Unless a branch instruction is encountered, the program is
executed in sequence. The instruction that is to be executed is fetched from the memory
and temporarily stored in a CPU register, called the instruction register (IR). The
instruction register holds the instruction while it is decoded and executed by the central
processing unit (CPU) of the computer. However, before loading an instruction into the
instruction register for execution, the computer needs to know which instruction to load.
The program counter (PC), also called the instruction pointer in some texts, is the register
that holds the address of the next instruction in memory that is to be executed.

When the execution of an instruction is completed, the contents of the program counter
(which is the address of the next instruction) are placed on the address bus. The memory
places the instruction on the corresponding address on the data bus. The CPU puts this
instruction onto the IR (instruction register) to decode and execute. While this
instruction is decoded, its length in bytes is determined, and the PC (program counter)
is incremented by the length, so that the PC will point to the next instruction in the
memory. Note that the length of the instruction is not determined in the case of RISC
machines, as the instruction length is fixed in these architectures, and so the program
counter is always incremented by a fixed number. In case of branch instructions, the
contents of the PC are replaced by the address of the next instruction contained in the
present branch instruction, and the current status of the processor is stored in a register
called the Processor Status Word (PSW). Another name for the PSW is the flag register.
It contains the status bits, and control bits corresponding to the state of the processor.
Examples of status bits include the sign bit, overflow bit, etc. Examples of control bits
include interrupt enable flag, etc. When the execution of this instruction is completed, the
contents of the program counter are placed on the address bus, and the entire cycle is
repeated. This entire process of reading memory, incrementing the PC, and decoding the
instruction is known as the Fetch and Execute principle of the stored program computer.
This is actually an oversimplified situation. In case of the advanced processors of this
age, a lot more is going on than just the simple “fetch and execute” operation, such as

Last Modified: 01-Nov-06 Page 25

Advanced Computer Architecture-CS501

pipelining etc. The details of some of these more involved techniques will be studied later
on during the course.
The Concept of Instruction Set Architecture (ISA)
Now that we have an understanding of some of the relevant key terms, we revert to the
assembly language programmer’s perception of the computer. The programmer’s view is
limited to the set of all the assembly instructions or commands that can the particular
computer at hand execute understood/, in addition to the resources that these instructions
may help manage. These resources include the memory space and the entire programmer
accessible registers. Note that we use the term ‘memory space’ instead of memory,
because not all the memory space has to be filled with memory chips for a particular
implementation, but it is still a resource available to the programmer.
This set of instructions or operations and the resources together form the instruction set
architecture (ISA). It is the ISA, which serves as an interface between the program and
the functional units of a computer, i.e., through which, the computer’s resources, are
accessed and controlled.
The Computer Architect’s View
The computer architect’s view is concerned with the design of the entire system as well
as ensuring its optimum performance. The optimality is measured against some
quantifiable objectives that are set out before the design process begins. These objectives
are set on the basis of the functionality required from the machine to be designed. The
computer architect
e Designs the ISA for optimum programming utility as well as for optimum
performance of implementation
e Designs the hardware for best implementation of instructions that are made
available in the ISA to the programmer
e Uses performance measurement tools, such as benchmark programs, to verify that
the performance objectives are met by the machine designed
e Balances performance of building blocks such as CPU, memory, I/O devices, and
interconnections
e Strives to meet performance goals at the lowest possible cost
Useful tools for the computer architect
Some of the tools available that facilitate the design process are
e Software models, simulators and emulators
Performance benchmark programs
Specialized measurement programs
Data flow and bottleneck analysis
Subsystem balance analysis
Parts, manufacturing, and testing cost analysis
The Logic Designer’s View
The logic designer is responsible for the design of the machine at the logic gate level. It is
the design process at this level that determines whether the computer architect meets cost
and performance goals. The computer architect and the logic designer have to work in
collaboration to meet the cost and performance objectives of a machine. This is the
reason why a single person or a single team may be performing the tasks of system’s
architectural design as well as the logic design.
Useful Tools for the Logic Designer
Some of the tools available that aid the logic designer in the logic design process are

Last Modified: 01-Nov-06 Page 26

Advanced Computer Architecture-CS501

e CAD tools
= Logic design and simulation packages
= Printed circuit layout tools
= IC (integrated circuit) design and layout tools
e Logic analyzers and oscilloscopes
e Hardware development systems
The Concept of the Implementation Domain
The collection of hardware devices, with which the logic designer works for the digital
logic gate implementation and interconnection of the machine, is termed as the
implementation domain. The logic gate implementation domain may be
VLSI (very large scale integration) on silicon
e TTL (transistor-transistor logic) or ECL (emitter-coupled logic) chips
e Gallium arsenide chips
e PLAs (programmable-logic arrays) or sea-of-gates arrays
¢ Fluidic logic or optical switches
Similarly, the implementation domains used for gate, board and module interconnections
are
e Poly-silicon lines in ICs
¢ Conductive traces on a printed

circuit board ﬂ S
e Electrical cable o L o
e Optical fiber, etc.]
At the lower levels of logic design, the "

designer is concerned mainly with the
functional details represented in a
symbolic form. The implementation

details are not considered at these EM 015—_|_
lower levels. They only become an SEL - S =
issue at higher levels of logic design. Aya A0 §.—

An example of a two-to-one AT
multiplexer in various implementation v EE’ 5
domains will illustrate this point. g cp L
Figure (a) is the generic logic gate 1 c1 2
(abstract domain) representation of a o2yp 257 g % 10
2-to-1 multiplexer. bt = 1
Figure (b) shows the 2-to-1

multiplexer logic gate implementation (b) TTL implementation domain

in the domain of TTL (VLSI on Silicon) logic using part number ‘257, with
interconnections in the domain of printed circuit

board traces.

Figure (c) is the implementation of the 2-to-1 O IO
multiplexer with a fiber optic directional coupler E— —11
switch, which has an interconnection domain of

optical fiber. \—'—‘

Classical logic design versus computer logic g

design L (¢) Optical switch implerentation

Last Modified: 01-Nov-06 Page 27

Advanced Computer Architecture-CS501

We have already studied the sequential circuit design concepts in the course on Digital
Logic Design, and thus are familiar with the techniques used. However, these traditional
techniques for a finite state machine are not very practical when it comes to the design of
a computer, in spite of the fact that a computer is a finite state machine. The reason is that
employing these techniques is much too complex as the computer can assume hundreds
of states.
Sequential Logic Circuit Design
When designing a sequential logic circuit, the problem is first coded in the form of a state
diagram. The redundant states may be eliminated, and then the state diagram is translated
into the next state table. The minimum number of flip-flops needed to implement the
design is calculated by making “state assignments” in terms of the flip-flop “states”. A
“transition table” is made using the state assignments and the next state table. The flip-
flop control characteristics are used to complete a set of “excitation tables”. The
excitation equations are determined through minimization. The logic circuit can then be
drawn to implement the design. A detailed discussion of these steps can be found in most
books on Logic Design.
Computer Logic Design
Traditional Finite State Machine (FSM) design techniques are not suitable for the design
of computer logic. Since there is a natural separation between the data path and the
control path in case of a digital computer, a modular approach can be used in this case.
The data path consists of the storage cells, the arithmetic and logic components and their
interconnections. Control path is the circuitry that manages the data path information
flow. So considering the behavior first can carry out the design. Then the structure can be
considered and dealt with. For this purpose, well-defined logic blocks such as
multiplexers, decoders, adders etc. can be used repeatedly.
Two Views of the CPU Program Counter Register
The view of a logic designer is more detailed than that of a programmer. Details of the
mechanism used to control the machine are unimportant to the programmer, but of vital
importance to the logic designer. This can be illustrated through the following two views
of the program counter of a machine.
As shown in figure (a), to a programmer the program counter is just a register, and in this
case, of length 32 bits or 4 bytes.

31 0

D

(a) Program Counter: Programmer’s view

Figure (b) illustrates the logic designer’s view of a 32-bit program counter, implemented
as an array of 32 D flip-flops. It shows the contents of the program counter being gated
out on ‘A bus’ (the address bus) by applying a control signal PC,y. The contents of the
‘B bus’ (also the address bus), can be stored in the program counter by asserting the
signal PC;i, on the leading edge of the clock signal CK, thus storing the address of the
next instruction in the program counter.

32 32
A Bus /H Q n B Bus

PC
Last Modified: 01-Nov-06 Page 28

Advanced Computer Architecture-CS501

Pcout

CK PCi,

(b) Program Counter: Logic Designer’s View

Last Modified: 01-Nov-06 Page 29

Advanced Computer Architecture-CS501

Lecture Handout

Computer Architecture

Lecture No. 2

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3
Computer Systems Design and Architecture 2.1,2.2,3.2
Summary

1) A taxonomy of computers and their instructions
2) Instruction set features

3) Addressing modes

4) RISC and CISC architectures

Foundations Of Computer Architecture
TAXONOMY OF COMPUTERS AND THEIR INSTRUCTIONS

Processors can be classified on the basis of their instruction set architectures. The
instruction set architecture, described in the previous module gives us a ‘programmer’s
view’ of the machine. This module discussed a number of topics related to the
classifications of computers and their instructions.
CLASSES OF INSTRUCTION SET ARCHITECTURE:
The mechanism used by the CPU to store instructions and data can be used to classify the
ISA (Instruction Set Architecture). There are three types of machines based on this
classification.

* Accumulator based machines

» Stack based machines

» General purpose register (GPR) machines
ACCUMULATOR BASED MACHINES
Accumulator based machines use special registers called the accumulators to hold one
source operand and also the result of the arithmetic or logic operations performed. Thus
the accumulator registers collect (or ‘accumulate’) data. Since the accumulator holds one
of the operands, one more register may be required to hold the address of another
operand. The accumulator is not used to hold an address. So accumulator based machines
are also called 1-address machines. Accumulator machines employ a very small number

Last Modified: 01-Nov-06 Page 30

Advanced Computer Architecture-CS501

of accumulator registers, generally only one. These machines were useful at the time
when memory was quite expensive; as they used one register to hold the source operand

as well as the result of the operation. However, now that the memory is relatively
inexpensive, these are not considered very useful, and their use is severely limited for the
computation of expressions with many operands.

STACK BASED MACHINES

A stack is a group of registers organized as a last-in-first-out (LIFO) structure. In such a
structure, the operands stored first, through the push operation, can only be accessed last,
through a pop operation; the order of access to the operands is reverse of the storage
operation. An analogy of the stack is a “plate-dispenser” found in several self-service
cafeterias. Arithmetic and logic operations successively pick operands from the top-of-
the-stack (TOS), and push the results on the TOS at the end of the operation. In stack
based machines, operand addresses need not be specified during the arithmetic or logical
operations. Therefore, these machines are also called 0-address machines.

GENERAL-PURPOSE-REGISTER MACHINES

In general purpose register machines, a number of registers are available within the CPU.
These registers do not have dedicated functions, and can be employed for a variety of
purposes. To identify the register within an instruction, a small number of bits are
required in an instruction word. For example, to identify one of the 64 registers of the
CPU, a 6-bit field is required in the instruction.

CPU registers are faster than cache memory. Registers are also easily and more
effectively used by the compiler compared to other forms of internal storage. Registers
can also be used to hold variables, thereby reducing memory traffic. This increases the
execution speed and reduces code size (fewer bits required to code register names
compared to memory) .In addition to data, registers can also hold addresses and pointers
(i.e., the address of an address). This increases the flexibility available to the
programmer.

A number of dedicated, or special purpose registers are also available in general-purpose
machines, but many of them are not available to the programmer. Examples of
transparent registers include the stack pointer, the program counter, memory address
register, memory data register and condition codes (or flags) register, etc.

We should understand that in reality, most machines are a combination of these machine
types. Accumulator machines have the advantage of being more efficient as these can
store intermediate results of an operation within the CPU.

INSTRUCTION SET

An instruction set is a collection of all possible machine language commands that are
understood and can be executed by a processor.

ESSENTIAL ELEMENTS OF COMPUTER INSTRUCTIONS:

There are four essential elements of an instruction; the type of operation to be performed,
the place to find the source operand(s), the place to store the result(s) and the source of
the next instruction to be executed by the processor.

Type of operation

In module 1, we described three ways to list the instruction set of a machine; one way of
enlisting the instruction set is by grouping the instructions in accordance with the
functions they perform. The type of operation that is to be performed can be encoded in

Last Modified: 01-Nov-06 Page 31

Advanced Computer Architecture-CS501

the op-code (or the operation code) field of the machine language instruction. Examples
of operations are mov, jmp, add; these are the assembly mnemonics, and should not be

confused with op-codes. Op-codes are simply bit-patterns in the machine language format
of an instruction.

Place to find source operands

An instruction needs to specify the place from where the source operands will be
retrieved and used. Possible locations of the source operands are CPU registers, memory
cells and I/O locations. The source operands can also be part of an instruction itself; such
operands are called immediate operands.

Place to store the results

An instruction also specifies the location in which the result of the operation, specified by
the instruction, is to be stored. Possible locations are CPU registers, memory cells and
I/O locations.

Source of the next instruction

By default, in a program the next instruction in sequence is executed. So in cases where
the next-in-sequence instruction execution is desired, the place of next instruction need
not be encoded within the instruction, as it is implicit. However, in case of a branch, this
information needs to be encoded in the instruction. A branch may be conditional or
unconditional, a subroutine call, as well as a call to an interrupt service routine.

Example

The table provides examples of assembly language commands and their machine
language equivalents. In the instruction Mac hine

add cx, dx, the contents of the 10cation | Lo N e ase Loiouee | Dretmaetion
dx are added to the contents of the —F—Timemertorom TR e

location cx, and the result is stored in
cx. The instruction type is arithmetic,

mov al, 34h | 1011 1000 0011 0100 0000 0000 | BE 3400 | Data transier

and the op-code for the add instruction |™F %P |01 001 H0L1%0 el ks
1s 0000, as shown in this example. jmp alpha | 1110 1011 1111 1100 EBFC | Conirol
CLASSIFICATIONS OF

INSTRUCTIONS:

We can classify instructions according to the format shown below.

* 4-address instructions

* 3-address instructions

* 2-address instructions

* l-address instructions

* 0-address instructions
The distinction is based on the fact that some operands are accessed from memory, and
therefore require a memory address, while others may be in the registers within the CPU
or they are specified implicitly.

4-address instructions
The four address instructions specify the addresses of two source operands, the address of
the destination operand and the next instruction address.

4-address —

. . op code destination source 1 source 2 next address
Instructions are not

very common

because the next
Last Modified: 01-Nov-06 Page 32

Advanced Computer Architecture-CS501

instruction to be executed is sequentially stored next to the current instruction in the

memory. Therefore, specifying its address is redundant. These instructions are used in
the micro-coded control unit, which will be studied later.

3-address instruction
A 3-address instruction
specifies the addresses of two
operands and the address of the
destination operand.

2-address instruction
A 2-address instruction has three fields; one for the op-code, the second field specifies
the address of one of the source operands as op code destination | source 2
well as the destination operand, and the last source 1
field is used for holding the address of the
second source operand. So one of the fields serves two purposes; specifying a source
operand address and a destination operand address.

1-address instruction
A 1-address instruction has a dedicated CPU register,

op code destination source 1 source 2

op code source 2
called the accumulator, to hold one operand and to store "

the result. There is no need of encoding the address of the accumulator register to access
the operand or to store the result, as its usage is implicit. There are two fields in the
instruction, one for specifying a source operand address and a destination operand

address.

0-address instruction
A 0-address instruction uses a stack to hold both the operands and the
result. Operations are performed on the operands stored on the top of the op code
stack and the second value on the stack. The result is stored on the top of
the stack. Just like the use of an accumulator register, the addresses of
the stack registers need not be specified, their usage is implicit. Therefore, only one field
is required in 0-address instruction; it specifies the op-code.

COMPARISON OF INSTRUCTION FORMATS:
Basis for comparison
Two parameters are used as the basis for comparison of the instruction sets discussed
above. These are
e Code size
Code size has an effect on the storage requirements for the instructions; the
greater the code size, the larger the memory required.
e Number of memory accesses

Last Modified: 01-Nov-06 Page 33

Advanced Computer Architecture-CS501

The number of memory accesses has an effect on the execution time of
instructions; the greater the number of memory accesses, the larger the time
required for the execution cycle, as memory accesses are generally slow.
Assumptions
We make a few assumptions, which are
e A single byte is used for the op code, so 256 instructions can be encoded using
these 8 bits, as 28 =256
e The size of the memory address space is 16 Mbytes
e A single addressable memory unit is a byte

e Size of operands is 24 bits. As the memory size is 16Mbytes, with byte-
addressable memory, 24 bits are required to encode the address of the operands.
e The size of the address bus is 24 bits
e Data bus size is 8 bits
Discussion4-address instruction
* The code size

. op code destination source 1 source 2 next address
is 13 bytes
(143+3+3+3
= 13 bytes) 1 byte 3 bytes 3 bytes 3 bytes 3 bytes
e Number of
bytes

accessed from memory is 22 (13 bytes for instruction fetch + 6 bytes for source
operand fetch + 3 bytes for storing destination operand = 22 bytes)
Note that there is no need for an additional memory access for the operand corresponding
to the next instruction, as it has already been brought into the CPU during instruction
fetch.
3-address instruction
« The code size is 10 bytes |2F code destination source 1 source 2
(1+3+3+3 = 10 bytes)
* Number of bytes accessed
from memory is 22
(10 bytes for instruction fetch
+ 6 bytes for source operand fetch + 3 bytes for storing destination operand = 19

1 byte 3 bytes 3 hytes 3 bytes

bytes)
2-address instruction
* The code size is 7 bytes (14343 =7 [gpcoge destination | source 2
bytes) source 1
* Number of bytes accessed from
memory is 16(7 bytes for instruction |1 tyte 3 hytes 3 bytes

fetch + 6 bytes for source operand
fetch + 3 bytes for storing destination operand = 16
bytes) op code source 2
1-address instruction
» The code size is 4 bytes (1+3= 4 bytes)
* Number of bytes accessed from memory is 7
(4 bytes for instruction fetch + 3 bytes for source
operand fetch + 0 bytes for storing destination operand = 7 bytes)

1 byte 3 hytes

Last Modified: 01-Nov-06 Page 34

Advanced Computer Architecture-CS501

0-address instruction op code
» The code size is 1 byte
* Number of bytes accessed from memory is 10

(1 byte for instruction fetch + 6 bytes for source operand fetch + 3 1yt
bytes for storing destination operand = 10 bytes)
The following table summarizes this information
HALF ADDRESSES Instruction Format Code Number of
In the preceding discussion we have size memory bytes
: 4-address instruction 13 22
ta}ked gbout memory gddresses. This E Y T ppr——— 0 T
dls(?u5510n also applies to CPU 5 ddress instruction 5 16
registers. However, to specify/ encode [1-address instruction 4 7
a CPU register, less number of bits is [U-address instruction 1 10

required as compared to the memory addresses. Therefore, these addresses are also called
“half-addresses”. An instruction that specifies one memory address and one CPU register
can be called as a 1)5-address instruction
Example

mov al, [34h]
THE PRACTICAL SITUATION

Real machines are not as simple as the classifications presented above. In fact, these
machines have a mixture of 3, 2, 1, 0, and 1%-address instructions. For example, the
VAX 11 includes instructions from all classes.

CLASSIFICATION OF MACHINES ON THE BASIS OF OPERAND
AND RESULT LOCATION:

A distinction between machines can be made on the basis of the ALU instructions;
whether these instructions use data from the memory or not. If the ALU instructions use
only the CPU registers for the operands and result, the machine type is called “load-
store”. Other machines may have a mixture of register-memory, or memory-memory
instructions.

The number of memory operands supported by a typical ALU instruction may vary from
0 to 3.

Example

The SPARC, MIPS, Power PC, ALPHA: 0 memory addresses, max operands allowed = 3
X86, 68x series: 1 memory address, max operands allowed = 2

LOAD- STORE MACHINES

These machines are also called the register-to-register machines. They typically use the
12 address instruction format. Only the load and store instructions can access the
memory. The load instruction fetches the required data from the memory and temporarily
stores it in the CPU registers. Other instructions may use this data from the CPU
registers. Then later, the results can be stored back into the memory by the store
instruction. Most RISC computers fall under this category of machines.
Advantages (of register-register instructions)
Register-register instructions use 0 memory operands out of a total of 3 operands. The
advantages of such a scheme is:

e The instructions are simple and fixed in length

Last Modified: 01-Nov-06 Page 35

Advanced Computer Architecture-CS501

e The corresponding code generation model is simple
e All instructions take similar number of clock cycles for execution
Disadvantages (register-register instructions)
e The instruction count is higher; the number of instructions required to complete a
particular task is more as separate instructions will be required for load and store
operations of the memory

e Since the instruction size is fixed, the instructions that do not require all fields
waste memory bits
Register-memory machines
In register-memory machines, some operands are in the memory and some are in
registers. These machines typically employ 1 or 1 address instruction format, in which
one of the operands is an accumulator or a general-purpose CPU registers.
Advantages
Register-memory operations use one memory operand out of a total of two operands. The
advantages of this instruction format are
e Operands in the memory can be accessed without having to load these first
through a separate load instruction
¢ Encoding is easy due to the elimination of the need of loading operands into
registers first
e Instruction bit usage is relatively better, as more instructions are provided per
fixed number of bits
Disadvantages
e Operands are not equivalent since one operand may have two functions (both
source operand and destination operand), and the source operand may be
destroyed
e Different size encoding for memory and registers may restrict the number of
registers
e The number of clock cycles per instruction execution vary, depending on the
operand location operand fetch from memory is slow as compared to operands in
CPU registers
Memory-Memory Machines
In memory-memory machines, all three of the operands (2 source operands and a
destination operand) are in the memory. If one of the operands is being used both as a
source and a destination, then the 2-address format is used. Otherwise, memory-memory
machines use 3-address formats of instructions.
Advantages
e The memory-memory instructions are the most compact instruction where
encoding wastage is minimal.
e As operands are fetched from and stored in the memory directly, no CPU registers
are wasted for temporary storage
Disadvantages
e The instruction size is not fixed; the large variation in instruction sizes makes
decoding complex
e The cycles per instruction execution also vary from instruction to instruction

Last Modified: 01-Nov-06 Page 36

Advanced Computer Architecture-CS501

e Memory accesses are generally | 3-Address | 2 Address | 1 Address | 0-Address
slow, so too many references |adda. b, c [loada,b |Ildab push b
cause performance degradation |MPYa. a.d jadda,c add ¢ push ¢

E le 1 suba,a,e |mpya,d mpy d add
Xample . . suba, e sub e push d
The expression a = (b+c)*d — e is sta a mpy
evaluated with the 3, 2, 1, and 0- push e
address machines to provide a sub
pop a

comparison of their advantages and disadvantages discussed above. The instructions
shown in the table are the minimal instructions required to evaluate the given expression.
Note that these are not machine language instructions, rather the pseudo-code.

Example 2

The instruction z = 4(a +b) — 16(c+58) is with the 3, 2, 1, and 0-address machines in the
table.

Functional classification of [addrese |2-Addrese 1-Address 0-Address
instruction sets:
Instructions can be classified into the [addxatb |leadya |;omderchangedtoreduce codesize | pushe
. . muly, x, 4 add v, b ldac fush 52
following four categories based on | .7 . |awya |eddes add
their functionality. malsr, 16 |loads,c |mulald push 16
1 subz v, s add s, 58 stas mul
* Data processing ‘ o 16 |idae puh e
» Data storage (main memory) subys |addab addbioace pushs
« Data movement (I/O) storezy |muled add
suba s subtract acc from s push 4
* Program flow control g -
These are discussed in detail sub
« Data processing L

Data processing instructions are the ones that perform some mathematical or logical
operation on some operands. The Arithmetic Logic Unit performs these operations,
therefore the data processing instructions can also be called ALU instructions.

* Data storage (main memory)
The primary storage for the operands is the main memory. When an operation needs to be
performed on these operands, these can be temporarily brought into the CPU registers,
and after completion, these can be stored back to the memory. The instructions for data
access and storage between the memory and the CPU can be categorized as the data
storage instructions.

* Data movement (I/0)
The ultimate sources of the data are input devices e.g. keyboard. The destination of the
data is an output device, for example, a monitor, etc. The instructions that enable such
operations are called data movement instructions.

* Program flow control
A CPU executes instructions sequentially, unless a program flow-change instruction is
encountered. This flow change, also called a branch, may be conditional or unconditional.
In case of a conditional branch, if the branch condition is met, the target address is loaded
into the program counter.
ADDRESSING MODES:
Addressing modes are the different ways in which the CPU generates the address of
operands. In other words, they provide access paths to memory locations and CPU
registers.
Effective address

Last Modified: 01-Nov-06 Page 37

Advanced Computer Architecture-CS501

An “effective address” is the address (binary bit pattern) issued by the CPU to the
memory. The CPU may use various ways to compute the effective address. The memory
may interpret the effective address differently under different situations.

COMMONLY USED ADDRESSING MODES

Some commonly used addressing modes are explained below.

Immediate addressing mode
In this addressing mode, data is the part of the instruction itself, and so there is no need of
address calculation. However, immediate addressing mode is used to hold source
operands only; cannot be used for storing results. The range of the operands is limited by
the number of bits available for encoding the operands in the instruction; for n bit fields,
the range is -2 to +(2™"-1). .
Example: 1da 123 IR [0pcode | 123 | Memory =

In this example, the immediate —ata
operand, 123, is loaded onto the -
accumulator. No address calculation is
required.

Direct Addressing Mode

The address of the operand is specified
as a constant, and this constant is
coded as part of the instruction. The address space that can be accessed is 11m1ted address
space by the operand field size (27" €14 5¢ |ocations).

Example: 1da [123] Memory

As shown in the figure, the address of

the operand is stored in the instruction. L_/—,
The operand is then fetched from that address 456|123

memory address. acc| 256 | %/

Indirect Addressing Mode

The address of the location where the
address of the data is to be found is
stored in the instruction as the operand.
Thus, the operand is the address of a memory location, which holds the address of the
operand. Indirect addressing mode can access a large address space (2Meme™ “ord size
locations). To fetch the operand in this addressing mode, two memory accesses are
required. Since memory accesses are slow, this is not efficient for frequent memory
accesses. The indirect addressing mode

may be used to implement pointers. Memary
Example: 1da [[123]]

ACC | 123 |

Mo memory access needed

=] |Opcnde| 123 |

. Opeod 123
As shown in the figure, the address of " [opcovg | .
- Address of pointer
the memory location that holds the k_//_ w58 1123
address of the data in the memory is Address(of data :
part of the instruction. acc | 5 HN 789|456

Register (Direct) Addressing Mode

The operand is contained in a CPU register, and the address of this register is encoded in
the instruction. As no memory access is needed, operand fetch is efficient. However,
there are only a limited number of CPU registers available, and this imposes a limitation
on the use of this addressing mode.

Last Modified: 01-Nov-06 Page 38

Advanced Computer Architecture-CS501

Example: lda R2
This load instruction specifies the address of the register and the operand is fetched from
this register. As is clear from the diagram, no memory access is involved in this
addressing mode.

REGISTER INDIRECT

ADDRESSING MODE :
In the register indirect mode, the R | Oncode) address oz Memory ;
address of memory location that s

contains the operand is in a CPU R2 1234 "

register. The address of this CPU R

register is encoded in the instruction. A R data

large address space can be accessed acc 1234

using this addressing mode (27¢€"ter sz
locations). It involves fewer memory
accesses compared to indirect addressing.
Example: 1da [R1]

Mo memary access needed

. Memory
The address of the register that IR [Opcode| AddressofR1 |
. ; - - - register
contains the address of memory the Instruction points to a CPLregister ¢ otains
location holding the operand is B
“R1 173 456 123

encoded in the instruction. There is R2
one memory access involved. R3
Displacement addressing mode Re
The displacement-addressing mode is
also called based or indexed
addressing mode. Effective memory address is calculated by adding a constant (which is
usually a part of the instruction) to the value in a CPU register. This addressing mode is
useful for accessing arrays. The addressing mode may be called ‘indexed’ in the situation
when the constant refers to the first element of the array (base) and the register contains
the ‘index’. Similarly, ‘based’ refers to the situation when the constant refers to the offset
(displacement) of an array element with respect to the first element. The address of the
first element is stored in a register.

Example: 1da [R1 + 8] Memory

In this example, R1 is the address of 1R [Opcode] Address of R (8]

. 1]
the register . that' holds a memory gl Lares s
address, which is to be wused to Index 456|123

calculate the effective address of the R1 | 120
operand. The constant (8) is added to CPUregisters

this address held by the register and acc | 158
this effective address is used to

retrieve the operand.

Relative addressing mode

The relative addressing mode is similar to the indexed addressing mode with the
exception that the PC holds the base address. This allows the storage of memory

CPU Registers

data
AcC | 456 |

data

operands at a fixed offset from the Memory
current instruction and is useful for ®[Opcoce | 4 |

‘short” jumps. e et

Example: jump 4 Next instruction |1 24
Last Modified: 01-Nov-06 [:

PC 120 |

Advanced Computer Architecture-CS501

The constant offset (4) is a part of the instruction, and it is added to the address held by
the Program Counter.

RISC and CISC architectures:

Generally, computers can be classified as being RISC machines or CISC machines. These
concepts are explained in the following discussion.

RISC (Reduced instruction set computers)

RISC is more of a philosophy of computer design than a set of architectural features. The
underlying idea is to reduce the number and complexity of instructions. However, new
RISC machines have some instructions that may be quite complex and the number of
instructions may also be large. The common features of RISC machines are

* One instruction per clock period
This is the most important feature of the RISC machines. Since the program execution
depends on throughput and not on individual execution time, this feature is achievable by
using pipelining and other techniques. In such a case, the goal is issuing an average of
one instruction per cycle without increasing the cycle time.

» Fixed size instructions
Generally, the size of the instructions is 32 bits.

* CPU accesses memory only for Load and Store operations
This means that all the operands are in the CPU registers at the time these are used in an
instruction. For this purpose, they are first brought into the CPU registers from the
memory and later stored back through the load and store operation respectively.

* Simple and few addressing modes
The disadvantage associated with using complex addressing modes is that complex
decoding is required to calculate these addresses, which reduces the processor
performance as it takes significant time. Therefore, in RISC machines, few simple
addressing modes are used.

* Less work per instruction
As the instructions are simple, less work is done per instruction, and hence the clock
period T can be reduced.

* Improved usage of delay slots
A ‘delay slot’ is the waiting time for a load or store operation to access memory or for a
branch instruction to access the target instruction. RISC designs allow the execution of
the next instruction after these instructions are issued. If the program or compiler places
an instruction in the delay slot that does not depend on the result of the previous
instruction, the delay slot can be used efficiently. For the implementation of this feature,
improved compilers are required that can check the dependencies of instructions before
issuing them to utilize the delay slots.

+ Efficient usage of Pre-fetching and Speculative Execution Techniques
Pre-fetching and speculative execution techniques are used with a pipelined architecture.
Instruction pipelining means having multiple instructions in different stages of execution
as instructions are issued before the previous instruction has completed its execution;
pipelining will be studied in detail later. The RISC machines examine the instructions to
check if operand fetches or branch instructions are involved. In such a case, the operands
or the branch target instructions can be ‘pre-fetched’. As instructions are issued before
the preceding instructions have completed execution, the processor will not know in case

Last Modified: 01-Nov-06 Page 40

Advanced Computer Architecture-CS501

of a conditional branch instruction, whether the condition will be met and the branch will
be taken or not. But instead of waiting for this information to be available, the branch can
be “speculated” as taken or not taken, and the instructions can be issued. Later if the

speculation is found to be wrong, the results can be discarded and actual target
instructions can be issued. These techniques help improve the performance of processors.
CISC (Complex Instruction Set Computers)
The complex instruction set computers does not have an underlying philosophy. The
CISC machines have resulted from the efforts of computer designers to efficiently utilize
memory and minimize execution time, yet add in more instruction formats and
addressing modes. The common attributes of CISC machines are discussed below.

* More work per instruction
This feature was very useful at the time when memory was expensive as well as slow; it
allows the execution of compact programs with more functionality per instruction.

* Wide variety of addressing modes
CISC machines support a number of addressing modes, which helps reduce the program
instruction count. There are 14 addressing modes in MC68000 and 25 in MC68020.

* Variable instruction lengths and execution times per instruction

The instruction size is not fixed and so the execution times vary from instruction to

instruction.

¢ CISC machines attempt to reduce the “semantic gap”
‘Semantic gap’ is the gap between machine level instruction sets and high-level language
constructs. CISC designers believed that narrowing this gap by providing complicated
instructions and complex-addressing modes would improve performance. The concept
did not work because compiler writes did not find these “improvements” useful. The
following are some of the disadvantages of CISC machines.

* Clock period T, cannot be reduced beyond a certain limit
When more capabilities are added to an instruction the CPU circuits required for the
execution of these instructions become complex. This results in more stages of logic
circuitry and adds propagation delays in signal paths.
This in turn places a limit on the smallest possible value of T and hence, the maximum
value of clock frequency.

* Complex addressing modes delay operand fetch from memory
The operand fetch is delayed because more time is required to decode complex
instructions.

* Difficult to make efficient use of speedup techniques
These speedup techniques include
Pipelining
Pre-fetching (Intel 8086 has a 6 byte queue)
Super scalar operation
Speculative execution

Last Modified: 01-Nov-06 Page 41

Advanced Computer Architecture-CS501

Lecture Handout

Computer Architecture

Lecture No. 3

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter2, Chapter 3
Computer Systems Design and Architecture 2.3,24,3.1
Summary

1) Measures of performance

2) Introduction to an example processor SRC
3) SRC:Notation

4) SRC features and instruction formats

Measures of performance:
Performance testing
To test or compare the performance of machines, programs can be run and their
execution times can be measured. However, the execution speed may depend on the
particular program being run, and matching it exactly to the actual needs of the customer
can be quite complex. To overcome this problem, standard programs called “benchmark
programs” have been devised. These programs are intended to approximate the real
workload that the user will want to run on the machine. Actual execution time can be
measured by running the program on the machines.
Commonly used measures of performance
The basic measure of performance of a machine is time. Some commonly used measures
of this time, used for comparison of the performance of various machines, are

* Execution time

« MIPS

« MFLOPS

* Whetstones

* Dhrystones

+ SPEC
Execution time
Execution time is simply the time it takes a processor to execute a given program. The
time it takes for a particular program depends on a number of factors other than the
performance of the CPU, most of which are ignored in this measure. These factors
include waits for I/O, instruction fetch times, pipeline delays, etc.
The execution time of a program with respect to the processor, is defined as

Execution Time =IC x CPI x T

Last Modified: 01-Nov-06 Page 42

Advanced Computer Architecture-CS501

Where, IC = instruction count
CPI = average number of system clock periods to execute an instruction
T =clock period

Strictly speaking, (ICxCPI) should be the sum of the clock periods needed to execute
each instruction. The manufacturers for each instruction in the instruction set usually
provide such information. Using the average is a simplification.
MIPS (Millions of Instructions per Second)
Another measure of performance is the millions of instructions that are executed by the
processor per second. It is defined as
MIPS = IC/ (ET x 10%
This measure is not a very accurate basis for comparison of different processors. This is
because of the architectural differences of the machines; some machines will require
more instructions to perform the same job as compared to other machines. For example,
RISC machines have simpler instructions, so the same job will require more instructions.
This measure of performance was popular in the late 70s and early 80s when the VAX
11/780 was treated as a reference.
MFLOPS (Millions of Floating Point Instructions per Second)
For computation intensive applications, the floating-point instruction execution is a better
measure than the simple instructions. The measure MFLOPS was devised with this in
mind. This measure has two advantages over MIPS:

e Floating point operations are complex, and therefore, provide a better picture of

the hardware capabilities on which they are run
e Overheads (operand fetch from memory, result storage to the memory, etc.) are
effectively lumped with the floating point operations they support

Whetstones
Whetstone is the first benchmark program developed specifically as a benchmark
program for performance measurement. Named after the Whetstone Algol compiler, this
benchmark program was developed by using the statistics collected during the compiler
development. It was originally an Algol program, but it has been ported to FORTRAN,
Pascal and C. This benchmark has been specifically designed to test floating point
instructions. The performance is stated in MWIPS (millions of Whetstone instructions per
second).
Dhrystones
Developed in 1984, this is a small benchmark program to measure the integer instruction
performance of processors, as opposed to the Whetstone’s emphasis on floating point
instructions. It is a very small program, about a hundred high-level-language statements,
and compiles to about 1~ 1'% kilobytes of code.
Disadvantages of using Whetstones and Dhrystones
Both Whetstones and Dhrystones are now considered obsolete because of the following
reasons.

e Small, fit in cache

e Obsolete instruction mix

e Prone to compiler tricks

¢ Difficult to reproduce results

e Uncontrolled source code
We should note that both the Whetstone and Dhrystone benchmarks are small programs,
which encourage ‘over-optimization’, and can be used with optimizing compilers to
distort results.
Last Modified: 01-Nov-06 Page 43

Advanced Computer Architecture-CS501

SPEC
SPEC, System Performance Evaluation Cooperative, is an association of a number of
computer companies to define standard benchmarks for fair evaluation and comparison of
different processors. The standard SPEC benchmark suite includes:
e A compiler
¢ A Boolean minimization program
e A spreadsheet program
e A number of other programs that stress arithmetic processing speed
The latest version of these benchmarks is SPEC CPU2000.
Advantages
It provides for ease of publication.
Each benchmark carries the same weight.
SPEC ratio 1s dimensionless.
It is not unduly influenced by long running programs.
It is relatively immune to performance variation on individual benchmarks.
e [t provides a consistent and fair metric.
An example computer: the SRC: “simple RISC computer”
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC
* The SRC contains 32 General Purpose Registers: RO, R1, ..., R31; each register is
of size 32-bits.
» Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)
* Memory word size is 32 bits
« Memory space size is 2°% bytes
« Memory organization is 2°* x 8 bits, this means that the memory is byte aligned
* Memory is accessed in 32 bit words (i.e., 4 byte chunks)
* Big-endian byte storage isused ---——-————-——-—- 1

| 31 0 |
' Ro ' 7 1]
Programmer’s View of the SRC i R1 i 0
The figure shows the attributes of the | : | ;
SRC; the 32 ,32-bit registers that area [P] |
part of the CPU, the two additional | Register file |
CPU registers (PC & IR), and the main | I
memory which is 2°% 1-byte cells. IR] l
SRC Notation I : 2324
We examine the notation used for the i el] i
SRC with the help of some examples. -———--—2—--——-—-~ .
* R[3] mealrl)s contents of ré)gister CPU Main memory
3 (R for register)
* M][8] means contents of memory location 8§ (M for memory)
* A memory word at address 8 is
defined as the 32 bits at address & 0 0 « .
g WiEl ne memory “word
T a1 MM
Last Modified: 01-Nov-06 f_g::é e |31 WE] 24|23 W] 16|15M[1D] SIT W] D|
P

s Byte LS Byte

Advanced Computer Architecture-CS501

8,9,10 and 11 in the memory. This is shown in the figure.

* A special notation for 32-bit memory words is
M[8]<31...0>=M[8]OM[9]|©OM[10]OM[11]
© 1s used for concatenation.

Some more SRC Attributes

* All instructions are 32 bits long (i.e., instruction size is 1 word)

* All ALU instructions have three operands

* The only way to access memory is through load and store operations

* Only a few addressing modes are supported

SRC: Instruction Formats 31 27 76 0
Four types of instructions are Tire A Op-code unused

supported ‘ by. the SRC. Their N 798 22 91 .
representation is given in the figure Tyos B op-code - ¥

shown.

Bef0r§ discu;sing these instruction - 3736 231 1718 .
types in detail, we take a look at the Type © Op-code - o2
encoding of general purpose registers

(the ra, b and rc fields). 31 26 2721 1716 1211 0
Encoding of the General Purpose ., . Op-code a | - .3
Registers

The encoding for the general purpose |- — - B Mt e U -
registers is shown in the table; it will K _____ .< ,,,,, K K

be used in place of ra, rb and rc in the — T TR BT m
instruction formats shown above. Note K =

that this is a simple 5 bit encoding. ra, wo | wm mr | aom | wm

b and rc are names of fields used as s e we e =
“place-holders”, and can represent any S S R R

one of these 32 registers. An |~ | ° S N

exception is rb = 0; it does not mean the register R0, rather it means no operand. This will
be explained in the following discussion.
Type A 31 2726 0
Type A is used for only two
instructions:
e No operation or nop, for which the op-code = 0. This is useful in pipelining
e Stop operation stop, the op-code is 31 for this instruction.
Both of these instructions do not need an operand (are 0-operand instructions).

Qp-code unused

Type B
Type B format includes three 31 2726 22 21 0
instructions; all three use relative Op-code ra e

addressing mode. These are
e The Idr instruction, used to load register from memory using a relative address.
(op-code = 2).
o Example:
Idr R3, 56
This instruction will load the register R3 with the contents of the memory
location M [PC+56]

e The lar instruction, for loading a register with relative address (op-code = 6)

Last Modified: 01-Nov-06 Page 45

Advanced Computer Architecture-CS501

O

Example:
lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).

e The str is used to store register to memory using relative address (op-code = 4)

O

Example:

str R8, 34

This instruction will store the register R8 contents to the memory location
M [PC+34]

The effective address is computed at run-time by adding a constant to the PC. This makes
the instructions ‘re-locatable’.

Type C 31 27368 2221 1718 0
Type C format has three load/store Op-code ra th c2
instructions, plus three = ALU

instructions. These load/ store instructions are
¢ 1d, the load register from memory instruction (op-code = 1)

O

Example 1:

1d R3, 56

This instruction will load the register R3 with the contents of the memory
location M [56]; the rb field is 0 in this instruction, i.e., it is not used. This
is an example of direct addressing mode.

Example 2:

1d R3, 56(RS)

The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field # 0. This is an instance of indexed addressing
mode.

e la is the instruction to load a register with an immediate data value (which can be
an address) (op-code =5)

O

O

Examplel:

la R3, 56

The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.

Example 2:

la R3, 56(R5)

The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.

e The st instruction is used to store register contents to memory (op-code = 3)

O

Example 1:

st R8, 34

This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]

Example 2:

st RS, 34(R6)

An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])

The ALU instructions are
e addi, immediate 2’s complement addition (op-code = 13)

O

Example:

Last Modified: 01-Nov-06 Page 46

Advanced Computer Architecture-CS501

addi R3, R4, 56
R[3] «— R[4]+56 (b field = R4)
andi, the instruction to obtain immediate logical AND, (op-code =42)
o Example:
andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)
ori, the instruction to obtain immediate logical OR (op-code =23)
o Example:
ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)
Note:
1. Since the constant c2 field is 17 bits,
= For direct addressing mode, only the first 2'® bytes of memory can
be accessed (or the last 2'° bytes if ¢2 is negative)
= In case of the la instruction, only constants with magnitudes less
than +2'° can be loaded
* During address calculation using c2, sign extension to 32 bits must
be performed before the addition
2. Type C instructions, with some modifications, may also be used for
shift instructions. Note 3y 3726 3721 1716 4 0
the modification in the
following figure.

Op-code ra th unused [count

The four shift instructions are

shr is the instruction used to shift the bits right by using value in (5-bit) c3
field(shift count)
(op-code = 26)
o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3. Immediate addressing mode is used.
shra, arithmetic shift right by using value in c3 field (op-code = 27)
o Example:
shra R3, R4, 7
This instruction has the effect of shift R4 right 7 times in to R3. Immediate
addressing mode is used.
The shl instruction is for shift left by using value in (5-bit) ¢3 field (op-code = 28)
o Example:
shl R8, RS, 6
shift RS left 6 times in to R8. Immediate addressing mode is used.
shc, shift left circular by using value in ¢3 field (op-code = 29)
o Example:
shc R3,R4, 3
shift R4 circular 3 times in to R3. Immediate addressing mode is used.

Last Modified: 01-Nov-06 Page 47

Advanced Computer Architecture-CS501

Lecture Handout
Computer Architecture

Lecture No. 4

Reading Material

Vincent P. Heuring&Harry F. Jordan Chapter 2
Computer Systems Design and Architecture 2.3, 2.4,slides
Summary

1) Introduction to ISA and instruction formats
2) Coding examples and Hand assembly

An example computer: the SRC: “simple RISC computer”
An example machine is introduced here to facilitate our understanding of various design
steps and concepts in computer architecture. This example machine is quite simple, and
leaves out a lot of details of a real machine, yet it is complex enough to illustrate the
fundamentals.
SRC Introduction
Attributes of the SRC
» The SRC contains 32 General Purpose Registers: RO, R1, ..., R31; each register is
of size 32-bits.
» Two special purpose registers are included: Program Counter (PC) and Instruction
Register (IR)
* Memory word size is 32 bits
Memory space size is 2** bytes
« Memory organization is 2°* x 8 bits, this means that the memory is byte aligned
* Memory is accessed in 32 bit |=——r-——————r-- 1

words (1.e., 4 byte chunks) i RO 2 " i 7 0

* Big-endian byte storage isused | R ! 0
Programmer’s View of the | : | ;
SRC [Ju—
The figure below shows the attributes i Register file |
of the SRC; the 32 ,32-bit registers that ! |
are a part of the CPU, the two | R[] |
additional CPU registers (PC & 1R), | | 2321
and the main memory which is 2** 1- | el] |
byte cells. CPU Main memory

Last Modified: 01-Nov-06 Page 48

Advanced Computer Architecture-CS501

SRC Notation
We examine the notation used for the SRC with the help of some examples.
* R[3] means contents of register 3 (R for register)
* M]8] means contents of memory location 8 (M for memory)

* A memory word at address 8 is
defined as the 32 bits at address

o
. % 7 a i n
8,9,10 and 11 in the memory. £ = [_WE One memory “word
. . . o= g+ W[
This is shown in the figure =3I} M[ED]] |31 24|23 15|15 3|? n|
i (8] 9] h[10] M[11]
below. & a+3 [M)
5
.

. . . MS Byte LS Byte
* A special notation for 32-bit L’_’/
memory words is
M[8]<31...0>=M[8]OM[9]©OM[10]OM[11]
© 1s used for concatenation.
Some more SRC Attributes
* All instructions are 32 bits long (i.e., instruction size is 1 word)
* All ALU instructions have three operands
* The only way to access memory is through load and store operations

* Only a few addressing modes 31 37 76 0
are supported Type A Op-code unused
SRC: Instruction Formats
. . 31 2726 22 0
Four types of instructions are - 1
supported by the SRC. Their Op-code ° -
representation is given in the following
. . | 27T 26 2221 1716 0
figure. Before discussing these
. . . . Type © Op-cade ra rh 02
instruction types in detail, we take a
look at the encoding of general-
. 31 W26 2721 1716 1211 0
purpose registers (the ra, rb and rc
Type D op-code ra rh rc c3
fields).
Encoding of the General Purpose S S S
Registers B S S A i M
The encoding for the general purpose : =
registers is shown in the following W | e | o | e
table; it will be used in place of ra, rb wo] e we e =
and rc in the instruction formats shown S B S e M B s
above. Note that this is a simple 5 bit |~ | “ . S -

encoding. ra, tb and rc are names of fields used as “place-holders”, and can represent any
one of these 32 registers. An exception is rb = 0; it does not mean the register RO, rather
it means no operand. This will be explained in the following discussion.

Type A

Type A is used for only two instructions:

e No operation or nop, for which 31 2726 a
the op-code = 0. This is useful Op-code Unused
in pipelining
e Stop operation stop, the op-code is 31 for this instruction.

Last Modified: 01-Nov-06 Page 49

Advanced Computer Architecture-CS501

Both of these instructions do not need an operand (are 0-operand instructions).

Type B
Type B format includes three 21 T8 22 M]
instructions; all three wuse relative Op-code ra e

addressing mode. These are
e The Idr instruction, used to load register from memory using a relative address.
(op-code = 2).
o Example:
1dr R3, 56
This instruction will load the register R3 with the contents of the memory
location M [PC+56]
e The lar instruction, for loading a register with relative address (op-code = 6)
o Example:
lar R3, 56
This instruction will load the register R3 with the relative address itself
(PC+56).
e The str is used to store register to memory using relative address (op-code = 4)
o Example:
str R8, 34
This instruction will store the register R8 contents to the memory location
M [PC+34]
The effective address is computed at run-time by adding a constant to the PC. This makes
the instructions ‘re-locatable’.
Type C 31 2726 22 31 1716 0
Type C format has three load/store Op-code ra b o2
instructions, plus three = ALU
instructions. These load/ store instructions are
e 1d, the load register from memory instruction (op-code = 1)
o Example 1:
1d R3, 56
This instruction will load the register R3 with the contents of the memory
location M [56]; the rb field is O in this instruction, i.e., it is not used. This
is an example of direct addressing mode.
o Example 2:
1d R3, 56(R5)
The contents of the memory location M [56+R [5]] are loaded to the
register R3; the rb field # 0. This is an instance of indexed addressing
mode.
e la is the instruction to load a register with an immediate data value (which can be
an address) (op-code =5)
o Examplel:
laR3, 56
The register R3 is loaded with the immediate value 56. This is an instance
of immediate addressing mode.
o Example 2:
la R3, 56(R5)

Last Modified: 01-Nov-06 Page 50

Advanced Computer Architecture-CS501

The register R3 is loaded with the indexed address 56+R [5]. This is an
example of indexed addressing mode.
e The st instruction is used to store register contents to memory (op-code = 3)
o Example 1:
st R8, 34
This is the direct addressing mode; the contents of register R8 (R [8]) are
stored to the memory location M [34]
o Example 2:
st R8, 34(R6)
An instance of indexed addressing mode, M [34+R [6]] stores the contents
of R8(R [8])
The ALU instructions are
e addi, immediate 2’s complement addition (op-code = 13)
o Example:
addi R3, R4, 56
R[3] <« R[4]+56 (rb field = R4)
e andi, the instruction to obtain immediate logical AND, (op-code =21)
o Example:
andi R3, R4, 56
R3 is loaded with the immediate logical AND of the contents of register
R4 and 56(constant value)
e ori, the instruction to obtain immediate logical OR (op-code =23)
o Example:
ori R3, R4, 56
R3 is loaded with the immediate logical OR of the contents of register R4
and 56(constant value)

Note:
1. Since the constant c2 field is 17 bits,
» For direct addressing mode, only the first 2'® bytes of memory can
be accessed (or the last 2'° bytes if ¢2 is negative)
= In case of the la instruction, only constants with magnitudes less
than £2'° can be loaded
= During address calculation using c2, sign extension to 32 bits must
be performed before the addition
2. Type C instructions, with some modifications, may also be used for
shift instructions. Note
the modification in the 31 27 36 22 21 1716 4 0
following figure. Op-code ra b unused (count
The four shift instructions are
e shr is the instruction used to shift the bits right by using value in (5-bit) c3
field(shift count) (op-code = 26)
o Example:
shr R3, R4, 7
shift R4 right 7 times in to R3 and shifts zeros in from the left as the value
is shifted right. Immediate addressing mode is used.
e shra, arithmetic shift right by using value in ¢3 field (op-code = 27)
o Example:

Last Modified: 01-Nov-06 Page 51

Advanced Computer Architecture-CS501

shra R3, R4, 7

This instruction has the effect of shift R4 right 7 times in to R3 and copies
the msb into the word on left as contents are shifted right. Immediate

addressing mode is used.

e The shl instruction is for shift left by using value in (5-bit) c3 field (op-code = 28)

o Example:
shl R8, RS, 6

shift RS left 6 times in to R8 and shifts zeros in from the right as the value

is shifted left. Immediate addressing mode is used.

e shc, shift left circular by using value in ¢3 field (op-code = 29)

o Example:
shc R3,R4, 3

shift R4 circular 3 times in to R3 and copies the value shifted out of the
register on the left is placed back into the register on the right. Immediate

addressing mode is used.

Type D

Type D includes four ALU
instructions, four register based shift
instructions, two logical instructions
and two branch instructions.

31

AT 26 22

1716

1211 a

Qp-code

ra

rb

I

unused

The four ALU instructions are given below

e add, the instruction for 2’s complement register addition (op-code = 12)
o Example:
add R3, R5, R6
result of 2’s complement addition R[5] + R[6] is stored in R3. Register
addressing mode is used.
e sub, the instruction for 2’s complement register subtraction (op-code = 14)
o Example:
sub R3, R5, R6
R3 will store the 2’s complement subtraction, R[5] - R[6]. Register
addressing mode is used.
e and, the instruction for logical AND operation between registers (op-code = 20)
o Example:
and R&, R3, R4
R8 will store the logical AND of registers R3 and R4. Register addressing
mode is used.
e or the instruction for logical OR operation between registers (op-code = 22)
o Example:
or R8, R3, R4
R8 is loaded with the value R[3] v R[4], the logical OR of registers R3 and
R4. Register addressing mode is used.

The four register based shift instructions use register addressing mode. These use a
modified form of type D, as shown in

ﬁgure 31 736 2z 1716 121 54 0
e shr, shift right by using value in Op-code ra b re |unused [10000
register rc (op-code = 26)
o Example:

Last Modified: 01-Nov-06 Page 52

Advanced Computer Architecture-CS501

shr R3, R4, R5
This instruction will shift R4 right in to R3 using number in RS
e shra, the arithmetic shift right by using register rc (op-code = 27)
o Example:
shra R3, R4, R5
A shift of R4 right using RS, and the result is stored in R3
e shl is shift left by using register rc (op-code = 28)
o Example:
shl R8, RS, R6
The instruction shifts R5 left in to R8 using number in R6
e shc, shifts left circular by using register rc (op-code = 29)
o Example:
shc R3, R4, R6
This instruction will shift R4 circular in to R3 using value in R6
The two logical instructions also use a modified form of the Type D, and are the
following.

o neg stores the 2’s complement 31 27 26 2221 1716 1211 a
of register rc in ra (op-code = Op-cade ra |unused| re unused
15)

o Example:
neg R3, R4

Negates (obtains 2’s complement) of R4 and stores in R3. 2-address
format and register addressing mode is used.
e not stores the 1’s complement of register rc in ra (op-code = 24)
o Example:
not R3, R4
Logically inverts R4 and stores in R3. 2-address format with register
addressing mode is

used. el 2726 2221 1716 1211 52 0
Type D has two-branch instruction, Op-code |unused| b re |unused | cond
modified forms of type D.

e br, the instruction to branch to address in rb depending on the condition in rc.
There are five possible conditions, explained through examples. (op-code = 8).
All branch instructions use register-addressing mode.

o Example 1:

brzr R3, R4

Branch to address in R3 (if R4 == 0)
o Example 2:

brnz R3, R4

Branch to address in R3 (if R4 # 0)
o Example 3:

brpl R3, R4

Branch to address in R3 (if R4 > 0)
o Example 4:

brmi R3, R4

Branch to address in R3 (if R4 < 0)
o Example 5:

Last Modified: 01-Nov-06 Page 53

Advanced Computer Architecture-CS501

br R3, R4

Branch to address in R3 (unconditional)
e Brl the instruction to branch to address in rb depending on condition in rc.
Additionally, it copies the PC in to ra before branching (op-code = 9)

o Example 1:
brlzr R1,R3, R4

R1 will store the contents of PC, then branch to address in R3 (if R4 == 0)

o Example 2:
brlnz R1,R3, R4

R1 stores the contents of PC, then a branch is taken, to address in R3 (if

R4 #0)
o Example 3:
brlpl R1,R3, R4

R1 will store PC, then branch to address in R3 (if R4> 0)

o Example 4:
brlmi R1,R3, R4

R1 will store PC and then branch to address in R3 (if R4 < 0)

o Example 5:

brl R1,R3, R4

R1 will store PC, then it
will ALWAYS branch to

address in R3
o Example 6:
brlnv R1,R3, R4
R1 just stores the

contents of PC but a
branch i1s not taken
(NEVER BRANCH)

Mnemonic c3<2..0x Branch Condition
hrlny 000 Link but never hranch*
hr, hrl ool Tnconditdonal hranch
brzr, brlzr ol0 Branch if re is zero
hrnz, hrinz o1l Branch if rc is not zera
hrpl, hrlpl 100 Branch if re is positive
hrmi, brlmi 101 Branch if re is negative

In the modified type D instructions for branch, the bits <2..0> are used for specifying the
condition; these condition codes are shown in the table.

The SRC Instruction Summary

The instructions implemented by the SRC are listed, grouped on functionality basis.

Functional Groups of Instructions

Logic Opcode
Shift right by count shr 11 1 0] 1| O [Arithmetic Opcode
Shift right by count in a register shr 11 1] 0f 1| 0] [2°s complement addition add o] 1 1 o] o
AShift right by count shra 11 1] 0] 1] 1] [Immadiata 2'< camnlamant addn JEER nl 1l a0 nl
AShift right by count in a register shra 1 1] 0f 1] 1 %Imnemgnig BIE IR e _--| la ol o) 1joj1
Shiftleft by count shl 1 1] 1] o o L_eg lar ofo] 1] 1] D
Shift Ieft by count in a register snl | 1] 1] 1] 0[0| fr=2 - 14 |olololo[
Shiftcirc. bycount_ _ she 1 1 1| 0] 1 E ~3a T 11070 1dr ololol1lo
Shift circ. by count in a register she 10 1] 1] 0] 1] [imm 1= oj 1] 1] 11 1
[Not addi of 1{ 11 o] 1
[Not nep | DD [0]D]D
. . . and 101010 mot | 1] 10/ 0] 0
Alphabetical Listing based on SRC mai | 1] 0] 1]0] 1 T L]
Mnemonics rerrd B oj1jojojo PTI I r a
, LU - AERRE h IEIEINE
Notice that the op code field for all br | FSo—13 1ol ol py ey ey v ey) AT D
. . . : . [Noo | Lrimi she ol 1ol ol 0
instructions is the same. The difference is [gzr [&zinw | 0] 1] 0] 0] 1 w1 [0 0 5ot s
in the condition code field, which is in brins | O] 1 0] 0] shl : } El 'i' g o[1] o[o o
. Dats h
effect, an op code extension. Data | bripl g : E E 1 e
|| &r1
Examples Loac = E.I shra ol 1 1ol 1) ol of 4
= brmi gof 1 ojofao
Loac shra |11 O0 1 o[1] o] of 1
Last Modified: 01-Nov-06 Stor, | T gpjojolo ot ol ol o] 1 1] o0 ol ol
stor| brn= O U OJ OO0 P n T[T 1] a[a[o] o[1
Loac | brEl pj1jofojo ser Ol 0[] o] o|o ol o1
Loac brsr Ol 1) ojofo b of 1{ 1] 11 0fof 1| of o] 4

Advanced Computer Architecture-CS501

Some examples are studied in this section to enhance the student’s understanding of the
SRC.

Example 1: Expression Evaluation

Write an SRC assembly language program to evaluate the expression:

z=4(a +b) — 16(c+58)

Your code should not change the source operands.

Solution A: Notice that the SRC does not have a multiply instruction. We will make use
of the fact that multiplication with powers of 2 can be achieved by repeated shift left
operations. A possible solution is give below:

IdR1, ¢ ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

IdR5,b

add R6, R4, R5 ; R6 contains (a+b)

shl R&, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.

A semicolon ¢;’ is used for comments in assembly language.

Solution B:

We may solve the problem by assuming that a multiply instruction, similar to the add
instruction, exists in the instruction set of the SRC. The shl instruction will be replaced
by the mul instruction as given below.

IdR1, ¢ ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

mul R7, R3, 4 : R7 contains 16(c+58)

Id R4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

mul R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

The memory labels a, b, ¢ and z can be defined by using assembler directives like .dw or
.db, etc. in the source file.

Solution C:

We can perform multiplication with a multiplier that is not a power of 2 by doing
addition in a loop. The number of times the loop will execute will be equal to the
multiplier.

Example 2: Hand Assembly

Convert the given SRC assembly language program in to an equivalent SRC machine
language program.

IdR1, ¢ ; ¢ 1s a label used for a memory location

addi R3, R1, 58 ; R3 contains (c+58)

Last Modified: 01-Nov-06 Page 55

Advanced Computer Architecture-CS501

shl R7, R3, 4 ; R7 contains 16(c+58)

IdR4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z
Note:

This program uses memory labels a,b,c and z. We need to define them for the assembler
by using assembler directives like .dw or .equ etc. in the source file.
Assembler Directives
Assembler directives, also called pseudo op-codes, are commands to the assembler to
direct the assembly process. The directives may be slightly different for different
assemblers. All the necessary directives are available with most assemblers. We explain
the directives as we encounter them. More information on assemblers can be looked up in
the assembler user manuals.
Source program with directives

.ORG 200 ; start the next line at address 200

a: .DW 1 ; reserve one word for the label a in the memory
b: .DW 1 ; reserve a word for b, this will be at address 204
c: .DW 1 ; reserve a word for ¢, will be at address 208

z: .DW 1 ; reserve one word for the result

.ORG 400 ; start the code at address 400
; all numbers are in decimal unless otherwise stated

IdR1,c ; ¢ 1s a label used for a memory location
addi R3, R1, 58 ; R3 contains (c+58)

shl R7, R3, 4 ; R7 contains 16(c+58)

Id R4, a

Id R5, b

add R6, R4, R5 ; R6 contains (a+b)

shl R8, R6, 2 ; R8 contains 4(a+b)

sub R9, R7, R8 ; the result is in R9

stR9, z ; store the result in memory location z

This is the way an assembly program will appear in the source file. Most assemblers
require that the file be saved with an .asm extension.
Solution:
Observe the first line of the program
ORG 200 ; start the next line at address 200
This is a directive to let the following code/ variables ‘originate’ at the specified address
of the memory, 200 in this case.
Variable statements, and another .ORG directive follow the .ORG directive.

a: .DW 1 ; reserve one word for the label a in the memory

b: .DW 1 ; reserve a word for b, this will be at address 204

c: .DW 1 ; reserve a word for ¢, will be at address 208

z .DW 1 ; reserve one word for the result

.ORG 400 ; start the code at address 400

We conclude the following from the above statements: Label | Address | Value
a 200 unknown

Last Modified: 01-Nov-06 b 204 | unknown
c 208 unknown
z 212 unknown

Advanced Computer Architecture-CS501

The code starts at address 400 and each instruction takes 32 bits in the memory. The
memory map for the program is shown in given table.
Memory Map for the SRC example program

Memonr Memonr
Address Cordents

0 b
04 bz
03 bt
212 bt

400 MEL«c

404 addi B3 R1, 58
402 shl BT B3, 4
412 11E4.a

416 MESb

420 add RS, B4, RS
424 shl B2 R, 2
423 sub B9 BT RS
432 L ROz

We have to convert these instructions to machine language. Let us start with the first

instruction:
Id R1, ¢
Notice that this is a type C instruction with the rb field missing.

1. We pick the op-code for this load instruction from the SRC instruction tables
given in the SRC instruction summary section. The op-code for the load register
‘1d’ instruction is 00001.

2. Next we pick the register code corresponding to register R1 from the register table
(given in the section ‘encoding of general Y T—— T a— Heradorimal
purpose registers’). The register code for | Addes Conterts Mencay Canterts
R11is 00001.

3. The b field is missing, so we place zeros o0 |wdmonn
in the field: 00000 SO i

. . a0z hi S chiy

4. The value of c¢ is provided by the o
assembler, and should be converted to 17
bits. As ¢ has been assigned the memory 00 |MERLe TEATOD0 K
address 208, the binary value to be 404 [addiR5.RL5
encoded is 00000 0000 1101 0000. 408 |SRLESS

5. So the instruction 1d R1, ¢ is 00001 00001 HE | Mo | e
00000 00000 0000 1101 0000 in the :Z
machine language. yor 1w

6. The hexadecimal representation of this e T Fere—
instructionis 0 84000 D 0 h. e a2 |wiaew

We can update the memory map with these ot R
values. 404 addiR3,R1, 58 620200345
We consider the next instruction, :?2 :R‘f;m“‘
Last Modified: 01-Nov-06 ::Z ;Rizmﬁ

Advanced Computer Architecture-CS501

addi R3, R1, 58.
Notice that this is a type C instruction.

1. We pick the op-code for the instruction addi from the SRC instruction table. It is
01101
2. We pick the register codes for the registers R3 and R1, these codes are 00011 and
00001 respectively
3. For the immediate data, 58, we use the binary value, 00000 0000 0011 1010
4. So the complete instruction becomes: 01101 00011 00001 00000 0000 0011 1010
5. The hexadecimal representation of the instruction Hery T — Hemadocial
is68C2003Ah I R i
We update the memory map, as shown in table. ETTR rw—
The next instruction is shl R7,R3, 4, at address 408. AR i
Again, this is a type C instruction. 232 m
1. The op-code for the instruction shl is picked from
the SRC instruction table. It is 11100 S R~
2. The register codes for the registers R7 and R3 T T EICo004E
from the register table are 00111 and 00011 S
respectively R P
3. For the immediate data, 4, the corresponding i
binary value 00000 0000 0000 0100 is used. e i
4. We can place these codes in accordance with the

type C instruction format to obtain the complete instruction: 11100 00111 00011

00000 0000 0000 0100

5. The hexadecimal representation of the instruction is E1C60004

The memory map is updated, as shown in table.

The next instruction, ld R4, a, is also a type C instruction. e Cotens MHm:EcoTn:
Rb field is missing in this instruction. To obtain the MR
machine equivalent, we follow the steps given below. FTTR e v—
1. The op-code of the load instruction ‘1d” is 00001 i
2. The register code corresponding to the register R4 S i
is obtained from the register table, and it is 00100 W0 [mRLC TEAOID0L
3. As the 5 bit rb field is missing, we can encode A e o
Zeros in its place: 00000 412 1dR4,; - 090000CE 1
4. The value of a is provided by the assembler, and R
is converted to 17 bits. It has been assigned the :zi ﬁ:::;:j
memory address 200, the binary equivalent of 6 |sRROELES
which is: 00000 0000 1100 1000 M
5. The complete instruction becomes: 00001 00100 00000 00000 0000 1100 1000
6. The hexadecimal equivalent of the instructionis 090000 C8h

Memory map can be updated with this value.

The next instruction is also a load type C instruction, with | Merew ey ——
the rb field missing.
ld RS, b 200 wikroan
The machine language conversion steps are G
1. The op-code of the load instruction is obtained 2w
from the SRC instruction table; it is 00001 S - R
2. The register code for RS5, obtained from the Wor [wumRL SeCaeER

Last Modified: 01-Nov-06

register table, is 00101 405

shlR7,E3,4

E1CA0004 b

412

LAY

090000CE h

416

RS

094000CCh

420

234 R, R4, RS

424

shl R R, 2

4218

cub RO, RT. RS

432

s R9.z

Advanced Computer Architecture-CS501

(98]

Again, the 5 bit rb field is missing. We encode zeros in its place: 00000

4. The value of label b is provided by the assembler, and should be converted to 17
bits. It has been assigned the memory address 204, so the binary value is: 00000
0000 1100 1100

5. The complete instruction is: 00001 00101 00000 00000 0000 1100 1100

6. The hexadecimal value of this instruction is 0 9 4

Memowy Memory Hexaderinal
000CCh Address Contents Merory Corterts
Memory map is then updated with this value. —
The next instruction is a type D-add instruction, with the W |wiaon
constant field missing: S i
add R6,R4,R5
The steps followed to obtain the assembly code for this s JuRLe DE400L0%
instruction are e e
1. The op-code of the instruction is obtained from i 09000008 1
the SRC instruction table; it is 01100 - LMR: e o
2. The register codes for the registers R6, R4 and RS N
are obtained from the register table; these are T b

00110, 00100 and 00101 respectively.
3. The 12 bit constant field is unused in this instruction, therefore we encode zeros
in its place: 0000 0000 0000
4. The complete instruction becomes: 01100 00110 00100 00101 0000 0000 0000
5. The hexadecimal value of the instructionis6 1 885000 h
Memory map is then updated with this value.

The instruction shl R8,R6, 2 is a type C instruction with | Mexex Yucry]
the rc field missing. The steps taken to obtain the
machine code of the instruction are a0 |wimew
1. The op-code of the shift left instruction ‘shl’, S i
obtained from the SRC instruction table, is 11100 [
2. The register codes of R8 and R6 are 01000 and
00110 respectively N T
3. Binary code is used for the immediate data 2: 0 | FLC6000¢
00000 0000 0000 0010 s stk
4. The complete instruction becomes: 11100 01000 T TN TN TR
00110 00000 0000 0000 0010 M ok e
5. The hexadecimal equivalent of the instruction is E = ﬂm;im
20C0002

Memory map is then updated with this value.
The instruction at the memory address 428 is sub R9, R7, R8. This is a type D

instruction. Hanery r— Henatacial
We decode it into the machine language, as follows: Comarte | e Gt
1. The op-code of the subtract instruction ‘sub’ is TR vy
01110 PTYR Ferm—y

208 i

2. The register codes of R9, R7 and RS, obtained o T
from the register table, are 01001, 00111 and

400 WERLc 05400000 b

01000 respeCtlvely 404 addi B3, R1,5% GEC2005 480

3. The 12 bit immediate data field is not used, zeros TR FYrr ELCo000t R
are encoded in its place: 0000 0000 0000 MG s DODOONES 1

416 WESL 0340000 Ch

420 add RA, R4, ES 61385000

424 shl B8, R6.2 ECo002h

Last Modified: 01-Nov-06 428 sub 9, BT, RS T4ERNOE

432 Ea:CR

Advanced Computer Architecture-CS501

4. The complete instruction becomes: 01110 01001 00111 01000 0000 0000 0000

5.

The hexadecimal equivalentis 724 E8000h

We again update the memory map

The last instruction is is a type C instruction with the rb
field missing:

st R9, z

The machine equivalent of this instruction is obtained
through the following steps:

1.

2.
3.

3.
6.

The op-code of the store instruction ‘st’, obtained
from the SRC instruction table, is 00011

The register code of R9 is 01001

Notice that there is no register coded in the 5 bit
rb field, therefore, we encode zeros: 00000

The value of the label z is provided by the
assembler, and should be converted to 17 bits.
Notice that the memory address assigned to z is
212. The 17 bit binary equivalent is: 00000 0000
1101 0100

Memoxy
A ddress

Memory
Conterds

Hexadecimal

Memory Cortarts

200

04

a0z

212

400

HELc

034M0T0 R

404

2341 B3, R, 5%

GECA00ZAL

402

shlRT. B34

E1CA0004 1

412

R4

0200000 T

416

1A RS.b

024000 C Tk

420

234 R, R4, RS

al5s5000h

424

shl R R, 2

E20C0002 1

4218

sub B9, BT, RS

TIAES0 b

432

RSz

14400004 h

The complete instruction becomes: 00011 01001 00000 00000 0000 1101 0100
The hexadecimal form of this instructionis 1 A4000D 4 h
The memory map, after the conversion of all the instructions, is

We have shown the memory map as an array of 4 byte cells in the above solution.
However, since the memory of the SRC is arranged in 8 bit cells (i.e. memory is byte
aligned), the real representation of the memory map is :

Example 3: SRC instruction analysis

Identify the formats of following SRC instructions and specify the values in the fields

Solution:

Last Modified: 01-Nov-06

Instruction

fortmat

th

rc

cl

cd

c3

negtl, 12

add flr2 13

fop

1d 2,6

shidlrl 3

Instruction

format

cl

o2

c3

negtl, 12

add f0.+2 ¢3

nop

1d+2,8

shidl r] .3

Il

Advanced Computer Architecture-CS501

Last Modified: 01-Nov-06 Page 61

Advanced Computer Architecture-CS501

Lecture Handout

Computer Architecture

Lecture No. 5

Reading Material
Handouts Slides

Summary
1) Reverse Assembly
2) Description of SRC in the form of RTL
3) Behavioral and Structural description in terms of RTL

Reverse Assembly
Typical Problem:

Given a machine language instruction for the SRC, it may be required to find the
equivalent SRC assembly language instruction
Example:
Reverse assemble the following SRC machine language instructions:
68C2003A h
E1C60004 h
61885000 h

724E8000 h

1A4000D4 h

084000DO0 h
Solution:
1. Write the given hexadecimal instruction in binary form
68C2003A h — 0110 1000 1100 0010 0000 0000 0011 1010 b
2. Examine the first five bits of the instruction, and pick the corresponding mnemonic
from the SRC instruction set listing arranged according to ascending order of op-codes
01101 b > 13 d — addi — add immediate
3. Now we know that this instruction uses the type C format, the two 5-bit fields after the
op-code field represent the destination and the source registers respectively, and that the
remaining 17-bits in the instruction represent a constant

Last Modified: 01-Nov-06 Page 62

Advanced Computer Architecture-CS501

0110 IFOO 1100 OOI}O 0000 0000 0011 1010 Db
op-code'ra field' rb field 17-bit c1 field

Vool \
addi R3 Rl 3Ah=58d

4. Therefore, the assembly language instruction is
addi R3, R1, 58

Summary

Given machine language instnaction Equivalent assembly language instraction

68C2003Ah addi R3,R1, 58
E1C60004 h
61885000 h
724E8000 h
1A4000D4 h
084000D0 h

Given v ivetrnction in bi
instraction fn Equivalent instruction in binary
hexadecimal

E1C60004 h 1110 0001 1100 0110 0000 0000 0000 0100 b
61835000 h 0110 0001 1000 1000 0101 0000 0000 0000 b
T24E£000 h 0111 0010 0100 1110 1000 0000 0000 0000 b

14400004 h 0001 1010 0100 0000 0000 0000 1101 0100 b

03400000 h 0000 1000 0100 0000 0000 0000 1101 0000 b

Step 2: Pick up the op code for each instruction

Grveninstructionin | Op-code field MrEmonic
hexadecimal
E1C60004 h ook shl
A1885000 h oo oh add
T24E2000 h 01 ok sub
14400004 b 000l 1 b st
02400000 h 0000 1 b 4

Step 3: Determine the instruction type for each instruction

Giver instraction ity htettLOnic Instraction type
hexadercimal

E1CE0004 b shi

61835000 h achd

T2AEE000 b sub

14400004 h st

02400000 h 1d

We can do it a bit faster now! Step1: Here is stepl for all instructions

Page 63

Advanced Computer Architecture-CS501

The meaning of the remaining fields will depend on the instruction type (i.e., the
instruction format)

Summary
Given machine language instnaction Equivalent assembly language instraction

68C2003Ah addi R3,R1, 58
E1C60004 h
61885000 h
724E8000 h
1A4000D4 h
084000D0 h

Note:Rest of the fields of above given tables are left as an exercise for
students.

Using RTL to describe the SRC
RTL stands for Register Transfer Language. The Register Transfer Language provides a
formal way for the description of the behavior and structure of a computer. The RTL
facilitates the design process of the computer as it provides a precise, mathematical
representation of its functionality. In this section, a Register Transfer Language is
presented and introduced, for the SRC (Simple ‘RISC’ Computer), described in the
previous discussion.
Behavioral RTL
Behavioral RTL is used to describe the ‘functionality’ of the machine only, i.e. what the
machine does.
Structural RTL
Structural RTL describes the ‘hardware implementation’ of the machine, i.e. how the
functionality made available by the machine is implemented.
Behavioral versus Structural RTL:
In computer design, a top-down approach is adopted. The computer design process
typically starts with defining the behavior of the overall system. This is then broken down
into the behavior of the different modules. The process continues, till we are able to
define, design and implement the structure of the individual modules. Behavioral RTL is
used for describing the behavior of machine whereas structural RTL is used to define the
structure of machine, which brings us to the some more hardware features.
Using RTL to describe the static properties of the SRC
In this section we introduce the RTL by using it to describe the various static properties
of the SRC.
Specifying Registers
The format used to specify registers is
Register Name<register bits>
For example, IR<31..0> means bits numbered 31 to 0 of a 32-bit register named “IR”
(Instruction Register).
“Naming” using the := naming operator:

Last Modified: 01-Nov-06 Page 64

Advanced Computer Architecture-CS501

The := operator is used to ‘name’ registers, or part of registers, in the Register Transfer
Language. It does not create a new register; it just generates another name, or “alias” for
an already existing register or part of a register. For example,

Op<4..0>: = IR<31..27> means that the five most significant bits of the register IR will
be called op, with bits 4..0.

Fields in the SRC instruction

In this section, we examine the various fields of an SRC instruction, using the RTL.
op<4..0>:=1R<31..27>; operation code field

The five most significant bits of an SRC instruction, (stored in the instruction register in
this example), are named op, and this field is used for specifying the operation.

ra<4..0>: =[R<26..22>; target register field

The next five bits of the SRC instruction, bits 26 through 22, are used to hold the address
of the target register field, i.e., the result of the operation performed by the instruction is
stored in the register specified by this field.

<4..0>: =IR<21..17>; operand, address index, or branch target register

The bits 21 through 17 of the instruction are used for the rb field. rb field is used to hold
an operand, an address index, or a branch target register.

rc<4..0>: =[R<16..12>; second operand, conditional test, or shift count register

The bits 16 through 12, are the rc field. This field may hold the second operand,
conditional test, or a shift count.

c1<21..0>: =1R<21..0>; long displacement field

In some instructions, the bits 21 through 0 may be used as long displacement field.
Notice that there is an overlap of fields. The fields are distinguished in a particular
instruction depending on the operation.

c2<16..0>: =IR<16..0>; short displacement or immediate field

The bits 16 through 0 may be used as short displacement or to specify an immediate
operand.

¢3<11..0>: =1IR<11..0>; count or modifier field

The bits 11 through 0 of the SRC instruction may be used for count or modifier field.
Describing the processor state using RTL

The Register Transfer Language can be used to describe the processor state. The
following registers and bits together form the processor state set.

PC<31..0>; program counter (it holds the memory address of next
instruction to be executed)

IR<31..0>; instruction register, used to hold the current instruction

Run; one bit run/halt indicator

Strt; start signal

R [0..31]<31..0>; 32, 32 bit general purpose registers

SRC in a Black Box

Connectors &
the back (o be
added later on)

Indicators
{include the RUN
indicatar)

Last Modified: 01-Nov-06 Page 65

Other switches
rnay be added
later on

Advanced Computer Architecture-CS501

Difference between our notation and notation used by the text (H&J)

Our Meaning Symbols || Cur Symbol or Ivleaning symbol used
Symbols in text terminology by H&J
: Conditional transfer > RTL Fegister Transfer Language RTH
: Secuential statements) Behavioral RTL Abstract RTN
\ Conmutent staterments : Structural RTL Concrste BTH
— Ep——— _ irplermentation mﬁ?tiszfm
— assi t - i
ss1lgn.men MAER Memory Lddress Register A
& Logical AND n MEE Ileraory Buffer Register LD
— Logical OR v
| Logical HOT -
Coneatenation #
o Replication @
[Remaitider after division (moclo) fohe

Difference between “,” and *“;” in RTL

(134

Statements separated by a “,” take place during the same clock pulse. In other words, the
order of execution of statements separated by “,” does not matter.

On the other hand, statements separated by a “;” take place on successive clock pulses. In
other words, if statements are separated by “;” the one on the left must complete before
the one on the right starts. However, some things written with one RTL statement can
take several clocks to complete.

So in the instruction interpretation, fetch-execute cycle, we can see that the first
statement. ! Run & Strt : Run < 1, executes first. After this statement has executed and
set run to 1, the statements IR «— M [PC] and PC « PC + 4 are executed concurrently.
Note that in statements separated by “,”, all right hand sides of Register Transfers are
evaluated before any left hand side is modified (generally though assignment).

Using RTL to describe the dynamic properties of the SRC

The RTL can be used to describe the dynamic properties.

Conditional expressions can be specified through the use of RTL. The following example
will illustrate this

(op=14) : R [ra] < R [rb]-R[rc];

The < operator is the RTL assignment operator. ‘;’ is the termination operator. This
conditional expression implies that “IF the op field is equal to 14, THEN calculate the
difference of the value in the register specified by the rb field and the value in the register
specified by the rc field, and store the result in the register specified by the ra field.”
Effective address calculations in RTL (performed at runtime)

Last Modified: 01-Nov-06 Page 66

Advanced Computer Architecture-CS501

In some instructions, the address of an operand or the destination register may not be
specified directly. Instead, the effective address may have to be calculated at runtime.
These effective address calculations can be represented in RTL, as illustrated through the

examples below.

Displacement address
disp<31..0> := ((tb=0) : c2<16..0> {sign extend},
(rb#0) : R [rb] + ¢2<16..0> {sign extend}),
The displacement (or the direct) address is being calculated in this example. The “,”
operator separates statements in a single instruction, and indicates that these statements
are to be executed simultaneously. However, since in this example these are two disjoint
conditions, therefore, only one action will be performed at one time.
Note that register RO cannot be added to displacement. rb = 0 just implies we do not need
to use the R [rb] field.
Relative address
rel<31..0> := PC<31..0> + c¢1<21..0> {sign extend},
In the above example, a relative address is being calculated by adding the displacement
after sign extension to the contents of the program counter register (that holds the next
instruction to be executed in a program execution sequence).
Range of memory addresses
The range of memory addresses that can be accessed using the displacement (or the
direct) addressing and the relative addressing is given.
¢ Direct addressing (displacement with rb=0)
o If ¢2<16>=0 (positive displacement) absolute addresses range from
00000000h to 0000FFFFh
o If ¢2<16>=1 (negative displacement) absolute addresses range from
FFFF0000h to FFFFFFFFh
e Relative addressing
o The largest positive value of C1<21..0> is 2*'-1 and its most negative
value is -2%', so addresses up to 2%'-1 forward and 2*' backward from the
current PC value can be specified
Instruction Interpretation
(Describing the Fetch operation using RTL)
The action performed for all the instructions before they are decoded is called ‘instruction
interpretation’. Here, an example is that of starting the machine. If the machine is not
already running (—Run, or ‘not’ running), AND (&) it the condition start (Strt) becomes
true, then Run bit (of the processor state) is set to 1 (i.e. true).
instruction_Fetch := (
! Run & Strt: Run <« 1 ; instruction_Fetch
Run : (IR — M [PC], PC — PC +4; instruction_Execution));
The := is the naming operator. The ; operator is used to add comments in RTL. The ,
operator, specifies that the statements are to be executed simultaneously, (i.e. in a single
clock pulse). The ; operator is used to separate sequential statements. <— is an assignment
operator. & is a logical AND, ~ is a logical OR, and ! is the logical NOT. In the
instruction interpretation phase of the fetch-execute cycle, if the machine is running (Run
Last Modified: 01-Nov-06 Page 67

Advanced Computer Architecture-CS501

is true), the instruction register is loaded with the instruction at the location M [PC] (the
program counter specifies the address of the memory at which the instruction to be
executed is located). Simultaneously, the program counter is incremented by 4, so as to
point to the next instruction, as shown in the example above. This completes the
instruction interpretation.
Instruction Execution
(Describing the Execute operation using RTL)
Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following, we denote instruction Fetch by “iF” and instruction execution by
“1E”.
iE:= (

(op<4..0>=1) : R [ra] < M [disp],

(op<4..0>=2) : R [ra] «<— M [rel],

(op<4..0>=31) : Run < 0,); iF);
As shown above, Instruction Execution can be described by using a long list of
conditional operations, which are inherently “disjoint”.
One of these statements is executed, depending on the condition met, and then the
instruction fetch statement (iF) is invoked again at the end of the list of concurrent
statements. Thus, instruction fetch (iF) and instruction execution statements invoke each
other in a loop. This is the fetch-execute cycle of the SRC.

Concurrent Statements

The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below.
Load-Store Instructions
(op<4..0>=1) : R [ra] < M [disp], load register (1d)
This instruction is to load a register using a displacement address specified by the
instruction, i.e. the contents of the memory at the address ‘disp’ are placed in the register
R [ra].

(op<4..0>=2) : R [ra] < M [rel], load register relative (I1dr)
If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, ‘rel’. The relative address calculation has been
explained in this section earlier.
(op<4..0>=3) : M [disp] < R [ra], store register (st)
If the op-code is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location ‘disp’.
(op<4..0>=4) : M|rel] <— R|ra], store register relative (str)
If the op-code is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location ‘rel’.
(op<4..0>=5) : R [ra] < disp, load displacement address (1a)
For op-code 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).
(op<4..0>=6) : R [ra] < rel, load relative address (lar)
For op-code 6, the relative address rel is loaded to the register R (specified by the target
register address ra).

Last Modified: 01-Nov-06 Page 68

Advanced Computer Architecture-CS501

Branch Instructions
(op<4..0>=8) : (cond : PC < R [rb]), conditional branch (br)
If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition ‘cond’ is true.
(op<4..0>=9) : (R [ra] — PC,

cond : (PC <— R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
rb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these ‘conditional’ branches depend on are specified by the field c3
that has 3 bits. This simply means that when ¢3<2..0> is equal to one of these six values.
We substitute the expression on the right hand side of the : in place of cond
These conditions are explained here briefly.

cond :=(
c3<2..0>=0:0, never
If the ¢3 field is 0, the branch is never taken.
¢3<2..0>=1:1, always
If the field is 1, branch is taken
¢3<2..0>=2 : R [rc]=0, if register is zero
If ¢3 = 2, a branch is taken if the register rc = 0.
¢3<2..0>=3 : R [rc] #0, if register is nonzero

If ¢3 = 3, a branch is taken if the register rc is not equal to 0.
¢3<2..0>=4 : R [rc]<31>=0 if positive or zero
If ¢3 is 4, a branch is taken if the register value in the register specified
by rc is greater than or equal to 0.
¢3<2..0>=5: R [rec]<31>=1), if negative
If ¢3 =5, a branch is taken if the value stored in the register specified by
rc is negative.
Arithmetic and Logical instructions
(op<4..0>=12) : R [ra] — R [rb] + R [rc],
If the op-code is 12, the contents of the registers tb and rc are added and the result is
stored in the register ra.
(op<4..0>=13) : R [ra] < R [rb] + ¢2<16..0> {sign extend},
If the op-code is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.
(op<4..0>=14) : R [ra] «<— R [rb] - R [rc],
If the op-code is 14, the content of the register rc is subtracted from that of rb, and the
result is stored in ra.
(op<4..0>=15) : R [ra] < -R [rc],
If the op-code is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] <— R [rb] & R [rc¢],
If the op field equals 20, logical AND of the contents of the registers rb and rc is obtained
and the result is stored in register ra.
(op<4..0>=21) : R [ra] < R [rb] & ¢2<16..0> {sign extend},
If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.

Last Modified: 01-Nov-06 Page 69

Advanced Computer Architecture-CS501

(op<4..0>=22) : R [ra] < R [rb] ~R [rc],

If the op field equals 22, logical OR of the contents of the registers b and rc is obtained
and the result is stored in register ra.

(op<4..0>=23) : R [ra] < R [rb] ~ ¢2<16..0> {sign extend},

If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.

(op<4..0>=24) : R [ra] — —Rrc],

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.

Shift instructions

(op<4..0>=26): R [ra]<31..0 > «— (n a 0) © R [rb] <31..n>,

If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. Os are added in their place, i.e. n number
of Os is added (or concatenated) with the register contents. The result is copied to the
register ra.

(0p<4..0>=27) : R [ra]<31..0 > — (n a R [rb] <31>) © R [rb] <31..n>,

For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of
the register rb are shifted right n times, with the most significant bit, bit 31, of the register
b added in their place. The result is copied to the register ra.

(0p<4..0>=28) : R [ra]<31..0 > — R [rb] <31-n..0> © (n a 0),

For op-code 28, the contents of the register tb are shifted left n bits times, similar to the
shift right instruction. The result is copied to the register ra.

(op<4..0>=29) : R [ra]<31..0 > «— R [rb] <31-n..0> © R [rb]<31..32-n >,

The instruction corresponding to op-code 29 is the shift circular instruction. The contents
of the register rb are shifted left n times, however, the bits that move out of the register in
the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.

where

n:=((¢3<4..0>=0) : R [rc],
(€3<4..0>!=0) : c3 <4..0>),

Notation: o means replication

© Means concatenation

Miscellaneous instructions
(op<4..0>=0), No operation (nop)
If the op-code is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>=31) : Run < 0, Halt the processor (Stop)

); iF);
If the op-code is 31, run is set to 0, that is, the processor is halted.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetch-execute cycle

continues.

Flow diagram Instruction Fetch
Flow diagram is the symbolic

representation of Fetch-Execute cycle. Its

top block indicates instruction fetch and Instruction Decode
then next block shows the instruction

decode by looking at the first 5-bits of the Op-code =31 . Op-code =

) appropriate
Last Modified: 01-Nov-06 Op-code =30 Op-code =1 processing
goes in this

place

I IR

Advanced Computer Architecture-CS501

fetched instruction which would represent op-code which may be from 0 to
31.Depending upon the contents of this op-code the appropriate processing would take
place. After the appropriate processing, we would move back to top block, next
instruction is fetched and the same process is repeated until the instruction with op-code
31 would reach and halt the system.

Note:For SRC Assembler and Simulator consult Appendix.

Last Modified: 01-Nov-06 Page 71

Advanced Computer Architecture-CS501

Advanced Computer Architecture

Lecture No. 6

Reading Material
Handouts Slides
Summary

e Using Behavioral RTL to Describe the SRC (continued)
e Implementing Register Transfer using Digital Logic Circuits

Using behavioral RTL to Describe the SRC (continued)

Once the instruction is fetched and the PC is incremented, execution of the instruction
starts. In the following discussion, we denote instruction fetch by “iF” and instruction
execution by “iE”.

iE:=(
(op<4..0>=1) : R [ra] «<— M [disp],
(op<4..0>=2) : R [ra] < M [rel],

(0p<4..0>=31) : Run < 0,); iF);

As shown above, instruction execution can be described by using a long list of
conditional operations, which are inherently “disjoint”. Only one of these statements is
executed, depending on the condition met, and then the instruction fetch statement (iF) is
invoked again at the end of the list of concurrent statements. Thus, instruction fetch (iF)
and instruction execution statements invoke each other in a loop. This is the fetch-execute
cycle of the SRC.

Concurrent Statements
The long list of concurrent, disjoint instructions of the instruction execution (iE) is
basically the complete instruction set of the processor. A brief overview of these
instructions is given below:

Load-Store Instructions

(op<4..0>=1) : R [ra] < M [disp], load register (1d)

This instruction is to load a register using a displacement address specified by the
instruction, i.e., the contents of the memory at the address ‘disp’ are placed in the register
R [ra].

(op<4..0>=2) : R [ra] < M [rel], load register relative (Idr)

Last Modified: 01-Nov-06 Page 72

Advanced Computer Architecture-CS501

If the operation field ‘op’ of the instruction decoded is 2, the instruction that is executed
is loading a register (target address of this register is specified by the field ra) with
memory contents at a relative address, ‘rel’. The relative address calculation has been
explained in this section earlier.

(op<4..0>=3) : M [disp] < R [ra], store register (st)

If the op-code is 3, the contents of the register specified by address ra, are stored back to
the memory, at a displacement location ‘disp’.

(op<4..0>=4) : M|rel] < RJra], store register relative (str)

If the op-code is 4, the contents of the register specified by the target register address ra,
are stored back to the memory, at a relative address location ‘rel’.

(op<4..0>=5) : R [ra] < disp, load displacement address (1a)

For op-code 5, the displacement address disp is loaded to the register R (specified by the
target register address ra).

(op<4..0>=6) : R [ra] < rel, load relative address (lar)

For op-code 6, the relative address rel is loaded to the register R (specified by the target
register address ra).

Branch Instructions
(op<4..0>=8) : (cond : PC — R [rb]), conditional branch (br)
If the op-code is 8, a conditional branch is taken, that is, the program counter is set to the
target instruction address specified by rb, if the condition ‘cond’ is true.
(op<4..0>=9) : (R [ra] < PC,

cond : (PC < R [rb])), branch and link (brl)
If the op field is 9, branch and link instruction is executed, i.e. the contents of the
program counter are stored in a register specified by ra field, (so control can be returned
to it later), and then the conditional branch is taken to a branch target address specified by
tb. The branch and link instruction is useful for returning control to the calling program
after a procedure call returns.
The conditions that these ‘conditional” branches depend on, are specified by the field ¢3
that has 3 bits. This simply means that when ¢3<2..0> is equal to one of these six values,
we substitute the expression on the right hand side of the : in place of cond.
These conditions are explained here briefly.

cond :=(
¢3<2..0>=0:0, never
If the ¢3 field is 0, the branch is never taken.
c3<2..0>=1:1, always
If the field is 1, branch is taken
¢3<2..0>=2 : R [rc]=0, if register is zero
If ¢3 = 2, a branch is taken if the register rc = 0.
¢3<2..0>=3 : R [rc] #0, if register is nonzero

If ¢3 = 3, a branch is taken if the register rc is not equal to 0.
¢3<2..0>=4 : R [rc]<31>=0 if positive or zero

If c3 is 4, a branch is taken if the register value in the register specified
by rc is greater than or equal to 0.

¢3<2..0>=5: R [rc]<31>=1), if negative

If ¢3 =5, a branch is taken if the value stored in the register specified by
rc is negative.

Last Modified: 01-Nov-06 Page 73

Advanced Computer Architecture-CS501

Arithmetic and Logical instructions

(op<4..0>=12) : R [ra] < R [rb] + R [r¢],

If the op-code is 12, the contents of the registers rb and rc are added and the result is
stored in the register ra.

(op<4..0>=13) : R [ra] < R [rb] + ¢2<16..0> {sign extended},

If the op-code is 13, the content of the register rb is added with the immediate data in the
field c2, and the result is stored in the register ra.

(op<4..0>=14) : R [ra] <— R [rb] — R [r¢],

If the op-code is 14, the content of the register rc is subtracted from that of rb, and the
result is stored in ra.

(op<4..0>=15) : R [ra] < -R [rc],

If the op-code is 15, the content of the register rc is negated, and the result is stored in ra.
(op<4..0>=20) : R [ra] — R [rb] & R [rc],

If the op field equals 20, logical AND of the contents of the registers b and rc is obtained
and the result is stored in register ra.

(op<4..0>=21) : R [ra] < R [rb] & ¢2<16..0> {sign extended},

If the op field equals 21, logical AND of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.

(op<4..0>=22) : R [ra] < R [rb] ~R [rc],

If the op field equals 22, logical OR of the contents of the registers b and rc is obtained
and the result is stored in register ra.

(op<4..0>=23) : R [ra] < R [rb] ~ ¢2<16..0> {sign extended},

If the op field equals 23, logical OR of the content of the registers rb and the immediate
data in the field c2 is obtained and the result is stored in register ra.

(op<4..0>=24) : R [ra] < !R [rc],

If the op-code equals 24, the content of the logical NOT of the register rc is obtained, and
the result is stored in ra.

Shift instructions
(op<4..0>=26): R [ra]<31..0 > «— (n a 0) © R [rb] <31..n>,
If the op-code is 26, the contents of the register rb are shifted right n bits times. The bits
that are shifted out of the register are discarded. Os are added in their place, i.e. n number
of Os is added (or concatenated) with the register contents. The result is copied to the
register ra.
(op<4..0>=27) : R [ra]<31..0 > «— (n a R [rb] <31>) © R [rb] <31..n>,
For op-code 27, shift arithmetic operation is carried out. In this operation, the contents of
the register rb are shifted right n times, with the most significant bit, i.e., bit 31, of the
register rb added in their place. The result is copied to the register ra.
(op<4..0>=28) : R [ra]<31..0 > «— R [rb] <31-n..0> © (n a 0),
For op-code 28, the contents of the register rb are shifted left n bits times, similar to the
shift right instruction. The result is copied to the register ra.
(op<4..0>=29) : R [ra]<31..0 > — R [rb] <31-n..0> © R [rb]<31..32-n >,
The instruction corresponding to op-code 29 is the shift circular instruction. The contents
of the register rb are shifted left n times, however, the bits that move out of the register in
the shift process are not discarded; instead, these are shifted in from the other end (a
circular shifting). The result is stored in register ra.
where

n := ((¢3<4..0>=0) : R [rc],

Last Modified: 01-Nov-06 Page 74

Advanced Computer Architecture-CS501

(€3<4..0>1=0) : ¢3 <4..0>),

Notation:
o means replication
© means concatenation

Miscellaneous instructions
(op<4..0>=0), No operation (nop)
If the op-code is 0, no operation is carried out for that clock period. This instruction is
used as a stall in pipelining.
(op<4..0>=31) : Run <« 0, Halt the processor (Stop)
); iF);
If the op-code is 31, run is set to 0, that is, the processor stops execution.
After one of these disjoint instructions is executed, iF, i.e. instruction Fetch is carried out
once again, and so the fetch-execute cycle continues.

Implementing Register Transfers using Digital Logic Circuits

We have studied the register transfers in the previous sections, and how they help in
implementing assembly language. In this section we will review how the basic digital
logic circuits are used to implement instructions register transfers. The topics we will
cover in this section include:

1. A brief (and necessary) review of logic circuits
Implementing simple register transfers
Register file implementation using a bus
Implementing register transfers with mathematical operations
The Barrel Shifter
Implementing shift operations

AT

Review of logic circuits
Before we study the implementation of register transfers using logic circuits, a brief
overview of some of the important logic circuits will prove helpful. The topics we review
in this section include

1. The basic D flip flop

2. The n-bit register

3. The n-to-1 multiplexer

4. Tri-state buffers

The basic D flip flop

A flip-flop is a bi-stable device, Data Input _1p Q Q Output
capable of storing one bit of Input -
Information. Therefore, flip-flops EN

are used as the building blocks of a

computer’s memory as well as CPU Clock Input_ C

registers. R

Last Modified: 01-Nov-06 ACtIVE LOW C|Ear |nput

D flip flop

Advanced Computer Architecture-CS501

There are various types of flip-flops; most common type, the D flip-flop is shown in the
figure given. The given truth table for this positive-edge triggered D flip-flop shows that
the flip-flop is set (i.e. stores a 1) when the data input is high on the leading (also called
the positive) edge of the clock; it is reset (i.e., the flip-flop stores a 0) when the data input
is 0 on the leading edge of the clock. The clear input will reset the flip-flop on a low
input.

The n-bit register

A n-bit register can be formed by
grouping n flip-flops together. So a
register is a device in which a

group of flip-flops operate E N D Q
synchronously. o \V4 \Y4
A register is useful for storing
binary data, as each flip-flop can

oo

store one bit. The clock input of e D BCau0
the flip-flops is grouped Cg

together, as is the enable input. [

As shown in the figure, using m

the input lines a binary number = D B Outd

can be stored in the register by
applying the corresponding
logic level to each of the flip-

=
[%]
n< r:u

flops simultaneously at the "R E Eooue
positive edge of the clock. C
The next figure shows the | | | |
symbol of a 4-bit register used |
for an integrated circuit. In0 rE F&"E 'E
through In3 are the four input _ .
lines, Out0 through Out3 are the - Elnk 4-bit red Fd
four output lines, Clk is the AT ot
clock input, and En is the enable .5 5 S S
NN

line. To get a better
understanding of this register,
consider the situation where we want 4-bit Register Symbol

to store the binary number 1000 in the

register. We will apply the number to

the input lines, as shown in the figure given.

On the leading edge of the clock, the number will be stored in the register. The enable
input has to be high if the number is to be stored into the register.

Last Modified: 01-Nov-06 Page 76

Advanced Computer Architecture-CS501

Iz~ — " L
L -1
|r‘|3 |:|_ H—D'"D

clack CHEE

_r|_r|_i Cle 4-BR reg R4
En 0 04—
1 Enatle SiEE
u IH |

(] [o] o] [@

Oy Qw2 Outd ot
test circuit for 4-bit register

Waveform/Timing diagram

| Inputs

e i . i
i
;}J«p{ Apipupupipipupipigpiyipd)Apkipupigigigiph
'\':J'
1
| 1

T

Timing waveform

The n-to-1 multiplexer

A multiplexer is a device, constructed
through combinational logic, which
takes n inputs and transfers one of
them as the output at a time. The input
that is selected as the output depends
on the selection lines, also called the
control input lines. For an n-to-1

Last Modified: 01-Nov-06

M,
Qr—l
1
Oon
|
a7 - PR A
T i I°
1- I3
o g
a1
= AN rw 4
1 =0
o— ut

test circuit for 4-to-1 MUX

Irputs
2 1 0
L[]
it
-1 ML

Advanced Computer Architecture-CS501

multiplexer, there are n input lines, log,n control lines, and 1 output line. The given
figure shows a 4-to-1 multiplexer. There are 4 input lines; we number these lines as line 0
through line 3. Subsequently, there are 2 select lines (as log,4 = 2).

For a better understanding, let us consider a case where we want to transfer the input of
line 3 to the output of the multiplexer. We will need to apply the binary number 11 on the
select lines (as the binary number 11 represents the decimal number 3). By doing so, the
output of the multiplexer will be the input on line 3, as shown in the test circuit given.
Timing waveform

F 0
4
& 1 Ul Uy LUUUUUL
i | Ll U
I n i L
0 I] S 11y - 111]
o Ml ML M =LA

Timing Waveform for MUX

Tri-state buffers
The tri-state buffer, also called the three- C(Control)
state buffer, is another important

component in the digital logic domain. It ENB N y (output)
has a single input, a single output, and -
an enable line. The input is concatenated a(lnpUt) ‘
to the output only if it is enabled through

the enable line, otherwise it gives a high

impedance output, i.e. it is tri-stated, or Tri_ctata huiffar
electrically disconnected from the input
These buffers are available both in the
inverting and the non-inverting form. The
inverting tri-state buffers output the
‘inverted’ input when they are enabled,
as opposed to their non-inverting
counterparts that simply output the input
when enabled. The circuit symbol of the
tri-state buffers is shown. The truth table

—_ == OO OO
- O = O
- O N N|=<

Last Modified: 01-Nov-06 Truth table Tri-state buffer 78

Advanced Computer Architecture-CS501

further clarifies the working of a non-inverting tri-state buffer.

We can see that when the enable input (or the control input) ¢ is low (0), the output is
high impedance Z. The symbol of a 4-bit tri-state buffer unit is shown in the figure. There
are four input lines, an equal number of

output lines, and an enable line in this
unit. If we apply a high on the input 3
and 2, and a low on input 1 and 0, we — ||"||:| [:| |_|'t|:| A—
get the output 1100, only when the
epable input is high, as shown in the — ||'-|1 [::l |_|-t1 —
2 ou2 |-
- — |3 Quta —
0-— R -
1 L
In0 Ot
e |
1- fl Lt
O0- In3 Ot
’_ - Tri-state buffer symbol
1= L]
0- L L) Lo | |Lo
1:—
00—

Test circuit for Tri-state buffer

Implementing simple register transfers
We now build on our knowledge of the primitive logic circuits to understand how register
transfers are implemented. In this section we will study the implementation of the
following

e Simple conditional transfer

e Concept of control signals
Two-way transfers
Connecting multiple registers
Buses
Bus implementations
Simple conditional transfer
In a simple conditional transfer, a condition is checked, and if it is true, the register
transfer takes place. Formally, a conditional transfer is represented as

Cond: RD « RS

This means that if the condition ‘Cond’ is true, the contents of the register named RS (the
source register) are copied to the register RD (the destination register). The following
figure shows how the registers may be interconnected to achieve a conditional transfer. In

Last Modified: 01-Nov-06 Page 79

Advanced Computer Architecture-CS501

this circuit, the output of the source register RS is connected to the input of the
destination registers RD. However, notice that the transfer will not take place unless the
enable input of the destination register is activated. We may say that the ‘transfer’ is
being controlled by the enable line (or the control signal). Now, we are able to control the
transfer by selectively enabling the control signal, through the use of other combinational
logic that may be the equivalent of our condition. The condition is, in general, a Boolean
expression, and in this example, the condition is equivalent to LRD =1.

Two-way transfers

In the above example, only one-way transfer was possible, i.e., we could only copy the
contents of RS to RD if the condition was met. In order to be able to achieve two-way
transfers, we must also provide a path from the output of the register RD to input of
register RS. This will enable us to implement

Inpul valuee to S
1- =

clock

1- IR OdsE
- [l]

i—onditional Trasnfer

Condl: RD <+ RS

Cond2: RS < RD

Connecting multiple registers

We have seen how two registers can be connected. However, in a computer we need to
connect more than just two registers. In order to connect these registers, one may argue
that a connection between the input and output of each be provided. This solution is
shown for a scenario where there are 5 registers that need to be interconnected.

We can see that in this solution, an m-bit register requires two connections of m-wires
each. Hence five m-bit registers in a “point-to-point” scheme require 20 connections;
each with m wires. In general, n registers in a point to point scheme require n (n-1)
connections. It is quite obvious that this solution is not going to scale well for a large

Last Modified: 01-Nov-06 Page 80

Advanced Computer Architecture-CS501

number of registers, as is the case in real machines. The solution to this problem is the
use of a bus architecture, which is explained in the following sections.

Buses

A bus is a device that provides a shared data
path to a number of devices that are connected (@l
to it, via a °‘set of wires’ or a ‘set of
conductors’. The modern computer systems
extensively employ the bus architecture.
Control signals are needed to decide which two
entities communicate using the shared medium,
i.e. the bus, at any given time. This control
signals can be open collector

gate based, tri-state buffer

based, or they can Dbe

B
Al

Multiple register connections

implemented using

multiplexers.

Register file implementation ek,

using the bus architecture L[Ao TE4

A number of registers can be e anitm L b Cue
inter-connected to form a L i o — el
register file, through the use of a 3 T"i'q | &
bus. The given diagram shows

eight 4-bit registers (RO, R1, ..., '~ Foou
R7) interconnected through a 4-

: . . . K £.0.TH
bit bus using 4-bit tri-state rFrE o
buffer units (labeled AA TS4). T e I N e F
The contents of a particular " E E“J | abl
register can be transferred onto | =
the bus by applying a logical V=
high input on the enable of the :
corresponding tri-state buffer.

For instance, R1out can be used
to enable the tri-state buffers of
the register RI, and in turn
transfer the contents of the nTH

L
register on the bus. s b Cue

Once the contents of a particular 1o CEr #ltrem Lo

. LEr aazu
register are on the bus, the 284 “ " :"“]
contents may be transferred, or I

read into any other register.
More than one register may be Rifend
written in this manner; however, Register Fila
only one register can write its

value on the bus at a given time.

Last Modified: 01-Nov-06 Page 81

Advanced Computer Architecture-CS501

Implementing register transfers with mathematical operations

We have studied the implementation of simple register transfers; however, we frequently
encounter register transfers with mathematical operations. An example is

(opc=1): R4 R3 + R2;

These mathematical operations may be achieved by introducing appropriate
combinational logic; the above operation can be implemented in hardware by including a

4-bit adder with the register files connected through the bus. There are two more registers
in this configuration, one for holding one of the operands, and the other for holding the
result before it is transferred to the destination register. This is shown in the figure below.

] —
|].3 -

[u}
-
-~
u el
TR) —

—

n
o
=

£

Piol
| L 00 THY
=
| Y [1=]
o E'I dhitreg b :}_g: £.0.THS
LRl o _ FEER HE Cu-lr
el Cudd |— (=770 31
z Callrs
Cad el [—

Last Modified: 01-Nov-06 Page 82

Advanced Computer Architecture-CS501

We now take a look at
the steps taken for the

(conditional, Titne step | Opetation to be petformed | Control signals tobe
mathematical) transfer structural RTL) activated
(opc=1): R4« R3 + R2. 1 &+ R3 L4, Float

First of all, if the

condition opc = 1 is met, 2 Ce h+F2 LC, R2out

the contents of the first

operand register, R3, are 3 R4« C LE4, Cout
transferred to the

:ﬁﬁ%;frtyhe lr)i%fs%rns 2 Structural RTL: add operation

done by activating

R3out. It lets the contents of the register R3 to be loaded on the bus. At the same time,
applying a logical high input to LA enables the load for the register A. This lets the
binary number on the bus (the contents of register R3) to be loaded into the register A.
The next step is to enable R2out to load the contents of the register R2 onto the bus. As
can be observed from the figure, the output of the register A is one of the inputs to the 4-
bit adder; the other input to the adder is the bus itself. Therefore, as the contents of
register R2 are loaded onto the bus, both the operands are available to the adder. The
output can then be stored to the register RC by enabling its write. So a high input is
applied to LC to store the result in register RC.

The third and final step is to store (transfer) the resultant number in the destination
register R4. This is done by enabling Cout, which writes the number onto the bus, and
then enabling the read of the register R4 by activating the control signal to LR4. These
steps are summarized in the given table.

The barrel shifter

Shift operations are frequently used operations, as shifts can be used for the
implementation of multiplication and division etc. A bi-directional shift register with a
parallel load capability can be used to perform shift operations. However, the delays in
such structures are dependent on the number of shifts that are to be performed, e.g., a 9
bit shift requires nine clock periods, as one shift is performed per clock cycle. This is not
an optimal solution. The barrel shifter is an alternative, with any number of shifts
accomplished during a single clock period. Barrel shifters are constructed by using
multiplexers. An n-bit barrel shifter is a combinational circuit implemented using n
multiplexers. The barrel provides a shifted copy of the input data at its output. Control
inputs are provided to specify the number of times the input data is to be shifted. The
shift process can be a simple one with Os used as fillers, or it can be a rotation of the input
data. The corresponding figure shows a barrel shifter that shifts right the input data; the
number of shifts depends on the bit pattern applied on the control inputs S0, S1.

The function table for the barrel shifter is given. We see from the table that in order to
apply single shift to the input number, the control signal is 01 on (S1, S0), which is the
binary equivalent of the decimal number 1. Similarly, to apply 2 shifts, control signal 10

Last Modified: 01-Nov-06 Page 83

Advanced Computer Architecture-CS501

IHEJE =

s e

-
-

In1 B> *
InDI[E ! '

S — “_\@d I I -"f“g‘? 2107 SaF 4 1y‘ SE1e 4 | IJ/’
‘GUEP—[+ 0 g T 0 gul . ‘I e

&
Out3

(on S1, S0) is applied; 10 is the binary
equivalent of the decimal number 2. A
control input of 11 shifts the number 3
places to the right.

Now we take a look at an example of
the shift operation being implemented
through the use of the barrel shifter:
R4« ror R3 (2 times);

The shift functionality can be
incorporated into the register file

Barrel Shifter
L 1 1 |
e =g
—51 - - - -
Bshifterd
—s0S S5 5 S
o O O ©
P10 1 1

circuit with the bus architecture we
have been building, by introducing the
barrel shifter, as shown in the given
figure.

To perform the operation,

R4« ror R3 (2 times),

the first step is to activate R3out, nbl
and LC. Activating R3out will load the
contents of the register R3 onto the bus.
Since the bus is directly connected to
the input of the barrel shifter, this
number is applied to the input side. nb1
and nb0 are the barrel shifter’s control
lines for specifying the number of shifts
to be applied. Applying a high input to
nbl and a low input to nb0 will shift the
number two places to the right.
Activating LC will load the shifted
output of the barrel shifter into the

Last Modified: 01-Nov-06

Barrel Shifter Symbol

51 S0 Ouiput in texrms of the
inpuis

o 0 I3 Ind Inl Ind

o 1 [0 I3 I Il

1 0 Ital Tea I3 I

1 1 It Il I I

Function table: Barrel shifter

Page 84

Advanced Computer Architecture-CS501

1L
L

1
]

Coud

Shift operation using Barrel Shifter

register C. The second step is to transfer the contents of the register C to the register R4.
This is done by activating the control Cout, which will load the contents of register C
onto the data bus, and by activating the control LR4, which will let the contents of the
bus be written to the register R4. This will complete the conditional shift-and-store
operation. These steps are summarized in the table shown below.

Time step Operaticn to be performed Control signalstobe
(structural RTL) activated
1 C «— B3 [after rotating right terice) F3omt, nbl, LC
2 R4 C LE4, Cont

Last Modified: 01-Nov-06

Structural RTL: Shift operation

Page 85

Advanced Computer Architecture-CS501

Lecture Handout

Computer Architecture

Lecture No. 7

Reading Material
Hnadouts Slides

Summary
8) Outline of the thinking process for ISA Design
9) Introduction to the ISA of FALCON-A

Instruction Set Architecture (ISA) Design: Outline of the thinking

process

In this module we will learn to appreciate, understand and apply the approach adopted in
designing an instruction set architecture. We do this by designing an ISA for a new
processor. We have named our processor FALCON-A, which is an acronym for First
Architecture for Learning Computer Organization and Networks (version A). The term
Organization is intended to include Architecture and Design in this acronym.

Elements of the ISA

Before we go onto designing the instruction set architecture for our processor FALCON-
A, we need to take a closer look at the defining components of an ISA. The following
three key components define any instruction set architecture.

1. The operations the processor can execute

2. Data access mode for use as operands in the operations defined

3. Representation of the operations in memory
We take a look at all three of the components in more detail, and wherever appropriate,
apply these steps to the design of our sample processor, the FALCON-A. This will help
us better understand the approach to be adopted for the ISA design of a processor. A
more detailed introduction to the FALCON-A will be presented later.

The operations the processor can execute

All processors need to support at least three categories (or functional groups) of
instructions

— Arithmetic, Logic, Shift

— Data Transfer

— Control

Last Modified: 01-Nov-06 Page 86

Advanced Computer Architecture-CS501

ISA Design Steps — Step 1

We need to think of all the instructions of each type that ought to be supported by our
processor, the FALCON-A. The following are the instructions that we will include in the
ISA for our processor.

Arithmetic:

add, addi (and with an immediate operand), subtract, subtract-immediate,
multiply, divide
Logic:

and, and-immediate, or, or-immediate, not
Shift:

shift left, shift right, arithmetic shift right
Data Transfer:

Data transfer between registers, moving constants to registers, load operands from
memory to registers, store from registers to memory and the movement of data between
registers and input/output devices
Control:

Jump instructions with various conditions, call and return from subroutines,
instructions for handling interrupts
Miscellaneous instructions:

Instructions to clear all registers, the capability to stop the processor, ability to
“do nothing”, etc.

ISA Design Steps — Step 2

Once we have decided on the instructions that we want to add support for in our
processor, the second step of the ISA design process is to select suitable mnemonics for
these instructions. The following mnemonics have been selected to represent these
operations.

Arithmetic:

add, addi, sub ,subi ,mul ,div

Logic:

and, andi, or, ori, not

Shift:

shiftl, shiftr, asr

Data Transfer:

load, store, in, out, mov, movi

Control:

jpl, jmi, jnz, jz, jump, call, ret, int.iret

Miscellaneous instructions:

nop, reset, halt

ISA Design Steps — Step 3

The next step of the ISA design is to decide upon the number of bits to be reserved for
the op-code part of the instructions. Since we have 32 instructions in the instruction set, 5
bits will suffice (as 2° =32) to encode these op-codes.

ISA Design Steps — Step 4

The fourth step is to assign op-codes to these instructions. The assigned op-codes are
shown below.

Last Modified: 01-Nov-06 Page 87

Advanced Computer Architecture-CS501

Arithmetic:

add (0), addi (1), sub (2), subi (3), mul (4),div (5)
Logic:

and (8), andi (9), or (10), ori (11), not (14)

Shift:

shiftl (12), shiftr (13), asr (15)
Data Transfer:

load (29), store (28), in (24), out (25), mov (6), movi (7)

Control:

jpl (16), jmi (17), jnz (18), jz (19), jump (20), call (22), ret (23), int (26), iret (27)
Miscellaneous instructions:

nop (21), reset (30), halt (31) 00000 | add || 01000 | and || 10000 | jpl || 11000 | in

Now we list these instructions with oot | wss || o0t | s || 10000 | i || 1001 | e

their op-codes in the binary form, as
they Would appear in the maChine ono1o b 01010 ot 10010 jhz 11010 it
instructions of the FALCON-A.

ool subi 001t ot 10011 iz 11011 itet

Data access mode for
. aoon mul n11on shiftl 10100 Jump 11100 store

operations
As mentioned earlier, the instruction e | e | I B A e
set architecture of a processor defines 010 | mov || 0110 | met || 10110 | eall || 11110 | reset
a number of things besides the

ool maovi 0111t ast 10111 ret 11111 halt

instructions implemented; the

resources each instruction can access,

the number of registers available to the processor, the number of registers each
instruction can access, the instructions that are allowed to access memory, any special
registers, constants and any alternatives to the general-purpose registers. With this in
mind, we go on to the next steps of our ISA design.

ISA Design Steps — Step 5
We now need to select the number and types of operands for various instructions that we
have selected for the FALCON-A ISA.

ALU instructions may have 2 to 3 registers as operands. In case of 2 operands, a constant
(an immediate operand) may be included in the instruction.

For the load/store type instructions, we require a register to hold the data that is to be
loaded from the memory, or stored back to the memory. Another register is required to
hold the base address for the memory access. In addition to these two registers, a field is
required in the instruction to specify the

constant that is the displacement to the base Regiriers Encoding
address. kD oo
In jump instructions; we require a field for Fl ool
specifying the register that holds the value that B2 o010
is to be compared as the condition for the = -
branch, as well as a destination address, which

is specified as a constant. F4 100
Once we have decided on the number and ES 101
types of operands that will be required in each Fg 110
of the instruction types, we need to address the E7 111

Last Modified: 01-Nov-06 Page 88

Advanced Computer Architecture-CS501

issue of assigning specific bit-fields in the instruction for each of these operands. The
number of bits required to represent each of these operands will eventually determine the
instruction word size. In our example processor, the FALCON-A, we reserve eight
general-purpose registers. To encode a register in the instructions, 3 bits are required (as
2% =8). The registers are encoded in the binary as shown in the given table.

Therefore, the instructions that we will add support for FALCON-A processor will have
the given general format. The instructions 15 110 § 7 54 21 0
in the FALCON-A processor are going to Op-code ra th e junused
be variations of this format, with four
different formats in all. The exact format is dependent on the actual number of operands
in a particular instruction.

ISA Design Steps — Step 6

The next step towards completely defining the instruction set architecture of our
processor is the design of memory and its organization. The number of the memory cells
that we may have in the organization depends on the size of the Program Counter register
(PC), and the size of the address bus. This is because the size of the program counter and
the size of the address bus put a limitation on the number of memory cells that can be
referred to for loading an instruction for execution. Additionally, the size of the data bus
puts a limitation on the size of the memory word that can be referred to in a single clock
cycle.

ISA Design Steps — Step 7

Now we need to specify which instructions will be allowed to access the memory. Since
the FALCON-A is intended to be a RISC-like machine, only the load/ store instructions

will be allowed to access the memory. [Addressing Mode Format Example
ISA Design Steps — Step |

direct [constant or label] [10] o [a]
§ displacemert [register + constant or label] [Fl+ 8] or
Next we need to select the memory- [2+4]
addressing modes. The given table lists [regserindueat | gegisten]
the types of addressing modes that will

be supported for the load/store
instructions.

FALCON-A: Introduction

FALCON stands for First Architecture for Learning Computer Organization and
Networks. It is a ‘RISC-like’ general-purpose processor that will be used as a teaching
aid for this course. Although the FALCON-A is a simple machine, it is powerful enough
to explain a variety of fundamental concepts in the field of Computer Architecture .

Programmer’s view of the FALCON-A
FALCON-A, an example of a GPR ittt

(General Purpose Register) computer, | ro 7 07 0
is the first version of the FALCON : ® E : ' '1]
processor. The programmer’s view of | e[] | 2 2
the FALCON-A is given in the figure | Registerfie : -
shown. As it is clear from the figure, : |
the CPU contains a register file of 8 [R o Inputioutput
registers, nqmed RO thropgh R7. Each : S :
of these registers is 16 bits in length. b a

CPU Main memory

Last Modified: 01-Nov-06 Page 89

Advanced Computer Architecture-CS501

Aside from these registers, there are two special-purpose registers, the Program Counter
(PC), and the Instruction Register (IR). The main memory is organized as 2'° x 8 bits, i.e.
2'% cells of 1 byte each. The memory word size is 2 bytes (or 16 bits). The input/output

space is 256 bytes (8 bit I/O ports). The storage in these registers and memory is in the
big-endian format.

Last Modified: 01-Nov-06 Page 90

Advanced Computer Architecture-CS501

Computer Architecture

Lecture No. 8

Reading Material
Handouts Slides

Summary

1) Introduction to the ISA of the FALCON-A
2) Examples for the FALCON-A

Introduction to the ISA of the FALCON-A

We take a look at the notation that we are going to employ when studying the FALCON-
A. We will refer to the contents of a register by enclosing in square brackets the name of
the register, for instance, R [3] refers to the contents of the register 3. Memory contents
are to be referred to in a similar fashion; for instance, M [8] refers to the contents of
memory at location 8 (or the 8"
memory cell).

Since memory is organized into cells
of 1 byte, whereas the memory word
size is 2 bytes, two adjacent memory
cells together make up a memory ITEEE
word. So, memory word at the

memory address 8 would be defined

’/‘ MSByte LS Byte
as 1 byte at address 8 and 1 byte at

address 9. To refer to 16-bit memory Fig Big- Endian Notation
words, we make use of a special '

notation, the concatenation of two memory locations. Therefore, to refer to the 16-bit
memory word at location 8, we would write M[8]OM[9]. As we employ the big-endian
format,

M [8]<15...0>:=M[8]©M[9]

So in our notation © is used to represent concatenation.

Little endian puts the smallest numbered byte at the least-significant position in a word,
whereas in big endian, we place the largest numbered byte at the most significant
position. Note that in our case, we use the big-endian convention of ordering bytes.
However, within each byte itself, the ordering of the bits is little endian.

FALCON-A Features

The FALCON-A processor has fixed-length instructions, each 16 bits (2 bytes) long.
Addressing modes supported are limited, and memory is accessed through the load/store
instructions only.

7 0
WME | x One memory “word”

ME] | x+ 15 57 0

€ hemory addresses

Last Modified: 01-Nov-06 Page 91

Advanced Computer Architecture-CS501

FALCON-A Instruction Formats
Three categories of instructions are going to be supported by the FALCON-A processor;
arithmetic, control, and data transfer instructions. Arithmetic instructions enable
mathematical computations. Control instructions help change the flow of the program as
and when required. Data transfer operations move data between the processor and
memory. The arithmetic category also includes the logical instructions. Four different
types of instruction formats are used to specify these instructions. A brief overview of the
various fields in these instructions formats follows.

Type I instruction format is shown in
the given figure. In it, 5 bits are
reserved for the op-code (bits 11 Op-code unused
through 15). The rest of the bits are
unused in this instruction type,
which means they are not
considered.

Type II instruction shown in the
given figure, has a 5-bit op-code
field, a 3-bit register field, and an 8-bit
constant (or immediate operand) field. 15 M0 8 7 &4 o
Type I instructions contain the 5-bit
op-code field, two 3-bit register fields
for source and destination registers,
and an immediate operand field of
length 5 bits.

Type IV instructions contain the op-
code field, two 3-bit register fields, a
constant filed on length 3 bits as well
as two unused bits. This format is shown in
the given figure.

Encoding of registers

We have a register file comprising of
eight general-purpose registers in the Regisiers Encoding
CPU. To encode these registers in the RO 000
binary, so they can be referred to in
various instructions, we require log,(8)
= 3 bits. Therefore, we have already
allocated three bits per register in the F3 o011
instructions, as seen in the various

15 11 10 0

15 1110 8 7 0
Op-code ra o

Op-code ra rb cl

15 1110 8 7 5 4 21 1]

Op-code ra rh I unused

Rl aal1

Rz Q1o

instruction formats. The encoding of - o
registers in the binary format is shown B 101

in the given table. k& 10

It is important to note here that the R7 111
register RO has special usage in some

cases. For instance, in load/ store F|g Register Encodings

operations, if register RO is used as a
second operand, its value is considered to be zero. RO has special usage in the multiply
and divide (mul & div) instructions as well.

Last Modified: 01-Nov-06 Page 92

Advanced Computer Architecture-CS501

Instructions and instruction formats
We return to our discussion of instruction formats in this section. We will now classify
which instructions belong to what instruction format types.

Type I

Five of the instructions included in the instruction set of FALCON-A belong to type |
instruction format. These are

1.

Sl el

5

nop (op-code =21)

This instruction is to instruct the processor to ‘do nothing’, or, in other words, do
‘no operation’. This instruction is generally useful in pipelining. We will study
pipelining later in the course.

reset (op-code = 30)

halt (op-code=31)

int (opcode=26)

iret (op-code=27)

All of these instructions take no operands, therefore, besides the 5 bits used for the op-
code, the rest of the bits are unused.

Type 11

There are nine FALCON-A instructions that belong to this type. These are listed below.

1.

movi (op-code =7)

The movi instruction loads a register with the constant (or the immediate value)
specified as the second operand. An example is

movi R3, 56 R[3] « 56

This means that the register R3 will have the value 56 stored in it as this instruction
is executed.

2.

in (op-code = 24)

This instruction is to load the specified register from input device. An example
and its interpretation in register transfer language are

in R3, 57 R [3] « 10 [57]

out (op-code = 25)

The ‘out’ instruction will move data from the register to the output device
specified in the instruction, as the example demonstrates:

out R7, 34 10 [34] < R [7]

ret (op-code=23)

This instruction is to return control from a subroutine. This is done using a
register, where the return address is stored. As shown in the example, to return
control, the program counter is assigned the contents of the register.

ret R3 PC «— R [3]

. jz (op-code=19)

When this instruction is executed, the value of the register specified in the field ra
is checked, and if it is equal to zero, the Program Counter is advanced by the
jump(value) specified in the instruction.

jz 13, [4] (R[3]=0): PC+— PC+ 4;
In this example, register r3’s value is checked, and if found to be zero, PC is
advanced by 4.

jnz (op-code= 18) This instruction is the reverse of the jz instruction, i.e., the
jump (or the branch) is taken, if the contents of the register specified are not equal
to zero.

Last Modified: 01-Nov-06 Page 93

Advanced Computer Architecture-CS501

jnz r4, [variable] (R[4]#£0): PC«— PC+ variable;

7. jpl (op-code= 16) In this instruction, the value contained in the register specified
in the field ra is checked, and if it is positive, the jump is taken.
jpl 13, [label] (R[3]>0): PC «— PC+ (label-PC);

8. jmi (op-code= 17) In this case, PC is advanced (jump/branch is taken) if the
register value is negative
jmi r7, [address] (R[7]<0): PC«— PC+ address;

Note that, in all the instructions for jump, the jump can be specified by a constant, a
variable, a label or an address (that holds the value by which the PC is to be advanced).
A variable can be defined through the use of the ‘.equ’ directive. An address (of data) can
be specified using the directive ‘.db’ or ‘.dw’. A label can be specified with any
instruction. In its usage, we follow the label by a colon ‘:” before the instruction itself.
For example, the following is an instruction that has a label ‘alfa’ attached to it
alfa: movi 13 r4
Labels implement relative jumps, 128 locations backwards or 127 locations forward
(relative to the current position of program control, i.e. the value in the program counter).
The compiler handles the interpretation of the field c2 as a constant/ variable/ label/
address. The machine code just contains an 8-bit constant that is added to the program
counter at run-time.
9. jump (op-code= 20)
This instruction instructs the processor to advance the program counter by the
displacement specified, unconditionally (an unconditional jump). The assembler
allows the displacement (or the jump) to be specified in any of the following ways
jump [ra + constant]
jump [ra + variable]
jump [ra + address]
jump [ra + label]
The types of unconditional jumps that are possible are
Direct
Indirect
PC relative (a ‘near’ jump)
Register relative (a ‘far’ jump)
The c2 field may be a constant, variable, an address or a label.
A direct jump is specified by a PC-label.
An indirect jump is implemented by using the C2 field as a variable.
In all of the above instructions, if the value of the register ra is zero, then the Program
Counter is incremented (or decremented) by the sign-extended value of the constant
specified in the instruction. This is called the PC-relative jump, or the ‘near’ jump. It is
denoted in RTL as:
(ra=0):PC«+— PC+(8aC2<7>)©(C2<7..0>;
If the register ra field is non-zero, then the Program Counter is assigned the sum of the
sign-extended constant and the value of register specified in the field ra. This is known as
the register-relative, or the ‘far’ jump. In RTL, this is denoted as:
(ra#0):PC— Rra]+(8aC2<7>)©C2<7..0>;

Last Modified: 01-Nov-06 Page 94

Advanced Computer Architecture-CS501

Note that C2 is computed by sign extending the constant, variable, address, or (label —
PC). Since we have 8 bits available for the C2 field (which can be a constant, variable,
address or a PC-label), the range for the field is -128 to + 127. Also note that the compiler
does not allow an instruction with a negative sign before the register name, such as ‘jump
[-r2]. If the C2 field is being used as an address, it should always be an even value for
the jump instruction. This is because our instruction word size is 16 bits, whereas in
instruction memory, the instruction memory cells are of 8 bits each. Two consecutive
cells together make an instruction.

Type 111

There are nine instructions of the FALCON-A that belong to Type III. These are:

1.

andi (op-code =9)
The andi instruction bit-wise ‘ands’ the constant specified in the instruction with
the value stored in the register specified in the second operand register and stores
the result in the destination register. An example is:
andir4, 13,5
This instruction will bit-wise and the constant 5 and R[3], and assign the value
thus obtained to the register R[4], as given .
R[4] <« RJ[3]&5

addi (op-code =1)
This instruction is to add a constant value to a register; the result is stored in a
destination register. An example:
addi r4,13,4 R[4] <« R[3]+4
subi (op-code = 3)
The subi instruction will subtract the specified constant from the value stored in a
source register, and store to the destination register. An example follows.
subir5,r7,9 R[5] <« R[7]-9
ori (op-code=11)
Similar to the andi instruction, the ori instruction bit-wise ‘ors’ a constant with a
value stored in the source register, and assigns it to the destination register. The
following instruction is an example.
oritd, 17,3 R[4] <« R[7]~3
shiftl (op-code = 12)
This instruction shifts the value stored in the source register (which is the second
operand), and shifts the bits left as many times as is specified by the third
operand, the constant value. For instance, in the instruction
shiftl r4, 13, 7
The contents of the register are shifted left 7 times, and the resulting number is
assigned to the register r4.
shiftr (op-code = 13)
This instruction shifts to the right the value stored in a register. An example is:
shiftr r4, r3,9
asr (op-code = 15)

An arithmetic shift right is an operation that shifts a signed binary number
stored in the source register (which is specified by the second operand), to the
right, while leaving the sign-bit unchanged. A single shift has the effect of
dividing the number by 2. As the number is shifted as many times as is specified
in the instruction through the constant value, the binary number of the source
register gets divided by the constant value times 2. An example is

Last Modified: 01-Nov-06 Page 95

Advanced Computer Architecture-CS501

asrrl, 12,5
This instruction, when executed, will divide the value stored in 12 by 10, and
assign the result to the register rl.
load (op-code=29)
This instruction is to load a register from the memory. For instance, the
instruction
load r1, [r4 +15]
will add the constant 15 to the value stored in the register r4, access the memory
location that corresponds to the number thus resulting, and assign the memory
contents of this location to the register r1; this is denoted in RTL by:
R[1] « M[R[4]+15]
store (op-code= 28)
This instruction is to store a value in the register to a particular memory location.
In the example:
store 16, [r7+13]
The contents of the register r6 are being stored to the memory location that
corresponds to the sum of the constant 13 and the value stored in the register r7.
M[R[7]+13] <« RJ[6]

Type III Modified
There are 3 instructions in the modified form of the Type III instructions. In the modified
Type 111 instructions, the field c1 is unused.

1.

mov (op-code=16)

This instruction will move (copy) data of a source register to a destination
register. For instance, in the following example, the contents of the register r3 are
copied to the register r4.

mov r4, 13

In RTL, this can be represented as

R[4] <« R[3]

2. not (op-code=14)

This instruction inverts the contents of the source register, and assigns the value
thus obtained to the destination register. In the following example, the contents of
register r2 are inverted and assigned to register r4.
not r4, r2
In RTL:

R[4] <« IR[2]

call (op-code=22)

Procedure calls are often encountered in programming languages. To add support

for procedure (or subroutine) calls, the instruction call is used. This instruction

first stores the return address in a register and then assigns the Program Counter a

new value (that specifies the address of the subroutine). Following is an example

of the call instruction

call r4, r3

This instruction saves the current contents (the return address) of the Program

Counter into the register r4 and assigns the new value to the PC from register r3.
R[4] <« PC, PC <« R[3]

Type IV
Six instructions belong to the instruction format Type IV. These are

Last Modified: 01-Nov-06 Page 96

Advanced Computer Architecture-CS501

1. add (op-code=0)
This instruction adds contents of a register to those of another register, and
assigns to the destination register. An example:
and r4, 13, r5
R[4] <« R[3] +R][5]
2. sub (op-code=2)
This instruction subtracts value of a register from another the value stored in
another register, and assigns to the destination register. For example,
sub r4, r3, r5
In RTL, this is denoted by
R[4] < R[3]-R][5]
3. mul (op-code=4)
The multiply instruction will store the product of two register values, and stores in
the destination register. An example is
mul 15, r7, rl
The RTL notation for this instruction will be
R[0] © R[5] < R[7]*R[1]
4. div (op-code=15)
This instruction will divide the value of the register that is the second operand, by the
number in the register specified by the third operand, and assign the result to the
destination register.
divr4, 17,12 R[4]«R[0] ©R[7]/R[2],R[0]«R[0] ©OR[7]%R[2]
5. and (op-code= 8)
This ‘and’ instruction will obtain a bit-wise ‘and’ of the values of two registers and
assigns it to a destination register. For instance, in the following example, contents of
register r4 and r5 are bit-wise ‘anded’ and the result is assigned to the register rl.
and rl, r4, r5
In RTL we may write this as
R[1] <« R[4] & R[5]
6. or (op-code= 10)
To bit-wise ‘or’ the contents of two registers, this instruction is used. For instance,
or ro, r7,r2
In RTL this is denoted as
R[6] < R[7] ~R[2]

FALCON-A: Instruction Set Summary

We have looked at the various types of instruction formats for the FALCON-A, as well as
the instructions that belong to each of these instruction format types. In this section, we
have simply listed the instructions on the basis of their functional groups; this means that
the instructions that perform similar class of operations have been listed together.

Last Modified: 01-Nov-06 Page 97

Advanced Computer Architecture-CS501

Data Transfer Mnemonic opcode
Instructions

move mov 00110 &)
Mowe tnmediate movi o011l 7
Input to register n 11000 (243
Chatpart froan vegister ot 11001 (25
Load from memory load 11101 2%
Store into memory store 11100 (28

Fig. Data Transfer Instructions

jump instruction Mnemonic opcode
qunp if positive jpl 1000 (1&)
Jamp if negative Jrmd 1ooal (17
Jump if not zero nz 10010 (18)
qump if Zero = 10011 (1%
famp ump 10100 ¢20)

Fig.

Last Modified: 01-Nov-06

Jump Instructions

Page 98

Advanced Computer Architecture-CS501

Coniroel Instruction Muemonic opcode
Mo operation nop 10101 21
call call 10110 (22)
retirn et 10111 (23)
intermpt int 11010 (26)
Inteript rehurn iret 11011 @20
resat resat 11110 (30
halt halt 11111 (31)

Fig. Control Instructions
Examples for FALCON-A

In this section we take up a few sample problems related to the FALCON-A processor.
This will enhance our understanding of the FALCON-A processor, as well as of the
general concepts related to general processors and their instruction set architectures. The
problems we will look at include

1. Identification of the instruction types and operands

2. Addressing modes and RTL description

3. Branch condition and status of the PC

4. Binary encoding for instructions

Example 1:

Identify the types of given FALCON-A instructions and specify the values in the fields

Instruction Type ra th rec cl c

o 1], 2

add 11,1213

nop

load 12, [t5 + @]

jz 40, [3]

Fig. Example 1

Solution
The solution to this problem is quite straightforward. The types of these instructions, as
well as the fields, have already been discussed in the preceding sections.

Last Modified: 01-Nov-06 Page 99

Advanced Computer Architecture-CS501

Instruction Type ra th cl c2

movitl, 2 1I tl - 2
add 11,6213 I 1l 12 3 -
fog I - - -
load 12,[t5 + 6] I 2 th - & -
jz 40, [3] II 1) i 3

Fig. Solution 1

We can also find the machine code for these instructions. The machine code (in the

hexadecimal representation) is given for these instructions in the given table.

Instruction Machine |(ra th e cl c2
Code

movirl, 2 3902h 1l - 2

add 1,12 173 014Ch 1l 12]

nop AZOTR -

load £2,[t5 + 6] EALER 12 o]

iz, [3] 22803h 1 - 3
Fig. Machine Code

Example 2:

Identify the addressing modes and Register Transfer Language (RTL) description

(meaning) for the given FALCON-A instructions

Last Modified: 01-Nov-06

Page 100

Advanced Computer Architecture-CS501

Instruction

Addressing mode

RTL description

load £2,[rd + 2]

inz 11, [54]

shiftl £ 12 4

addi 13,182

sub rl, £F 12

Solution

Fig. Example

2

Addressing modes relate to the way architectures specify the address of the objects they
access. These objects may be constants and registers, in addition to memory locations.

Instruction Addressing mode RTL description
load £2 [+4+ £] Dizplacemert R[2]~—D]I[R[4]+E]
jnztl, [54] Relative (R[L]#0:
PC+~—FC+54

ghiftl 11,12 4 Immediate Ahift 12 1eft 4 times and
store intl

addi #3162 Itnume diate REP—FR[E]+2

gub 1], 1712 Register Rl —FR[7]-R[Z]

Fig. Solution 2

Example 3: Specify the condition for the branch instruction and the status of the PC after
the branch instruction executes with a true branch condition

Last Modified: 01-Nov-06

Page 101

Advanced Computer Architecture-CS501

Instruction

Condition

PC status

iz £2,[35]

Jump [12]

jrz s, 3]

iplel, [45]

jmi 12, [20]

Solution

We have looked at the various jump instructions in our study of the FALCON-A. Using
that knowledge, this problem can be solved easily.

Fig. Example 3

Instruction Condition PC status

jz £2,[35] IfR[2]==0 PC =— P35

jung [12] alwrayrs PC *— PC+I2

jnz, [3] IfR[E] #0 PC =— P43

ipltl, [45] IfR[1]z0 PC +— P45

jmird, [20] IfR[Z] =0 PC +— PC+I0
Fig. Solution 3

Example 4: Specify the binary encoding of the different fields in the given FALCON-A

instructions.

Last Modified: 01-Nov-06

Advanced Computer Architecture-CS501

Instruction TYPE aponde ra h re CLiE hiis)
OR

C2{E hiis)

store ¥, [x1+8]

sub ¥3 16 5

shaftr 1 15 9

Jump [10]

halt

Fig. Example 4

Solution

We can solve this problem by referring back to our discussion of the instruction format
types. The op-codes for each of the instructions can also be looked up from the tables. ra,
tb and rc (where applicable) registers’ values are obtained from the register encoding
table we looked at. The constants C1 and C2 are there in instruction type III and II
respectively. The immediate constant specified in the instruction can also be simply
converted to binary, as shown.

Instruction TYPE opuoie ra h rc C1iE hits)
OR
C2iE hits)
store ¥, [l+8] I 11100 100 ool . 01000
sub £3,26, 13 T 00010 D1l 110 101
shiftr 1,169 m 01101 100 110 . 01001
famp [10] i 10100 . . . 0000 1010
halt I 11111

Fig. Solution 4

Last Modified: 01-Nov-06 Page 103

Advanced Computer Architecture-CS501

Advanced Computer Architecture

Lecture No. 9

Reading Material
Handouts Slides
Summary
4) Use of Behavioral Register Transfer Language (RTL) to describe the
FALCON-A

5) The EAGLE
6) The Modified EAGLE

Use of Behavioral Register Transfer Language (RTL) to describe the

FALCON-A

The use of RTL (an acronym for the Register Transfer Language) to describe the
FALCON-A is discussed in this section. FALCON-A is the sample machine we are
building in order to enhance our understanding of processors and their architecture.
Behavior vs. Structure

Computer design involves various levels of abstraction. The behavioral description of a
machine is a higher level of abstraction, as compared with the structural description. Top-
down approach is adopted in computer design. Designing a computer typically starts with
defining the behavior of the overall system. This is then broken down into the behavior of
the different modules. The process continues, till we are able to define, design and
implement the structure of the individual modules.

As mentioned earlier, we are interested in the behavioral description of our machine, the
FALCON-A, in this section.

Register Transfer Language

The RTL is a formal way of expressing the behavior and structure of a computer.
Behavioral RTL

Behavioral Register Transfer Language is used to describe what a machine does, i.e. it is
used to define the functionality the machine provides. Basically, the behavioral
architecture describes the algorithms used in a machine, written as a set of process
statements. These statements may be sequential statements or concurrent statements,
including signal assignment statements and wait statements.

Structural RTL

Structural RTL is used to describe the hardware implementation of the machine. The
structural architecture of a machine is the logic circuit implementation (components and
their interconnections), that facilitates a certain behavior (and hence functionality) for
that machine.

Using RTL to describe the static properties of the FALCON-A

We can employ the RTL for the description of various properties of the FALCON-A that
we have already discussed.

Last Modified: 01-Nov-06 Page 104

Advanced Computer Architecture-CS501

Specifying Registers

In RTL, we will refer to a register by its abbreviated, alphanumeric name, followed by
the number of bits in the register enclosed in angle brackets ‘< >’. For instance, the
instruction register (IR), of 16 bits (numbered 0 to 15), will be referred to as,

IR<15..0>

Naming of the Fields in a Register

We can name the different fields of a register using the := notation. For example, to name
the most significant bits of the instruction register as the operation code (or simply op),
we may write:

op<4..0> :=[R<I15..11>

Note that using this notation to name registers or register fields will not create a new copy
of the data or the register fields; it is simply an alias for an already existing register, or
part of a register.

Fields in the FALCON-A Instructions

We now use the RTL naming operator to name the various fields of the RTL instructions.
Naming the fields appropriately helps us make the study of the behavior of a processor
more readable.

op<4..0>:= IR<15..11>: operation code field

ra<2..0> := IR<10..8>: target register field

rb<2..0> := IR<7..5>: operand or address index

re<2..0> :=IR<4..2>: second operand

c1<4..0> := [R<4..0>: short displacement field

€2<7..0> := IR<7..0>: long displacement or the immediate field

We are already familiar with these fields, and their usage in the various instruction
formats of the RTL.

Describing the Processor State using RTL

The processor state defines the contents of all the register internal to the CPU at a given
time. Maintaining or restoring the machine or processor state is important to many
operations, especially procedure calls and interrupts; the processor state needs to be
restored after a procedure call or an interrupt so normal operation can continue.

Our processor state consists of the following:

PC<15..0>: program counter (the PC holds the memory address of the next
instruction)

IR<15..0>: instruction register (used to hold the current instruction)

Run: one bit run/halt indicator

Strt: start signal

R [0..7]<15..0>: 8 general purpose registers, each consisting of 16 bits

Connectors at
the back o be
added later on)

Indicatars
{include the RN
indicatar)

FALCON-A in a black
box

The given figure shows
what a processor appears as
to a user. We see a start
button that is basically used
to start up the processor,
and a run indicator that
turns on when the processor
is in the running state.

Other switches
may be added
later on

Last Modified: 01-Nov-06 Page 105

Advanced Computer Architecture-CS501

There may be several other indicators as well. The start button as well as the run indicator
can be observed on many machines.

Using RTL to describe the dynamic properties of the FALCON-A

We have just described some of the static properties of the FALCON-A. The RTL can
also be employed to describe the dynamic behavior of the processor in terms of
instruction interpretation and execution.

Conditional expressions can be specified using the RTL. For instance, we may specify a

conditional subtraction operation employing RTL as

(op=2) : R[ra] < R[rb] - R[rc];
This instruction means that “if” the operation code of the instruction equals 2 (00010 in
binary), then subtract the value stored in register rc from that of register rb, and store the
resulting value in register ra.
Effective address calculations in RTL (performed at runtime)
The operand or the destination address may not be specified directly in an instruction,
and it may be required to compute the effective address at run-time. Displacement and
relative addressing modes are instances of such situations. RTL can be used to describe
these effective address calculations.
Displacement address
A displacement address is calculated, as shown:
disp<15..0> := (R[rb]+ (11a c1<4>)O c1<4..0>);
This means that the address is being calculated by adding the constant value specified by
the field ¢l (which is first sign extended), to the value specified by the register rb.
Relative address
A relative address is calculated by adding the displacement to the contents of the program
counter register (that holds the instruction to be executed next in a program flow). The
constant is first sign-extended. In RTL this is represented as,
rel<15..0>:=PC+(8ac2<7>)©c2<7..0>;

Range of memory addresses

Using the displacement or the relative addressing modes, there is a specific range of
memory addresses that can be accessed.
e Range of addresses when using direct addressing mode (displacement with rb=0)
o If c1<4>=0 (positive displacement) absolute addresses range: 00000b to
01111b (0 to +15)
o If c1<4>=1 (negative displacement) absolute addresses range: 11111b to
10000b (-1 to -16)
e Address range in case of relative addressing
o The largest positive value that can be specified using 8 bits (since we have
only 8 bits available in ¢2<7..0>), is 2’-1, and the most negative value that
can be represented using the same is 2”. Therefore, the range of addresses
or locations that can be referred to using this addressing mode is 127
locations forward or 128 locations backward from the Program Counter
(PC).
Instruction Fetch Operation (using RTL)

Last Modified: 01-Nov-06 Page 106

Advanced Computer Architecture-CS501

We will now employ the notation that we have learnt to understand the fetch-execute

cycle of the FALCON-A processor.

The RTL notation for the instruction fetch process is
instruction_Fetch = (
'Run&Strt : Run « 1,
Run : (IR <« M[PC], PC < PC + 2;
instruction_Execution));

This is how the instruction-fetch phase of the fetch-execute
cycle for FALCON-A can be represented using RTL. Recall
that “:=’ is the naming operator, “!I” implies a logical NOT, “&”

“.”

implies a logical AND, “— represents a transfer operation, “;
is used to separate sequential statements, and concurrent

statements are separated by “,”. We can observe that in the
instruction Fetch phase, if the machine is not in the running
state and the start bit has been set, then the run bit is also
set to true. Concurrently, an instruction is fetched from the
instruction memory; the program counter (PC) holds the next
instruction address, so it is used to refer to the memory
location from where the instruction is to be fetched.
Simultaneously, the PC is incremented by 2 so it will point to
the next instruction. (Recall that our instruction word is 2
bytes long, and the instruction memory is organized into 1-
byte cells). The next step is the instruction execution phase.
Difference between “,” and “;” in RTL

(I3 2] €«

We again highlight the difference between the “,” and *;”. Statements separated by a “,
take place during the same clock pulse. In other words, the order of execution of
statements separated by “,” does not matter.

On the other hand, statements separated by a “;” take place on successive clock pulses. In
other words, if statements are separated by “;” the one on the left must complete before
the one on the right starts. However, some things written with one RTL statement can
take several clocks to complete.

We return to our discussion of the instruction-fetch phase. The statement

IRun&Strt : Run 1
is executed when ‘Run’ is 0, and ‘Strt’ is 1, that is, Strt has been set. It is used to set the
Run bit. No action takes place when both ‘Run’ and Strt’ are 0.
The following two concurrent register transfers are performed when ‘Run’ is set to 1, (as
‘’ 1s a conditional operator; if the condition is met, the specified action is taken).

Last Modified: 01-Nov-06 Page 107

Advanced Computer Architecture-CS501

IR « M[PC]
PC — PC +2

Since these instructions appear concurrent, and one of the instructions is using the value
of PC that the other instruction is updating, a question arises; which of the two values of
the PC is used in the memory access? As a rule, all right hand sides of the register
transfers are evaluated before the left hand side is evaluated/updated. In case of
simultaneous register transfers (separated by a ,”), all the right hand side expressions are
evaluated in the same clock-cycle, before they are assigned. Therefore, the old, un-
incremented value of the PC is used in the memory access, and the incremented value is
assigned to the PC afterwards. This corresponds to “master-slave” flip-flop operation in
logic circuits.

This makes the PC point to the next instruction in the instruction memory. Once the
instruction has been fetched, the instruction execution starts. We can also use 1.F for
instruction_Fetch and i.E for instruction Execution. This will make the Fetch operation
easy to write.

iF := ('Run&Strt : Run « 1, Run : (IR < M[PC], PC «— PC + 2;

iE));

Last Modified: 01-Nov-06 Page 108

Advanced Computer Architecture-CS501

Instruction Execution (Describing the Execute operation using RTL)
Once an instruction has been fetched from the instruction memory, and the program
counter has been incremented to point to the next instruction in the memory, instruction
execution commences. In the instruction fetch-execute cycle we showed in the preceding
discussion, the entire instruction execution code was aliased 1iE (or
instruction Execution), through the assignment operator “:=”. Now we look at the
instruction execution in detail.
iE :=(

(op<4..0>=1) : R[ra] < R[rb]+ (11a ¢1<4>)©O c1<4..0>,

(op<4..0>=2) : R[ra] — R[rb]-R|r¢],

(op<4..0>=31) : Run « 0,); iF);
As we can see, the instruction execution can be described in RTL by using a long list of
concurrent, conditional operators that are inherently ‘disjoint’. Being inherently
disjointed implies that at any instance, only one of the conditions can be met; hence one
of the statements is executed. The long list of statements is basically all of the
instructions that are a part of the FALCON-A instruction set, and the condition for their
execution is related to the operation code of the instruction fetched. We will take a closer
look at the entire list in our subsequent discussion. Notice that in the instruction execute
phase, besides the long list of concurrent,
disjoint instructions, there is also the
instruction fetch or iF sequenced at the
end. This implies that once one of the
instructions from the list is executed, the
instruction fetch is called to fetch the next

Instruction Fetch

Instruction Decode

instruction. As shown Dbefore, the Op-code = 31 oot 0
instruction fetch will call the instruction anpropriate
execute after fetching a certain instruction, Op-code = 30 Op'wd
hence the instruction fetch-execute cycle Place
continues. Ll | l

The instruction fetch-execute cycle is shown schematically in the above given figure.

We now see how the various instructions in the execute code of the fetch-execute cycle
of FALCON-A, are represented using the RTL. These instructions form the instruction
set of the FALCON-A.

jump instructions

Some of the instructions listed for the instruction execution phase are jump instruction, as

shown. (Note “. . .” implies that more instructions may precede or follow, depending on
whether it is placed before the instructions shown, or after).
iE :=(

If op-code is 20, the branch is taken unconditionally (the jump instruction).
(op<4..0>=20) : (cond : PC — R[ra]+C2(sign extended)),

If the op-code is 16, the condition for branching is checked, and if the condition is being
met, the branch is taken; otherwise it remains untaken, and normal program flow will
continue.

Last Modified: 01-Nov-06 Page 109

Advanced Computer Architecture-CS501

(op<4..0>=16) : cond : (PC — PC+C2 (sign extended))

Arithmetic and Logical Instructions
Several instructions provide arithmetic and logical operations functionality. Amongst the
list of concurrent instructions of the iE phase, the instructions belonging to this category
are highlighted:

iE :=(

If op-code is 0, the instruction is ‘add’. The values in register rb and rc are added and the
result is stored in register rc
(op<4..0>=0) : R[ra] < R[rb] + R]rc],
Similarly, if op-code is 1, the instruction is addi; the immediate constant specified by the
constant field C1 is sign extended and added to the value in register tb. The result is
stored in the register ra.
(0p<4..0>=1) : R[ra] <R|rb] + (11a C1<4>)© C1<4..0>,
For op-code 2, value stored in register rc is subtracted from the value stored in register rb,
and the result is stored in register ra.
(op<4..0>=2) : R[ra] < R]rb] - R|rc],
If op-code is 3, the immediate constant C1 is sign-extended, and subtracted from the
value stored in rb. Result is stored in ra.
(0p<4..0>=3) : R[ra] — R[rb]- (11a C1<4>)© C1<4..0>,
For op-code 4, values of rb and rc register are multiplied and result is stored in the
destination register.
(op<4..0>=4) : R[ra] < R][rb] * R[rc],
If the op-code is 5, contents of register rb are divided by the value stored in rc, result is
concatenated with Os, and stored in ra. The remainder is stored in RO.
(0p<4..0>=5) : R[ra] — R[0] ©R|[rb]/R][rc],

R[0] — R[0] ©R[rb]%R]rc],
If op-code equals 8, bit-wise logical AND of rb and rc register contents is assigned to ra.
(op<4..0>=8) : R[ra] — R[rb] & R]rc],
If op-code equals 8, bit-wise logical OR of b and rc register contents is assigned to ra.
(op<4..0>=10) : R[ra] — R|[rb] ~ R]c],

For op-code 14, the contents of register specified by field rc are inverted (logical NOT is
taken), and the resulting value is stored in register ra.
(op<4..0>=14) : R[ra] < ! R[rc],

Shift Instructions
The shift instructions are also a part of the instruction set for FALCON-A, and these are
listed in the instruction execute phase in the RTL as shown.

iE :=(

Last Modified: 01-Nov-06 Page 110

Advanced Computer Architecture-CS501

If the op-code is 12, the contents of the register tb are shifted right N bits. N is the
number specified in the constant field. The space that has been created due to the shift out
of bits is filled with Os through concatenation. In RTL, this is shown as:

(0p<4..0>=12) : R[ra]<15..0> — R [rb]<(15-N)..0>©(Na0),

If op-code is 13, rb value is shifted left, and Os are inserted in place of shifted out
contents at the right side of the value. The result is stored in ra.

(0p<4..0>=13) : R[ra]<15..0> — (Na0)CR [rb]<(15)..N>,

For op-code 15, arithmetic shift right operation is carried out on the value stored in rb.
The arithmetic shift right shifts a signed binary number stored in the source register to the
right, while leaving the sign-bit unchanged. Note that o means replication, and © means
concatenation.

(op<4..0>=15) : R[ra]<15..0> — Na(R [rb]<15>)© (R [rb]|<15..N>),

Data transfer instructions
Several of the instructions belong to the data transfer category.
iE = (

Op-code 29 specifies the load instruction, i.e. a memory location is referenced and the
value stored in the memory location is copied to the destination register. The effective
address of the memory location to be referenced is calculated by sign extending the
immediate field, and adding it to the value specified by register rb.

(op<4..0>=29) : R[ra]«— M[R][rb]+ (11a C1<4>)© C1<4..0>],

A value is stored back to memory from a register using the op-code 28. The effective
address in memory where the value is to be stored is calculated in a similar fashion as the
load instruction.

(0p<4..0>=28) : M[R[rb]+ (11a C1<4>)© C1<4..0>] — R [ra],

The move instruction has the op-code 6. The contents of one register are copied to
another register through this instruction.

(op<4..0>=6) : R[ra] — R]rb],

To store an immediate value (specified by the field C2 of the instruction) in a register, the
op-code 7 is employed. The constant is first sign-extended.

(op<4..0>=7) : R[ra] «— (8aC2<7>)O0C2<7..0>,

If the op-code is 24, an input is obtained from a certain input device, and the input word
is stored into register ra. The input device is selected by specifying its address through the

constant C2.

(op<4..0>=24) : R[ra] — 10[C2],

Unconditional branch (jump)If the op-code is 25, an output (the register ra value) is sent
to an output device (where the address of the output device is specified by the constant
C2).

(op<4..0>=25) : 10[C2] «— R|ra],

Last Modified: 01-Nov-06 Page 111

Advanced Computer Architecture-CS501

Miscellaneous instructions
Some more instruction included in the FALCON-A are
iE :=(

The no-operation (nop) instruction, if the op-code is 21. This instructs the processor to do
nothing.

(op<4..0>=21): ,

If the op-code is 31, setting the run bit to 0 halts the processor.

(op<4..0>=31) : Run «— 0, Halt the processor (halt)

At the end of this concurrent list of instructions, there is an instruction i.F (the instruction
fetch). Hence when an instruction is executed, the next instruction is fetched, and the
cycle continues, unless the processor is halted.

); iF)3
Note: For Assembler and Simulator Consult Appendix.

The EAGLE

(Original version)

Another processor that we are going to study is the EAGLE. We have developed two
versions of it, an original version, and a modified version that takes care of the limitations
in the original version. The study of multiple processors is going to help us get
thoroughly familiar with the processor design, and the various possible designs for the
processor. However, note that these machines are simplified versions of what a real
machine might look like.

Introduction

The EAGLE is an accumulator-based machine. It is a simple processor that will help us
in our understanding of the processor design process.

EAGLE is characterized by the following:

e FEight General Purpose Registers of the CPU. These are named RO, R1...R7. Each
register is 16-bits in length.

e Two 16-bit system registers transparent to the programmer are the Program
Counter (PC) and the Instruction Register (IR). (Being transparent to the
programmer implies the programmer may not directly manipulate the values to
these registers. Their usage is the same as in any other processor)

e Memory word size is 16 bits

e The available memory space size is 216 bytes

e Memory organization is 216 x 8 bits. This means that there are 210 memory cells,
each one byte long.

e Memory is accessed in 16 bit words (i.e., 2 byte chunks)

e Little-endian byte storage is employed.

Last Modified: 01-Nov-06 Page 112

Advanced Computer Architecture-CS501

Programmer’s View of the EAGLE
The programmer’s view of the [——————+—
EAGLE processor is shown by
means of the given figure.

EAGLE: Notation

Let us take a look at the
notation that will be employed
for the study of the EAGLE.
Enclosing the register name in
square brackets refers to
register contents; for instance,
R[3] means contents of register CPU Main memory Input/Outpyt
R3.

Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to
memory contents. Hence M [8] means contents of memory location 8.

As little endian storage is employed, a
memory word at address x is defined
as the 16 bits at address x +1 and x.
For instance, the bits at memory
location 9,8 define the memory word at
location 8. So employing the special
notation for 16-bit memory words, we
have

M [8]<15...0>:=M [9]CM 8]

Where © is used to represent concatenation

| |
| |
I : |
I e—
| Register file |
| |
| |
| |
| |

2161

7 0
D M[E] One instruction

1 9] 15 g7 0
[Mel [MEL |

M3 Byte LS Byte

N

& Memory addresses

EAGLE Features
The following features characterize the EAGLE.
e Instruction length is variable. Instructions are either 8 bits or 16 long, i.e.,
instruction size is either 8-bits or 16-bits.
e The instructions may have either one or two operands.
e The only way to access memory is through load and store instructions.

e Limited addressing modes are supported
EAGLE: Instruction Formats
There are five instruction formats for the EAGLE. These are

Type Z Instruction Format

The Z format instructions are half-word (1 byte) 7 0
instructions, containing just the op-code field of 8 bits, Type Z opcode

as shown

Type Y Instruction Format 7 11 0
The type Y instructions are also half-word. There is Type ¥ | opcode ra

an op-code field of 5 bits, and a register operand field

ra.

Type X Instruction Format 7 & 8 3 4 a
Type X instructions are also half-word instructions, L¥ype X |opcods| g rh

Last Modified: 01-Nov-06 Page 113

Advanced Computer Architecture-CS501

with a 2-bit op-code field, and two 3-bit operand register fields, as shown.

Last Modified: 01-Nov-06 Page 114

Advanced Computer Architecture-CS501

Type W instruction format

The instructions in this type are 1-
word (16-bit) in length. 8 bits are
reserved for the op-code, while the remaining 8 bits form the constant (immediate value)
field.

15 8 0
T}rpe W| opcode | constant ‘

Type V instruction format

Type V instructions are also 1-word 15 w87 0
instructions, containing an op-code Type ¥V | opcode | ra | constant

field of 5 bits, an operand register field

of 3 bits, and 8 bits for a specifying a constant.
Encoding of the General Purpose Registers

The encoding for the eight Register Code Register Code
GPRs is shown in the table.

These binary codes are to RO 0o R4 100

be used in place of the

‘place-holders’ ra, rb in the R1 oot R5 10

actual instructions of the

processor EAGLE. R2 010 RB 110

Listing of EAGLE R3 011 R7 11

instructions with respect to

instruction formats

The following is a brief introduction to the various instructions of the processor EAGLE,
categorized with respect to the instruction formats.

Type Z
There are four type Z instructions,
e halt(op-code=250)
This instruction halts the processor
e nop(op-code=249)
nop, or the no-operation instruction stalls the processor for the time of execution
of a single instruction. It is useful in pipelining.
e init(op-code=251)
This instruction is used to initialize all the registers, by setting them to 0
e reset(op-code=248)
This instruction is used to initialize the processor to a known state.In this
instruction the control step counter is set to zero so that the operation begins at the
start of the instruction fetch and besides this PC is also set to a known value so
that machine operation begins at a known instruction.

Type Y
Seven instructions of the processor are of type Y. These are
e add(op-code=11)
The type Y add instruction adds register ra’s contents to register RO. For example,
add rl
In the behavioral RTL, we show this as
R[0] < R[1]+R[0]

Last Modified: 01-Nov-06 Page 115

Advanced Computer Architecture-CS501

e and(op-code=19)
This instruction obtains the logical AND of the value stored in register specified
by field ra and the register R0, and assigns the result to R0, as shown in the
example:
and r5
which is represented in RTL as
R[0] « R[1]&R][0]
e div(op-code=16)
This instruction divides the contents of register RO by the value stored in the
register ra, and assigns result to RO. The remainder is stored in the divisor
register, as shown in example,
div r6
In RTL, this is
R[0] « R[0]/R[6]
R[6] < R[0]%R[6]
e mul (op-code = 15)
This instruction multiplies the values stored in register RO and the operand
register, and assigns the result to R0O). For example,
mul r4
In RTL, we specify this as
R[0] <« RJ[0]*R[4]
e not (op-code = 23)
The not instruction inverts the operand register’s value and assigns it back to the
same register, as shown in the example
not r6
R[6] < ! R[6]
e or (op-code=21)
The or instruction obtains the bit-wise OR of the operand register’s and R0’s
value, and assigns it back to R0. An example,
or r5
R[0] < R[0] ~R][5]
e sub (op-code=12)
The sub instruction subtracts the value of the operand register from RO value,
assigning it back to register R0O. Example:
sub r7
In RTL:
R[0] < R[0] — R[7]

Type X
Only one instruction falls under this type. It is the ‘mov’ instruction that is useful for
register transfers
e mov (op-code = 0)
The contents of one register are copied to the destination register ra.

Example: mov 15, rl
RTL Notation: R[5]« R[1]

Last Modified: 01-Nov-06 Page 116

Advanced Computer Architecture-CS501

Type W
Again, only one instruction belongs to this type. It is the branch instruction

br (op-code = 252)

This is the unconditional branch instruction, and the branch target is specified by
the 8-bit immediate field. The branch is taken by incrementing the PC with the
new value. Hence it is a ‘near’ jump. For instance,

br 14

PC — PC+14

Type V
Most of the instructions of the processor EAGLE are of the format type V. These are

addi (op-code = 13)

The addi instruction adds the immediate value to the register ra, by first sign-
extending the immediate value. The result is also stored in the register ra. For
example,

addi r4, 31

In behavioral RTL, this is

R[4] < R[4]+(80c<7>)Oc<7...0>;

andi (op-code =20)

Logical ‘AND’ of the immediate value and register ra value is obtained when this
instruction is executed, and the result is assigned back to register ra. An example,
andi 16, 1

R[6] «— R[6] &1

in (op-code=29)

This instruction is to read in a word from an 1O device at the address specified by
the immediate field, and store it in the register ra. For instance,

inrl, 45

In RTL this is

R[1] « IO[45]

load (op-code=8)

The load instruction is to load the memory word into the register ra. The
immediate field specifies the location of the memory word to be read. For
instance,

load r3, 6

R[3] — M]6]

brn (op-code = 28)

Upon the brn instruction execution, the value stored in register ra is checked, and
if it is negative, branch is taken by incrementing the PC by the immediate field
value. An example is

brnr4, 3

In RTL, this may be written as

if R[4]<0, PC «— PC+3

brnz (op-code = 25)

For a brnz instruction, the value of register ra is checked, and if found non-zero,
the PC-relative branch is taken, as shown in the example,

brnz r6, 12

Which, in RTL is

if R[6]!=0, PC « PC+12

Last Modified: 01-Nov-06 Page 117

Advanced Computer Architecture-CS501

e brp (op-code=27)
brp is the ‘branch if positive’. Again, ra value is checked and if found positive, the
PC-relative near jump is taken, as shown in the example:
brp rl, 45
In RTL this is
if R[1]>0, PC «— PC+45
e brz (op-code=8)
In this instruction, the value of register ra is checked, and if it equals zero, PC-relative
branch is taken, as shown,
brz r5, 8
In RTL:
if R[5]=0, PC «— PC+8

¢ loadi (op-code=9)
The loadi instruction loads the immediate constant into the register ra, for
instance,
loadi r5,54
R[5] « 54

e ori (op-code=22)
The ori instruction obtains the logical ‘OR’ of the immediate value with the ra
register value, and assigns it back to the register ra, as shown,
orir7, 11
In RTL,
R[7] < R[7]~11

e out (op-code=30)
The out instruction is used to write a register word to an IO device, the address of
which is specified by the immediate constant. For instance,
out 32,15
In RTL, this is represented by
10[32] < R[5]

e shiftl (op-code=17)
This instruction shifts left the contents of the register ra, as many times as is
specified through the immediate constant of the instruction. For example:
shiftl r1, 6

e shiftr(op-code=18)
This instruction shifts right the contents of the register ra, as many times as is
specified through the immediate constant of the instruction. For example:
shiftrr2, 5

e store (op-code=10)
The store instruction stores the value of the ra register to a memory location
specified by the immediate constant. An example is,
store r4, 34
RTL description of this instruction is
M[34] <« R[4]

e subi (op-code=14)
The subi instruction subtracts the immediate constant from the value of register
ra, assigning back the result to the register ra. For instance,
subir3, 13

Last Modified: 01-Nov-06 Page 118

Advanced Computer Architecture-CS501

RTL description of the instruction
R[3] « R[3]-13

(ORIGINAL) ISA for the EAGLE
(16-bit registers, 16-bit PC and IR, 8-bit memory)

opcode |operandljoperand2iconstant|
mnemonic Format [Behavioral RTL
3 bits 3 bits 8 bits
add 01011 ra - - Y R [0] < R [ra]+R [0];
addi 01101 ra - c \ R [ra] < R [ra]+(8ac<7>)Oc;
and 10011 ra - - Y R[0] < R[ra]&R[0];
andi 10100 ra - c \ R [ra] < R [ra]& (8ac<7>)Oc;
br 11111100 |- - c W PC «— PC+(8ac<7>)Cc;
brnv 11100 ra - c \ (R [ra]<0): PC «— PC+(8ac<7>)Oc;
brnz 11001 ra - c \ (R [ra]<>0): PC < PC+(8ac<7>)Oc;
brpl 11011 ra - c \ (R [ra]>0): PC « PC+(8ac<7>)Oxc;
brzr 11010 ra - c \ (R [ra]=0): PC « PC+(8ac<7>)Oxc;
div 10000 ra - - Y R [0] < R [0]/R [a], R [ra] <R [0]%R [ra],
halt 11111010 |- - - V4 RUN<« 0;
in 11101 ra - c Y R [ra] <IO]c];
init 11111011 | - - 4 R[7...0] < 0;
load 01000 ra - c \ R [ra] <—M[c];
loadi 01001 ra - c \ R [ra] <« (8ac<7>)Oc;
mov 00 ra rb - X R [ra] < R [1b];
mul 01111 ra - - Y R [ra] © R [10] < R [ra]*R [0];
nop 11111001 | - - 4 ;
not 10111 ra - - Y R [ra] <! (R [ra]);
or 10101 ra - - Y R [0] < R [ra]~R [0];
ori 10110 ra - c \ R [ra] < R [ra]~ (8ac<7>)Cc;
out 11110 ra - c \ 10[c] <R [ra];
reset 11111000 [- - 4 TBD;
shiftl 10001 ra - c \ R [ra] < R [ra]<(7-n)..0>O(na0);
shiftr 10010 ra - c \ R [ra] < (na0)OR [ra]<7...n>;
store 01010 ra - c \ Mc]«< R [ra];
sub 01100 ra - - Y R [0] < R [0]-R [a];
subi 01110 ra - c \ R [ra] < R [ra]- (8ac<7>)Oc;
Symbol | Meaning Symbol Meaning
o Replication % Remainder after integer division
© Concatenation & Logical AND
: Conditional constructs (IF-THEN) ~ Logical OR
H Sequential constructs ! Logical NOT or complement
s Concurrent constructs — LOAD or assignment operator

Last Modified: 01-Nov-06

Page 119

Advanced Computer Architecture-CS501

Limitations of the ORIGINAL EAGLE ISA
The original 16-bit ISA of EAGLE has severe limitations, as outlined below.
1. Use of RO as accumulator

In most cases, the reqgister RO is being used as one of the
source operands as well as the destination operand. Thus,
RO has essentially become the accumulator. However, this
will require some additional instructions for use with the
accumulator. That should not be a problem since there are

some unused op-codes available in the ISA.
2. Unequal and inefficient op-code assignment

The designer has apparently tried to extend the number of
operations in the ISA by op-code extension. Op-code 11111
combine three additional bits of the instruction for five
instructions: unconditional branch, nop, halt, reset and
init.while there is a possibility of including three more
instructions in this scheme, notice that op-code 00 for
reqister to register mov is causing a “loss” of eight “slots” in
the original 5-bit op-code assignment. (The mov instruction
is, in effect, using eight op-codes). A better way would be to
assign a 5-bit op-code to mov and use the remaining op-

codes for other instructions.
3. Number of the operands

Looking at the mov instruction again, it can be noted that
this is the only instruction that uses two operands, and thus
requires a separate format (Format#1) for instruction
enoding. If the job of this instruction is given to two
instructions (copy register to accumulator, and copy
accumulator to reqister), the number of instruction formats
can be reduced thereby, simplifying the assembler and the
compiler needed for this ISA.

4. Use of registers for branch conditions
Note that one of the GPRs is being used to hold the branch condition. This would require
that the result from the accumulator be copied to the particular GPR before the branch
instruction. Including flags with the ALSU can eliminate this restriction

The Modified EAGLE
The modified EAGLE is an improved version of the processor EAGLE. As we have
already discussed, there were several limitations in EAGLE, and these have been
remedied in the modified EAGLE processor.

Last Modified: 01-Nov-06 Page 120

Advanced Computer Architecture-CS501

Introduction

The modified EAGLE is also an accumulator-based processor. It is a simple, yet complex
enough to illustrate the various concepts of a processor design.

The modified EAGLE is characterized by

A special purpose register, the 16-bit accumulator: ACC

8 General Purpose Registers of the CPU: RO, R1, ..., R7; 16-bits each

Two 16-bit system registers transparent to the programmer are the Program
Counter (PC) and the Instruction Register (IR).

Memory word size: 16 bits

Memory space size: 2'® bytes

Memory organization: 2'° x 8 bits

Memory is accessed in 16 bit words (i.e., 2 byte chunks)

Little-endian byte storage is employed

Last Modified: 01-Nov-06 Page 121

Advanced Computer Architecture-CS501

Programmer’s View of the Modified EAGLE

The given figure is the

programmer’s view of the [15— o
- I 7 0 7 0
modified EAGLE processor. I :‘1’ | 0
Notation | : | 1
The notation that is employed for /[1 |
the study of the modified EAGLE : Registerfile |
is the same as the original EAGLE | acc[] :
rocessor. Recall that we know]
?hat- : " | 211
L . . el]I
Enclosing the register name in |_ _______]
square brackets refers to register cPU Main memory Input/Output

contents; for instance, R [3] means contents of register R3.

Enclosing the location address in square brackets, preceded by ‘M’, lets us refer to
memory contents. Hence M [8] means contents of memory location 8.

As little endian storage is employed, a memory word at address x is defined as the 16
bits at address x+1 and x. For instance, the bits at memory location 9,8 define the
memory word at location 8. So employing the special notation for 16-bit memory words,
we have

M[8]<15...0>:=M[9]OM]§]

Where © is used to represent
concatenation

The memory word access and copy to a
register is shown in the figure.

Features
The following features characterize the
modified EAGLE processor.
e Instruction length is variable. Instructions are either 8 bits or 16 long, i.e.,
instruction size is either half a word or 1 word.
e The instructions may have either one or two operands.
e The only way to access

7 i
0 W] One instruction

1 MIE] 15 57 1]
[W@ | W@ |

MS Byie LS Byte

7

& Memary addresses

_ 7 32 0
memory is through load and
. . Type Z | opcode unuzec
store instructions
e Limited addressing modes are 7 iz O
supported Type ¥ | opeode Fa
Note that these properties are the same
as the original EAGLE processor = S .
Type X | opcode | ra | constart |
Instruction formats
. . 15 11 10 g7 i}
There are four instruction format types Type W | opcode |unuse dl Constart |

in the modified EAGLE processor as
well. These are

Last Modified: 01-Nov-06 Page 122

Advanced Computer Architecture-CS501

Encoding of the General Purpose Registers

The encoding for the eight

GPRs is shown in the table. Register Code Register Code
The;se are binary cpdes = 00 = o0
assigned to the registers
that will be used in place of > oo e 0
the ra, rb in the actual
instructions of the modified R 010 PR 110
processor EAGLE.
R3 011 R 111
ISA for the Modified
EAGLE
(16-bit registers, 16-bit ACC, PC and IR, 8-bit wide memory, 256 /O ports)
Mnemonic [Op-code ?blzf:andgg?tsstantFormat Behavioral RTL
Unused 00111
addi 00100 fra Cl X ACC « RJra] +(8aC1<7>)OC1;
subi 00101 ra C1 X ACC « R[ra] - (8aC1<7>)OCI1;
shiftl 01010 ra C1 X R[ra] < R[ra]<(15-n)..0>0O(na0);
shiftr 01011 ra C1 X R[ra] < (na0)OR[ra]<15...n>;
andi 01100 fra Cl X ACC « Rra] & (80aC1<7>)©OCI;
ori 01101 ra Cl X ACC « RJra] ~ (8aCI1<7>)©OCI;
asr 01110 ra C1 X R[ra] « (noR[ra}<15>)OR[ra]<15...n>;
in 10001 ra Cl X R[ra] <IO[C1];
Idacc 10010 Jra Cl X ACC «—M[R[ra] +(8aC1<7>)OC1];
movir 10100 fra Cl X R[ra] « (8aC1<7>)OCI,
out 10101 ra Cl X 10[C1] «R]ra];
stacc 10111 ra Cl X M[R[ra] +(8aC1<7>)©C1]«— ACC,;
movia 10011 Cl W ACC « (8aC1<7>)OCI;
br 11000 | Cl W PC «— PC + 8aC1<7>)OCl1;
brn 11001 Cl W (S=1): PC « PCH+(8aC1<7>)OCI;
brnz 11010 Cl W (Z=0): PC «— PC+(80C1<7>)OCl1;
brp 11011 Cl W (S=0): PC « PC+(8aC1<7>)OC1;
brz 11100 Cl W (Z=1): PC < PCH8aC1<7>)OCI,;
add 00000 ra - Y ACC «— ACC + R[ra];
sub 00001 ra - Y ACC «— ACC - R]a];
ACC < (R[ra] ©ACC)/R[a],
div 00010 fra - Y
R[ra] « (R[ra] ©ACC)%R]a];
mul 00011 ra - Y R[ra] © ACC « R[ra]*ACC,;
and 01000 fra - Y ACC «— ACC & RJra];
or 01001 ra - Y ACC «— ACC ~ R]ra];
not 01111 ra - Y ACC « I(R]ra]);
a2r 10000 fra - Y R[ra] < ACC
r2a 10110 ra Y ACC «— RJra]
cla 00110 V4 ACC « 0;
halt 11101 - - V4 RUN<« 0;

Last Modified: 01-Nov-06

Page 123

Advanced Computer Architecture-CS501

nop 11110 - - V4 ;

reset 11111 - - 7 TBD;

Symbol | Meaning Symbol Meaning

o Replication % Remainder after integer division

© Concatenation & Logical AND

: Conditional constructs (IF-THEN) ~ Logical OR

; Sequential constructs ! Logical NOT or complement
Concurrent constructs — LOAD or assignment operator

Last Modified: 01-Nov-06

Page 124

Advanced Computer Architecture-CS501

Computer Architecture

Lecture No. 10

Reading Material
Handouts Slides

Summary
3) The FALCON-E
4) Instruction Set Architecture Comparison
THE FALCON-E
INTRODUCTION
FALCON stands for First Architecture for Learning Computer Organization and
Networks. We are already familiar with our example processor, the FALCON-A, which
was the first version of the FALCON processor. In this section we will develop a new
version of the processor. Like its predecessor, the FALCON-E is a General-Purpose
Register machine that is simple, yet is able to elucidate the fundamentals of computer
design and architecture.
The FALCON-E is characterized by the following
e FEight General Purpose Registers (GPRs), named RO, R1...R7. Each registers is 4
bytes long (32-bit registers).
e Two special purposes registers, named BP and SP. These registers are also 32-bit
in length.
e Two special registers, the Program Counter (PC) and the Instruction Register
(IR). PC points to the next instruction to be executed, and the IR holds the current

instruction.
o : e .
e Memory word size is 32 bits (4 | JEL 0 i ; 0 . o
bytes). | Ri ! 0
e Memory space is 2°* bytes | : I ;12
e Memory is organized as 1-byte | Wﬁl | :
cells, and hence it is 2** x 8 i Bp|9:| i
bits.) N
e Memory is accessed in 32-bit i R[] i 2724
words (4-byte chunks, or 4 P |
consecutive cells) L | Main memory InputOutput
e Byte storage format is little Fig. Programmer’s View

endian.

Programmer’s view of the FALCON-E

The programmer’s view of the FALCON-E is shown in the given figure.

FALCON-E Notation

We take a brief look at the notation that we will employ for the FACLON-E.

Register contents are referred to in a similar fashion as the FALCON-A, i.e. the register
name in square brackets. So R[3] means contents of register R3.

Last Modified: 01-Nov-06 Page 125

Advanced Computer Architecture-CS501

Memory contents (or the memory E 5 [W] : One memory “word”
location) can be referred to in a similar & 2 M“'[EQU]] 3 413 115 87 i
way. Therefore, M[8] means contents £ 11 [w1 VNN N N R L
of memory location 8. N S Bte LS Bite

v
A memory word is stored in the w

memory in the little endian format. Fig. FALCON-E Notation
This means that the least significant
byte is stored first (or the little end comes first!). For instance, a memory word at address
8 is defined as the 32 bits at addresses 11, 10, 9, and 8 (little-endian). So we can employ a
special notation to refer to the memory words. Again, we will employ © as the
concatenation operator. In our notation for the FALCON-E, the memory word stored at
address 8 is represented as:
M[8]<31...0>=M[11]OM[10]©OM[9]OM] 8]
The shown figure will make this easier to understand.
FALCON-E Features
The following features characterize the FALCON-E

e Fixed instruction size, which is 32 bits. So the instruction size is 1 word.

e All ALU instructions have three operands

e Memory access is possible only through the load and store instructions. Also, only

a limited addressing modes are supported by the FALCON-E

FALCON-E Instruction Formats
Four different instruction formats are supported by the FALCON-E. These are
Type A instructions
The type A instructions have 5 bits reserved for the operation code (abbreviated op-code),
and the rest of the bits are either not used or specify a displacement.

3l 47 20 0
Type A Opeode Displacement /Mot Used

Type B instructions
The type B instructions also have 5 bits (27 through 31) reserved for the op-code. There
is a register operand field, ra, and an immediate or displacement field in addition to the

op-code field.
31 2726 24123 0

Typ g B Opeode Ta Displacermert / Inmmed 1ate

Type C instructions

Type C instructions have the 5-bit op-code field, two 3-bit operand registers (rb is the
source register, ra is the destination register), a 17-bit immediate or displacement field, as
well as a 3-bit function field. The function field is used to differentiate between
instructions that may have the same op-code, but different operations.

F1 aT36 2423 3130 1]
TypeC Crpoode ra i Displacement / Inumediate

Type D instructions
Type D instructions have the 5-bit op-code field, three 3-bit operand registers, 14 bits are
unused, and a 3-bit function field.

Last Modified: 01-Nov-06 Page 126

Advanced Computer Architecture-CS501

31 AT 16

423 2120

18 17

43

Opeode

ra

] w

Umased

Type D

Encoding for the General Purpose Registers (GPRs)

In the instruction formats discussed above, we used register operands ra, rb and rc. It is
important to know that these are merely placeholders, and not the real register names. In
an actual instruction, any one of the 8 registers of our general-purpose register file may
be used. We need to encode our registers so we can refer to them in an instruction. Note
that we have reserved 3 bits for each of the register field. This is because we have 8
registers to represent, and they can be completely represented by 3 bits, since 2° = 8. The
following table shows the binary encoding of the general-purpose registers.

Register Code Register Code
RO oo R4 100
R1 001 RS 101
R2 010 R6 10
R3 011 R7 111

Fig. Encoding of the GPRs

There are two more special registers that we need to represent; the SP and the BP. We
will use these registers in place of the operand register rb in the load and store
instructions only, and therefore, we may encode these as

Regisier Code
sP Qoo
EF 0ol

Fig. Special Registers Encoding

Instructions, Instruction Formats

The following is a brief introduction to the various instructions of the FALCON-E,
categorized with respect to the instruction formats.

Type A instructions
Four instructions of the FALCON-E belong to type A. These are

Last Modified: 01-Nov-06 Page 127

Advanced Computer Architecture-CS501

nop (op-code = 0)

This instruction instructs the processor to do nothing. It is generally useful in
pipelining. We will study more on pipelining later in the course.

ret (op-code = 15)

The return instruction is used to return control to the normal flow of a program
after an interrupt or a procedure call concludes

iret (op-code =17)

The iret instruction instructs the processor to return control to the address
specified by the immediate field of the instruction. Setting the program counter to
the specified address returns control.

near jmp (op-code = 18)

A near jump is a PC-relative jump. The PC value is incremented (or decremented)
by the immediate field value to take the jump.

Type B instructions
Five instructions belong to the type B format of instructions. These are:

push (op-code = 8)

This instruction is used to push the contents of a register onto the stack. For
instance, the instruction,

push R4

will push the contents of register R4 on top of the stack

pop (op-code = 9)

The pop instruction is used to pop a value from the top of the stack, and the value
is read into a register. For example, the instruction

pop R7

will pop the upper-most element of the stack and store the value in register R7

Id (op-code = 10)

This instruction with op-code (10) loads a memory word from the address
specified by the immediate filed value. This word is brought into the operand
register ra. For example, the instruction,

1d R7, 1254h

will load the contents of the memory at the address 1254h into the register R7.

st (op-code = 12)

The store instruction of (opcode 12) stores a value contained in the register
operand into the memory location specified by the immediate operand field. For
example, in

st R7, 1254h

the contents of register R7 are saved to the memory location 1254h.

Type C instructions

There are four data transfer instructions, as well as nine ALU instructions that belong to
type C instruction format of the FALCON-E.
The data transfer instructions are

Ids (op-code = 4)

The load instruction with op-code (4)loads a register from the memory, after
calculating the address of the memory location that is to be accessed. The
effective address of the memory location to be read is calculated by adding the
immediate value to the value stored by the register rb. For instance, in the

Last Modified: 01-Nov-06 Page 128

Advanced Computer Architecture-CS501

example below, the immediate value 56 is added to the value stored by the
register R4, and the resultant value is the address of the memory location which is
read
1ds R3, R4(56)
In RTL, this can be shown as
R[3] <« M[R [4]+56]

e sts (op-code =5)
This instruction is used to store the register contents to the memory location, by
first calculating the effective memory address. The address calculation is similar
to the 1ds instruction. An example:
sts R3, R4 (56)
In RTL, this is shown as
MIR [4]+56] <« R[3]

e in (op-code = 6)
This instruction is to load a register from an input/output device. The effective
address of the I/O device has to be calculated before it is accessed to read the
word into the destination register ra, as shown in the example:
in RS, R4(100)

In RTL:
R[5] <« IO[R[4]+100]

e out (op-code =7)
This instruction is used to write / store the register contents into an input/output
device. Again, the effective address calculation has to be carried out to evaluate
the destination I/O address before the write can take place. For example,
out R8, R6 (36)
RTL representation of this is
IO[R [6]+36] « R [8]

Three of the ALU instructions that belong to type C format are

e addi (op-code =2)
The addi instruction is to add a constant to the value of operand register rb, and
assign the result to the destination register ra. For example, in the following
instruction, 56 is added to the value of register R4, and result is assigned to the
register R3.
addi R3, R4, 56
In RTL this can be shown as
R[3] <« R[4]+56
Note that if the immediate constant specified was a negative number, then this
would become a subtract operation.

e andi (op-code = 2)
This instruction is to calculate the logical AND of the immediate value and the