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Lecture 1 
 

Introduction and Overview 
 
What is Algebra? 
 

History 

Algebra is named in honor of Mohammed Ibn-e- Musa al-Khowârizmî. Around 825, he 

wrote a book entitled Hisb al-jabr u'l muqubalah, ("the science of reduction and 

cancellation"). His book, Al-jabr, presented rules for solving equations. 

Algebra is a branch of Mathematics that uses mathematical statements to describe 

relationships between things that vary over time. These variables include things like the 

relationship between supply of an object and its price. When we use a mathematical 

statement to describe a relationship, we often use letters to represent the quantity that 

varies, since it is not a fixed amount. These letters and symbols are referred to as 

variables.  

Algebra is a part of mathematics in which unknown quantities are found with the help of 

relations between the unknown and known. 

In algebra, letters are sometimes used in place of numbers. 

The mathematical statements that describe relationships are expressed using algebraic 

terms, expressions, or equations (mathematical statements containing letters or symbols 

to represent numbers). Before we use algebra to find information about these kinds of 

relationships, it is important to first introduce some basic terminology.  

Algebraic Term 

The basic unit of an algebraic expression is a term. In general, a term is either a product 
of a number and with one or more variables.  

For example   4x is an algebraic term in which 4 is coefficient and x is said to be variable. 

Study of Algebra 

Today, algebra is the study of the properties of operations on numbers. Algebra 

generalizes arithmetic by using symbols, usually letters, to represent numbers or 

unknown quantities. Algebra is a problem-solving tool. It is like a tractor, which is a 
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farmer's tool. Algebra is a mathematician's tool for solving problems. Algebra has 

applications to every human endeavor. From art to medicine to zoology, algebra can be a 

tool. People who say that they will never use algebra are people who do not know about 

algebra. Learning algebra is a bit like learning to read and write. If you truly learn 

algebra, you will use it. Knowledge of algebra can give you more power to solve 

problems and accomplish what you want in life. Algebra is a mathematicians’ shorthand! 

Algebraic Expressions 

An expression is a collection of numbers, variables, and +ve sign or –ve sign, of 
operations that must make mathematical and logical behaviour.  

For example    28 9 1x x+ −  is an algebraic expression.  

What is Linear Algebra? 
 
 One of the most important problems in mathematics is that of solving systems of linear 

equations. It turns out that such problems arise frequently in applications of mathematics 

in the physical sciences, social sciences, and engineering. Stated in its simplest terms, the 

world is not linear, but the only problems that we know how to solve are the linear ones. 

What this often means is that only recasting them as linear systems can solve non-linear 

problems. A comprehensive study of linear systems leads to a rich, formal structure to 

analytic geometry and solutions to 2x2 and 3x3 systems of linear equations learned in 

previous classes. 

It is exactly what the name suggests. Simply put, it is the algebra of systems of linear 

equations. While you could solve a system of, say, five linear equations involving five 

unknowns, it might not take a finite amount of time. With linear algebra we develop 

techniques to solve m linear equations and n unknowns, or show when no solution exists. 

We can even describe situations where an infinite number of solutions exist, and describe 

them geometrically. 

Linear algebra is the study of linear sets of equations and their transformation properties. 

  

Linear algebra, sometimes disguised as matrix theory, considers sets and functions, which 

preserve linear structure. In practice this includes a very wide portion of mathematics! 
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Thus linear algebra includes axiomatic treatments, computational matters, algebraic 

structures, and even parts of geometry; moreover, it provides tools used for analyzing 

differential equations, statistical processes, and even physical phenomena. 

Linear Algebra consists of studying matrix calculus. It formalizes and gives geometrical 

interpretation of the resolution of equation systems. It creates a formal link between 

matrix calculus and the use of linear and quadratic transformations. It develops the idea 

of trying to solve and analyze systems of linear equations.  

Applications of Linear algebra 

Linear algebra makes it possible to work with large arrays of data. It has many 

applications in many diverse fields, such as 

• Computer Graphics,  

• Electronics,  

• Chemistry,  

• Biology,  

• Differential Equations,  

• Economics,  

• Business,  

• Psychology,  

• Engineering,  

• Analytic Geometry,  

• Chaos Theory,  

• Cryptography,  

• Fractal Geometry,  

• Game Theory,  

• Graph Theory,  

• Linear Programming,  

• Operations Research 

 

It is very important that the theory of linear algebra is first understood, the concepts are 

cleared and then computation work is started. Some of you might want to just use the 
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computer, and skip the theory and proofs, but if you don’t understand the theory, then it 

can be very hard to appreciate and interpret computer results. 

Why using Linear Algebra? 

Linear Algebra allows for formalizing and solving many typical problems in different 

engineering topics. It is generally the case that (input or output) data from an experiment 

is given in a discrete form (discrete measurements). Linear Algebra is then useful for 

solving problems in such applications in topics such as Physics, Fluid Dynamics, Signal 

Processing and, more generally Numerical Analysis. 

Linear algebra is not like algebra. It is mathematics of linear spaces and linear functions. 

So we have to know the term "linear" a lot. Since the concept of linearity is fundamental 

to any type of mathematical analysis, this subject lays the foundation for many branches 

of mathematics.  

Objects of study in linear algebra 

Linear algebra merits study at least because of its ubiquity in mathematics and its 

applications. The broadest range of applications is through the concept of vector spaces 

and their transformations. These are the central objects of study in linear algebra  

 

1. The solutions of homogeneous systems of linear equations form paradigm 

examples of vector spaces. Of course they do not provide the only examples.  

2. The vectors of physics, such as force, as the language suggests, also provide 

paradigmatic examples.  

3. Binary code is another example of a vector space, a point of view that finds 

application in computer sciences.  

4. Solutions to specific systems of differential equations also form vector spaces.  

5. Statistics makes extensive use of linear algebra.  

6. Signal processing makes use of linear algebra.  

7. Vector spaces also appear in number theory in several places, including the 

study of field extensions.  

8. Linear algebra is part of and motivates much abstract algebra. Vector spaces 

form the basis from which the important algebraic notion of module has been 

abstracted.  
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9. Vector spaces appear in the study of differential geometry through the tangent 

bundle of a manifold.  

10. Many mathematical models, especially discrete ones, use matrices to represent 

critical relationships and processes. This is especially true in engineering as 

well as in economics and other social sciences.  

 

There are two principal aspects of linear algebra: theoretical and computational. A major 

part of mastering the subject consists in learning how these two aspects are related and 

how to move from one to the other.  

  

Many computations are similar to each other and therefore can be confusing without 

reasonable level of grasp of their theoretical context and significance. It will be very 

tempting to draw false conclusions.  

 

On the other hand, while many statements are easier to express elegantly and to 

understand from a purely theoretical point of view, to apply them to concrete problems 

you will need to “get your hands dirty”. Once you have understood the theory sufficiently 

and appreciate the methods of computation, you will be well placed to use software 

effectively, where possible, to handle large or complex calculations.  
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Course Segments 

 

The course is covered in 45 Lectures spanning over six major segments, which are given 

below; 

 

1. Linear Equations 

2. Matrix Algebra  

3. Determinants  

4. Vector spaces  

5. Eigen values and Eigenvectors, and 

6. Orthogonal sets  

 

Course Objectives 

The main purpose of the course is to introduce the concept of linear algebra, to explain 

the underline theory, the computational techniques and then try to apply them on real life 

problems.  Mayor course objectives are as under; 

 

• To master techniques for solving systems of linear equations  

• To introduce matrix algebra as a generalization of the single-variable algebra of 

high school.  

• To build on the background in Euclidean space and formalize it with vector space 

theory.  

• To develop an appreciation for how linear methods are used in a variety of 

applications.  

• To relate linear methods to other areas of mathematics such as calculus and, 

differential equations.  
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Recommended Books and Supported Material 
 
I am indebted to several authors whose books I have freely used to prepare the lectures 

that follow. The lectures are based on the material taken from the books mentioned 

below. 

 

1. Linear Algebra and its Applications (3rd Edition) by David C. Lay.  

2. Contemporary Linear Algebra by Howard Anton and Robert C. Busby. 

3. Introductory Linear Algebra (8th Edition) by Howard Anton and Chris Rorres. 

4. Introduction to Linear Algebra (3rd Edition) by L. W. Johnson, R.D. Riess and 

J.T. Arnold. 

5. Linear Algebra (3rd Edition) by S. H. Friedberg, A.J. Insel and L.E. Spence. 

6. Introductory Linear Algebra with Applications (6th Edition) by B. Kolman. 

 

I have taken the structure of the course as proposed in the book of David C. Lay. I would 

be following this book. I suggest that the students should purchase this book, which is 

easily available in the market and also does not cost much. For further study and 

supplement, students can consult any of the above mentioned books.  

I strongly suggest that the students should also browse on the Internet; there is plenty of 

supporting material available. In particular, I would suggest the website of David C. Lay; 

www.laylinalgebra.com, where the entire material, study guide, transparencies are readily 

available. Another very useful website is www.wiley.com/college/anton, which contains a 

variety of useful material including the data sets. A number of other books are also 

available in the market and on the internet with free access. 

I will try to keep the treatment simple and straight. The lectures will be presented in 

simple Urdu and easy English. These lectures are supported by the handouts in the form 

of lecture notes. The theory will be explained with the help of examples. There will be 

enough exercises to practice with. Students are advised to go through the course on daily 

basis and do the exercises regularly.  

     

http://www.laylinalgebra.com/
http://www.wiley.com/college/anton
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Schedule and Assessment 
 

The course will be spread over 45 lectures. Lectures one and two will be introductory and 

the Lecture 45 will be the summary. The first two lectures will lay the foundations and 

would provide the overview of the course. These are important from the conceptual point 

of view. I suggest that these two lectures should be viewed again and again.   

 

The course will be interesting and enjoyable, if the student will follow it regularly and 

completes the exercises as they come along. To follow the tradition of a semester system 

or of a term system, there will be a series of assignments (Max eight assignments) and a 

mid term exam. Finally there will be terminal examination.  

 

The assignments have weights and therefore they have to be taken seriously.  
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Lecture 2 
Background 

     
                                             Introduction to Matrices 
 
Matrix A matrix is a collection of numbers or functions arranged into rows and columns. 
 
Matrices are denoted by capital letters ZYBA ,,,,  . The numbers or functions are called 
elements of the matrix. The elements of a matrix are denoted by small letters zyba ,,,,  .  
 
Rows and Columns The horizontal and vertical lines in a matrix are, respectively, called the 
rows and columns of the matrix. 
 
Order of a Matrix The size (or dimension) of matrix is called as order of matrix. Order of 
matrix is based on the number of rows and number of columns. It can be written as r c× ; r 
means no. of  row and c means no. of columns. 
 
If a matrix has m  rows and n  columns then we say that the size or order of the matrix 
is nm× . If A  is a matrix having m  rows and n columns then the matrix can be written as   

                                   

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

 
 
 
 =
 
 
 
 





   

   



    

The element, or entry, in the ith  row and jth  column of a nm×  matrix A is written as ija  
 

For example: The matrix 
2 1 3
0 4 6

A
− 

=  
 

 has two rows and three columns. So order of A 

will be 2 3×  
          
Square Matrix A matrix with equal number of rows and columns is called square matrix.  

For Example   The matrix 
4 7 8
9 3 5
1 1 2

A
− 

 =  
 − 

 has three rows and three columns. So it is a 

square matrix of order 3. 
 
 

Equality of matrices 

The two matrices will be equal if they must have  
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a)  The same dimensions (i.e. same number of rows and columns) 
b) Corresponding elements must be equal.  

 Example   The matrices 
4 7 8
9 3 5
1 1 2

A
− 

 =  
 − 

  and 
4 7 8
9 3 5
1 1 2

B
− 

 =  
 − 

 equal matrices  

(i.e A = B) because they both have same orders and same corresponding elements.  
 
Column Matrix A column matrix X  is any matrix having n  rows and only one column. 
Thus the column matrix X can be written as 

    11

1

31

21

11

][   ×=



























= ni

n

b

b

b

b

b

X



 

A column matrix is also called a column vector or simply a vector. 
 
Multiple of matrix A multiple of a matrix A  by a nonzero constant k is defined to be  
 

   nmij

mnmm

n

n

ka

kakaka

kakaka

kakaka

kA ×=























= ][

21

22221

11211









          

           
 Notice that the product kA  is same as the product Ak . Therefore, we can write  AkkA = .  
 
It implies that if we multiply a matrix by a constant k, then each element of the matrix is to 
be multiplied by k. 
Example 1 
 

(a)    



















−

−

=



















−

−

⋅

301

520

1510

65/1

14

32

5  
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(b)      





















−=



















−⋅

t

t

t

t

e

e

e

e

4

2

4

2

1

        

 
Since we know that AkkA = . Therefore, we can write      
             

t
t

t
t e

e

e
e 3

3

3
3  

5

2
 

5

2

5

2
−

−

−
−












=












=












⋅    

 
 
Addition of Matrices Only matrices of the same order may be added by adding 
corresponding elements. 
 If ][ ijaA =  and ][ ijbB =  are two nm×  matrices then ][ ijij baBA +=+  
Obviously order of the matrix A + B is nm×  
 
 
Example 2 Consider the following two matrices of order 33×    

                               


















−−

−

=

5106

640

312

A ,   


















−

−

=

211

539

874

B   

Since the given matrices have same orders, therefore, these matrices can be added and their 
sum is given by  
 

                 


















−−

−

=



















+−−++−

+++

−++−+

=+

395

1179

566

25)1(1016

563490

)8(37142

BA  

 
Example 3 Write the following single column matrix as the sum of three column vectors  

                                        
















+
−

t
tt
et t

5
7
23

2

2

 

Solution 
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2 2

2 2 2

3 2 3 0 2 3 0 2
7 7 0 1 7 0

5 0 5 0 0 5 0

t t

t

t e t e
t t t t t t e

t t

   −  − −                      + = + + = + +                                   

 

 
Difference of Matrices The difference of two matrices A  and B  of same order nm×  is 
defined to be the matrix )( BABA −+=−  
 The matrix B−  is obtained by multiplying the matrix B  with 1− .  So that BB  ) 1 ( −=−   
 
Multiplication of Matrices We can multiply two matrices if and only if, the number of 
columns in the first matrix equals the number of rows in the second matrix.  
Otherwise, the product of two matrices is not possible. 
OR 
If the order of the matrix A  is nm×  then to make the product AB  possible order of the 
matrix B  must be pn× .  Then the order of the product matrix AB  is pm× . Thus  
    pmpnnm CBA ××× =⋅  
 
If the matrices A  and B  are given by 

 























=























=

npnn

p

p

mnmm

n

n

bbb

bbb

bbb

B

aaa

aaa

aaa

A

















21

22221

11211

21

22221

11211

  ,  

Then 

    













































=

npnn

p

p

mnmm

n

n

bbb

bbb

bbb

aaa

aaa

aaa

AB

















21

22221

11211

21

22221

11211

       

           

        =

11 11 12 21 1 1 11 1 12 2 1

21 11 22 21 2 1 21 1 22 2 2

1 11 2 21 1 1 1 2 2

n n p p n np

n n p p n np

m m mn n m p m p mn np

a b a b a b a b a b a b
a b a b a b a b a b a b

a b a b a b a b a b a b

+ + + + + + 
 + + + + + + 
 
 + + + + + +  

  

  

  

  

 

        
 

http://www.mathwarehouse.com/algebra/matrix/index.php#column
http://www.mathwarehouse.com/algebra/matrix/index.php#row
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pn

n

k
kjikba

×=










= ∑

1
                                                              

Example 4 If possible, find the products AB and BA , when 

(a)     










=

53

74
A , 










 −
=

86

29
B  

 

(b)   


















=

7

0

8

2

1

5

A ,  









 −−
=

02

34
B  

 
Solution (a) The matrices A  and B are square matrices of order 2. Therefore, both of the 
products AB and BA  are possible.  
 

        










=












⋅+−⋅⋅+⋅

⋅+−⋅⋅+⋅
=










 −











=

3457

4878

85)2(36593

87)2(46794

86

29

53

74
AB              

 
 

Similarly  










=












⋅+⋅⋅+⋅

⋅−+⋅⋅−+⋅
=




















 −
=

8248

5330

58763846

5)2(793)2(49

53

74

86

29
BA  

Note  From above example it is clear that generally a matrix multiplication is not 
commutative i.e. BAAB ≠  . 
 
(b) The product AB is possible as the number of columns in the matrix A  and the number of 
rows in B is 2. However, the product BA is not possible because the number of column in the 
matrix B and the number of rows in A  is not same. 
 

5 8
4 3

1 0
2 0

2 7

5 ( 4) 8 2 5 ( 3) 8 0 4 15
1 ( 4) 0 2 1 ( 3) 0 0 4 3
2 ( 4) 7 2 2 ( 3) 7 0 6 6

AB
 

− −  =     
 

⋅ − + ⋅ ⋅ − + ⋅ − −   
   = ⋅ − + ⋅ ⋅ − + ⋅ = − −   
   ⋅ − + ⋅ ⋅ − + ⋅ −   

 

                                           










=

3457

4878
AB ,  











=

8248

5330
BA  

 
Clearly .BAAB ≠   
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

















−

−

−

−

−

=

6

3

15

6

4

4

AB  

 
However, the product BA  is not possible.  
 
Example 5 

(a)     


















−

=



















⋅+⋅−+−⋅

⋅+⋅+−⋅

⋅+⋅−+−⋅

=

















−



















−

−

9

44

0

496)7()3(1

6564)3(0

436)1()3(2

4

6

3

971

540

312

 

 

(b)     










+

+−
=




















−

yx

yx

y

x

83

24

83

24
 

 
Multiplicative Identity For a given any integer n , the nn×  matrix  
                                          

                                                      



























=

1000

0100

0010

0001











I  

 
is called the multiplicative identity matrix. If A  is a matrix of order n n× , then it can be 
verified that AIAAI =⋅=⋅  

 Example 
1 0
0 1

I  
=  
 

, 
1 0 0
0 1 0
0 0 1

I
 
 =  
 
 

 are identity matrices of orders 2 x 2 and 3 x 3 

respectively and If









 −
=

86

29
B  then we can easily prove that BI = IB = B 
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Zero Matrix or Null matrix A matrix whose all entries are zero is called zero matrix or null 
matrix and it is denoted byO .  

For example   










=

0

0
O ;     











=

00

00
O ;       



















=

0

0

0

0

0

0

O  

and so on. If A and O  are the matrices of same orders, then AAOOA =+=+  
 
Associative Law The matrix multiplication is associative. This means that if BA   ,  and 
C are pm× , rp× and nr ×  matrices, then CABBCA )()( =  
The result is a  nm×  matrix. This result can be verified by taking any three matrices which 
are confirmable for multiplication.  
 
Distributive Law If B  and C are matrices of order nr ×  and A  is a matrix of order rm× ,  
then the distributive law states that 
                                       ACABCBA +=+ )(  
Furthermore, if the product CBA )( +  is defined, then 
    BCACCBA +=+ )(  
 Remarks 
It is important to note that some rules arithmetic for real numbers do not carry over the 
matrix arithmetic. 
For example, , , anda b c d∀ ∈   

i) if ab cd= and 0a ≠ , then b c= (Law of Cancellation) 
ii) if 0ab = , then least one of the factors a or b (or both) are zero. 

However the following examples shows that the corresponding results are not true in case of 
matrices. 
Example 

  Let 
0 1 1 1 2 5

, ,
0 2 3 4 3 4

A B C     
= = =     
     

and 
1 7
0 0

D  
=  
 

, then one can easily check that  

3 4
6 8

AB AC  
= =  

 
. But B C≠ . 

Similarly neither A  nor B are zero matrices but 
0 0
0 0

AD  
=  
 

 

But if D is diagonal say
1 0
0 7

D  
=  
 

, then AD DA≠ . 

Determinant of a Matrix Associated with every square matrix A of constants, there is a 
number called the determinant of the matrix, which is denoted by )det(A or  A . There is a 
special way to find the determinant of a given matrix. 
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Example 6 Find the determinant of the following matrix 


















−

=

421

152

263

A  

Solution The determinant of the matrix A  is given by 

   

421

152

263

)det(

−

=A  

We expand the  )det(A  by first row, we obtain 

                     

421

152

263

)det(

−

=A =3
42
15

-6
41
12

−
+2

21
52

−
 

or                        185)2(41)6(8-2)-3(20)det( =+++=A  
  
Transpose of a Matrix The transpose of  nm×  matrix A  is denoted by trA and it is 
obtained by interchanging rows of A into its columns. In other words, rows of A become the 
columns of .trA  Clearly trA is n m×  matrix. 
 

If   

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

 
 
 =
 
 
 





   



, then 

11 21 1

12 22 2

1 2

m

mtr

n n mn

a a a
a a a

A

a a a

 
 
 =
 
 
 





   



 

Since order of the matrix A  is nm× , the order of the transpose matrix trA  is mn× .  

Properties of the Transpose  

The following properties are valid for the transpose; 

• The transpose of the transpose of a matrix is the matrix itself:`    
• The transpose of a matrix times a scalar (k) is equal to the constant times the 

transpose of the matrix: ( )T T T TABC C B A= ( )T TkA kA=  
• The transpose of the sum of two matrices is equivalent to the sum of their 

transposes:  ( )T T TA B A B+ = +   
• The transpose of the product of two matrices is equivalent to the product of their 

transposes in reversed order:   ( )T T TAB B A=   
• The same is true for the product of multiple matrices:  ( )T T T TABC C B A=   
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Example 7 (a) The transpose of matrix  


















−

=

421

152

263

A  is 
3 2 1

  6 5 2
2 1 4

TA
− 

 =  
 
 

 

(b) If


















=

3

0

5

X , then [ ]5 0 3TX =  

 
Multiplicative Inverse Suppose that A  is a square matrix of order nn× . If there exists an 

nn×  matrix B such that IBAAB == , then B is said to be the multiplicative inverse of the 
matrix A  and is denoted by 1−= AB . 

For example: If 










=

102

41
A  then the matrix B

5 2
1 1/ 2

− 
=  − 

 is multiplicative inverse of A 

because AB = 
1 4
2 10
 
 
 

5 2
1 1/ 2

− 
 − 

 = 
1 0
0 1
 
 
 

 =I 

Similarly we can check that BA = I 
 
 
Singular and Non-Singular Matrices A square matrix A  is said to be a non-singular 
matrix ifdet( ) 0A ≠ , otherwise the square matrix A  is said to be singular. Thus for a 
singular matrix A  we must have  det( ) 0A =  
 

Example:   
2 3 1
1 1 0
2 3 5

A
− 

 =  
 − 

 

                       
2(5 0) 3(5 0) 1( 3 2)

10 15 5 0
A = − − − − − −

= − + =
 

 
which means that A is singular. 
 
Minor of an element of a matrix 
 
Let A be a square matrix of order n x n. Then minor ijM  of the element ija A∈  is the 
determinant of )1()1( −×− nn  matrix obtained by deleting the ith  row and jth  column 
from A .   
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 Example If 
2 3 1
1 1 0
2 3 5

A
− 

 =  
 − 

 is a square matrix. The Minor of 3 A∈  is denoted by 

12M and is defined to be  12M  = 
1 0
2 5

= 5-0 = 5 

Cofactor of an element of a matrix 
 
Let A  be a non singular matrix of order nn×  and let C ij denote the cofactor (signed minor) 

of the corresponding entry ija  A∈  , then it is defined to be     ij
ji

ij MC +−= )1(  

Example    If 
2 3 1
1 1 0
2 3 5

A
− 

 =  
 − 

 is a square matrix. The cofactor of 3 A∈  is denoted by 

12C and is defined to be 12C = 1 2 1 0
( 1)

2 5
+= − =  - (5 - 0) = -5 

 
 
Theorem   If A  is a square matrix of order nn×  then the matrix has a multiplicative inverse 

1−A  if and only if the matrix A  is non-singular. 
 

Theorem  Then inverse of the matrix A  is given by  tr
ijC

A
A )(

)det(
11 =−                

 
1. For further reference we take 2=n so that A  is a 22×  non-singular matrix given by 
 

                                      













=

2221

1211

aa

aa
A  

  Therefore 122121122211   ,  , aCaCaC −=−==  and 1122 aC = . So that  
 

                                     














−

−
=















−

−
=−

1121

1222

1112

21221
)det(

1
)det(

1
aa

aa

Aaa

aa

A
A

tr

 

 

 2. For a 3×3 non-singular matrix A=
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
 
 
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3332

2322
11

aa

aa
C = ,

3331

2321
12

aa

aa
C −= ,   C13 =

3231

2221

aa
aa

and so on.  

Therefore, inverse of the matrix A  is given by 
11 21 31

1
12 22 32

13 23 33

1
det

C C C
A C C C

A
C C C

−

 
 

=  
 
 

. 

 

Example 8  Find, if possible, the multiplicative inverse for the matrix










=

102

41
A . 

Solution The matrix A  is non-singular because     2=8-10=
102

41
)det( =A  

 Therefore, 1−A exists and is given by A 1− =











−

−
=












−

−

2/11

25

12

410

2
1  

Check  IAA =










=












+−−

+−−
=












−

−











=−

10

01

541010

2245

2/11

25

102

411  

 

                   IAA =










=












+−+−

−−
=






















−

−
=−

10

01

5411

202045

102

41

2/11

251  

 

Example 9 Find, if possible, the multiplicative inverse of the following matrix 

                      










=

33

22
A   

Solution The matrix is singular because  

03232
33

22
)det( =⋅−⋅==A  

Therefore, the multiplicative inverse 1−A of the matrix does not exist.  

Example 10 Find the multiplicative inverse for the following matrix 

                                                      A=
2 2 0
2 1 1

3 0 1
−
 
 
  
 

. 
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Solution       Since 012)30(0)32(2)01(2

103

112

022

)det( ≠=−+−−−−=−=A  

 Therefore, the given matrix is non singular. So, the multiplicative inverse 1−A of the matrix 
A  exists. The cofactors corresponding to the entries in each row are 
 

             3
03

12
      ,5

13

12
           ,1

10

11
131211 −=

−
==

−
−=== CCC         

              6
03

22
          ,2

13

02
     ,2

10

02
232221 =−===−=−= CCC      

               6
12

22
     ,2

12

02
          ,2

11

02
333231 =

−
=−=

−
−=== CCC  

Hence   A 1− =
12
1

















−
−

−

663
225

221
=

















−
−

−

2/12/14/1
6/16/112/5

6/16/112/1
 

We can also verify that IAAAA =⋅=⋅ −− 11  
 
Derivative of a Matrix of functions 
Suppose that  

( ) ( )ij m n
A t a t

×
 =     

is a matrix whose entries are functions those are differentiable in a common interval, then 
derivative of the matrix )(tA  is a matrix whose entries are derivatives of the corresponding 
entries of the matrix )(tA . Thus                              

   
nm

ij
dt

da
dt
dA

×








=  

The derivative of a matrix is also denoted by ).(tA′  
 
Integral of a Matrix of Functions 
 
Suppose that  ( ) nmij tatA

×
= )()(  is a matrix whose entries are functions those are continuous 

on a common interval containing t , then integral of the matrix )(tA  is a matrix whose entries 
are integrals of the corresponding entries of the matrix )(tA . Thus 

                                
0

0

( ) ( )ij
m n

t tA s ds a s dst
t ×

 =  
 ∫ ∫  
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Example 11   Find the derivative and the integral of the following matrix 

sin 2
3( )

8 1

t
tX t e

t
=

−

 
 
 
  
 

      

Solution The derivative and integral of the given matrix are, respectively, given by  



















=























−

=′

8

3

2cos2

)18(

)(

)2(sin

)( 33 tt e

t

t
dt
d

e
dt
d

t
dt
d

tX     and 

0

3 3

20

0

sin 2

1/ 2cos 2 1/ 2
( ) 1/ 3 1/ 3

0 4

8 1

t

t
s t

t

sds

tt
X s ds e ds e

t t

s ds

 
 
  − +     = = −    −  
 − 
 

∫

∫ ∫

∫

  

Exercise 
Write the given sum as a single column matrix 

1. ( )
















−
−
















−
−

−+
















− t

t
tttt

5
4
3

2
3

1
1

1

2
3  

2. 
1 3 4 2
2 5 1 2 1 1 8
0 4 2 4 6

t t
t

t

− −       
       − − + −       
       − − − −       

 

Determine whether the given matrix is singular or non-singular. If singular, find 1A− . 

3. 
3 2 1
4 1 0
2 5 1

A
 
 =  
 − − 

 

4. 
4 1 1
6 2 3
2 1 2

A
− 

 = − 
 − − 

 

Find dX
dt

 

5. 














+−

−
=

tt

tt
X

2cos52sin3

2cos42sin
2
1

 

6. If ( )
4

2

cos

2 3 1

te t
A t

t t

π 
=  
 − 

 then find (a) ∫
2

0

)( dttA , (b)  ∫
t

dssA
0

.)(  

7. Find  the integral ∫
2

1

)( dttB   if  ( )
6 2

1/ 4
t

B t
t t

 
=  
 
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Lecture 3 
 

Systems of Linear Equations 
 
In this lecture we will discuss some ways in which systems of linear equations arise, how 
to solve them, and how their solutions can be interpreted geometrically.  
 
Linear Equations 
     We know that the equation of a straight line is written as y mx c= + , where m is the 
slope of line(Tan of the angle of line with x-axis) and c is the y-intercept(the distance at 
which the straight line meets y-axis from origin). 
Thus a line in R2 (2-dimensions) can be represented by an equation of the form 

1 2a x a y b+ =  (where a1, a2 not both zero). Similarly a plane in R3 (3-dimensional space) 
can be represented by an equation of the form 1 2 3a x a y a z b+ + =   (where a1, a2, a3 not 
all zero).  
 
A linear equation in n variables 1 2, , , nx x x   can be expressed in the form 

1 1 2 2 n na x a x a x b+ + + = (hyper plane in n
  ) --------(1)   

           
 

where 1 2, , , na a a and b are constants and the “a’s” are not all zero.  
 
Homogeneous Linear equation 
 
In the special case if b = 0, Equation (1) has the form  1 1 2 2 0n na x a x a x+ + + =    (2) 
This equation is called homogeneous linear equation. 
 
Note A linear equation does not involve any products or square roots of variables. All 
variables occur only to the first power and do not appear, as arguments of trigonometric, 
logarithmic, or exponential functions.  
 
Examples of Linear Equations 
 
(1) The equations  

( )1 2 3 2 1 32 3 2 2 5 2x x x and x x x+ + = = + +  are both linear 

(2) The following equations are also linear 
1 2 3 4

1
1 22

3 7 2 3 0

3 1 1n

x y x x x x

x y z x x x

+ = − − + =

− + = − + + + =

 

 
(3) The equations 1 2 1 2 2 13 2 4 6x x x x and x x− = = −  

are not linear because of the presence of 1 2x x  in the first equation and 1x  in the second. 



3-System of Linear Equations  VU 

                                                                                                                                                                                                                                                                                                                                                                                   
                                                      ©Virtual University Of Pakistan                                                             24 

System of Linear Equations 
 
A finite set of linear equations is called a system of linear equations or linear system. The 
variables in a linear system are called the unknowns.  
 
For example, 

1 2 3

1 2 3

4 3 1
3 9 4

x x x
x x x
− + = −
+ + = −

             

is a linear system of two equations in three unknowns x1, x2, and x3.  
 
General System of Linear Equations 
A general linear system of m equations in n-unknowns 1 2, , , nx x x  can be written as 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + =
+ + + =

+ + + =





   



        (3) 

          
Solution of a System of Linear Equations 
A solution of a linear system in the unknowns 1 2, , , nx x x is a sequence of n numbers 

1 2, , , ns s s such that when substituted for 1 2, , , nx x x  respectively, makes every 
equation in the system a true statement. The set of all such solutions { }1 2, , , ns s s of a 
linear system is called its solution set. 
 
Linear System with Two Unknowns 
 
When two lines intersect in R2, we get system of linear equations with two unknowns 
 

For example, consider the linear system 1 1 1

2 2 2

a x b y c
a x b y c

+ =
+ =

 

 
The graphs of these equations are straight lines in the xy-plane, so a solution (x, y) of this 
system is infact a point of intersection of these lines.  
 
Note that there are three possibilities for a pair of straight lines in xy-plane: 

 
1. The lines may be parallel and distinct, in which case there is no intersection and 

consequently no solution. 
2. The lines may intersect at only one point, in which case the system has exactly 

one solution. 
3. The lines may coincide, in which case there are infinitely many points of 

intersection (the points on the common line) and consequently infinitely many 
solutions. 
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Consistent and inconsistent system 
 
A linear system is said to be consistent if it has at least one solution and it is called 
inconsistent if it has no solutions.  
 
Thus, a consistent linear system of two equations in two unknowns has either one 
solution or infinitely many solutions – there is no other possibility.  
 
Example consider the system of linear equations in two variables 

1 2 1 22 1, 3 3x x x x− = − − + =  
Solve the equation simultaneously: 
Adding both equations we get 2x  = 2, Put 2x  = 2 in any one of the above equation we 
get 1 3x = . So the solution is the single point (3, 2). See the graph of this linear system 

 
 
   x2             
        
        
              
             2     
        
      x1   
         l2             3        
      
 l1  (a)                 
 
This system has exactly one solution 
 
See the graphs to the following linear systems: 
 

1 2

1 2

( ) 2 1
2 3

a x x
x x
− = −

− + =
  1 2

1 2

( ) 2 1
2 1

b x x
x x
− = −

− + =
 

 
    x2           x2   
        
        
            2  
             2     
        
      x1   
         l2             3       3 
           l1  
 l1  (a)             (b)    
 

    (a) No solution.                        (b) Infinitely many solutions. 
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Linear System with Three Unknowns 
 
Consider r a linear system of three equations in three unknowns: 

1 1 1 1

2 2 1 2

3 3 3 3

a x b y c z d
a x b y c z d
a x b y c z d

+ + =
+ + =
+ + =

 

 
In this case, the graph of each equation is a plane, so the solutions of the system, If any 
correspond to points where all three planes intersect; and again we see that there are only 
three possibilities – no solutions, one solution, or infinitely many solutions as shown in  
figure. 

 
 
Theorem 1 Every system of linear equations has zero, one or infinitely many solutions; 
there are no other possibilities. 
 

Example 1 Solve the linear system 
1

2 6
x y
x y
− =
+ =

 

 
Solution 

Adding both equations, we get 7
3

x = . Putting this value of x in 1st equation, we 

get 4
3

y = . Thus, the system has the unique solution 7 4, .
3 3

x y= =   

 
Geometrically, this means that the lines represented by the equations in the system 

intersect at a single point 7 4,
3 3

 
 
 

 and thus has a unique solution. 

 

Example 2 Solve the linear system 
4

3 3 6
x y
x y
+ =
+ =

 

Solution 
Multiply first equation by 3 and then subtract the second equation from this. We obtain
 0 6=  
This equation is contradictory.  
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Geometrically, this means that the lines corresponding to the equations in the original 
system are parallel and distinct. So the given system has no solution. 
 

Example 3 Solve the linear system 
4 2 1

16 8 4
x y
x y
− =
− =

 

 
Solution  
 
Multiply the first equation by -4 and then add in second equation. 
 

                 
16 8 4
16 8 4

0 0

x y
x y

− + = −
− =

=
 

Thus, the solutions of the system are those values of x and y that satisfy the single 
equation 4 2 1x y− =                                                       
 
Geometrically, this means the lines corresponding to the two equations in the original 
system coincide and thus the system has infinitely many solutions.   
 
Parametric Representation 
 
 It is very convenient to describe the solution set in this case is to express it 
parametrically. We can do this by letting y = t and solving for x in terms of t, or by 
letting x = t and solving for y in terms of t.  
 
The first approach yields the following parametric equations (by taking y=t in the 
equation 4 2 1x y− = ) 
                        

4 2 1,
1 1 ,
4 2

x t y t

x t y t

− = =

= + =
 

 
We can now obtain some solutions of the above system by substituting some numerical 
values for the parameter.  

Example   For t = 0 the solution is 1( ,0).
4

 For t = 1, the solution is 3( ,1)
4

 and for 1t = −  

the solution is 1( , 1) .
4

etc− −   

 

Example 4 Solve the linear system 
2 5

2 2 4 10
3 3 6 15

x y z
x y z
x y z

− + =
− + =
− + =
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Solution 
Since the second and third equations are multiples of the first.  
 
Geometrically, this means that the three planes coincide and those values of x, y and z 
that satisfy the equation 2 5x y z− + =  automatically satisfy all three equations. 
 
We can express the solution set parametrically as  
 
                   1 2 1 25 2 , ,x t t y t z t= + − = =  
Some solutions can be obtained by choosing some numerical values for the parameters. 
 
For example   if we take 1 2y t= =  and 2 3z t= =  then  

1 25 2
5 2 2(3)
1

x t t= + −
= + −
=

  

Put these values of x, y, and z in any equation of linear system to verify  
 

2 5
1 2 2(3) 5
1 2 6 5
5 5

x y z− + =
− + =
− + =
=

 

 
Hence x = 1, y = 2,  z = 3  is the solution of the system. Verified.  
 
Matrix Notation 
 
The essential information of a linear system can be recorded compactly in a rectangular 
array called a matrix.  
 

Given the system 
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

      

With the coefficients of each variable aligned in columns, the matrix 
1 2 1
0 2 8
4 5 9

− 
 − 
 − 

 

is called the coefficient matrix (or matrix of coefficients) of the system. 
 
An augmented matrix of a system consists of the coefficient matrix with an added column 
containing the constants from the right sides of the equations. It is always denoted by Ab 
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                                 Ab = 
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 

 

 
 
Solving a Linear System 
 
In order to solve a linear system, we use a number of methods. 1st of them is given 
below.  
 
Successive elimination method  In this method the 1x  term in the first equation of a 
system is used to eliminate the 1x  terms in the other equations. Then we use the 2x  term 
in the second equation to eliminate the 2x  terms in the other equations, and so on, until 
we finally obtain a very simple equivalent system of equations. 
 
 

Example 5 Solve  
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

  

 
Solution We perform the elimination procedure with and without matrix notation, 
and place the results side by side for comparison: 

1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

           
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 

 

 
To eliminate the 1x  term from third equation add 4 times equation 1 to equation 3,  

1 2 34 8 4 0x x x− + =  

1 2 34 5 9 9x x x− + + = −   

       2 33 13 9x x− + = −  
 
The result of the calculation is written in place of the original third equation: 

1 2 3

2 3

2 3

2 0

2 8 8

3 13 9

x x x
x x
x x

− + =

− =

− + = −

  
1 2 1 0
0 2 8 8
0 3 13 9

− 
 − 
 − − 

 

 
Next, multiply equation 2 by ½ in order to obtain 1 as the coefficient for 2x  
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1 2 3

2 3

2 3

2 0

4 4

3 13 9

x x x
x x
x x

− + =

− =

− + = −

  
1 2 1 0
0 1 4 4
0 3 13 9

− 
 − 
 − − 

 

 
To eliminate the 2x  term from third equation add 3 times equation 2 to equation 3, 

 
The new system has a triangular form 

1 2 3

2 3

3

2 0
4 4
3

x x x
x x
x

− + =
− =
=

   
1 2 1 0
0 1 4 4
0 0 1 3

− 
 − 
  

 

 
Now using 3rd equation eliminate the x3 term from first and second equation i.e. multiply 
3rd equation with 4 and add in second equation. Then subtract the third equation from first 
equation we get 
 

1 2

2

3

2 3
16
3

x x
x
x

− = −
=
=

  
1 2 0 3
0 1 0 16
0 0 1 3

− − 
 
 
  

 

 
Adding 2 times equation 2 to equation 1, we obtain the result 
 
   

 
1

2

3

29 1 0 0 29
16 0 1 0 16

0 0 1 33

x
x
x

=  
  =  
  =  

       

          
 
This completes the solution.  
Our work indicates that the only solution of the original system is (29, 16, 3).  
 
To verify that (29, 16, 3) is a solution, substitute these values into the left side of the 
original system for x1, x2 and x3 and after computing, we get 
 
      (29) – 2(16) +  (3) = 29 – 32 + 3 = 0 
                2(16) – 8(3) = 32 – 24 = 8 
   –4(29) + 5(16) +  9(3)  = –116 + 80 + 27 = –9 
 
The results agree with the right side of the original system, so (29, 16, 3) is a solution of 
the system. 
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This example illustrates how operations on equations in a linear system correspond to 
operations on the appropriate rows of the augmented matrix. The three basic operations 
listed earlier correspond to the following operations on the augmented matrix. 
 
 
Elementary Row Operations 
  
1. (Replacement) Replace one row by the sum of itself and a nonzero multiple of 

another row.  
2. (Interchange) Interchange two rows. 
3. (Scaling) Multiply all entries in a row by a nonzero constant. 
 
Row equivalent matrices 
 
A matrix B is said to be row equivalent to a matrix A of the same order if B can be 
obtained from A by performing a finite sequence of elementary row operations of A. 
If A and B are row equivalent matrices, then we write this expression mathematically as 
A B.  

For example  
1 2 1 0
0 2 8 8
4 5 9 9

− 
 − 
 − − 



1 2 1 0
0 2 8 8
0 3 13 9

− 
 − 
 − − 

 are row equivalent matrices 

because we add 4 times of 1st row in 3rd row in 1st matrix.  
 
Note If the augmented matrices of two linear systems are row equivalent, then the two 
systems have the same solution set. 
 
Row operations are extremely easy to perform, but they have to be learnt and practice. 
 
 
Two Fundamental Questions 
 

1. Is the system consistent; that is, does at least one solution exist? 
2. If a solution exists is it the only one; that is, is the solution unique? 

 
We try to answer these questions via row operations on the augmented matrix. 
 
Example 6 Determine if the following system of linear equations is consistent 

 
1 2 3

2 3

1 2 3

2 0
2 8 8

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

       

 
Solution 
 
First obtain the triangular matrix by removing x1 and x2 term from third equation and 
removing x2 from second equation.  
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First divide the second equation by 2 we get 
 

1 2 3

2 3

1 2 3

2 0
4 4

4 5 9 9

x x x
x x

x x x

− + =
− =

− + + = −

             

1 2 1 0
0 1 4 4
4 5 9 9

− 
 − 
 − − 

 

 
 
Now multiply equation 1 with 4 and add in equation 3 to eliminate x1 

from third equation. 
 
 

1 2 3

2 3

2 3

2 0
4 4

3 13 9

x x x
x x
x x

− + =
− =

− + = −

               

1 2 1 0
0 1 4 4
0 3 13 9

− 
 − 
 − − 

 

 
Now multiply equation 2 with 3 and add in equation 3 to eliminate x2 

from third equation. 
 

1 2 3

2 3

3

2 0
4 4
3

x x x
x x
x

− + =
− =
=

               
1 2 1 0
0 1 4 4
0 0 1 3

− 
 − 
  

 

 
Put value of x3 in second equation we get  

2 4(3) 4x − =  

2 16x =  

 
Now put these values of x2 and x3 in first equation we get  
 

1 2(16) 3 0x − + =  
 

1 29x =  
 
So a solution exists and the system is consistent and has a unique solution. 
 
 
Example 7 Solve if the following system of linear equations is consistent. 

2 3

1 2 3

1 2 3

4 8
2 3 2 1
5 8 7 1

x x
x x x
x x x

− =
− + =
− + =
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Solution The augmented matrix is 
0 1 4 8
2 3 2 1
5 8 7 1

− 
 − 
 − 

 

 
To obtain x1 in the first equation, interchange rows 1 and 2:  

2 3 2 1
0 1 4 8
5 8 7 1

− 
 − 
 − 

 

 
To eliminate the 5x1 term in the third equation, add –5/2 times row 1 to row 3: 

2 3 2 1
0 1 4 8
0 1/ 2 2 3/ 2

− 
 − 
 − − 

  

 
Next, use the x2 term in the second equation to eliminate the –(1/2) x2 term from the 
third equation. Add ½ times row 2 to row 3: 

2 3 2 1
0 1 4 8
0 0 0 5 / 2

− 
 − 
  

  

 
The augmented matrix is in triangular form.  
To interpret it correctly, go back to equation notation: 
 

1 2 3

2 3

2 3 2 1

4 8

0 2.5

x x x
x x

− + =

− =

=

 

There are no values of x1, x2, x3 that will satisfy because the equation 0 = 2.5 is never 
true. 
Hence original system is inconsistent (i.e., has no solution).  
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Exercises 
 
1. State in words the next elementary “row” operation that should be performed on the 

system in order to solve it. (More than one answer is possible in (a).) 
 

1 2 3 4

2 3 4

3 4

3 4

. 4 2 8 12
7 2 4
5 7

3 5

a x x x x
x x x

x x
x x

+ − + =
− + = −

− =
+ = −

  

1 2 3 4

2 3

3

4

. 3 5 2 0
8 4
2 7

1

b x x x x
x x

x
x

− + − =

+ = −
=
=

 

 
2. The augmented matrix of a linear system has been transformed by row operations into 

the form below. Determine if the system is consistent. 
 

1 5 2 6
0 4 7 2
0 0 5 0

− 
 − 
  

 

 
3. Is (3, 4, –2) a solution of the following system? 
 

1 2 3

1 2 3

1 2 3

5 2 7
2 6 9 0
7 5 3 7

x x x
x x x
x x x

− + =
− + + =
− + − = −

 

 
4. For what values of h and k is the following system consistent? 
 

1 2

1 2

2
6 3

x x h
x x k
− =

− + =
 

 
Solve the systems in the exercises given below; 
 

5.  
2 3

1 2 3

1 2 3

5 4

4 3 2

2 7 1

x x
x x x
x x x

+ = −

+ + = −

+ + = −

  6.  
1 2 3

1 2 3

1 2 3

5 4 3
2 7 3 2

2 7 1

x x x
x x x
x x x

− + = −
− + = −

− − =

 

 
 
 

7.  
1 2

1 2 3

2 3

2 4

3 3 2

0

x x
x x x

x x

+ =

− − =

+ =

  8.  
1 3

2 3

1 2 3

2 4 10
3 2

3 5 8 6

x x
x x

x x x

− = −
+ =

+ + = −
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Determine the value(s) of h such that the matrix is augmented matrix of a consistent 
linear system. 
 

9. 
1 3
2 6 5

h− 
 − − 

    10. 
1 2
4 2 10

h − 
 − 

 

 
Find an equation involving g, h, and that makes the augmented matrix correspond to a 
consistent system. 
 

11. 
1 4 7
0 3 5
2 5 9

g
h
k

− 
 − 
 − − 

   12. 
2 5 3
4 7 4
6 3 1

g
h
k

− 
 − 
 − − 

 

 
Find the elementary row operations that transform the first matrix into the second, and 
then find the reverse row operation that transforms the second matrix into first. 
 

13. 
1 3 1 1 3 1
0 2 4 , 0 1 2
0 3 4 0 3 4

− −   
   − −   
   − −   

  14. 
0 5 3 1 5 2
1 5 2 , 0 5 3
2 1 8 2 1 8

− −   
   − −   
      

 

 

15. 
1 3 1 5 1 3 1 5
0 1 4 2 , 0 1 4 2
0 2 5 1 0 0 3 5

− −   
   − −   
   − − −   
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Lecture 4 
 

Row Reduction and Echelon Forms 
 
 To analyze system of linear equations, we shall discuss how to refine the row reduction 
algorithm.  While applying the algorithm to any matrix, we begin by introducing a non 
zero row or column (i.e. contains at least one nonzero entry) in a matrix,  
 
Echelon form of a matrix 
 
A rectangular matrix is in echelon form (or row echelon form) if it has the following three 
properties: 
 

1. All nonzero rows are above any rows of all zeros 
2. Each leading entry of a row is in a column to the right of the leading entry of the 

row above it. 
3. All entries in a column below a leading entry are zero. 

 
 
Reduced Echelon Form of a matrix 
 
If a matrix in echelon form satisfies the following additional conditions, then it is in 
reduced echelon form (or reduced row echelon form): 
 

4. The leading entry in each nonzero row is 1. 
5. Each leading 1 is the only nonzero entry in its column. 

 
Examples of Echelon Matrix form 
 
The following matrices are in echelon form. The leading entries (  ) may have any 
nonzero value; the started entries (*) may have any values (including zero). 
 
                        

2 3 2 1
1. 0 1 4 8

0 0 0 5 / 2

− 
 − 
  
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0 * * * * * * * *
* * *

0 0 0 * * * * * *
0 * *

2. 3. 0 0 0 0 * * * * *
0 0 0 0

0 0 0 0 0 * * * *
0 0 0 0

0 0 0 0 0 0 0 0 *

 
   
   
   
   
   
    















            

1 4 3 7 1 1 0
4. 0 1 6 2 5. 0 1 0

0 0 1 5 0 0 0

0 1 2 6 0
6. 0 0 1 1 0

0 0 0 0 1

−   
   
   
      

 
 − 
  

 

 
Examples of Reduced Echelon Form 
 
The following matrices are in reduced echelon form because the leading entries are 1’s, 
and there are 0’s below and above each leading 1. 

                              

1 0 0 29
1. 0 1 0 16

0 0 1 1

 
 
 
  

 

0 1 * 0 0 0 * * 0 *
1 0 * *

0 0 0 1 0 0 * * 0 *
0 1 * *

2. 3. 0 0 0 0 1 0 * * 0 *
0 0 0 0

0 0 0 0 0 1 * * 0 *
0 0 0 0

0 0 0 0 0 0 0 0 1 *

 
   
   
   
   
   
    

 

0 1 2 0 1
1 0 0 4 1 0 0

0 0 0 1 3
4. 0 1 0 7 5. 0 1 0 6.

0 0 0 0 0
0 0 1 1 0 0 1

0 0 0 0 0

− 
     
     
     
   −     

 

 

Note A matrix may be row reduced into more than one matrix in echelon form, using 
different sequences of row operations. However, the reduced echelon form obtained from 
a matrix, is unique.  
 
Theorem 1 (Uniqueness of the Reduced Echelon Form) Each matrix is row equivalent 
to one and only one reduced echelon matrix. 
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Pivot Positions 
A pivot position in a matrix A is a location in A that corresponds to a leading entry in an 
echelon form of A.  
 
Note When row operations on a matrix produce an echelon form, further row operations 
to obtain the reduced echelon form do not change the positions of the leading entries.  
 
Pivot column 
 
A pivot column is a column of A that contains a pivot position. 
 
Example 2 Reduce the matrix A below to echelon form, and locate the pivot columns 

0 3 6 4 9
1 2 1 3 1
2 3 0 3 1

1 4 5 9 7

A

− − 
 − − − =
 − − −
 − − 

 

 
Solution Leading entry in first column of above matrix is zero which is the pivot 
position. A nonzero entry, or pivot, must be placed in this position. So interchange first 
and last row. 
 

    

1 4 5 9 7
1 2 1 3 1
2 3 0 3 1

0 3 6 4 9

Pivot ↵ − −
 − − − 
 − − −
 

− − 

 

     
     Pivot Column 
 
Since all entries in a column below a leading entry should be zero. For this add row 1 in 
row 2, and multiply row 1 by 2 and add in row 3. 
      Pivot 

                          

1 4 5 9 7
0 2 4 6 6
0 5 10 15 15
0 3 6 4 9

− − 
 − − 
 − −
 − − 

           

      Next pivot column 
 
Add –5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4. 
   
 
 

1 2

1 32
R R

R R
+
+
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1 4 5 9 7
0 2 4 6 6
0 0 0 0 0
0 0 0 5 0

− − 
 − − 
 
 − 

 
2 3

2 4

5
2

3
2

R R

R R

− +

+
        

 
Interchange rows 3 and 4, we can produce a leading entry in column 4. 
 
       Pivot 

 

1 4 5 9 7 * * * *
0 2 4 6 6 0 * * *
0 0 0 5 0 0 0 0 *
0 0 0 0 0 0 0 0 0 0

General form

− −   
   − −   
   −
   
   







 

    Pivot column 
 
 
This is in echelon form and thus columns 1, 2, and 4 of A are pivot columns. 
 
      Pivot positions 

0 3 6 4 9
1 2 1 3 1
2 3 0 3 1

1 4 5 9 7

− − 
 − − − 
 − − −
 − − 

         

      Pivot columns 
 
Pivot element 
 
A pivot is a nonzero number in a pivot position that is used as needed to create zeros via 
row operations 
 
The Row Reduction Algorithm consists of four steps, and it produces a matrix in 
echelon form. A fifth step produces a matrix in reduced echelon form.  
 
The algorithm is explained by an example. 
 
Example 3 Apply elementary row operations to transform the following matrix first 
into echelon form and then into reduced echelon form. 
 

   
0 3 6 6 4 5
3 7 8 5 8 9
3 9 12 9 6 15

− − 
 − − 
 − − 
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Solution 
 
STEP 1 Begin with the leftmost nonzero column. This is a pivot column. The pivot 
position is at the top. 
 

   
0 3 6 6 4 5
3 7 8 5 8 9
3 9 12 9 6 15

− − 
 − − 
 − − 

 

    Pivot column 
 
 
STEP 2 Select a nonzero entry in the pivot column as a pivot. If necessary, interchange 
rows to move this entry into the pivot position 
 
Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.) 
 
       Pivot 

3 9 12 9 6 15
3 7 8 5 8 9
0 3 6 6 4 5

− − 
 − − 
 − − 

 

 
STEP 3 Use row replacement operations to create zeros in all positions below the pivot 
 
Subtract Row 1 from Row 2. i.e. 2 1R R−  
    Pivot 

3 9 12 9 6 15
0 2 4 4 2 6
0 3 6 6 4 5

− − 
 − − 
 − − 

 

 
STEP 4 Cover (or ignore) the row containing the pivot position and cover all rows, if 
any, above it. Apply steps 1 –3 to the sub-matrix, which remains. Repeat the process until 
there are no more nonzero rows to modify. 
 
 
With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2, 
we’ll select as a pivot the “top” entry in that column. 
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          Pivot 
3 9 12 9 6 15
0 2 4 4 2 6
0 3 6 6 4 5

− − 
 − − 
 − − 

 

     Next pivot column 
 
According to step 3 “All entries in a column below a leading entry are zero”. For this 
subtract 3/2 time R2 from R3 
 

3 9 12 9 6 15
0 2 4 4 2 6
0 0 0 0 1 4

− − 
 − − 
  

 3 2
3
2

R R−  

 
When we cover the row containing the second pivot position for step 4, we are left with a 
new sub matrix having only one row: 
 
 

3 9 12 9 6 15
0 2 4 4 2 6
0 0 0 0 1 4

− − 
 − − 
  

 

    Pivot 
This is the Echelon form of the matrix.  
To change it in reduced echelon form we need to do one more step: 
 
STEP 5  Make the leading entry in each nonzero row 1. Make all other entries of that 
column to 0. 
 
Divide first Row by 3 and 2nd Row by 2 
 

              

1 3 4 3 2 5
0 1 2 2 1 3
0 0 0 0 1 4

− − 
 − − 
  

       2
1
2

R ,    1
1
3

R  

 
Multiply second row by 3 and then add in first row. 
 

              

1 0 2 3 5 4
0 1 2 2 1 3
0 0 0 0 1 4

− − 
 − − 
  

         2 13R R+  

 
Subtract row 3 from row 2, and multiply row 3 by 5 and then subtract it from first row 
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1 0 2 3 0 24
0 1 2 2 0 7
0 0 0 0 1 4

− − 
 − − 
  

     2 3

1 35
R R
R R

−

−
 

This is the matrix is in reduced echelon form. 
 
Solutions of Linear Systems 
 
When this algorithm is applied to the augmented matrix of the system it gives solution set 
of linear system. 
Suppose, for example, that the augmented matrix of a linear system has been changed 
into the equivalent reduced echelon form 

1 0 5 1
0 1 1 4
0 0 0 0

− 
 
 
  

 

 
There are three variables because the augmented matrix has four columns. The associated 
system of equations is 

1 3

2 3

3

5 1
4

0 0 which means x is free

x x
x x
− =
+ =

=

      (1)  

               
The variables x1 and x2 corresponding to pivot columns in the above matrix are called 
basic variables. The other variable, x3 is called a free variable. 
 
Whenever a system is consistent, the solution set can be described explicitly by solving 
the reduced system of equations for the basic variables in terms of the free variables. This 
operation is possible because the reduced echelon form places each basic variable in one 
and only one equation.  
 
In (4), we can solve the first equation for x1 and the second for x2. (The third equation is 
ignored; it offers no restriction on the variables.) 

1 3

2 3

3

1 5
4

x x
x x
x is free

= +
= −        (2) 

 
By saying that x3 is “free”, we mean that we are free to choose any value for x3. When   
x3 = 0, the solution is (1, 4, 0); when x3 = 1, the solution is (6, 3, 1 etc).  
 
Note The solution in (2) is called a general solution of the system because it gives an 
explicit description of all solutions. 
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Example 4 Find the general solution of the linear system whose augmented matrix has 

been reduced to 
1 6 2 5 2 4
0 0 2 8 1 3
0 0 0 0 1 7

− − − 
 − − 
  

 

 
Solution The matrix is in echelon form, but we want the reduced echelon form 
before solving for the basic variables. The symbol “~” before a matrix indicates that the 
matrix is row equivalent to the preceding matrix. 
 

  1 3 2 3

1 6 2 5 2 4
0 0 2 8 1 3
0 0 0 0 1 7

By 2 and Weget

1 6 2 5 0 10
0 0 2 8 0 10
0 0 0 0 1 7

R R R R

− − − 
 − − 
  

+ +

− 
 − 
  



 

   2
1 we get
2

By R  

 
1 6 2 5 0 10
0 0 1 4 0 5
0 0 0 0 1 7

− 
 − 
  

  

 
1 2By 2 we getR R−  

 
1 6 0 3 0 0
0 0 1 4 0 5
0 0 0 0 1 7

 
 − 
  

  

 
The matrix is now in reduced echelon form. 
The associated system of linear equations now is 

1 2 4

3 4

5

6 3 0

4 5

7

x x x
x x

x

+ + =

− =

=

           (6) 

 
The pivot columns of the matrix are 1, 3 and 5, so the basic variables are x1, x3, and x5. 
The remaining variables, x2 and x4, must be free.  
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Solving for the basic variables, we obtain the general solution: 
 
    x1 = -6x2 –3x4 

x2 is free 
x3 = 5 + 4x4             (7) 
x4 is free 
x5 = 7 

 
Note that the value of x5 is already fixed by the third equation in system (6).  
 
Exercise 
 
1. Find the general solution of the linear system whose augmented matrix is  
 

1 3 5 0
0 1 1 3

− − 
 
 

 

 
2. Find the general solution of the system 
 

1 2 3 4

1 2 3 4

1 2 3 4

2 3 0
2 4 5 5 3

3 6 6 8 2

x x x x
x x x x
x x x x

− − + =
− + + − =

− − + =

 

   
 
Find the general solutions of the systems whose augmented matrices are given in 
Exercises 3-12 
 

3.   
1 0 2 5
2 0 3 6
 
 
 

    4.   
1 3 0 5
3 7 0 9

− − 
 − 

 

 

5.  
0 3 6 9
1 1 2 1

 
 − − − 

   6.  
1 3 3 7
3 9 4 1

− 
 − 

 

 

7.  
1 2 7
1 1 1

2 1 5

− 
 − − 
 
 

   8.  
1 2 4
2 3 5

2 1 1

 
 − − − 
 − 
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9.  
2 4 3
6 12 9

4 8 6

− 
 − − 
 − 

   10.  

1 0 9 0 4
0 1 3 0 1
0 0 0 1 7
0 0 0 0 1

− 
 − 
 −
 
 

 

 

11.  

1 2 0 0 7 3
0 1 0 0 3 1
0 0 0 1 5 4
0 0 0 0 0 0

− − 
 − 
 −
 
 

  12.             

1 0 5 0 8 3
0 1 4 1 0 6
0 0 0 0 1 0
0 0 0 0 0 0

− − 
 − 
 
 
 

 

 
 
 
Determine the value(s) of h such that the matrix is the augmented matrix of a consistent 
linear system. 
 

13. 
1 4 2
3 1h

 
 − − 

     14. 
1 3
2 8 1

h 
 
 

 

 
Choose h and k such that the system has (a) no solution, (b) a unique solution, and (c) 
many solutions. Give separate answer for each part. 
 
15. x1 + hx2 = 1     16. x1 - 3x2 = 1 
      2x1 + 3x2 = k           2x1 + hx2 = k 
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Lecture 5 

Vector Equations 
This lecture is devoted to connect equations involving vectors to ordinary systems of 

equations. The term vector appears in a variety of mathematical and physical contexts, 

which we will study later, while studying “Vector Spaces”. Until then, we will use vector 

to mean a list of numbers. This simple idea enables us to get interesting and important 

applications as quickly as possible. 

Column Vector 

“A matrix with only one column is called column vector or simply a vector”. 

e.g. [ ] [ ] 1 2 3 4

2
3

3 1 , 2 3 5 ,3
1

5

TT T w w w wu v w
 

     = − = = = =    −    

 are all 

column vectors or simply vectors.  

Vectors in R2 

If  is the set of all real numbers then the set of all vectors with two entries is denoted    

by 2 = ×   . 

For example:  the vector [ ] 3
3 1

1
Tu  

= − =  − 
 2∈  

Here real numbers are appeared as entries in the vectors, and the exponent 2 indicates that 

the vectors contain only two entries. 

Similarly R3 and R4 contain all vectors with three and four entries respectively. The 
entries of the vectors are always taken from the set of real numbers R. The entries in 
vectors are assumed to be the elements of a set, called a Field. It is denoted by F .     
Algebra of Vectors 

Equality of vectors in 2  

  Two vectors in R2 are equal if and only if their corresponding entries are equal. 

  1 1 2
1 1 2 2

2 2

If ,
u v

u then u v iff u v u v
u v

v   
= = ∈ = = ∧ =   
   

  

   So  
4 4
6 3
   

≠   
   

  as 4 4=  but 6 3≠  
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Note In fact, vectors 
x
y
 
 
 

 in R2 are nothing but ordered pairs ( ),x y of real numbers both 

representing the position of a point with respect to origin. 

Addition of Vectors 

Given two vectors u and v in R2, their sum is the vector u + v obtained by adding 

corresponding entries of the vectors u and v, which is again a vector in 2
   

 

For  1 1 2

2 2

,
u v

u v
u v
   

= = ∈   
   

  Then 1 1 1 1 2

2 2 2 2

u v u v
u v

u v u v
+     

+ + = ∈     +     
=   

 

For example, 
1 2 1 2 3
2 5 2 5 3

+
+ = =

− − +
       
       
       

 

 

Scalar Multiplication of a vector 

 

Given a vector u and a real number c, the scalar multiple of u by c is the vector cu 

obtained by multiplying each entry in u by c.  

For example, if 
3 3 15

5, 5
1 1 5

u and c then cu     
= = = =     − − −     

 

Notations The number c in cu is a scalar; it is written in lightface type to distinguish it 

from the boldface vector u. 

Example 1 Given 
1 2

,
2 5

u and v   
= =   − −   

find 4u,   (-3) v, and 4u + (-3) v 

 

Solution 
1 4 1 4 2 6

4 4 , ( 3) ( 3)
2 4 ( 2) 8 5 15

u v
× −         

== = = − = − =         − × − − −         
 

 

And 
4 6 2

4 ( 3)
8 15 7

u v
− −     

+ − = + =     −     
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Note: Sometimes for our convenience, we write a column vector 
3
1

 
 − 

 in the form  

(3, –1). In this case, we use parentheses and a comma to distinguish the vector (3, –1) 

from the 1 2×  row matrix [3   –1], written with brackets and no comma.  

Thus  
3

[3 1]
1

 
≠ − − 

   but   
3
1

 
 − 

= (3, –1) 

Geometric Descriptions of R2 

Consider a rectangular coordinate system in the plane. Because each point in the plane is 

determined by an ordered pair of numbers, we can identify a geometric point (a, b) with 

the column vector
a
b
 
 
 

. So we may regard R2 as the set of all points in the plane.  

See Figure 1.         x2  

      

       .(2, 2) 

        x1 

      (-2, -1).  .(3, –1) 

     

    Figure 1 Vectors as points. 

 

Vectors in R3 

       Vectors in R3 are 3 1×  column matrices with three entries. They are represented 

geometrically by points in a three-dimensional coordinate space, with arrows from the 

origin sometimes included for visual clarity.  

Vectors in Rn 

     If n is a positive integer, Rn (read “r-n”) denotes the collection of all lists (or ordered 

n- tuples) of n real numbers, usually written as 1n×  column matrices, such as 

    [ ]1 2
T

nu u u u=   

     The vector whose all entries are zero is called the zero vector and is denoted by O. 

(The number of entries in O will be clear from the context.) 

 

 



5-Vector Equations                                                                                                                                       VU 

                                                                                                                                                                                                  
                                                       © Virtual University Of Pakistan                                                            49 

 

Algebraic Properties of Rn 

For all u, v, w in Rn and all scalars c and d: 

 

 (i)  u + v = v + u    (Commutative)      

 (ii)  (u + v) + w = u + (v + w)    (Associative)   

(iii) u + 0 = 0 + u = u     (Additive Identity)   

(iv)  u + (–u) =( –u) + u = 0    (Additive Inverse)      

  where –u denotes (–1)u 

(v)  c(u + v) = cu + cv         (Scalar Distribution over Vector Addition) 

(vi)  (c + d)u = cu + du        (Vector Distribution over Scalar Addition) 

(vii)  c(du) = (cd)u      

(viii) 1u=u 

Linear Combinations Given vectors v1, v2, …, vp in Rn and given scalars c1, c2, …, cp 

the vector defined by  

1 1 2 2 p py c v c v c v= + + +   

is called a linear combination of v1, … , vp using weights c1, ... , cp.  

          Property (ii) above permits us to omit parenthesis when forming such a linear 

combination. The weights in a linear combination can be any real numbers, including 

zero. 

Example 

 For 1 2

1 2
,

1 1
v v

−   
= =   
   

 , if 1 2
5 1
2 2

w v v= −  then we say that w is a linear combination of 

v1 and v2. 

Example  As (3, 5 , 2) = 3(1, 0 , 0) + 5(0, 1 , 0) + 2(0, 0 , 1) 

 (3, 5 , 2) =  3 1v  + 5 2v + 2 3v   where 1v = (1, 0 , 0) , 2v = (0, 1 , 0)  3v = (0, 0 , 1) 

So  (3, 5 , 2) is a vector which is linear combination of  1v , 2v , 3v  

Example 5 Let 1 2

1 2 7
2 , 5 , 4 .
5 6 3

a a and b
     
     = − = =     
     − −     
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Determine whether b can be generated (or written) as a linear combination of a1 and a2. 

That is, determine whether weights x1 and x2 exist such that 

                                  x1 a1 + x2 a2 = b     (1) 

If the vector equation (1) has a solution, find it. 

Solution Use the definitions of scalar multiplication and vector addition to rewrite the 

vector equation 

1 2

1 2 7
2 5 4
5 6 3

x x
     
     − + =     
     − −     

 

 

      a1  a2 b 

  ⇒  
1 2

1 2

1 2

2 7
2 5 4
5 6 3

x x
x x
x x

     
     − + =     
     − −     

 

  ⇒  
1 2

1 2

1 2

2 7
2 5 4
5 6 3

x x
x x
x x

+   
   − + =   
   − + −   

      (2) 

⇒       
1 2

1 2

1 2

2 7
2 5 4

5 6 3

x x
x x

x x

+ =
− + =
− + = −

         (3)  

We solve this system by row reducing the augmented matrix of the system as follows: 

2 1 3 1

1 2 7
2 5 4
5 6 3

2 ; 5By R R R R

 
 − 
 − − 

+ +

 

                  

/
2 3

1 2 7
0 9 18
0 16 32

1 1;
9 16

By R R

 
 
 
  

   
   
   
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1 2 7
0 1 2
0 1 2

 
 
 
  

 

                         3 2 1 2; 2By R R R R− −  

                        

1 0 3
0 1 2
0 0 0

 
 
 
  

 

                           

The solution of (3) is x1 = 3 and x2 = 2. Hence b is a linear combination of a1 and a2, 

with weights x1 = 3 and x2 = 2. 

Spanning Set 

       If v1, . . .  , vp are in Rn, then the set of all linear combinations of v1, . . .  , vp is 

denoted by Span { v1, . . .  , vp } and is called the subset of Rn spanned (or generated) by 

v1, . . .  , vp . That is, Span { v1,  . . .  , vp} is the collection of all vectors that can be 

written in the form of  c1v1 + c2v2 + … + cpvp, with c1, . . . , cp scalars. 

If we want to check whether a vector b is in Span {v1,  . . .  , vp } then we will see whether 

the vector equation 

             x1v1 +x2v2 + ... + xpvp = b has a solution, or  

 Equivalently, whether the linear system with augmented matrix [ v1, …  , vp     b] has a 

solution. 

Note 

(1) The set Span { v1, . . .  , vp} contains every scalar multiple of v1  

         because   cv1 = cv1 + 0v2 + …. + 0vp i.e every cvi can be written as a linear 

combination of v1, . . .  , vp 

(2) Zero vector 0 { , , }1 2Span v v vn= ∈ 

 as 0  can be written as the linear combination of  

1 2, , nv v v  that is 0 0 0 01 2F F Fv v vv n= + + +  here for the convenience it is mentioned 

that 0v   is the vector(zero vector) while 0F  is zero scalar (weight of all 1 2, , nv v v ) and in 

particular not to make confusion that 0v  and 0F  are same! 
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A Geometric Description of Span {v} and Span {u, v} 

     Let v be a nonzero vector in R3. Then Span {v} is the set of all linear combinations of v 

or in particular set of scalar multiples of v, and we visualize it as the set of points on the 

line in R3 through v and 0.  

     If u and v are nonzero vectors in R3, with v not a multiple of u, then Span {u, v} is the 

plane in R3 that contains u, v and 0. In particular, Span {u, v} contains the line in R3 

through u and 0 and the line through v and 0. 

Example 6 Let 1 2

1 5 3
2 , 13 , 8 .

3 3 1
a a and b

−     
     = − = − =     
     −     

  

Then Span {a1, a2} is a plane through the origin in R3. Does b lie in that plane? 

 

Solution  First we see the equation x1a1 + x2a2 = b has a solution?  

         To answer this, row-reduce the augmented matrix [a1   a2    b]: 

         

2 1

1 5 3
2 13 8

3 3 1
2By R R

− 
 − − 
 − 

+

 

       
1 5 3
0 3 2
0 18 10

− 
 − 
  

 

         3 26By R R+  

 
1 5 3
0 3 2
0 0 2

− 
 − 
 − 

 

Last row 20 2x⇒ = −  which can not be true for any value of 2x ∈  

⇒Given system has no solution 

1 2,{ }b Span a a∴ ∉         and  

in geometrical meaning, vector b  does not lie in the plane spanned by vectors 

1 2anda a  
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Linear Combinations in Applications 

The final example shows how scalar multiples and linear combinations can arise when a 

quantity such as “cost” is broken down into several categories. The basic principle for the 

example concerns the cost of producing several units of an item when the cost per unit is 

known: 

 

number cos total
of units per unit cos

t
t

     
⋅ =     

     
  

Example 7 A Company manufactures two products. For one dollar’s worth of product 

B, the company spends $0.45 on materials, $0.25 on labor, and $0.15 on overhead. For 

one dollar’s worth of product C, the company spends $0.40 on materials, $0.30 on labor 

and $0.15 on overhead.  

Let
.45 .40
.25 .30
.15 .15

b and c
   
   = =   
      

, then b and c represent the “costs per dollar of income” 

for the two products. 

 

a) What economic interpretation can be given to the vector 100b? 

b) Suppose the company wishes to manufacture x1 dollars worth of product B and x2 

dollars worth of product C. Give a vector that describes the various costs the 

company will have (for materials, labor and overhead). 

Solution 

(a) We have 
.45 45

100 100 .25 25
.15 15

b
   
   = =   
      

 

The vector 100b represents a list of the various costs for producing $100 worth of product 

B, namely, $45 for materials, $25 for labor, and $15 for overhead. 

 

(b) The costs of manufacturing x1 dollars worth of B are given by the vector x1b and the 

costs of manufacturing x2 dollars worth of C are given by x2c. Hence the total costs 

for both products are given by the vector x1b + x2c. 
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Vector Equation of a Line 

Let x0 be a fixed point on the line and v be a nonzero vector that is parallel to the 

required line. Thus, if x is a variable  point on the line through x0 that is parallel to v, 

then the vector x – x0 is a vector  parallel to v as shown in fig below, 

 
So by definition of parallel vectors   x– x0 = tv   for some scalar t.  

   it is also called a parameter which varies from −∞  to +∞ . The variable point x traces 

out the line, so the line can be represented by the equation 

 x– x0 = tv --------------(1)        ( )t−∞ < < +∞                      

   This is a vector equation of the line through x0 and parallel to v.  

In the special case, where x0 = 0, the line passes through the origin, it simplifies to  

                                        x = tv         ( )t−∞ < < +∞   

 Parametric Equations of a Line in R2 

 Let x = (x, y) 2R∈  be a general point of the line through  x0 = (x0, y0) 2R∈  which is 

parallel to  
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  v = (a, b) 2R∈ , then eq. 1 takes the form 

(x, y) - (x0, y0) = t(a, b)      ( )t−∞ < < +∞             

                  ⇒  (x - x0  , y - y0) = (ta , tb)      ( )t−∞ < < +∞                 

                  ⇒  x = x0 + at,   y = y0 + bt   ( )t−∞ < < +∞                                     

These are called parametric equations of the line 2in R  . 

Parametric Equations of a Line in R3 

Similarly, if we let x = (x, y, z) 3R∈  be a general point on the line through   

x0 = (x0, y0 , z0) 3R∈  that is parallel to v = (a, b, c) 3R∈ , then again eq. 1 takes the form 

(x, y, z) = (x0, y0, z0) + t(a, b, c) ( )t−∞ < < +∞  

               ⇒     x= x0 + at,   y = y0 + bt,   z = z0 + ct   ( )t−∞ < < +∞                

These are the parametric equations of the line 3in R  

 
Example 8 
 

(a) Find a vector equation and parametric equations of the line in R2 that passes 

through the origin and is parallel to the vector v = (–2, 3). 

 

(b) Find a vector equation and parametric equations of the line in R3 that passes 

through the point P0(1, 2, –3) and is parallel to the vector v = (4, –5, 1). 

 

(c) Use the vector equation obtained in part (b) to find two points on the line that are 

different from P0. 

Solution 

 

(a) We know that a vector equation of the line passing through origin is x = tv.  

Let x = (x, y). Then this equation can be expressed in component form as 

(x, y) = t (–2, 3)  

            This is the vector equation of the line.  

Equating corresponding components on the two sides of this equation yields the 

parametric equations  x = – 2t,    y = 3t  
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(b) The vector equation of the line is   x = x0 + tv.  

 Let x = (x, y, z), Here x0 = (1, 2, –3) and v = (4, –5, 1), then above equation can 

be expressed in component form as 

 (x, y, z) = (1, 2, –3) + t (4, –5, 1)  

 

Equating corresponding components on the two sides of this equation yields the 

parametric equations 

 

   x = 1 + 4t,   y = 2 – 5t,   z = –3 + t   

 

(c)   Specific points on a line can be found by substituting numerical values for the 

parameter t.  

 

For example, if we take t = 0 in part (b), we obtain the point (x, y, z) = (1, 2, –3), 

which is the given point P0.  

 t = 1 yields the point (5, –3, –2) and   

            t = –1 yields the point (–3, 7, – 4). 

Vector Equation of a Plane 

Let x0 be a fixed point on the required plane W and v1 and v2 be two nonzero vectors that 

are parallel to W and are not scalar multiples of one another. If x is any variable point in 

the plane W. Suppose v1 and v2 have their initial points at x0, we can create a 

parallelogram with adjacent side’s t1v1 and t2v2 in which x – x0 is the diagonal given by 

the sum 

x – x0 = t1v1 + t2v2 

 

or, equivalently, x = x0 + t1v1 + t2v2     ---------------------(1) 

 

where t1 and t2 are parameters vary independently from −∞  to +∞ ,  

This is a vector equation of the plane through x0 and parallel to the vectors v1 and v2. In 

the special case where x0 = 0, then vector equation of the plane passes through the origin 

takes the form 
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   x = t1v1 + t2v2   1 2( , )t t−∞ < < +∞ −∞ < < +∞  

 

Parametric Equations of a Plane 

 

 Let x = (x, y, z) be a general or variable point in the plane passes through a fixed point   

x0 = (x0, y0, z0) and parallel to the vectors v1 = (a1, b1, c1) and v2 = (a2, b2, c2), then the 

component form of eq. 1 will be 

(x, y, z) = (x0, y0, z0) + t1(a1, b1, c1) +t2(a2, b2, c2) 

Equating corresponding components, we get  

   x = x0 +a1t1 + a2t2 

   y = y0 + b1t1 + b2t2          1 2( , )t t−∞ < < +∞ −∞ < < +∞             

   z = z0 + c1t1 + c2t2 

These are called the parametric equations for this plane. 

 

Example 9 (Vector and Parametric Equations of Planes) 

 

(a) Find vector and parametric equations of the plane that passes through the origin of 

R3 and is parallel to the vectors    v1 = (1, –2, 3) and v2 = (4, 0, 5). 

 

(b) Find three points in the plane obtained in part (a). 

 

Solution 

 

(a) As vector equation of the plane passing through origin  is x = t1v1 + t2v2.  

Let x = (x, y, z) then this equation can be expressed in component form as 

  (x, y, z) = t1(1, –2, 3) + t2 (4, 0, 5)  

            This is the vector equation of the plane.        

Equating corresponding components, we get 

 x = t1 + 4t2,     y = –2t1,     z = 3t1 + 5t2            

These are the parametric equations of the plane.  
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(b) Points in the plane can be obtained by assigning some real values to the          

            parameters t1 and t2:  

 

  t1 = 0 and t2 = 0      produces the point (0, 0, 0) 

 

  t1 = –2 and t2 = 1    produces the point (2, 4, –1)  

 

  t1 = ½ and t2 = ½     produces the point (5/2, –1, 4) 

Vector equation of Plane through Three Points 

If x0, x1 and x2 are three non collinear points in the required plane, then, obviously, the 

vectors v1 = x1 – x0 and v2 = x2 – x0 are parallel to the plane. So, a vector equation of the 

plane is 

x = x0 + t1(x1 – x0) + t2(x2 – x0)                                                

Example Find vector and parametric equations of the plane that passes through the 

points. P(2, – 4, 5), Q (–1, 4, –3) and R(1, 10, –7). 

Solution 

Let x = (x, y, z), and if we take x0, x1 and x2 to be the points P, Q and R respectively, 

then 1 0 ( 3,8, 8)x x PQ− = = − −


   and   2 0 ( 1,14, 12)x x PR− = = − −


     

So the component form will be 

 1 2( , , ) (2, 4,5) ( 3,8, 8) ( 1,14, 12)x y z t t= − + − − + − −  

This is the required vector equation of the plane. 

By equating corresponding components, we get 

 1 2 1 2 1 22 3 , 4 8 14 , 5 8 12x t t y t t z t t= − − = − + + = − −  

These are the parametric equations of the required plane.  

 

Question:    How can you tell that the points P, Q and R are not collinear? 

Finding a Vector Equation from Parametric Equations 

Example 11 Find a vector equation of the plane whose parametric equations are 

 

   1 2 1 2 1 24 5 , 2 8 ,x t t y t t z t t= + − = − + = +  
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Solution   First we rewrite the three equations as the single vector equation 

 

     1 2 1 2 1 2( , , ) (4 5 ,2 8 , )x y z t t t t t t= + − − + +                              

          ⇒  1 1 1 2 2 2( , , ) (4, 2,0) (5 , , ) ( ,8 , )x y z t t t t t t= + − + −  

                                ⇒  1 2( , , ) (4, 2,0) (5, 1,1) ( 1,8,1)x y z t t= + − + −  

This is a vector equation of the plane that passes through the point (4, 2, 0) and is parallel 

to the vectors v1 = (5, –1, 1) and v2 = (–1, 8, 1). 

 

Finding Parametric Equations from a General Equation 

 

Example 12 Find parametric equations of the plane x – y + 2z = 5. 

 

Solution First we solve the given equation for x in terms of y and z 

  x = 5 + y – 2z  

Now make y and z into parameters, and then express x in terms of these parameters.  

Let y = t1 and z = t2  

Then the parametric equations of the given plane are  

 x = 5 + t1 – 2t2,   y = t1,   z = t2 

 

Exercises 

1. Prove that u + v = v + u for any u and v in Rn. 

 

2. For what value(s) of h,  y belongs to Span {v1, v2, v3}?  Where 

 

 

1 2 3

1 5 3 4
1 , 4 1 , 3
2 7 0

v v v and y
h

− −       
       = − = − = =       
       − −       

 

 

3.  Determine whether b is a linear combination of a1, a2, and a3. 
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i). 1 2 3

1 2 6 11
0 , 3 , 7 , 5
1 2 5 9

a a a b
− −       

       = = = = −       
       −       

 

 

ii). 1 2 3

1 4 2 3
0 , 3 , 5 , 7

2 8 4 3
a a a b

−       
       = = = = −       
       − − −       

 

 

4.  Determine if b is a linear combination of the vectors formed from the columns of the 

matrix A.  

 

i). 
1 0 2 5
2 5 0 , 11

2 5 8 7
A b

−   
   = − =   
   −   

   ii). 
1 0 5 2
2 1 6 , 1

0 2 8 6
A b

   
   = − − = −   
      

 

 

 

In exercises 7-10, list seven vectors in Span {v1, v2}. For each vector, show that the 

weights on v1 and v2 used to generate the vector and list the three entries of the vector. 

Give also geometric description of the Span {v1, v2}. 

 

 

7. 1 2

5 1
1 , 1

3 5
v v

   
   = − =   
   −   

  8. 1 2

2 1
0 , 0
1 2

v v
−   
   = =   
   
   

  

 

 

9. 1 2

2 3
6 , 9
4 6

v v
−   

   = = −   
   −   

  10. 1 2

3.7 5.8
0.4 , 2.1

11.2 5.3
v v

−   
   = − =   
   
   
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11. Let 1 2

1 5 3
3 , 8 , 5

1 2
a a b

h

−     
     = = − = −     
     −     

 . For what value(s) of h is b in the plane spanned 

by a1 and a2? 

 

12. Let 1 2

1 2
0 , 1 , 3 .

2 7 5

h
v v and y

−     
     = = = −     
     − −     

 For what value(s) of h is y in the plane 

generated by v1 and v2? 

 

13. Let 
2 2

.
1 1

u and   
=    −   

Show that 
h
k
 
 
 

 is in Span{u, v} for all h and k. 
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Lecture 6 
 

Matrix Equations 
 
A fundamental idea in linear algebra is to view a linear combination of vectors as the 

product of a matrix and a vector. The following definition will permit us to rephrase some 

of the earlier concepts in new ways. 

Definition  If A is an m n×  matrix, with columns a1, a2, … , an and if x is in Rn, then the 

product of A and x denoted by Ax, is the linear combination of the columns of A using 

the corresponding entries in x as weights, that is, 

 

[ ]
1

1 2 1 1 2 2... ...n n n

n

x
Ax a a a x a x a x a

x

 
 = = + + + 
  



 

Note that Ax is defined only if the number of columns of A equals the number of entries 

in x. 

 
Example 1  

 

a) 
4

1 2 1 1 2 1
3 4 3 7

0 5 3 0 5 3
7

 
− −         = + +        − −         

4 6 7 3
0 15 21 6

−       
= + + =       −       

 

 

b) 
2 3 2 3

4
8 0 4 8 7 0

7
5 2 5 2

− −     
      = +            − −     

8 21 13
32 0 32
20 14 6

− −     
     = + =     
     − −     

 

 
 
Example 2   For v1, v2, v3 in Rm, write the linear combination 3v1 – 5v2 + 7v3 as a 

matrix times a vector. 

Solution Place v1, v2, v3 into the columns of a matrix A and place the weights 3, -5, 

and 7 into a vector x.  

That is, 1 2 3 1 2 3

3
3 5 7 [ ] 5

7
v v v v v v Ax

 
 − + = − = 
  
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We know how to write a system of linear equations as a vector equation involving a 

linear combination of vectors. For example, we know that the system 

 

1 2 3

2 3

2 4
5 3 1

x x x
x x

+ − =
− + =

 is equivalent to  1 2 3

1 2 1 4
0 5 3 1

x x x
−       

+ + =       −       
   

Writing the linear combination on the left side as a matrix times a vector, we get 

1

2

3

1 2 1 4
0 5 3 1

x
x
x

 
−     =    −     

  

Which has the form Ax = b, and we shall call such an equation a matrix equation, to 

distinguish it from a vector equation. 

  
Theorem 1 If A is an m n×  matrix, with columns a1, a2 ,... , an and if b is in Rm, the 

matrix equation   Ax = b has the same solution set as the vector equation   

x1a1 + x2a2 + … + xnan = b 

which, in turn, has the same solution set as the system of linear equations whose 

augmented matrix is [ ]1 2 ... na a a b  

Existence of Solutions  The equation Ax = b has a solution if and only if b is a linear 

combination of the columns of A. 

 

Example 3 Let 
1 3 4
4 2 6
3 2 7

A
 
 = − − 
 − − − 

 and 
1

2

3

b
b b

b

 
 =  
  

.  

Is the equation Ax = b consistent for all possible b1, b2, b3? 
 
 
Solution Row reduce the augmented matrix for Ax = b: 
       

 
1 2 1 34 ,3R R R R+ +  

1 1

2 2 1

3 3 1

1 3 4 1 3 4
4 2 6 0 14 10 4
3 2 7 0 7 5 3

b b
b b b
b b b

   
   − − +   
   − − − +   

  
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3 2
1
2

R R−  

1

2 1

3 1 2 1

1 2 1

0 14 10 4

10 0 0 3 ( 4 )
2

b

b b

b b b b

 − − 
 
 + 
 
 + − +
  

  

 

The third entry in the augmented column is 3 1 2 1
13 ( 4 )
2

b b b b+ − +  

The equation Ax = b is not consistent for every b because some choices of b can make 

1 2 3
1
2

b b b− +  nonzero. 

The entries in b must satisfy 1
1 2 32 0b b b− + =  

 

This is the equation of a plane through the origin in R3. The plane is the set of all linear 

combinations of the three columns of A. See figure below. 

 
 

 
 
                                                             
 
 
The equation Ax = b fails to be consistent for all b because the echelon form of A has a 

row of zeros. If A had a pivot in all three rows, we would not care about the calculations 

in the augmented column because in this case an echelon form of the augmented matrix 

could not have a row such as [0  0  0  1]. 
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Example 4 Which of the following are linear combinations of 
4 0 1 1 0 2

A , B , C
2 2 2 3 1 4

−     
= = =     − −     

 

(a) 
6 8
1 8

− 
 − − 

  

(b) 
0 0
0 0
 
 
 

 (c) 
6 0
3 8
 
 
 

 

 

Solution 
 

(a)   
6 8
1 8

− 
 − − 

 = a A + b B + c C 

   = a
4 0
2 2

 
 − − 

 + b
1 1
2 3

− 
 
 

 + c
0 2
1 4
 
 
 

 

   =
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − + 

 − + + − + + 
 

 

⇒   4a + b = 6   (1) 

  -b + 2c = -8  (2) 

  -2a + 2b + c = -1  (3) 

  -2a + 3b + 4c = -8  (4) 

 

Subtracting equation (4) from equation (3), we obtain 

  -b – 3c = 7      (5) 

Subtracting equation (5) from equation (2): 

  5c = -15 ⇒  c = -3 

 

From (2), -b + 2(-3) = -8 ⇒  b = 2 

From (3), -2a + 2(2) – 3 = -1 ⇒  a = 1 

Now we check whether these values satisfy equation (1). 

  4(1) + 2 = 6 
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It means that 
6 8
1 8

− 
 − − 

is the linear combination of A, B and C. 

Thus 

              
6 8
1 8

− 
 − − 

= 1A + 2B – 3C 

(b)   
0 0
0 0
 
 
 

= a A + b B + c C 

  = a
4 0
2 2

 
 − − 

 + b
1 1
2 3

− 
 
 

 + c
0 2
1 4
 
 
 

 

   =
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − + 

 − + + − + + 
 

 

⇒   4a + b = 0   (1) 

  -b + 2c = 0   (2) 

  -2a + 2b + c = 0  (3) 

  -2a + 3b + 4c = 0  (4) 

Subtracting equation (3) from equation (4) we get 

                                b + 3c = 0                        (5) 

Adding equation (2) and equation (5), we get 

                                5c = 0   ⇒     c = 0  

Put c = 0 in equation (5), we get  b = 0 

Put b = c = 0 in equation (3), we get a = 0 

⇒     a = b = c =0 

 

It means that 
0 0
0 0
 
 
 

is the linear combination of A, B and C. 

Thus 
0 0
0 0
 
 
 

= 0A + 0B + 0C 

 

(c)  
6 0
3 8
 
 
 

= a A + b B + c C 
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  = a
4 0
2 2

 
 − − 

 + b
1 1
2 3

− 
 
 

 + c
0 2
1 4
 
 
 

 

  =
4 2

2 2 2 3 4
a b b c

a b c a b c
+ − + 

 − + + − + + 
 

 

⇒   4a + b = 6   (1) 

  -b + 2c = 0   (2) 

  -2a + 2b + c = 3  (3) 

  -2a + 3b + 4c = 8  (4) 

Subtracting (4) from (3), we obtain 

  -b – 3c = -5  (5) 

Subtracting (5) from (2): 

  5c = 5 ⇒  c = 1 

 

From (2), -b + 2(1) = 0 ⇒  b = 2 

 

From (3), -2a + 2(2) + 1 = 3 ⇒  a = 1 

Now we check whether these values satisfy (1). 

  4(1) + 2 = 6 

   

It means that 
6 0
3 8
 
 
 

is the linear combination of A, B and C. 

Thus 
6 0
3 8
 
 
 

= 1A + 2B +1C 

Theorem 2 Let A be an m n×  matrix. Then the following statements are logically 

equivalent.  

(a) For each b in Rm, the equation Ax = b has a solution. 

(b) The columns of A Span Rm. 

(c) A has a pivot position in every row. 
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This theorem is one of the most useful theorems. It is about a coefficient matrix, not an 

augmented matrix. If an augmented matrix [A   b] has a pivot position in every row, then 

the equation Ax = b may or may not be consistent. 

Example 4 Compute Ax, where 
1

2

3

2 3 4
1 5 3

6 2 8

x
A and x x

x

   
   = − − =   
   −   

 

Solution From the definition, 

1

2 1 2 3

3

2 3 4 2 3 4
1 5 3 1 5 3

6 2 8 6 2 8

x
x x x x
x

         
         − − = − + + −         
         − −         

   

1 2 3

1 2 3

1 2 3

2 3 4
5 3

6 2 8

x x x
x x x
x x x

     
     = − + + −     
     −     

   

1 2 3

1 2 3

1 2 3

2 3 4
5 3

6 2 8

x x x
x x x
x x x

+ + 
 = − + − 
 − + 

 

Note 

In above example the first entry in Ax is a sum of products (sometimes called a dot 

product), using the first row of A and the entries in x.  

That is  [ ] [ ]
1

2 1 2 3

3

2 3 4 2 3 4
x
x x x x
x

 
  = + + 
  

 

Examples 

In each part determine whether the given vector span 3R  

 

 

 

 

 

 

 

1 2

3

1 2

3 4

1 2

3 4

( ) (2, 2, 2), (0, 0, 3),
(0, 1, 1)

( ) (3, 1, 4), (2, 3, 5),
(5, 2, 9) , (1, 4, 1)

( ) (1, 2,6), (3, 4, 1),
(4,3,1), (3, 3, 1)

a v v
v

b v v
v v

c v v
v v

= =
=
= = −
= − = −
= =
= =
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Solutions 

(a) We have to determine whether arbitrary vectors 1 2 3( , , )b b b b=   in 3R   can be 

expressed as a linear combination                                   of the vectors 1 2 3, ,v v v   

Expressing this in terms of components given by  

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

( , , ) (2, 2, 2) (0,0,3) (0,1,1)
( , , ) (2 0 0 ,2 0 ,2 3 )
2 0 0
2 0
2 3

b b b k k k
b b b k k k k k k k k k
k k k b
k k k b
k k k b

= + +
= + + + + + +

+ + =
+ + =
+ + =

 

2 0 0
2 0 1
2 3 1

A
 
 =  
  

           has a non zero determinant  

Now 

det( ) 6 0A = − ≠  

Therefore 1 2 3, ,v v v    span 3R   

(b) The set S{ 1 2 3 4, , ,v v v v }of vectors in  3R  spans V= 3R  if  

1 1 2 2 3 3 4 4 1 1 2 2 3 3

1

2

3

.......(1)

(1,0,0)
(0,1,0)
(0,0,1)

c v c v c v c v d w d w d w
with

w
w
w

+ + + = + +

=
=
=

 

With our vectors  1 2 3 4, , ,v v v v    equation (1) becomes 

1 2 3 4 1 2 3(3,1, 4) (2, 3,5) (5, 2,9) (1,4, 1) (1, ,0,0) (0,1,0) (0,0,1)c c c c d d d+ − + − + − = + +  

Rearranging the left hand side yields  

1 2 3 4 1 2 33 2 5 1 1 0 0c c c c d d d+ + + = + +  

1 2 3 4 1 2 31 3 2 4 0 1 0c c c c d d d− − + = + +  

1 2 3 4 1 2 34 5 9 1 0 0 1c c c c d d d+ + − = + +  

1 1 2 2 3 3b k v k v k v= + +
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3 2 5 1 1 0 0
1 3 2 4 0 1 0
4 5 9 1 0 0 1

 
 − − 
 − 

 

 

 

The reduce row echelon form  

 

 

 

 

Corresponds to the system of equations  

 

1 3 4 2 3

2 3 4 2 3

1 2 3

5 31 1 1 ( ) ( )
17 17

4 11 1 1 ( ) ( )
17 17

7 110 1 ( ) ( )
17 17

c c c d d

c c c d d

d d d

+ + = +

−
+ + − = +

−
= + + −

         ……………(2) 

So this system is inconsistent. The set S does not span the space V.  

Similarly Part C can be solved by the same way.  

Exercise 

1. Let  

3
1 5 2 0 7

2
3 1 9 5 , , 9

0
4 8 1 7 0

4

A x and b

 
− −    −    = − − = =    

   − −     − 

.  

It can be shown that Ax = b. Use this fact to exhibit b as a specific linear 

combination of the columns of A. 

 

11 0 2 1 0 0
2
10 1 1 1 0 1
2

0 0 0 0 1 3 2

 
 
 
 − 
 − − 
  

5 31 0 1 1 0
17 17

4 10 1 1 1 0
17 17

7 110 0 0 0 1
17 17

 
 
 

− − 
 − −
  
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2. Let  
2 5 4 3

, ,
3 1 1 5

A u and v
−     

= = =     −     
. Verify A(u + v) =  Au +Av. 

 

3. Solve the equation Ax = b, with 
2 4 6 2
0 1 3 , 5
3 5 7 3

A b
−   

   = =   
   − − −   

. 

 

4. Let 
5 3 5
3 1 1
6 2 8

u and A
−   
   = − =   
   − − −   

. Is u belongs to the plane in R3 spanned by the 

columns of A? Why or why not? 

 

5. Let 
8 4 3 5
2 0 1 1 .
3 1 2 0

u and A
   
   = = −   
      

 Is u in the subset of R3 spanned by the columns of 

A? Why or why not? 

 

6. Let 1

2

3 1
.

6 2
b

A and b
b

−   
= =   −   

 Show that the equation Ax = b is not consistent for all 

possible b, and describe the set of all b for which Ax = b is consistent. 

 

7. How many rows of 

1 3 2 2
0 1 1 5
1 2 1 7

1 1 0 6

A

− − 
 − =
 − −
 − 

 contain pivot positions? 

 

In exercises 8 to 13 , explain how your calculations justify your answer, and mention an 

appropriate theorem.  

8. Do the columns of the matrix 
1 3 4
3 2 6
5 1 8

A
− 

 = − 
 − − 

 span R3? 



6-Matrix Equations  VU 

 
©Virtual University Of Pakistan 72 

9. Do the columns of the matrix 

1 3 2 2
0 1 1 5
1 2 1 7

1 1 0 6

A

− − 
 − =
 − −
 − 

 span R4? 

 

10. Do the columns of the matrix 
0 0 2
0 5 1
4 6 3

A
 
 = − 
 − 

 span R3? 

 

11. Do the columns of the matrix 
3 5
1 1
2 8

A
 
 =  
 − − 

span R3? 

 

12. Let 1 2 3

1 0 1
0 1 0

, , .
1 0 0

0 1 1

v v v

     
     
     = = =
     −
     − −     

 Does {v1, v2, v3}span R4? 

 

13. Let 1 2 3

1 1 3
0 , 3 , 2 .

1 7 2
v v v

−     
     = = = −     
     − −     

 Does { v1, v2, v3} span R3? 

 

14. It can be shown that 
4 1 2 1 4
2 0 8 4 18

3 5 6 2 5

−     
     − =     
     −     

. Use this fact(and no row operations) 

to find scalars c1, c2, c3 such that 1 2 3

4 4 1 2
18 2 0 8
5 3 5 6

c c c
       
       = − + +       
       −       

. 
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15. Let 
3 1 1
8 , 3 , 1 .
4 1 3

u v and w
     
     = = =     
          

 It can be shown that 2u – 5v – w = 0. Use this 

fact(and no row operations) to solve the equation 1

2

3 1 1
8 3 1 .
4 1 3

x
x

   
    =           

  

 

Determine if the columns of the matrix span R4. 

 

16.

7 2 5 8
5 3 4 9

6 10 2 7
7 9 2 15

− 
 − − − 
 −
 − 

    17. 

12 7 11 9 5
9 4 8 7 3
6 11 7 3 9

4 6 10 5 12

− − 
 − − − 
 − − −
 − − 
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Lecture 7 
                                                                                                                                                            

Solution Sets of Linear Systems 

Solution Set 

A solution of a linear system is an assignment of values to the variables x1, x2,... , xn such 
that each of the equations in the linear system is satisfied. The set of all possible solutions 
is called the Solution Set 

Homogeneous Linear System 

A system of linear equations is said to be homogeneous if it can be written in the form 
Ax = 0, where A is an m n×  matrix and 0 is the zero vector in Rm.  
 
Trivial Solution 
A homogeneous system Ax = 0 always has at least one solution, namely, x = 0 (the zero 
vector in Rn). This zero solution is usually called the trivial solution of the homogeneous 
system.  
 
Nontrivial solution 
A solution of a linear system other than trivial is called its nontrivial solution.  
i.e the solution of a homogenous equation Ax = 0 such that x ≠  0 is called nontrivial 
solution, that is, a nonzero vector x that satisfies Ax = 0.  
 

Existence and Uniqueness Theorem 
 
The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation 
has at least one free variable. 
Example 1 Find the solution set of the following system 
 
   1 2 33 5 4 0x x x+ − =  

1 2 33 2 4 0x x x+ − =  

1 2 36 8 0x x x+ − =  
 
Solution 
 

Let
3 5 4
3 2 4
6 1 8

A
− 

 = − 
 − 

,     
1

2

3

x
X x

x

 
 =  
  

   ,  
0
0
0

b
 
 =  
  

 

The augmented matrix is 
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3 5 4 0
3 2 4 0
6 1 8 0

− 
 − 
 − 

 

 
 For solution set, row reduce to reduced echelon form 

 

1 2 1 3

2 3

3 5 4 0
0 3 0 0 1 , 2
0 9 0 0

3 5 4 0
0 3 0 0 3
0 0 0 0

R R R R

R R

− 
 − − + − + 
 − 

− 
 − − + 
  





 

1 2 2 1

2

1 3

2

41 0 0
3

0 1 0 0 1/ 3 , 1/ 3 ,5 / 3

0 0 0 0

41 0 0
3

0 1 0 0 ( 1)

0 0 0 0

4 0
3

0
0 0

R R R R

R

x x

x

 − 
 
 − + 
 
 
  
 − 
 
  − 
 
 
  

− =

=
=





 
 
It is clear that  x3 is a free variable, so Ax = 0 has nontrivial solutions (one for each 
choice of x3). From above equations we have, 

                                1 3 2
4 , 0,
3

x x x= =  with x3 free.  

As a vector, the general solution of Ax = 0 is given by: 
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3
1

2 3 3

3 3

4 4 4
3 3 3
0 0 , 0

1 1

xx
x x x x v where v

x x

     
      
      = = = = =      
             
     

 

 
This shows that every solution of Ax = 0 in this case is a scalar multiple of v (it means 
that v generate or spans the whole general solution).The trivial solution is obtained by 
choosing x3 = 0. 
Geometric Interpretation 
 
 Geometrically, the solution set is a line through 0 in R3, as given in the Figure below: 
 
 

           x3 
              v 

 
 
 

                                           x2 
 
 
                                x3 
    
 
Note: A nontrivial solution x can have some zero entries so long as not all of its entries 
are zero. 
 
Example 2 
         Solve the following system 
 

1 2 310 3 2 0x x x− − =        (1) 
 
Solution   
 Solving for the basic variable x1 in terms of the free variables, 
 dividing eq. 1 by 10 and solve for x 
               
   x1 = 0.3x2 + 0.2x3  where  x2 and x3 free variables. 
 
As a vector, the general solution is: 

1 2 3 2 3

2 2 2

3 3 3

0.3 0.2 0.3 0.2
0

0

x x x x x
x x x x

x x x

+       
       = = = +       
              
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2 3

0.3 0.2
1 0
0 1

x x
   
   = +   
      

      (2) 

 
    

          u v 
 
This calculation shows that every solution of (1) is a linear combination of the vector u, v 
shown in (2). That is, the solution set is Span {u, v} 
.  
Geometric Interpretation 
 
Since neither u nor v is a scalar multiple of the other, so these are not parallel, the 
solution set is a plane through the origin, see the Figure below: 
 
                                                      x3 

     x3 
      

 
                                                      

   
 

        x2 
                                            
                                                x1            
    
Note: 
         Above examples illustrate the fact that the solution set of a homogeneous equation 

0Ax = can be expressed explicitly as Span {v1, v2,  … , vp} for suitable vectors  
v1, v2,   ... , vp(because solution sets can be written in the form of linear combination of 
these vectors). If the only solution is the zero-vector then the solution set is Span {0}.  
 
Example 3 (For Practice) Find the solution set of the following homogenous system: 

                                                
1 2 3

1 2 3

2 3

3 0
4 9 2 0

3 6 0

x x x
x x x

x x

+ + =
− − + =

− − =

 

Solution: 
 

Let   
1 3 1
4 9 2
0 3 6

A
 
 = − − 
 − − 

 ,    
1

2

3

x
X x

x

 
 =  
  

,       
0
0
0

b
 
 =  
  

 

 
The augmented matrix is:  
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1 2

2 3

2 2 1

1 3

2 3

1 3 1 0
4 9 2 0
0 3 6 0

1 3 1 0
 ~ 0 3 6 0 4 ,

0 3 6 0

1 3 1 0
0 3 6 0
0 0 0 0

1 0 5 0
10 1 2 0 , ( 3)
2

0 0 0 0

5 0
2 0

0 0

R R

R R

R R R

SO
x x

x x

 
 − − 
 − − 
 
  + 
 − − 

 
  + 
  

− 
  − + 
  

− =
+ =

=





 

From above results, it is clear that  x3 is a free variable, so Ax = 0 has nontrivial solutions 
(one for each choice of x3).  
From above equations we have, 
                            1 3 2 35 , 2 ,x x x x= = −  with  x3 a free variable.  
As a vector, the general solution of Ax = 0 is given by 
                 

                
1 3

2 3 3 3

3 3

5 5 5
2 2 , 2

1 1

x x
x x x x x v where v

x x

       
       = = − = − = = −       
              

 

 
Parametric Vector Form of the solution 
 
Whenever a solution set is described explicitly with vectors, we say that the solution is in 
parametric vector form 
 
The equation  

x = su + tv (s, t in R) 
is called a parametric vector equation of the plane. It is written in this form to 
emphasize that the parameters vary over all real numbers.  
 
Similarly, the equation   x = x3v (with x3 free), or x = tv (with t in R), is a parametric 
vector equation of a line. 
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Solutions of Non-homogeneous Systems 
 
When a non-homogeneous linear system has many solutions, the general solution can be 
written in parametric vector form as one vector plus an arbitrary linear combination of 
vectors that satisfy the corresponding homogeneous system. 
To clear this concept consider the following examples, 
 
 
Example: 5 Describe all solutions of Ax = b, where 
 

3 5 4 7
3 2 4 1

6 1 8 4
A and b

−   
   = − − = −   
   − −   

 

 
Solution    
Row operations on [A  b] produce 

1 2 1 3

2 3 2

2 1 1

1 3

2

3 5 4 7
3 2 4 1

6 1 8 4

3 5 4 7
0 3 0 6 , 2
0 9 0 18

3 5 4 7
10 1 0 2 3 ,
3

0 0 0 0

41 0 1
3

10 1 0 2 5 ,
3

0 0 0 0

4 1
3

2
0 0

R R R R

R R R

R R R

x x

OR x

− 
 − − − 
 − − 

− 
  + − + 
 − − 

− 
  + 
  
 − − 
 
  − + 
 
 
  

− = −

=
=







 

Thus 1 3 2
41 , 2,
3

x x x= − + =  and x3 is free.  

As a vector, the general solution of Ax = b has the form 
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3 3
1

2 3

3 3 3

4 4 41 1 13 3 3
2 2 0 2 0

0 0 1

x xx
x x x

x x x

     − +     − −     
          = = = + = +          
                    
     

 

  
               p           v  
 
The equation x = p + x3v, or, writing t as a general parameter, 
 

x = p + tv  (t in R)       (3) 
 
Note 
We know that the solution set of this question when Ax = 0 (example 1) has the 
parametric vector equation 
 
    x = tv (t in R)      (4) 
 
With the same v that appears in equation (3) in above example. 
Thus the solutions of Ax = b are obtained by adding the vector p to the solutions of  
Ax = 0. The vector p itself is just one particular solution of Ax = b (corresponding to t = 0 
in (3)). 
 
The following theorem gives the precise statement. 
 
Theorem 
 
Suppose the equation Ax = b is consistent for some given b, and let p be a solution. 
Then the solution set of Ax = b is the set of all vectors of the form  
w = p + vh, where vh is any solution of the homogeneous equation Ax = 0. 
 
Example 6: (For practice) 
 

                                                
1 2 3

1 2 3

2 3

3 1
4 9 2 1

3 6 3

x x x
x x x

x x

+ + =
− − + = −

− − = −

 

Solution 
 

Let   
1 3 1
4 9 2
0 3 6

A
 
 = − − 
 − − 

 ,    
1

2

3

x
X x

x

 
 =  
  

,       
1
1
3

b
 
 = − 
 − 

 

 
The augmented matrix is  
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1 2

2 3

2

2 1

1 3

2 3

1 3 1 1
4 9 2 1
0 3 6 3

1 3 1 1
0 3 6 3 4 ,
0 3 6 3

1 3 1 1
0 3 6 3
0 0 0 0

1 3 1 1
10 1 2 1
3

0 0 0 0

1 0 5 2
0 1 2 1 ( 3)
0 0 0 0

5 2
2 1

0 0

R R

R R

R

R R

SO
x x

x x

 
 − − − 
 − − − 
 
  + 
 − − − 
 
  + 
  
 
 
 
  

− − 
  − + 
  

− = −
+ =

=







  

Thus 1 3 2 32 5 , 1 2 ,x x x x= − + = −  and x3 is free.  
As a vector, the general solution of Ax = b has the form 

 
1 3 3

2 3 3

3 3 3

2 5 2 5 2 5
1 2 1 2 1 2

0 0 1

x x x
x x x x

x x x

− + − −           
           = = − = + − = + −           
                      

 

  
                 

        p             v  
 
So we can write solution set in parametric vector form as 
                   3x p x v= +  
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Exercise 
 
Determine if the system has a nontrivial solution. Try to use as few row operations as 
possible. 
 
1. x1 – 5x2 + 9x3 = 0     2.  3x1 + 6x2 – 4x3 – x4 = 0      
   -x1 + 4x2 – 3x3 = 0        -5x1          + 8x3 + 3x4 = 0      
   2x1 – 8x2 + 9x3 = 0            8x1 – x2            + 7x4 = 0  
 
3. 5x1 – x2 + 3x3 = 0 
    4x1 – 3x2 + 7x3 = 0 
 
Write the solution set of the given homogeneous system in parametric vector form. 
 
4. x1 – 3x2 – 2x3 = 0     5. x1 + 2x2 – 7x3 = 0      
                x2 – x3 = 0      -2x1 – 3x2 + 9x3 = 0      
  -2x1 + 3x2 + 7x3 = 0               –2x2 + 10x3 = 0 
 
In exercises 6-8, describe all solutions of Ax = 0   in parametric vector form where A is 
row equivalent to the matrix shown. 
 

6. 

1 5 0 2 0 4
0 0 0 1 0 3
0 0 0 0 1 5
0 0 0 0 0 0

− − 
 − 
 
 
 

    7. 

1 6 0 8 1 2
0 0 1 3 4 6
0 0 0 0 0 1
0 0 0 0 0 0

− − 
 − 
 
 
 

 

 
8. [ ]1 5 0 4−  

Steps of Writing a Solution Set (of a Consistent System) 
in a Parametric Vector Form 

 
Step 1:  
           Row reduces the augmented matrix to reduced echelon form. 
Step 2:  
           Express each basic variable in terms of any free variables appearing in an 
           equation. 
Step 3: 
           Write a typical solution x as a vector whose entries depend on the free variables 
            if any. 
Step 4:  
           Decompose x into a linear combination of vectors (with numeric entries) using 
           the free variables as parameters. 
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9. Describe the solution set in R3 of x1 – 4x2 + 3x3 = 0, compare it with the solution set 
of x1 – 4x2 + 3x3 = 7. 
 
10. Find the parametric equation of the line through a parallel to b.                 

3 1
,

8 5
a b

−   
= =   −   

 

 
11. Find a parametric equation of the line M through p and q. 

1 0
,

4 7
p q

−   
= =   
   

 

 

12. Given
5 10
8 16

7 14
A

 
 = − − 
  

, find one nontrivial solution of Ax = 0 by inspection. 

 

13. Given
1 3
2 6
3 9

A
 
 =  
  

, find one nontrivial solution of Ax = 0 by inspection. 
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Lecture 8 
 

Linear Independence 
 
Definition  
                  An indexed set of vectors {v1, v2, ... , vp} in Rn is said to be linearly 
independent if the vector equation 1 1 2 2 0p px v x v x v+ + + =  has only the trivial solution. 
The set {v1, v2, ... , vp} is said to be linearly dependent if there exist weights c1, …. , cp, 
not all zero, such that 1 1 2 2 0p pc v c v c v+ + + =      (1) 
Equation (1) is called a linear dependence relation among v1 ,…, vp , when the weights 
are not all zero.  
 
Example 1 
  

Let 1 2 3

1 4 2
2 , 5 , 1
3 6 0

v v v
     
     = = =     
          

 

(a) Determine whether the set of vectors {v1, v2, v3} is linearly independent or not. 
(b) If possible, find a linear dependence relation among v1, v2, v3. 
 
Solution 
 
(a) Row operations on the associated augmented matrix show that 
 

1 2 1 3

2 3

1 4 2 0
2 5 1 0
3 6 0 0

1 4 2 0
0 3 3 0 ( 2) , ( 3)
0 6 6 0

1 4 2 0
0 3 3 0 (2)
0 0 0 0

R R R R

R R

 
 
 
  
 
 − − − + − + 
 − − 
 
 − − + 
  





 

 
Clearly, x1 and x2 are basic variables and x3 is free. Each nonzero value of x3 determines 
a nontrivial solution.  
Hence v1, v2, v3 are linearly dependent (and not linearly independent). 
 
(b) To find a linear dependence relation among v1, v2, v3, completely row reduce the 
augmented matrix and write the new system: 
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2

1 2

1 4 2 0
10 1 1 0

3
0 0 0 0

1 0 2 0
0 1 1 0 4
0 0 0 0

R

R R

 
− 

 
  

− 
  − 
  



 

 

⇒   
1 3

2 3

2 0
0

0 0

x x
x x

− =
+ =

=
 

 
Thus  x1 = 2x3,  x2 = -x3,  and  x3 is free.  
 
Choose any nonzero value for x3, say, x3 = 5, then  x1 = 10, and x2 = -5.  
Substitute these values into 1 1 2 2 3 3 0x v x v x v+ + =   
 
   ⇒   10v1 – 5v2 + 5v3 = 0 
 
This is one (out of infinitely many) possible linear dependence relation among v1, v2, v3. 
 
Example (for practice) 
 
Check whether the vectors are linearly dependent or linearly independent. 
 

1 2(3, 1) ( 2,2)v v= − = −  
Solution 
 
Consider two constants 1C  and 2C . Suppose: 

   1 2

1 2 1 2

(3, 1) ( 2,2) 0
(3 2 , 2 ) (0,0)
c c

c c c c
− + − =
− − + =

  

Now, set each of the components equal to zero to arrive at the following system of 
equations: 

                                        1 2

1 2

3 2 0
2 0

c c
c c
− =

− + =
 

  
Solving this system gives the following solution, 
 

                                1 20 0c c= =  
  
The trivial solution is the only solution, so these two vectors are linearly independent. 
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Linear Independence of Matrix Columns 
Suppose that we begin with a matrix [ ]1 ... nA a a=  instead of a set of vectors. The 
matrix equation Ax = 0 can be written as 1 1 2 2 0n nx a x a x a+ + + =  
 
Each linear dependence relation among the columns of A corresponds to a nontrivial 
solution of Ax = 0.  
 
Thus we have the following important fact. 
 
The columns of a matrix A are linearly independent if and only if the equation  

0Ax =  has only the trivial solution. 

Example 2 Determine whether the columns of 
0 1 4
1 2 1
5 8 0

A
 
 = − 
  

 are linearly 

independent. 
Solution To study Ax = 0, row reduce the augmented matrix: 
 

12

1 3

0 1 4 0
1 2 1 0
5 8 0 0

1 2 1 0
0 1 4 0
5 8 0 0

1 2 1 0
0 1 4 0 ( 5)
0 2 5 0

R

R R

 
 − 
  

− 
 
 
  

− 
  − + 
 − 





 

            2 3

1 2 1 0
0 1 4 0 (2)
0 0 13 0

R R
− 

  + 
  

  

 
At this point, it is clear that there are three basic variables and no free variables. So the 
equation Ax = 0 has only the trivial solution, and the columns of A are linearly 
independent. 
 
Sets of One or Two Vectors 
 
                                              A set containing only one vector (say, v) is linearly 
independent if and only if v is not the zero vector. This is because the vector equation 
 x1v = 0 has only the trivial solution when 0v ≠ . The zero vector is linearly dependent 
because x10 = 0 has many nontrivial solutions.  
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Example 3  
Check the following sets for linearly independence and dependence. 
 

a. 1 2

3 6
,

1 2
v v   
= =   
   

  

b. 1 2

3 6
,

2 2
v v   
= =   
   

 

 
Solution 
 
a) Notice that v2 is a multiple of v1, namely, v2 = 2v1.  

Hence –2v1 + v2 = 0, which shows that {v1, v2} is linearly dependent. 
 

b) v1 and v2 are certainly not multiples of one another. Could they be linearly 
dependent? 
 
Suppose c and d satisfy cv1 + dv2 = 0 
 
If 0,c ≠  then we can solve for v1 in terms of v2, namely, v1 = (-d/c) v2. This result is 
impossible because v1 is not a multiple of v2. So, c must be zero. Similarly, d must 
also be zero.  
Thus {v1, v2} is a linearly independent set. 
 

Note A set of two vectors {v1, v2} is linearly dependent if and only if one of the vectors 
is a multiple of the other. 
In geometric terms, two vectors are linearly dependent if and only if they lie on the same 
line through the origin. Figure 1,  shows the vectors from Example 3. 
    x2 
  
 
       (6, 2) 
      (3, 1) 
     
 
             x1  
 
    Linearly dependent 
     x2 
    
 
 
           (3, 2)  (6, 2) 
 
 
       x1 
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   Figure 1 Linearly independent 
 
Sets of Two or More Vectors 
     
Theorem (Characterization of Linearly dependent Sets) 
An indexed set 1 2{ , , , }ps v v v=   of two or more vectors is linearly dependent if and only 
if at least one of the vectors in S is a linear combination of the others. In fact, if S is 
linearly dependent, and 0v ≠ , then some jv  (with 1j > ) is a linear combination of the 
preceding vectors, 1 1, , jv v − . 
 
Proof 
                                If some jv  in S equals a linear combination of the other vectors, then 

jv  can be subtracted from both sides of the equation, producing a linear dependence 
relation with a nonzero weight (–1) on jv .  
 
For instance, if v1 = c2v2 + c3v3, then 0 = (–1)v1 + c2v2 +c3v3 + 0v4 + ... + 0vp.  
Thus S is linearly dependent. 

 
Conversely, suppose S is linearly dependent. If v1 is zero, then it is a (trivial) linear 
combination of the other vectors in S.  
 
If 0v ≠  and there exist weights c1, ... , cp, not all zero(because vectors are linearly 
dependent), such that 
 

c1v1 + c2v2 +…+ cpvp = 0 
 

Let j  be the largest subscript for which 0jc ≠ . If 1j = , then c1v1 = 0, which is 
impossible because 0jv ≠ .  
 
So 1j > , and 1 1 10 0 0j j j pc v c v v v++ + + + + =   
 

1 1 2 2 1 1j j j jc v c v c v c v− −= − − − −  
 

11 2
1 2 1

j
j j

j j j

cc cv v v v
c c c

−
−

     
= − + − + +          
     

  

 
 
Note: This theorem does not say that every vector in a linearly dependent set is a linear 
combination of the preceding vectors. A vector in a linearly dependent set may fail to be 
a linear combination of the other vectors. 
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Example 4 Let 
3
1
0

u
 
 =  
  

 and 
1
6
0

v
 
 =  
  

. Describe the set spanned by u and v, and prove 

that a vector w is in Span {u, v} if and only if {u, v, w} is linearly dependent. 
 

Solution 
 The vectors u and v are linearly independent because neither vector is a multiple 
of the other, nor so they span a plane in R3. In fact, Span {u, v} is the x1x2-plane  
(with x3 = 0). If w is a linear combination of u and v, then {u, v, w} is linearly dependent.  
 
Conversely, suppose that {u, v, w} is linearly dependent.  
 
Some vector in {u, v, w} is a linear combination of the preceding vectors (since 0u ≠ ). 
That vector must be w, since v is not a multiple of u. So w is in Span {u, v} 
 
      x3 
 
 
         x2 
    v 
  u 
   x1   w 
 
 Linearly dependent w in Span {u, v}. 
 
 
         x3 
       w 
 
         v  x2  
 
       x1       u 
 
    Linearly independent w not in Span {u, v} 
 

Figure 2: Linear dependence in R3. 
 
 
This example generalizes to any set {u, v, w} in R3 with u and v linearly independent. The 
set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by u and v. 
 
Theorem  
     If a set contains more vectors than there are entries in each vector, then the set 
is linearly dependent. That is, any set {v1, v2, ... , vp} in Rn is linearly dependent if p > n. 
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 Example 5 The vectors 
2 4 2

, ,
1 1 2

−     
     −     

 are linearly dependent, because there are 

three vectors in the set and there are only two entries in each vector.  
 
Notice, however, that none of the vectors is a multiple of one of the other vectors. See 
Figure 4. 
 
             x2  
     
 
 
   (–2, 2)   
 
       (2, 1) 
                x1  
 
           (4, –1)  
    

Figure 4 A linearly dependent set in R2
. 

 
   
Theorem  
 
If a set S = {v1, v2,  … , vp} in Rn contains the zero vector, then the set is linearly 
dependent. 
 
Proof 
           By renumbering the vectors, we may suppose that v1 = 0.  
Then    (1)v1 + 0v2 + … + 0vp = 0 shows that S is linearly dependent( because in this 
relation coefficient of v1 is  non zero). 
 
Example 6 Determine by inspection if the given set is linearly dependent. 

 

a. 
1 2 3 4
7 , 0 , 1 , 1
6 9 5 8

       
       
       
              

 b. 
2 0 1
3 , 0 , 1
5 0 8

     
     
     
          

  c. 

2 3
4 6

,
6 9

10 15

−   
   −   
   −
   
   

 

Solution 
 

a) The set contains four vectors that each has only three entries. So,the set is linearly 
dependent by the Theorem above. 

b) The same theorem does not apply here because the number of vectors does not exceed 
the number of entries in each vector. Since the zero vector is in the set, the set is 
linearly dependent by the next theorem. 
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c) As we compare corresponding entries of the two vectors, the second vector seems to 
be –3/2 times the first vector. This relation holds for the first three pairs of entries, but 
fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and 
hence they are linearly independent. 

 
 
Exercise 

1. Let 
3 6 0 3
2 , 1 , 5 , 7
4 7 2 5

u v w and z
−       

       = = = − =       
       − −       

. 

 
(i) Are the sets {u, v}, {u, w}, {u, z}, {v, w}, {v, z}, and {w, z} each linearly 

independent? Why or why not? 
(ii) Does the answer to Problem (i) imply that {u, v, w, z} is linearly independent? 

(iii) To determine if {u, v, w, z} is linearly dependent, is it wise to check if, say w is a 
linear combination of u, v and z? 

(iv) Is {u, v, w, z} linear dependent? 
 
Decide if the vectors are linearly independent. Give a reason for each answer. 
 

2. 
3 3 6
0 , 2 , 4
0 3 0

−     
     
     
          

    3. 
1 3 0
3 , 5 , 5

2 6 6

−     
     −     
     − −     

 

 
Determine if the columns of the given matrix form a linearly dependent set. 
 

4. 
1 3 2 0
3 10 7 1
5 5 3 7

− 
 − 
 − − 

    5. 

3 4 3
1 7 7

1 3 2
0 2 6

 
 − − 
 −
 − 

 

 

6. 

1 1 0 4
1 0 3 1

0 2 1 1
1 0 1 3

 
 − − 
 −
 − 

   7. 

1 1 3 0
0 1 5 4
1 2 8 5

3 1 1 3

− − 
 
 
 −
 − 

 

 
For what values of h is v3 in span {v1, v2} and for what values of h is {v1, v2, v3} 
linearly dependent? 
 

8. 1 2 3

1 2 1
3 , 6 , 2

2 4
v v v

h

−     
     = = − =     
     −     

  9. 1 2 3

1 3 2
3 , 9 , 6
3 1

v v v
h

−     
     = = = −     
     −     
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Find the value(s) of h for which the vectors are linearly dependent. 
 

10. 
1 2 1
3 , 4 , 1

3 1 h

− −     
     −     
     −     

    11. 
1 3 4

5 , 8 ,
2 6 8

h
−     

     −     
     − −     

 

 
Determine by inspection whether the vectors are linearly independent. Give reasons for 
your answers. 
 

12. 
5 6 2 3

, , ,
5 1 4 6
       
       −       

   13. 
2 6 0

5 , 5 , 0
1 3 0

−     
     −     
          

 

 

14. 
6 3
2 , 1

8 2

   
   
   
   − −   

 

 

15. Given 

2 3 5
5 1 4
3 1 4

1 0 1

A

 
 − − =
 − − −
 
 

, observe that the third column is the sum of the first two 

columns. Find a nontrivial solution of Ax = 0 without performing row operations. 
 
Each statement in exercises 16-18 is either true(in all cases) or false(for at least one 
example). If false, construct a specific example to show that the statement is not always 
true. If true, give a justification. 
 
16. If v1, …, v4 are in R4, and v3 = 2v1 + v2, then {v1, v2, v3, v4} is linearly dependent. 
 
17. If v1 and v2 are in R4, and v1 is not a scalar multiple of v2, then {v1, v2} is linearly 
independent. 
 
18. . If v1, …, v4 are in R4, and{v1, v2, v3} is linearly dependent, then {v1, v2, v3, v4} is 
also linearly dependent. 
 

19. Use as many columns of 

8 3 0 7 2
9 4 5 11 7

6 2 2 4 4
5 1 7 0 10

A

− − 
 − − =
 − −
 − 

 as possible to construct a 

matrix B with the property that equation Bx = 0 has only the trivial solution. Solve  



8-Linear Independence  VU 

 
                                               ©Virtual University Of Pakistan                                                            93 

Bx = 0 to verify your work.     
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Lecture 9 

 
Linear Transformations 

 
Outlines 
            

•  Matrix Equation 
• Transformation, Examples, Matrix as Transformations  
• Linear Transformation, Examples, Some Properties  

 
Matrix Equation 
 
An equation Ax = b is called a matrix equation in which a matrix A acts on a vector x by 
multiplication to produce a new vector called b. 
 
For instance, the equations 
 

1
4 3 1 3 1 5
2 0 5 1 1 8

1

1
4 3 1 3 4 0
2 0 5 1 1 0

3

A x b
and

A u o

 
 −     =       
 
 

 
 −     =    −   
 
 

 

 
                                            
 
Solution of Matrix Equation 
 
Solution of the Ax = b consists of those vectors x in the domain that are transformed into 
the vector b in range. 
 
Matrix equation Ax = b is an important example of transformation we would see later in 
the lecture. 
 
Transformation or Function or Mapping 
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A transformation (or function or mapping) T from R n to R m is a rule that assigns to 
each vector x in Rn, an image vector T(x) in Rm.  
 
                                                          : n mT R R→  
 
The set R n is called the domain of T, and R m is called the co-domain of T. For x in Rn 
the set of all images T(x) is called the range of T. 
 
Note 
     To define a mapping or function, domain and co-domain are the ordinary sets. 
However to define a linear transformation, the domain and co-domain has to be 

( )m nor  . Moreover a map : m nT →  is a linear transformation if for any two 
vectors say , mu v∈  and the scalars 1 2,c c , the following equation is satisfied 
                   ( )1 2 1 2( ) ( )T c u c v c T u c T v+ = +  

Example1 Consider a mapping 2 2:T R R→  defined by ( , ) ( , )T x y x y= − . This 
transformation is a reflection about y-axis in xy plane. 
 Here (1,2) ( 1,2)T = − . T  has transformed  vector (1,2) into another vector (-1,2). 
In matrix form: 

1 0
0 1

x x
Tv Av

y y
− −     

= = =     
     

 

 
 
                                                        y 
 
 
 
 
                         (-x, y) <------------------------------------------ (x, y) 
 
 
 
                                            
                                                                                                                     x 
 
Further the projection transformation 2 2:T R R→  defined by ( , ) ( ,0)T x y x=  is given as: 

1 0
0 0 0

x x
Tv Av

y
     

= = =     
     

 

Example 2 Let 
1 3 3 3

2
3 5 , , 2 , 2

1
1 7 5 5

A u b c
−     

      = = = =      −      − −     

,  
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and define a transformation 2 3:T R R→  by T(x) = Ax, so that 
 

1 2
1

1 2
2

1 2

1 3 3
( ) 3 5 3 5

1 7 7

x x
x

T x Ax x x
x

x x

− −   
    = = = +        − − +   

 

 
a) Find T (u), the image of u under the transformation T. 
b) Find an x in R2, whose image under T is b. 
c) Is there more than one x whose image under T is b? 
d) Determine if c is in the range of the transformation T. 

 
 
Solution (a) 

                        
1 3 5

2
( ) 3 5 1

1
1 7 9

T u Au
−   

    = = =    −    − −   

 

               Here          
5

( ) 1
9

T u
 
 =  
 − 

 

Here the matrix transformation has transformed  
2
1

u  
=  − 

  into another vector 
5
1
9

 
 
 
 − 

 

 
(b) We have to find an x such that T (x) = b  or Ax = b 
 

i. e 1

2

1 3 3
3 5 2
1 7 5

x
x

−   
    =        − −   

   (1) 

 
Now row reduced augmented matrix will be: 
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1 2 1 3

2 2 3

2 1

1 3 3
3 5 2 3 ,
1 7 5

1 3 3
10 14 7 , 4 ,

14
0 4 2

1 3 3
0 1 .5 3
0 0 0

1 0 1.5
0 1 .5
0 0 0

R R R R

R R R

R R

− 
  − + + 
 − − 

− 
 − − + 
 − 

− 
 − + 
  
 
 − 
  







  

 
 

Hence x1 = 1.5,   x2 = - 0.5, and 
1.5

.
.5

x  
=  − 

  

The image of this x under T is the given vector b. 
 
(c)      From (2) it is clear that equation  
          (1) has a unique solution. So, there is exactly one x whose image is b. 
 
(d)      The vector c is in the range of T if c is the image of some x in R2, that is, if  

     ( )c T x=  for some x. This is just another way of asking if the system Ax = c is  
     consistent. To find the answer, we will row reduce the augmented matrix: 

 

1 2 1 3

3 23

2 3

1 3 3
3 5 2 3 ,
1 7 5

1 3 3
10 14 7 ,
4

0 4 8

1 3 3
0 1 2 14
0 14 7

1 3 3
0 1 2
0 0 35

R R R R

R R

R R

− 
  − + + 
 − 

− 
 − 
  

− 
  − + 
 − 

− 
 
 
 − 






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1 2

1 2

1 2

3 3
0 2
0 0 35 0 35 0 35

x x
x x
x x but

− =
+ =
+ = − ⇒ = ≠

 

Hence the system is inconsistent. So c is not in the range of T. 
 
 
 
So from the above example we can view a transformation in the form of a matrix. 
We’ll see that a transformation : n mT R R→  can be transformed into a matrix of 
order m n×  and every matrix of order m n×  can be viewed as a linear 
transformation. 
 
 
 
 
The next two matrix transformations can be viewed geometrically. They reinforce the 
dynamic view of a matrix as something that transforms vectors into other vectors.  

Example 3 If  
1 0 0
0 1 0 ,
0 0 0

A
 
 =  
  

 then the transformation x Ax→ projects points in R3  

onto the 1 2x x coordinate plane− because   
1 1 1

2 2 2

3 3

1 0 0
0 1 0
0 0 0 0

x x x
x x x
x x

       
       → =       
              

 

         x3 
 
 

 
 

     •  
           •  
 
              •       •     x2 
     •    
           •  
                   x1   
              •       •  
   A projection transformation 
 

Example 4 Let 
1 3

.
0 1

A  
=  
 

, the transformation 2 2:T R R→  defined by T (x) = Ax is  

called a shear transformation.  
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The image of the point 
0 1 3 0 6

( ) ,
2 0 1 2 2

u is T u       
= = =       
       

  

and the image of 
2 1 3 2 8

.
2 0 1 2 2

is       
=       

       
  

 
Here, T deforms the square as if the top of the square was pushed to the right while the 
base is held fixed. Shear transformations appear in physics, geology and crystallography. 
                   x2                                                                                                 x2 
         
 
         T 
 
 
 
 
                                                         x1                                                                      x1 
 

A shear transformation 
 
 
 
Linear Transformations 
 
We know that if A is m n×  matrix, then the transformation x Ax→  has the properties 

( ) ( )A u v Au Av and A cu cAu+ = + =  for all u, v in Rn and all scalars c.  
These properties for a transformation identify the most important class of transformations 
in linear algebra. 
 
Definition   A transformation (or mapping) T is linear if: 
 

1. T(u + v) = T(u) + T(v)  for all u, v in the domain of T; 
2. T(cu) = cT(u)   for all u and all scalars c. 

 
Example 5 Every matrix transformation is a linear transformation. 
 
Example 6 Let 3 2:L R R→  be defined by ( , , ) ( , )L x y z x y= . 
 
                         we let 1 1 1( , , )x y z=u  and 2 2 2( , , )x y z=v . 
 

1 1 1 2 2 2

1 2 1 2 1 2

( ) (( , , ) ( , , ))
( , , )

L L x y z x y z
L x x y y z z

+ = +
= + + +

u v
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  1 2 1 2

1 1 2 2

( , )
( , ) ( , ) ( ) ( )
x x y y
x y x y L L

= + +
= + = +u v

 

 
Also, if k is a real number, then 
 
                        1 1 1 1 1( ) ( , , ) ( , ) ( )L k L kx ky kz kx ky kL= = =u u  
 
Hence, L is a linear transformation, which is called a projection. The image of the vector 
(or point) (3, 5, 7) is the vector (or point) (3, 5) in xy-plane. See figure below: 
                                              z 
 
                                                    (3, 5, 7) 
 
 
 
 
 
                                                                                          y 
 
                                                                  (3, 5) 
                           x 
 
 
 
Geometrically the image under L of a vector  (a, b, c) in R3 is (a, b) in R2 can be found by 
drawing a line through the end point P(a, b, c) of u and perpendicular to R2, the xy-plane. 
The intersection Q(a, b)of this line with the xy-plane will give the image under L. See the 
figure below: 
                              
 
                                              
 
                                                                               Q(a, b)  
                                                   v = L(u)                                
 
                                                                   
 
 
 
 
 
 
                                                                               P(a, b) 
 
 



9-Linear Transformations  VU 

                                                    
                                                    ©Virtual University Of Pakistan                                                              101 

Example 7 Let :L R R→  be defined by  2( )L x x=  
  
 Let x and y in R  and  
 

  
2 2 2 2 2( ) ( ) 2 ( ) ( )

( ) ( ) ( )
L x y x y x y xy x y L x L y

L x y L x L y
+ = + = + + ≠ + = +

⇒ + ≠ +
 

 
So we conclude that the function L is not a linear transformation. 
 
 
Linear transformations preserve the operations of vector addition and scalar 
multiplication. 
 
 
Properties 
 
If T is a linear transformation, then 

1. T(0) = 0               
2. T(cu +dv) = cT(u) + dT(v)  
3. T(c1v1 + …+ cpvp) = c1T(v1) + … + cpT(vp)  
           

for all vectors u, v in the domain of T and all scalars c, d. 
 
 
Proof 
 
 1. By the definition of Linear Transformation we have T(cu) = cT(u)   for all u and all    
      scalars c. Put 0c =  we’ll get T(0u)= 0T(u)  This implies T(0) = 0 
 
2. Just apply the definition of linear transformation. i. e 

T(cu + dv) = T(cu) + T(dv) = cT(u) + dT(v) 
  

 
 
Property (3) follows from (ii), because T(0) = T (0u) =0T(u) = 0.  
Property (4) requires both (i) and (ii): 
 
 
 
OBSERVATION Observe that if a transformation satisfies property 2 for all u, v and c, 
d, it must be linear      (Take c = d = 1 for preservation of addition, and take d = 0) 
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3. Generalizing Property 2 we’ll get 3 
 

T(c1v1 + …+ cpvp) = c1T(v1) + … + cpT(vp)          
 
 
Applications in Engineering  
 
In engineering and physics, property 3 is referred to as a superposition principle. 
Think of v1, … , vp as signals that go into a system or process and T(v1), … , T(vp) as the 
responses of that system to the signals. The system satisfies the superposition principle if 
an input is expressed as a linear combination of such signals, the system’s response is the 
same linear combination of the responses to the individual signals. 
 
 
Example 8 Given a scalar r, define :T R R→  by 
                                                
                                                         T (x) = x+1.  
 
T is not a linear transformation (why!) because (0) 0T ≠  (by property 3) 
 
Example 9   Given a scalar r, define 2 2:T R R→  by  T (x) = rx.  
T is called a contraction when 0 1r≤ <   
and a dilation when 1.r ≥   
 
Let r = 3 and show that T is a linear transformation. 
 
Solution  Let u, v be in R2 and let c, d be scalars, then 
 
   T (cu + dv) = 3 (cu + dv)  Definition of T 
            = 3cu + 3dv 
            = c (3u) + d(3v)  Vector arithmetic 
            = cT (u) + dT (v) 
 
Thus T is a linear transformation because it satisfies (4). 
 
Example 10 Define a linear transformation 2 2:T R R→  by  
 

1 2

2 1

0 1
( )

1 0
x x

T x
x x

−−     
= =    
     

 

 

Find the images under T of 
4 2 6

, , .
1 3 4

u v and u v     
= = + =     
     
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Solution 
0 1 4 1 0 1 2 3

( ) , ( )
1 0 1 4 1 0 3 2

T u T v
− − − −           

= = = =           
           

 

 
0 1 6 4

( )
1 0 4 6

T u v
− −     

+ = =     
     

 

 
In the above example, T rotates u, v and u + v counterclockwise through 900.  
In fact, T transforms the entire parallelogram determined by u and v into the one 
determined by T (u) and T (v) 
 
Example 11 Let L: R3→R2 be a linear transformation for which: 

L (1, 0, 0) = (2, -1),  
L (0, 1, 0) = (3, 1), and  
L (0, 0, 1) = (-1, 2).  

              Then find L (-3, 4, 2). 
 
Solution   Since (-3, 4, 2) = -3i + 4j + 2k, 
 

              
( 3, 4, 2) ( 3 4 2 ) 3 ( ) 4 ( ) 2 ( )

3(2, 1) 4(3,1) 2( 1,2) (4,11)
L L L L L− = − + + = − + +

=− − + + − =
i j k i j k

 

 
  
Exercise 
 
1. Suppose that 5 2:T R R→  and T(x) = Ax for some matrix A and each x in R5. How 

many rows and columns do A have? 
 

2. Let 
1 0
0 1

A  
=  − 

. Give a geometric description of the transformation x Ax→ . 

 
3. The line segment from 0 to a vector u is the set of points of the form tu, where 

0 1t≤ ≤ . Show that a linear transformation T maps this segment into the segment 
between 0 and T(u). 

 

4. Let 
2 0 0 1 5
0 2 0 , 0 , 1
0 0 2 3 4

A u and
     
     = = −     
     −     

. Define T:R3→R3 by T (x) = Ax. Find T (u) 

and T (v). 
 
In exercises 5 and 6, with T defined by T (x) = Ax, find an x whose image under T is b, 
and determine if x is unique. 
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5. 
1 0 1 0
3 1 5 , 5
4 2 1 6

A b
−   

   = − = −   
   − −   

   6. 

1 0 3 1
0 1 4 5

,
3 2 1 7
2 1 2 3

b

   
   − −   =
   −
   − − −   

 

 
Find all x in R4 that are mapped into the zero vector by the transformation x→Ax. 
 

7. 

1 2 7 5
0 1 4 0
1 0 1 6
2 1 6 8

A

− 
 − =
 
 − 

    8. 
1 3 4 3
0 1 3 2
3 7 6 5

− 
 − 
 − 

 

 

9. Let 
1

1
7

b
 
 = − 
  

 and let A be the matrix in exercise 8. Is b in the range of the linear 

transformation x→Ax? 
 

10. Let 

9
5
0

9

b

 
 
 =
 
 − 

 and let A be the matrix in exercise 7. Is b in the range of the linear 

transformation x→Ax? 
 
 Let T (x) = Ax for x in R2. 

(a) On a rectangular coordinate system, plot the vectors u, v, T (u) and T (v). 
(b) Give a geometric description of what T does to a vector x in R2. 

 

11. 
1 0 5 3

, ,
0 1 2 1

A u and v
−     

= = =     − −     
 12. 

.5 0 4 5
, ,

0 .5 2 2
A u and v

−     
= = =     −     

  

 
13. Let T: R2→R2 be a linear transformation that maps 

1 3 1
.

5 1 4
2

u into and maps v into 
0

       
= =       −       

 Use the fact that T is linear find the images 

under T of 2u, 3v, and 2u + 3v. 
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14. Let 1 2 1 2

1 0 3 2
, , , .

0 1 5 7
e e y and y

−       
= = = =       −       

 Let T: R2→R2 be a linear 

transformation that maps e1 into y1 and maps e2 into y2. Find the images of 
1

2

7
.

6
x

and
x
  
  

   
 

 

15. Let 1
1 2

2

7 3
, .

4 8
x

x v and v
x

−     
= = =     −    

 Let T: R2→R2 be a linear transformation that 

maps x into 1 1 2 2x v x v+ . Find a matrix A such that T (x) is Ax for each x. 
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Lecture 10 
 

The Matrix of a Linear Transformation 
 
Outline 
            

• Matrix of a Linear Transformation.  
• Examples, Geometry of Transformation, Reflection and Rotation  
• Existence and Uniqueness of solution of T(x)=0  

 
 
In the last lecture we discussed that every linear transformation from Rn to Rm is actually 
a matrix transformation x Ax→ , where A is a matrix of order m n× . First see an example  
 

Example 1 The columns of 2

1 0
0 1

I  
=  
 

 are 1

1
0

e  
=  
 

 and 2

0
1

e  
=  
 

.  

 
Suppose T is a linear transformation from R2 into R3 such that 
 

1 2

5 3
( ) 7 ( ) 8

2 0
T e and T e

−   
   = − =   
      

 

 
with no additional information, find a formula for the image of an arbitrary x in R2. 
 

Solution  Let 1
1 2 1 1 2 2

2

1 0
0 1

x
x x x x e x e

x
     

= = + = +     
    

   

 
Since T is a linear transformation, 1 1 2 2( ) ( ) ( )T x x T e x T e= +  

 
1 2

1 2 1 2

1

1 2

1 2

1

5 3 5 3
( ) 7 8 7 8

2 0 2 0

5 3
( ) 7 8

2 0

x x
T x x x x x

x

x x
Hence T x x x

x

− −     
     = − + = − +     
     +     

− 
 = − + 
 + 

  

 
Theorem Let : n mT R R→  be a linear transformation. Then there exists a unique matrix 
A such that ( )T x Ax=  for all x in Rn 
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In fact, A is the m n×  matrix whose jth  column is the vector T (ej), where je  is the jth  
column of the identity matrix in Rn. 

[ ]1( ) ... ( )nA T e T e=   
 
 

Proof Write 
            

[ ] [ ]

1 1

2 2
1 2

1

2
1 1 1 1

0 0 1 0 0
0 0 0 1 0

... ...

0 0 0 10

... ... ...

n

nn

n n n n

n

x x
x x

x x x x

xx

x
x

x e x e e e e e x

x

           
           
           = = + + + = + + +
           
           

           

 
 
 = + + = =
 
 
 

     



 

Since T is Linear, So 
 

1 1 1 1( ) ( ... ) ( ) ... ( )n n n nT x T x e x e x T e x T e= + + = + +  
 

           [ ]
1

1( ) ... ( )n

n

x
T e T e Ax

x

 
 = = 
  

                                                       (1) 

 
The matrix A in (1) is called the standard matrix for the linear transformation T. We 
know that every linear transformation from Rn to Rm is a matrix transformation and vice 
versa.  
The term linear transformation focuses on a property of a mapping, while matrix 
transformation describes how such a mapping is implemented, as the next three examples 
illustrate.  
Example 2 Find the standard matrix A for the dilation transformation T (x) = 3x, 2x R∈ . 
 
Solution Write 

1 1 2 2

3 0
( ) 3 ( ) 3

0 3
T e e and T e e   

= = = =   
   

 

 
 

           
3 0
0 3

A  
=  
 
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Example 3 Let 3 3:L R R→ is the linear operator defined by
x x y

L y y z
z x z

  +   
    = −    
    +    

.  

Find the standard matrix representing L and verify L (x) = Ax. 
 
Solution  
The standard matrix A representing L is the 3 x 3 matrix whose columns are      L (e1), L 
(e2), and L (e3) respectively. Thus 
 
 

1 1

1 1 0 1
( ) 0 0 0 0 ( )

0 1 0 1
L e L col A

  +     
      = = − = =      
      +      

 

 

2 2

0 0 1 1
( ) 1 1 0 1 ( )

0 0 0 0
L e L col A

  +     
      = = − = =      
      +      

 

 

3 3

0 0 0 0
( ) 0 0 1 1 ( )

1 0 1 1
L e L col A

  +     
      = = − = − =      
      +      

 

 

Hence          
1 1 0
0 1 1
1 0 1

A
 
 = − 
  

 

Now        Ax = 
1 1 0
0 1 1 ( )
1 0 1

x x y
y y z L x
z x z

+     
     − = − =     
     +     

  

 
Hence verified. 
 
Example 4 Let 2 2:T R R→  be the transformation that rotates each point in R2 
through an angleϕ , with counterclockwise rotation for a positive angle. We could show 
geometrically that such a transformation is linear. Find the standard matrix A of this 
transformation. 
 

Solution 
1
0
 
 
 

 rotates into 
cos

,
sin

ϕ
ϕ

 
 
 

 and 
0
1
 
 
 

 rotates into 
sin

.
cos

ϕ
ϕ

− 
 
 

  

See figure below.  
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By above theorem 
cos sin
sin cos

A
ϕ ϕ
ϕ ϕ

− 
=  
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

A rotation transformation 
 
 
Example 5 A reflection with respect to the x-axis of a vector u in R2 is defined by the  
 

linear operator 1 1

2 2

( )
a a

L u L
a a

    
= =    −    

.  

 

Then  1

1 1
( )

0 0
L e L

    
= =    

    
 and 2

0 0
( )

1 1
L e L

    
= =    −    

 

 

Hence the standard matrix representing L is 
1 0
0 1

A  
=  − 

 

 

Thus we have 1 1

2 2

1 0
( )

0 1
a a

L u Au
a a
    

= = =    − −     
  

 
To illustrate a reflection with respect to the x-axis in computer graphics, let the triangle T 
have vertices (-1, 4), (3, 1), and (2, 6). 

To reflect T with respect to x-axis, we let 1 2 3

1 3 2
, ,

4 1 6
u u u

−     
= = =     
     

 and compute the 

images L (u1), L (u2), and L (u3) by forming the products 
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1

2

3

1 0 1 1
,

0 1 4 4

1 0 3 3
,

0 1 1 1

1 0 2 2
.

0 1 6 6

Au

Au

Au

− −     
= =     − −     

     
= =     − −     

     
= =     − −     

  

 
Thus the image of T has vertices (-1, -4), (3, -1), and (2, -6). 
 
Geometric Linear Transformations of R2 
 
Examples 3-5 illustrate linear transformations that are described geometrically. In 
example 4 transformations is a rotation in the plane. It rotates each point in the plane 
through an angleϕ . Example 5 is reflection in the plane. 
 
 
Existence and Uniqueness of the solution of   T(x)=b 
 
The concept of a linear transformation provides a new way to understand existence and 
uniqueness questions asked earlier. The following two definitions give the appropriate 
terminology for transformations. 
  
 
Definition A mapping : n mT R R→  is said to be onto Rm if each b in Rm is the image of 
at least one x in Rn. 

 
OR 
 
Equivalently, T is onto Rm if for each b in Rm there exists at least one solution of             
T (x) = b. “Does T map Rn onto Rm?” is an existence question.  
 
The mapping T is not onto when there is some b in Rm such that the equation T (x) = b 
has no solution.  
 
Definition  A mapping : n mT R R→  is said to be one-to-one (or 1:1) if each b in Rm is 
the image of at most one x in Rn. 
 
 
 
 
 



10- The Matrix of a Linear Transformation  VU  

                                                  
                                                   ©Virtual University Of Pakistan                                                            111 

OR   
 
Equivalently, T is one-to-one if for each b in Rm the equation T (x) = b has either a 
unique solution or none at all, “Is T one-to-one?” is a uniqueness question.  
 
The mapping T is not one-to-one when some b in Rm is the image of more than one 
vector in Rn. If there is no such b, then T is one-to-one. 
 
Example 6 Let T be the linear transformation whose standard matrix is 
 

1 4 8 1
0 2 1 3
0 0 0 5

A
− 

 = − 
  

 

 
Does T map R4 onto R3? Is T a one-to-one mapping? 

 
Solution   Since A happens to be in echelon form, we can see at once that A has a pivot 
position in each row. 
 
We know that for each b in R3, the equation Ax = b is consistent. In other words, the 
linear transformation T maps R4 (its domain) onto R3.  
 
However, since the equation Ax = b has a free variable (because there are four variables 
and only three basic variables), each b is the image of more than one x. That is, T is not 
one-to-one. 
 
Theorem Let : n mT R R→  be a linear transformation. Then T is one-to-one if and only if 
the equation T (x) = 0 has only the trivial solution. 
 
Proof: Since T is linear, T (0) = 0 if T is one-to-one, then the equation T (x) = 0 has at 
most one solution and hence only the trivial solution. If T is not one-to-one, then there is 
a b that is the image of at least two different vectors in Rn (say, u and v).  
That is, T (u) = b and T (v) = b.  
 
But then, since T is linear ( ) ( ) 0T u v T u b b− = = − =  
 
The vector u – v is not zero, since u v≠ . Hence the equation T (x) = 0 has more than one 
solution. So either the two conditions in the theorem are both true or they are both false. 
 
Kernel of a Linear Transformation 
      Let :T V W→ be a linear transformation. Then kernel of T (usually written as KerT), 
is the set of those elements in V which maps onto the zero vector in W .Mathematically: 
     { }| ( ) 0KerT v V T v in W= ∈ =  
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Remarks 

i) KerT is subspace of V 
ii) T is one-one iff 0KerT =  in V 

 
One-One Linear Transformation 
    Let :T V W→  be a linear transformation. Then T is said to be one-one if for any 

,u v V∈  with u v≠ implies Tu Tv≠ . Equivalently if Tu Tv=  then u v= . 
T is said to be one-to-one or bijective if  
i) T is one-one 
ii)T is onto  
Theorem Let : n mT R R→  be a linear transformation and let A be the standard matrix for 
T. Then 
 

(a) T maps Rn onto Rm if and only if the columns of A span Rm; 
(b) T is one-to-one if and only if the columns of A are linearly independent. 

 
Proof: 
 
(a) The columns of A span Rm if and only if for each b the equation Ax = b is consistent – 

in other words, if and only if for every b, the equation T(x) = b has at least one 
solution. This is true if and only if T maps Rn onto Rm. 

 
(b) The equations T (x) = 0 and Ax = 0 are the same except for notation. So T is one-to-

one if and only if Ax = 0 has only the trivial solution. This happens if and only if the 
columns of A are linearly independent. 

  
We can also write column vectors in rows, using parentheses and commas. Also, when 

we apply a linear transformation T to a vector – say, 1
1 2

2

( , )
x

x x x
x
 

= = 
 

 we write 

1 2( , )T x x  instead of the more formal ( )1 2( , )T x x . 
 
Example 7 Let T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2).  
 
Show that T is a one-to-one linear transformation.  
Does T map R2 onto R3? 



10- The Matrix of a Linear Transformation  VU  

                                                  
                                                   ©Virtual University Of Pakistan                                                            113 

 
Solution When x and T (x) are written as column vectors, it is easy to see that T is 
described by the equation 
 

1 2
1

1 2
2

1 2

3 1 3
5 7 5 7
1 3 3

x x
x

x x
x

x x

+   
    = +        +   

     (4) 

 
so T is indeed a linear transformation, with its standard matrix A shown in (4). The 
columns of A are linearly independent because they are not multiples. Hence T is one-to-
one. To decide if T is onto R3, we examine the span of the columns of A. Since A is 3 2× , 
the columns of A span R3 if and only if A has 3 pivot positions. This is impossible, since 
A has only 2 columns. So the columns of A do not span R3 and the associated linear 
transformation is not onto R3. 
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Exercises 
 
1. Let 2 2:T R R→  be transformation that first performs a horizontal shear that maps 

2e  into 2 1.5e e−  (but leaves 1e  unchanged) and then reflects the result in the x2 – axis. 
Assuming that T is linear, find its standard matrix. 
 
Assume that T is a linear transformation. Find the standard matrix of T. 
 
2. 2 3: , (1,0) (4, 1,2) (0,1) ( 5,3, 6)T R R T and T→ = − = − −  
 
3. 3 2

1 2 3: , ( ) (1, 4), ( ) ( 2,9), ( ) (3, 8),T R R T e T e and T e→ = = − = −  where e1, e2, and e3 are 
the columns of the identity matrix. 
 
4. 2 2:T R R→  rotates points clockwise through π  radians. 
 
5. 2 2:T R R→  is a “vertical shear” transformation that maps e1 into e1 + 2e2 but leaves 
the vector e2 unchanged. 
 
6. 2 2:T R R→  is a “horizontal shear” transformation that maps e2 into e2 – 3e1 but 
leaves the vector e1 unchanged. 
 
7. 3 3:T R R→  projects each point (x1, x2, x3) vertically onto the x1x2-plane (where 
x3=0). 
 
8. 2 2:T R R→  first performs a vertical shear mapping e1 into e1 – 3e2(leaving e2 
unchanged) and then reflects the result in the x2-axis. 
 
9. 2 2:T R R→  first rotates points counterclockwise through π /4 radians and then 
reflects the result in the x2-axis. 
 
Show that T is a linear transformation by finding a matrix that implements the mapping. 
Note that x1, x2, … are not vectors but are entries in vectors. 
 
10. 1 2 3 4 1 2 2 3 3 4( , , , ) ( , , ,0)T x x x x x x x x x x= + + +  
 
11. 1 2 3 2 3 1 2 3( , , ) (3 , 4 )T x x x x x x x x= − + +  
 
12. 1 2 3 4 1 2 4( , , , ) 3 4 8T x x x x x x x= − +  
 
13. Let 2 2:T R R→  be a linear transformation such that 1 2 1 2 1 2( , ) ( , 4 7 )T x x x x x x= + + . 
Find x such that T (x) =(-2, -5). 
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13. Let 2 3:T R R→  be a linear transformation such that 
1 2 1 2 1 2 1 2( , ) ( 2 , 3 , 3 2 )T x x x x x x x x= + − − − − . Find x such that T (x) =(-4, 7, 0). 

 
In exercises 14 and 15, let T be the linear transformation whose standard matrix is given. 
 
14. Decide if T is one-to-one mapping. Justify your answer. 
 

5 10 5 4
8 3 4 7
4 9 5 3
3 2 5 4

− − 
 − 
 − −
 − − 

  

 
15. Decide if T maps R5 onto R5. Justify your answer. 
 

  

4 7 3 7 5
6 8 5 12 8
7 10 8 9 14

3 5 4 2 6
5 6 6 7 3

− 
 − − 
 − − −
 − − 
 − − − 
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Lecture 11 
 

Matrix Operations 
(i-j)th Element of a matrix 
Let A be an m n×  matrix, where m and n are number of rows and number of columns 
respectively, then ija  represents the i-th row and j-th column entry of the matrix. For 
example 12a  represents 1st row and 2nd column entry. 
Similarly 32a  represents 3rd row and 2nd column entry. The columns of A are vectors in 
Rm and are denoted by (boldface) .1 2 n, , ,a a a   

 
These columns are [ ]...A = 1 2 na a a  
The number ija  is the i-th entry (from the top) of j-th column vector ja . 

11 1 1

1

1

... ...

... ...

... ...

j n

i ij in

m mj mn

Column
j

a a a

a a aRow i A

a a a

 
 
 
  =
 
 
  

↑ ↑ ↑

  

  

1 j na       a       a
  

   
    Figure 1    Matrix notation. 
 
Definitions 
A diagonal matrix is a square matrix whose non-diagonal entries are zero.  

11

22

0 0
0 0

0 0 nn

d
d

D

d

 
 
 =
 
 
 





   



 

The diagonal entries in ijA a =    are 11 22 33, , ,a a a   and they form the main diagonal 
of A. 
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For example   

1 0 0 0
2 0 0

5 0 0 0 0 0
0 3 0

0 7 0 0 16 0
0 0 11

0 0 0 0

 
                   

 

 are all diagonal 

matrices.  
Null Matrix or Zero Matrix 
An m n×  matrix whose entries are all zero is a Null or zero matrix and is always written 
as O. A null matrix may be of any order.  
 

For example    

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

 
     
     
     
        

 

 

                             3 x 3      3 x 2                     4 x 5 
are all Zero Matrices 
  
Equal Matrices 
 
Two matrices are said to be equal if they have the same size (i.e., the same number of 
rows and columns) and same corresponding entries.  
 
Example 1 Consider the matrices 

  
2 1 2 1 2 1 0

, ,
3 1 3 5 3 4 0

A B C
x

     
= = =     +     

 

The matrices A and B are equal if and only if x+1 = 5 or x = 4. There is no value of x for 
which A = C, since A and C have different sizes. 
 
If A and B are m n×  matrices, then the sum, A + B, is the m n×  matrix whose columns 
are the sums of the corresponding columns in A and B. Each entry in A + B is the sum of 
the corresponding entries in A and B. The sum A + B is defined only when A and B are of 
the same size. 
  
If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns 
are r times the corresponding columns in A.  
 
 Note: Negative of a matrix A is defined as – A to mean (–1)A and the difference of A and 
B is written as A–B, which means A + (–1) B. 
 

Example 2 Let 
4 0 5 1 1 1 2 3

, ,
1 3 2 3 5 7 0 1

A B C
−     

= = =     −     
 

Then  
5 1 6
2 8 9

A B  
+ =  

 
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But A + C is not defined because A and C have different sizes. 
1 1 1 2 2 2

2 2
3 5 7 6 10 14

B    
= =   

   
 

4 0 5 2 2 2 2 2 3
2

1 3 2 6 10 14 7 7 12
A B

−     
− = − =     − − − −     

 

 
 

Theorem 1 Let A, B, and C are matrices of the same size, and let r and s are scalars. 
 

a. A + B = B + A   d. r (A + B)= r A + r B 
 b. (A + B) + C = A + (B + C) e. (r + s) A = r A + s A 
 c. A + 0 = A    f. r (sA) = (rs) A 
 
Each equality in Theorem 1 can be verified by showing that the matrix on the left side 
has the same size as the matrix on the right and that corresponding columns are equal. 
Size is no problem because A, B, and C are equal in size. The equality of columns 
follows immediately from analogous properties of vectors.  
 
For instance, if the jth columns of A, B, and C are ,j ja b  and jc , respectively, then the 
jth columns of (A + B) + C and A + (B + C) are 

( ) ( )j j j j j ja b c and a b c+ + + +  
respectively. Since these two vector sums are equal for each j, property (b) is verified. 
 
Because of the associative property of addition, we can simply write A + B + C for the 
sum, which can be computed either as (A + B) + C or A + (B + C). The same applies to 
sums of four or more matrices. 
 
Matrix Multiplication 
Multiplying an m×n matrix with an n×p matrix results in an m×p matrix. If many 
matrices are multiplied together, and their dimensions are written in a list in order, e.g. 
m×n, n×p, p×q, q×r, the size of the result is given by the first and the last numbers (m×r). 
 
It is important to keep in mind that this definition requires the number of columns of the 
first factor A to be the same as the number of rows of the second factor B. When this 
condition is satisfied, the sizes of A and B are said to conform for the product AB. If the 
sizes of A and B do not conform for the product AB, then this product is undefined.  
 
Definition If A is an m n×  matrix, and if B is an n p×  matrix with columns 1, , pb b , 
then the product AB is the m p×  matrix whose columns are 1, , pAb Ab .  

That is  1 2 1 2... ...p pAB A b b b Ab Ab Ab   = =     
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This definition makes equation (1) true for all x in Rp. Equation (1) proves that the 
composite mapping (AB) is a linear transformation and that its standard matrix is AB.  
Multiplication of matrices corresponds to composition of linear transformations. 
 
A convenient way to determine whether A and B conform for the product AB and, if so, 
to find the size of the product is to write the sizes of the factors side by side as in Figure 
below  (the size of the first factor on the left and the size of the second factor on the 
right). 

            A                          B         =        AB 
        m  x  s                        s  x  n              m x n      
   Inside 
                         
                       Outside 

 
 
 If the inside numbers are the same, then the product AB is defined and the outside 
numbers then give the size of the product. 
 

Example 3 Compute AB, where
2 3 4 3 6
1 5 1 2 3

A and B   
= =   − −   

 

 
Solution: Here B = [b1   b2   b3], therefore 
 

1 2 3

2 3 4 2 3 3 2 3 6
, ,

1 5 1 1 5 2 1 5 3
Ab Ab Ab           

= = =           − − − −           
 

 

       
11

1
 

=  − 
         

0
13

 
=  

 
           

21
9

 
=  − 

 

 
Then 
 

    1 2 3

11 0 21
[ ]

1 13 9
AB A b b b  

= =  − − 
 

 
        Ab1  Ab2  Ab3 

 
Note from the definition of AB that its first column, Ab1, is a linear combination of the 
columns of A, using the entries in b1 as weights. The same holds true for each column of 
AB. Each column of AB is a linear combination of the columns of A using weights from 
the corresponding column of B. 
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Example 4 Find the product AB for 

4 1 4 3
1 2 4

A = and B = 0 -1 3 1
2 6 0

2 7 5 2

 
   
       

 

Solution It follows from definition that the product AB is formed in a column-by-column 
manner by multiplying the successive columns of B by A. The computations are 

  

1 2 3

1 2 3

c c c
4

1 2 4 1 2 4 12
0 = 4c + 0c + 2c = (4) + (0) + (2) =

2 6 0 2 6 0 8
2

 
          
                     

 

Similarly, 
1

1 2 4 1 2 4 27
= -1 = (1) + (-1) + (7) =

2 6 0 2 6 0 -4
7

 
          
                     

   

  
4

1 2 4 1 2 4 30
= 3 = (4) + (3) + (5) =

2 6 0 2 6 0 26
5

 
          
                     

 

 

  
3

1 2 4 1 2 4 13
= 1 = (3) + (1) + (2) =

2 6 0 2 6 0 12
2

 
          
                     

 

Thus,  
4 1 4 3

1 2 4 12 27 30 13
= 0 -1 3 1 =

2 6 0 8 -4 26 12
2 7 5 2

AB
 

    
         

 

 
Example 5 (An Undefined Product) Find the product BA for the matrices 

4 1 4 3
1 2 4

0 1 3 1
2 6 0

2 7 5 2
A and B

 
   = = −       

 

Solution The number of columns of B is not equal to number of rows of A so BA 
multiplication is not possible. 
 
 The matrix B has size 3 4×  and the matrix A has size 2 3× . The “inside” numbers are 
not the same, so the product BA is undefined. 
 
Obviously, the number of columns of A must match the number of rows in B in order for 
a linear combination such as Ab1 to be defined. Also, the definition of AB shows that AB 
has the same number of rows as A and the same number of columns as B. 
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Example 6 If A is a 3 5×  matrix and B is a 5 2×  matrix, what are the sizes of AB and 
BA, if they are defined? 
 
Solution              The product of matrices A and B of orders 3 5× and 5 2×  will result in 
3 2×  matrix AB.  
But for BA we have 5 2×  and 3 5× , here number of columns in1st matrix are 2 which is 
not equal to number of rows in 2nd matrix. So BA is not possible.    
 Since A has 5 columns and B has 5 rows, the product AB is defined and is a 3 2×  
matrix: 

* *
* * * * * * ** *
* * * * * * ** *
* * * * * * ** *

* *

A B AB

 
          =           
  

 

 
      3 5×       5 2×  3 2×  
     Match  
  
 Size of AB 
 

 
The product BA is not defined because the 2 columns of B do not match the 3 rows of A. 
  
The definition of AB is important for theoretical work and applications, but the following 
rule provides a more efficient method for calculating the individual entries in AB when 
working small problems by hand. 
 
Row-Column Rule for Computing AB 
 
Explanation 
If a matrix B is multiplied with a vector x, it transforms x into a vector Bx. If this vector 
is then multiplied in turn by a matrix A, the resulting vector is A (Bx). 
 
   

Multiplication       Multiplication 
                                 by B                                  by A 
           x•          •               •  
                                                      Bx           A(Bx) 
           Multiplication by B and then A 
 
Thus A(Bx) is produced from x by a composition of mappings. Our goal is to represent 
this composite mapping as multiplication by a single matrix, denoted by AB, so that  
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A (Bx) = (AB) x------------------------------------------------------- (1) 

 
 

Multiplication      Multiplication 
                                 by B                                  by A 
           x•          •               •  
                      Bx           A(Bx) 
                            Multiplication 
 
                                              by AB 

Multiplication by AB 
 
If A is m n× , B is n p× , and x is in Rp, denote the columns of B by , ,1 pb b and the 

entries in x by 1, , px x , then 1 21 2 p pBx x b x b x b= + + +  
 
By the linearity of multiplication by A, 
 

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )p p

p p

A Bx A x b A x b A x b
x Ab x Ab x Ab

= + + +

= + + +





 

 
The vector A (Bx) is a linear combination of the vectors 1, , pAb Ab , using the entries in 
x as weights. If we rewrite these vectors as the columns of a matrix, we have 
 

1 2( ) ... pA Bx Ab Ab Ab x =    
 
Thus multiplication by 1 2 ... pAb Ab Ab    transforms x into A(Bx).  
We have found the matrix we sought! 
 
Row-Column Rule for Computing AB 
 
If the product AB is defined, then the entry in row i and column j of AB is the sum of the 
products of corresponding entries from row i of A and column j of B. If (AB)ij denotes 
the (i, j) – entry in AB, and if A is an m n×  matrix, then 

1 1 2 2( ) ...i j i j i j in njAB a b a b a b= + + +  
 

To verify this rule, let 1 ... pB b b =   . Column j of AB is Abj, and we can compute 
Abj. The ith entry in Abj is the sum of the products of corresponding entries from row i of 
A and the vector bj, which is precisely the computation described in the rule for 
computing the (i, j) – entry of AB. 
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Finding Specific Entries in a Matrix Product Sometimes we will be interested in 
finding a specific entry in a matrix product without going through the work of computing 
the entire column that contains the entry.  
  
Example 7 Use the row-column rule to compute two of the entries in AB for the 
matrices in Example 3.  
 
Solution: To find the entry in row 1 and column 3 of AB, consider row 1 of A and 
column 3 of B. Multiply corresponding entries and add the results, as shown below: 
 

2 3 4 3 6 2(6) 3(3) 21
1 5 1 2 3

AB

↓

   → +   
= = =      − −          

 

 
For the entry in row 2 and column 2 of AB, use row 2 of A and column 2 of B: 
 

 

 
 
Example 8 Use the dot product rule to compute the individual entries in the product of 

AB where  
4 1 4 3

1 2 4
0 1 3 1

2 6 0
2 7 5 2

A and B
 

   = = −       

. 

Solution Since A has size 2 3×  and B has size 3 4,×  the product AB is a 2 4×  matrix of 
the form 

 =
1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

r (A)× c (B) r (A)× c (B) r (A)× c (B) r (A)× c (B)
AB

r (A)× c (B) r (A)× c (B) r (A)× c (B) r (A)× c (B)
 
 
  

 

where 1( )r A  and 2 ( )r A  are the row vectors of A and 1 2 3 4( ), ( ), ( ) ( )c B c B c B and c B  are 
the column vectors of B. For example, the entry in row 2 and column 3 of AB can be 
computed as 

  
4 1 4 3

1 2 4
0 -1 3 1 =

2 6 0 262 7 5 2

                 

 

  (2×4) + (6×3) + (0×5) = 26  
and the entry in row 1 and column 4 of AB can be computed as 

2 3 4 3 6 21 21
1 5 1 2 3 1(3) 5( 2) 13

↓

      
= =      → − − + − −          
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4 1 4 3

1 2 4 13
0 -1 3 1 =

2 6 0
2 7 5 2

                 

 

  (1×3) + (2×1) + (4×2) = 13 
Here is the complete set of computations: 

  

11

12

13

14

21

22

23

24

( ) = (1×4) + (2×0) + (4×2) = 12
( ) = (1×1) + (2×-1) + (4×7) = 27
( ) = (1×4) + (2×3) + (4×5) = 30
( ) = (1×3) + (2×1) + (4×2) = 13
( ) = (2×4) + (6×0) + (0×2) = 8
( ) = (2×1) + (6×-1) + (0×7) = -4
( ) = (2×4) + (6×3) + (0×5) = 26
( ) = (2×

AB
AB
AB
AB
AB
AB
AB
AB 3) + (6×1) + (0×2) = 12

 

 
Finding Specific Rows and Columns of a Matrix Product 
The specific column of AB is given by the formula 
  [ ] [ ]1 2 1 2n nAB A A A A= = b b b b b b  

Similarly, the specific row of AB is given by the formula =

11

2 2

m m

a Ba
a a B

AB B =

a a B

  
  
  
  
  
     





 

 
Example 9 Find the entries in the second row of AB, where 

2 5 0
4 6

1 3 4
, 7 1

6 8 7
3 2

3 0 9

A B

− 
−  − −   = =   − −

    − 

 

 
Solution: By the row-column rule, the entries of the second row of AB come from row 2 
of A (and the columns of B): 

2 5 0
4 6

1 3 4
7 1

6 8 7
3 2

3 0 9

↓ ↓

− 
−  → − −   

  − −
    − 

  
4 21 12 6 3 8 5 1

   
   
− + − + −   = =   

   
      
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Example 10 (Finding a Specific Row and Column of AB) 

Let   
4 1 4 3

1 2 4
A = and B = 0 -1 3 1

2 6 0
2 7 5 2

 
   
       

  

 Find the second column and the first row of AB. 

Solution 
1

1 2 4 27
= -1 =

2 6 0 -4
7

2 2c (AB)= Ac (B)
 

    
         

 

  [ ] [ ]
4 1 4 3

= 1 2 4 0 -1 3 1 = 12 27 30 13
2 7 5 2

1 1r (AB)= r (A)B
 
 
 
  

 

 
Properties of Matrix Multiplication 
These are standard properties of matrix multiplication. Remember that mI  represents the 
m m×  identity matrix and mI x x=  for all x belong to Rm. 
 
Theorem 2   Let A be m n× , and let B and C have sizes for which the indicated sums and 
products are defined. 
 a. A (BC) = (AB) C  (associative law of multiplication) 
 b. A (B + C) = AB + AC  (left distributive law) 
 c. (B + C)A = BA + CA  (right distributive law) 

d. r (AB) = (r A)B = A(r B) (for any scalar r) 
 e. m ImI A A A= =   (identity for matrix multiplication) 
Proof. Properties (b) to (e) are considered exercises for you. We start property (a) 
follows from the fact that matrix multiplication corresponds to composition of linear 
transformations (which are functions), and it is known (or easy to check) that the 
composition of functions is associative.  
 
Here is another proof of (a) that rests on the “column definition” of the product of two 

matrices.  Let 1 ... pC c c =    

By definition of matrix multiplication 1 ... pBC Bc Bc =    

1( ) ( ) ... ( )pA BC A Bc A Bc =    
From above, we know that A(Bx) = (AB)x for all x, so 

1( ) ( ) ... ( ) ( )pA BC AB c AB c AB C = =   
 
The associative and distributive laws say essentially that pairs of parentheses in matrix 
expressions can be inserted and deleted in the same way as in the algebra of real 
numbers. In particular, we can write ABC for the product, which can be computed as 
A(BC) or as (AB)C. Similarly, a product ABCD of four matrices can be computed as 
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A(BCD) or (ABC)D or A(BC)D, and so on. It does not matter how we group the matrices 
when computing the product, so long as the left-to-right order of the matrices is 
preserved. 
  
The left-to-right order in products is critical because, in general, AB and BA are not the 
same. This is not surprising, because the columns of AB are linear combinations of the 
columns of A, whereas the columns of BA are constructed from the columns of B.  
 
If AB = BA, we say that A and B commute with one another. 

Example 11 Let 
5 1 2 0
3 2 4 3

A and B   
= =   −   

  

Show that these matrices don not commute, i.e. .AB BA≠  
Solution:  

5 1 2 0 10 4 0 3 14 3
3 2 4 3 6 8 0 6 2 6

AB
+ +       

= = =       − − − − −       
 

2 0 5 1 10 0 2 0 10 2
4 3 3 2 20 9 4 6 29 2

BA
+ −       

= = =       − + − −       
 

For emphasis, we include the remark about commutativity with the following list of 
important differences between matrix algebra and ordinary algebra of real numbers.  
 
WARNINGS 

1. In general, AB BA≠ . Clear from the Example # 11. 
2. The cancellation laws do not hold for matrix multiplication. That is, if 

AB AC= , then it is not true in general that B C= . 
                  
                          For example: Consider the following three matrices 
 

                      
3 2 1 2 1 2
6 4 3 2 3 2

A B C
− − −     

=       =       =     − − −     
 

 
                        

                            
9 10

18 20
AB C

− 
=  = Α    − 

 But B C≠  

                          
 

3. If a product AB is the zero matrix, you cannot conclude in general that 
either A = 0 or B = 0. 

 
For example:  

                     
0 0
0 0

If AB then it can be either 
 =        

 
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1 4 0 0
6 2 0 0

0 0 1 4
0 0 6 2

A and B or

A and B

   
=       =         

   
   

=       =      
   

 

 
Example 

                     
5 1 2 0 14 3
3 2 4 3 2 6

AB      
= =     − − −     

 

                     
5 1 3 0 15 1 0 3 14 3
3 2 1 3 6 8 0 6 2 6

AB
− +       

= = =       − − − − − −       
 

              
Powers of a Matrix  If A is an n n×  matrix and if k is a positive integer, Ak denotes the 
product of k copies of A, 



...k

k
A A A=  Also, we interpret A0 as I.  

Transpose of a Matrix Given an m n×  matrix A, the transpose of A is the n m×  matrix, 
denoted by At, whose columns are formed from the corresponding rows of A. 
OR, if A is an m x n matrix, then transpose of A is denoted by At, is defined to be the nxm 
matrix that is obtained by making the rows of A into columns; that is, the first column of 
At is the first row of A, the second column of At is the second row of A, and so forth. 
 

Example 12 (Transpose of a Matrix) 
The following is an example of a matrix and its transpose. 

2 3
A= 1 4

5 6

 
 
 
  

 

t 2 1 5
A =

3 4 6
 
 
 

 

 

Example 13 Let  
5 2

1 1 1 1
, 1 3 ,

3 5 2 7
0 4

a b
A B C

c d

− 
    = = − =     − −     

 

Then  

1 3
5 1 0 1 5

, ,
2 3 4 1 2

1 7

t t ta c
A B C

b d

− 
 −     = = =     − −   
 
 

 

Theorem 3 Let A and B denote matrices whose sizes are appropriate for the following 
sums and products. 
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. ( )

. ( )

. , ( )

. ( )

t t

t t t

t t

t t t

a A A
b A B A B
c For any scalar r rA rA
d AB B A

=

+ = +

=

=

 

 
The generalization of (d) to products of more than two factors can be stated in words as 
follows. 

“The transpose of a product of matrices equals the product of their transposes in 
the reverse order.” 
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Lecture 12 
 

The Inverse of a Matrix 
 

In this lecture and the next, we will consider only square matrices and we will investigate 
the matrix analogue of the reciprocal or multiplicative inverse of a nonzero real number.  
 
Inverse of a square Matrix 
 
If A is an n n×  matrix, A matrix C of order n n×  is called multiplicative inverse of A if  

 
AC CA I= =  where I  is the n n×  identity matrix.  
 
Invertible Matrix 
 
If the inverse of a square matrix exists, it is called an invertible matrix.  
 
In this case, we say that A is invertible and we call C an inverse of A.  
 
Note: If B is another inverse of A, then we would have  
 

( ) ( ) .B BI B AC BA C IC C= = = = =   
 
Thus when A is invertible, its inverse is unique.  
 
The inverse of A is denoted by A-1, so that 
 

1 1AA I and A A I− −= =  
Note: A matrix that is not invertible is sometimes called a singular matrix, and an 
invertible matrix is called a non-singular matrix. 
 
Warning 

                      By No means 1 1. .A A A A I The identity matrix− −= =      1 1A
A

− = , as in case of 

real number, we have 1 13
3

− = . 

 
1A−  is, in fact the n n×  matrix corresponding to the n n×  matrix A, which satisfies the 

property   
 
                                   1 1. .A A A A I The identity matrix− −= =       
         
 



12- Inverse of a Matrix  VU 

                                                  
                                                   ©Virtual University Of Pakistan                                                            130 

Example 1 If 
2 5 7 5
3 7 3 2

A and C
− −   

= =   − −   
, then 

 

 
2 5 7 5 14 15 10 10 1 0
3 7 3 2 21 21 15 14 0 1

AC and
− − − + − +       

= = =       − − − −       
 

 

  
7 5 2 5 14 15 35 35 1 0

3 2 3 7 6 6 15 14 0 1
CA

− − − + − +       
= = =       − − − −       

 

Thus C = A-1. 
  

Theorem Let .
a b

A
c d

 
=  

 
  

If 0ad bc− ≠ , then A is invertible or non singular and 1 1 d b
A

c aad bc
− − 

=  −−  
 

If 0ad bc− = , then A is not invertible or singular. 
 
The quantity ad bc− is called the determinant of A, and we write 

det A ad bc= −  
 
This implies that a 2 2×  matrix A is invertible if and only if det 0.A ≠  
 

Example 2 Find the inverse of 
3 4
5 6

A  
=  

 
. 

 
Solution We have det A = 3(6) – 4(5) = 2 0.− ≠   
 

Hence A is invertible 1 6 4 6 /( 2) 4 /( 2) 3 21
5 3 5 /( 2) 3 /( 2) 5 / 2 3/ 22

A− − − − − −     
= = =     − − − − −−      

 

 
 
The next theorem provides three useful facts about invertible matrices. 
 
Theorem 

a. If A is an invertible matrix, then A-1 is invertible and 1 1( )A A− − =  
 

b. If A and B are n n×  invertible matrices, then so is AB, and the inverse of AB is 
the product of the inverses of A and B in the reverse order. That is 

1 1 1( )AB B A− − −=  
 

c. If A is an invertible matrix, then so is AT, and the inverse of AT is the transpose of 
A-1. That is 1 1( ) ( )T TA A− −=  
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Proof  
(a) We must find a matrix C such that 1 1A C I and CA I− −= =  

 
However, we already know that these equations are satisfied with A in place of C. Hence 
A-1 is invertible and A is its inverse.  
 
(b) We use the associative law for multiplication: 
 

1 1 1 1

1

1

( )( ) ( )AB B A A BB A
AIA
AA
I

− − − −

−

−

=

=

=
=

 

 
A similar calculation shows that 1 1( )( )B A AB I− − = .  
Hence AB is invertible, and its inverse is 1 1B A− −  i.e 1 1 1( )AB B A− − −=  
Generalization 
Similarly we can prove the same results for more than two matrices i.e 
( ) 1 1 1 1 1 1

1 2 3 1 3 2 1( )( )( )...( ) ...n n nA A A A A A A A A− − − − − −
−=                                                    

 
The product of n n×  invertible matrices is invertible, and the inverse is the product of 
their inverses in the reverse order. 
 
Example 3 (Inverse of a Transpose). Consider a general 2×2 invertible matrix and its 
transpose: 

ta b a c
A and A

c d b d
   

= =   
   

 

Since A is invertible, its determinant (ad – bc) is nonzero. But the determinant of At is 
also (ad – bc ), so At is also invertible. It follows that 

1( )t

d c
ad bc ad bcA

b a
ad bc ad bc

−

 − − −=  
 − − − 

---------------(1) 

Now   1

d b
ad bc ad bcA

c a
ad bc ad bc

−

 − − −=  
 − − − 
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Therefore, 1( )t

d c
ad bc ad bcA

b a
ad bc ad bc

−

 − − −=  
 − − − 

-----------------(2) 

From (1) and (2), we have 
   (At)–1 = (A–1)t . 
 
Example 4 (The Inverse of a Product). Consider the matrices  

1 2 3 2
,

1 3 2 2
A B   

= =   
   

 

Here  
1

9 7
2 2

7 6
,

9 8

4 38 61 1( ) ( )
9 7| | 2

AB

AB Adj AB
AB

−

 
=  

 
−−   

= = =    −−−    

 

1

1
3
2

1 1
3 9 7
2 2 2

3 2 3 21 1( ) ,
1 1 1 1| | 1

1 12 21 1( ) ,
12 3| | 2

1 1 4 33 2
1 1 1

A Adj A
A

B Adj B
B

B A

−

−

− −

− −   
= = =   − −   

−−   
= = =    −−   

− −−    
= =    − −−    

 

Thus, 1 1 1( )AB B A− − −=  
 
Theorem: If A is invertible and n is a non-negative integer, then: 
(a) An is invertible and (An)–1 = A-n = (A–1)n 
(b) kA is invertible for any nonzero scalar k, and (kA)-1 = k-1A-1. 
 
Example 5 (Related to the above theorem) 

(a) Let   

 11 2 3 2 3 21 1 ( )
1 3 1 1 1 1| | 1

A then A Adj A
A

− − −     
= = = =     − −     

 

 
 

Now   ( )33 1 3 2 3 2 3 2 41 30
1 1 1 1 1 1 15 11

A A− − − − − −       
= = =       − − − −       

 

Also,   3 1 2 1 2 1 2 11 30
1 3 1 3 1 3 15 41

A        
= =       

       
 

3 1 1 341 30 41 301( ) ( )
15 11 15 11(11)(41) (30)(15)

A A− −− −   
= = =   − −−    

 

(b)  
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Take  A=
1 2
3 1

 
 
 

 and k=3 

kA=3A=
3 6
9 3

 
 
 

,                      1 1 3 6 1/15 2 /151( ) (3 )
9 3 1/ 5 1/159 54

kA A− − − −   
= = =   − −−    

------(1) 

1 1 21
3 15

A− − 
= −  − 

 

A= -1 -1 -1 -1 1 2 1/15 2 /151 1 k A =3 A = .
3 1 1/ 5 1/153 5

So
− −   −

=   − −   
-----------------------(2) 

 
From (1) and (2), we have  

1 1 1(3 ) 3A A− − −=  
 
There is an important connection between invertible matrices and row operations that 
leads to a method for computing inverses. As we shall see, an invertible matrix A is row 
equivalent to an identity matrix, and we can find A-1 by watching the row reduction of A 
to I. 
 
Elementary Matrices 
As we have studied that there are three types of elementary row operations that can be 
performed on a matrix: 
There are three types of elementary operations  

• Interchanging of any two rows 
• Multiplication to a row by a nonzero constant 
• Adding a multiple of one row to another 

 
Elementary matrix 
 
An elementary matrix is a matrix that results from applying a single elementary row 
operation to an identity matrix.  
 
Some examples are given below: 

1 0 0 0
1 0 3 1 0 0

1 0 0 0 0 1
, , 0 1 0 , 0 1 0

0 3 0 0 1 0
0 0 1 0 0 1

0 1 0 0

 
                   −          

 

 

 
 
 
 
From Def it is clear that elementary matrices are always square. 
 
Elementary matrices are important because they can be used to execute elementary row 
operations by matrix multiplication.  

Multiply the 
second row 
of I2 by -3.  

Interchange the 
second and 
fourth rows of I4. 

Add 3 times the 
third row of I3 to 
the first row.  

Multiply the 
first row of 
I3 by 1. 
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Theorem  If A is an n n×  identity matrix, and if the elementary matrix E results by 
performing a certain row operation on the identity matrix,  then the product EA is the 
matrix that results when the same row operation is performed on A. 
 
In short, this theorem states that an elementary row operation can be performed on a 
matrix A using a left multiplication by and appropriate elementary matrix. 
 
Example 6  (Performing Row Operations by Matrix Multiplication). Consider the 

matrix   
1 0 2 3
2 1 3 6
1 4 4 0

A
 
 = − 
  

 

Find an elementary matrix E such that EA is the matrix that results by adding 4 times the 
first row of A to the third row. 
 
Solution: The matrix E must be 3 3×  to conform to the product EA. Thus, we obtain E 

by adding 4 times the first row of 3I  to the third row. This gives us
1 0 0
0 1 0
4 0 1

E
 
 =  
  

 

As a check, the product EA is 
1 0 0 1 0 2 3
0 1 0 2 1 3 6
4 0 1 1 4 4 0

EA
   
   = −   
      

1 0 2 3
2 1 3 6
5 4 12 12

 
 = − 
  

 

So left multiplication by E does, in fact, add 4 times the first row of A to the third row. 
 
If an elementary row operation is applied to an identity matrix I to produce an elementary 
matrix E, then there is a second row operation that, when applied to E, produces I back 
again.  
 
For example, if E is obtained by multiplying the i-th row of I by a nonzero scalar c, then 
I can be recovered by multiplying the i-th row of E by 1/c. The following table explains 
how to recover the identity matrix from an elementary matrix for each of the three 
elementary row operations. The operations on the right side of this table are called the 
inverse operations of the corresponding operations on the left side. 
 
Row operation on I that produces E
   

Row operation on E that reproduces I 

Multiply row i by 0c ≠  Multiply row i by 1/c 
Interchange rows i and j   Interchange rows i and  j 
Add c times row i to row j   Add –c times row i to row j 
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Example 7  (Recovering Identity Matrices from Elementary Matrices). Here are three 
examples that use inverses of row operations to recover the identity matrix from 
 

  
1 0 1 0 1 0
0 1 0 7 0 1

     
→ →     

     
 

 
 

   
 

                        
1 0 0 1 1 0

                      
0 1 1 0 0 1

     
→ →     

     
 

 
 
     

 
1 0 1 5 1 0

   
0 1 0 1 0 1

     
→ →     

     
 

 
 
 
 
The next theorem is the basic result on the invertibility of elementary matrices. 
 
Theorem  An elementary matrix is invertible and the inverse is also an elementary 
matrix. 
 

Example 8  Let  1 2 3

1 0 0 0 1 0 1 0 0
0 1 0 , 1 0 0 , 0 1 0
4 0 1 0 0 1 0 0 5

E E E
     
     = = =     
     −     

 

a b c
A d e f

g h i

 
 =  
  

 

 
Compute E1A, E2A, E3A and describe how these products can be obtained by elementary 
row operations on A. 
 
Solution   We have  

1 2, ,
4 4 4

a b c d e f
E A d e f E A a b c

g a h b i c g h i

   
   = =   
   − − −   

3

5 5 5

a b c
E A d e f

g h i

 
 =  
  

 

 

Multiply 
the second 
row by 7.  

 

Multiply 
the second 
row by 1/7. 

Interchange 
the first and 
second rows. 

Interchange 
the first and 
second rows. 

Add 5 times 
the second row 

to the first. 

Add -5 times 
the second row 

to the first. 
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Addition of (–4) times row 1 of A to row 3 produces E1A. (This is a row replacement 
operation.) An interchange of rows 1 and 2 of A produces E2A and multiplication of row 
3 of A by 5 produces E3A. 
 
Left-multiplication (that is, multiplication on the left) by E1 in Example 8 has the same 
effect on any 3 n×  matrix. It adds – 4 times row 1 to row 3. In particular, since E1 I = 
E1, we see that E1 itself is produced by the same row operation on the identity. Thus 
Example 8 illustrates the following general fact about elementary matrices. 
 
Note: Since row operations are reversible, elementary matrices are invertible, for if E is 
produced by a row operation on I, then there is another row operation of the same type 
that changes E back into I. Hence there is an elementary matrix F such that FE = I. Since 
E and F correspond to reverse operations, EF = I. 
 
Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the 
same type that transforms E back into I. 
 

Example Find the inverse of 1

1 0 0
0 1 0
4 0 1

E
 
 =  
 − 

. 

 
Solution: To transform E1 into I, add + 4 times row 1 to row 3.  

The elementary matrix which does that is 1
1

1 0 0
0 1 0
4 0 1

E−

 
 =  
 + 

 

 
Theorem An n n×  matrix A is invertible if and only if A is row equivalent to In, and in 
this case, any sequence of elementary row operations that reduces A to In also transforms 
In into A-1. 
 
 
An Algorithm for Finding A-1  If we place A and I side-by-side to form an augmented 
matrix [A   I], then row operations on this matrix produce identical operations on A and I. 
Then either there are row operations that transform A to In, and In to A-1, or else A is not 
invertible. 
 

Algorithm for Finding A-1 
 
Row reduce the augmented matrix [A   I]. If A is row equivalent to I, then [A  I] is 
row equivalent to [I   A-1]. Otherwise, A does not have an inverse.  
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Example 9 Find the inverse of the matrix 
0 1 2
1 0 3 ,
4 3 8

A
 
 =  
 − 

 if it exists. 

Solution 12

0 1 2 1 0 0 1 0 3 0 1 0
[ ] 1 0 3 0 1 0 0 1 2 1 0 0

4 3 8 0 0 1 4 3 8 0 0 1
A I R

   
   =    
   − −   

  

 
 

1 3 2 34 3
1 0 3 0 1 0 1 0 3 0 1 0
0 1 2 1 0 0 0 1 2 1 0 0
0 3 4 0 4 1 0 0 2 3 4 1

R R R R− + +

   
   
   
   − − − −   

 

 

 
 

3 2 3 12 3
1 0 3 0 1 0 1 0 0 9 / 2 7 3/ 2
0 1 2 1 0 0 0 1 0 2 4 1
0 0 1 3/ 2 2 1/ 2 0 0 1 3/ 2 2 1/ 2

R R R R− + − +

− −   
   − −   
   − −   

 

 

 

Since A I, we conclude that A is invertible, and 1

9 / 2 7 3/ 2
2 4 1

3/ 2 2 1/ 2
A−

− − 
 = − − 
 − 

 

 
It is a good idea to check the final answer: 

1

0 1 2 9 / 2 7 3/ 2 1 0 0
1 0 3 2 4 1 0 1 0
4 3 8 3/ 2 2 1/ 2 0 0 1

AA−

− −     
     = − − =     
     − −     

 

 
It is not necessary to check that A-1A = I since A is invertible. 
 

Example 10   Find the inverse of the matrix 

1 2 -3 1
-1 3 -3 -2

A=
2 0 1 5
3 1 -2 5

 
 
 
 
 
 
 

, if it exists. 
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Consider 

1 2 -3 1
-1 3 -3 -2

detA=
2 0 1 5
3 1 -2 5

1 2 -3 1
0 5 -6 -1

=
0 -4 7 3
0 -5 7 2

 

   operating R + R ,R -2R ,R -3R2 1 3 1 4 1 

Expand from first column
5 -6 -1

= -4 7 3
-5 7 2

5 -6 -1
= 1 1 2 = 5(1-2) +6(1-0) -1(1-0) = 0

0 1 1
 

As the given matrix is singular, so it is not invertible. 
 
 

Example 11 Find the inverse of the given matrix if possible















=

113
112
101

A  

Solution   1
113
112
101

det −==A  

 
As the given matrix is non-singular therefore, inverse is possible. 

1 0 1 1 0 0
2 1 1 0 1 0
3 1 1 0 0 1

   
   
   
      

 

 
 

2 1 3 1

1 0 1 1 0 0
0 1 1 2 1 0
0 1 2 3 0 1

2 , 3R R R R

   
   − −   
   − −   

− −
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3 2

3

1 0 1 1 0 0
0 1 1 2 1 0
0 0 1 1 1 1

1 0 1 1 0 0
0 1 1 2 1 0
0 0 1 1 1 1

1

R R

MultiplyR by

   
   − −   
   − − −   

−

   
   − −   
   −   

−

 

 
 

1 3 2 3

1 0 0 0 1 1
0 1 0 1 2 1
0 0 1 1 1 1

,R R R R

−   
   − −   
   −   

− +

 

 
 

Hence the inverse of matrix A is 
















−
−−

−
=−

111
121

110
1A  

 

Example 12 Find the inverse of the matrix















=

325
322
221

A  

Solution  6
325
322
221

det ==A  

As the given matrix is non-singular, therefore, inverse of the matrix is possible. 
We reduce it to reduce echelon form. 
 

1 2 2 1 0 0
2 2 3 0 1 0
5 2 3 0 0 1

   
   
   
      
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2 1 3 1

1 2 2 1 0 0
0 2 1 2 1 0
0 8 7 5 0 1

2 , 5R R R R

   
   − − −   
   − − −   

− −

 

 

3 2

1 2 2 1 0 0
0 1 1/ 2 1 1/ 2 0
0 8 7 5 0 1

multiply 2nd row by -1/2
1 2 2 1 0 0
0 1 1/ 2 1 1/ 2 0
0 0 3 3 4 1

8R R

   
   −   
   − − −   

   
   −   
   − −   

+

 

 
1 2 2 1 0 0
0 1 1/ 2 1 1/ 2 0
0 0 1 1 4 / 3 1/ 3

Multiply 3rd row by -1/3

   
   −   
   − −   

 

 
8 231 2 0 3 3

0 1 0 3/ 2 7 / 6 1/ 6
0 0 1 1 4 / 3 1/ 3

 −  
   −  
   − −   
 

 

 

2 3 1 3

1 0 0 0 1/ 3 1/ 3
0 1 0 3/ 2 7 / 6 1/ 6
0 0 1 1 4 / 3 1/ 3

(1/ 2) , 2R R R R

−   
   −   
   − −   

− −

 

 

Hence the inverse of the original matrix
















−−
−
−

=−

3/13/41
6/16/72/3
3/13/10

1A  
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Exercises 
 
In exercises 1 to 4, find the inverses of the matrices, if they exist. Use elementary row 
operations. 
 

1. 
1 2
5 9

 
 
 

     2. 
1 0 5
1 1 0
3 2 6

 
 
 
  

 

 

3. 
1 4 3
2 7 6

1 7 2

− 
 − − 
 − 

    4. 
1 3 1
0 1 2
1 0 8

− 
 
 
 − 

 

 

5. 
3 4 1
1 0 3
2 5 4

− 
 
 
 − 

    6. 
1 3 4

2 4 1
4 2 9

− − 
 
 
 − − 

 

 

7. Let 
1 5 7

2 5 6
1 3 4

A
− − − 

 =  
  

. Find the third column of A-1 without computing the other 

columns. 
 

8. Let 
25 9 27

546 180 537
154 50 149

A
− − − 

 =  
  

. Find the second and third columns of A-1 without 

computing the first column. 
 
9. Find an elementary matrix E that satisfies the equation. 
(a) EA = B  (b) EB = A  (c) EA = C  (d) EC = A 

where 
3 4 1 8 1 5 3 4 1
2 7 1 , 2 7 1 , 2 7 1
8 1 5 3 4 1 2 7 3

A B C
     
     = − − = − − = − −     
     −     

. 

 

10. Consider the matrix 
1 0 2
0 1 0
0 0 2

A
− 

 =  
  

. 

(a) Find elementary matrices E1 and E2 such that E2E1A=I. 
(b) Write A-1 as a product of two elementary matrices. 
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(c) Write A as a product of two elementary matrices. 
In exercises 11 and 12, express A and A-1 as products of elementary matrices. 
 

11. 
2 1 1
1 2 1
1 1 2

A
 
 =  
  

    12. 
1 1 0
1 1 1
0 1 1

A
 
 =  
  

 

 

13. Factor the matrix 
0 1 7 8
1 3 3 8
2 5 1 8

A
 
 =  
 − − − 

 as A = EFGR, where E, F, and G are 

elementary matrices and R is in row echelon form. 
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Lecture 13 

Characterizations of Invertible Matrices 
 

This chapter involves a few techniques of solving the system of n linear equations in n 

unknowns and transformation associated with a matrix. 

Solving Linear Systems by Matrix Inversion  

Theorem 

 Let A be an n n×  invertible matrix. For any b∈Rn , the equation Ax = b …..(1) has the 

unique solution i.e. x = A-1b. 

Proof 

Since A is invertible and b∈  Rn be any vector. Then, we must have a matrix 1A b−  which 

is a solution of eq. (1) .i.e.  Ax = A (A –1b) = Ib = b. 

Uniqueness 

For uniqueness, we assume that there is another solution u. Indeed, it is a solution of 

eq.(1) so it must be u = A-1b, it means x = A-1b = u. This shows that u = x.  

Theorem  

Let A and B be the square matrices such that AB = I. Then, A and B are invertible with  

B = A-1 and A = B-1 

Example 1    

Solve the system of linear equations  

 

 

Solution 

Consider the linear system 

1 2 3

1 2 3

1 3

2 1
5 3 3

4 6

x x x
x x x

x x

+ + =
+ + =

+ =

   

The Matrix form of system is Ax = b, where 

1 2 3

1 2 3

1 3

2 1
5 3 3

4 6

x x x
x x x

x x

+ + =
+ + =

+ =
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1

2

3

2 1 1 1
5 1 3 , , 3
1 0 4 6

x
A x x b

x

     
     = = =     
          

 

 

Here, det (A) = 2(4) – 1 (20 – 3) + 1(0 – 1) = 8 – 17 – 1 = -10 ≠ 0      

So, A is invertible. Now, we apply the inversion algorithm: 

 

  
2 1 1 1 0 0
5 1 3 0 1 0
1 0 4 0 0 1

 
 
 
  

 

         

                        
1 0 4 0 0 1
5 1 3 0 1 0
2 1 1 1 0 0

 
 
 
  

 

                   1 2 1 3

1 0 4 0 0 1
0 1 17 0 1 5 , 5 , 2
0 1 7 1 0 2

R R R R
 
 − − − + − + 
 − − 

 

              2 3

1 0 4 0 0 1
0 1 17 0 1 5 , ,
0 0 10 1 1 3

R R
 
 − − − + 
 − 

                         

3

1 0 4 0 0 1
0 1 17 0 1 5 ,

10
1 1 30 0 1

10 10 10

R

 
 
 

− − 
 −
 
 

 

 

3 1 3 2

2 2 11 0 0
5 5 5

17 7 10 1 0 , 4 , 17
10 10 10
1 1 30 0 1

10 10 10

R R R R

− − 
 
 

−  − + − + 
 − 
  
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Hence,  1

2 2 1
5 5 5

17 7 1
10 10 10
1 1 3

10 10 10

A−

− − 
 
 

− =  
 − 
  

 

Thus, the solution of the linear system is 1 1

2 2 1 2
5 5 5 51

17 7 1 13
10 10 10 5

61 1 3 8
10 10 10 5

x A b A− −

− − −   
   

    
−     = = = =    

     −   
      

 

Example # 2   Solve the system
1 2 3

1 2 3

1 3

2 3 5
2 5 3 3

8 17

x x x
x x x

x x

 + + =


+ + =
 + =

by inversion method. 

Solution Consider the linear system
1 2 3

1 2 3

1 3

2 3 5
2 5 3 3

8 17

x x x
x x x

x x

 + + =


+ + =
 + =

 

  
This system can be written in matrix form as Ax = b, where 

1

2

3

1 2 3 5
2 5 3 , , 3
1 0 8 17

x
A x x b

x

     
     = = =     
          

 

Here, [det (A)] = 40 – 2 (16 – 3) + 3(0 – 5) = 40 – 26 – 15 = -1 ≠ 0      
Therefore, A is invertible. 
 
Now, we apply the inversion algorithm: 

  
1 2 3 1 0 0
2 5 3 0 1 0
1 0 8 0 0 1

 
 
 
  

 

       

  
1 2 3 1 0 0
0 1 3 2 1 0
0 2 5 1 0 1

 
 − − 
 − − 

1 2 1 32 , 1R R R R− + − +  
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1 2 3 1 0 0
0 1 3 2 1 0
0 0 1 5 2 1

 
 − − 
 − − 

2 32R R+  

                        
1 2 3 1 0 0
0 1 3 2 1 0
0 0 1 5 2 1

 
 − − 
 − − 

31R−  

  
1 2 0 14 6 3
0 1 0 13 5 3
0 0 1 5 2 1

− 
 − − 
 − − 

3 2 3 13 , 3R R R R+ − +  

   
1 0 0 40 16 9
0 1 0 13 5 3
0 0 1 5 2 1

− 
 − − 
 − − 

2 12R R− +  

Hence,  1

40 16 9
13 5 3
5 2 1

A−

− 
 = − − 
 − − 

 

Thus, the solution of the linear system is 1

40 16 9 5 1
13 5 3 3 1
5 2 1 17 2

x A b−

−     
     = = − − = −     
     − −     

 

Thus 1 2 31, 1, 2x x x= = − = . 
 
Note:  It is only applicable when the number of equations = number of unknown and fails 

if given matrix is not invertible.   

Example 3 

Solve the system of linear equation  

  

 

 

Solution 

The matrix coefficient 

1 6 4
2 4 1
1 2 5

A
 
 = − 
 − 

 

det (A) = 1(20 + 2) – 6(10 – 1) + 4 (4+4)  

1 2 3

1 2 3

1 2 3

6 4 2
2 4 3

2 5 3

x x x
x x x
x x x

+ + =
+ − =

− + + =
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            = 22 – 54 + 32  

            =  0   

Thus, A is not invertible. Hence, the inversion method fails.  

Solution for the system of a n n×  Homogeneous linear equations with  

an Invertible Coefficient Matrix:- 

Let see if the system is considered as homogeneous then what does the above theorem 

say? 

Theorem:- 

Let Ax = 0 be a homogeneous linear system of n equations and n unknowns. Then, the 

coefficient matrix A is invertible iff this system has only a trivial solution. 

Example 4  

State whether the following system of linear equation has a solution or not?  

  

 

 

 

Solution 

We see    

2 1 3
1 3 1
1 0 4

A
 
 = − 
 − 

 is an invertible matrix (det (A) ≠ 0 )  

Thus, this homogeneous linear system has only the trivial solution. 

 
Example 5 
 

   Solve
1 2 3

2 3

1 2 3

8

2 3 24
5 5 8

x x x
x x

x x x

+ + =


+ =
 + + =

 

    
Solution This system can be written in matrix form as Ax = b, where 

1

2

3

1 1 1 8
0 2 3 , , 24
5 5 1 8

x
A x x b

x

     
     = = =     
          

 

1 2 3

1 2 3

1 3

2 3 0
3 0

4 0

x x x
x x x
x x

+ + =
− + =

− =
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Here [det (A)] = 1(2 – 15) – 1(0 – 15) + 1(0 – 10) = -13 + 15 – 10 = -8 ≠ 0 
Therefore, A is invertible.      
 
Now, we apply the inversion algorithm: 
                            A                I3 

                         
1 1 1 1 0 0
0 2 3 0 1 0
5 5 1 0 0 1

 
 
 
  

 

              
1 1 1 1 0 0
0 2 3 0 1 0
0 0 4 5 0 1

 
 
 
 − − 

 1 35R R− +  

                               

1 1 1 1 0 0
3 10 1 0 0
2 2

0 0 4 5 0 1

 
 
 
 
 − − 

 2
1
2

R   

                      

1 11 0 1 0
2 2

3 10 1 0 0
2 2

0 0 4 5 0 1

 − − 
 
 
 
 − − 
  

 2 11R R− +  

    

1 11 0 1 0
2 2

3 10 1 0 0
2 2

5 10 0 1 0
4 4

 − − 
 
 
 
 
 −
  

 3
1
4

R−  

                                

1 11 0 1 0
2 2

15 1 30 1 0
8 2 8

5 10 0 1 0
4 4

 − − 
 
 − 
 
 −
  

 3 2
3
2

R R− +  

13 1 11 0 0
8 2 8
15 1 30 1 0
8 2 8

5 10 0 1 0
4 4

 − − 
 
 − 
 
 −
  

 3 1
1
2

R R+  
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Hence,   1

13 1 1
8 2 8
15 1 3
8 2 8

5 10
4 4

A−

 − − 
 
 = − 
 
 −
  

   

Thus, the solution of the linear system is  

1

13 1 1
8 2 8 8 0
15 1 3 24 0
8 2 8

8 85 10
4 4

x A b−

 − − 
    
    = = − =    
        

 −
  

 

Thus 1 2 30, 0, 8x x x= = = .  
 
Theorem (Invertible Matrix Theorem) Let A be a square n n×  matrix. Then the 

following statements are equivalent. (Means if any one holds then all are true). 

(a) A is an invertible matrix. 

(b) A is row equivalent to the n n×  identity matrix. 

(c) A has n pivot positions. 

(d) The equation Ax = 0 has only the trivial solution. 

(e) The columns of A form a linearly independent set. 

(f) The linear transformation x Ax→ is one-to-one. 

(g) The equation Ax = b has at least one solution for each b in Rn. 

(h) The columns of A span Rn. 

(i) The linear transformation x Ax→ maps Rn onto Rn. 

(j) There is a n n×  matrix C such that CA = I. 

(k) There is a n n×  matrix D such that AD = I. 

(l) AT is an invertible matrix. 

 

Example 6 

 Show that the matrix 
1 0 4
1 1 5
0 1 2

A
− 

 =  
  

 is invertible by using Invertible Matrix Theorem 
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Solution 

By row equivalent, 

1 2

2 3

1 0 4
1 1 5 ,
0 1 2

1 0 4
0 1 9 ,
0 1 2

1 0 4
0 1 9
0 0 7

A R R

R R

− 
 = − + 
  

− 
  − + 
  

− 
 
 
 − 

  

It shows that A has three pivot positions and hence is invertible, by the Invertible Matrix 

Theorem (c). 

Example 7  
 
Use the Invertible Matrix Theorem to decide if A is invertible, where 

1 0 2
3 1 2
5 1 9

A
− 

 = − 
 − − 

 

Solution 

 
1 0 2 1 0 2
0 1 4 0 1 4
0 1 1 0 0 3

A
− −   

   =    
   − −   

  Here, A has three pivot positions and hence is 

invertible by the Invertible Matrix Theorem (c). 
 

Example 7 Find At and show that At is an invertible matrix. 

 

 

 

 

Solution 

 

 

 

1 2 1 0
2 4 1 1
1 0 1 1
0 1 1 1

A

 
 
 =
 
 
 

1 2 1 0
2 4 0 1
1 1 1 1
0 1 1 1

tA

 
 
 =
 
 
 
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Now, by row equivalent of A, 

2 1 3 1 232 ,
1 2 1 0 1 2 1 0 1 2 1 0
2 4 1 1 0 0 1 1 0 2 0 1
1 0 1 1 0 2 0 1 0 0 1 1
0 1 1 1 0 1 1 1 0 1 1 1

R R R R R

A

− −

     
     − −     =
     − −
     
     

 

 

2 4 2
1 ( 1) 3 3 42

1 2 1 0 1 2 1 0 1 2 1 01 2 1 0
1 1 11 0 1 0 0 1 0 0 1 00 1 0 2 2 22

0 0 1 1 0 0 1 1 0 0 1 10 0 1 1
3 3 50 1 1 1 0 0 1 0 0 1 0 0 0
2 2 2

R R R R R R− − − − +

            − −       − −             − − − −                          

   

 

   

Here A has 4 pivot positions so by Invertible Matrix Theorem (c) A is invertible. Thus, 

by (l) At is invertible. 

Example 8 
  
Use the Invertible Matrix Theorem to decide if A is invertible, where 



















=

2110
2101
2142
0121

A  

 
Solution  

2 1 3 1 232 ,
1 2 1 0 1 2 1 0 1 2 1 0
2 4 1 2 0 0 1 2 0 2 0 2
1 0 1 2 0 2 0 2 0 0 1 2
0 1 1 2 0 1 1 2 0 1 1 2

R R R R R

A

− −

     
     − −     =
     − −
     
     

 
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2 4 2
1 ( 1) 3 3 42

1 2 1 0 1 2 1 0 1 2 1 0 1 2 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2
0 1 1 2 0 0 1 3 0 0 1 3 0 0 0 5

R R R R R R− − − − +

       
       − − − −       
       − − − −
       
       

   

 

   
Here, A has 4 pivot positions and hence is invertible by Invertible Matrix Theorem (c). 
 

Solving Multiple Linear Systems with a Common Coefficient Matrix 

This technique is used in solving a sequence of linear systems 

1 1 2 2, , , k kAx b Ax b Ax b= = =     (1) 

where coefficient matrix A remains same and off course if it is invertible, then we have a 

sequence of solutions. i.e. 

 1 1 1
1 1 2 2, , , k kx A b x A b x A b− − −= = = .  

Find a Matrix from Linear Transformation  

We can find a matrix corresponding to every transformation. In this section we will learn 

how to find a matrix attached with a linear transformation.  

Example 9  

Let L be the linear transformation from R2 to P2 (Polynomials of order 2) defined by 

T(x, y) = x y t + (x + y)t2  

Find the matrix representing T with respect to the standard bases.   

Solution 

Let A = {(1,0),(0,1)} be the basis of R2, then   

T(1,0)  = t2  =  (0,0,1) (This triple represents the coefficients of polynomial t2)  

i.e. 2 20.1 0. 1.t t t= + +  

Similarly, T (0, 1) =  t2  = (0,0,1). Hence, the matrix is given by 

A= 
0
0 0

1

0

1

 
 
 
 
 

 

Now, we will proceed with a more complicated example. 
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Example 10  

Let T be the linear transformation from R2 to R2 such that T(x, y) = (x , y + 2x).  Find a 

matrix A for T. 

Solution  

This matrix is found by finding T (1, 0) = (1, 2)        and        T (0, 1)  =  (0, 1)The matrix 

is
1 0
2 1

A  
=  

 
. 

Important Note 

It should be clear that the Invertible Matrix Theorem applies only to square matrices. For 

example, if the columns of a 4 3×  matrix are linearly independent, we cannot use the 

Invertible Matrix Theorem to conclude any thing about the existence or nonexistence of 

solutions to equations of the form Ax = b. 

Invertible Linear Transformations 

Recall that matrix multiplication corresponds to composition of linear transformations. 
When a matrix A is invertible, the equation A-1Ax = x can be viewed as a statement about 
linear transformations. See Figure 2. 
 

     Multiplication 
 

            by A 
 
                         x•                                                                      • Ax 
 
                                                     Multiplication 

 
      by A-1 

Figure 2 A-1 transforms Ax back to x 
 

Definition  

A linear transformation : n nT R R→  be a linear Transformation and A be a standard 

matrix for T. Then, T is invertible if and only if A is an invertible matrix in that case 

linear transformation S given by S(x) = A-1x is a unique function satisfying (1) and (2) 

  
( ( )) (1)
( ( )) (2)

n

n

S T x x x R
T S x x x R

= ∀ ∈

= ∀ ∈
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Important Note 

If the inverse of a linear transformation exits then it is unique. 

Proposition 

Let : n mT R R→ be linear transformation, given as ( ) , nT x Ax x R= ∀ ∈ , where A is 

a m n×  matrix. The mapping T is invertible if the system y Ax=  has a unique solution.  

Case 1: 

 If m n< , then the system Ax y=  has either no solution or infinitely many solutions, for 

any y in Rm. Therefore, y Ax=   is non-invertible. 

Case 2: 

 If m n= , then the system Ax y=  has a unique solution if and only if Rank (A) = n. 

Case 3: 

 If m n> , then the transformation y Ax=  is non-invertible because we can find a vector 

y in Rm such that Ax y=  is inconsistent. 
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Exercises 

 
1.Solve the system of linear equations by inverse matrix method.        

  

  

 

  

2. Let 1 2 3 4

1 2 5 2 3 1
, , , ,

3 8 7 2 5 7
A b b b and b

−         
= = = = =         −         

. 

(a) Find A-1 and use it to solve the equations Ax = b1, Ax = b2, Ax = b3, Ax = b4. 

(b) Solve the four equations in part (a) by row reducing the augmented matrix 

[ ]1 2 3 4A b b b b . 

3. (a) Solve the two systems of linear equations 

1 2 3

1 2 3

2 3

2 1
3 2 3

2 4

x x x
x x x

x x

+ + = −
+ + =

+ =

  

&  

1 2 3

1 2 3

2 3

2 0
3 2 0

2 4

x x x
x x x

x x

+ + =
+ + =

+ =

  

by row reduction. 

(b) Write the systems in (a) as Ax = b1 and Ax = b2, and then solve each of them by the 

method of inversion. 

Determine which of the matrices in exercises 4 to 10 are invertible? 

  

4. 
4 16

3 9
− 

 − 
  5.

5 0 3
7 0 2
9 0 1

 
 
 
  

              6. 
2 3 4
2 3 4
2 3 4

 
 
 
  

       7. 
5 9 3
0 3 4
1 0 3

− 
 
 
  

 

1 2 3

2 3

1 2 3

4 2

2 3 4
5 3

x x x
x x

x x x

+ + =

+ =
+ − =
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8. 

1 3 0 1
0 1 2 1
2 6 3 2

3 5 8 3

− 
 − − 
 − −
 − 

       9. 

1 0 0 0
2 5 0 0
3 6 8 0
4 7 9 10

 
 
 
 
 
 

         10. 

7 6 4 1
5 1 0 2

10 11 7 3
19 9 7 1

− − 
 − − 
 −
 
 

  

11. 

5 4 3 6 3
7 6 5 9 5
8 6 4 10 4
9 8 9 5 8

10 8 7 9 7

 
 
 
 
 − − 
 − 

 

12. Suppose that A and B are n n×  matrices and the equation ABx = 0 has a nontrivial 

solution. What can you say about the matrix AB? 

13. What can we say about a one-to-one linear transformation T from Rn into Rn? 

14. Let 2 2:T R R→ be a linear transformation given as ( ) 5T x x= , then find a matrix A of 

linear transformation T. 

In exercises 15 and 16, T is a linear transformation from R2 into R2. Show that T is 

invertible. 

 15. 1 2 1 2 1 2( , ) ( 5 9 ,4 7 )T x x x x x x= − + −    

16. 1 2 1 2 1 2( , ) (6 8 , 5 7 )T x x x x x x= − − +  

17. Let : n nT R R→  be a linear transformation and let A be the standard matrix for T. 

Then T is invertible if and only if A is an invertible matrix.  
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Lecture 14 
 

Partitioned Matrices 
 
A block matrix or a partitioned matrix is a partition of a matrix into rectangular 

smaller matrices called blocks.Partitioned matrices appear often in modern applications 

of linear algebra because the notation simplifies many discussions and highlights 

essential structure in matrix calculations. This section provides an opportunity to review 

matrix algebra and use of the Invertible Matrix Theorem. 

 
General Partitioning of a Matrix -  
A matrix can be partitioned (subdivided) into sub matrices (also called blocks) in 

various ways by inserting lines between selected rows and columns.  

Example 1  

The matrix 

  

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

P

 
 
 =
 
 
 

 

can be partitioned into four 2×2 blocks  

11 12 21 22

1 1 2 2 3 3 4 4
, , , ,

1 1 2 2 3 3 4 4
P P P P       

= = = =       
       

 

The partitioned matrix can then be written as 

 
   
 
 

Example 2  

 The matrix
3 0 1 5 9 2

5 2 4 0 3 1

8 6 3 1 7 4

A
 − −
 

= − − 
 − − − 

 

 
can also be written as the 2 3×  partitioned (or block) matrix 

11 12

21 22

P P
P

P P
 

=  
 
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whose entries are the blocks or sub matrices. 
 
Note:- 
 
It is important to know that in how many ways to block up an ordinary matrix A. See the 

following example in which a matrix A is block up into three different ways. 

Example 3  

Let A be a general matrix of 5 3× order, we have  

Partition (a) 

11 12 13

21 22 23
11 12

31 32 33
21 22

41 42 43

51 52 53

a a a

a a a
A A

A a a a
A A

a a a

a a a

 
 
 

  = =   
  

 
  

 

 

In this case we partitioned the matrix into four sub matrices.  Also notice that we 

simplified the matrix into a more compact form and in this compact form we’ve mixed 

and matched some of our notation.  The partitioned matrix can be thought of as a smaller 

matrix with four entries, except this time each of the entries are matrices instead of 

numbers and so we used capital letters to represent the entries and subscripted each one 

with the location in the partitioned matrix.    

Be careful not to confuse the location subscripts on each of the sub matrices with the size 

of each sub matrix.  In this case A11  is a  sub matrix of A,  A12 is a 2 2×  sub matrix 

of A, A21 is a 3 1× sub matrix of A and A22 is a 3 3× sub matrix of A. 

 

 

 

11 12 13

21 22 23

A A A
A

A A A
 

=  
 
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Partition (b) 

  [ ]

11 12 13

21 22 23

31 32 33 1 2 3

41 42 43

51 52 53

a a a

a a a

A a a a c c c

a a a

a a a

 
 
 
 = = 
 
 
  

  

 
In this case, we partitioned A into three column matrices each representing one column in 

the original matrix.  Again, note that we used the standard column matrix notation (the 

bold face letters) and subscripted each one with the location in the partitioned matrix.  

The ci in the partitioned matrix are sometimes called the column matrices of A. 

Partition (c)  

11 12 13 1

21 22 23 2

31 32 33 3

441 42 43

551 52 53

a a a r
a a a r

A a a a r
ra a a
ra a a

            = =            

 

 

Just as we can partition a matrix into each of its columns as we did in the previous part 

we can also partition a matrix into each of its rows. The ri       in the partitioned matrix are 

sometimes called the row matrices of A. 

Addition of Blocked Matrices  

If matrices A and B are the same size and are partitioned in exactly the same way, then it 

is natural to make the same partition of the ordinary matrix sum A + B. In this case, each 

block of A + B is the (matrix) sum of the corresponding blocks of A and B. 

Theorem  
If A is m×n and B is n×p, then 
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AB = 1 2( ) ( ) ... ( )nCol A Col A Col A+ + +  

1

2

( )
( )

( )n

Row B
Row B

Row B

 
 
 
 
 
 



 

 
 

 
Proof  
For each row index I and column index j, the (i,j) entry in colk (A) rowk (B) is the product 

of aik from colk (A) and bkj from rowk (B).  

Hence, the (i,j)-entry in the sum shown in (2) is 

1 1 21 2 1...

( 1, 2,..., )
i j j n nja b a b a b
k n

+ + +

=
 

This sum is also the (i,j)- entry in AB by the row column  rule 

Example 4  
Let  

11 12 11 12

21 22 21 22

A A B B
A and B

A A B B
   

= =   
   

 , then 

 

11 12 11 12

21 22 21 22

11 11 12 12

21 21 22 22

A A B B
A B

A A B B

A B A B
A B A B

   
+ = +   

   

+ + 
=  + + 

   

Similarly, subtraction of blocked matrices is defined.  

Multiplication of a partitioned matrix by a scalar is also computed block by block. 

 

Multiplication of Partitioned Matrices  

 

If  
11 12

11 12
21 22

21 22
31 32

A A
B B

A A A and B
B B

A A

 
  = =       

 

and if the sizes of the blocks confirm for the required operations, then  

1 1 2 2( ) ( ) ( ) ( ) ... ( ) ( )n nCol A Row B Col A Row B Col A Row B= + + +
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11 12 11 11 12 21 11 12 12 22

11 12
21 22 21 11 22 21 21 12 22 22

21 22
31 32 31 11 32 21 31 12 32 22

A A A B A B A B A B
B B

AB A A A B A B A B A B
B B

A A A B A B A B A B

+ +   
    = = + +        + +   

    

It is known as block multiplication.  

Example 5  

Find the block multiplication of the following partitioned matrices: 

  11 12 11

21 22 21

2 1
1 2 1 0 2 3 0
1 2 3 1 1 , 5 1

2 1 2 1 3 0 8
0 2

A A B
A B

A A B

 
          = − − = = =−          −   
  

 

Solution  
 
Let 

[ ] [ ]11 12 21 22

11
11 21

21

1 2 1 0 2
, , 2 1 2 1 3

1 2 3 1 1

2 1
0 8

3 0 ,
0 2

5 1

A A A and A

B
B B So B

B

   
= = = − =  − −   
 

   = = =         − 



 

Now 
 
 

 
This is a valid formula because the sizes of the blocks are such that all of the operations 
can be performed: 

  11 11 12 21

2 1
1 2 1 0 2 0 8 3 4

3 0
1 2 3 1 1 0 2 23 14

5 1
A B A B

 
        + = + =       − − −        − 

 

  
[ ] [ ]

[ ] [ ] [ ]

21 11 22 21

2 1
0 8

2 1 2 3 0 1 3
0 2

5 1

17 0 0 14 17 14

A B A B
 

  + = − +      − 
= + =

 

Thus, 

11 12 11 11 11 12 21

21 22 21 21 11 22 21

A A B A B A B
AB

A A B A B A B
+     

= =     +     



14-Partitioned Matrices  VU 
 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            162 

11 11 12 21

21 11 22 21

3 6
23 12

17 14

A B A B
AB

A B A B

 
+   = = −   +    

 

Note -  We see result is same when we multiply A and B without partitions 

  

2 1
1 2 1 0 2 3 63 0
1 2 3 1 1 23 125 1

2 1 2 1 3 17 140 8
0 2

AB

 
         = − − = −−       −    
  

 

Note  - Sometimes it is more useful to find the square and cube powers of a matrix. 

Example 6  
 
The block version of the row –column rule for the product AB of the partitioned matrices 

11 12 11

21 22 21

11 21

2 1
3 4 1 0 2 3 0
1 5 3 1 4 , 5 1

2 0 2 1 6 4 3
0 2

2 1
4 3

3 0
0 2

5 1

A A B
A B

A A B

where

B and B

− 
 −         = − − = = =−          − −   
  

− 
−  = =      − 

 

So 

11 12 11 11 11 12 21

21 22 21 21 11 22 21

A A B A B A B
AB

A A B A B A B
+     

= =     +     
 

This is a valid formula because the sizes of the blocks are such that all of the operations 
can be performed: 
 

 11 11 12 21

2 1
3 4 1 0 2 4 3 11 2

3 0
1 5 3 1 4 0 2 32 3

5 1
A B A B

− 
− − −        + = + =        − −        − 

 

  [ ] [ ] [ ]21 11 22 21

2 1
4 3

2 0 2 3 0 1 6 18 5
0 2

5 1
A B A B

− 
−  + = − + =     − 

 

Thus, 
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11 11 12 21

21 11 22 21

11 2
32 3
18 5

A B A B
AB

A B A B

− 
+   = =   +    

 

This result can be confirmed by performing the computation. 

  

2 1
3 4 1 0 2 11 23 0
1 5 3 1 4 32 35 1

2 0 2 1 6 18 54 3
0 2

AB

− 
 − −        = − − =−       − −    
  

 

 
 
 
 
 
Example 7   
Making block up of matrix  

  

2 0 0 0 2
0 2 0 0 2
0 0 2 0 2
0 0 0 2 0
0 0 0 0 2

A

 
 
 
 =
 
 
  

, evaluate 2A ?  

Solution  
 
We partition A as shown below  
 

  

2 0 0 0 2
0 2 0 0 2
0 0 2 0 2
0 0 0 2 0
0 0 0 0 2

A

 
 
 
 =
 
 
  

     where 32

0 2
0 2 ,
0 2

A
 
 =  
  

 

Now    
 

3 32 3 322

23 2 23 2

3 32

23 2

2 2
2 2

4 4
4

I A I A
A

O I O I

I A
O I

  
=   
  

 
=  
 
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Hence 

2

4 0 0 0 8
0 4 0 0 8
0 0 4 0 8
0 0 0 4 0
0 0 0 0 4

A

 
 
 
 =
 
 
  

 

 
Example 8     
 

Let

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
1 1 1 0 0 1

A

 
 
 
 

=  
 
 
 
 

 Evaluate 2A ? 

 
Solution  
 
  We partition A as shown below  
 

  
3 32 1

23 2 21

1 12

1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0

1
0 0 0 0 1 0
1 1 1 0 0 1

t

I O A
A O I O

A O

 
 
   
   = =   
     
 
 

     where 1

1
1
1

A
 
 =  
  

  

 

Now   
3 32 1 3 32 1 3 1 1 32 1 1

2
23 2 21 23 2 21 23 2 21

1 12 1 12 1 1 12 1 11 1 1

t

t t t t t

I O A I O A I A A O A A
A O I O O I O O I O

A O A O A A O A A

 + +   
    = =     
     + +     

 

 

  
[ ]

[ ]

3 1 1 1 1 1 1

1 1

2 1 1 2
1 2 1 , 2 , 2 2 2
1 1 2 2

1 4

t t t

t

I A A A A A A

A A

   
   + = + = + =   
      

+ =
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Hence  2

2 1 1 0 0 2
1 2 1 0 0 2
1 1 2 0 0 2
0 0 0 1 0 0
0 0 0 0 1 0
2 2 2 0 0 4

A

 
 
 
 

=  
 
 
 
 

 

Toeplitz matrix  

A matrix in which each descending diagonal from left to right is constant is called a 
Toeplitz matrix or diagonal-constant matrix 

Example 9      The matrix 

1 2 3
4 1 2
5 4 1
6 5 4

a
a

A
a

a

 
 
 =
 
 
 

 is a Toeplitz matrix. 

Block Toeplitz matrix  

A blocked matrix in which blocks (blocked matrices) are repeated down the diagonals of 
the matrix is called a blocked Toeplitz matrix. 

A block Toeplitz matrix B has the form 

B = 

(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (1,1) (1,2) (1,3) (1,4)
(3,1) (2,1) (1,1) (1,2) (1,3)
(4,1) (3,1) (2,1) (1,1) (1,2)
(5,1) (4,1) (3,1) (2,1) (1,1)

B B B B B
B B B B B
B B B B B
B B B B B
B B B B B

 
 
 
 
 
 
  

 

 

Inverses of Partitioned Matrices  

In this section, we will study about the techniques of inverse of blocked matrices. 
 
Block Diagonal Matrices  

A partitioned matrix A is said to be block diagonal if the matrices on the main diagonal 

are square and all other position matrices are zero, i.e.                               
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1

2

0 ... 0
0 ... 0

0 0 ... k

D
D

A

D

 
 
 =
 
 
 

  

 (1)    

where the matrices D1, D2, …, Dk are square. It can be shown that the matrix A in (1) is 

invertible if and only if each matrix on the diagonal is invertible. i.e. 

  

1
1

1
1 2

1

0 ... 0
0 ... 0

0 0 ... k

D
D

A

D

−

−
−

−

 
 
 =
 
 
  

  

 

 

Example 10   Let A be a block diagonal matrix 

  

1 2 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 5 4 0
0 0 0 0 2

A

 
 − 
 =
 
 
  

 

Find −1A . 

Solution  

There are three matrices on the main diagonal; two are 2x2 matrices and one 

is1 1× matrix. 

In order to find −1A , we evaluate the inverses of three matrices lie in main diagonal of A. 

Let ( )11 22 33

1 2 1 1
, 2

1 1 5 4
A A and A   

= = =   −   
 are matrices of main diagonal of A. Then   

1 11
11

11

1 2 1 2
1 1 3 3

1 13
3 3

AdjA
A

A
−

− −   
   − = = =  

−−   
 

. 
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 Similarly 
1

22

1
22

4 1
5 1

1
4 1

5 1

A

A

−

−

− 
 − =

−
− 

=  − 

  

   −

 
 
 

− 
 

⇒ =  − 
 −
 
 
  

A 1

1 2 0 0 0
3 3
1 1 0 0 0
3 3
0 0 4 1 0
0 0 5 1 0

10 0 0 0
2

  

Example 11   Consider the block diagonal matrix 

  

8 7 0 0 0
1 1 0 0 0
0 0 3 1 0
0 0 5 2 0
0 0 0 0 4

A

− 
 − 
 =
 
 
  

 

There are three matrices on the main diagonal – two 2x2 matrices and one 1x1 matrix.  

   −

− 
 − 
 −⇒ =  − 
 
 
 

A 1

1 7 0 0 0
1 8 0 0 0
0 0 2 1 0
0 0 5 3 0

10 0 0 0
4

 

 

 

Block Upper Triangular Matrices   

A partitioned square matrix A is said to be block upper triangular if the matrices on the 

main diagonal are square and all matrices below the main diagonal are zero; that is, the 

matrix is partitioned as 
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 
 
 =
 
 
 

  

k

k

kk

A A A
O A A

A

O O A

11 12 1

22 2

...

...

...

where the matrices A11, A22,…, Akk are 

square.  

 

Note  The definition of block lower triangular matrix is similar. 

Here, we are going to introduce a formula for finding inverse of a block upper triangular 

matrix in the following example. 

Example 12  

Let A be a block upper triangular matrix of the form  

11 12

220
A A

A
A

 
=  
 

where the orders of A11 and A22 are p p× and q q× respectively. Find A-

1. 

  
 

 

Solution  

 

Let B = 11 12

21 22

B B
B B
 
 
 

 be inverse of A .i.e. A-1 = B, then 

  

11 12 11 12

22 21 22

11 11 12 21 11 12 12 22

22 21 22 22

p

q

p

q

I OA A B B
AB

O IO A B B

I OA B A B A B A B
O IA B A B

    
= =     
     

+ +   
=   

   

    

By comparing corresponding entries, we have  

  11 11 12 21A B A B+ = pI             (1)         

  11 12 12 22A B A B+  = O     (2)    
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 22 21A B  = O      (3)  

 22 22A B = qI       (4) 

Since A22 is a square matrix, so by Invertible Matrix Theorem, we have A22 is invertible. 

Thus by eq.(4), B22 = A22
-1.  Now by eq. (3), we have 1

21 22B A O O−= = . From eq.(1)  

11 11

11 11

1
11 11

p

p

A B O I
A B I

B A −

+ =

⇒ =

⇒ =

 

Finally, form (2), 
  1 1 1

11 12 12 22 12 22 12 11 12 22A B A B A A and B A A A− − −= − = − = −  
Thus 

   
1 1 1 1

11 121 11 11 12 22
1

22 22

A A A A A A
A

O A O A

− − − −
−

−

 − 
= =   
   

  (5) 

 
Example 13  
 
Find A-1 of  
 
 

 

Solution  
Let partition given matrix A in form    

  

− 
 − =
 
 
 

1 9 5 0
3 3 3 2
0 0 7 0
0 0 3 1

A  

Put 
−     

= = =     −     
11 12 22

1 9 5 0 7 0
,

3 3 3 2 3 1
A A and A  

Thus − −

−     
     − − = = = =   

−−       −   

1 1
11 22

3 9 1 9 1 03 1 8 24 7
1 1 3det( ) 24 1
8 24 7

AdjAA and A
A

 

− 
 − =
 
 
 

1 9 5 0
3 3 3 2
0 0 7 0
0 0 3 1

A
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Moreover, 

- − −

−    
    − −= =      −− −           −     

1 1
11 12 22

1 9 4 31 05 08 24 7 47
1 11 1 3 2 3 1
4 128 24 7

A A A  

So by (5), we have 

 
 
 
 
 
 

 
 
 
 
 

Example 14  

Confirm that 

− 
 − =
 
 
 

A

4 7 5 3
3 5 3 2
0 0 7 2
0 0 3 1

is an invertible block upper triangular matrix, and 

then find its inverse by using formula (9). 
Solution   The matrix is block upper triangular because it can be partitioned into form   

  

 
 
 =
 
 
 

  

k

k

kk

A A A
O A A

A

O O A

11 12 1

22 2

...

...

...

   

as    

  

− 
 −   = =     
 
 

A A
A

O A
11 12

22

4 7 5 3
3 5 3 2
0 0 7 2
0 0 3 1

 

where   
−     

= = =     −     
A A A11 12 22

4 7 5 3 7 2
, ,

3 5 3 2 3 1
 

Now   − −− −   
= =   − −   

A and A1 1
11 22

5 7 1 2
3 4 3 7

 

−

− − 
 
 

− − 
 =  
 
 
 

− 
  

1

1 3 4 3
8 8 7 4

1
1 1 1

12
8 24 4

10 0 0
7
30 0 1
7

A
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Moreover,  − − − − − −       
− = − =       − − − −       
A A A1 1

11 12 22

5 7 5 3 1 2 133 295
3 4 3 2 3 7 78 173

 

 

So it follows from (9) that the inverse of A is −

− − 
 − − =
 −
 − 

A 1

5 7 133 295
3 4 78 173
0 0 1 2
0 0 3 7

 

NUMERICAL NOTES 
 

1. When matrices are too large to fit in a computer’s high-speed memory, 
partitioning permits a computer to work with only two or three sub-
matrices at a time. For instance, in recent work on linear programming, a 
research team simplified a problem by partitioning the matrix into 837 
rows and 51 columns. The problem’s solution took about 4 minutes on a 
Cray supercomputer. 

 
2. Some high-speed computers, particularly those with vector pipeline 

architecture, perform matrix calculations more efficiently when the 
algorithms use partitioned matrices. 

 
3. The latest professional software for high-performance numerical linear 

algebra, LAPACK, makes intensive use of partitioned matrix calculations. 
 
 
The exercises that follow give practice with matrix algebra and illustrate typical 
calculations found in applications. 
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Exercises 
 
In exercises 1 to 3, the matrices A, B, C, X, Y, Z, and I are all n x n and satisfy the 
indicated equation. 

1. 
0 0

0 0
A B I I
C X Y Z
     

=     
     

   2. 
0 0 0

0
X A I
Y Z B C I
     

=     
     

 

 

3. 
0 0 0

0 0
0 0

A Z
X I
Y I I

B I

 
     =         

 

  
4. Suppose that A11 is an invertible matrix. Find matrices X and Y such that the product 
below has the form indicated. Also compute B22. 
 

11 12 11 12

21 22 22

31 32 32

0 0
0 0

0 0

I A A B B
X I A A B
Y I A A B

     
     =     
          

 

 

5. The inverse of 
0 0 0 0

0 0
I I
C I is Z I
A B I X Y I

   
   
   
      

. Find X, Y and Z. 

 
 
6. Find the Inverse of matrix A. 
 

   

8 3 0 0 0
1 4 0 0 0
0 0 3 1 0
0 0 5 1 0
0 0 0 0 8

A

 
 
 
 =
 
 
  

  

7. Show that 
0I

A I
 
 
 

 is invertible and find its inverse. 

 
8. Compute XTX, when X is partitioned as [X1   X2]. 
 
In exercises 9 and 10, determine whether block multiplication  can be used to compute 
the product using the partitions shown. If so, compute the product by block 
multiplication. 
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9. (a) 

2 1 4
1 2 1 5

3 5 2
0 3 4 2

7 1 5
1 5 6 1

0 3 3

− 
−   −   −   −
     − 

  (b) 

2 1 4
1 2 1 5

3 5 2
0 3 4 2

7 1 5
1 5 6 1

0 3 3

− 
−   −   −   −
     − 

 

 

10. (a) 

2 4 1
3 1 0 3 3 0 2
2 1 4 5 1 3 5

2 1 4

− 
 − −      − 
 
 

  (b) 

2 5
1 3 2 1 3 4
0 5 0 1 5 7
1 4

− 
  − −       
 
 

 

 

11. Compute the product 
3 1 1 2 0
2 4 1 6 2
   
   − −   

 using the column row-rule, and check  

 
your answer by calculating the product directly. 

In exercises 11 and 12, find the inverse of the block diagonal matrix A. 

 

12. (a) 

2 1 0 0
3 2 0 0
0 0 3 4
0 0 1 1

A

 
 
 =
 
 − 

   (b) 

5 2 0 0 0
3 1 0 0 0
0 0 5 0 0
0 0 0 2 7
0 0 0 1 4

 
 
 
 
 
 
  

 

13. (a) 

5 1 0 0
4 1 0 0
0 0 2 3
0 0 3 5

A

 
 
 =
 −
 − 

   (b) 

2 0 0 0 0
0 1 2 0 0
0 3 7 0 0
0 0 0 4 9
0 0 0 1 2

 
 
 
 
 
 
  

 

14. Find the inverse of the block upper triangular matrix A. 
 

 (i)     

2 1 3 6
1 1 7 4
0 0 3 5
0 0 2 3

A

− 
 
 =
 
 
 

    (ii) 

1 1 2 5
2 1 3 8
0 0 4 1
0 0 7 2

A

− − 
 − =
 
 
 

 

 

15. Find B1, given that 3 31 1 2 2

31 2 00 0
A BA B A B

CC C
    

=     
     

 

 and 
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1 2 1

2 2 3

2 0 1 1 1 1
, ,

0 1 1 2 1 1

2 0 1 0 2 1
, ,

0 2 0 2 1 3

A B C

A C B

     
= = =     −     
     

= = =     
     

  

 
16. Consider the partitioned linear system 
 

  

1

2

3

4

5 2 2 3 2
2 1 3 1 6
1 0 4 1 0
0 1 0 2 0

x
x
x
x

    
    −     =
    
    

    

l 

 
Solve this system by first expressing it as 
 

0
A B u b
I D v

     
=     

     
 or equivalently, 

0
Au Bv b
u Dv

+ =
+ =

 

 
 next solving the second equation for u in terms of v, and then substituting in the first 
equation. Check your answer by solving the system directly.   

17.   Let 
3 1 2

.
1 4 5

a b
A and B c d

e f

 
−   = =   −    

  

Verify that 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( )AB col A row B col A row B col A row B= + +  

18. Find inverse of the matrix 

− 
 − =
 
 
 

A

4 7 5 3
3 5 3 2
0 0 7 2
0 0 3 1

. 
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Lecture 15 

 
Matrix Factorizations 

 
Matrix Factorization 
          A factorization of a matrix as a product of two or more matrices is called Matrix  
Factorization. 
Uses of Matrix Factorization 
Matrix factorizations will appear at a number of key points throughout the course. This 
lecture focuses on a factorization that lies at the heart of several important computer 
programs widely used in applications.  
 
 LU Factorization or LU-decomposition 
LU factorization is a matrix decomposition which writes a matrix as the product of a 
lower triangular matrix and an upper triangular matrix. This decomposition is used to 
solve systems of linear equations or calculate the determinant. 
Assume A is an m n×  matrix that can be row reduced to echelon form, without row 
interchanges. Then A can be written in the form A = LU, where L is an m m×  lower 
triangular matrix with 1’s on the diagonal and U is an m n×  echelon form of A. For 
instance, such a factorization is called LU factorization of A. The matrix L is invertible 
and is called a unit lower triangular matrix. 

 
 
 
 

 
 
  

 
LU factorization. 

 
Remarks    
1)  If A is the square matrix of order m, then the order of both L and U will also be m.  
2) In general, not every square matrix A has an LU-decomposition, nor is an LU-
decomposition unique if it exists. 
Theorem   If a square matrix A can be reduced to row echelon form with no row 
interchanges, then A has an LU-decomposition. 
Note    
The computational efficiency of the LU factorization depends on knowing L and U. The 
next algorithm shows that the row reduction of A to an echelon form U amounts to an LU 
factorization because it produces L with essentially no extra work.  
 
An LU Factorization Algorithm 
Suppose A can be reduced to an echelon form U without row interchanges. Then, since 
row scaling is not essential, A can be reduced to U with only row replacements, adding a 

1 0 0 0 * * * *
* 1 0 0 0 * * *
* * 1 0 0 0 0 *
* * * 1 0 0 0 0 0

A

L U

•   
   •   =
   •
   
   

http://en.wikipedia.org/wiki/Linear_equations
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multiple of one row to another row below it. In this case, there exist lower triangular 
elementary matrices E1, …, Ep such that 

Ep … E1A = U       (1) 
So   A = (Ep …E1)-1U = LU 
Where    L = (Ep … E1)-1       (2) 
It can be shown that products and inverses of unit lower triangular matrices are also unit-
lower triangular. Thus, L is unit-lower triangular. 
 
Note that the row operations in (1), which reduce A to U, also reduce the L in (2) to I, 
because Ep … E1L = (Ep…E1)(Ep … E1)-1 = I. This observation is the key to 
constructing L. 
 
Procedure for finding an LU-decomposition 
 
Step 1: Reduce matrix A to row echelon form U without using row interchanges, keeping 
track of the multipliers used to introduce the leading 1’s and the multipliers used to 
introduce zeros below the leading 1’s. 
 
Step 2: In each position along the main diagonal of L, place the reciprocal of the 
multiplier that introduced the leading 1 in that position in U. 
 
Step 3: In each position below the main diagonal of L, place the negative of the 
multiplier used to introduce the zero in that position in U. 
 
Step 4: Form the decomposition A = LU. 
 
Example 1   Find an LU-decomposition of  

6 -2 0
A= 9 -1 1

3 7 5

 
 
 
  

 

Solution   We will reduce A to a row echelon form U and at each step we will fill in an 
entry of L in accordance with the four-step procedure above. 

  
6 -2 0

A= 9 -1 1
3 7 5

 
 
 
  

          
* 0 0
* * 0
* * *

 
 
 
  

 

                                                                                         * denotes an unknown entry of L. 

         

1
3

1
6

1 - 0
9 -1 1 multiplier =
3 7 5

 
 

← 
 
 

        
6 0 0
* * 0
* * *

 
 
 
  

 

         

1
31 0

9
0 2 1

3
0 8 5

multiplier
multiplier

− 
← = − 

 ← = − 
 

                   
6 0 0
9 * 0
3 * *

 
 
 
  
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1
3

1
2

1 0
10 1
2

0 8 5

multiplier

− 
 
  ← =
 
 
 

                       
6 0 0
9 2 0
3 * *

 
 
 
  

 

         

1
3

1
2

1 0
0 1 8

0 0 1

multiplier
 −
 

← = − 
 
 

                     
6 0 0
9 2 0
3 8 *

 
 
 
  

 

1
3

1
2

1 0
0 1 1

0 0 1

 −
 

= ← = 
 
 

U multiplier                
6 0 0
9 2 0
3 8 1

 
 =  
  

L  

(No actual operation is performed here since there is already a leading 1 in the third row.) 
So    

1
3

1
2

6 0 0 1 0
9 2 0 0 1
3 8 1 0 0 1

A LU
−  

  = =   
     

 

 
                                            OR 
Solution   We will reduce A to a row echelon form U and at each step we will fill in an 
entry of L in accordance with the four-step procedure above. 

  
6 -2 0

A= 9 -1 1
3 7 5

 
 
 
  

          
* 0 0
* * 0
* * *

 
 
 
  

 

                                                                                         * denotes an unknown entry of L. 

         1
1
6

6 -2 0
6 6 6
9 -1 1 R
3 7 5

 
 
 

≈  
 
 
 

                    
6 0 0
* * 0
* * *

 
 
 
  

 

                                

-11 0
3

9 -1 1
3 7 5

 
 
 

=  
 
 
 
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         )

)

-11 0
3

-19 - 9(1) -1- 9( 1- 9(0)
3

-13 - 3(1) 7 - 3( 5 - 3(0)
3

 
 
 
 ≈  
 
 
  

   2 1

3 1

9
3

R R
R R

−
−

                   
6 0 0
9 * 0
3 * *

 
 
 
  

 

                               

-11 0
3

0 2 1
0 8 5

 
 
 

=  
 
 
 

 

 
                                 

         2
1
2

-11 0
3

0 2 1 R
2 2 2
0 8 5

 
 
 
 ≈  
 
 
  

                                     
6 0 0
9 2 0
3 * *

 
 
 
  

 

                               

-11 0
3

10 1
2

0 8 5

 
 
 
 =  
 
 
  

 

         3 28

)

-11 0
3

10 1 R R
2

10 - 8(0) 8 - 8(1) 5 - 8(
2

 
 
 
 ≈ − 
 
 
  

                     
6 0 0
9 2 0
3 8 *

 
 
 
  

 

                               

-11 0
3

10 1
2

0 0 1

 
 
 
 =  
 
 
  
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1
3

1
2

1 0
0 1 1

0 0 1

 −
 

= ← = 
 
 

U multiplier                
6 0 0
9 2 0
3 8 1

 
 =  
  

L  

So 

   

1
3

1
2

6 0 0 1 0
9 2 0 0 1
3 8 1 0 0 1

A LU
−  

  = =   
     

 

 
 

Example 2 Find an LU factorization of  

2 4 2 3
6 9 5 8
2 7 3 9
4 2 2 1
6 3 3 4

A

− − 
 − − 
 = − −
 − − − 
 − 

 

Solution 

 

2 4 2 3
6 9 5 8
2 7 3 9
4 2 2 1
6 3 3 4

− − 
 − − 
 = − −
 − − − 
 − 

A     

1 0 0 0 0
* 1 0 0 0
* * 1 0 0
* * * 1 0
* * * * 1

 
 
 
 
 
 
  

 

                                                               * denotes an unknown entry of L. 

                

3 11 2 1
2 2

6 9 5 8
2 7 3 9
4 2 2 1
6 3 3 4

 − − ← 
 

− − 
 − −
 

− − − 
 − 

multiplier

  

2 0 0 0 0
* 1 0 0 0
* * 1 0 0
* * * 1 0
* * * * 1

 
 
 
 
 
 
  

        

       

31 2 1
2

60 3 1 1
20 3 1 6
40 6 2 7

60 9 3 13

 − − 
 ← −− 

← − − −
 ← −− 

← − − 

multiplier
multiplier
multiplier
multiplier

  

2 0 0 0 0
6 1 0 0 0
2 * 1 0 0
4 * * 1 0
-6 * * * 1

 
 
 
 
 
 
  
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31 2 1
2

11 10 1 33 3
0 3 1 6
0 6 2 7
0 9 3 13

 − − 
 

← − 
 − − 
 −
 

− − 

multiplier
  

2 0 0 0 0
6 3 0 0 0
2 * 1 0 0
4 * * 1 0
-6 * * * 1

 
 
 
 
 
 
  

 

         

31 2 1
2

1 10 1
3 3 3

0 0 0 5 6
0 0 0 5 9
0 0 0 10

 − − 
 
 −  ←
 

← − 
 − ← 
 

multiplier
multiplier
multiplier

  

2 0 0 0 0
6 3 0 0 0
2 -3 1 0 0
4 6 * 1 0
-6 -9 * * 1

 
 
 
 
 
 
  

 

         

31 2 1
2

1 10 1 13 3
50 0 0 5

0 0 0 1
0 0 0 10

 − − 
 
 − ← −
 
 
 
 
 

multiplier   

2 0 0 0 0
6 3 0 0 0
2 -3 1 0 0
4 6 0 -5 0
-6 -9 0 * 1

 
 
 
 
 
 
  

 

  

31 2 1
2

1 10 1
3 3 10

0 0 0 5
0 0 0 1
0 0 0 0

 − − 
 
 − = ← −
 
 
 
 
 

U multiplier       

2 0 0 0 0
6 3 0 0 0
2 -3 1 0 0
4 6 0 -5 0
-6 -9 0 10 1

 
 
 
 =
 
 
  

L  

Thus, we have constructed the LU-decomposition 
31 -2 -12 0 0 0 0 2

1 16 3 0 0 0 0 1 -
3 32 -3 1 0 0

0 0 0 54 6 0 -5 0
0 0 0 1-6 -9 0 10 1
0 0 0 0

 
  
  
  
  = =
  
  
     
 

A LU  
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Example 3 Find LU–decomposition of 

6 -2 -4 4
3 -3 -6 1

A =
-12 8 21 -8
-6 0 -10 7

 
 
 
 
 
 

 

 
 
 
 
 
Solution 

6 2 4 4
3 3 6 1
12 8 21 8
6 0 10 7

A

− − 
 − − =
 − −
 − − 

    

1 0 0 0
* 1 0 0
* * 1 0
* * * 1

L

 
 
 =
 
 
 

 

             * denotes an unknown entry of L.         

              

1 2 2 11
3 3 3 6

3 3 6 1
12 8 21 8
6 0 10 7

multiplier − − ← 
 

− − 
 − −
 
− −  

        

6 0 0 0
* 1 0 0
* * 1 0
* * * 1

 
 
 
 
 
 

 

 

                 

1 2 21
3 3 3

30 2 4 1
120 4 13 0
60 2 14 11

multiplier
multiplier
multiplier

 − − 
 ← −− − − 

← 
  ←− −  

        

6 0 0 0
3 1 0 0
12 * 1 0
6 * * 1

 
 
 
 −
 − 

 

 

                 

1 2 21
3 3 3

110 1 2 22
0 4 13 0
0 2 14 11

multiplier

 − − 
 

← − 
 
 
 
 − − 

        

6 0 0 0
3 2 0 0
12 * 1 0
6 * * 1

 
 − 
 −
 − 
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1 2 21
3 3 3

10 1 2
2 4

0 0 5 2 2
0 0 10 12

multiplier
multiplier

 − − 
 
 
 ← −
 − ← 
 − 

        

6 0 0 0
3 2 0 0
12 4 1 0
6 2 * 1

 
 − 
 −
 − − 

 

           

1 2 21
3 3 3

10 1 2
2
2 10 0 1
5 5

0 0 10 12

multiplier

 − − 
 
 
 
 
 − ← 
 − 

         

6 0 0 0
3 2 0 0
12 4 5 0
6 2 * 1

 
 − 
 −
 − − 

 

 

       

1 2 21 - -
3 3 3

10 1 2
2
20 0 1 - multiplier 105

0 0 0 8

 
 
 
 
 
 
 ← 
  

         

6 0 0 0
3 2 0 0
12 4 5 0
6 2 10 1

 
 − 
 −
 − − − 

 

 
1 2 21
3 3 3

10 1 2
2
2 10 0 1
5 8

0 0 0 1

U

multiplier

 − − 
 
 
 =
 
 − ← 
  

  

6 0 0 0
3 2 0 0
12 4 5 0
6 2 10 8

L

 
 − =
 −
 − − − 

 

 
1 2 21
3 3 36 0 0 0

13 2 0 0 0 1 2
2

12 4 5 0 20 0 16 2 10 8 5
0 0 0 1

Thus A LU

 − − 
   
   −   = =
 −  
   −− − −   

  
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Example 4 Find an LU factorization of

2 4 1 5 2
4 5 3 8 1
2 5 4 1 8
6 0 7 3 1

A

− − 
 − − − =
 − −
 − − 

 

 
 
 
Solution 

2 4 1 5 2
4 5 3 8 1
2 5 4 1 8
6 0 7 3 1

A

− − 
 − − − =
 − −
 − − 

   

1 0 0 0
* 1 0 0
* * 1 0
* * * 1

L

 
 
 =
 
 
 

 

             * denotes an unknown entry of L. 

       

 − − ← 
 
− − − 
 − −
 
− −  

1 5 11 2 1
2 2 2

4 5 3 8 1
2 5 4 1 8
6 0 7 3 1

multiplier

        

 
 
 
 
 
 

2 0 0 0
* 1 0 0
* * 1 0
* * * 1

 

 

       

 − − 
  ←− 

← − − − −
  ←−  

1 51 2 1
2 2

40 3 1 2 3
20 9 3 4 10

60 12 4 12 5

multiplier
multiplier
multiplier

        

 
 − 
 
 − 

2 0 0 0
4 1 0 0
2 * 1 0
6 * * 1

 

 

             

 − − 
 

← − 
 − − − 
 − 

1 51 2 1
2 2

11 20 1 1 33 3
0 9 3 4 10
0 12 4 12 5

multiplier
        

 
 − 
 
 − 

2 0 0 0
4 3 0 0
2 * 1 0
6 * * 1

 

 

       

 − − 
 
 − 
 

← 
  ← −

1 51 2 1
2 2

1 20 1 1
3 3

0 0 0 2 1 9
0 0 0 4 7 12

multiplier
multiplier

         

 
 − 
 −
 − 

2 0 0 0
4 3 0 0
2 9 1 0
6 12 * 1

 



15- Matrix Factorizations  VU 

                                                  
                                                   ©Virtual University Of Pakistan                                                            184 

 − − 
 
 − =
 
 
 
 ← 

1 51 2 1
2 2

1 20 1 1
3 3

0 0 0 2 1
7 10 0 0 1
4 4

U

multiplier

 

 
 − =
 −
 − 

2 0 0 0
4 3 0 0
2 9 1 0
6 12 0 4

L  

 

Thus 

1 51 2 1
2 22 0 0 0

1 24 3 0 0 0 1 1
3 3

2 9 1 0 0 0 0 2 1
6 12 0 4 70 0 0 1

4

A LU

 − − 
   
   − −   = =
 −  
   −   

  

 

Matrix Inversion by LU-Decomposition 
Many of the best algorithms for inverting matrices use LU-decomposition. To understand 
how this can be done, let A be an invertible n n×  matrix, let [ ]1

1 2 nA x x x− =   be 

its unknown inverse partitioned into column vectors, and let [ ]1 2 nI e e e=   be then 

n n×  identity matrix partitioned into column vectors. The matrix equation 1AA I− =  can 
be expressed as 
   [ ] [ ]1 2 1 2n nA x x x e e e=   

   [ ] [ ]1 2 1 2n nAx Ax Ax e e e=   

which tells us that the unknown column vectors of 1A−  can be obtained by solving the n- 
linear systems. 
    1 1 2 2, , , n nAx e Ax e Ax e= = =    (1*) 
As discussed above, this can be done by finding an LU-decomposition of A, and then 
using that decomposition to solve each of the n systems in (1*).   
 
 
 
 
Solving Linear System by LU-Factorization 
 
When A =LU, the equation Ax = b can be written as L (Ux) = b. Writing y for Ux, we can 
find x by solving the pair of equations;  Ly = b and Ux = y         (2*) 
 
First solve Ly = b for y and then solve Ux = y for x. Each equation is easy to solve 
because L and U are triangular.  



15- Matrix Factorizations  VU 

                                                  
                                                   ©Virtual University Of Pakistan                                                            185 

         
Procedure 
Step 1: Rewrite the system A x = b as LU x = b                                        (3*)  
                       
Step 2: Define a new unknown y by letting U x = y      (4*) 

And rewrite (3*) as L y = b 
 
Step 3: Solve the system L y = b for the unknown y. 
Step 4: Substitute the known vector y into (4*) and solve for x. 
 
This procedure is called the method of LU-Decomposition.  
 
Although LU-Decomposition converts the problem of solving the single system A x = b 
into the problem of solving the two systems, L y = b and U x = y, these systems are easy 
to solve because their co-efficient matrices are triangular.   
 
Example 5 Solve the given system (Ax =b) by LU-Decomposition 

1 2 3

1 2

1 2 3

2 6 2 2

3 8 2
4 9 2 3

x x x
x x

x x x

+ + =

− − =
+ + =

      (1) 

 
Solution   We express the system (1) in matrix form:  

1

2

3

2 6 2 2
3 8 0 2

4 9 2 3

x
x
x

     
     − − =     
          

 

                                               A            x   =   b 
We derive an LU-decomposition of A. 

2 6 2 1 0 0
3 8 0 * 1 0

4 9 2 * * 1
A L

   
   = − − =   
      

 

1 3 1 2 0 0
13 8 0 * 1 0
2

4 9 2 * * 1
multiplier

   
   − − ←   
      

 

1 3 1 2 0 0
0 1 3 3 3 1 0
0 3 2 4 4 * 1

multiplier
multiplier

   
   ← −   
   − − ← −   

 

                   
1 3 1 2 0 0
0 1 3 3 3 1 0
0 0 1 4 3 1

multiplier
   
   ← −   
   −   
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1 3 1 2 0 0

10 1 3 3 1 0
7

0 0 1 4 3 7
U multiplier L

   
   = ← = −   
   −   

   

Thus   
2 6 2 2 0 0 1 3 1
3 8 0 3 1 0 0 1 3

4 9 2 4 3 7 0 0 1

     
     − − = −     
     −     

       (2) 

                                             A         =           L               U 
From (2) we can rewrite this system as 

1

2

3

2 0 0 1 3 1 2
3 1 0 0 1 3 2

4 3 7 0 0 1 3

x
x
x

       
       − =       
       −       

        (3) 

                                  L                U          x   =   b 
As specified in Step 2 above, let us define y1, y2 and y3 by the equation 

    
1 1

2 2

3 3

1 3 1
0 1 3
0 0 1

x y
x y
x y

     
     =     
          

       (4) 

       U            x     =   y 
which allows us to rewrite (3) as 

  
1

2

3

2 0 0 2
3 1 0 2

4 3 7 3

y
y
y

     
     − =     
     −     

     (5) 

  L           y    =   b 

or equivalently, as 
1

1 2

1 2 3

2 2

3 2
4 3 7 3

y
y y

y y y

=

− + =
− + =

 

  
This system can be solved by a procedure that is similar to back substitution, except that 
we solve the equations from the top down instead of from the bottom up. This procedure, 
called forward substitution, yields 

y1 = 1,      y2 = 5,     y3 = 2. 
 As indicated in Step 4 above, we substitute these values into (4), which yields the linear 
system 

1

2

3

1 3 1 1
0 1 3 5
0 0 1 2

x
x
x

     
     =     
          
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or equivalently,
1 2 3

2 3

3

3 1

3 5

2

x x x
x x

x

+ + =

+ =

=

 

  
Solving this system by back substitution yields  x1 = 2,     x2 = –1,   x3 = 2 
 
Example 6 It can be verified that 

3 7 2 2 1 0 0 0 3 7 2 2
3 5 1 0 1 1 0 0 0 2 1 2

6 4 0 5 2 5 1 0 0 0 1 1
9 5 5 12 3 8 3 1 0 0 0 1

− − − −     
     − − − −     = = =
     − − − −
     − − − −     

A LU  

Use this LU factorization of A to solve Ax = b, where 

9
5
7
11

− 
 
 =
 
 
 

b  

Solution The solution of Ly = b needs only 6 multiplications and 6 additions, because the 
arithmetic takes place only in column 5. (The zeros below each pivot in L are created 
automatically by our choice of row operations.) 
 

1 0 0 0 9 1 0 0 0 9
1 1 0 0 5 0 1 0 0 4

[ ] [ ]
2 5 1 0 7 0 0 1 0 5
3 8 3 1 11 0 0 0 1 1

L b I y

− −   
   − −   = =
   −
   −   

  

 
Then, for Ux = y, the “backwards” phase of row reduction requires 4 divisions, 6 
multiplications, and 6 additions. (For instance, creating the zeros in column 4 of [U    y] 
requires 1 division in row 4 and 3 multiplication – addition pairs to add multiples of row 
4 to the rows above.) 

3 7 2 2 9 1 0 0 0 3 3
0 2 1 2 4 0 1 0 0 4 4

[ ] ,
0 0 1 1 5 0 0 1 0 6 6
0 0 0 1 1 0 0 0 1 1 1

U y x

− − −     
     − − −     = =
     − − −
     − − −     

  

 
To find x requires 28 arithmetic operations, or “flops” (floating point operations), 
excluding the cost of finding L and U. In contrast, row reduction of [A   b] to [I   x] takes 
62 operations. 
 
Numerical Notes 
The following operation counts apply to an n n×  dense matrix A (with most entries 
nonzero) for n moderately large, say, 30.n ≥  
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1. Computing an LU factorization of A takes about 2n3/3 flops (about the same as 
row reducing [A   b]), whereas finding A-1 requires about 2n3 flops. 

2. Solving Ly = b and Ux = y requires about 2n2 flops, because n n×  triangular 
system can be solved in about n2 flops. 

3. Multiplication of b by A-1 also requires about 2n2 flops, but the result may not be 
as accurate as that obtained from L and U (because of round off error when 
computing both A-1 and A-1b). 

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too, 
whereas A-1 is likely to be dense. In this case, a solution of Ax = b with an LU 
factorization is much faster than using A-1.  

 
Example 7(Gaussian Elimination Performed as an LU-Decomposition) 
In Example 5, we showed how to solve the linear system 

    
1

2

3

2 6 2 2
3 8 0 2

4 9 2 3

x
x
x

     
     − − =     
          

   (6) 

using an LU-decomposition of the coefficient matrix, but we did not discuss how the 
factorization was derived. In the course of solving the system, we obtained the 

intermediate vector 
1
5
2

 
 =  
  

y by using forward substitution to solve system (5).  

We will now use the procedure discussed above to find both the LU-decomposition and 
the vector y by row operations on the augmented matrix for (6). 

2 6 2 2 * 0 0
3 8 0 2 * * 0 (* )

4 9 2 3 * * *
A b L unknown entries

   
     = − − = =     
      

 

   
1 3 1 1 2 0 0
3 8 0 2 * * 0

4 9 2 3 * * *

   
   − −   
      

 

 

            
1 3 1 1 2 0 0
0 1 3 5 3 * 0
0 3 2 1 4 * *

   
   −   
   − − −   

 

 

                                
1 3 1 1 2 0 0
0 1 3 5 3 1 0
0 0 7 14 4 3 *

   
   −   
   −   
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1 3 1 1 2 0 0
0 1 3 5 3 1 0
0 0 1 2 4 3 7

U y L
   
     = − =     
   −   

 

 
These results agree with those in Example 5, so we have found an LU-decomposition of 
the coefficient matrix and simultaneously have completed the forward substitution 
required to find y.  
 
All that remains to solve the given system is to solve the system Ux = y by back 
substitution. The computations were performed in Example5. 

A Matrix Factorization in Electrical Engineering 
Matrix factorization is intimately related to the problem of constructing an electrical 
network with specified properties. The following discussion gives just a glimpse of the 
connection between factorization and circuit design. 
  
Suppose the box in below Figure represents some sort of electric circuit, with an input 

and output. Record the input voltage and current by 1

1

v
i
 
 
 

 (with voltage v in volts and 

current i in amps), and record the output voltage and current by 2

2

v
i
 
 
 

. Frequently, the 

transformation 1 2

1 2

v v
i i
   

→   
   

 is linear. That is, there is a matrix A, called the transfer 

matrix, such that 2 1

2 1

v v
A

i i
   

=   
   

 

            
       1i    2i       
            
           input 1v    electric 2v     output     
       terminals     circuit        terminals     
            
            
  Figure  A circuit with input and output terminals. 
 
Above Figure shows a ladder network, where two circuits (there could be more) are 
connected in series, so that the output of one circuit becomes the input of the next circuit. 
The left circuit in Figure  is called a series circuit, with resistance R1 (in ohms);  
 
The right circuit is a shunt circuit, with resistance R2. Using Ohm’s law and Kirchhoff’s 
laws, one can show that the transfer matrices of the series and shunt circuits, respectively, 
are: 
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1

2

1 01
1/ 10 1

R
and

R
−   

   −   
 

Transfer matrix  Transfer matrix 
of series circuit of shunt circuit   

 
Example 8  
a) Compute the transfer matrix of the ladder network in the above Figure . 

b) Design a ladder network whose transfer matrix is 
1 8

.
0 5 5

− 
 − ⋅ 

 

Solution 
a) Let A1 and A2 be the transfer matrices of the series of the series and shunt circuits, 

respectively. Then an input vector x is transformed first into A1x and then into         
A2 (A1x). The series connection of the circuits corresponds to composition of linear 
transformations; and the transfer matrix of the ladder network is (note the order) 

11
2 1

2 2 1 2

1 0 11
1/ 1 1/ 1 /0 1

RR
A A

R R R R
−−    

= =    − − +    
(6) 

b) We seek to factor the matrix 
1 8
0 5 5

− 
 − ⋅ 

 into the product of transfer matrices, such 

as in (6). So we look for R1 and R2 to satisfy 
1

2 1 2

1 1 8
1/ 1 / 0 5 5

R
R R R

− −   
=   − + − ⋅  

 

From the (1, 2) – entries, R1 = 8 ohms, and from the (2, 1) – entries, 1/R2 = 0.5 ohm and 
R2 = 1/0.5 = 2 ohms. With these values, the network has the desired transfer matrix. 
Note   
A network transfer matrix summarizes the input-output behavior (“Design 
specifications”) of the network without reference to the interior circuits. To physically 
build a network with specified properties, an engineer first determines if such a network 
can be constructed (or realized). Then the engineer tries to factor the transfer matrix into 
matrices corresponding to smaller circuits that perhaps are already manufactured and 
ready for assembly. In the common case of alternating current, the entries in the transfer 
matrix are usually rational complex-valued functions. A standard problem is to find a 
minimal realization that uses the smallest number of electrical components. 
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Exercises 
Find an LU factorization of the matrices in exercises 1 to 8. 
 

1.  
2 5
3 4

 
 − − 

     2.  

3 1 2
3 2 10

9 5 6

− 
 − − 
 − 

 

 

3.  

3 6 3
6 7 2
1 7 0

− 
 − 
 − 

     4.  

1 3 5 3
1 5 8 4

4 2 5 7
2 4 7 5

− − 
 − − 
 − −
 − − 

 

 

5.  

2 4 4 2
6 9 7 3
1 4 8 0

− − 
 − − 
 − − 

    6.  

2 6 6
4 5 7

3 5 1
6 4 8

8 3 9

− 
 − − 
 −
 − − 
 − 

 

 

7.  

1 4 1 5
3 7 2 9
2 3 1 4
1 6 1 7

− 
 − 
 − − −
 − − 

    8.  

2 4 2 3
6 9 5 8
2 7 3 9
4 2 2 1
6 3 3 4

− − 
 − − 
 − −
 − − − 
 − 

 

 
Solve the equation Ax = b by using LU-factorization. 
 

9.  

3 7 2 7
3 5 1 , 5

6 4 0 2
A b

− − −   
   = − =   
   −   

   10.  

4 3 5 2
4 5 7 , 4

8 6 8 6
A b

−   
   = − − = −   
   −   

 

 

11.  

2 1 2 1
6 0 2 , 0

8 1 5 4
A b

−   
   = − − =   
   −   

   12.  

2 2 4 0
1 3 1 , 5
3 7 5 7

A b
−   

   = − = −   
      

 

 

13.  

1 2 4 3 1
2 7 7 6 7

,
1 2 6 4 0
4 1 9 8 3

A b

− − −   
   − − −   = =
   −
   − −   

  14. 

1 3 4 0 1
3 6 7 2 2

,
3 3 0 4 1
5 3 2 9 2

A b

   
   − − − −   = =
   − −
   − −   
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Lecture 16 
 

                                    Iterative Solutions of Linear Systems 
 
    Consistent linear systems are solved in one of two ways by direct calculation (matrix 
factorization) or by an iterative procedure that generates a sequence of vectors that 
approach the exact solution. When the coefficient matrix is large and sparse (with a high 
proportion of zero entries), iterative algorithms can be more rapid than direct methods 
and can require less computer memory. Also, an iterative process may be stopped as soon 
as an approximate solution is sufficiently accurate for practical work.  
 
General Framework for an Iterative Solution of Ax = b 
    Throughout the section, A is an invertible matrix. The goal of an iterative algorithm is 
to produce a sequence of vectors, 

(0) (1) ( ), ,..., ,...kx x x  

that converges to the unique solution say *x  of Ax = b, in the sense that the entries 
in ( )kx  are as close as desired to the corresponding entries in *x  for all k sufficiently 
large. 

  
   To describe a recursion algorithm that produces ( 1)kx +  from ( )kx , we write A = M – N 
for suitable matrices M and N, and then we rewrite the equation Ax = b as Mx – Nx = b 
and 

Mx Nx b= +  
 
   If a sequence { ( )kx } satisfies 

( 1) ( ) ( 0,1,...)k kMx Nx b k+ = + =        (1) 

and if the sequence converges to some vector *x , then it can be shown that * .Ax b= [The 
vector on the left in (1) approaches *Mx , while the vector on the right in (1) approaches 

*Nx +b.  This implies that * *Mx Nx b= +  and * .Ax b=  
 
    For ( 1)kx +  to be uniquely specified in (1), M must be invertible. Also, M should be 
chosen so that ( 1)kx +  is easy to calculate. There are two iterative methods below to 
illustrate two simple choices for M. 
 
1) Jacobi’s Method   
This method assumes that the diagonal entries of A are all nonzero.  
Choosing M as the diagonal matrix formed from the diagonal entries of A. So next 
N = M – A,  

⇒∴ )1( ( 1) ( )( ) ( 0,1,...)k kMx M A x b k+ = − + =  
 
For simplicity, we take the zero vector as (0)x  as the initial approximation. 
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Example 1   
 Apply Jacobi’s method to the system 

 
  10x1 +   x2 -       x3   =  18 
   x1 + 15x2 +      x3   = -12 
   -x1 +     x2 + 20x3  =   17     (2) 
Take x(0) = (0, 0, 0) as an initial approximation to the solution, and use six iterations (that 
is, compute x(1), … , x(6)). 
 
Solution   

For some k, let  x(k) = 
1

2

3

x
x
x

 
 
 
  

=(x1, x2, x3)  and  x(k + 1) =
1

2

3

y
y
y

 
 
 
  

=(y1, y2, y3) 

  Firstly we will construct M and N from A. 
Here  

   
10 1 1
1 15 1
1 1 20

A
− 

 =  
 − 

 

Its diagonal entries will give  
10 0 0
0 15 0
0 0 20

M
 
 =  
  

  and 

 
10 0 0 10 1 1 0 1 1
0 15 0 1 15 1 1 0 1
0 0 20 1 1 20 1 1 0

N M A
− −     

     = − = − = − −     
     − −     

 

Now the recursion: ( 1) ( )( ) ( 0,1,...6)k kMx M A x b here k+ = − + =  
    implies 

                
1 1

2 2

3 3

10 0 0 0 1 1 18
0 15 0 1 0 1 12
0 0 20 1 1 0 17

y x
y x
y x

−         
         = − − + −         
         −         

 

        
1 1 2 3

2 1 2 3

3 1 2 3

10 0 1 1 18
15 1 0 12
20 1 1 0 17

y x x x
y x x x
y x x x

− +     
     ⇒ = − + − + −     
     − +     

  

         
1 1 2 3

2 1 2 3

3 1 2 3

10 0 1 1 18
15 1 0 12
20 1 1 0 17

y x x x
y x x x
y x x x

− + +   
   ⇒ = − + − −   
   − + +   

 

           
Comparing the corresponding entries on both sides, we have  

10y1 =     -x2 + x3 + 18 
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15y2 = -x1      - x3 – 12 
20y3 = x1 – x2       + 17 

And 
 

y1 = (- x2 + x3 + 18)/10  
y2 = ( - x1 – x3 – 12)/15     (3) 
y3 = (x1 – x2 + 17)/20 

 
1st Iteration   
 
 For k = 0, put  x (0) = (x1, x2, x3) = (0, 0, 0) in (3) and compute 
  x (1) = (y1, y2, y3) = (18/10, – 12/15, 17/20) = (1.8, -0.8, 0.85) 
 
2nd Iteration   
 
For k = 1, put x (1) =(1.8, -.8, .85) 
 
  y1 = [ - ( -0.8) + (0.85) + 18]/10 = 1.965 
  y2 = [ - (1.8) – (0.85) – 12]/15 = -0.9767 
  y3 = [(1.8) – (-0.8) + 17]/20 = 0.98 
 
Thus, x (2) = (1.965, -.9767, .98). 
 
 The entries in x (2) are used on the right in (3) to compute the entries in x (3), and so on. 
Here are the results, with calculations using MATLAB and results reported to four 
decimal places: 

(0) (1) (2) (3) (4) (5) (6)

0 1.8 1.965 1.9957 1.9993 1.9999 2.0000
0 .8 .9767 .9963 .9995 .9999 1.0000
0 .85 .98 .9971 .9996 .9999 1.0000

x x x x x x x

             
             − − − − − −             
                          

 

 
If we decide to stop when the entries in x (k) and x (k – 1) differ by less than .001, then we 
need five iterations (k = 5). 
 
Alternative Approach   
 
If we express the above system as  

 10x1 +   x2 -       x3   =  18 2 3
1

18
10
x xx − +

⇒ =  

 x1 + 15x2 +      x3   = -12 1 3
2

12
15

x xx − − −
⇒ =  

 -x1 +     x2 + 20x3  =   17 1 2
3

17
20
x xx + −

⇒ =  

∴the equivalent system is  
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Now put (x1,x2,x3)=(0,0,0)= x(0) in the RHS to have 
            x1=(18-0+0)/10 = 1.80 
            x2= (-12-0-0)/15 = -0.80 
            x3 = (17+0-0)/20 = 0.85 
    Which gives x(1) = (1.80,-0.80,0.85) ----put this again on RHS of the equivalent system 
to get  
              x1=(18+0.80+0.85)/10 =1.965 
              x2= (-12-1.80-0.85)/15 = -0.9767 
              x3= (17+1.80+0.80)/20 = 0.98 
So in the similar fashion, we can get the next approximate solutions: x(3),x(4) ,x(5) and x(6)  

Next example will be solved by following this approach. 
Example 2   
 Use Jacobi iteration to approximate the solution of the system 

1 2 3

1 2 3

1 2 3

20 x  + x x  =17
x 10x  + x  =13

x  + x  + 10x  =18

−
−

−

 

Stop the process when the entries in two successive iterations are the same when rounded 
to four decimal places. 
 
Solution   
 As required for Jacobi iteration, we begin by solving the first equation for x1, the second 
for x2, and the third for x3. This yields 

1 2 3 2 3

2 1 3 1 3

3 1 2 1 2

17 1 1 0.85 0.05 0.05
20 20 20

13 1 1 1.3 0.1 0.1
10 10 10

18 1 1 1.8 0.1 0.1
10 10 10

x x x x x

x x x x x

x x x x x

= − + = − +

= − + + = − + +

= + − = + −

  (4) 

which we can write in matrix form as 
1 1

2 2

3 3

0 0.05 0.05 0.85
0.1 0 0.1 1.3
0.1 0.1 0 1.8

x x
x x
x x

−       
       = + −       
       −       

   (5) 

 

2 3
1

1 3
2

1 2
3

18
10

12
15

17
20

x xx

x xx

x xx

− +
=

− − −
=

+ −
=
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Since we have no special information about the solution, we will take the initial 
approximation to be 1 2 3 0x x x= = = . To obtain the first iterate, we substitute these values 
into the right side of  (5). This yields 
 
 
  

0.85
1.3

1.8
y

 
 = − 
  

1  

To obtain the second iterate, we substitute the entries of y1 into the right side of (5). This 
yields 

1

2

3

0 0.05 0.05 0.85 0.85 1.005
0.1 0 0.1 1.3 1.3 1.035
0.1 0.1 0 1.8 1.8 2.015

x
y x

x

−         
         = = − + − = −         
         −         

2  

 
Repeating this process until two successive iterations match to four decimal places yields 
the results in the following table: 
 y0 y1 y2 y3 y4  y5 y6 y7 
x1 0 0.8500 1.0050 1.0025 1.0001 1.0000 1.0000 1.0000 
x2 0 -1.3000 -1.0350 -0.9980 -0.9994 -1.0000 -1.0000 -1.0000 
x3 0 1.8000 2.0150 2.0040 2.0000 1.9999 2.0000 2.0000 
   
The Gauss-Seidel Method   
This method uses the recursion (1) with M the lower triangular part of A. That is, M has 
the same entries as A on the diagonal and below, and M has zeros above the diagonal. See 
Fig. 1. As in Jacobi’s method, the diagonal entries of A must be nonzero in order for M to 
be invertible. 
 

* * * * * * 0 0 0 0
* * * * * * * 0 0 0
* * * * * * * * 0 0
* * * * * * * * * 0
* * * * * * * * * *

A M

   
   
   
   = =
   
   
      

 

                     Figure 01:The Lower Triangular Part of A 
 
Example 3   
 Apply the Gauss – Seidel method to the system in Example 1 with  
x (0) =(0,0,0) and six iterations. 

10x1 +    x2 -       x3 =  18 
 x1 + 15x2 +     x3 = -12 
 -x1 +     x2 + 20x3 =   17     (6) 

 
Solution   
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For some k, let  x(k) = 
1

2

3

x
x
x

 
 
 
  

=(x1, x2, x3)  and  x(k + 1) =
1

2

3

y
y
y

 
 
 
  

=(y1, y2, y3) 

Again, firstly we construct matrices M and N from the coefficient matrix A. 

Here  
10 1 1
1 15 1
1 1 20

A
− 

 =  
 − 

 

Since matrix M is constructed by  
1) taking the values along the diagonal and below the diagonal of coefficient  
      matrix A. 
2) putting the zeros above the diagonal at upper trianular position. 

So  
10 0 0
1 15 0
1 1 20

M
 
 =  
 − 

 

Now, 
10 0 0 10 1 1 0 1 1
1 15 0 1 15 1 0 0 1
1 1 20 1 1 20 0 0 0

N M A
− −     

     = − = − = −     
     − −     

 

Now the recursion: ( 1) ( )( ) ( 0,1,...6)k kMx M A x b here k+ = − + =  
   implies 

             
1 1

2 2

3 3

10 0 0 0 1 1 18
1 15 0 0 0 1 12
1 1 20 0 0 0 17

y x
y x
y x

−         
         = − + −         
         −         

 

          
1 2 3

1 2 3

1 2 3

10 0 0 18
15 0 12

20 0 17

y x x
y y x
y y y

− +     
     ⇒ = − + −     
     −     

 

         
1 2 3

1 2 3

1 2 3

10 0 0 18
15 0 12

20 0 17

y x x
y y x
y y y

− + +   
   ⇒ = − −   
   − +   

 

Comparing the corresponding entries on both sides, we have  
 

10y1 =  -x2 + x3 + 18 
y1+15y2 = - x3 – 12 
 -y1 + y2 + 20y3 =17 

This further implies as 
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1 1 3 1 2 3

1 2 3 2 1 3

1 2 3 3 1 2

10 18 ( 18) /10
15 12 ( 12) /15

20 17 ( 17) / 20

y x x y x x
y y x y y x

y y y y y y

= − − + ⇒ = − + + 
+ = − − ⇒ = − − − 
− + + = ⇒ = − + 

-----------(7) 

 
Another way to view (7) is to solve each equation in (6) for x1, x2, x3, respectively and 
regard the highlighted x’s as the values: 

x1 = (- x2 + x3 + 18)/10 
x2 = ( - x1 – x3 – 12)/15 
x3 = (x1 – x2 + 17)/20     (8) 

 
Use the first equation to calculate the new x1 [called y1 in (7)] from x2 and x3. Then, use 
this new x1 along with x3 in the second equation to compute the new x2. Finally, in the 
third equation, use the new values for x1 and x2 to compute x3. In this way, the latest 
information about the variables is used to compute new values. [A computer program 
would use statements corresponding to the equations in (8).] 
  
From x (0) = (0, 0, 0), we obtain 
  x1 = [ - (0) + (0) + 18]/10 = 1.8 
   

x2 = [ - (1.8)    – (0) – 12]/15 = -.92 
   

x3 = [+(1.8) – (-.92) + 17]/20 = .986 
 
Thus, x (1) = (1.8, -.92, .986). The entries in x (1) are used in (8) to produce x (2) and so on. 
Here are the MATLAB calculations reported to four decimal places: 

(0) (1) (2) (3) (4) (5) (6)

0 1.8 1.9906 1.9998 2.0000 2.0000 2.0000
0 .92 .9984 .9999 1.0000 1.0000 1.0000
0 .986 .9995 1.0000 1.0000 1.0000 1.0000

x x x x x x x

             
            − − − − − −            
                        





 

 
 
Observe that when k is 4, the entries in x (4) and x (k – 1) differ by less than .001. The values 
in x (6) in this case happen to be accurate to eight decimal places. 
 
Alternative Approach   
 
If we express the above system as  
10x1 +    x2 -   x3 =  18 ⇒  x1 = (- x2 + x3 + 18)/10 ------(a) 
x1 + 15x2 +   x3 = -12  ⇒  x2 = ( - x1 – x3 – 12)/15------(b) 
 -x1 +  x2 + 20x3 =   17⇒  x3 = (x1 – x2 + 17)/20 ------(c) 
 
Ist Iteration   
Put x2=x3 =0 in (a) 
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   x1= 18/10 =1.80 
Put x1=1.80 and x3=0 in (b) 
   x2 = (-1.80-0-12)/15= -0.92 
Put x1=1.80, x2 = -0.92 in (c) 
 x3=(1.80+0.92+17)/20 = 0.9863 

So, (1)

1 1.8
2 .92
3 .986

x
x x
x

   
   = − =   
      

 

2nd iteration   
Put x2 = -0.92, x3=0.9863 in (a) 
      x1=(0.92+0.9863+18)/10 = 1.9906 
Put x1=1.9906(from 2nd iteration)  and x3=0.9863(from 1st iteration) in (b) 
      x2=(-1.9906-0.9863-12)/15 = -0.9984 
Put x1=1.9906, x2=-0.9984(both from 2nd iteration) in (c) 
      x3=(1.9906+0.9984+17)/20 = 0.9995 

So, (2)

1 1.9906
2 .9984
3 .9995

x
x x
x

   
   = − =   
      

 

So in the similar fashion, we can get the next approximate solutions: x(3),x(4) ,x(5) and x(6)  

Next example will be solved by following this approach. 
 
Example 4    
    Use Gauss-Seidel to approximate the solution of the linear system in example 2 to four 
decimal places. 
Solution    
    As before, we will take 1 2 3 0x x x= = = as the initial approximation. First, we will 
substitute x2 = 0 and x3 = 0 into the right side of the first equation of (4) to obtain the new 
x1. Then, we will substitute x3 = 0 and the new x1 into the right side of the second 
equation to obtain the new x2, and finally, we will substitute the new x1 and new x2 into 
the right side of the third equation to obtain the new x3. The computations are as follows: 

1

2

3

0.85 (0.05)(0) (0.05)(0) 0.85
1.3 (0.1)(0.85) (0.1)(0) 1.215

1.8 (0.1)(0.85) (0.1)( 1.215) 2.0065

x
x
x

= − + =
= − + + = −
= + − − =

 

Thus, the first Gauss-Seidel iterate is 

1

0.8500
1.2150

2.0065
y

 
 = − 
  

   

Similarly, the computations for second iterate are 
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1

2

3

0.85 (0.05)( 1.215) (0.05)(2.0065) 1.011075
1.3 (0.1)(1.011075) (0.1)(2.0065) 0.9982425

1.8 (0.1)(1.011075) (0.1)( 0.9982425) 2.00093175

x
x
x

= − − + =
= − + + = −
= + − − =

 

Thus, the second Gauss-Seidel iterate to four decimal places is 

2

1.0111
0.9982

2.0009
y

 
 ≈ − 
  

 

 
The following table shows the first four Gauss-Seidel iterates to four decimal places. 
Comparing both tables, we see that the Gauss-Seidel method produced the solution to 
four decimal places in four iterations whereas, the Jacobi method required six. 
 
 y0 y1 y2 y3 y4 
x1 0 0.8500 1.0111 1.0000 1.0000 
x2 0 -1.2150 -0.9982 -0.9999 -1.0000 
x3 0 2.0065 2.0009 2.0000 2.0000 
 
Comparison of Jacobi’s and Gauss-Seidel method   
                  There exist examples where Jacobi’s method is faster than the Gauss-Seidel 
method, but usually a Gauss-Seidel sequence converges faster (means to say iterative 
solution approaches to the unique solution), as in Example 2. (If parallel processing is 
available, Jacobi might be faster because the entries in x(k) can be computed 
simultaneously.) There are also examples where one or both methods fail to produce a 
convergent sequence, and other examples where a sequence is convergent, but converges 
too slowly for practical use. 
 
Condition for the Convergence of both Iterative Mthods    
              Fortunately, there is a simple condition that guarantees (but is not essential for) 
the convergence of both Jacobi and Gauss-Seidel sequences. This condition is often 
satisfied, for instance, in large-scale systems that can occur during numerical solutions of 
partial differential equations (such as Laplace’s equation for steady-state heat flow). 
 
    An n n×  matrix A is said to be strictly diagonally dominant if the absolute value of 
each diagonal entry exceeds the sum of the absolute values of the other entries in the 
same row. 
 
 In this case it can be shown that A is invertible and that both the Jacobi and Gauss-Seidel 
sequences converge to the unique solution of Ax = b, for any initial (0)x . (The speed of 
the convergence depends on how much the diagonal entries dominate the corresponding 
row sums.) 
 
The coefficient matrices in Examples 1 and 2 are strictly diagonally dominant, but the 
following matrix is not. Examine each row: 
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6 2 3
1 4 2
3 5 8

− − 
 − 
 − 

  

6 2 3

4 1 2

8 3 5

− > + −

> + −

= + −

 

 
The problem lies in the third row, because 8  is not larger than the sum of the 
magnitudes of the other entries.  
 
Note   
       The practice problem below suggests a TRICK(rearrangement of the system of 
equations) that sometimes works when a system is not strictly diagonally dominant. 
 
Example 5    
       Show that the Gauss-Seidel method will produce a sequence converging to the 
solution of the following systems, provided the equations are arranged properly: 

   x1 – 3x2 +     x3 = –2 
–6x1 + 4x2 + 11x3 = 1 

    5x1 – 2x2 –    2x3 = 9 
Solution    
         The system is not strictly diagonally dominant, as for the 1st row 

 1 2 3

1 3 1

coefficient of x coefficient of x coefficient of x

or

< +

< − +
 

so neither Jacobi nor Gauss- Seidel is guaranteed to work. In fact, both iterative methods 
produce sequences that fail to converge, even though the system has the unique solution 
x1 = 3, x2 = 2, x3 = 1. However, the equations can be rearranged as 

 5x1 – 2x2 –    2x3 = 9 
 x1 – 3x2 +      x3= –2 
–6x1 + 4x2 + 11x3 = 1 

So,  
for 1st equation (row); 

1 2 3

5 2 2

coefficient of x coefficient of x coefficient of x

or

> +

> − + −
 

for 2nd equation(row); 
2 1 3

3 1 1

coefficient of x coefficient of x coefficient of x

or

> +

− > +
 

for 3rd equation(row); 
3 1 2

11 6 4

coefficient of x coefficient of x coefficient of x

or

> +

> − +
 

 
      Now the coefficient matrix is strictly diagonally dominant, so we know Gauss-Seidel 
works with any initial vector. In fact, if x(0) = 0, then x(8) = (2.9987, 1.9992, .9996). 
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Exercises   
 
Solve the system in exercise 1 to 3 using Jacobi’s method, with x(0) = 0 and three 
iterations. Repeat the iterations until two successive approximations agree within a 
tolerance of .001 in each entry. 
 

1. 1 2

1 2

4 7
5 7

x x
x x
+ =

− + = −
    2. 1 2

1 2

10 25
8 43

x x
x x

− =
+ =

 

 

3. 
1 2

1 2 3

2 3

3 11
5 2 15
3 7 17

x x
x x x

x x

+ =
− − + =

+ =
   4. 

1 2

1 2 3

2 3

50 149
100 2 101

2 50 98

x x
x x x

x x

− =
− + = −

+ = −

 

 
In exercises 5 to 8, use the Gauss Seidel method, with x(0) = 0 and two iterations. 
Compare the number of iterations needed by Gauss Seidel and Jacobi to make two 
successive approximations agree within a tolerance of .001. 
 
5. The system in exercise 1   6. The system in exercise 2 
 
7. The system in exercise 3   8. The system in exercise 4 
 
Determine which of the matrices in exercises 9 and 10 are strictly diagonally dominant. 
 

9. (a) 
5 4
4 3
 
 
 

     (b) 
9 5 2
5 8 1
2 1 4

− 
 − − 
 − 

 

 

10. (a) 
3 2
2 3

− 
 
 

    (b) 
5 3 1
3 6 4
1 4 7

 
 − 
 − 

 

 
Show that the Gauss Seidel method will produce a sequence converging to the solution of 
the following system, provided the equations are arranged properly: 
 

11. 
1 2 3

1 2 3

1 2 3

3 2
6 4 11 1

5 2 2 9

x x x
x x x
x x x

− + = −
− + + =

− − =

   12. 
1 2 3

1 2

2 3

4 3
4 10

4 6

x x x
x x

x x

− + − =
− =
− + =
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Lecture 17 
                                 
                                   Introduction to Determinant 
 
       In algebra, the determinant is a special number associated with any square matrix. 
As we have studied in earlier classes, that the determinant of 2 x 2 matrix is defined as 
the product of the entries on the main diagonal minus the product of the entries off the 
main diagonal. The determinant of a matrix A is denoted by det (A) or |A| 

For example:  
a b

A
c d
 

=  
 

 

Then    det (A) = ad-bc. 
or                                   |A| = ad – bc 

Example   Find the determinant of the matrix 
1 2
3 4

A  
=  
 

   

 
1 2

| | 1 4 2 3 4 6 2
3 4

A = = × − × = − =−  

 
To extend the definition of the det(A) to matrices of higher order, we will use subscripted 
entries for A. 

                                          11 12

21 22

a a
A

b b
 

=  
 

 

 

det (A) = 11 12
11 22 12 21

21 22

a a
a b a b

b b
= −  

 
This is called a 2x2 determinant. 
 
The determinant of a 3x3 matrix is also called a 3x3 determinant is defined by the 
following formula. 

              

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

    (1) 

For finding the determinant of the 3x3 matrix, we look at the following diagram: 
 

                                       
11 12 13 11 12

21 22 23 21 22

31 32 33 31 32

a a a a a
a a a a a
a a a a a
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   We write 1st and 2nd columns again beside the determinant. The first arrow goes from 
a11 to a33, which gives us product: 11 22 33 a a a . The second arrow goes from a12 to a31, 

which gives us product: 12 23 31a a a . The third arrow goes from a13 to a32, which gives us 
the product: 13 21 32a a a . These values are taken with positive signs. 
 
  The same method is used for the next three arrows that go from right to left downwards, 
but these products are taken as negative signs. 

 
   11 22 33+ 12 23 31+ 13 21 32 13 22 31 11 23 32 12 21 33= a a a a a a a a a - a a a - a a a - a a a  

Example 2   Find the determinant of the matrix
1 2 3
4 5 6

7 8 9
A

 
 = − 
 − 

 

       

1 2 3
detA= -4 5 6

7 -8 9

1 2 3 1 2
         = -4 5 6 -4 5

7 -8 9 7 -8

  

            = 1 5 9  +  2 6 7  +  3 (-4) (-8)- 3 5 7 -1 6 (-8)- 2 (-4) 9× × × × × × × × × × × ×              

           
= 45+84+96 -105+48+72
= 240

 

   We saw earlier that a 2 2×  matrix is invertible if and only if its determinant is nonzero. 
In simple words, a matrix has its inverse if its determinant is nonzero. To extend this 
useful fact to larger matrices, we need a definition for the determinant of the n n×  matrix. 
We can discover the definition for the 3 3×  case by watching what happens when an 
invertible3 3× matrix A is row reduced.  
 
Gauss’ algorithm for evaluation of determinants   
 
  1)  Firstly, we apply it for 2 2×  matrix say  

2 3
4 3

A  
=  
 

 

2 2 12R R R′ → − (Multiplying 1st row by 2 and then subtracting from 2nd row) 
2 3 2 3

4 2(2) 3 2(3) 0 3
   

=   − − −   
  

Now the determinant of this upper triangular matrix is the product of its entries on main 
diagonal that is  
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( ) 2( 3) 0 3 6 0 6Det A = − − × = − − =−  
2)  For 3 3×  matrix say  

2 2 3
1 1 3

2 0 1
B

− − 
 = − 
 − 

 

12 21By R R′ → (Interchanging of 1st and 2nd rows) 
 

 
2 2 12R R R′ → − (Multiplying 1st row by ‘-2’ and then adding in the 2nd row) 

3 3 12R R R′ → + (Multiplying 1st row by ‘2’ and then adding in the 3rd row) 
1 1 3

0 0 9
0 2 5

− 
 − 
  

  

23 32By R R′ → (Interchanging of 2nd and 3rd rows) 
1 1 3

0 2 5
0 0 9

− 
 
 
 − 

   

Now the determinant of this upper triangular matrix is the product of its entries on main 
diagonal and that is  

( ) ( 1) 2 ( 9) 18Det B = − ⋅ ⋅ − =  
  So in general, 
 
For a 1 1× matrix   
  say, [ ]ijA a=  - we define 11det A a= . 
 
For 2 2× matrix   
 

 11 12

21 22

a a
a a
 
 
 

 

By 21
2 2 1

11

aR R R
a

 
′ → − 

 
  provided that 11 0a ≠  

11 12

21
22 12

11

0

a a
aa a
a

 
 
 −
  

  

∴ det A∆ = = product of the diagonal entries 

1 1 3
2 2 3

2 0 1

− 
 − − 
 − 


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       21
11 22 12 11 22 12 21

11

aa a a a a a a
a

 
= − = − 

 
 

 
For 3 3× matrix say   
 

11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

 

By 3121
2 2 1 3 3 1

11 11

, aaR R R R R R
a a

   ′ ′→ − → −   
   

   provided that 11 0a ≠  

11 12 13

23 11 13 2122 11 12 21

11 11

32 11 12 31 11 33 13 31

11 11

0

0

a a a
a a a aa a a a

a a
a a a a a a a a

a a

 
 
 
 −−
 
 
 − −
 
 

  

By 

32 11 12 31

11
3 3 2

22 11 12 21

11

a a a a
aR R Ra a a a
a

− 
 

′  → −
− 

 
 

    provided that 22 11 12 21

11

0a a a a
a
−

≠  

11 12
13

23 11 13 2122 11 12 21
11

11 11

32 11 12 31

11 33 13 31 23 11 13 21 11

22 11 12 2111 11

11

0 0

0 0

a a a

a a a aa a a a a
a a

a a a a
a a a a a a a a a

a a a aa a
a

 
 
 
 
 
 
 
 

−−  ≠ 
 

−  
   − − /  −   −   
  /  

  

       

 
Which is in echelon form.Now, 

det A∆ = = product of the diagonal entries 
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( ) ( )

11 33 13 31 23 11 13 21 32 11 12 3122 11 12 21
11

11 11 11 22 11 12 21

11 33 13 31 23 11 13 21 32 11 12 31
22 11 12 21 22 11 12 21

11 11 22 11

a a a a a a a a a a a aa a a aa
a a a a a a a

a a a a a a a a a a a aa a a a a a a a
a a a a a

     − − −−
= −/       −/     

   − − −
= − − −    −   

( )( ) ( )( ){ }

{ }

12 21

22 11 12 21 11 33 13 31 23 11 13 21 32 11 12 31
11

2 2
11 22 33 11 22 13 31 12 21 11 33 12 21 13 31 23 11 32 23 11 12 31 13 21 32 11 12 21 13 31

11

2
11 22 33 11 22 13 3

11

1

1

1

a

a a a a a a a a a a a a a a a a
a

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
a

a a a a a a a
a

 
 
 

= − − − − −

= − − + − + + −

= −{ }

{ }

2
1 12 21 11 33 23 11 32 23 11 12 31 13 21 32 11

11
11 22 33 22 13 31 12 21 33 23 11 32 23 12 31 13 21 32

11

11 22 33 12 23 31 13 21 32 12 21 33 11 23 32 13 22 31

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a
a
a a a a a a a a a a a a a a a a a a

− − + +

= − − − + +

= + + − − −
                                                                                                                    
 
Since A is invertible, ∆  must be nonzero. The converse is true as well. 
 
To generalize the definition of the determinant to larger matrices, we will use 
2 2× determinants to rewrite the 3 3×  determinant ∆  described above. Since the 
 terms in ∆  can be grouped as: 

11 22 33 11 23 32 12 23 31 12 21 33 13 21 32 13 22 31

11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

( ) ( ) ( )
( ) ( ) ( )

a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a

∆ = − − − + −
= − − − + −

, 

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

det det det
a a a a a a

a a a
a a a a a a
     

∆ = ⋅ − ⋅ + ⋅     
     

 

22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

a a a a a a
a a a

a a a a a a
∆ = ⋅ − + ⋅  

For brevity, we write 11 11 12 12 13 13det det deta A a A a A∆ = ⋅ − ⋅ + ⋅          (3) 
                    

22 23
11

32 33

det( )
a a

A
a a

=   ,   21 23
12

31 33

det( )
a a

A
a a

=     and  21 22
13

31 32

det( )
a a

A
a a

=  

where  
A11 is obtained from A by deleting the first row and first column.  
A12 is obtained from A by deleting the first row and second column. 
A13 is obtained from A by deleting the first row and third column. 
So in general, for any square matrix A, let Aij denote the sub-matrix formed by deleting 
the ith row and jth column of A.  
 
Let’s understand it with the help of an example. 
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Example3   

 Find the determinant of the matrix
1 4 3
5 2 4
3 6 3

A
 
 =  
  

 

Solution   Given     
1 4 3
5 2 4
3 6 3

A
 
 =  
  

 

 

                              

1 4 3
| | 5 2 4

3 6 3

2 4 5 4 5 2
1 4 3

6 3 3 3 3 6
1(2 3 4 6) 4(5 3 4 3) 3(5 6 2 3)
1(6 24) 4(15 12) 3(30 6)
1( 18) 4(3) 3(24)

18 12 72
42

A =

= − +

= × − × − × − × + × − ×
= − − − + −
= − − +
= − − +
=

 

 
 

For instance, if 
1 -2 5 0
2 0 4 -1=
3 1 0 7
0 4 -2 0

A

 
 
 
 
 
  

  

then A32 is obtained by crossing out row 3 and column 2, 
 

1 2 5 0
2 0 4 1
3 1 0 7
0 4 2 0

− 
 − 
 
 − 

 so that  
32

1 5 0
2 4 1
0 2 0

A
 
 = − 

−  

 

 
We can now give a recursive definition of a determinant.  
 
When n = 3, det A is defined using determinants of the 2 2× submatrices 1 jA . 
When n = 4, det A uses determinants of the3 3× submatrices 1 jA  
In general, an nxn determinant is defined by determinants of ( 1) ( 1)n n− × −  sub matrices. 
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Definition    
      For 2,n ≥ the determinant of n n×  matrix [ ]ijA a= is the sum of n terms of the form 

1 1(det )j ja A± × , with plus and minus signs alternating, where the entries 11 12 1, , , na a a  
are from the first row of A.  
  Here for ija ,  

1, 2,3, , (1 )
1,2,3, , (1 )

i n i n
j n j n
= ≤ ≤
= ≤ ≤





 

In symbols, 1
11 11 12 12 1 1det det det .... ( 1) detn

n nA a A a A a A+= − + + − 1
1 1

1
( 1) det

n
j

j j
j

a A+

=

= −∑  

 
Example 4     

Compute the determinant of 
1 5 0
2 4 1
0 2 0

A
 
 = − 
 − 

 

 
Solution    
     Here A is 3 3n n× = × matrix such that  
 1, 2,3i =  

1, 2,3j =  
1

1 1
1

det( ) ( 1) det
n

j
j j

j
A a A+

=
= −∑ and here 1,2,3j =  

3
1 1 1 1 2 1 3

1 1 11 11 12 12 13 13
1

det( ) ( 1) det ( 1) det ( 1) det ( 1) detj
j j

j
A a A a A a A a A+ + + +

=

∴ = − = − + − + −∑  

              = 11 11 12 12 13 13det det deta A a A a A− +  
 

4 1 2 1 2 4
det 1.det 5.det 0.det

2 0 0 0 0 2
A

− −     
= − +     − −     

 

 

         
4 1 2 1 2 4

det 1. 5. 0.
2 0 0 0 0 2

A
− −

= − +
− −

 

 
        = 1 [4(0) – (-1)(-2)] -5 [ 2(0) – 0(-1)] +0[2(-2) – 4(0)] 

  
                   1(0 2) 5(0 0) 0( 4 0) 2= − − − + − − = −  
 
 
Minor of an element   
     If A is a square matrix, then the Minor of entry aij (called the ijth minor of A) is 
denoted by Mij and is defined to be the determinant of the sub matrix that remains when 
the ith row and jth column of A are deleted.  
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In the above example, Minors are as follows:  
 

                    11 12 13, ,
4 1 2 1 2 4
2 0 0 0 0 2M MM = = =

− −
− −

 

 
Cofactor of an element   
 The number Cij=(-1)i+jMij is called the cofactor of entry aij(or the ijth cofactor of A). 
When the + or – sign is attached to the Minor, then Minor becomes a cofactor. 
 
In the above example, following are the Cofactors: 
 
                    

11
1 1 1 2 1 3

11 12 12 13 13

1 1 1 2 1 3
11 12 13

( 1) , ( 1) , ( 1)

( 1) , ( 1) , ( 1)4 1 2 1 2 4
2 0 0 0 0 2

M C M C M

C C

C

C

+ + +

+ + +

= − = − = −

= − = − = −
− −

− −
 
 

Example 5   Find the minor and the cofactor of the matrix
3 1 4
2 5 6
1 4 8

A
− 

 =  
  

 

Solution   Here 
3 1 4
2 5 6
1 4 8

A
− 

 =  
  

 

The minor of entry a11 is 

11

3 1 4
5 6

2 5 6 5 8 6 4 40 24 16
4 8

1 4 8
M

−
= = = × − × = − =  

and the corresponding cofactor is 
1 1

11 11 11( 1) 16C M M+= − = =  
The minor of entry a32 is 

32

3 1 4
3 4

M 2 5 6 26
2 6

1 4 8

−
−

= = =  

and the corresponding cofactor is 
3 2

32 32 32

3 4
( 1) 26

2 6
C M M+ −

= − = − = − = −      
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Alternate Definition    
          Given [ ]i jA a= , the (i, j)-cofactor of A is the number i jC given by  

( 1) deti j
i j ijC A+= −               (4) 

Then  11 11 12 12 1 1det .... n nA a C a C a C= + + +  
 
This formula is called the cofactor expansion across the first row of A. 
  

Example 6   Expand a 3x3 determinant using cofactor concept
1 2 3
4 5 6

7 8 9
A = −

−
 

Solution   Using cofactor expansion along the first column; 
 

1 1 2 1 3 1

11 21 31

2 3 4

1 2 3
5 6 2 3 2 3

4 5 6 (1)( 1) ( 4)( 1) (7)( 1)
8 9 8 9 5 6

7 8 9

(4),

1 ( 4) 7

5 6 2 3 2 3
(1)( 1) ( 4)( 1) (7)( 1)

8 9 8 9 5 6

5 6 2 3 2 3
(1)(1) ( 4)( 1) (7)(1)

8 9 8 9 5 6

5 6 2
1 4

8 9

Nowif we compareit with the formula

C C C

+ + +− = − + − − + −
− −

−

= + − +

= − + − − + −
− −

= + − − +
− −

= +
−

3 2 3
7

8 9 5 6

1(45 ( 48)) 4(18 ( 24)) 7 (12 15)

1( 45 48) 4(18 24) 7 (12 15)

(1)(93) (4)(42) (7)( 3) 240

+
−

= − − + − − + −

= + + + + −

= + + − =
 

Using cofactor expansion along the second column, 
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1 2 2 2 3 2

3 4 5

1 2 3
4 6 1 3 1 3

4 5 6 (2)( 1) (5)( 1) ( 8)( 1)
7 9 7 9 4 6

7 8 9

4 6 1 3 1 3
(2)( 1) (5)( 1) ( 8)( 1)

7 9 7 9 4 6

4 6 1 3 1 3
(2)( 1) (5)(1) ( 8)( 1)

7 9 7 9 4 6

4 6 1 3 1 3
2 5 8

7 9 7 9 4 6

2( 36 42) 5(9 21) 8(6 ( 12))

( 2)( 78)

+ + +−
− = − + − + − −

−
−

−
= − + − + − −

−

−
= − + + − −

−

−
= − + +

−

=− − − + − + − −

= − − (5)( 12) (8)(18) 240+ − + =

 

 
Theorem 1   The determinant of an n n×  matrix A can be computed by a cofactor 
expansion across any row or down any column. The expansion across the ith row using 
the cofactors in (4) is  

1 1 2 2det i i i i in inA a C a C a C= + + +
 

 
The cofactor expansion down the jth column is  
 

1 1 2 2det j j j j nj njA a C a C a C= + + +   
 
The plus or minus sign in the (i, j)-cofactor depends on the position of ija in the matrix, 

regardless of the sign of ija itself. The factor ( 1)i j+− determines the following 
checkerboard pattern of signs: 
 

....+ − + 
 − + − 
 + − +
 
  
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Example 7   Use a cofactor expansion across the third row to compute det A, where 
 

1 5 0
2 4 1
0 2 0

A
 
 = − 
 − 

 

Solution   Compute 31 31 32 32 33 33det A a C a C a C= + +  
 

          3 1 3 2 3 3
31 31 32 32 33 33( 1) det ( 1) det ( 1) deta A a A a A+ + += − + − + −  

 

          
5 0 1 0 1 5

0 ( 2) 0
4 1 2 1 2 4

= − − +
− −

 

 
          0 2( 1) 0 2= + − + = −  

 
    Theorem 1 is helpful for computing the determinant of a matrix that contains many 
zeros. For example, if a row is mostly zeros, then the cofactor expansion across that row 
has many terms that are zero, and the cofactors in those terms need not be calculated.  
The same approach works with a column that contains many zeros. 
 
 

Example 8    Evaluate the determinant of 

2 0 0 5
1 2 4 1

3 0 0 3
8 6 0 0

A

 
 − =
 
 
 

 

 

Solution   

2 0 0 5
1 2 4 1

det( )
3 0 0 3
8 6 0 0

A
−

=  

 
Expand from third column 
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13 23 33 43

23

23

2 3

det( ) 0 4 0 0

0 4 0 0

4

2 0 5
4 ( 1) 3 0 3

8 6 0

A C C C C

C

C

+

= × + × + × + ×

= + × + +

= ×

= × −

 

 
Expand from second column 
 

2 5
4 0 0 ( 6)

3 3

2 5
( 4) ( 6)

3 3

216

 
= − + + − 

 

= − −

= −

 

 
 
 
Example 9    Show that the value of the determinant is independent of θ  
 

sin cos 0
cos sin 0

cos sin sin cos 1
A

θ θ
θ θ

θ θ θ θ
= −

− +
 

 

Solution   Consider 
sin cos 0
cos sin 0

cos sin sin cos 1
A

θ θ
θ θ

θ θ θ θ
= −

− +
 

 
Expand the given determinant from 3rd column we have 
 

3 3 2 20 0 ( 1) [sin cos ] 1θ θ+= − + − + =  
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Example 10    Compute det A, where 

3 7 8 9 6
0 2 5 7 3
0 0 1 5 0
0 0 2 4 1
0 0 0 2 0

A

− − 
 − 
 =
 − 
 − 

 

Solution   The cofactor expansion down the first column of A has all terms equal to zero 
except the first.  

Thus     21 31 41 51

2 5 7 3
0 1 5 0

det 3 0. 0. 0. 0.
0 2 4 1
0 0 2 0

A C C C C

−

= − + − +
−

−

 

Henceforth, we will omit the zero terms in the cofactor expansion.  
 
Next, expand this 4 4×  determinant down the first column, in order to take advantage of 
the zeros there.  

We have   
1 5 0

det 3 2 2 4 1
0 2 0

A = × −
−

 

This 3 3×  determinant was computed above and found to equal –2. 
 
Hence, det A = 3 2 ( 2) 12× × − = − . 
 
The matrix in this example was nearly triangular. The method in that example is easily 
adapted to prove the following theorem. 
 
Triangular Matrix   
 
A triangular matrix is a special kind of m x n matrix where the entries either below or 
above the main diagonal are zero. 

 is upper triangular and 25 25×  is lower triangular matrices. 
 

 
Determinants of Triangular Matrices   
 
  Determinants of the triangular matrices are also easy to evaluate regardless of size. 
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Theorem   If A is triangular matrix, then det (A) is the product of the entries on the main 
diagonal. 
 
Consider a 4 4×   lower triangular matrix. 

11

21 22

31 32 33

41 42 43 44

0 0 0
0 0

0

a
a a

A
a a a
a a a a

 
 
 =
 
 
 

 

 
Keeping in mind that an elementary product must have exactly one factor from each row 
and one factor from each column, the only elementary product that does not have one of 
the six zeros as a factor is 11 22 33 44( )a a a a . The column indices of this elementary product 
are in natural order, so the associated signed elementary product takes a +. 
 
 Thus,    det (A)= 11 22 33 44a a a a× × ×  
 

Example 11      
2 5 7

0 3 8 ( 2)(3)(5) 30
0 0 5

−
= − = −  

 
1 0 0 0
4 9 0 0

(1)(9)( 1)( 2) 18
7 6 1 0

3 8 5 2

= − − =
− −

− −

 

 
1 2 7 3
0 1 4 1

(1)(1)(2)(3) 6
0 0 2 7
0 0 0 3

−
−

= =  

 
The strategy in the above Example of looking for zeros works extremely well when an 
entire row or column consists of zeros. In such a case, the cofactor expansion along such 
a row or column is a sum of zeros. So, the determinant is zero. Unfortunately, most 
cofactor expansions are not so quickly evaluated. 
 
Numerical Note   By today’s standards, a 25 25× matrix is small. Yet it would be 
impossible to calculate a 25 25× determinant by cofactor expansion. In general, a cofactor 
expansion requires over n! multiplications, and  2525! 1.5 10x .  
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If a supercomputer could make one trillion multiplications per second, it would have to 
run for over 500,000 years to compute a 25 25×   determinant by this method. 
Fortunately, there are faster methods, as we’ll soon discover. 
 

Example 12    Compute 

5 7 2 2
0 3 0 4
5 8 0 3

0 5 0 6

−
−

− −
−

 

Solution   Take advantage of the zeros. Begin with a cofactor expansion down the third 
column to obtain a 3 3×  matrix, which may be evaluated by an expansion down its first 
column, 

1 3

5 7 2 2
0 3 4

0 3 0 4
( 1) 2 5 8 3

5 8 0 3
0 5 6

0 5 0 6

+

−
−

−
= − − −

− −
−

−

 

 
   2 1 3 4

2 ( 1) ( 5) 20
5 6

+ −
= ⋅ − − =

−
 

 
The –1 in the next-to-last calculation came from the position of the –5 in the3 3×  
determinant. 
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Exercises   
Compute the determinants in exercises 1 to 6 by cofactor expansions. At each step, 
choose a row or column that involves the least amount of computation. 
 

1.  

6 0 0 5
1 7 2 5
2 0 0 0
8 3 1 8

−
    2.  

1 2 5 2
0 0 3 0
2 6 7 5
5 0 4 4

−

− −
 

 

3.  

3 5 8 4
0 2 3 7
0 0 1 5
0 0 0 2

−
− −

    4.  

4 0 0 0
7 1 0 0
2 6 3 0
5 8 4 3

−

− −

 

 

5.  

4 0 7 3 5
0 0 2 0 0
7 3 6 4 8
5 0 5 2 3
0 0 9 1 2

− −

− −
−

−

    6.  

6 3 2 4 0
9 0 4 1 0
8 5 6 7 1
3 0 0 0 0
4 2 3 2 0

−
−  

 
Use the method of Example 2 to compute the determinants in exercises 7 and 8. In 
exercises 9 to 11, compute the determinant of elementary matrix. In exercises 12 and 13, 

verify that det EA = (det E) . (det A), where E is the elementary matrix and 
a b

A
c d
 

=  
 

. 

 

7.  
3 0 4
2 3 2
0 5 1−

   8.  
2 4 3
3 1 2
1 4 1

−

−
   9.  

1 0 0
0 1 0
0 1k

 
 
 
  

   10.  
0 0

0 1 0
0 0 1

k 
 
 
  

   

11.  
0 1 0
1 0 0
0 0 1

 
 
 
  

 12.  
1
0 1

k 
 
 

 13.  
0 1
1 0
 
 
 

 

 

14. Let 
3 1

.
4 2

A  
=  
 

 Write 5A. Is det 5A = 5 det A? 

 

15. Let 
a b

A
c d
 

=  
 

 and k be a scalar. Find a formula that relates det (kA)to k and det A. 
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                                                Lecture 18 
 

                                   Properties of Determinants 
 
In this lecture, we will study the properties of the determinants. Some of them have 
already been discussed and you will be familiar with these. These properties become 
helpful, while computing the values of the determinants. The secret of determinants lies 
in how they change when row or column operations are performed.  
 
Theorem 3  (Row Operations): Let A be a square matrix. 

a. If a multiple of one row of A is added to another row, the resulting 
determinant will remain same.  

b. If two rows of A are interchanged to produce B, then det B = –det A. 
c. If one row of A is multiplied by k to produce B, then det B = k .  det A.   

 
The following examples show how to use Theorem 3 to find determinants efficiently. 

a. If a multiple of one row of A is added to another row, the resulting determinant 
will remain same.  

Example         

 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

∆=  

21 22 23

2 ' '
1 ' '

Multiplying nd row by non zero scalar say k as
ka ka ka adding this in st row then A becomes

−
− − − −

 

11 21 12 22 13 23

21 22 23 1 1 2

31 32 33

a ka a ka a ka
a a a R R kR
a a a

+ + +
′= → +  

If each element of any row(column) can be expressed as sum of two elements then the 
resulting determinant can be expressed as sum of two determinants, so in this case 

11 12 13 21 22 23

21 22 23 21 22 23

31 32 33 31 32 33

a a a ka ka ka
a a a a a a
a a a a a a

∆ = +  

∆
11 12 13 21 22 23

21 22 23 21 22 23

31 32 33 31 32 33

a a a a a a
a a a k a a a
a a a a a a

= +       By using property (c) of above theorem 3. 

If any two rows or columns in a determinant are identical then value of this determinant 
is zero. So in this case 1 2R R≡  
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11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

(0)
a a a
a a a k
a a a

a a a
a a a A
a a a

∴ ∆ = +

= =

 

 
b. If two rows of A are interchanged to produce B, then det B = –det A. 

Example 1   
  

1 2 3
5 1 1
0 8 9

A
 
 =  
  

 

Now,
1 2 3

det 5 1 1 1(9 8) 2(45 0) 3(40 0) 1 90 120 31
0 8 9

A = = − − − + − = − + =  

Now interchange column 1st with 2nd we get a new matrix,
2 1 3
1 5 1
8 0 9

B
 
 =  
  

 

2 1 3
det 1 5 1 2(45 0) 1(9 8) 3(0 40) 90 1 120 31

8 0 9
B = = − − − + − = − − = −  

 
c. If one row of A is multiplied by k to produce B, then det B = k .  det A.   

 
1 2 3
5 0 1
0 8 9

1(0 8) 2(45 0) 3(40 0)
8 90 120 22

A

A

 
 =  
  

= − − − + −

=− − + =

 

1 ,
1 2 3
5 0 1
0 8 9

MultiplingR by k we get say
k k k

B
 
 =  
  
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(40 0) 2 (45 0) 3 (40 0)B k k k= − − − + −  
40 90 120 22k k k k
k A

= − + =

=
 

Example 2   

 Evaluate 

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

A

 
 
 =
 
 
 

 

Solution   
1 2 3 4
2 3 4 1

det
3 4 1 2
4 1 2 3

A =  

 2 2 1 3 3 1 4 4 1

1 2 3 4
0 1 2 7

( 2) , ( 3) , ( 4)
0 2 8 10
0 7 10 13

by R R R R R R R R R
− − − ′ ′ ′= → + − → + − → + −
− − −
− − −

 

          

( )

2 2 1 3 3 1

1 2 7
2 8 10 expanding from Ist column
7 10 13

1 2 7
( 1)( 2)( 1) 1 4 5 ( 1), ( 2) 1 1 ,2 ,3

7 10 13

1 2 7
( 2) 0 2 2 ( 1) , ( 7)

0 4 36

2 2
( 2) expanding by1st column

4 36

( 2)(2

taking and common from st nd rd rows

by R R R R R R

− − −
= − − −

− − −

= − − − − − −

′ ′= − − → + − → + −
− −

−
= −

− −

= −

2 1

1 1
)( 4) taking 2and (-4)common from1st and 2nd rows respectively.

1 9

1 1
16 ( 1)

0 10
160

by R R

−
−

−
= + −

=
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Example 3   Evaluate the determinant of the matrix

4 2 5 10
1 1 6 3
7 3 0 5
0 2 5 8

A

 
 
 =
 
 
 

 

Solution   
4 2 5 10
1 1 6 3

det
7 3 0 5
0 2 5 8

A =  

1 2 12

1 1 6 3
4 2 5 10

 interchanging ( )
7 3 0 5
0 2 5 8

R and R R′= −  

 

  2 2 1 3 3 1

1 1 6 3
0 2 19 2

( 4) , ( 7)
0 4 42 16
0 2 5 8

By R R R R R R
− − − ′ ′= − → + − → + −
− − −

 

2 19 2
4 42 16 expanding from 1st column

2 5 8

− − −
= − − − −  

3
1 2

2 19 2
=(-1) 4 42 16 taking (-1)as a common factor from R and R

2 5 8
 

2 19 2
4 42 16
2 5 8

= −  

1 19 2
2 2 42 16

1 5 8
= −  

2 2 1 3 3 1

1 19 2
( 2) 0 4 12 ( 2) , ( 1)

0 14 6
By R R R R R R′ ′= − → + − → + −

−
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2 1 3 1

1 19 2
( 2) 0 4 12 ( 2) , ( 1)

0 14 6
R R R R= − + − + −

−
 

4 12
2 expand from Ist column

14 6
= 2(24+168)= 384

= −
−

− −

 

 

Example 4   Without expansion, show that 0
x a x b c
x b x c a
x c x a b

+ +
+ + =
+ +

 

Solution    

2 2 1

1' '
1
1
1

x a x b c
x b x c a
x c x a b

x a x x b c
x b x x c a By C C C
x c x x a b

x a b c
x b c a
x c a b

Taking x common fromC
a b c

x b c a
c a b

+ +
+ +
+ +

+ − +
′= + − + → −

+ − +

+
= +

+

+
= +

+

 

    2 2 3

1
1
1

a b c b c
x b c a c a By C C C

c a b a b

+ + +
′= + + + → +

+ + +
 

Now taking (a+b+c) common form C2 

1 2

1 1
( ) 1 1

1 1
0 as column Ist and 2nd are identical (C C ). So its value will be zero.

b c
x a b c c a

a b

+
= + + +

+

= ≡
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Example 5   Evaluate 

2 3 1 0 1
1 1 3 1 2
2 1 2 3 4
3 2 1 1 2
4 1 1 0 0

A =   

Solution   Interchanging R1 and R2, we get 
1 1 3 1 2
2 3 1 0 1

A=- 2 1 2 3 4
3 2 1 1 2
4 1 1 0 0

 

 

2 2 1 3 3 1 4 4 1 5 5 12 , 2 , 3 , 4
1 1 3 1 2
0 1 5 2 3
0 1 4 1 0
0 1 8 2 4
0 3 11 4 8

R R R R R R R R R R R R′ ′ ′ ′→ → → →− − − −

− − −
= − − −

− − − −
− − − −

 

 

expand from C1
1 5 2 3
1 4 1 0
1 8 2 4
3 11 4 8

− − −
− −

= −
− − − −
− − − −

 

 

2 2 1 3 3 1 4 4 1, , 3
1 5 2 3
0 9 1 3
0 13 4 7
0 26 10 17

R R R R R R R R R′ ′ ′→ → →+ + +
− − −
− − −

= −
− − −
− − −

 

 

expand from C1
9 1 3
13 4 7
26 10 17

− − −
= − − − −

− − −
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taking (-1) common from Ist,2nd and 3rd row
9 1 3

= 13 4 7
26 10 17

 

 

12interchange Ist and 2nd Column(C )
1 9 3

= 4 13 7
10 26 17

−

′

 

            

2 2 1 3 3 19 , 3
1 0 0
4 23 5

10 64 13
expand from Ist row

-23 -5
=- (299 320) 21

-64 -13

C C C C C C′ ′→ − → −

= − − −
− −

= − − =

 

 
An Algorithm to evaluate the determinant   
 
Algorithm means a sequence of a finite number of steps to get a desired result. The word 
Algorithm comes from the famous Muslim mathematician AL-Khwarizmi who invented 
the word algebra. 
 
The step-by-step evaluation of det(A) of order n is obtained as follows: 
 
Step 1: By an interchange of rows of A (and taking the resulting sign into account) bring 
a non zero entry to (1,1) the position (unless all the entries in the first column are zero in 
which case det A=0). 
 
Step 2: By adding suitable multiples of the first row to all the other rows, reduce the  
(n-1) entries, except (1,1) in the first column, to 0. Expand det(A) by its first column. 
Repeat this process or continue the following steps. 
 
Step 3: Repeat step 1 and step 2 with the last remaining rows concentrating on the second 
column. 
 
Step 4: Repeat step 1,step2 and step 3 with the remaining (n-2) rows, (n-3) rows and so 
on, until a triangular matrix is obtained. 
 
Step5: Multiply all the diagonal entries of the resulting triangular matrix and then 
multiply it by its sign to get det(A) 
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Example 6   Compute det A, where
1 4 2
2 8 9
1 7 0

A
− 

 = − − 
 − 

. 

Solution   The strategy is to reduce A to echelon form and then to use the fact that the 
determinant of a triangular matrix is the product of the diagonal entries. The first two 
row replacements in column 1 do not change the determinant: 

2 2 1 3 1 3

1 4 2
det 2 8 9

1 7 0

1 4 2
0 0 5 2 ,
0 3 2

A

By R R R R R R

−
= − −
−

−
′ ′= − → + → +

 

An interchange of rows 2 and 3 ( 23R′ ), it reverses the sign of the determinant, so 
1 4 2

det 0 3 2 (1)(3)( 5) 15
0 0 5

A
−

= − = − − =
−

 

 
Example 7   Compute det A, where  

   

2 8 6 8
3 9 5 10
3 0 1 2

1 4 0 6

A

− 
 − =
 − −
 − 

. 

Solution   Taking’2’ common from 1st row 
 

  

2 2 1 3 3 1 4 4 1

1 4 3 4
0 3 4 2

det 2 3 , 3 ,
0 0 6 2
0 0 3 2

A By R R R R R R R R R

−
− −

′ ′ ′= → − → + → −
−
−

 

1 4 3 4
3 9 5 10

det 2
3 0 1 2

1 4 0 6

A

−
−

=
− −

−
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1
4 4 32

1 4 3 4
0 3 4 2

det 2 ( )
0 0 6 2
0 0 0 1

2.{(1)(3)( 6)(1)} 36

A By R R R

−
− −

′= → −
−

= − = −

 

 

Example 8   Show that 3

2 2 2
2 2 2

( 6)( 2)
2 2 2
2 2 2

x
x

x x
x

x

= + −  

Solution   

1 1 2 3 4

2 2 2
2 2 2
2 2 2
2 2 2

6 2 2 2
6 2 2

( )
6 2 2
6 2 2

x
x

x
x

x
x x

By C C C C C
x x
x x

+
+

′= → + + +
+
+

     

 Taking (x+6) common from 1st column 
1 2 2 2
1 2 2

( 6)
1 2 2
1 2 2

x
x

x
x

= +  

 

2 2 1 3 3 1 4 4 1

1 2 2 2
0 2 0 0

( 6) , ,
0 0 2 0
0 0 0 2

x
x By R R R R R R R R R

x
x

−
′ ′ ′= + → − → − → −

−
−

 

And this is the triangular matrix and its determinant is the prodcut of main diagonal’s 
entries. 

3( 6)( 2)x x= + −  
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Example 9   Compute det A, where 

3 1 2 5
0 5 3 6
6 7 7 4
5 8 0 9

A

− − 
 − − =
 − −
 − − 

. 

Solution    

3 1 2 5
0 5 3 6
6 7 7 4
5 8 0 9

A

− − 
 − − =
 − −
 − − 

 

3 3 1

3 1 2 5
0 5 3 6

det 2
0 5 3 6
5 8 0 9

A R R R

− − 
 − −  ′= → +
 − −
 − − 

 

         = 0                        as 2 3R R≡  

Example10    Compute det A, where 

     

0 1 2 1
2 5 7 3
0 3 6 2
2 5 4 2

A

− 
 − =
 
 − − − 

  

Solution     

4 4 2

12

0 1 2 1
2 5 7 3
0 3 6 2
2 5 4 2

0 1 2 1
2 5 7 3
0 3 6 2
0 0 3 1

2 1 2 1
0 5 7 3

( 1)
0 3 6 2
0 0 3 1

A

R R R

By R

− 
 − =
 
 − − − 

− 
 −  ′= → +
 
 − 

− 
 −  ′= −
 
 − 

 

Expanding from 1st row and 1st column 
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( )

5 7 3
2 3 6 2

0 3 1

2 {5(6 6) ( 7)(3 0) 3( 9 0)}
54

−
=−

−

= − + − − − + − −

=

 

 
Remarks   
Suppose that a square matrix A has been reduced to an echelon form U by row 
replacements and row interchanges.  
 
If there are r interchanges, then det( ) ( 1) det( )rA U= −  
 
Furthermore, all of the pivots are still visible in U (because they have not been scaled to 
ones). If A is invertible, then the pivots in U are on the diagonal (since A is row 
equivalent to the identity matrix). In this case, det U is the product of the pivots. If A is 
not invertible, then U has a row of zero and det U = 0.  

0 0
0 0 0 0
0 0 0 0 0 0 0

det 0 det 0

U U

U U

• •   
   • •   = =
   • •
   •   

≠ =

     

   

   

            
 

Thus we have the following formula   
( 1) .( )

det
0

r Product of pivots inU When Ais invertible
A

When Ais not invertible
 −

= 


 (1) 

Example   
Case-01     For 2×2 invertible matrix 
Reducing given 2×2 invertible matrix into Echelon form as follows; 

4 5
3 2

A  
=  
 

 

By interchanging 1st and 2nd rows( 12R′ ) 
3 2
4 5
 
 
 

  one replacement of rows has occurred, 1r∴ =  

3 2
70
3

 
 
 
 

  By 2 2 1
4
3

R R R′ → − , we have desired row-echelon form  
3 2

70
3

U
 
 =
 
 

. 

Thus using the above formula as follows; 
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1 7det ( 1) .( ) ( 1) (3 ) 7
3

rA Product of pivots inU= − = − ⋅ = −  

Case-02      For 2×2 non-invertible matrix   
In this case say; 

4 5
8 10

A  
=  
 

 

4 5
0 0
 
 
 

  2 2 12By R R R′ → − ,desired row-echelon form is 
4 5
0 0

U  
=  
 

  

 
Here no interchange of rows has occurred. So, 0r =  and 

0det ( 1) .( ) ( 1) (4 0) 0rA Product of pivots inU∴ = − = − ⋅ =  
  
Theorem 5   If A is an n n×  matrix, then det AT = det A. 

Example 11     If
1 4 1
2 1 2
3 1 3

A
 
 =  
  

, find det(A) and det (AT ) 

1 4 1
det 2 1 2 1(3 2) 4(6 6) 1(2 3) 1 0 1 0

3 1 3
A = = − − − + − = − − =  

Now 
1 2 3
4 1 1
1 2 3

tA
 
 =  
  

 

1 2 3
det 4 1 1 1(3 2) 2(12 1) 3(8 1) 1 22 21 0

1 2 3

tA = = − − − + − = − + =  

 
Remark   
Column operations are useful for both theoretical purposes and hand computations. 
However, for simplicity we’ll perform only row operations in numerical calculations. 

 
Theorem 6 (Multiplicative Property)    
 
If A and B are n n×  matrices, then det( ) (det )(det )AB A B= . 
 

Example 12   Verify Theorem 6 for 
6 1 4 3
3 2 1 2

A and B   
= =   
   
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Solution   
6 1 4 3 25 20
3 2 1 2 14 13

AB      
= =     
     

 

and det 25.13 20.14 325 280 45AB = − = − =  
 
Since det A = 9 and det B = 5, (det )(det ) 9.5 45 detA B AB= = =  
 
Remark     
det (A + B) ≠  det A + det B, in general. 
For example, 

If  
2 3
1 5

A  
=  − 

and 
2 3
1 5

B
− − 

=  − 
. Then 

0 0
det( ) 0

0 0

2 3 2 3
det det ( 10 3) ( 10 3) 26 det( )

1 5 1 5

A B A B

A B A B

 
+ = ⇒ + = 

 
− −

+ = + = − − + − − = − ≠ +
− −
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Exercise   
 
Find the determinants in exercises 1 to 6 by row reduction to echelon form. 
 

1.  

1 3 0 2
2 5 7 4

3 5 2 1
1 1 2 3

− −

− −

   2.  

1 3 3 4
0 1 2 5
2 5 4 3
3 7 5 2

−
−
−

− − −

 

 

3.  

1 1 3 0
0 1 5 4
1 2 8 5

3 1 2 3

− −

−
− −

   4.  

1 3 1 0 2
0 2 4 1 6
2 6 2 3 9

3 7 3 8 7
3 5 5 2 7

− −
− − −

− −
− −

 

 

5.  

1 2 3 1
5 9 6 3
1 2 6 2

2 8 6 1

−
−

− − −
   6.  

1 3 1 5 3
2 7 0 4 2

0 0 1 0 1
0 0 2 1 1
0 0 0 1 1

− − −
 

 
Combine the methods of row reduction and cofactor expansion to compute the 
determinants in exercises 7 and 8. 
 

7.  

2 5 3 1
3 0 1 3
6 0 4 9

4 10 4 1

− −
−

− −
− −

   8.  

2 5 4 1
4 7 6 2
6 2 4 0
6 7 7 0

− −
−

 

 

9. Use determinant to find out whether the matrix is invertible 

2 0 0 8
1 7 5 0
3 8 6 0
0 7 5 4

 
 − − 
 
 
 

 

 
 
10. Let A and B be 3 3×  matrices, with det A = 4 and det B = -3. Use properties of 
determinants to compute   
 
(a) det AB  (b) det 7A  (c) det BT  (d) det AT 
(e) det ATA   
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11 Show that 

(a) 
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

a b a b c a b c
a b a b c a b c
a b a b c a b c

+ +
+ + =
+ +

  

(b) 
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

2
a b a b c a b c
a b a b c a b c
a b a b c a b c

+ −
+ − = −
+ −

 

 
12 Show that 

(a) 
1 1 2 2 3 3 1 2 3

2
1 1 2 2 3 3 1 2 3

1 2 3 1 2 3

(1 )
a b t a b t a b t a a a
a t b a t b a t b t b b b

c c c c c c

+ + +
+ + + = −  

 

 (b) 
1 1 1 1 1 1 1 2 3

2 2 2 2 2 2 1 2 3

3 3 3 3 3 3 1 2 3

a b ta c rb sa a a a
a b ta c rb sa b b b
a b ta c rb sa c c c

+ + +
+ + + =
+ + +

 

 

13. Show that 

2

2

2

1
1 ( )( )( )
1

x x
y y y x z x z y
z z

= − − −  
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Lecture 19 
 

Cramer’s Rule, Volume, and Linear Transformations 
 
 
In this lecture, we shall apply the theory discussed in the last two lectures to obtain 
important theoretical formulae and a geometric interpretation of the determinant. 
  
Cramer’s Rule   Cramer’s rule is needed in a variety of theoretical calculations. For 
instance, it can be used to study how the solution of Ax = b is affected by changes in the 
entries of b. However, the formula is inefficient for hand calculations, except for 2 2×  or 
perhaps 3 3×  matrices. 
 
 
Theorem 1 (Crammer’s Rule)    Let A be an invertible n n×  matrix. For any b in Rn, 
the unique solution x of Ax = b has entries given by 

det ( ) , 1, 2,...,
det

i
i

A bx i n
A

= =                 (1)  

    
 
Example 1   Use Cramer’s rule to solve the system 

               1 2

1 2

3 2 6
5 4 8

x x
x x
− =

− + =
 

Solution   Write the system in matrix form, Ax = b 
1

2

1

2

3 2 6
5 4 8

3 2 6
, &

5 4 8

x
x

where
x

A x b
x

−     
=    −    

−     
= = =    −    

 

1 2

3 2
det 12 10 2

5 4

6 2 3 6
( ) , ( )

8 4 5 8

A

A b A b

− 
= = − = − 

−   
= =   −   

 

Since det A = 2, the system has a unique solution. By Cramer’s rule, 
1

1
det ( ) 24 16 20

det 2
A bx

A
+

= = =  

2
2

det ( ) 24 30 27
det 2

A bx
A

+
= = =  
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Example 2   Consider the following system in which s is an unspecified parameter. 
Determine the values of s for which the system has a unique solution and use Cramer’s 

rule to describe the solution. 1 2

1 2

3 2 4
6 1
sx x

x sx
− =

− + =
 

 
Solution   Here 

1 2

3 2 4 4 2 3 4
, , ( ) , ( )

6 1 1 6 1
s s

A b A b A b
s s
− −       

= = = =       − −       
 

Since  2det 3 12 3( 2)( 2)A s s s= − = + −  
the system has a unique solution when  

2

det 0
3( 2)( 2) 0

4 0
2

A
s s

s
s

≠
⇒ + − ≠

⇒ − ≠
⇒ ≠ ±

  

 
For such an s, the solution is   (x1, x2), where 

1
1

det ( ) 4 2 , 2
det 3( 2)( 2)

A b sx s
A s s

+
= = ≠ ±

+ −
 

2
2

det ( ) 3 24 8 , 2
det 3( 2)( 2) ( 2)( 2)

A b s sx s
A s s s s

+ +
= = = ≠ ±

+ − + −
 

 
Example 3   Solve, by Cramer’s Rule, the system of equations   

  

1 2 3

1 2 3

1 2 3

2 3 1
2 2

3 2 2 3

x x x
x x x
x x x

− + =
+ − =

+ + =  
 

Solution   Here 1

2 1 3 1 1 1 3
1 2 1 , 2 , 2 2 1
3 2 2 3 3 2 2

A b A
− −     

     = − = = −     
          

 

2 3

2 1 3 2 1 1
1 2 1 , 1 2 2
3 3 2 3 2 3

A A
−   

   = − =   
      
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1 1

2 2

3 3

31 2
1 2 3

det 2 6 1 ( 5) 3( 4) 5
det 1 6 2 8 3( 5) 7
det 2 (7) 1 (5) 3( 3) 0
det 2 (2) 1 ( 3) 1( 4) 3

7 3, 0,
5 5

D A
D Ab
D A b
D A b

DD DSo x x x
D D D

= = ⋅ − ⋅ − + − =
= = ⋅ + ⋅ + − =
= = ⋅ − ⋅ + − =
= = ⋅ + ⋅ − + − = −

= = = = = = −

 

 
Example 4   Use Cramer’s Rule to solve. 

1 3

1 2 3

1 2 3

2 6
3 4 6 30

2 3 8

x x
x x x
x x x

+ =
− + + =

− − + =

 

Solution   
1 0 2 6
3 4 6 , 30
1 2 3 8

A b
   
   = − =   
   − −   

 

1 2 3

6 0 2 1 6 2 1 0 6
30 4 6 , 3 30 6 3 4 30
8 2 3 1 8 3 1 2 8

A A A
     
     ∴ = = − = −     
     − − − − −     

 

Therefore, 
1 2

1 2
det( ) det( )40 10 72 18,
det( ) 44 11 det( ) 44 11

Ab A bx x
A A

− −
= = = = = =  

3
3

det( ) 152 38
det( ) 44 11

A bx
A

= = =  

 
Note   For any n n×  matrix A and any b in Rn, let Ai(b) be the matrix obtained from A by 
replacing ith column by the vector b.   

  

[ ]1( ) ... ...i nA b a b a

thcolumni

=

↑  

 
Formula for A–1    
       Cramer’s rule leads easily to a general formula for the inverse of n n×  matrix A. The 
jth column of A-1 is a vector x that satisfies Ax = ej 
where ej is the jth column of the identity matrix, and the ith entry of x is the (i, j)-entry of 
A-1. By Cramer’s rule, 

{ }1 det ( )
( , )

det
i j

ij

A e
i j entry of A x

A
−− = =     (2) 
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Recall that Aji denotes the submatrix of A formed by deleting row j and column i. A 
cofactor expansion down column i of Ai(ej) shows that 

det ( ) ( 1) deti j
i j ji jiA e A C+= − =      (3) 

where Cji is a cofactor of A.  
By (2), the (i, j)-entry of A-1 is the cofactor Cji divided by det A.  
[Note that the subscripts on Cji are the reverse of (i, j).] Thus 

11 21 1

12 22 21

1 2

...

...1
det

...

n

n

n n nn

C C C
C C C

A
A

C C C

−

 
 
 =
 
 
 

  

     (4) 

The matrix of cofactors on the right side of (4) is called the adjugate (or classical 
adjoint) of A, denoted by adj A. (The term adjoint also has another meaning in advance 
texts on linear transformations.) The next theorem simply restates (4). 
 
Theorem 2 (An Inverse Formula)     

Let A be an invertible n n×  matrix, then 1 1
det

A adj A
A

− =  

Example   
 
For the matrrix say  

2 3
det 10 ( 3) 13

1 5
A A 
= ⇒ = − − = − 

 

⇒ 1A− will also be a 2 2× matrix 
As  
Aji = submatrix of A  formed by deleting row j and column i       
So in this case  

11A =  submatrix of A  formed by deleting row 1 and column 1 =[ ]5  

12A =  submatrix of A  formed by deleting row 1 and column 2 =[ ]1−  

21A =  submatrix of A  formed by deleting row 2 and column 1 =[ ]3  

22A =  submatrix of A  formed by deleting row 2 and column 2 =[ ]2    
   and     
det ( ) ( 1) det( )i j

i j ji jiA e A C+= − =  
  where je  is the jth column of identity matrix n nI ×  
So in this case  
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1 1
11 1 1 11

1 2
12 2 1 12

2 1
21 1 2 21

2 2
22 2 2 22

det ( ) ( 1) det ( 1)det[5] 5

det ( ) ( 1) det ( 1)det[ 1] ( 1)( 1) 1

det ( ) ( 1) det ( 1)det[3] 3

det ( ) ( 1) det ( 1)det[2] 2

C A e A
C A e A
C A e A
C A e A

+

+

+

+

= = − = + =

= = − = − − = − − =

= = − = − = −

= = − = + =

 

By Cramer’s rule, 

{ }1 det ( )
( , )

det det
i j ji

ij
CA e

i j entry of A x
A A

−− = = =  

So for the current matrix; 

{ }

{ }

{ }

{ }

1 1 1 11
11

1 1 2 21
12

1 2 1 12
21

1 2 2 22
22

det ( ) 5(1,1)
det det 13

det ( ) 3(1,2)
det det 13

det ( ) 1(2,1)
det det 13

det ( ) 2(2,2)
det det 13

A e Centry of A x
A A

A e Centry of A x
A A

A e Centry of A x
A A

A e Centry of A x
A A

−

−

−

−

− = = = =

−
− = = = =

− = = = =

− = = = =

 

Hence by using equation # 4, we get  
11 21

11 12 11 211

21 22 12 2212 22

5 3
1det det 13 13

1 2det
13 13det det

C C
x x C CA AA
x x C CC C A

A A

−

−   
      

= = = =      
      

     

 

Example 5   Find the inverse of the matrix 
2 1 3
1 1 1 .
1 4 2

A
 
 = − 
 − 

 

Solution   The nine cofactors are 

11 12 13

1 1 1 1 1 1
2, 3, 5

4 2 1 2 1 4
C C C

− −
= + = − = − = = + =

− −
 

 

21 22 23

1 3 2 3 2 1
14, 7, 7

4 2 1 2 1 4
C C C= − = = + = − = − = −

− −
 

 

31 32 33

1 3 2 3 2 1
4, 1, 3

1 1 1 1 1 1
C C C= + = = − = = + = −

− −
 

The adjoint matrix is the transpose of the matrix of cofactors. [For instance, C12 goes in 
the (2, 1) position.] Thus 
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11 21 31

12 22 32

13 23 33

2 14 4
3 7 1
5 7 3

C C C
adjA C C C

C C C

−   
   = = −   
   − −   

 

We could compute det A directly, but the following computation provides a check on the 
calculations above and produces det A: 

2 14 4 2 1 3 14 0 0
( ). 3 7 1 1 1 1 0 14 0 14

5 7 3 1 4 2 0 0 14
adjA A I

−     
     = − − = =     
     − − −     

 

Since (adj A) A = 14 I, Theorem 2 shows that det A = 14 and 

1

2 14 4 2 /14 14 /14 4 /14
1 3 7 1 3/14 7 /14 1/14

14
5 7 3 5 /14 7 /14 3/14

A−

− −   
   = − = −   
   − − − −   

 

 
Determinants as Area or Volume   
 In the next application, we verify the geometric interpretation of determinants and we 
assume here that the usual Euclidean concepts of length, area, and volume are already 
understood for R2 and R3. 
 
Theorem 3   If A is a 2 2×  matrix, the area of the parallelogram determined by the 
columns of A is det A . If A is a 3 3×  matrix, the volume of the parallelepiped determined 

by the columns of A is det A . 
 
Example 6   Calculate the area of the parallelogram determined by the points (-2, -2),     
(0, 3), (4, -1) and (6, 4).  
 
Solution    
Let A(-2,-2), B(0,3), C(4,-1) and D(6,4). Fixing one point say A(-2,-2) and find the 
adjacent lengths of parallelogram which are given by the column vectors as follows; 

 

 
So the area of parallelogram ABCD determined by above column vectors  

= 
2 6

det 2 30 28 28
5 1
 

= − = − = 
 

  

  Now we translate the parallelogram ABCD to one having the origin as a vertex. For 
which we subtract the vertex (-2, -2) from each of the four vertices. The new 
parallelogram has the  vertices say 

0 ( 2) 2
3 ( 2) 5

4 ( 2) 6
1 ( 2) 1

AB

AC

− −   
= =   − −   

− −   
= =   − − −   
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A =(-2-(-2),-2-(-2))=(0, 0)
B =(0-(-2),3-(-2))=(2, 5)
C =(4-(-2),-1-(-2))=(6,1)
D =(6-(-2),4-(-2))=(8, 6) 

′
′
′
′

 

And fixing (0,0)A′  in this case, so  
2 0 2
5 0 5

6 0 6
5 0 5

A B

A C

−   ′ ′ = =   −   
−   ′ ′ = =   −   

 

See Fig below. The area of this parallelogram is also determined by the above columns 

vectors = 
2 6

det 2 30 28 28
5 1
 

= − = − = 
 

 

 
 
 
 
 
 
 
 
 
 

Translating a parallelogram does not change its area 
 
Linear Transformations   
Determinants can be used to describe an important geometric property of linear 
transformations in the plane and in R3. If T is a linear transformation and S is a set in the 
domain of T, let T (S) denote the set of images of points in S. We are interested in how 
the area (or volume) of T (S) compares with the area (or volume) of the original set S. 
For convenience, when S is a region bounded by a parallelogram, we also refer to S as a 
parallelogram. 
 
Theorem 4   Let 2 2:T R R→  be the linear transformation determined by a 2 2×  matrix 
A. If S is a parallelogram in R2, then 
  {area of T (S)} = |detA|. {area of S} 
If T is determined by a 3 x 3 matrix A, and if S is a parallelepiped in R3, then 
  {volume of T (S)} = |detA|. {volume of S} 
 
Example 7   Let a and b be positive numbers. Find the area of the region E bounded by 

the ellipse whose equation is 
2 2

1 2
2 2 1x x

a b
+ = . 
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Solution   We claim that E is the image of the unit disk D under the linear transformation 

A:D→E determined by the matrix
0

0
a

A
b

 
=  
 

, given as 

 Au = x  where u = 1

2

u
D

u
 

∈ 
 

, x = 1

2

x
E

x
 

∈ 
 

. 

Now  Au = x 

1 1

2 2

1 1

22

1 1 2 2

0
0

u xa
u xb

au x
xbu

au x and bu x

    
⇒ =    

     
   

⇒ =   
  

⇒ = =

then 

           ⇒ 1
1

xu
a

=  and 2
2

xu
b

=  

Since u D∈ (in the circular disk),it follows that the distance of u from origin will be less 
than unity i-e 
( ) ( )2 2

1 2

2 2
1 2 1 2

1 2

0 0 1

1 ,

u u

x x x xu u
a b a b

− + − ≤

   ⇒ + ≤ = =   
   



 

Hence by the generalization of theorem 4, 
{area of ellipse} = {area of A(D)}       ( )here T A≡  
     = |det A|. {area of D} 
     = ab.π (1)2 = π ab 

 
 
             u2 
               x2 
 

         b  
                   
                      D        E   
                                   1         u1          a       x1 
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Example 8   Let S be the parallelogram determined by the vectors 1

1
3

b  
=  
 

 and 2

5
1

b  
=  
 

, 

and let 
1 1
0 2

A
− 

=  
 

. Compute the area of image of S under the mapping x Ax→ . 

Solution   The area of S is 
1 5

det 14
3 1
 

= 
 

, and det A = 2. By theorem 4, the area of 

image of S under the mapping x Ax→  is |det A|. {area of S} = 2.14 = 28  
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Exercises   
 
Use Cramer’s Rule to compute the solutions of the systems in exercises 1 and 2. 
 

1. 
1 2

1 3

2 3

2x + x =7
-3x + x = -8

x + 2x = -3
    2. 

1 2 3

1 3

1 2 3

2x + x + x = 4
-x + 2x = 2
3x + x +3x = -2

 

 
In exercises 3-6, determine the values of the parameter s for which the system has a 
unique solution, and describe the solution. 
 

3. 1 2

1 2

6sx +4x = 5
9x +2sx = -2

    4. 1 2

1 2

3sx - 5x = 3
9x +5sx = 2

 

 

5. 1 2

1 2

sx - 2sx = -1
3x +6sx = 4

    6. 1 2

1 2

2sx + x = 1
3sx +6sx = 2

 

 
In exercises 7 and 8, compute the adjoint of the given matrix, and then find the inverse of 
the matrix. 
 

7. 
3 5 4
1 0 1
2 1 1

 
 
 
  

     8. 
3 0 0
-1 1 0
-2 3 2

 
 
 
  

 

 
In exercises 9 and 10, find the area of the parallelogram whose vertices are listed. 
 
9. (0, 0), (5, 2), (6, 4), (11, 6)   10. (-1, 0), (0, 5), (1, -4), (2, 1) 
 
11. Find the volume of the parallelepiped with one vertex at the origin and adjacent 
vertices at (1, 0, -2), (1, 2, 4), (7, 1, 0). 
 
12. Find the volume of the parallelepiped with one vertex at the origin and adjacent 
vertices at (1, 4, 0), (-2, -5, 2), (-1, 2, -1). 
 

13. Let S be the parallelogram determined by the vectors b1 = 
-2
3

 
 
 

 and b2 = 
-2
5
 
 
 

, and 

let A = 
6 -2
-3 2
 
 
 

. Compute the area of the image of S under the mapping →x Ax . 
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14.  Let S be the parallelogram determined by the vectors b1 = 
4
-7
 
 
 

 and b2 = 
0
1
 
 
 

, and 

let A = 
7 2
1 1
 
 
 

. Compute the area of the image of S under the mapping →x Ax . 

 
15. Let T: R3→  R3 be the linear transformation determined by the matrix 

0 0
0 0
0 0

a
b

c

 
 =  
  

A , where a, b, c are positive numbers. Let S be the unit ball, whose 

bounding surface has the                                                  equation 2 2 2
1 2 3x x x 1+ + = . 

a. Show that T (S) is bounded by the ellipsoid with the equation 
22 2

31 2
2 2 2

xx x 1
a b c

+ + = . 

 
b. Use the fact that the volume of the unit ball is 4π / 3  to determine the volume of the 
region bounded by the ellipsoid in part (a). 
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Lecture 20 

 
Vector Spaces and Subspaces 

 
Case Example    
       The space shuttle's control systems are absolutely critical for flight. Because the 
shuttle is an unstable airframe, it requires constant computer monitoring during 
atmospheric flight. The flight control system sends a stream of commands to 
aerodynamic control surfaces. 
 Mathematically, the input and output signals to an engineering system are functions. It 
is important in applications that these functions can be added, and multiplied by 
scalars. These two operations on functions have algebraic properties that are completely 
analogous to the operation of adding vectors in Rn and multiplying a vector by a scalar, 
as we shall see in the lectures 20 and 27. For this reason, the set of all possible inputs 
(functions) is called a vector space. The mathematical foundation for systems 
engineering rests on vector spaces of functions, and we need to extend the theory of 
vectors in Rn to include such functions. Later on, we will see how other vector spaces 
arise in engineering, physics, and statistics. 
 
Definition  Let V be an arbitrary nonempty set of objects on which two operations are 
defined, addition and multiplication by scalars (numbers). If the following axioms are 
satisfied by all objects u, v, w in V and all scalars k and l, then we call V a vector space. 
 
Axioms of Vector Space   
 
1. Closure Property For any two vectors u & v ∈V, implies u + v ∈V 
 
2. Commutative Property For any two vectors u & v ∈V, implies u + v = v + u 
 
3. Associative Property For any three vectors u, v, w ∈V, u + (v + w) = (u + v) + w 
 
4. Additive Identity For any vector u ∈V, there exist a zero vector 0 such that  

0 + u = u + 0 = u 
 

5. Additive Inverse For each vector u ∈V, there exist a vector –u in V such that  
-u + u = 0 = u + (-u) 
 

6. Scalar Multiplication For any scalar k and a vector u ∈V implies k u ∈V 
 
7. Distributive Law For any scalar k if u & v ∈V, then k (u + v) = k u + k v 
 
8. For scalars m, n and for any vector u ∈V, (m + n) u = m u + n u  
 
9. For scalars m, n and for any vector u ∈V, m (n u) = (m n) u = n (m u) 
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10. For any vector u ∈V, 1u = u where 1 is the multiplicative identity of real numbers. 
 
Examples of vector spaces   The following examples will specify a non empty set V and 
two operations: addition and scalar multiplication; then we shall verify that the ten vector 
space axioms are satisfied. 
  
Example 1   Show that the set of all ordered n-tuple Rn is a vector space under the 
standard operations of addition and scalar multiplication. 
 
Solution  
(i) Closure Property: 
Suppose that u = (u1, u2, …, un) and v = (v1, v2, …, vn) ∈ Rn 

 
Then by definition, u + v = (u1, u2, …, un) + (v1, v2, …, vn)  
 
= (u1 + v1, u2 + v2, …, un + vn)∈ Rn    (By closure property) 
 
Therefore, Rn

 is closed under addition. 
 
(ii) Commutative Property 
 
Suppose that u = (u1, u2, …, un) and v = (v1, v2, …, vn) ∈ Rn 

 
Now u + v = (u1, u2, …, un) + (v1, v2, …, vn) 
 
= (u1 + v1, u2 + v2, …, un + vn)     (By closure property) 
 
= (v1 + u1, v2 + u2, …, vn + un)                                (By commutative law of real numbers) 
 
= (v1, v2, …, vn) + (u1, u2, …, un)      (By closure property) 
 
= v + u 
Therefore, Rn is commutative under addition. 
 
(iii) Associative Property 
Suppose that u = (u1, u2, …, un), v = (v1, v2, …, vn) and w = (w1, w2, …, wn)∈Rn  
 
Now (u + v) + w = [(u1, u2, …, un) + (v1, v2, …, vn)] + (w1, w2, …, wn) 
 
= (u1 + v1, u2 + v2, …, un + vn) + (w1, w2, …, wn)   (By closure property) 
 
= ((u1 + v1) + w1, (u2 + v2) + w2, …, (un + vn) + wn))  (By closure property) 
 
= (u1 + (v1 + w1), u2 + (v2 + w2), …, un + (vn + wn))    (By associative law of real numbers) 
 
= (u1, u2, …, un) + (v1 + w1, v2 + w2, …, vn + wn)  (By closure property) 
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= (u1, u2, …, un) + [(v1, v2, …, vn) + (w1, w2, …, wn)] (By closure property) 
 
= u + (v + w) 
 
Hence Rn is associative under addition. 
 
(iv) Additive Identity 
 
Suppose u = (u1, u2, …, un) ∈ Rn. There exists 0 = (0, 0, …, 0) ∈ Rn such that 
0 + u = (0, 0, …, 0) + (u1, u2, …, un)  
 
= (0 + u1, 0 + u2, …, 0 + un)      (By closure property) 
 
= (u1, u2, …, un) = u       (Existence of identity of real numbers) 
 
Similarly, u + 0 = u 
 
Hence 0 = (0, 0, …, 0) is the additive identity for Rn. 
 
(v) Additive Inverse 
 
Suppose u = (u1, u2, …, un) ∈ Rn. There exists -u = (-u1, -u2, …, -un)∈Rn 

 
Such that u + (-u) = (u1, u2, …, un) + (-u1, -u2, …, -un) 
 
= (u1 + (-u1), u2  + (-u2), …, un + (-un))    (By closure property) 
 
= (0, 0, …, 0) = 0 
 
Similarly, (-u) + u = 0 
 
Hence the inverse of each element of Rn exists in Rn. 
 
(vi) Scalar Multiplication 
 
If k is any scalar and u = (u1, u2, …, un) ∈ Rn. 
 
Then by definition, k u = k (u1, u2, …, un) = (k u1, k u2, …, k un) ∈ Rn 

          (By closure property) 
(vii) Distributive Law 
 
Suppose k is any scalar and u = (u1, u2, …, un), v = (v1, v2, …, vn) ∈ Rn 

 
Now k (u + v) = k [(u1, u2, …, un) + (v1, v2, …, vn)] 
 



20-Vector Spaces and Subspaces  VU 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            248 

= k (u1 + v1, u2 + v2, …, un + vn)    (By closure property) 
 
= (k (u1 + v1), k (u2 + v2), …, k (un + vn))   (By scalar multiplication) 
 
= (k u1 + k v1, k u2 + k v2, …, k un + k vn)   (By Distributive Law) 
 
 = (k u1, k u2, …, k un) + (k v1, k v2, …, k vn)   (By closure property) 
 
= k (u1, u2, …, un) + k (v1, v2, …, vn)       (By scalar multiplication) 
 
= k u + k v 
 
(viii) Suppose k and l be any scalars and u = (u1, u2, …, un) ∈ Rn 

 
Then (k + l) u = (k + l) (u1, u2, …, un) 
 
= ((k + l)u1, (k + l)u2, …, (k + l)un)    (By scalar multiplication) 
 
= (k u1 + l u1, k u2 + l u2, …, k un + l un)   (By Distributive Law) 
 
= (k u1, k u2, …, k un) + (l u1, l u2, …, l un)   (By closure property) 
 
= k (u1, u2, …, un) + l (u1, u2, …, un)    (By scalar multiplication) 
 
= k u + l u 
 
(ix) Suppose k and l be any scalars and u = (u1, u2, …, un) ∈ Rn 

 
Then k (l u) = k [l (u1, u2, …, un)] 
 
= k (l u1, l u2, …, l un)      (By scalar multiplication) 
 
= (k (l u1), k (l u2), …, k (l un))    (By scalar multiplication) 
 
= ((k l)u1, (k l)u2, …, (k l)un)              (By associative law) 
 
= (k l) (u1, u2, …, un)      (By scalar multiplication) 
 
= (k l) u 
 
(x) Suppose u = (u1, u2, …, un) ∈ Rn  
 
Then 1 u = 1 (u1, u2, …, un)  
 
= (1u1, 1u2, …, 1un)      (By scalar multiplication) 
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= (u1, u2, …, un) = u           (Existence of identity in scalrs) 
 
Hence, Rn is the real vector space with the standard operations of addition and scalar 
multiplication. 
 
Note  The three most important special cases of Rn are R (the real numbers), R2 (the vectors 
in the plane), and R3 (the vectors in 3-space).    
 
Example 2  Show that the set V of all 2x2 matrices with real entries is a vector space if 
vector addition is defined to be matrix addition and vector scalar multiplication is defined to 
be matrix scalar multiplication. 

Solution   Suppose that and11 12 11 12 11 12

21 22 21 22 21 22

u u v v w w
= , = =

u u v v w w
     

∈     
     

u v w V  

and k and l be two any scalars. 
 
(i) Closure property To prove axiom (i), we must show that u + v is an object in V: that is , 
we must show that u + v is a 2x2 matrix. But this is clear from the definition of matrix 

addition, since 11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

u u v v u +v u +v
+ = + =

u u v v u +v u +v
     
     
     

u v  

     (By closure property) 
 

(ii) Commutative property Now it is very easy to verify the Axiom (ii)  
 

11 12 11 12 11 11 12 12

21 22 21 22 21 21 22 22

u u v v u +v u +v
+ = + =

u u v v u +v u +v
     
     
     

u v  (By closure property) 

11 11 12 12

21 21 22 22

v +u v +u
=

v +u v +u
 
 
 

   (Commutative property of real numbers) 

11 12 11 12

21 22 21 22

v v u u
= + = +

v v u u
   
   
   

v u  

(iii) Associative property 11 12 11 12 11 12

21 22 21 22 21 22

u u v v w w
(  + ) + = + +

u u v v w w
      
      
      

u v w  

11 11 12 12 11 12

21 21 22 22 21 22

u +v u +v w w
= +

u +v u +v w w
   
   
   

   (By closure property) 

11 11 11 12 12 12

21 21 21 22 22 22

(u +v )+ w (u +v )+ w
=

(u +v )+ w (u +v )+ w
 
 
 

  

11 11 11 12 12 12

21 21 21 22 22 22

u +(v + w ) u +(v + w )
=

u +(v + w ) u +(v + w )
 
 
 

  (By associative property of real numbers) 
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11 12 11 11 12 12

21 22 21 21 22 22

u u v + w v + w
= +

u u v + w v + w
   
   
   

 

11 12 11 12 11 12

21 22 21 22 21 22

u u v v w w
= + + =  + (  + )

u u v v w w
      
      

      
u v w  

Therefore, V is associative under ‘+’. 
(iv) Additive Identity Now to prove the axiom (iv), we must find an object 0 in V such 

that 0 + v = v + 0 = v for all u in V. This can be done by defining 0
0 0

=
0 0
 
 
 

.  

 
11 12

21 22

u u0 0
+ = +

u u0 0
  
  

   
u0 11 12 11 12

21 22 21 22

0+u 0+u u u
= = =

0+u 0+u u u
   
   
   

u
 

 
and similarly u + 0 = u. 
 
(v) Additive Inverse Now to prove the axiom (v) we must show that each object u in V 
has a negative –u such that u + (-u) = 0 = (-u) + 0. Defining the negative of u to be 
 

11 12

21 22

-u -u
- =

-u -u
 
 
 

u . 

 
( ) ( )
( ) ( )

11 11 12 1211 12 11 12

21 21 22 2221 22 21 22

u + -u u + -uu u -u -u 0 0
+(- )= + = = =

u + -u u + -uu u -u -u 0 0
      
      

      
u u 0

 
 
Similarly, (-u) + u = 0 
 
(vi) Scalar Multiplication 
 
Axiom (vi) also holds because for any real number k we have 
 

11 12 11 12

21 22 21 22

u u ku ku
k = k =

u u ku ku
   
   
   

u    (By closure property) 

 
so that k u is a 2x2 matrix and consequently is an object in V. 
 
(vii) Distributive Law   
 

11 12 11 12

21 22 21 22

u u v v
k ( + )= k +

u u v v
    
    
    

u v
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11 11 12 12 11 11 12 12

21 21 22 22 21 21 22 22

u +v u +v k(u +v ) k(u +v )
= k =

u +v u +v k(u +v ) k(u +v )
   
   
   

 

    

11 11 12 12 11 12 11 12

21 21 22 22 21 22 21 22

11 12 11 12

21 22 21 22

ku + kv ku + kv ku ku kv kv
= = +

ku + kv ku + kv ku ku kv kv

u u v v
= k + k = k + k

u u v v

     
     
     
   
   
   

u v
 

 

(viii) 11 12 11 12

21 22 21 22

u u (k + l)u (k + l)u
(k + l) = (k + l) =

u u (k + l)u (k + l)u
   
   
   

u  

 
11 11 12 12

21 21 22 22

ku + lu ku + lu
=

ku + lu ku + lu
 
 
 

11 12 11 12

21 22 21 22

ku ku lu lu
= +

ku ku lu lu
   
   
     

 
11 12 11 12

21 22 21 22

u u u u
= k + l = k + l

u u u u
   
   
   

u u
 

 

(ix) 11 12 11 12

21 22 21 22

u u lu lu
k(l ) = k l = k

u u lu lu
    
    
    

u  

 
11 12 11 12

21 22 21 22

k(lu ) k(lu ) (kl)u (kl)u
= =

k(lu ) k(lu ) (kl)u (kl)u
   
   
   

11 12

21 22

u u
= (kl)

u u
 
 
 

= (kl)u
 

 
(x) Finally axiom (x) is a simple computation  
 

11 12 11 12 11 12

21 22 21 22 21 22

u u 1u 1u u u
1 = 1 = = =

u u 1u 1u u u
     
     
     

u u
 

 
Hence the set of all 2x2 matrices with real entries is vector space under matrix addition 
and matrix scalar multiplication.  
 
Note   Example 2 is a special case of a more general class of vector spaces. The arguments in 
that example can be adapted to show that a set V of all m×n matrices with real entries, 
together with the operations of matrix addition and scalar multiplication, is a vector space.  
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Example 3    Let V be the set of all real-valued functions defined on the entire real 
line( , )−∞ ∞ . If f, g∈V, then f + g is a function defined by  
  (f +g) (x) = f (x) + g (x), for all x∈R. 
The product of a scalar a∈R and a function f in V is defined by 
  (a f) (x) = a f (x), for all x∈R.    
Solution   
(i) Closure Property If f, g∈V, then by definition  
(f +g) (x) = f (x) + g (x) ∈V. Therefore, V is closed under addition. 
(ii) Commutative Property If f and g are in V, then for all x∈R 
 
(f + g) (x) = f (x) + g (x)     (By definition) 
 
= g (x) + f (x)        (By commutative property) 
 
= (g + f) (x)       (By definition) 
 
So that  f + g = g + f 
 
(iii) Associative Property If f, g and h are in V, then for all x∈R 
 
((f + g) + h) (x) = (f + g) (x) + h (x)    (By definition) 
 
= (f (x) + g (x)) + h (x)     (By definition) 
 
= f (x) + (g (x) + h (x))             (By associative property) 
 
= f (x) + (g + h) (x)      (By definition) 
 
= (f + (g + h)) (x) 
 
And so  (f + g) + h = f + (g + h) 
 
(iv) Additive Identity The additive identity of V is the zero function defined by  
0 (x) = 0, for all x∈R because (0 + f) (x) = 0 (x) + f (x)  (By definition) 
 
= 0 + f (x) = f (x)        (Existence of identity) 
 
i.e. 0 + f = f. Similarly, f + 0 = f. 
 
(v) Additive Inverse The additive inverse of a function f in V is (-1) f = -f∈V because 
 
(f + (-f)) (x) = f (x) + (-f) (x)     (By definition) 
 
= f (x) – f (x)        (By definition) 
 
= 0          (Existence of inverse) 
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i.e. f + (-f) = 0. Similarly, (-f) + f = 0. 
 
(vi) Scalar Multiplication If f is in V and a is in R, then by definition (a f) (x) = a f (x) 
∈V. 
 
(vii) Distributive Law If f, g are in V and a∈R, then 
(a (f + g)) (x) = a (f + g) (x) = a (f (x) + g (x)) = a f (x) + a g (x) 
 
= (a f) (x) + (a g) (x) = (a f + a g) (x) and, therefore, a (f + g) = a f + a g 
 
(viii) Let a, b in R and f∈V, then 
 
((a + b) f) (x) = (a + b) f (x) = a f (x) + b f (x) = (a f) (x) + (b f) (x) = (a f + b f) (x) 
 
Thus (a + b) f = a f + b f 
 
(ix) a (b f) (x) = a (b f (x)) = (a b) f (x) showing that a (b f) = (a b) f 
 
(x) (1.f) (x) = 1 f (x) = f (x)      (Existence of identity) 
 
And so  1.f = f 
 
Hence V is a real vector space. 
 
Example 4   If 0 1 2 n( ) = a  + a  + a  + . . . + a2 np x x x x  

and 0 1 2 n ( ) = b  + b  + b  + . . . + b2 nq x x x x  
We define 

0 1 2 n 0 1 2 n( )+ ( ) = (a  + a  + a  + . . . + a )+(b  + b  + b  + . . . + b )2 n 2 np x q x x x x x x x  
 

0 0 1 1 2 2 n n= (a +b )+(a +b ) +(a +b ) +...+(a +b )2 nx x x  and for any scalar k, 
 

0 1 2 nk ( ) = k(a  + a  + a  + . . . + a )2 np x x x x 0 1 2 n= ka  + ka  + ka  + . . . + k a2 nx x x   
 
Clearly the given polynomial is a vector space under the addition and scalar 
multiplication. 
 
Example 5   (The Zero Vector Space) Let V consists of a single object, which we define 
by 0 and 0 + 0 = 0 and k 0 = 0 for all scalars k. It is easy to check that all the vector space 
axioms are satisfied. We call V={0} as the zero vector space. 
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Example 6   (Every plane through the origin is a vector space) 
 
Let V be any plane through the origin in R3

.  We shall show that the points in V form a 
vector space under a standard addition and scalar multiplication operations for vectors in 
R3.  
 
From example1, we know that R3 itself is a vector space under these operations.  Thus, 
Axioms 2, 3, 7, 8, 9 and 10 hold for all points in R3 and consequently for all points in the 
plane V. We therefore need only show that Axioms 1, 4, 5 and 6 are satisfied. 
 
Since the plane is passing through the origin, it has an equation of the form   

a x + b y + c z = 0       (1) 
 

Thus, if u = (u1, u2, u3) and v = (v1, v2, v3) are points in V, then  
 

a u1 + b u2 + c u3 = 0 and a v1 + b v2 + c v3 = 0.  
 

Adding these equations gives a (u1 + v1) + b (u2 + v2) + c (u3 + v3) = 0 
 
This equality tell us that the coordinates of the point 
 
  u + v = (u1 + v1, u2 + v2, u3 + v3)   
 
satisfies (1); thus, u + v lies in plane V. This proves that the Axiom 1 is satisfied. 
 
There exists 0 = (0, 0, 0) such that a (0) +b (0) + c (0) = 0. Therefore, Axiom 4 is 
satisfied.  
 
Multiplying a u1 + b u2 + c u3 = 0 through by k gives 
  a (ku1) + b (ku2) + c (ku3) = 0 
 
Thus, (ku1, k u2, k u3) = k (u1, u2, u3) = k u∈V. Hence, Axiom 6 is satisfied. 
 
We shall prove the axiom 5 is satisfied. Multiplying a u1 + b u2 + c u3 = 0 through by -1 
gives a (-1u1) + b (-1u2) + c (-1u3) = 0 
 
Thus, (-u1, - u2, - u3) = - (u1, u2, u3) = -u∈V. This establishes Axiom 5. 
 
Example 7    (A set that is not a vector space)  
       Let V=R2 and define addition and scalar multiplication operation as follows. If 

1 2 1 2= (u ,u )and = (v ,v )u v  then define  

1 1 2 2+ = (u +v ,u +v )u v  and if k is any real number then define 1k = (ku ,0)u . 
For any vector u ∈V, 1u =1(u1, u2) = (1 u1, 0) = (u1, 0) ≠  u where 1 is the multiplicative 
identity of real numbers. Therefore, the axiom 10 is not satisfied. 
Hence, V=R2 is not a vector space. 
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Theorem 1   Let V be a vector space, u a vector in V, and k is a scalar, then 
 
(i) 0u = 0    (ii) k0 = 0 
 
(iii) (-1) u = -u   (iv) If k u = 0 then k = 0 or u = 0 
 
Definition   A subset W of a vector space V is called a subspace of V if W itself a vector 
space under the addition and scalar multiplication defined on V. 
 
Note   If W is a part of a larger set V that is already known to be a vector space, then 
certain axioms need not be verified for W because they are “inherited” from V. For 
example, there is no need to check that u + v = v + u (Axiom 2) for W because this holds 
for all vectors in V and consequently for all vectors in W. Other Axioms are inherited by 
W from V are 3, 7, 8, 9, and 10. Thus, to show that a set W is a subspace of a vector space 
V, we need only verify Axioms 1, 4, 5 and 6. The following theorem shows that even 
Axioms 4 and 5 can be omitted. 
 
Theorem 2   If W is a set of one or more vectors from a vector space V, then W is 
subspace of V if and only if the following conditions hold. 

(a) If u and v are vectors in W, then u + v is in W 
(b) If k is any scalar and u is any vector in W, then k u is in W. 

 
Proof   If W is a subspace of V, then all the vector space axioms are satisfied; in 
particular, Axioms 1 and 6 hold. But these are precisely conditions (a) and (b). 
 
Conversely, assume conditions (a) and (b) hold.  Since these conditions are vector space 
Axioms 1 and 6, we need only show that W satisfies the remaining 8 axioms. The vectors 
in W automatically satisfy axioms 2, 3, 7, 8, 9, and 10 since they are satisfied by all 
vectors in V. Therefore, to complete the proof, we need only to verify that vectors in W 
satisfy axioms 4 and 5.                                                                                       
 
    Let u be any vector in W. By condition (b), k u is in W for every scalar k. Setting  
k = 0, it follows from theorem 1 that 0 u = 0 is in W, and setting k = - 1, it follows that  
(-1) u = -u is in W.                                                                                           
 
Remark    
(1) The theorem states that W is a subspace of V if and only if W is closed under addition 
and closed under scalar multiplication. 
(2) Every vector space has at least two subspaces, itself and the subspace {0} consisting 
only of the zero vector. Thus the subspace {0} is called the zero subspace. 
 
Example 8    Let W be the subset of R3 consisting of the all the vectors of the form  
(a, b, 0), where a and b are real numbers. To check if W is subspace of R3, we first see 
that axiom 1 and 6 of a vector space holds. 
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 Let 1 1 2 2= (a ,b ,0) and = (a ,b ,0)u v  be vectors in W  then 

1 1 2 2 1 2 1 2+ = (a ,b ,0) +(a ,b ,0)= (a + a ,b +b ,0)u v  is in W. Since the third component is 
zero. Also c is scalar, and then 1 1 1 1c = c(a ,b ,0)= (ca ,cb ,0)u  is in W. Therefore the Ist and 
6th axioms of the vector space holds. We can also verify the other axioms of vector space. 
Hence W is a subspace. 
 
Example 9   Consider the set W consisting of all 2x3 matrices of the form 

0
0
a b

c d
 
 
 

, Where a, b, c and d are arbitrary real numbers. Show that the W is a 

subspace M2x3. 

Solution   Consider 
0 0

0 0
1 1 2 2

1 1 2 2

a b a b
= , =

c d c d
   
   
   

u v  in W 

Then 
0 0 0

0 0 0
1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2

a b a b a + a b +b
+ = + =

c d c d c +c d + d
     
     
     

u v  is in W. 

So that the (a) part of the theorem is satisfied. Also k is a scalar, and then 
0

0
1 1

1 1

ka kb
k =

kc kd
 
 
 

u  is in W. So the (b) part of the above theorem is also satisfied. 

Hence W is a subspace of M2x3. 
 
Note    Let V is a vector space then every subset of V is not necessary a subspace of V. 
For example, let V =R2 then any line in R2 not passing through origin is not a subspace of 
R2. Similarly, a plane in R3 not passing through the origin is not a subspace of R3. 
 
Example 10   Let W be the subset of R3 consisting of all vectors of the form  (a, b, 1), 
where a, b are any real numbers. To check whether property (a) and (b) of the above 
theorem holds. Let 1 1 2 2= (a ,b ,1)and = (a ,b ,1)u v be vectors in W.  
Then 1 1 2 2 1 2 1 2+ = (a ,b ,1)+(a ,b ,1)= (a + a ,b +b ,1+1)u v  which is not in W because 
the third component 2 is not 1. As the Ist property does not hold therefore, the given set 
of vectors is not a vector space. 
 
Example 11   Which of the following are subspaces of R3 
(i) All vectors of the form (a, 0, 0) 
(ii) All vectors of the form (a, 1, 1)  
(iii) All vectors of the form (a, b, c), where b = a + c 
(iv) All vectors of the form (a, b, c), where b = a + c +1 
 
Solution   Let W is the set of all vectors of the form (a, 0, 0). 
 
(i) Suppose u = (u1, 0, 0) and v = (v1, 0, 0) are in W. 
 
Then u + v = (u1, 0, 0) + (v1, 0, 0) = (u1 + v1, 0, 0) which is of the form (a, 0, 0).  
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Therefore, u + v∈W 
 
If k is any scalar and u = (u1, 0, 0) is any vector in W, then k u = k (u1, 0, 0) =  (k u1, 0, 
0) 
which is of the form (a, 0, 0). Therefore, k u∈W. Hence W is the subspace of R3.  
 
 
(ii) Let W is the set of all vectors of the form (a, 1, 1).  
 
Suppose u = (u1, 1, 1) and             v = (v1, 1, 1) are in W. Then u + v = (u1, 1, 1) + (v1, 
1, 1) = (u1 + v1, 2, 2) which is not of the form (a, 1, 1). Therefore, u + v∉W. Hence W is 
not the subspace of R3.  
 
(iii) Suppose W is the set of all vectors of the form (a, b, c), where b = a + c  
 
Suppose u = (u1, u1 + u3, u3) and v = (v1, v1 + v3, v3) are in W. 
 
Then u + v = (u1, u1 + u3, u3) + (v1, v1 + v3, v3)  
= (u1 + v1, u1 + u3 + v1 + v3, u3 + v3)  
= (u1 + v1, (u1 + v1) + (u3 + v3), u3 + v3), which is of the form (a, a + c, c).  
 
Therefore, u + v∈W 
 
If k is any scalar and u = (u1, u1 + u3, u3) is any vector in W, then 
k u = k (u1, u1 + u3, u3) = (k u1, k (u1 + u3), k u3)  (By definition) 
= (k u1, k u1 + k u3, k u3)      (By Distributive Law) 
Which is of the form (a, a + c, c). Therefore, k u∈W.  Hence W is the subspace of R3.  
 
(iv) Let W is the set of all vectors of the form (a, b, c), where b = a + c +1 
 Suppose u = (u1, u1 + u3 + 1, u3) and v = (v1, v1 + v3 + 1, v3) are in W. 
Then u + v = (u1, u1 + u3 + 1, u3) + (v1, v1 + v3 + 1, v3)  
= (u1 + v1, u1 + u3 + 1 + v1 + v3 + 1, u3 + v3)  
= (u1 + v1, (u1 + v1) + (u3 + v3) + 2, u3 + v3) 
Which is not of the form (a, a + c + 1, c). Therefore, u + v∉W. Hence W is not the 
subspace of R3.  
 
Example 12   Determine which of the following are subspaces of P3. 
(i) All polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0 = 0 
(ii) All polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0 + a1 + a2 + a3 = 0 
(iii) All polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0, a1, a2, and a3 are integers 
(iv) All polynomials of the form a0 + a1 x, where a0 and a1 are real numbers. 
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Solution   (i) Let W is the set of all polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0 = 
0. 
Suppose that u = c0 + c1 x + c2 x2 + c3 x3 (where c0 = 0) and v = b0 + b1 x + b2 x2 + b3 
x3 (where b0 = 0) are in W. Then u + v = (c0 + c1x + c2x2 + c3x3) + (b0 + b1x + b2x2 + 
b3x3)  = (c0 + b0) + (c1 + b1)x + (c2 + b2)x2 + (c3 + b3) x3, where c0 + b0 = 0.  
Therefore, u + v ∈W  
 
If k is any scalar and u = c0 + c1 x + c2 x2 + c3 x3 (where c0 = 0) is any vector in W.  
Then k u = k (c0 + c1x + c2x2 + c3x3) = (kc0) + (kc1) x + (kc2) x2 + (kc3) x3 where  
k c0 = 0. Therefore, k u∈W. Hence W is the subspace of P3. 
 
(ii) Let W is the set of all polynomials a0 + a1x + a2x2 + a3x3 for which  
a0+a1+a2+a3 = 0. 
Suppose that u = c0 + c1 x + c2 x2 + c3 x3 (where c0 + c1 + c2 + c3 = 0) and  
v = b0 + b1 x + b2 x2 + b3 x3 (where b0 + b1 + b2 + b3 = 0) are in W. 
 
Now 
 u + v = (c0 + c1 x + c2 x2 + c3 x3) + (b0 + b1 x + b2 x2 + b3 x3)  
 
= (c0 + b0) + (c1 + b1) x + (c2 + b2) x2 + (c3 + b3) x3  
 
Where (c0+b0) + (c1+b1) + (c2+b2) + (c3+b3) = (c0+c1+c2+c3) + (b0+b1+b2+b3) = 0 
+ 0 = 0. Therefore, u + v ∈W 
 
If k is any scalar and u = c0 + c1 x + c2 x2 + c3 x3 (where c0 + c1 + c2 + c3 = 0) is any 
vector in W. Then k u = k (c0 + c1x + c2x2 + c3x3) = (kc0) + (kc1) x + (kc2) x2 + (kc3) 
x3  
Where (k c0) + (k c1) + (k c2) + (k c3) = k(c0 + c1 + c2 + c3) = k.0 = 0 
 
Therefore, k u∈W. Hence W is the subspace of P3. 
 
(iii) Let W is the set of  all polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0, a1, a2, 
and a3 are integers. 
Suppose that the vectors u = c0 + c1 x + c2 x2 + c3 x3 (where c0, c1, c2, and c3 are 
integers) and v = b0 + b1 x + b2 x2 + b3 x3 (where b0, b1, b2, and b3 are integers) are in 
W. 
Now  
u + v = (c0 + c1 x + c2 x2 + c3 x3) + (b0 + b1 x + b2 x2 + b3 x3)  
= (c0 + b0) + (c1 + b1) x + (c2 + b2) x2 + (c3 + b3) x3, where    
(c0 + b0), (c1 + b1), (c2 + b2), and (c3 + b3) are integers (integers are closed under 
addition). Therefore, u + v ∈W 
 
If k is any scalar and u = c0 + c1 x + c2 x2 + c3 x3 (where c0, c1, c2, and c3 are integers) 
is any vector in W. Then k u = k (c0 + c1x + c2x2 + c3x3 = (kc0) + (kc1) x + (kc2) x2 +  
(kc3) x3, where (k c0), (k c1), (k c2), and (k c3) are not integers (product of real number 
and integer). Therefore, k u∉W. Hence, W is not the subspace of P3. 
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(iv) Let W is the set of all polynomials of the form a0 + a1 x, where a0 and a1 are real 
numbers. Suppose that u = c0 + c1 x (where c0 and c1 are real numbers) and  
v = b0 + b1 x (where b0 and b1 are real numbers) are in W. 
 
Then u + v = (c0 + c1 x) + (b0 + b1 x) = (c0 + b0) + (c1 + b1) x  
Where   (c0 + b0) and (c1 + b1) are real numbers. 
Therefore, u + v ∈W  
 
If k is any scalar and u = c0 + c1 x (where c0 and c1 are real numbers) is any vector in W. 
Then k u = k (c0 + c1 x)   = (k c0) + (k c1) x   
Where (k c0) and (k c1) are real numbers.  
Therefore, k u∈W. Hence W is the subspace of P3. 
 
Example 13   Determine which of the following are subspaces of M22. 

(i) All matrices 
a b
c d
 
 
 

 where a + b +c + d = 0 

(ii) All 2 x 2 matrices A such that det (A) = 0 

(iii) All the matrices of the form 
0
a b

c
 
 
 

 

Solution   Let W is the set of all matrices 
a b
c d
 
 
 

 where a + b +c + d = 0. 

(i) Suppose u = 
e f
g h
 
 
 

 (where e + f + g + h = 0) and v = 
l m
n p
 
 
 

  

(Where l + m + n + p = 0) are in W. 

Then u + v = 
e f
g h
 
 
 

 + 
l m
n p
 
 
 

= 
e + l f + m
g + n h + p
 
 
 

 (By definition) 

Where (e + l) + (f + m) + (g + n) + ( h + p) 
 = (e + f + g + h) + (l + m + n + p) = 0 + 0 = 0 
Therefore, u + v∈W 

If k is any scalar and u = 
e f
g h
 
 
 

 (where e + f + g + h = 0) is any vector in W. 

Then k u = k
e f
g h
 
 
 

=
ke kf
kg kh
 
 
 

     (by definition) 

Where k e + k f + k g + k h = k (e + f + g + h) = k 0 = 0 
Hence, k u∈W. Therefore, W is subspace of M22. 
 
(ii) Let W is the set of all 2 x 2 matrices A such that det (A) = 0 

Suppose u = 
e f
g h
 
 
 

 (Where det (u) = e h – f g = 0) and v = 
l m
n p
 
 
 
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(Where det (v) = l p – m n = 0) are in W. 

Then u + v = 
e f
g h
 
 
 

 + 
l m
n p
 
 
 

= 
e + l f + m
g + n h + p
 
 
 

  (By definition) 

Where det (u + v) = (e + l) (h + p) - (f + m) (g + n)  
= e h + e p + l h + l p – f g – f n – m g – m n 
= (e h – f g) + (l p – m n) + e p + l h – f n – m g = e p + l h – f n – m g ≠  0 
Therefore, u + v∉W. Therefore, W is not subspace of M22. 
 
 

(iii) Let W is the set of all matrices of the form 
0
a b

c
 
 
 

 

Suppose u = 
0
e f

g
 
 
 

 and v = 
0
l m

n
 
 
 

 are in W. 

Then u + v = 
0
e f

g
 
 
 

 + 
0
l m

n
 
 
 

= 
0

e + l f + m
g + n

 
 
 

  (By definition) 

Which is of the form
0
a b

c
 
 
 

. Therefore, u + v∈W 

If k is any scalar and u = 
0
e f

g
 
 
 

 is any vector in W. 

Then k u = k
0
e f

g
 
 
 

=
0
ke kf

kg
 
 
 

     (By definition) 

Which is of the form
0
a b

c
 
 
 

. Hence, k u∈W 

Therefore, W is subspace of M22. 
 
Example 14   Determine which of the following are subspaces of the space (- , )∞ ∞F . 
(i) All f such that f (x) ≤ 0 for all x  (ii) all f such that f (0) = 0 
(iii) All f such that f (0) = 2   (iv) all constant functions 
(v) All f of the form k1 + k2 sin x, where k1 and k2 are real numbers 
(vi) All everywhere differentiable functions that satisfy + 2 = 0′f f . 
 
Solution   (i) Let W is the set of all f such that f (x) ≤ 0 for all x. 
Suppose g and h are the vectors in W. Then g (x) ≤ 0 for all x and h (x) ≤ 0 for all x. 
Now (g + h) (x) = g (x) + h (x) ≤ 0. Therefore, + ∈g h W  
If k is any scalar and g is any vector in W. Then g (x) ≤ 0 for all x 
Now (k g) (x) = k g (x), which is greater than 0 for negative real values of k.  

k k < 0∴ ∉ ∀g W . 
Hence W is not the subspace of (- ),∞ ∞F . 
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(ii) Let W is the set of all f such that f (0) = 0. 
Suppose g and h are the vectors in W. Then g (0) = 0 and h (0) = 0  
Now (g + h) (0) = g (0) + h (0) = 0 + 0 = 0. Therefore, + ∈g h W  
If k is any scalar and g is any vector in W. Then g (0) = 0  
Now (k g) (0) = k g (0) = k 0 = 0. k∴ ∈g W . Hence W is the subspace of (- , )∞ ∞F . 
 
(iii) Let W is the set of all f such that f (0) = 2 
Suppose g and h are the vectors in W. Then g (0) = 2 and h (0) = 2  
Now (g + h) (0) = g (0) + h (0) = 2 + 2 ≠  2 k∴ ∉g W . Hence W is not the subspace of 

(- , )∞ ∞F . 
 
(iv) Let W is the set of all constant functions. Suppose g and h are the vectors in W. 
Then g (x) = a and h (x) = b, where a and b are constants.  
Now (g + h) (x) = g (x) + h (x) = a + b, which is constant. Therefore, + ∈g h W  
If k is any scalar and g is any vector in W. Then g (x) = a, where a is any constant.  
Now (k g) (x) = k g (x) = k a, which is a constant. k∴ ∈g W . Hence W is the subspace 
of (- , )∞ ∞F . 
 
(v) Let W is the set of all f of the form k1 + k2 sin x, where k1 and k2 are real numbers 
Suppose g and h are the vectors in W. Then g (x) = m1+m2sin x and h (x) = n1+n2 sin x, 
where m1, m2, n1and n2 are real numbers. 
 
Now (g + h) (x) = g (x) + h (x) = [m1+m2sin x]+[n1+n2sin x] = (m1+n1)+(m2+n2) sin 
x  
Which is of the form k1 + k2 sin x. Therefore, + ∈g h W  
 
If k is any scalar and g is any vector in W. Then g (x) = m1 + m2 sin x, where m1 and m2 
are any real numbers. 
 
Now (k g) (x) = k g (x) = k [m1 + m2 sin x] = (k m1) + (k m2) sin x 
Which is of the form k1 + k2 sin x. k∴ ∈g W . Hence W is the subspace of (- , )∞ ∞F . 
 
(vi) Let W is the set of all everywhere differentiable functions that satisfy + 2 =′f f 0 . 
Suppose g and h are the vectors in W. Then + 2 =′g g 0  and + 2 =′h h 0   
Now ( + ) + 2( + ) = + + 2( + )′ ′ ′g h g h g h g h  = ( + 2 )+ ( + 2 )′ ′g g h h  = 0 + 0 = 0 
Therefore, + ∈g h W  
If k is any scalar and g is any vector in W. Then + 2 =′g g 0  
Now (k ) + 2(k ) = k + 2k′ ′g g g g  = k( + 2 ) = k. =′g g 0 0  

k∴ ∈g W . Hence W is the subspace of (- , )∞ ∞F . 
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Remark   Let n be a non-negative integer, and let nP  be the set of real valued function of 

the form 0 1 2 n( )= a + a + a +...+ a2 np x x x x  where 0 1 2, , ,..., na a a a are real numbers, 
then nP is a subspace (- , )∞ ∞F . 
 
Example 15    Show that the invertible n x n matrices do not form a subspace of M n x n. 
 
Solution   Let W is the set of invertible matrices in M n x n. This set fails to be a subspace 
on both counts- it is closed under neither scalar multiplication nor addition. 

For example consider invertible matrices 
1 2 -1 2

in
2 5 -2 5

= , =   
   
   

n x nW V M .  

The matrix 0.U is a 2x2 zero matrix, hence is not invertible; and the matrix U + V has a 
column of zeros, hence is not invertible. 
  
Theorem   If Ax = 0 is a homogeneous linear system of m equations in n unknowns, then 
the set of solution vectors is a subspace of Rn. 
 
Example 16    Consider the linear systems 

 

1 -2 3 0 1 -2 3 0
2 -4 6 = 0 -3 7 -8 = 0
3 -6 9 0 -2 4 -6 0

1 -2 3 0 0 0 0 0
-3 7 -8 = 0 0 0 0 = 0
4 1 2 0 0 0 0 0

x x
(a) y (b) y

z z

x x
(c) y (d) y

z z

           
           
           
                      
          
          
         
                   




 
 

 

 
Each of the systems has three unknowns, so the solutions form subspaces of R3. 
Geometrically, this means that each solution space must be a line through origin, a plane 
through origin, the origin only, or all of R3. 
 
Solution   (a) The solutions are x = 2s - 3t, y = s, z = t. From which it follows that  
x = 2y - 3z or x - 2y + 3z = 0.  
This is the equation of the plane through the origin with n =(1, -2,3) as a normal vector. 
 
(b) The solutions are x = -5t, y = - t, z = t, which are parametric equations for the line 
through the origin parallel to the vector v =(-5, -1,1). 
 
(c) The solution is x = 0, y = 0, z = 0 so the solution space is the origin only, that is {0}. 
 
(d)The solutions are x = r, y = s, z = t. where r, s and t have arbitrary values, so the 
solution space is all R3. 
 
A Subspace Spanned by a Set: The next example illustrates one of the most common 
ways of describing a subspace. We know that the term linear combination refers to any 
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sum of scalar multiples of vectors, and Span {v1, … , vp} denotes the set of all vectors that 
can be written as linear combinations of v1, … , vp. 
 
Example 17   Given v1 and v2 in a vector space V, let H = Span {v1, v2}. Show that H is 
a subspace of V. 
 
Solution    The zero vector is in H, since 0 = 0v1 + 0v2. To show that H is closed under 
vector addition, take two arbitrary vectors in H, say, 
  u = s1v1 +s2v2    and     w = t1v1 + t2v2 
 
By Axioms 2, 3 and 8 for the vector space V. 
  u + w = (s1v1 +s2v2) + (t1v1 + t2v2) 
            = (s1 + t1) v1 + (s2 + t2) v2 
 
So u + w is in H. Furthermore, if c is any scalar, then by Axioms 7 and 9, 
 

cu = c (s1v1 + s2v2) = (cs1) v1 + (cs2)v2 
 

Which shows that cu is in H and H is closed under scalar multiplication.  
 
Thus H is a subspace of V.                                                              
 
Later on we will prove that every nonzero subspace of R3, other than R3 itself, is either 
Span {v1, v2} for some linearly independent v1 and v2 or Span {v} for .≠v 0  In the first 
case the subspace is a plane through the origin and in the second case a line through the 
origin. (See Figure below) It is helpful to keep these geometric pictures in mind, even for 
an abstract vector space.  

   
Figure 9 – An example of a subspace 

 
The argument in Example 17 can easily be generalized to prove the following theorem. 
 

0 

x2 
x1 

x3 

v2 

v1 
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Theorem 3   If v1, … , vp are in a vector space V, then Span {v1, …, vp} is a subspace of 
V. 
        We call Span {v1, … , vp} the subspace spanned (or generated) by {v1,… , vp}. 
Given any subspace H of V, a spanning (or generating) set for H is a set {v1, …, vp} in H 
such that H = Span {v1, …, vp}. 
Proof   

The zero vector is in H, since 0 = 0v1 + 0v2+ …+0vn=
0
0

j n

j
j

v
=

=
∑ =0

0

j n

j
j

v
=

=

 
 
 
∑ =0 

To show that H is closed under vector addition, take two arbitrary vectors in H, say, 

u = s1v1 +s2v2+…+tnvn=
0

i n

i i
i

s v
=

=
∑    

 and     

 w = t1v1 + t2v2 …+tnvn=
0

k n

k k
k

t v
=

=
∑  

By Axioms 2, 3 and 8 for the vector space V. 

u + w = 
0

i n

i i
i

s v
=

=
∑ +

0

k n

k k
k

t v
=

=
∑ = (s1v1 +s2v2+…+snvn )+( t1v1 + t2v2 …+tnvn)  

          = (s1 + t1) v1 + (s2 + t2) v2+…+(sn + tn) vn=
0
( )

p n

p p p
p

s t v
=

=

+∑  

 So u + w is in H. Furthermore, if c is any scalar, then by Axioms 7 and 9, 
 

cu = c(s1v1 +s2v2+…+snvn )= (cs1) v1 + (cs2)v2+…+(csn )vn=
0

r n

r r
r

cs v
=

=
∑ . 

Which shows that cu is in H and H is closed under scalar multiplication.  
 
Thus H is a subspace of V.                                                              
 
Example 18   Let H be the set of all vectors of the form (a – 3b, b – a, a, b), where a and 
b are arbitrary scalars. That is, let H = {(a – 3b, b – a, a, b): a and b in R}. Show that H 
is a subspace of R4. 
 
Solution   Write the vectors in H as column vectors. Then an arbitrary vector in H has 
the form 

3 1 3
1 1

1 0
0 1

a b
b a

a b
a
b

− −     
     − −     = +
     
     
     

↑ ↑

1 2v v
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This calculation shows that H = Span {v1, v2}, where v1 and v2 are the vectors indicated 
above. Thus H is a subspace of R4 by Theorem 3.                                                     
 
Example18 illustrates a useful technique of expressing a subspace H as the set of linear 
combinations of some small collection of vectors. If H = Span {v1, …, vp}, we can think 
of the vectors v1, … , vp in the spanning set as “handles” that allow us to hold on to the 
subspace H. Calculations with the infinitely many vectors in H are often reduced to 
operations with the finite number of vectors in the spanning set. 
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Exercises   
 
In exercises 1-13 a set of objects is given together with operations of addition and scalar 
multiplication. Determine which sets are vector spaces under the given operations. For 
those that are not, list all axioms that fail to hold. 
 
1. The set of all triples of real numbers (x, y, z) with the operations 

and(x, y,z)+(x , y ,z )= (x+ x , y+ y ,z + z ) k(x, y,z)= (kx, y,z)′ ′ ′ ′ ′ ′  
 
2. The set of all triples of real numbers (x, y, z) with the operations 

and(x, y,z)+(x , y ,z )= (x+ x , y+ y ,z + z ) k(x, y,z)= (0,0,0)′ ′ ′ ′ ′ ′  
 
3. The set of all pairs of real numbers (x, y) with the operations 

and(x, y)+(x , y )= (x+ x , y+ y ) k(x, y)= (2kx,2ky)′ ′ ′ ′  
 
4. The set of all pairs of real numbers of the form (x, 0) with the standard operations on 
R2. 
 
5. The set of all pairs of real numbers of the form (x, y), where x≥0, with the standard 
operations on R2. 
 
6. The set of all n-tuples of real numbers of the form (x, x, …, x) with the standard 
operations on Rn. 
 
7. The set of all pairs of real numbers (x, y) with the operations. 
   and(x, y)+(x , y )= (x+ x +1, y+ y +1) k(x, y)= (kx,ky)′ ′ ′ ′  
 

8. The set of all 2x2 matrices of the form 
1

1
a

b
 
 
 

 with matrix addition and scalar 

multiplication. 
 

9. The set of all 2x2 matrices of the form 
0

0
a

b
 
 
 

 with matrix addition and scalar 

multiplication. 
 
10. The set of all pairs of real numbers of the form (1, x) with the operations 

(1, ) (1, ) (1, ) and (1, ) (1, )y y y y k y ky′ ′+ = + =  
 
11. The set of polynomials of the form a + bx with the operations 
 and1 1 1 1 1 1( +a )+( +b )= ( + )+(a +b ) k( +a )= (k )+(ka )0 0 0 0 0 0a x b x a b x a x a x  
 
12. The set of all positive real numbers with operations x + y = xy and kx = xk 
 
13. The set of all real numbers (x, y) with operations  
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, , , and , ,( x y ) ( x y ) ( xx yy ) k( x y ) ( kx ky )′ ′ ′ ′+ = =  
 
14. Determine which of the following are subspaces of Mnn. 
(a) all n x n matrices A such that tr (A) = 0 
(b) all n x n matrices A such that AT = -A 
(c) all n x n matrices A such that the linear system Ax = 0  has only the trivial solution 
(d) all n x n matrices A such that AB = BA for a fixed n x n matrix B 
 
15. Determine whether the solution space of the system Ax = 0 is a line through the 
origin, a plane through the origin, or the origin only. If it is a plane, find an equation for 
it; if it is a line, find parametric equations for it. 

(a) 
-1 1 1
3 -1 0
2 -4 -5

 
 =  
  

A    (b) 
1 -2 3
-3 6 9
-2 4 -6

 
 =  
  

A  

 

(c) 
1 2 3
2 5 3
1 0 8

 
 =  
  

A     (d) 
1 2 -6
1 4 4
3 10 6

 
 =  
  

A  

 
16. Determine if the set “all polynomial in pn such that p(0) = 0” is a subspace of Pn for 
an appropriate value of n. Justify your answer. 
 

17. Let H be the set of all vectors of the form 3
2

s
s
s

 
 
 
  

. Find a vector v in R3 such that H = 

Span {v}. Why does this show that H is a subspace of R3? 
 

18. Let W be the set of all vectors of the form 
5 2b c

b
c

+ 
 
 
  

, where b and c are arbitrary. 

Find vectors u and v such that W = Span {u, v}. Why does this show that W is a subspace 
of R3? 
 

19. Let W be the set of all vectors of the form 

3
-

2 -
4

s t
s t
s t
t

+ 
 
 
 
 
 

. Show that W is a subspace of R4. 
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20. Let 
1 2 4 3
0 1 2 and 1
-1 3 6 2

, , , .
       
       = = = =       
              

1 2 3v v v w  

(a) Is w in {v1, v2, v3}? How many vectors are in {v1, v2, v3}? 
(b) How many vectors are in Span {v1, v2, v3}? 
(c) Is w in the subspace spanned by {v1, v2, v3}? Why? 
 
In exercises 21 and 22, let W be the set of all vectors of the form shown, where a, b and c 
represent arbitrary real numbers. In each case, either find a set S of vectors that spans W 
or give an example to show that W is not a vector space. 
 

21. 
3 +

4
- 5

a b

a b

 
 
 
  

     22. 

-
-
-

a b
b c
c a

b

 
 
 
 
 
 

 

 
23. Show that w is in the subspace of R4 spanned by v1, v2, v3, where 
 

-9 7 -4 -9
7 -4 5 4
4 -2 -1 4
8 9 -7 -7

, , ,

       
       
       = = = =
       
       
       

1 2 3w v v v  

 
24. Determine if y is in the subspace of R4 spanned by the columns of A, where 
 

6 5 -5 -9
7 8 8 -6
1 -5 -9 3
-4 3 -2 -7

,

   
   
   = =
   
   
   

y A  
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Lecture 21 
 

Null Spaces, Column Spaces, and Linear Transformations 
 
Subspaces arise in as set of all solutions to a system of homogenous linear equations as 
the set of all linear combinations of certain specified vectors. In this lecture, we compare 
and contrast these two descriptions of subspaces, allowing us to practice using the 
concept of a subspace. In applications of linear algebra, subspaces of Rn usually arise in 
one of two ways:  
 as the set of all solutions to a system of homogeneous linear equations or  
 as the set of all linear combinations of certain specified vectors.  

Our work here will provide us with a deeper understanding of the relationships between 
the solutions of a linear system of equations and properties of its coefficient matrix. 
 
Null Space of a Matrix   
 
Consider the following system of homogeneous equations: 

1 2 3

1 2 3

3 2 0
5 9 0

x x x
x x x
− − =

− + + =
       (1) 

In matrix form, this system is written as Ax = 0, where  
1 -3 -2
-5 9 1

=  
 
 

A        (2) 

Recall that the set of all x that satisfy (1) is called the solution set of the system (1). Often 
it is convenient to relate this set directly to the matrix A and the equation Ax = 0. We call 
the set of x that satisfy Ax = 0 the null space of the matrix A. The reason for this name is 
that if matrix A is viewed as a linear operator that maps points of some vector space V 
into itself, it can be viewed as mapping all the elements of this solution space of AX = 0 
into the null element "0". Thus the null space N of A is that subspace of all vectors in V 
which are imaged into the null element “0" by the matrix A. 
 
NULL SPACE 
 
Definition   The null space of an m n×  matrix A, written as Nul A, is the set of all 
solutions to the homogeneous equation Ax = 0. In set notation, 

Nul A = {x: x is in Rn and Ax = 0}  
OR 

( ) { / , 0}Nul A x x Ax= ∀ ∈ =  
 
A more dynamic description of Nul A is the set of all x in Rn that are mapped into the 
zero vector of Rm via the linear transformation →x Ax , where A is a matrix of 
transformation. See Figure1 



21-Null Spaces, Column Spaces and Linear Transformation                                                                       VU                                                  
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            270 

                                                                
                                                   Figure 1 
 

Example 1   Let 1 -3 -2
-5 9 1

=  
 
 

A  and let 
5
3 .
-2

 
 =  
  

u  Determine if Nul∈u A . 

Solution     To test if u satisfies Au = 0, simply compute 

 
5

1 -3 -2 5 -9 + 4 0
= 3 = =

-5 9 1 -25 + 27 - 2 0
-2

 
      
             

Au .  Thus u is in Nul A. 

 
Example  Determine the null space of the following matrix: 

                
4 0
8 20

A  
=  − 

   

   
Solution   To find the null space of A we need to solve the following system of equations: 

 
 
 
  
 
  

 
We can find Null space of a matrix with two ways i.e. with matrices or with system of 
linear equations. We have given this in both matrix form and (here first we convert the 
matrix into system of equations) equation form.  In equation form it is easy to see that by 
solving these equations together the only solution is 1 2 0x x= = .  In terms of vectors from 

2  the solution consists of the single vector { }0 and hence the null space of A is{ }0 . 
 
 
Activity Determine the null space of the following matrices: 

0 

Rm 
Rn 

Nul A 
0 

1

2

1 2

1 2

1 2 1

1 2 2

4 0 0
8 20 0

4 0 0
8 20 0

4 0 0 0
8 20 0 0

x
x

x x
x x

x x x
and x x x

    
=    −    

+   
⇒ =   − +   

⇒ + = ⇒ =
⇒ − + = ⇒ =
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1

2 1

2

4 0 1 0 1~
8 20 8 20 4

1 0
~ 8

0 20

1 0 1~
0 1 20

R

R R

R

   
   − −   

 
+ 

 
 
 
 

1.                
0 0 0

0 0 0 0
0 0 0

 
 =  
 
 

 

2.              
1 5
5 25

M
− 

=  − 
 

 
In earlier (previous) lectures, we developed the technique of elementary row operations 
to solve a linear system. We know that performing elementary row operations on an 
augmented matrix does not change the solution set of the corresponding linear system 
Ax=0. Therefore, we can say that it does not change the null space of A.  We state this 
result as a theorem: 
 
Theorem 1   Elementary row operations do not change the null space of a matrix. 

Or 
Null space N(A) of a matrix A can not be changed (always same) by changing the matrix 

with elementary row operations.  
 
Example     Determine the null space of the following matrix using the elementary row 
operations: (Taking the matrix from the above Example) 

                  
4 0
8 20

A  
=  − 

 

Solution   First we transform the matrix to the reduced row echelon form: 
 
 
 

 
 

  
  
 

 
which corresponds to the system  

1

2

0
0

x
x
=
=

 

Since every column in the coefficient part of the matrix has a leading entry that means 
our system has the trivial solution only:  

 

This means the null space consists only of the zero vector. 
 
We can observe and compare both the above examples which show the same result.  
 

1

2

0
0

x
x
=
=
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Theorem 2   The null space of an m n×  matrix A is a subspace of Rn. Equivalently, the 
set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns 
is a subspace of Rn. 
 
Or simply, the null space is the space of all the vectors of a Matrix A of any order those 
are mapped (assign) onto zero vector in the space Rn (i.e. Ax = 0). 
Proof   We know that the subspace of A consists of all the solution to the system Ax = 0 .  
First, we should point out that the zero vector, 0, in Rn  will be a solution to this system 
and so we know that the null space is not empty.  This is a good thing since a vector 
space (subspace or not) must contain at least one element. 
Now we know that the null space is not empty. Consider u, v be two any vectors 
(elements) (in) from the null space and let c be any scalar.  We just need to show that the 
sum (u+v) and scalar multiple (c.u) of these are also in the null space. 
 
 
Certainly Nul A is a subset of Rn because A has n columns. To show that Nul(A) is the 
subspace, we have to check three conditions whether they are satisfied or not. If Nul(A) 
satisfies the all three condition, we say Nul(A) is a subspace otherwise not. 
First, zero vector “0” must be in the space and subspace. If zero vector does not in the 
space we can not say that is a vector space (generally, we use space for vector space).  
And we know that zero vector maps on zero vector so 0 is in Nul(A).  Now choose  any 
vectors u, v from Null space and using definition of Null space (i.e. Ax=0) 

Au = 0 and Av = 0 
 

Now the other two conditions are vector addition and scalar multiplication. For this we 
proceed as follow:  
Let start with vector addition:  
To show that u + v is in Nul A, we must show that A (u + v) = 0. Using the property of 
matrix multiplication, we find that  
A (u + v) = Au + Av = 0 + 0 = 0 
Thus u + v is in Nul A, and Nul A is closed under vector addition.   
For Matrix multiplication, consider any scalar , say c,   
A (cu) = c (Au) = c (0) = 0 
which shows that cu is in Nul A. Thus Nul A is a subspace of Rn. 
 
Example 2   The set H, of all vectors in R4 whose coordinates a, b, c, d satisfy the 
equations 
       a – 2b + 5c = d  
       c – a = b 
is a subspace of R4. 
Solution   Since    a – 2b + 5c = d  
                              c – a = b 
By rearranging the equations, we get 

  
  a - 2b + 5c - d = 0

-a -  b   + c       = 0
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We see that H is the set of all solutions of the above system of homogeneous linear 
equations. 
Therefore from the Theorem 2, H is a subspace of R4. 
 
It is important that the linear equations defining the set H are homogeneous. Otherwise, 
the set of solutions will definitely not be a subspace (because the zero-vector (origin) is 
not a solution of a non- homogeneous system), geometrically means that a line that not 
passes through origin can not be a subspace, because subspace must hold the zero vector 
(origin). Also, in some cases, the set of solutions could be empty. In this case, we can not 
find any solution of a system of linear equations, geometrically says that lines are parallel 
or not intersecting.  
If the null space having more than one vector, geometrically means that the lines intersect 
more than one point and must passes through origin (zero vector) . 
 
An Explicit Description of Nul A 
   There is no obvious relation between vectors in Nul A and the entries in A. We say that 
Nul A is defined implicitly, because it is defined by a condition that must be checked. No 
explicit list or description of the elements in Nul A is given. However, when we solve the 
equation Ax = 0, we obtain an explicit description of Nul A.  
 
Example 3   Find a spanning set for the null space of the matrix 

 

 
Solution   The first step is to find the general solution of Ax = 0 in terms of free 
variables.  
After transforming the augmented matrix [A   0] to the reduced row echelon form and we 
get; 

1 -2 0 -1 3 0
0 0 1 2 -2 0
0 0 0 0 0 0

 
 
 
  

 

which corresponds to the system 

           
1 2 4 5

3 4 5

x - 2x - x + 3x  = 0
           x  + 2x - 2x  = 0
  0 = 0

 

The general solution is  
1 2 4 5

2

3 4 5

4

5

x  = 2x  + x - 3x
x  = free variable
x  = - 2x  + 2x
x  = free variable
x  = free variable

           

- 3  6 -1  1 - 7
 1 - 2  2  3 - 1
 2 - 4  5  8 - 4

=
 
 
 
  

A
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Next, decompose the vector giving the general solution into a linear combination of 
vectors where the weights are the free variables. That is, 
 

2 -3 2 1 -3
1 0 0

-2 2 0 -2 2
0 1 0
0 0 1

1 2 4 5

2 2

3 4 5 2 4 5

4 4

5 5

x x + x x
x x
x = x + x = x + x + x
x x
x x

         
         
         
         
         
         
                 

↑ ↑ ↑
                                              u             v            w

 

  2 4 5= x + x + xu v w        (3) 
Every linear combination of u, v and w is an element of Nul A. Thus {u, v, w} is a 
spanning set for Nul A. 
 
Two points should be made about the solution in Example 3 that apply to all problems of 
this type. We will use these facts later.  

1. The spanning set produced by the method in Example 3 is automatically linearly 
independent because the free variables are the weights on the spanning vectors. 
For instance, look at the 2nd, 4th and 5th entries in the solution vector in (3) and 
note that   2 4 5x + x + xu v w  can be 0 only if the weights x2, x4 and x5 are all zero. 

2. When Nul A contains nonzero vector, the number of vectors in the spanning set 
for Nul A equals the number of free variables in the equation Ax = 0. 

 

Example 4   Find a spanning set for the null space of 

1 -3 2 2 1
0 3 6 0 -3
2 -3 -2 4 4
3 -6 0 6 5
-2 9 2 -4 -5

=

 
 
 
 
 
 
  

A . 

Solution   The null space of A is the solution space of the homogeneous system 
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

x - 3x + 2x + 2x + x = 0
0x +3x +6x +0x - 3x = 0
2x - 3x - 2x +4x +4x = 0
3x - 6x +0x +6x +5x = 0
-2x +9x + 2x - 4x - 5x = 0
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 1 -3  2  2  1   0
 0  3  6  0 -3  0
 2 -3 -2  4  4  0
 3 -6  0  6  5  0
-2  9  2 -4 -5  0

 
 
 
 
 
 
  

 

 1  -3  2  2  1   0 
 0  3  6  0  -3  0 
 0  3  - 6  0  2  0 
 0  3  - 6  0  2  0 
 0  3  6  0  -3  0 

1 3

1 4

1 5

- 2R + R
-3R + R
2R + R

 
 
 
 
 
 
  

 

 1  -3  2  2  1   0 
 0  1  2  0  -1  0 
 0  3  - 6  0  2  0 
 0  3  - 6  0  2  0 
 0  3  6  0  -3  0 

2(1/3)R

 
 
 
 
 
 
  

 

  

1 -3    2    2    1   0
0  1    2    0   -1  0
0  0  -12    0    5  0
0  0  -12    0    5  0
0  0    0    0    0  0

2 3

2 4

2 5

- 3R + R
-3R + R
-3R + R

 
 
 
 
 
 
  

 

 1  -3  2  2  1   0 
 0  1  2  0  -1  0 
 0  0  1  0  -5/12  0 
 0  0  -12  0  5  0 
 0  0  0  0  0  0 

3(-1/12)R

 
 
 
 
 
 
  

 

  

1 -3  2  2   1   0 
0  1  2  0  -1  0 
0  0  1  0  -5/12  0 
0  0  0  0   0  0 
0  0  0  0   0  0 

3 412R + R

 
 
 
 
 
 
  

 

  

 1  -3  0  2  11/ 6   0 
 0  1  0  0  -1/6  0 
 0  0  1  0  -5/12  0 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

3 2

3 1

- 2R + R
-2R + R

 
 
 
 
 
 
  
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1  0  0  2   4/3   0
0  1  0  0  -1/6  0
0  0  1  0  -5/12  0
0  0  0  0   0  0
0  0  0  0   0  0

2 13R + R

 
 
 
 
 
 
  

 

The reduced row echelon form of the augmented matrix corresponds to the system 

1 4 5

2 5

3 5

 1 x + 2 x  +(4/3) x = 0
1 x + (-1/6) x = 0

1 x + (-5/12) x = 0
0 = 0
0 = 0

.  

No equation of this system has a form zero = nonzero; Therefore, the system is 
consistent. The system has infinitely many solutions:  

arbitrary arbitrary
1 4 5 2 5 3 5

4 5

x = -2 x +(-4/3) x x = +(1/6) x x = +(5/12) x
x = x = 

 

The solution can be written in the vector form:  

= (-2,0,0,1,0) = (-4/3,1/6,5/12,0,1)4 5c c   

Therefore {(-2,0,0,1,0), (-4/3,1/6,5/12,0,1)} is a spanning set for Null space of A. 
 
Activity:     Find an explicit description of Nul A where: 

1.  
3 5 5 3 9
5 1 1 0 3

A  
=  
 

 

2.  

4 1 1 0 1
1 1 2 3 1
1 1 2 0 1
0 0 1 1 1

A

− 
 − − − =
 − −
 
 

 

 
The Column Space of a Matrix   Another important subspace associated with a matrix 
is its column space. Unlike the null space, the column space is defined explicitly via 
linear combinations.  
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Definition (Column Space)    The column space of an m n×  matrix A, written as Col A, 
is the set of all linear combinations of the columns of A. If A = [a1   …   an], then  

Col A = Span {a1 ,… , an } 
 
Since Span {a1, …, an } is a subspace, by Theorem of  lecture 20 i.e. if 1,..., pv v  are in a 

vector space V , then Span { }1,..., pv v is a subspace of V   . 
The column space of a matrix is that subspace spanned by the columns of the matrix 
(columns viewed as vectors). It is that space defined by all linear combinations of the 
column of the matrix. 
 
Example, in the given matrix, 

   

1 1 3
2 1 4
3 1 5
4 1 6

A

 
 
 =
 
 
 

  

The column space ColA is all the linear combination of the first (1, 2, 3, 4), the second (1, 
1, 1, 1) and the third column ( 3, 4, 5, 6). That is, ColA = { a·(1, 2, 3, 4) + b·(1, 1, 1, 1) + 
c·( 3, 4, 5, 6) }. In general, the column space ColA contains all the linear 
combinations of columns of A. 
 
The next theorem follows from the definition of Col A and the fact that the columns of A 
are in Rm. 
 
Theorem 3   The column space of an m n×  matrix A is a subspace of Rm. 
 
Note that a typical vector in Col A can be written as Ax for some x because the notation 
Ax stands for a linear combination of the columns of A. That is, 

Col A = {b: b = Ax for some x in Rn}  
The notation Ax for vectors in Col A also shows that Col A is the range of the linear 
transformation .→x Ax   

Example 6   Find a matrix A such that W = Col A. 
6 -

+
-7

a b
= a b : a,b in R

a

  
  
  
    

W  

Solution      First, write W as a set of linear combinations. 
6 -1 6 -1
1 1 Span 1 , 1
-7 0 -7 0

= a +b : a,b in R =
          
          
          
                    

W  

Second, use the vectors in the spanning set as the columns of A. Let 
6 -1
1 1
-7 0

= .
 
 
 
  

A  

Then W = Col A, as desired. 
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We know that the columns of A span Rm if and only if the equation   Ax = b has a 
solution for each b. We can restate this fact as follows: 
The column space of an m n× matrix A is all of Rm if and only if the equation Ax = b has 
a solution for each b in Rm. 
  
Theorem 4   A system of linear equations Ax = b is consistent if and only if b in the 
column space of A. 
 
Example 6   A vector b in the column space of A. Let Ax = b is the linear system 

-1 3 2 1
1 2 -3 = -9
2 1 -2 -3

1

2

3

x
x
x

    
    
    
        

. Show that b is in the column space of A, and express b as a 

linear combination of the column vectors of A. 
Solution   Augmented Matrix is given by 

  
-1  3  2   1 
 1  2 -3 -9 
 2  1 -2 -3 

 
 
 
  

 

1 -3  - 2   -1
0  5  -1  -8
0  7   2  -1

1

1 2

1 3

-1R
-1R + R
-2R + R

 
 
 
  

 

1 -3 -2   -1
0  1 -1/5  -8/5
0  0  17/5  51/5

2

2 3

1/5R
-7R + R

 
 
 
  

 

1  -3  0   5
0  1  0 -1
0  0  1  3

3

3 2

3 1

(5/17)R
(1/5)R + R

2R + R

 
 
 
  

 

0 

x2 

x1 

x3 

W 



21-Null Spaces, Column Spaces and Linear Transformation                                                                       VU                                                  
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            279 

  
1  0  0   2
0  1  0 -1
0  0  1  3

2 13R + R
 
 
 
  

 

1 2 3x = 2,x = -1,x = 3⇒ . Since the system is consistent, b is in the column space of A.  

Moreover,  
-1 3 2 1

2 1 - 2 + 3 -3 = -9
2 1 -2 -3

       
       
       
              

 

 
Example      Determine whether b is in the column space of A and if so, express b as a 
linear combination of the column vectors of A: 

1 1 2 1
1 0 1 : 0
2 1 3 2

A b
−   

   = =   
   
   

 

 
Solution    
 The coefficient matrix Ax b=  is: 

 

The augmented matrix for the linear system that corresponds to the matrix 
equation Ax b=  is: 

1 1 2 1
1 0 1 0
2 1 3 2

 − 
 
 
 
 

 

We reduce this matrix to the Reduced Row Echelon Form:  

( )

( )

2 1

3 1

1 1 2 1 1 1 2 1
1 0 1 0 ~ 0 1 1 1 1
2 1 3 2 2 1 3 2

1 1 2 1
~ 0 1 1 1 2

0 1 1 4

R R

R R

 −   − 
   − − + −   
   
   

 − 
 − − + − 
 − − 

 

                           ( ) 2

1 1 2 1
~ 0 1 1 1 1

0 1 1 4
R

 − 
 − − 
 − − 

 

1

2

3

1 1 2 1
1 0 1 0
2 1 3 2

x
x
x

−    
    =    

        
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3 2

1 1 2 1
~ 0 1 1 1

0 0 0 3
R R

 − 
 − + 
 
 

 

( )

3

2 3

1 3

1 2

1 1 2 1
1~ 0 1 1 1
3

0 0 0 1

1 1 2 1
~ 0 1 1 0

0 0 0 1

1 1 2 0
~ 0 1 1 0

0 0 0 1

1 0 1 0
~ 0 1 1 0 1

0 0 0 1

R

R R

R R

R R

 − 
 − 
 
 
 − 
  + 
 
 
 
  + 
 
 
 
  + − 
 
 

 

 
The new system for the equation Ax b=  is 

                  
1 3

2 3

0
0

0 1

x x
x x
+ =
+ =

=

 

Equation 0 1=  cannot be solved, therefore, the system has no solution (i.e. the system is 
inconsistent). 
Since the equation Ax = b has no solution, therefore b is not in the column space of A. 
  
 
 
Activity     Determine whether b is in the column space of A and if so, express b as a 
linear combination of the column vectors of A: 
 

1.  
 
 
 
 
 

2. 
1 1 1 1
1 1 1 ; 2
1 1 1 3

A b
−   

   = − =   
   − − −   

 

1 1 2 5
9 3 1 ; 1
1 1 1 0

A b
−   

   = =   
   
   
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3. 

1 1 2 1 1
0 2 0 1 2

;
1 1 1 3 3
0 2 2 1 4

A b

−   
   
   = =
   −
   
   

 

 
 
 
 
Theorem 5   If x0 denotes any single solution of a consistent linear system Ax=b and if 

, , ,...,1 2 3 kv v v v form the solution space of the homogeneous system Ax=0, then every 
solution of Ax=b can be expressed in the form 1 2 ... kc c c= + + + +0 1 2 kx x v v v and, 
conversely, for all choices of scalars 1 2 3, , ,..., kc c c c , the vector x is a solution of Ax=b. 
 
General and Particular Solutions:   The vector x0 is called a particular solution of Ax=b 
.The expression x0+ c1 v1 +c2v2+ . . . +ck vk  is called the general solution of Ax=b  , and 
the expression c1 v1 +c2v2+ . . . +ck vk  is called the general solution of Ax=0. 
 
Example 7   Find the vector form of the general solution of the given linear system  
Ax = b; then use that result to find the vector form of the general solution of Ax=0. 

1 2 3 5

1 2 3 4 5 6

3 4 6

1 2 4 5 6

x +3x - 2x + 2x = 0
2x +6x - 5x - 2x +4x - 3x = -1

5x +10x +15x = 5
2x +6x +8x +4x +18x = 6

 

Solution   We solve the non-homogeneous linear system. The augmented matrix of this 
system is given by 

1  3 -2  0  2   0   0
2  6 -5 -2  4  -3 -1
0  0  5  10  0  15  5
2  6  0  8  4  18  6

 
 
 
 
 
 

 

 1  3  - 2  0  2  0   0 
 0  0  -1  - 2  0  -3  -1 
 0  0  5  10  0  15  5 
 0  0  4  8  0  18  6 

1 2

1 4

-2R + R
-2R + R

 
 
 
 
 
 

 

2

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  5  10  0  15  5 
 0  0  4  8  0  18  6 

-1R

 
 
 
 
 
 
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 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  0  0 
 0  0  0  0  0  6  2 

2 3

2 4

-5R + R
-4R + R

 
 
 
 
 
 

 

34

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  6  2 
 0  0  0  0  0  0  0 

R

 
 
 
 
 
 

 

 
 1  3  - 2  0  2  0   0 
 0  0  1  2  0  3  1 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

3(1/6)R

 
 
 
 
 
 

 

 1  3  - 2  0  2  0   0 
 0  0  1  2  0  0  0 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

3 2- 3R + R

 
 
 
 
 
 

 

 1  3  0  4  2  0   0 
 0  0  1  2  0  0  0 
 0  0  0  0  0  1  1/3 
 0  0  0  0  0  0  0 

2 12R + R

 
 
 
 
 
 

 

The reduced row echelon form of the augmented matrix corresponds to the system   

1 2 4 5

3 4

6

1 x +3 x + 4 x +2 x = 0
1 x +2 x = 0

1 x = (1/3) 
0 = 0

 

No equation of this system has a form zero = nonzero; Therefore, the system is 
consistent. The system has infinitely many solutions:  

1 2 4 5 2 3 4

4 5 6

x = -3 x - 4 x - 2 x x = r x = -2 x
x = s x = t x = 1/3

 

1 2 3

4 5 6

x = -3r - 4s - 2t x = r x = -2s
1x = s x = t x =
3
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This result can be written in vector form as  
-3 - 4 - 2 0 -3 -4 -2

0 1 0 0
-2 0 0 -2 0

0 0 1 0
0 0 0 1

1 1 0 0 0
3 3

1

2

3

4

5

6

r s tx
rx
sx

= = + r + s +tsx
tx

x

                                                                                                  

  (A) 

which is the general solution of the given system. The vector x0 in (A) is a particular 

solution of the given system; the linear combination 

-3 -4 -2
1 0 0
0 -2 0
0 1 0
0 0 1
0 0 0

r + s +t

     
     
     
     
     
     
     
     
     

 in (A) is the 

general solution of the homogeneous system. 
 
Activity: 

1. Suppose that 1 2 3 41, 2, 4, 3x x x x= − = = = −  is a solution of a non-homogenous 
linear system Ax b=  and that the solution set of the homogenous system 0Ax =  
is given by this formula: 

1

2

3

4

3 4 ,
,

,

x r s
x r s
x r
x s

= − +
= −
=
=

 

(a) Find the vector form of the general solution of 0Ax = . 
(b) Find the vector form of the general solution of 0Ax = . 

 
 
Find the vector form of the general solution of the following linear system Ax = b; then 
use that result to find the vector form of the general solution of Ax=0: 

2.               1 2

1 2

2 1
3 9 2

x x
x x
− =
− =

 

 

3.            

1 2 3 4

1 2 3 4

1 2 3 4

1 2 4

2 3 3
3 3 1

3 2 2
4 5 3 5

x x x x
x x x x
x x x x
x x x

+ − + =
− − + + = −

− + − + =
− − = −

   



21-Null Spaces, Column Spaces and Linear Transformation                                                                       VU                                                  
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            284 

The Contrast between Nul A and Col A 
   It is natural to wonder how the null space and column space of a matrix are related. In 
fact, the two spaces are quite dissimilar. Nevertheless, a surprising connection between 
the null space and column space will emerge later.   
 

Example 8 Let 
2 4 -2 1

= -2 -5 7 3
3 7 -8 6

 
 
 
  

A   

(a) If the column space of A is a subspace of Rk, what is k? 
(b) If the null space of A is a subspace of Rk, what is k? 
 
Solution    
 
(a) The columns of A each have three entries, so Col A is a subspace of Rk, where k = 3. 
(b) A vector x such that Ax is defined must have four entries, so Nul A is a subspace of 
Rk, where k = 4. 
 
When a matrix is not square, as in Example 8, the vectors in Nul A and Col A live in 
entirely different “universes”. For example, we have discussed no algebraic operations 
that connect vectors in R3 with vectors in R4. Thus we are not likely to find any relation 
between individual vectors in Nul A and Col A. 
 

Example 9   If
2 4 -2 1

= -2 -5 7 3
3 7 -8 6

 
 
 
  

A , find a nonzero vector in Col A and a nonzero vector 

in Nul A 

Solution   It is easy to find a vector in Col A. Any column of A will do, say, 
2
-2
3

.
 
 
 
  

 To 

find a nonzero vector in Nul A, we have to do some work. We row reduce the augmented 

matrix [A   0] to obtain
1 0 9 0 0

[ ] ~ 0 1 -5 0 0
0 0 0 1 0

 
 
 
  

A 0 . Thus if x satisfies Ax = 0, 

then 1 3 2 3 4x = -9x , x = 5x , x = 0 , and x3 is free. Assigning a nonzero value to x3 (say), x3 = 
1, we obtain a vector in Nul A, namely, x = (-9, 5, 1, 0). 
 

Example 10 With
2 4 -2 1
-2 -5 7 3
3 7 -8 6

=
 
 
 
  

A , let 

3
3

-2
and -1

-1
3

0

= = .

 
  
  
  
    

 

u v  

(a) Determine if u is in Nul A.  Could u be in Col A? 
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(b) Determine if v is in Col A.  Could v be in Nul A? 
Solution   (a) An explicit description of Nul A is not needed here. Simply compute the 
product 

3
2 4 -2 1 0 0

-2
= -2 -5 7 3 = -3 0

-1
3 7 -8 6 3 0

0

 
      
       ≠      
           

 

Au  

Obviously, u is not a solution of Ax = 0, so u is not in Nul A.  
Also, with four entries, u could not possibly be in Col A, since Col A is a subspace of R3. 
(b) Reduce [A   v] to an echelon form: 

2 4 -2 1 3 2 4 -2 1 3
[ ] -2 -5 7 3 -1 0 1 -5 -4 2

3 7 -8 6 3 0 0 0 17 1

   
   =    
      

A v    

At this point, it is clear that the equation Ax = v is consistent, so v is in Col A. With only 
three entries, v could not possibly be in Nul A, since Nul A is a subspace of R4. 
 
 
The following table summarizes what we have learned about Nul A and Col A. 
  

1. Nul A is a subspace of Rn. 
2. Nul A is implicitly defined; i.e. we 

are given only a condition (Ax = 0) 
that vectors in Nul A must satisfy. 

3. It takes time to find vectors in Nul 
A. Row operations on [A   0] are 
required. 

4. There is no obvious relation 
between Nul A and the entries in A. 

 
 
5. A typical vector v in Nul A has the 

property that Av = 0. 
 
6. Given a specific vector v, it is easy 

to tell if v is in Nul A. Just compute 
Av. 

 
7. Nul A = {0} if and only if the 

equation Ax = 0 has only the trivial 
solution. 

8.  Nul A = {0} if and only if the linear 
transformation →x Ax  is one-to-
one. 

 

1. Col A is a subspace of Rm. 
2. Col A is explicitly defined; that is, 

we are told how to build vectors in 
Col A. 

3. It is easy to find vectors in Col A 
The columns of A are displayed; 
others are formed from them. 

4. There is an obvious relation 
between Col A and the entries in 
A, since each column of A is in Col 
A. 

5. A typical vector v in Col A has the 
property that the equation Ax = v 
is consistent. 

6. Given a specific vector v, it may 
take time to tell if v is in Col A. 
Row operations on [A   v] are 
required. 

7. Col A.= Rm if and only if the 
equation Ax = b has a solution for 
every b in Rm. 

8. Col A = Rm if and only if the linear 
transformation →x Ax maps Rn 
onto Rm. 
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Kernel and Range of A Linear Transformation    
Subspaces of vector spaces other than Rn are often described in terms of a linear 
transformation instead of a matrix. To make this precise, we generalize the definition 
given earlier in Segment I. 
 
Definition     A linear transformation T from a vector space V into a vector space W is 
a rule that assigns to each vector x in V a unique vector T (x) in W, such that 

(i)  T (u + v) = T (u) + T (v)  for all u, v in V, and   
 (ii) T (cu) = c T (u)   for all u in V and all scalars c.  
 
The kernel (or null space) of such a T is the set of all u in V such that T (u) = 0 (the zero 
vector in W). The range of T is the set of all vectors in W of the form T (x) for some x in 
V. If T happens to arise as a matrix transformation, say, T (x) = Ax for some matrix A – 
then the kernel and the range of T are just the null space and the column space of A, as 
defined earlier. So if T(x) = Ax, col A = range of T. 
 
 
Definition     If :T V W→ is a linear transformation, then the set of vectors in V that T 
maps into 0 is called the kernel of T; it is denoted by ker(T). The set of all vectors in W 
that are images under T of at least one vector in V is called the range of T; it is denoted 
by R(T). 
  
Example      If : n m

AT →   is multiplication by the m n×  matrix A, then from the 
above definition; the kernel of AT  is the null space of A and the range of AT  is the column 
space of A. 
 
Remarks     The kernel of T is a subspace of V and the range of T is a subspace of W.  

 
Figure 2 Subspaces associated with a linear transformation. 

 
In applications, a subspace usually arises as either the kernel or the range of an 
appropriate linear transformation. For instance, the set of all solutions of a homogeneous 
linear differential equation turns out to be the kernel of a linear transformation. Typically, 
such a linear transformation is described in terms of one or more derivatives of a 

0 
W 

V’ 
0 

Range 

Kernel 

Domain 

Kernel is a 
subspace of V 

Range is a 
subspace of W 
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function. To explain this in any detail would take us too far a field at this point. So we 
present only two examples. The first explains why the operation of differentiation is a 
linear transformation. 
 
Example 11     Let V be the vector space of all real-valued functions f  defined on an 
interval [a, b] with the property that they are differentiable and their derivatives are 
continuous functions on [a, b]. Let W be the vector space of all continuous functions on 
[a, b] and let : →D V W  be the transformation that changes f  in V into its 
derivative ′f . In calculus, two simple differentiation rules are 
  ( ) ( ) ( ) and ( ) ( )c c+ = + =D f g D f D g D f D f  
That is, D is a linear transformation. It can be shown that the kernel of D is the set of 
constant functions of [a, b] and the range of D is the set W of all continuous functions on 
[a, b]. 
 
 
Example 12     The differential equation 0y wy′′ + =     (4) 
where w is a constant, is used to describe a variety of physical systems, such as the 
vibration of a weighted spring, the movement of a pendulum and the voltage in an 
inductance – capacitance electrical circuit. The set of solutions of (4) is precisely the 
kernel of the linear transformation that maps a function ( )=y f t  into the 
function ( ) ( )w′′ +f t f t . Finding an explicit description of this vector space is a problem in 
differential equations.  
 

Example 13     Let .
a

= b : a - 3b - c = 0
c

  
  
  
    

W  Show that W is a subspace of R3 in 

different ways. 
Solution     First method: W is a subspace of R3 by Theorem 2 because W is the set of all 
solutions to a system of homogeneous linear equations (where the system has only one 
equation). Equivalently, W is the null space of the 1x3 matrix = [1 - 3 -1].A  
Second method: Solve the equation a – 3b – c = 0 for the leading variable a in terms of 
the free variables b and c.  

Any solution has the form 
3

,
b+c
b
c

 
 
 
  

where b and c are arbitrary, and 

3 3 1
1 0
0 1

b+c
b = b +c
c

     
     
     
          

↑ ↑

1 2v v
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This calculation shows that W = Span{v1, v2}. Thus W is a subspace of R3 by Theorem 
i.e. if 1,..., pv v  are in a vector spaceV , then Span { }1,..., pv v is a subspace ofV . We could 
also solve the equation a – 3b – c = 0 for b or c and get alternative descriptions of W as a 
set of linear combinations of two vectors. 
 

Example 14     Let
7 -3 5 2 7
-4 1 -5 1 6
-5 2 -4 -1 -3

= , = ,and =
     
     
     
          

A v W  

Suppose you know that the equations Ax = v and Ax = w are both consistent. What can 
you say about the equation Ax = v + w? 
Solution     Both v and w are in Col A. Since Col A is a vector space, v + w must be in 
Col A. That is, the equation Ax = v + w is consistent. 
 
 
 
 
 
 
Activity        

1. Let V and W be any two vector spaces. The mapping :T V W→  such that T (v) = 
0 for every v in V is a linear transformation called the zero transformation. Find 
the kernel and range of the zero transformation. 

 
2. Let V be any vector space. The mapping :I V V→  defined by I(v) = v is called 

the identity operator on V. Find the kernel and range of the identity operator. 
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Exercises   
 

1. Determine if w = 
5
-3
2

 
 
 
  

 is in Nul A, where A=
5 21 19

13 23 2
8 14 1

 
 
 
  

. 

 
In exercises 2 and 3, find an explicit description of Nul A, by listing vectors that span the 
null space. 

2. 
1 3 5 0
0 1 4 -2
 
 
 

    3. 
1 -2 0 4 0
0 0 1 -9 0
0 0 0 0 1

 
 
 
  

 

 
In exercises 4-7, either use an appropriate theorem to show that the given set, W is a 
vector space, or find a specific example to the contrary. 
 

4. :
a
b a+b+c = 2
c

  
  
  
    

   5. :

a
b a - 2b = 4c
c 2a = c+3d
d

  
  
         

 

 

6. 

- 2
5 +

: real
+ 3

b d
d

b,d
b d

d

 
 
 
 
 
 

    7. 
- + 2

- 2 : real
3 - 6

a b
a b a,b
a b

 
 
 
  

 

 
In exercises 8 and 9, find A such that the given set is Col A. 
 

8. 

2 + 3
- 2

: real
4 +

3 - -

s t
r s t

r,s,t
r s

r s t

  
  +         

   9. 

-
2 +

: , , real
5 - 4

b c
b c d

b c d
c d

d

  
  +         

 

 
For the matrices in exercises 10-13, (a) find k such that Nul A is a subspace of Rk, and  
(b) find k such that Col A is a subspace of Rk. 
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10. 

2 -6
-1 3
-4 12
3 -9

 
 
 =
 
 
 

A     11. 

7 -2 0
-2 0 -5
0 -5 7
-5 7 -2

 
 
 =
 
 
 

A  

 

12. A=
4 5 -2 6 0
1 1 0 1 0
 
 
 

   13. A=[ ]1 -3 9 0 -5  

 

14. Let
-6 12 2

and
-3 6 1
   

= =   
   

A w . Determine if w is in Col A. Is w in Nul A? 

 

15. Let 
-8 -2 -9 2
6 4 8 and 1
4 0 4 -2

   
   = =   
      

A w . Determine if w is in Col A. Is w in Nul A? 

 

16. Define T: P2→R2 by T (p) = 
(0)
(1)

 
 
 

p
p

. For instance, if p (t) = 3 + 5t + 7t2, then 

3
15

( )  
=  
 

T p . 

a. Show that T is a linear transformation. 
b. Find a polynomial p in P2 that spans the kernel of T, and describe the range of T. 
 

17. Define a linear transformation T: P2→R2 by T (p) =
(0)
(1)

 
 
 

p
p

. Find polynomials p1 

and p2 in P2 that span the kernel of T, and describe the range of T. 
 
18. Let M2x2 be the vector space of all 2x2 matrices, and define T: M2x2→  M2x2 by   

T (A) = A + AT, where 
a b
c d
 

=  
 

A . 

(a) Show that T is a linear transformation. 
(b) Let B be any element of M2x2 such that BT=B. Find an A in M2x2 such that T (A) = B. 
(c) Show that the range of T is the set of B in M2x2 with the property that BT=B. 
(d) Describe the kernel of T. 
 
19. Determine whether w is in the column space of A, the null space of A, or both, where 
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(a) 

1 7 6 -4 1
1 -5 -1 0 -2
-1 9 -11 7 -3
-3 19 -9 7 1

,

   
   
   = =
   
   
   

w A  (b) 

1 -8 5 -2 0
2 -5 2 1 -2
1 10 -8 6 -3
0 3 -2 1 0

,

   
   
   = =
   
   
   

w A  

 
20. Let a1, …, a5 denote the columns of the matrix A, where 

5 1 2 2 0
3 3 2 -1 -12
8 4 4 -5 12
2 1 1 0 -2

 
 
 =
 
 
 

A , [ ]= 1 2 4B a a a  

(a) Explain why a3 and a5 are in the column space of B 
(b) Find a set of vectors that spans Nul A 
(c) Let T: R5→R4 be defined by T (x) = Ax. Explain why T is neither one-to-one nor 
onto.   
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Lecture 22 
 

Linearly Independent Sets; Bases 
 
First we revise some definitions and theorems from the Vector Space: 
 
Definition      Let V be an arbitrary nonempty set of objects on which two operations are 
defined, addition and multiplication by scalars.  
 
 If the following axioms are satisfied by all objects u, v, w in V and all scalars l and 
m, then we call V a vector space. 
 
Axioms of Vector Space    
 For any set of vectors u, v, w in V and scalars l, m, n:  
1. u + v is in V 
2.  u + v = v + u 
3.  u + (v + w) = (u + v) + w 
4.         There exist a zero vector 0 such that  
 0 + u = u + 0 = u 
5. There exist a vector – u in V such that  
             -u + u = 0 = u + (-u) 
6.  (l u) is in V 
7. l (u + v)= l u + l v 
8. m (n u) = (m n) u = n (m u) 
9. (l +m) u= I u+ m u 
10. 1u = u where 1 is the multiplicative identity 
 
    
Definition     A subset W of a vector space V is called a subspace of V if W itself is a 
vector space under the addition and scalar multiplication defined on V. 
 
Theorem     If W is a set of one or more vectors from a vector space V, then W is 
subspace of V if and only if the following conditions hold: 
 
(a) If u and v are vectors in W, then u + v is in W 
(b) If k is any scalar and u is any vector in W, then k u is in W. 
 
Definition   The null space of an  m x n matrix A (Nul A) is the set of all solutions of the 
hom  equation Ax = 0 
 Nul A = {x: x is in Rn and Ax = 0}  
 
Definition      The column space of an  m x n matrix A (Col A) is the set of all linear 
combinations of the columns of A.  
If A = [a1   …   an],  
then  
Col A = Span { a1,… , an }  
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Since we know that a set of vectors { }1 2 3, , ,... pS v v v v= spans a given vector space V if 
every vector in V is expressible as a linear combination of the vectors in S. In general 
there may be more than one way to express a vector in V as linear combination of vectors 
in a spanning set. We shall study conditions under which each vector in V is expressible 
as a linear combination of the spanning vectors in exactly one way. Spanning sets with 
this property play a fundamental role in the study of vector spaces. 
In this Lecture, we shall identify and study the subspace H as “efficiently” as possible. 
The key idea is that of linear independence, defined as in Rn. 
 
Definition      An indexed set of vectors {v1,…, vp} in V is said to be linearly 
independent if the vector equation  

1 2 pc +c +...+c = 01 2 pv v v        (1) 
has only the trivial solution, i.e. c1 = 0, … , cp = 0. 
The set {v1,…,vp} is said to be linearly dependent if (1) has a nontrivial solution, that is, 
if there are some weights, c1,…,cp, not all zero, such that (1) holds. In such a case, (1) is 
called a linear dependence relation among v1, … , vp. Alternatively, to say that the v’s 
are linearly dependent is to say that the zero vector 0 can be expressed as a nontrivial 
linear combination of the v’s. 
  
If the trivial solution is the only solution to this equation then the vectors in the set are 
called linearly independent and the set is called a linearly independent set.  If there is 
another solution then the vectors in the set are called linearly dependent and the set is 
called a linearly dependent set. 
 
Just as in Rn, a set containing a single vector v is linearly independent if and only if ≠v 0 . 
Also, a set of two vectors is linearly dependent if and only if one of the vectors is a 
multiple of the other. And any set containing the zero-vector is linearly dependent. 
 
Determining whether a set of vectors 1 2 3, , ,... na a a a is linearly independent is easy when 
one of the vectors is 0: if, say, 1 0a = , then we have a simple solution to 

1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + = given by choosing 1x to be any nonzero value and putting 
all the other x’s equal to 0. Consequently, if a set of vectors contains the zero vector, it 
must always be linearly dependent. Equivalently, any set of linearly independent vectors 
cannot contain the zero vector. 
   
Another situation in which it is easy to determine linear independence is when there are 
more vectors in the set than entries in the vectors. If n > m, then the n vectors 

1 2 3, , ,... na a a a  in Rm are columns of an m n× matrix A. The vector equation 

1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + =  is equivalent to the matrix equation Ax = 0 whose 
corresponding linear system has more variables than equations. Thus there must be at 
least one free variable in the solution, meaning that there are nontrivial solutions 
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to 1 1 2 2 3 3 ... 0n nx a x a x a x a+ + + + = : If n > m, then the set { }1 2 3, , ,... na a a a of vectors in Rm 
must be linearly dependent.  
When n is small we have a clear geometric picture of the relation amongst linearly 
independent vectors. For instance, the case n = 1 produces the equation 1 1 0x a = , and as 
long as 1 0a ≠ , we only have the trivial solution 1 0x = . A single nonzero vector always 
forms a linearly independent set. 
When n = 2, the equation takes the form 1 1 2 2 0x a x a+ = . If this were a linear dependence 
relation, then one of the x’s, say 1x , would have to be nonzero. Then we could solve the 
equation for 1a  and obtain a relation indicating that 1a  is a scalar multiple of 2a . 
Conversely, if one of the vectors is a scalar multiple of the other, we can express this in 
the form 1 1 2 2 0x a x a+ = . Thus, a set of two nonzero vectors is linearly dependent if and 
only if they are scalar multiples of each other. 
 
Example        (linearly independent set)  
Show that the following vectors are linearly independent:  
 

                                
1 2 3

2 2 0
1 , 1 , 0
1 2 1

v v v
−     
     = = =     
     −       

Solution      Let there exist scalars 1 2 3, ,c c c  in R such that 

1 1 3 2 3 3 0c v c v c v+ + =  
Therefore, 

                  1 2 3

2 2 0
1 1 0 0
1 2 1

c c c
−     
     ⇒ + + =     
     −     

 

                  
1 2

1 2

31 2

2 2 0
0 0

2

c c
c c

cc c

−     
     ⇒ + + =     
     −     

 

                 
1 2

1 2

1 2 3

2 2 0
0
02

c c
c c
c c c

− +   
   ⇒ + =   
   − +   

 

The above can be written as: 
 

1 2 1 2

1 2

1 2 3

2 2 0 ........(1) 0........(4) ( 2 (1))
0 .......(2)

2 0 ......(3)

c c c c dividing by onboth sides of
c c
c c c

− + = ⇒ − + =
+ =
− + =
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1 2

1 2
3

1
3

2 1

2

1 2 3 1 2 3

(2) (4) :
0

(3) :
0 (2) :

0 0 0
__________ 0 0

0
0 2 0 0

0
0 ; , ,

  The system has trivial solution.

Solving and implies
c c

Solving implies
c c Solving implies

c
c

c
c c
c

c c c scalars c c c R are all zero

Hence

+ =
− + =

+ + =
+ =

⇒ =
+ = ⇒ =
⇒ =

⇒ = = = ∈

∴

1 2 3, , .the given vectors v v v are linearly independent

 

 
Example        (linearly dependent set) 
If { } { } { }1 2 32, 1,0,3 , 1, 2,5, 1 7, 1,5,8v v and v= − = − = − , then the set of vectors 

{ }1 2 3, ,S v v v= is linearly dependent, since 1 2 33 0v v v+ − =  
 
Example      (linearly dependent set) 
The polynomials 2 2

1 2 31, 2 3 5, 3 1p x p x x and p x x= − + = − + + = − + +  form a linearly 
dependent set in 2p  since 1 2 33 2 0p p p− + = . 
 
Note   The linearly independent or linearly dependent sets can also be determined using 
the Echelon Form or the Reduced Row Echelon Form methods. 
 
Theorem 1     An indexed set { v1, … , vp } of two or more vectors, with ≠1v 0 , is 
linearly dependent if and only if some vj (with 1j > ) is a linear combination of the 
preceding vectors, v1, … , vj-1. 
 
The main difference between linear dependence in Rn and in a general vector space is that 
when the vectors are not n – tuples, the homogeneous equation (1) usually cannot be 
written as a system of n linear equations. That is, the vectors cannot be made into the 
columns of a matrix A in order to study the equation Ax = 0. We must rely instead on the 
definition of linear dependence and on Theorem 1. 
 
Example 1     Let p1 (t) = 1, p  2(t) = t and p  3 (t) = 4 – t. Then { p  1, p  2, p  3} is linearly 
dependent in P because       p3 = 4p1 – p2. 
 
Example 2     The set {Sin t, Cos t} is linearly independent in C [0, 1] because Sin t and 
Cos t are not multiples of one another as vectors in C [0, 1]. That is, there is no scalar c 
such that Cos t = c. Sin t for all t in [0, 1]. (Look at the graphs of Sin t and Cos t.) 
However,  {Sin t Cos t, Sin 2t} is linearly dependent because of he identity:  
Sin 2t = 2 Sin t Cos t, for all t. 
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Useful results   
• A set containing the zero vector is linearly dependent. 
• A set of two vectors is linearly dependent if and only if one is a multiple of the 

other. 
• A set containing one nonzeoro vector is linearly independent. i.e. consider the set 

containing one nonzeoro vector { }1v  so { }1v  is linearly independent when 1 0v ≠ . 
• A set of two vectors is linearly independent if and only if neither of the vectors is 

a multiple of the other. 
 
Activity       Determine whether the following sets of vectors are linearly independent or 
linearly dependent: 
 

1. ( ) ( ) ( )1,0,0,0 , 0,1,0,0 , 0,0,0,1i j k= = =  in 4 . 
2. ( ) ( ) ( ) ( )1 2 3 42,0, 1 , 3, 2, 5 , 6,1, 1 , 7,0,2v v v v= − = − − − = − − = −  in 3.   

3. ( ) ( ) ( )1,0,0,...,0 , 0,1,0,...,0 , 0,0,0,...,1i j k= = =  in m. 

4. 2 2 2 23 3 1, 4 , 3 6 5, 2 7x x x x x x x x+ + + + + − + + in 2p  
  

Definition     Let H be a subspace of a vector space V. An indexed set of vectors B = 
{b1,…, bp} in V is a basis for H if  
  

(i) B is a linearly independent set, and  
(ii) the subspace spanned by B coincides with H; that is, 

H = Span {b1,...,bp } 
The definition of a basis applies to the case when H = V, because any vector space is a 
subspace of itself. Thus a basis of V is a linearly independent set that spans V. Observe 
that when ≠H V , condition (ii) includes the requirement that each of the vectors b1,...,bp 
must belong to H, because Span { b1,...,bp } contains  b1,…,bp, as we saw in lecture 21. 
 
Example 3     Let A be an invertible n n×  matrix – say, A = [a1 … an]. Then the columns 
of A form a basis for Rn because they are linearly independent and they span Rn, by the 
Invertible Matrix Theorem. 
 
Example 4     Let e1,…, en be the columns of the n n×  identity matrix, In. That is, 
 

1 0 0
0 1 0

, , ...

0 0 1

= =

     
     
     =
     
     
     

  

1 2 ne e e  

 
The set {e1, …, en} is called the standard basis for R n (Fig. 1). 
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Figure 1 - The standard basis for R3 

 

Example 5   Let 
3 -4 -2
0 , 1 ,and 1 .
-6 7 5

= = =
     
     
     
          

1 2 3v v v  Determine if {v1, v2, v3} is a basis 

for R3. 
Solution     Since there are exactly three vectors here in R3, we can use one of any 
methods to determine whether they are basis for 3

 or not. For this, let solve with help of 
matrices. First form a matrix of vectors i.e. matrix A = [v1   v2    v3]. If this matrix is 
invertible (i.e. |A| ≠ 0 determinant should be non zero).  
For instance, a simple computation shows that det A = 6 0≠ . Thus A is invertible. As in 
example 3, the columns of A form a basis for R3.  
 
Example 6     Let S = {1, t, t2, …, tn}. Verify that S is a basis for Pn. This basis is called 
the standard basis for Pn. 
 
Solution     Certainly S spans Pn. To show that S is linearly independent, suppose that  
c0,…, cn satisfy 

c0.1 + c1t + c2t2 + ….. + cntn = 0 (t)     (2) 
This equality means that the polynomial on the left has the same values as the zero 
polynomial on the right. A fundamental theorem in algebra says that the only polynomial 
in Pn with more than n zeros is the zero polynomial. That is, (2) holds for all t only if      
c0 = …= cn = 0. This proves that S is linearly independent and hence is a basis for Pn. 
See Figure 2. 

x1 

x2 

x3 

e1 
e2 

e3 
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Figure 2 – The standard basis for P2 
 
Problems involving linear independence and spanning in Pn are handled best by a 
technique to be discussed later. 
 
Example 7     Check whether the set of vectors {(2, -3, 1), (4, 1, 1), (0, -7, 1)} is basis for 
R3? 
Solution     The set S = {v1, v2, v3} of vectors in R3 spans V = R3 if  

c1v1 + c2v2 + c3v3 = d1w1 + d2w2 + d3w3    (*)  
with w1 = (1,0,0), w2 = (0,1,0) , w3 = (0,0,1) has at least one solution for every set of 
values of the coefficients d1, d2, d3. Otherwise (i.e., if no solution exists for at least some 
values of d1, d2, d3), S does not span V. With our vectors v1, v2, v3, (*) becomes 

c1(2,-3,1) + c2(4,1,1) + c3(0,-7,1) =  d1(1,0,0) + d2(0,1,0) + d3(0,0,1) 
Rearranging the left hand side yields   

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

2 c  +4 c  +0 c = 1 d  +0 d  +0 d
-3 c  +1 c -7 c = 0 d  +1 d  +0 d
1 c  +1 c  +1 c = 0 d  +0 d  +1 d

     (A) 

2 4 0
-3 1 -7
1 1 1

1 1

2 2

3 3

c d
c d
c d

    
    ⇒ =    
         

 

 

We now find the determinant of coefficient matrix 
2 4 0
-3 1 -7
1 1 1

 
 
 
  

 to determine whether the 

system is consistent (so that S spans V), or inconsistent (S does not span V). 

y=1 

y=t 
y=t2 

y 

t 
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Now   det 
2 4 0
-3 1 -7
1 1 1

 
 
 
  

 = 2(8) – 4(4) +0 = 0   

Therefore, the system (A) is inconsistent, and, consequently, the set S does not span the 
space V. 
  
Example 8     Check whether the set of vectors  
{-4  + 1 t + 3 t2 ,  6  + 5 t + 2 t2 ,  8  + 4 t + 1 t2} is a basis for P2? 
Solution   The set S = {p1 (t), p2 (t), p3 (t)} of vectors in P2 spans V = P2 if  

c1 p1 (t) + c2 p2 (t) + c3 p3 (t) = d1 q1 (t) + d2 q2 (t) + d3 q3 (t)  (*)  
with q1(t) = 1  + 0 t  + 0 t 2  , q2(t) = 0  + 1 t  + 0 t 2  , q3(t) = 0  + 0 t  + 1 t 2 has at least 
one solution for every set of values of the coefficients d1, d2, d3. Otherwise (i.e., if no 
solution exists for at least some values of d1, d2, d3), S does not span V. With our vectors 
p1(t), p2(t), p3(t), (*) becomes: 

c1 (-4 + 1 t + 3 t2) + c2 (6 + 5 t + 2 t2) + c3 (8 + 4 t + 1 t2) = 
d1 (1  + 0 t  + 0 t 2 )  +  d2 (0  + 1 t  + 0 t 2 )  +  d3 (0  + 0 t  + 1 t 2 ) 

 Rearranging the left hand side yields  
(-4 c1 +6 c2 +8 c3)1  + (1 c1 +5 c2 +4 c3) t + (3 c1 +2 c2 +1 c3) t2 = 
(1 d1 +0 d2 +0 d3)1 + (0 d1 +1 d2 +0 d3) t + (0 d1 +0 d2 +1 d3) t2  

In order for the equality above to hold for all values of t, the coefficients corresponding to 
the same power of t on both sides of the equation must be equal. This yields the 
following system of equations: 

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

-4 c +6 c +8 c = 1 d +0 d +0 d
1 c +5 c +4 c = 0 d +1 d +0 d
3 c +2 c +1 c = 0 d +0 d +1 d

     (A) 

- 4 6 8
1 5 4
3 2 1

1 1

2 2

3 3

c d
c d
c d

    
    ⇒ =    
         

 

 

We now find the determinant of coefficient matrix 
- 4 6 8
1 5 4
3 2 1

 
 
 
  

 to determine whether the 

system is consistent (so that S spans V), or inconsistent (S does not span V). 

Now   det 
- 4 6 8
1 5 4
3 2 1

 
 
 
  

 = -26≠ 0. Therefore, the system (A) is consistent, and, 

consequently, the set S spans the space V. 
 
The set S = {p1 (t), p2 (t), p3 (t)} of vectors in P2 is linearly independent if the only 
solution of  

c1 p1 (t) + c2 p2 (t) + c3 p3 (t) = 0      (**) 
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is c1, c2, c3 = 0. In this case, the set S forms a basis for span S. Otherwise (i.e., if a 
solution with at least some nonzero values exists), S is linearly dependent. With our 
vectors p1 (t), p2 (t), p3 (t), (2) becomes: c1 (-4 + 1 t + 3 t2) + c2 (6 + 5 t + 2 t2) + c3 (8 + 
4 t + 1 t2) = 0 Rearranging the left hand side yields  

(-4 c1 +6 c2 +8 c3)1  + (1 c1 +5 c2 +4 c3) t + (3 c1 +2 c2 +1 c3) t2 = 0  
This yields the following homogeneous system of equations:  

1 2 3

1 2 3

1 2 3

-4 c +6 c +8 c = 0
1 c  +5 c  +4 c = 0
3 c  +2 c  +1 c = 0

 
- 4 6 8
1 5 4
3 2 1

1

2

3

c 0
c 0

0c

    
    ⇒ =    
        

  

As   det 
- 4 6 8
1 5 4
3 2 1

 
 
 
  

 = -26≠ 0. Therefore the set S = {p1 (t), p2 (t), p3 (t)} is linearly 

independent. Consequently, the set S forms a basis for span S. 
 

Example 9     The set 
1 0 0 1 0 0 0 0

= , , ,
0 0 0 0 1 0 0 1

        
        
        

S  is a basis for the vector 

space V of all 2 x 2 matrices.  
Solution     To verify that S is linearly independent, we form a linear combination of the 
vectors in S and set it equal to zero: 

 c1 
1 0
0 0
 
 
 

+ c2
0 1
0 0
 
 
 

+ c3 
0 0
1 0
 
 
 

+ c4 
0 0
0 1
 
 
 

= 
0 0
0 0
 
 
 

  

This gives 
0 0
0 0

1 2

3 4

c c
=

c c
   
   

  
, which implies that c1 = c2 = c3 = c4 = 0. Hence S is  

linearly independent.  

To verify that S spans V we take any vector 
a b
c d
 
 
 

 in V and we must find scalars c1, c2, 

 c3, and c4 such that    

c1 
1 0
0 0
 
 
 

+ c2
0 1
0 0
 
 
 

+ c3 
0 0
1 0
 
 
 

+ c4 
0 0
0 1
 
 
 

=
a b
c d
 
 
 

⇒ 1 2

3 4

c c a b
=

c c c d
   
   

  
 

We find that c1 = a, c2 = b, c3 = c, and c4 = d so that S spans V. 
  
The basis S in this example is called the standard basis for M22. More generally, the 
standard basis for Mmn consists of mn different matrices with a single 1 and zeros for the 
remaining entries 
  
Example 10     Show that the set of vectors  

3 6 0 -1 0 -8 1 0
, , ,

3 -6 -1 0 -12 -4 -1 2
        
        
        

 

 
 is a basis for the vector space V of all 2 x 2 matrices (i.e. M22).  
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Solution     The set S = {v1, v2, v3, v4} of vectors in M22 spans V = M22 if  

c1 v1 + c2 v2 + c3 v3 + c4 v4 = d1 w1 + d2 w2 + d3 w3 + d4 w4 
 (*)  

with   w1 =
1 0
0 0
 
 
 

, w2 = 
0 1
0 0
 
 
 

, w3 =
0 0
1 0
 
 
 

, w4 = 
0 0
0 1
 
 
 

 

has at least one solution for every set of values of the coefficients d1, d2, d3, d4. 
Otherwise (i.e., if no solution exists for at least some values of d1, d2, d3, d4), S does not 
span V. With our vectors v1, v2, v3, v4, (*) becomes:  

c1
3 6
3 -6
 
 
 

 + c2 
0 -1
-1 0
 
 
 

+ c3
0 -8
-12 -4
 
 
 

 + c4
1 0
-1 2
 
 
 

 

= d1
1 0
0 0
 
 
 

 + d2 
0 1
0 0
 
 
 

+ d3
0 0
1 0
 
 
 

+ d4
0 0
0 1
 
 
 

  

Rearranging the left hand side yields  

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 c +0 c +0 c  +1c   6 c -1c - 8 c +0 c   
3 c -1c -12 c -1c     - 6 c +0 c - 4 c +2c
 
 
 

=

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 d  +0 d  +0 d  +0 d     0 d  +1 d  +0 d  +0 d
0 d  +0 d  +1 d  +0 d     0 d  +0 d  +0 d  +1 d
 
 
 

  

The matrix equation above is equivalent to the following system of equations  

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 c + 0 c + 0 c +1 c = 1 d +0 d +0 d +0 d
6 c - 1 c - 8 c +0 c = 0 d +1 d +0 d +0 d
3 c - 1 c -12 c - 1 c = 0 d +0 d +1 d +0 d
-6 c +0 c - 4 c + 2 c = 0 d +0 d +0 d +1 d

 

3 0 0 1
6 -1 -8 0
3 -1 -12 -1
-6 0 -4 2

1 1

2 2

3 3

4 4

c d
c d
c d
c d

    
    
    ⇒ =
    
    

     

 

We now find the determinant of coefficient matrix 

3 0 0 1
6 -1 -8 0
3 -1 -12 -1
-6 0 -4 2

A

 
 
 =
 
 
 

 to determine 

whether the system is consistent (so that S spans V), or inconsistent (S does not span V). 
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Now   det (A) = 48≠ 0. Therefore, the system (A) is consistent, and, consequently, the set 
S spans the space V. 
Now, the set S = {v1, v2, v3, v4} of vectors in M22 is linearly independent if the only 
solution of    c1v1 + c2v2 + c3v3 + c4v4 = 0   is c1, c2, c3, c4 = 0. In this case the set S 
forms a basis for span S. Otherwise (i.e., if a solution with at least some nonzero values 
exists), S is linearly dependent. With our vectors v1, v2, v3, v4, we have   

c1
3 6
3 -6
 
 
 

+ c2
0 -1
-1 0
 
 
 

+ c3
0 -8
-12 -4
 
 
 

+ c4
1 0
-1 2
 
 
 

=
0 0
0 0
 
 
 

  

Rearranging the left hand side yields  
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3 c  +0 c  +0 c  +1 c     6 c -1 c - 8 c  +0 c
3 c -1 c -12 c -1 c                - 6 c  +0 c - 4 c  +2 c
 
 
 

= 
0 0
0 0
 
 
 

 

The matrix equation above is equivalent to the following homogeneous equation. 

3 0 0 1 0
6 -1 -8 0 0
3 -1 -12 -1 0
-6 0 -4 2 0

1

2

3

4

c
c
c
c

    
    
    =
    
    

    

  

As  det (A) = 48≠ 0   

Therefore the set S = {v1, v2, v3, v4} is linearly independent.  Consequently, the set S 
forms a basis for span S. 
 

Example 11     Let 
1 -3 - 4
-2 5 5 and { , , }.
-3 7 6

= , = , = , Span
     
      =     
          

1 2 3 1 2 3v v v H v v v   

Note that v3 = 5v1 + 3v2 and show that Span {v1, v2, v3} = Span {v1, v2}. Then find a 
basis for the subspace H. 
 
Solution      
 
Every vector in Span {v1, v2} belongs to H because 

c1 v1 + c2 v2 = c1 v1 + c2 v2 + 0 v3 
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Now let x be any vector in H – say, x = c1v1 + c2v2 + c3v3. Since v3 = 5v1 + 3v2, we may 
substitute 

x = c1v1 + c2v2 + c3 (5v1 + 3v2) 
   = (c1 + 5c3) v1 + (c2 + 3c3) v2 

Thus x is in Span {v1, v2}, so every vector in H already belongs to Span {v1, v2}. We 
conclude that H and Span {v1, v2} are actually the same set of vectors. It follows that  
{v1, v2} is a basis of H since {v1, v2} is obviously linearly independent. 
 
Activity       Show that the following set of vectors is basis for 3 : 
 
 

1.   
  

   
2.  

 

 
The Spanning Set Theorem   
As we will see, a basis is an “efficient” spanning set that contains no unnecessary vectors. 
In fact, a basis can be constructed from a spanning set by discarding unneeded vectors. 

 
Theorem 2   (The Spanning Set Theorem) Let S = {v1, … , vp} be a set in V and let  
H = Span {v1, …, vp}. 

a. If one of the vectors in S – say, vk – is a linear combination of the 
remaining vectors in S, then the set formed from S by removing vk still 
spans H. 

b. If { }≠H 0 , some subset of S is a basis for H. 
 

v3 

x2 

x1 

x3 
 

v1 
 v2 

 

( ) ( ) ( )1 2 11, 2, 3 , 0, 1, 1 , 0, 1, 3v v v= = =

( ) ( ) ( )1 2 11, 0, 0 , 0, 2, 1 , 3, 0, 1v v v= = =
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Since we know that span is the set of all linear combinations of some set of vectors and 
basis is a set of linearly independent vectors whose span is the entire vector space. The 
spanning set is a set of vectors whose span is the entire vector space. "The Spanning set 
theorem" is that a spanning set of vectors always contains a subset that is a basis. 
 
  
Remark     Let V = Rm and let S = {v1 , v2,…, vn} be a set of nonzero vectors in V. 
 
Procedure   
         The procedure for finding a subset of S that is a basis for W = span S is as follows: 
Step 1   Write the Equation,   

c1v1 + c2v2 + …+ cn vn =0      (3) 
Step 2   Construct the augmented matrix associated with the homogeneous system of  
Equation (1) and transforms it to reduced row echelon form. 
Step 3   The vectors corresponding to the columns containing the leading 1’s form a basis 
 for W = span S.  
Thus if S = {v1, v2,…, v6} and the leading 1’s occur in columns 1, 3, and 4, then { v1 , v3 , v4} is 
a basis for span S. 
 
Note   In step 2 of the procedure above, it is sufficient to transform the augmented matrix to row 
echelon form. 
 
Example 12     Let S = {v1, v2, v3, v4, v5} be a set of vectors in R4, where 
v1 = (1,2,-2,1), v2 = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,6), and v5 = (9,3,7,-6). 
Find a subset of S that is a basis for W = span S. 
Solution     Step 1 Form Equation (3),  
c1 (1,2, -2,1) + c2(-3,0,-4,3) + c3(2,1,1,-1)+ c4(-3,3,-9,6) + c5(9,3.7,-6) = (0,0,0,0). 
Step 2 Equating corresponding components, we obtain the homogeneous system 

  

1 2 3 4 5

1 3 4 5

1 2 3 4 5

1 2 3 4 5

 c  - 3c + 2c  - 3c  +9c  = 0
2c   +  c  + 3c  + 3c = 0
-2c  - 4c +  c  -  9c  + 7c  = 0
 c  + 3c  -  c  + 6c  - 6c  = 0

 

The reduced row echelon form of the associated augmented matrix is 
1 0  ½   3/2  3/2   :  0
0 1 -1/2   3/2 -5/2   :  0
0 0  0   0  0      :  0
0 0  0   0  0      :  0

 
 
 
 
 
 

 

Step 3   The leading 1’s appear in columns 1 and 2, so {v1, v2} is a basis for W = span S. 
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Two Views of a Basis When the Spanning Set Theorem is used, the deletion of 
vectors from a spanning set must stop when the set becomes linearly independent. If 
an additional vector is deleted, it will not be a linear combination of the remaining 
vectors and hence the smaller set will no longer span V. Thus a basis is a spanning set 
that is as small as possible. 
A basis is also a linearly independent set that is as large as possible. If S is a basis for V, 
and if S is enlarged by one vector – say, w – from V, then the new set cannot be linearly 
independent, because S spans V, and w is therefore a linear combination of the elements 
in S. 
 
Example 13   The following three sets in R3 show how a linearly independent set can be 
enlarged to a basis and how further enlargement destroys the linear independence of the 
set. Also, a spanning set can be shrunk to a basis, but further shrinking destroys the 
spanning property. 
 
 

1 2 1 2 4 1 2 4 7
0 , 3 0 , 3 , 5 0 , 3 , 5 , 8
0 0 0 0 6 0 0 6 9

                      
                      
                      
                                            

 

 
      Linearly independent A basis    Spans R3 but is 
      but does not span R3  for R3     linearly dependent 
 

Example 14    Let 
1 0
0 1
0 0

= , = ,
   
   
   
      

1 2v v  and : s in .
0

s
s R

  
  =   
    

H  then every vector in H is a 

linear combination of v1 and v2 because
1 0
0 1

0 0 0

s
s s s
     
     = +     
          

. Is {v1, v2} a basis for H?  

Solution     Neither v1 nor v2 is in H, so {v1, v2} cannot a basis for H. In fact, {v1, v2} is a 
basis for the plane of all vectors of the form (c1, c2, 0), but H is only a line. 
 
 
Activity       Find a Basis for the subspace W in 3 spanned by the following sets of 
vectors: 
 

1. ( ) ( ) ( ) ( )1 2 3 41,0, 2 , 3, 2,1 , 1,0,6 , 3,2,1v v v v= = = =  
  

2. ( ) ( ) ( ) ( )1 2 3 41, 2, 2 , 3, 2,1 , 1,1,7 , 7 ,6,4v v v v= = = =  
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Exercises   
 
Determine which set in exercises 1-4 are bases for R2 or R3. Of the sets that are not bases, 
determine which one are linearly independent and which ones span R2 or R3. Justify your 
answers. 
 

1. 
1 3 -3
0 2 -5
-2 -4 1

, ,
     
     
     
          

    2. 
1 -2 0 0
-3 9 0 -3
0 0 0 5

, , ,
       
       
       
              

 

 

3. 
1 -4
2 -5
-3 6

,
   
   
   
      

     4. 
1 0 3 0
-4 3 -5 2
3 -1 4 -2

, , ,
       
       
       
              

 

 
5. Find a basis for the set of vectors in R3 in the plane x + 2y + z = 0. 
 
6. Find a basis for the set of vectors in R2 on the line y = 5x. 
 
7. Suppose R4 = Span {v1, v2, v3, v4}. Explain why {v1, v2, v3, v4} is a basis for R4. 
 
8. Explain why the following sets of vectors are not bases for the indicated vector spaces. 
(Solve this problem by inspection). 
(a) u1 = (1, 2), u2 = (0, 3), u3 = (2, 7) for R2 
(b) u1 = (-1, 3, 2), u2 = (6, 1, 1) for R3 
(c) p1 = 1 + x + x2, p2 = x – 1 for P2 

(d) 
1 1 6 0 3 0 5 1 7 1
2 3 -1 4 1 7 4 2 2 9

, , , ,         
= = = = =         
         

A B C D E  for M22 

 
9. Which of the following sets of vectors are bases for R2? 
(a) (2, 1), (3, 0) (b) (4, 1), (-7, -8) (c) (0, 0), (1, 3) (d) (3, 9), (-4, -12) 
 
10. Let V be the space spanned by v1 = Cos2 x, v2 = Sin2x, v3 = cos 2x.  
(a) Show that S = {v1, v2, v3} is not a basis for V (b) Find a basis for V 
 
In exercises 11-13, determine a basis for the solution space of the system. 
 

11. 
1 2 3

1 2 3

1 3

x + x - x = 0
-2x - x + 2x = 0
- x + x = 0

   12. 
1 2 3

1 3

2 3

2x + x 3x = 0
x + 5x = 0

x + x = 0

+
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13. 

x+ y + z = 0
3x+ 2y - 2z = 0
4x+3y - z = 0
6x+5y + z = 0

 

 
14. Determine bases for the following subspace of R3 
(a) the plane 3x – 2y + 5z = 0  (b) the plane x – y = 0 
(c) the line x = 2t, y = -t, z = 4t (d) all vectors of the form (a, b, c), where b = a + c 
 
15. Find a standard basis vector that can be added to the set {v1, v2} to produce a basis 
for R3. 
(a) v1 = (-1, 2, 3), v2 = (1, -2, -2) (b) v1 = (1, -1, 0), v2 = (3, 1, -2) 
 
16. Find a standard basis vector that can be added to the set {v1, v2} to produce a basis 
for R4. 
 v1 = (1, -4, 2, -3), v2 = (-3, 8, -4, 6)   
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Lecture No.23 
Coordinate System 

OBJECTIVES   
  
The objectives of the lecture are to learn about: 

•  Unique representation theorem. 
• Coordinate of the element of a vector space relative to the basis B. 
• Some examples in which B- coordinate vector is uniquely determined using basis 

of a vector space. 
• Graphical interpretation of coordinates. 
• Coordinate Mapping 

 
 
Theorem   
                  Let { }1 2, ,..., nB b b b= be a basis for a vector space V. Then for each x  in V, 
there exist a unique set of scalars 1 2, ,..., nc c c  such that 

1 1 2 2, ,..., n nx c b c b c b= …………… (1) 
Proof   
            Since B is a basis for a vector space V, then by definition of basis every element 
of V can be written as a linear combination of basis vectors. That is if x V∈ , then  

1 1 2 2, ,..., n nx c b c b c b= . Now, we show that this representation for x  is unique. 
For this, suppose that we have two representations for x . 
i.e. 

1 1 2 2, ,..., n nx c b c b c b= …………… (2) 
and 

1 1 2 2, ,..., n nx d b d b d b= ………….. (3) 
We will show that the coefficients are actually equal. To do this, subtracting (3) from (2), 
we have 

1 1 1 2 2 20 ( ) ( ) ... ( )n n nc d b c d b c d b= − + − + + − . 
Since B is a basis, it is linearly independent set. Thus the coefficients in the last linear 
combination must all be zero. That is 

1 1,..., n nc d c d= = . 
Thus the representation for x is unique. 
  
Definition (B-Coordinate of x )   
 
Suppose that the set { }1 2, ,..., nB b b b= is a basis for V and x   is in V. The coordinates of x  
relative to basis B (or the B-coordinate of x ) are the weights 1 2, ,..., nc c c  such that 
                                              1 1 2 2, ,..., n nx c b c b c b= . 
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Note   

             If 1 2, ,..., nc c c  are the B- coordinates of x , then the vector in nR , [ ]

1

2

.

.

.

B

n

c
c

x

c

 
 
 
 

=  
 
 
 
  

 is the 

coordinate vector of x (relative to B) or B- coordinates of x . 
 
Example 1   
 

                        Consider a basis { }1 2,B b b=  for 2R  , where 1

1
0

b  
=  
 

and 2

1
2

b  
=  
 

. 

Suppose an x  in 2R  has the coordinate vector [ ] 2
3B

x
− 

=  
 

 . Find x  

Solution   
                Using above definition x is uniquely determined using coordinate vector and 
the basis. That is 

                            

1 1 2 2

1 2

,
( 2) (3)

1 1
( 2) 3

0 2

2 3
0 6

1
6

x c b c b
b b

x

=
= − +

   
= − +   

   
−   

= +   
   
 

=  
 

 

Example 2   
                       Let S = {v1, v2, v3} be the basis for R3, where v1 = (1, 2, 1), v2 = (2, 9, 0), 
and v3 = (3, 3, 4). 

(a) Find the coordinates vector of v = (5, -1, 9) with respect to S. 

(b) Find the vector v in R3 whose coordinate vector with respect to the basis S is  

[v]s = (-1, 3, 2) 

Solution   

Since S is a basis for R3, Thus 
                       1 1 2 2 3 3x c v c v c v= + + . 
Further 



23- Coordinate System                                                                                                                                 VU 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            310 

1 2 3(5, 1,9) (1,2,1) (2,9,0) (3,3,4)c c c− = + + ………….. (A) 
To find the coordinate vector of v, we have to find scalars 1 2 3, ,c c c .  
 For this equating corresponding components in (A) gives 

( )

(1)
(2)
(3)

(1) (2)

(4)

1 2 3

1 2 3

1 3

1 2 3

1 3

1

3 2 3

2 3

3

c  + 2c +3 c  = 5
2c  + 9c +3 c  = -1
c  + 4 c  = 9

Now find values of c , c and c from these equations.
From equation (3)
c 9 4c
Put this value of c in equations and
9 4c  + 2c +3 c  = 5
2c c 4
and
2 9 4c

= −

−
− = −

−

(5)

2 3

3 2 3

2 3

 + 9c +3 c  = -1
18 - 8c 9c 3c 1
9c 5c 19

+ + = −
− = −

 

(4)

2 3

Multiply equation by 5
10c 5c 20− = −

 

(5)

(4)

(3)

2 3

2 3

2

2 3

3

3

3

3 1

1

1

Subtract equation from above equation
10c 5c 20

9c 5c 19
________________
c 1
Put value of c in equation to get c
2(-1) c 4

2 c 4
c 4 2 2
Put value of c in equation to get c
c  +4 (2) = 9
c 9 8 1

− = −
± =

= −

− = −
− − = −
= − =

= − =

 

 

Thus, we obtain c1 = 1, c2 = -1, c3 = 2  
Therefore, [v]s = (1, -1, 2) 
 
Using the definition of coordinate vector, we have 
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1 1 2 2 3 3

1 2 3( 1) 3 2
( 1)(1,2,1) 3(2,9,0) 2(3,3,4)
( 1 6 6, 2 27 6, 1 0 8)
(11,31,7)

v c v c v c v
v v v

= + +
= − + +
= − + +
= − + + − + + − + +
=

 

 
Therefore 
              (11,31,7)v =     
  
Example 3   
                   Find the coordinates vector of the polynomial p = a0 + a1x + a2x2 relative to 
the basis S = {1, x, x2} for p2. 
Solution   
 
To find the coordinator vector of the polynomial p , we write it as a linear combination of 
the basis set S . That is  

2 2
0 1 2 1 2 3

1 0 2 1 3 2

(1) ( ) ( )
, ,

a a x a x c c x c x
c a c a c a
+ + = + +

⇒ = = =
 

Therefore 
0 1 2[ ] ( , , )sp a a a=  

 
Example 4   
 
                   Find the coordinates vector of the polynomial p = 5 – 4x + 3x2 relative to the 
basis S = {1, x, x2} for p2. 
Solution   
 
To find the coordinator vector of the polynomial p , we write it as a linear combination of 
the basis set S . That is  

2 2
1 2 3

1 2 3

5 4 3 (1) ( ) ( )
5, 4, 3

x x c c x c x
c c c
− + = + +

⇒ = = − =
 

Therefore 
[ ] (5, 4,3)sp = −  

Example 5   
                   Find the coordinate vector of A relative to the basis S = {A1, A2, A3, A4} 

2 0 -1 1 1 1 0 0 0 0
; ; ; ;

-1 3 0 0 0 0 1 0 0 1
= = = = =         
         
         

1 2 3 4A A A A A
 

Solution   
                  To find the coordinator vector of A , we write it as a linear combination of the 
basis set S . That is  



23- Coordinate System                                                                                                                                 VU 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            312 

A= c1 A1+ c2 A2+ c3 A3+ c4 A4 

2 0 -1 1 1 1 0 0 0 0
-1 3 0 0 0 0 1 0 0 1

0 0 0 0-
0 00 0 0 0

0 0 0 0
0 0 0 0 0 0

1 2 3 4

1 1 2 2

3 4

1 2 1 2

3 4

= c +c c c

c c c c
+

c c

c c c c
c c

         
+ +         

         
      

= + +      
       
− + + + + + + 

=  + + + + + + 

 

2 0
-1 3

1 2 1 2

3 4

-c +c c +c
=

c c
  
  

   
 

(1)
(2)
(3)
(4)

1 2

1 2

3

4

-c +c = 2 
c +c = 0
c = -1
c = 3

 

Adding (1) and (2), gives  

2c2 = 2 ⇒  c2 = 1 

Putting the value of c2 in (2) to get c1,   c1 = -1 

So  c1 = -1, c2 = 1, c3 = -1, c4 = 3 
Therefore,  [v]s = (-1, 1, -1, 3) 
Graphical Interpretation of Coordinates   
    

A coordinate system on a set consists of a one-to-one mapping of the points in the 
set into Rn. For example, ordinary graph paper provides a coordinate system for the plane 
when one selects perpendicular axes and a unit of measurement on each axis. Figure 1 
shows the standard basis {e1, e2}, the vectors  
b1 (= e1) and b2 from Example 1, that is,  

1

1
0

=  
 
 

b  and 2

1
.

2
=  
 
 

b  

 

 Vector
1
6

=  
 
 

x , the coordinates 1 and 6 give the location of x relative to the standard 

basis: 1 unit in the e1 direction and 6 units in the e2 direction. 
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b1 

b2 

x 

0 

 
 
 
 
 
 
 

                       
                                                
 
                                                     Figure 1   

   
Figure 2 shows the vectors b1, b2, and x from Figure 1. (Geometrically, the three 

vectors lie on a vertical line in both figures.) However, the standard coordinate grid was 
erased and replaced by a grid especially adapted to the basis B in Example 1. The 

coordinate vector [ ] -2
3

=  
 
 B

x  gives the location of x on this new coordinate system: – 2 

units in the b1 direction and 3 units in the b2 direction.  
 

 
 
 
 
 
 
 
 
 
 
 
                  Figure 2    

 
Example 6      

In crystallography, the description of a crystal lattice is aided by choosing a basis 
{u, v, w} for R3 that corresponds to three adjacent edges of one “unit cell” of the crystal. 
An entire lattice is constructed by stacking together many copies of one cell. There are 
fourteen basic types of unit cells; three are displayed in Figure 3. 
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Figure 3 – Examples of unit cells 

 
The coordinates of atoms within the crystal are given relative to the basis for the lattice. 

For instance, 
1 2
1 2
1

 
 
 
  

 identifies the top face-centered atom in the cell in Figure 3(b). 

 
Coordinates in Rn    When a basis B for Rn is fixed, the B-coordinate vector of a 
specified x is easily found, as in the next example. 
 

Example 7      Let 
2 -1 4
1 1 5

= , = , = ,     
     
     

1 2b b x  and B = {b1 , b2}.  

Find the coordinate vector [x]B of x relative to B. 
Solution The B – coordinates c1 , c2 of x satisfy  

2 -1 4
1 1 51 2c +c =     
     
     

 

                               b1              b2           x 
 

or  
2 -1 4
1 1 5

1

2

c
=

c
    
    

    
      (3) 

    b1        b2                       x 

Now, inverse of matrix 
2 -1
1 1
 
 
 

 =

1 1
1 11 3 3
-1 2 1 23

3 3

 
  

=    −   
  

 

From equation (3) we get  

0 

u 
v 

w 

0 

u 
v 

w 

0 

u 
v 

w 

(a) Body centered 
cubic 

(b) Face centered 
orthorhombic 

(c) Simple 
monoclinic 
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1 1
43 3

1 2 5
3 3
1 1(4) (5) 33 3
1 2 2(4) (5)

3 3

1

2

c
=

c

 
    
    −     
  
 +   

= =   −   +  

 

 
Thus, c1 = 3, c2 = 2. 
(Equation (3) can also be solved by row operations on an augmented matrix. Try it 
yourself ) 

Thus x = 3b1 + 2b2 and 
3

[ ]
2

1

2

c
= =

c
   
   

  
Bx  

 
Figure 4 – The B-coordinate vector of x is (3,2) 

 
The matrix in (3) changes the B-coordinates of a vector x into the standard coordinates 
for x. An analogous change of coordinates can be carried out in Rn for a basis  
B = {b1 , b2 , … , bn}.   
Let  [ ]= ...B 1 2 nP b b b  
Then the vector equation 1 2 n= c +c +...+c1 2 nx b b b  
is equivalent to [ ]= B Bx P x                 (4) 
 
We call PB the change-of-coordinates matrix from B to the standard basis in Rn.  
Left-multiplication by PB transforms the coordinate vector [ ]Bx  into x. The change-of-
coordinates equation (4) is important and will be needed at several points in next lectures. 
 

b1 b2 

x 
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Since the columns of PB form a basis for Rn, PB is invertible (by the Invertible Matrix 
Theorem). Left-multiplication by 1−

BP  converts x into its B-coordinate vector: 
1 [ ]− =B BP x x  

The correspondence [ ]→ Bx x  produced here by 1−
BP , is the coordinate mapping 

mentioned earlier. Since 1−
BP  is an invertible matrix, the coordinate mapping is a one-to-

one linear transformation from Rn onto Rn, by the Invertible Matrix Theorem. (See also 
Theorem 3 in lecture 10) This property of the coordinate mapping is also true in a general 
vector space that has a basis, as we shall see. 
 
The Coordinate Mapping     Choosing a basis B = {b1, b2 , … , bn} for a vector space V 
introduces a coordinate system in V. The coordinate mapping [ ]→ Bx x  connects the 
possibly unfamiliar space V to the familiar space Rn. See Figure 5. Points in V can now 
be identified by their new “names”. 
 

 
Figure 5 – The coordinate mapping from V onto Rn 

 
Theorem 2     Let B = {b1, b2 , … , bn} be a basis for a vector space V. Then the 
coordinate mapping [ ]→ Bx x  is a one-to-one linear transformation from V onto Rn. 
Proof   Take two typical vectors in V, say 

 1 2 n

1 2 n

= c +c +...+c
= d +d +...+d

1 2 n

1 2 n

u b b b
w b b b

 

Then, using vector operations, ( ) ( ) ( )1 1 2 2 n n+ = c +d + c +d +...+ c +d1 2 nu w b b b  

It follows that  
1 1 1 1

[ ] [ ] [ ]

n n n n

c d c d

c d c d

+     
     + = = + = +     
     +     

B B Bu w u w    

Thus the coordinate mapping preserves addition. If r is any scalar, then 
  1 2 1 2( ) ( ) ( ) ( )n nr r c c c rc rc rc= + + + = + + + 1 2 n 1 2 nu b b b b b b  

V 

x 

[  ]B 

[x]B 

Rn 
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So  
1 1

[ ] [ ]

n n

rc c
r r r

rc c

   
   = = =   
      

B Bu u   

Thus the coordinate mapping also preserves scalar multiplication and hence is a linear 
transformation. It can be verified that the coordinate mapping is one-to-one and maps V 
onto Rn. 
 
The linearity of the coordinate mapping extends to linear combinations, just as in lecture 

9. If u1 , u2 , … , up are in V and if c1 , c2 , … , cp are scalars, then 
[ ] [ ] [ ] [ ]1 2 p 1 2 pc +c +...+c = c +c +...+c1 2 p B 1 B 2 B p Bu u u u u u                       (5) 

 
In words, (5) says that the B-coordinate vector of a linear combination of u1, u2 , … , up 
is the same linear combination of their coordinate vectors. 
 
The coordinate mapping in Theorem 2 is an important example of an isomorphism from 
V onto Rn. In general, a one-to-one linear transformation from a vector space V onto a 
vector space W is called an isomorphism from V onto W (iso from the Greek for “the 
same”, and morph from the Greek for “form” or “structure”). The notation and 
terminology for V and W may differ, but the two spaces are indistinguishable as vector 
spaces. Every vector space calculation in V is accurately reproduced in W, and vice versa.  
  
Example 8     Let B be the standard basis of the space P3 of polynomials; that is, let B = 
{1,  t,  t2, t3}. A typical element p of P3 has the form p (t) = a0 + a1 t + a2 t2 + a3 t3 
Since p is already displayed as a linear combination of the standard basis vectors, we 

conclude that 

0

1

2

3

[ ]

a
a
a
a

 
 
 =
 
 
 

Bp . Thus the coordinate mapping [ ]→ Bp p  is an isomorphism 

from P3 onto R4. All vector space operations in P3 correspond to operations in R4. 
 
If we think of P3 and R4 as displays on two computer screens that are connected via the 
coordinate mapping, then every vector space operation in P3 on one screen is exactly 
duplicated by a corresponding vector operation in R4 on the other screen. The vectors on 
the P3 screen look different from those on the R4 screen, but they “act” as vectors in 
exactly the same way. See Figure 6. 
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Figure 6 – The space P3 is isomorphic to R4 

 
 
Example 9     Use coordinate vector to verify that the polynomials 1 + 2t2,  4 + t + 5t2 
and 3 + 2t are linearly dependent in P2. 
Solution     The coordinate mapping from Example 8 produces the coordinate vectors (1, 
0, 2), (4, 1, 5) and   (3, 2, 0), respectively. Writing these vectors as the columns of a 
matrix A, we can determine their independence by row reducing the augmented matrix 

for Ax = 0: 
1 4 3 0 1 4 3 0
0 1 2 0 0 1 2 0
2 5 0 0 0 0 0 0

   
   
   
      

  

The columns of A are linearly dependent, so the corresponding polynomials are linearly 
dependent. In fact, it is easy to check that column 3 of A is 2 times column 2 minus 5 
times column 1. The corresponding relation for the polynomials is 

3 + 2t = 2(4 + t + 5t2) – 5(1 + 2t2) 
 

Example 10     Let 
3 -1 3
6 0 12
2 1 7

= , = , = ,
     
     
     
          

1 2v v x  and B = {v1, v2}. Then B is a 

basis for H = Span {v1, v2}. Determine if x is in H and if it is, find the coordinate vector 
of x relative to B. 
 
Solution     If x is in H, then the following vector equation is consistent. 

3 -1 3
6 0 = 12
2 1 7

1 2c +c
     
     
     
          

 

The scalars, c1 and c2, if they exist, are the B – coordinates of x.  

P3 
 
R4 
 
 
 

a0+a1t+a2t2+a3 t3 



















3

2

1

0

a
a
a
a
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Using row operations, we obtain 
3 -1 3 1 0 2
6 0 12 0 1 3
2 1 7 0 0 0

   
   
   
      

 . 

 

Thus c1 = 2, c2 = 3 and 
2

[ ] .
3

=  
 
 

Bx  The coordinate system on H determined by B is 

shown in Figure 7.  
 

 
 

Figure 7 – A coordinate system on a plane H in R3 
 
If a different basis for H were chosen, would the associated coordinate system also make 
H isomorphic to R2? Surely, this must be true. We shall prove it in the next lecture. 
 

Example 11     Let 
1 -3 3

= 0 , = 4 , = -6 ,
0 0 3

     
     
     
          

1 2 3b b b  and 
-8
2 .
3

=
 
 
 
  

x  

a. Show that the set B = {b1, b2, b3} is a basis of R3. 
b. Find the change-of-coordinates matrix from B to the standard basis. 
c. Write the equation that relates x in R3 to [x]B. 
d. Find [x]B, for the x given above. 

Solution   
a. It is evident that the matrix PB = [b1   b2   b3] is row equivalent to the 

identity matrix. By the Invertible Matrix Theorem, PB is invertible and its 
columns form a basis for R3. 

v1 
2v1 

0 

v2 

2v2 

3v2 

x=2v1+3v2 
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b. From part (a), the change-of-coordinates matrix is 
1 -3 3
0 4 -6 .
0 0 3

=
 
 
 
  

BP  

c. [ ]= B Bx P x . 
 
d. To solve part (c), it is probably easier to row reduce an augmented matrix 

instead of computing 1−
BP . We have 

 
1 -3 3 -8 1 0 0 -5
0 4 -6 2 0 1 0 2
0 0 3 3 0 0 1 1

[ ]

   
   
   
      



B BP x I x

 

Hence 
-5

[ ] 2
1

=
 
 
 
  

Bx  

 
Example 12     The set B = {1 + t , 1 + t2, t + t2} is a basis for P2. Find the coordinate 
vector of  p(t) = 6 + 3t – t2 relative to B. 
Solution     The coordinates of p (t) = 6 + 3t – t2 with respect to B satisfy 

2 2 2
1 1 2 2 3 3

2 2 2
1 2 1 3 2 3

2 2
1 2 1 3 2 3

6 3

6 3

( ) ( ) 6 3

1 2 3c ( + )+c ( + )+c ( + )= +3 -
c c t c c t c t c t t t
c c c t c t c t c t t t
c c c c t c c t t t

+ + + + + = + −

+ + + + + = + −

+ + + + + = + −

2 2 21 t 1 t t t 6 t t

 

Equating coefficients of like powers of t, we have 
(1)

(2)
-(3)

  (2)  (1)  

(3)

1 2

1 3

2 3

2 3

2

2

c  +  c        =     6 - - - - - - - - - - - - - -
c         + c  =    3 - - - - - - - - - - - - - -

c  + c  =  -1- - - - - - - - - - - - -
Subtract equation from we get
c c 6 3 3
Add this equation with equation
2c 1 3 2

c 1

− = − =

= − + =
⇒ =

(3)2

3

3

Put value of c in equation
1 + c  =  -1

c 2⇒ = −
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(1)

1 2

1

From equation we have
c  +  c = 6
c 6 1 5= − =

 

Solving, we find that c1 = 5, c2 = 1, c3 = –2, and 
5

[ ] 1
-2

=
 
 
 
  

Bp . 

 
 
 
Exercises   
 
In exercises 1 and 2, find the vector x determined by the given coordinate vector [x]B and 
the given basis B. 
 

1. 
3 -4 5

[ ]
-5 6 3

, ,
      

= =      
      

BB x   2. 
41 5 3
-7 [ ]-4 2 0
03 -2 -1

, , ,
       
       = =       
              

BB x   

 
In exercises 3-6, find the coordinate vector [x]B of x relative to the given basis B = {b1, 
b2, …, bn}. 
 

3. 
1 2 -2
-3 -5 1

, ,     
= = =     
     

1 2b b x   4. 
1 5 4
-2 -6 0

, ,     
= = =     
     

1 2b b x  

 

5. 
21 -3 8
-2-1 4 -9
4-3 9 6

, , ,
      
      = = = =      
            

1 2 3b b b x    

 

6. 
11 2 3
-10 1 -5
23 8 4

, , ,
      
      = = = =      
            

1 2 3b b b x   

 
In exercises 7 and 8, find the change of coordinates matrix from B to standard basis in 
Rn. 
 

7. 
2 1
-9 8

    
=     

    
B ,     8. 

3 2 8
-1 , 0 , -2
4 -5 7

      
      =       
            

B  
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In exercises 9 and 10, use an inverse matrix to find [x]B for the given x and B. 
 

9. 
4 6 2

, ,
5 7 0

      
= =      

      
B x    10. 

3 -4 2
, ,

-5 6 -6
      

= =      
      

B x  

 
11. The set B = {1 + t2, t + t2, 1 + 2t + t2} is a basis for P2. Find the coordinate vector of  
p (t) = 1 + 4t + 7t2 relative to B. 
 

12. The vectors 1 2 3

1 2 -3
, ,

-3 -8 7
     

= = =     
     

v v v  span R2 but do not form a basis. Find 

two different ways to express 
1
1
 
 
 

 as a linear combination of v1, v2, v3. 

 

13. Let 
1 -2

,
-4 9

    
=     

    
B . Since the coordinate mapping determined by B is a linear 

transformation from R2 into R2, this mapping must be implemented by some 2 x 2 matrix 
A. Find it. 
 
In exercises 14-16, use coordinate vectors to test the linear independence of the sets of 
polynomials. 
 
14. 1 + t3, 3 + t – 2t2, - t + 3t2 – t3   15. (t-1)2, t3 – 2, (t – 2)3 
 
16. 3 + 7t, 5 + t – 2t3, t – 2t2, 1 + 16t – 6t2 + 2t3 
 
17. Let H = Span {v1, v2} and B = {v1, v2}. Show that x is in H and find the B-

coordinate vector of x, for 1 2

11 14 19
-5 -8 -13

, ,
10 13 18
7 10 15

     
     
     = = =
     
     
     

v v x . 

 
18. Let H = Span {v1, v2, v3} and B = {v1, v2, v3}. Show that B is a basis for H and x is 

in H, and find the B-coordinate vector of x, for 1 2

-6 8 -9 4
4 -3 5 7

, ,
-9 7 -8 -8
4 -3 3 3

       
       
       = = = =
       
       
       

3v v v , x . 
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Lecture 24 
 

Dimension of a Vector Space 
 

In this lecture, we will focus over the dimension of the vector spaces. The 
dimension of a vector space V is the cardinality or the number of vectors in the basis B of 
the given vector space. If the basis B has n (say) elements then this number n (called the 
dimension) is an intrinsic property of the space V. That is it does not depend on the 
particular choice of basis rather, all the bases of V will have the same cardinality. Thus, 
we can say that the dimension of a vector space is always unique. The discussion of 
dimension will give additional insight into properties of bases. 
The first theorem generalizes a well-known result about the vector space Rn. 
Note   
          A vector space V with a basis B containing n vectors is isomorphic to Rn i.e., there 
exist a one-to-one linear transformation from V to Rn.  
 
Theorem 1   If a vector space V has a basis B = {b1, …, bn}, then any set in V containing 
more than n vectors must be linearly dependent. 
 
Theorem 2   If a vector space V has a basis of n vectors, then every basis of V must 
consist of exactly n vectors. 
 
Finite and infinite dimensional vector spaces   
                                                                             If the vector space V is spanned or 
generated by a finite set, then V is said to be finite-dimensional, and the dimension of V, 
written as dim V, is the number of vectors in a basis for V. If V is not spanned by a finite 
set, then V is said to be infinite-dimensional. That is, if we are unable to find a finite set 
that can generate the whole vector space, then such a vector space is called infinite 
dimensional. 
 
Note   
 
(1) The dimension of the zero vector space {0} is defined to be zero. 
(2) Every finite dimensional vector space contains a basis. 
 
 
Example 1     The n dimensional set of real numbers Rn, set of polynomials of order n 
Pn, and set of matrices of order m n×   Mmn are all finite- dimensional vector spaces. 
However, the vector spaces F (-∞ ,∞ ), C (-∞ ,∞ ), and Cm (-∞ ,∞ ) are infinite- 
dimensional. 
 
Example 2    
(a)   Any pair of non-parallel vectors a, b in the xy-plane, which are necessarily linearly 
independent, can be regarded as a basis of the subspace R2. In particular the set of unit 
vectors {i, j} forms a basis for R2. Therefore, dim (R2) = 2. 
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Any set of three non coplanar vectors {a, b, c} in ordinary (physical) space, which will be 
necessarily linearly independent, spans the space R3. Therefore any set of such vectors forms a 
basis for R3. In particular the set of unit vectors {i, j, k} forms a basis of R3. This basis is called 
standard basis for R3. Therefore dim (R3) = 3. 
 
The set of vectors {e1, e2, …, en} where 

e1 = (1, 0, 0, 0, …, 0), 
e2 = (0, 1, 0, 0, …, 0), 
e3 = (0, 0, 1, 0, …, 0), 

… 
… 
… 

en = (0, 0, 0, 0, …, 1) 
is linearly independent.  
Moreover, any vector x = (x1, x2, …, xn) in Rn can be expressed as a linear combination of these 
vectors as  

x = x1e1 + x2e2 + x3e3 +…+ xnen. 
Hence, the set {e1, e2, … , en} forms a basis for Rn. It is called the standard basis of Rn, therefore 
dim (Rn) = n. Any other set of n linearly independent vectors in Rn will form a non-standard 
basis. 
 
(b)   The set B = {1, x, x2, … ,xn} forms a basis for the vector space Pn of polynomials of degree 
< n. It is called the standard basis with dim (Pn) = n + 1. 
 
(c)   The set of 2 x 2 matrices with real entries (elements) {u1, u2, u3, u4} where 

u1 = 
1 0
0 0
 
 
 

, u2 = 
0 1
0 0
 
 
 

, u3 = 
0 0
1 0
 
 
 

, u4 = 
0 0
0 1
 
 
 

 

is a linearly independent and every 2 x 2 matrix with real entries can be expressed as their linear 
combination. Therefore, they form a basis for the vector space M2X2. This basis is called the 
standard basis for M2X2 with dim (M2X2) = 4. 

Note   

(1) dim (Rn) = n  { The standard basis has n vectors}. 

(2) dim (Pn) = n + 1  { The standard basis has n+1 vectors}. 

(3) dim (Mm× n) = mn  { The standard basis has mn vectors.} 
 
Example 3     Let W be the subspace of the set of all (2 x 2) matrices defined by 

W = {A =
a b
c d
 
 
 

: 2a – b + 3c + d = 0}. 

Determine the dimension of W. 
Solution     The algebraic specification for W can be rewritten as d = -2a + b – 3c.  
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Now   A = 
a b
c d
 
 
 

 

 Substituting the value of d, it becomes 
 

A= 
-2 + - 3

a b
c a  b c
 
 
 

 

This can be written as  

A= 
0

0 -2
a

a 
 
 
 

+
0
0

b
 b 

 
 
 

+
0 0

- 3c  c
 
 
 

 

= a 
1 0
0 -2 
 
 
 

 + b
0 1
0  1 
 
 
 

 + c
0 0
1  - 3
 
 
 

 

= a A1 + bA2 + cA3 

where  A1 =
1 0
0 2
 
 − 

, A2 = 
0 1
0 1
 
 
 

, and A3 =
0 0
1 3
 
 − 

 

The matrix A is in W if and only if A = aA1 + bA2 + cA3, so {A1, A2, A3} is a spanning set for 
W.  Now, check if this set is a basis for W or not. We will see whether {A1, A2, A3} is linearly 
independent or not. {A1, A2, A3} is said to be linearly independent if 
 1 2 3aA  + bA  + cA =0 a=b=c=0⇒ i.e., 

1 0 0 1 0 0 0 0
0 -2 0  1 1  - 3 0 0

0 0 0 0 0 0
0 -2 0 - 3 0 0

0 0
2 3 0 0

a b c

a b
a  b c  c

a b
c a b c

       
+ + =       

       
       

+ + =       
       
   

=   − + −   

 

Equating the elements, we get 
0, 0, 0a b c= = =  

This implies {A1, A2, A3} is a linearly independent set that spans W. Hence, it’s the basis of W 
with dim( W)= 3. 
 

Example 4     Let H = Span {v1, v2}, where 
3
6
2

=
 
 
 
  

1v  and 
-1
0 .
1

=
 
 
 
  

2v  Then H is the plane 

studied in Example 10 of lecture 23. A basis for H is {v1, v2}, since v1 and v2 are not 
multiples and hence are linearly independent. Thus, dim H = 2.   
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A coordinate system on a plane H in R3 
 
Example 5   Find the dimension of the subspace 

-3 + 6
5 + 4

- 2 -
5

a b c
a d

= : a,b,c,d R
b c d

d

  
  
   ∈       

H  

Solution   The representative vector of H can be written as 
3 6 1 3 6 0

5 4 5 0 0 4
2 0 1 2 1
5 0 0 0 5

a b c
a d

a b c d
b c d

d

− + −         
         +         = + + +
         − − − −
         
         

 

Now, it is easy to see that H is the set of all linear combinations of the vectors  
 
 

1 -3 6 0
5 0 0 4
0 1 -2 -1
0 0 0 5

= , = , = , =

       
       
       
       
       
       

1 2 3 4v v v v  

 
Clearly, ,≠1 2v 0 v  is not a multiple of v1, but v3 is a multiple of v2. By the Spanning Set 
Theorem, we may discard v3 and still have a set that spans H. Finally; v4 is not a linear 

v1 
2v1 

0 

v2 

2v2 

3v2 

x=2v1+3v2 
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combination of v1 and v2. So {v1, v2, v4} is linearly independent and hence is a basis for 
H. Thus dim H = 3. 
 
Example 6   The subspaces of R3 can be classified by various dimensions as shown in 
Fig. 1.  
0-dimensional subspaces    

The only 0-dimensional subspace of R3 is zero space. 
 
1-dimensional subspaces    

1-dimensional subspaces include any subspace spanned by a single non-zero 
vector. Such subspaces are lines through the origin. 
 
2-dimensional subspaces    

Any subspace spanned by two linearly independent vectors. Such subspaces are 
planes through the origin. 
 
3-dimensional subspaces   

The only 3-dimensional subspace is R3 itself. Any three linearly independent 
vectors in R3 span all of R3, by the Invertible Matrix Theorem. 
 

 
 

Figure 1 – Sample subspaces of R3 
 
Bases for Nul A and Col A     
                                              We already know how to find vectors that span the null 
space of a matrix A. The discussion in Lecture 21 pointed out that our method always 
produces a linearly independent set. Thus the method produces a basis for Nul A. 
 

x2 

x3 

x1 
1 dim 

0 dim 

x3 

x1 
2 dim 

3 dim 
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Example 7     Find a basis for the null space of

2 2 -1 0 1
-1 -1 2 -3 1
1 1 -2 0 -1
0 0 1 1 1

=

 
 
 
 
 
 

A . 

Solution     The null space of A is the solution space of homogeneous system 
1 2 3 5

1 2 3 4 5

1 2 3 5

3 4 5

2x + 2x - x + x = 0
- x - x + 2x - 3x + x = 0

x + x - 2x - x = 0
x + x + x = 0

 

The most appropriate way to solve this system is to reduce its augmented matrix into 
reduced echelon form. 

4 2 3 1

3 1 3 2

 2  2 -1  0  1   0
-1 -1  2 -3  1  0

,
 1  1 -2  0 -1  0
 0  0  1  1  1  0

1  1 -2  0 -1  0
 0  0  1  1  1  0

2 , 3
 2  2 -1  0  1   0
-1 -1  2 -3  1  0 

1  1 -2  0 -

R R R R

R R R R

 
 
 
 
 
 

 
 
  − −
 
 
 

 



 3 2

3

1  0
 0  0  1  1  1  0

3
 0  0 3  0  3   0
-1 -1  2 -3  1  0 

1  1 -2  0 -1  0
0  0  1  1  1  0 1
0  0 0 -3  0   0 3
-1 -1  2 -3  1  0 

1  1 -2  0 -1  0
0  0  1  1  1  0
0  0 0 1 

R R

R

 
 
  −
 
 
 

 
 
  −
 
 
 



 4 1 0   0
-1 -1  2 -3  1  0 

R R

 
 
  +
 
 
 
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4 3

1 2

1  1 -2  0 -1  0
0  0  1  1  1  0

3
0  0 0 1  0   0
0 0  0 -3  0  0 

1  1 -2  0 -1  0
0  0  1  1  1  0

2
0  0 0 1  0   0
0 0  0 0  0  0 

R R

R R

 
 
  +
 
 
 

 
 
  +
 
 
 





 

2 3 1 3

1  1 0  2 1  0
0  0  1  1  1  0

, 2
0  0 0 1  0   0
0 0  0 0  0  0 

1  1 0  0 1  0
0  0  1  0  1  0
0  0 0 1  0   0
0 0  0 0  0  0 

R R R R

 
 
  − −
 
 
 

 
 
 
 
 
 





 

Thus, the reduced row echelon form of the augmented matrix is  
1  1  0  0  1   0
0  0  1  0  1  0
0  0  0  1  0  0
0  0  0  0  0  0

 
 
 
 
 
 

 

which corresponds to the system  
1 2 5

3 5

4

 1x +1 x + 1 x = 0
1 x + 1 x = 0

1 x = 0
0 = 0

 

No equation of this system has a form zero = nonzero. Therefore, the system is 
consistent. Since the number of unknowns is more than the number of equations, we will 
assign some arbitrary value to some variables. This will lead to infinite many solutions of 
the system. 
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1 2 5

2

3 5

4

5

x = - 1x -1x
x = s
x = - 1x
x = 0
x = t

 

The general solution of the given system is 
x1 = - s - t   ,   x2 = s  ,   x3 = - t  ,    x4 = 0   ,    x5 = t 

Therefore, the solution vector can be written as 
1

2

3

4

5

x -s - t -s -t -1 -1
x s s 0 1 0
x = = + = s +t-t 0 -t 0 -1
x 0 0 0 0 0
x t 0 t 0 1

           
           
           
           
           
           
                     

 

which shows that the vectors 

-1 -1
1 0
0 and -1
0 0
0 1

= =

   
   
   
   
   
   
      

1 2v v  span the solution space .Since they 

are also linearly independent,{v1,v2} is a basis for Nul A. 
 
The next two examples describe a simple algorithm for finding a basis for the column 
space. 
 

Example 8     Find a basis for Col B, where 

1 4 0 2 0
0 0 1 -1 0

[ , ]
0 0 0 0 1
0 0 0 0 0

= ..., =

 
 
 
 
 
 

1 2 5B b b b  

Solution   Each non-pivot column of B is a linear combination of the pivot columns. In 
fact, b2 = 4b1 and b4 = 2b1 – b3. By the Spanning Set Theorem, we may discard b2 and 
b4 and {b1, b3, b5} will still span Col B. Let 

1 0 0
0 1 0

{ } , ,
0 0 1
0 0 0

= , , =

      
      
                         

1 3 5S b b b  

Since b1 ≠ 0 and no vector in S is a linear combination of the vectors that precede it, S is 
linearly independent. Thus S is a basis for Col B. 
 
               What about a matrix A that is not in reduced echelon form? Recall that any 
linear dependence relationship among the columns of A can be expressed in the form Ax 
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= 0, where x is a column of weights. (If some columns are not involved in a particular 
dependence relation, then their weights are zero.) When A is row reduced to a matrix B, 
the columns of B are often totally different from the columns of A. However, the 
equations Ax = 0 and Bx = 0 have exactly the same set of solutions. That is, the columns 
of A have exactly the same linear dependence relationships as the columns of B. 
 
Elementary row operations on a matrix do not affect the linear dependence relations 
among the columns of the matrix. 
 
Example 9   It can be shown that the matrix 

1 4 0 2 -1
3 12 1 5 5

[ ]
2 8 1 3 2
5 20 2 8 8

= ... =

 
 
 
 
 
 

1 2 5A a a a  

is row equivalent to the matrix B in Example 8. Find a basis for Col A. 
Solution     In Example 8, we have seen that = 4 and = 2 -2 1 4 1 3b b b b b  
so we can expect that = 4 and = 2 -2 1 4 1 3a a a a a . This is indeed the case. 
Thus, we may discard a2 and a4 while selecting a minimal spanning set for Col A. In fact, 
{a1, a3, a5} must be linearly independent because any linear dependence relationship 
among a1, a3, a5 would imply a linear dependence relationship among b1, b3, b5. But we 
know that {b1, b3, b5} is a linearly independent set. Thus {a1, a3, a5} is a basis for Col A. 
The columns we have used for this basis are the pivot columns of A. 
 
Examples 8 and 9 illustrate the following useful fact. 
 
Theorem 3     The pivot columns of a matrix A form a basis for Col A. 
 
Proof   The general proof uses the arguments discussed above. Let B be the reduced 
echelon form of A. The set of pivot columns of B is linearly independent, for no vector in 
the set is a linear combination of the vectors that precede it. Since A is row equivalent to 
B, the pivot columns of A are linearly independent too, because any linear dependence 
relation among the columns of A corresponds to a linear dependence relation among the 
columns of B. For this same reason, every non-pivot column of A is a linear combination 
of the pivot columns of A. Thus the non-pivot columns of A may be discarded from the 
spanning set for Col A, by the Spanning Set Theorem. This leaves the pivot columns of A 
as a basis for Col A. 
 
Note   Be careful to use pivot columns of A itself for the basis of Col A. The columns of 
an echelon form B are often not in the column space of A. For instance, the columns of 
the B in Example 8 all have zeros in their last entries, so they cannot span the column 
space of the A in Example 9. 
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Example 10     Let 
1 -2
-2 and 7 .
3 -9

= =
   
   
   
      

1 2v v  Determine if {v1, v2} is a basis for R3. Is {v1, 

v2} a basis for R2? 

Solution Let A = [v1   v2]. Row operations show that
1 -2 1 -2
-2 7 0 3
3 -9 0 0

A=
   
   
   
      

 . Not every 

row of A contains a pivot position. So the columns of A do not span R3, by Theorem 4 in 
Lecture 6. Hence {v1, v2} is not a basis for R3. Since v1 and v2 are not in R2, they cannot 
possibly be a basis for R2. However, since v1 and v2 are obviously linearly independent, 
they are a basis for a subspace of R3, namely, Span {v1, v2}. 
 

Example 11   Let 
1 6 2 -4
-3 2 -2 -8 .
4 -1 3 9

= , = , = , =
       
       
       
              

1 2 3 4v v v v  Find a basis for the subspace 

W spanned by {v1, v2, v3, v4}.  
Solution   Let A be the matrix whose column space is the space spanned by {v1, v2, v3, 
v4},  

1 6 2 -4
-3 2 -2 -8
4 -1 3 9

=
 
 
 
  

A  

 Reduce the matrix A into its echelon form in order to find its pivot columns. 

                        2 1 3 1

2 3 3 2

1 6 2 -4
-3 2 -2 -8
4 -1 3 9

1 6 2 -4
0 20 4 -20 3 , 4
0 -25 -5 25

1 6 2 -4
1 10 5 1 -5 , ,
4 5

0 0 0 0

=

by R R R R

by R R R R

 
 
 
  
 
  + − 
  
 
  − − 
  





A

 

The first two columns of A are the pivot columns and hence form a basis of Col A = W. 
Hence {v1, v2} is a basis for W. 
Note that the reduced echelon form of A is not needed in order to locate the pivot 
columns. 
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Procedure   
 Basis and Linear Combinations 
Given a set of vectors S = {v1, v2, …,vk} in Rn, the following procedure produces a subset 
of these vectors that form a basis for span (S) and expresses those vectors of S that are 
not in the basis as linear combinations of the basis vector. 
Step1: Form the matrix A having v1, v2,..., vk as its column vectors. 
Step2: Reduce the matrix A to its reduced row echelon form R, and let 

 w1, w2,…, wk be the column vectors of R. 
Step3:  Identify the columns that contain the leading entries i.e., 1’s in R. The 

corresponding column vectors of A are the basis vectors for span (S). 
Step4: Express each column vector of R that does not contain a leading entry as  

a linear combination of preceding column vector that do contain leading entries 
(we will be able to do this by inspection). This yields a set of dependency 
equations involving the column vectors of R. The corresponding equations for the 
column vectors of A express the vectors which are not in the basis as linear 
combinations of basis vectors.  

 
Example 12 Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -4, 0, 6), v3 = (-1, 1, 2, 0) and 
      v4 = (0, -1, 2, 3) that form a basis for the space spanned by these vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors. 
Solution   (a) We begin by constructing a matrix that has v1, v2, v3, v4 as its column 
vectors 

   

1 2 -1 0
-2 -4 1 -1
0 0 2 2
3 6 0 3

 
 
 
 
 
 
↑ ↑ ↑ ↑

1 2 3 4v v v v
       (A) 

Finding a basis for column space of this matrix can solve the first part of our problem. 
Transforming Matrix to Reduced Row Echelon Form: 

   

 1  2 -1  0
-2 -4  1 -1
 0  0  2  2
 3  6  0  3

 
 
 
 
 
 

 

 1  2  -1  0 
 0  0  -1  -1 
 0  0  2  2 
 0  0  3  3 

1 2

1 4

2 R + R
-3R + R

 
 
 
 
 
 

  
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 1  2  -1  0 
 0  0  1  1 
 0  0  2  2 
 0  0  3  3 

2-1R

 
 
 
 
 
 

  

 1  2  -1  0 
 0  0  1  1 
 0  0  0  0 
 0  0  0  0 

2 3

2 4

-2R + R
-3R + R

 
 
 
 
 
 

  

1  2  0  1
0  0  1  1
0  0  0  0
0  0  0  0

2 1R + R

 
 
 
 
 
 

  

Labeling the column vectors of the resulting matrix as w1, w2, w3 and w4 yields 
1  2  0  1
0  0  1  1
0  0  0  0
0  0  0  0

 
 
 
 
 
 

↑↑ ↑ ↑

31 2 4ww w w

     (B) 

The leading entries occur in column 1 and 3 so {w1, w3} is a basis for the column space 
of (B) and consequently {v1, v3} is the basis for column space of (A). 
(b) We shall start by expressing w2 and w4 as linear combinations of the basis vector w1 
and w3. The simplest way of doing this is to express w2 and w4 in term of basis vectors 
with smaller subscripts. Thus we shall express w2 as a linear combination of w1, and we 
shall express w4 as a linear combination of w1 and w3. By inspection of (B), these linear 
combinations are w2 = 2w1 and w4 = w1 + w3. We call them the dependency equations. 
The corresponding relationship of (A) are v3 = 2v1 and v5 = v1 + v3. 
 
Example 13   Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -1, 5, 2), v2 = (-2, 3, 1, 0), v3 = (4, -5, 9, 4),  
v4 = (0, 4, 2, -3) and v5 = (-7, 18, 2, -8) that form a basis for the space spanned by these 
vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors 
Solution   (a) We begin by constructing a matrix that has v1, v2, ... , v5  as its column 
vectors 
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 1 -2  4  0   - 7 
-1  3 -5  4  18 
 5  1  9  2    2 
 2  0  4 -3   -8 

 
 
 
 
 
 

↑ ↑↑ ↑ ↑

3 51 2 4v vv v v

    (A) 

Finding a basis for column space of this matrix can solve the first part of our problem. 
Transforming Matrix to Reduced Row Echelon Form: 

 1 -2  4  0   - 7 
-1  3 -5  4  18 
 5  1  9  2    2 
 2  0  4 -3   -8 

 
 
 
 
 
 

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  11  -11  2  37 
 0  4  - 4  -3  6 

1 2

1 3

1 4

R + R
-5R + R
-2R + R

 
 
 
 
 
 

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  - 42  -84 
 0  0  0  -19  -38 

2 3

2 4

-11R + R
-4R + R

 
 
 
 
 
 

 

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  1  2 
 0  0  0  -19  -38 

3(-1/42)R

 
 
 
 
 
 

 

  

 1  - 2  4  0  - 7 
 0  1  -1  4  11 
 0  0  0  1  2 
 0  0  0  0  0 

3 419R + R

 
 
 
 
 
 

 

 1  - 2  4  0  - 7 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

3 2(-4)R + R

 
 
 
 
 
 

 

  

 1  0  2  0  -1 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

2 12R + R

 
 
 
 
 
 
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Denoting the column vectors of the resulting matrix by w1 , w2 , w3, w4, and w5 yields 
 1  0  2  0  -1 
 0  1  -1  0  3 
 0  0  0  1  2 
 0  0  0  0  0 

 
 
 
 
 
 

↑ ↑↑ ↑ ↑

3 51 2 4w ww w w

     (B) 

The leading entries occur in columns 1,2 and 4 so that {w1, w2, w4} is a basis for the 
column space of  (B) and consequently {v1, v2, v4} is the basis for column space of (A). 
(b) We shall start by expressing w3 and w5 as linear combinations of the basis vector w1, 
w2, w4. The simplest way of doing this is to express w3 and w5 in term of basis vectors 
with smaller subscripts. Thus we shall express w3 as a linear combination of w1 and w2, 
and we shall express w5 as a linear combination of w1, w2, and w4. By inspection of (B), 
these linear combination are w3 = 2w1 – w2 and w5 = -w1 + 3w2 + 2w4. 
The corresponding relationship of (A) are v3 = 2v1 – v2 and v5 = -v1 + 3v2 + 2v4. 
 
Example 14   Basis and Linear Combinations 
(a) Find a subset of the vectors v1 = (1, -2, 0, 3), v2 = (2, -5, -3, 6), v3 = (0, 1, 3, 0), 
 v4 = (2, -1, 4, -7) and v5 = (5 , -8, 1, 2) that form a basis for the space spanned by these 
vectors. 
(b) Express each vector not in the basis as a linear combination of the basis vectors. 
Solution   (a) We begin by constructing a matrix that has v1, v2, ... , v5  as its column 
vectors 

   

1 2 0 2 5
-2 -5 1 -1 -8
0 -3 3 4 1
3 6 0 -7 2

 
 
 
 
 
 
↑ ↑ ↑ ↑ ↑

1 2 3 4 5v v v v v
       (A) 

Finding a basis for column space of this matrix can solve the first part of our problem. 
Reducing the matrix to reduced-row echelon form and denoting the column vectors of the 
resulting matrix by w1, w2, w3, w4, and w5 yields 

 1  0 2  0       1 
 0  1 -1  0       1
  0  0  0  1       1
 0  0  0   0       0

 
 
 
 
 
 

↑ ↑↑ ↑ ↑

3 51 2 4w ww w w

     (B) 

The leading entries occur in columns 1, 2 and 4 so {w1, w2, w4} is a basis for the column 
space of (B) and consequently {v1, v2, v4} is the basis for column space of (A). 
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(b) Dependency equations are  w3 = 2w1 – w2 and w5 = w1 + w2 + w4 
The corresponding relationship of (A) are v3 = 2v1 – v2 and v5 = v1 + v2 + v4 
 
Subspaces of a Finite-Dimensional Space     The next theorem is a natural counterpart 
to the Spanning Set Theorem. 
 
Theorem 5   Let H be a subspace of a finite-dimensional vector space V. Any linearly 
independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-
dimensional and dim dim≤H V . 
 
When the dimension of a vector space or subspace is known, the search for a basis is 
simplified by the next theorem. It says that if a set has the right number of elements, then 
one has only to show either that the set is linearly independent or that it spans the space. 
The theorem is of critical importance in numerous applied problems (involving 
differential equations or difference equations, for example) where linear independence is 
much easier to verify than spanning. 
 
Theorem 5 (The Basis Theorem)     Let V be a p-dimensional vector space, p> 1. Any 
linearly independent set of exactly p elements in V is automatically a basis for V. Any set 
of exactly p elements that spans V is automatically a basis for V. 
 
The Dimensions of Nul A and Col A    Since the pivot columns of a matrix A form a 
basis for Col A, we know the dimension of Col A as soon as we know the pivot columns. 
The dimension of Nul A might seem to require more work, since finding a basis for Nul 
A usually takes more time than a basis for Col A. Yet, there is a shortcut. 
 
Let A be an m n×  matrix, and suppose that the equation Ax = 0 has k free variables. 
From lecture 21, we know that the standard method of finding a spanning set for Nul A 
will produce exactly k linearly independent vectors say, u1, … , uk, one for each free 
variable. So {u1, … , uk} is a basis for Nul A, and the number of free variables determines 
the size of the basis. Let us summarize these facts for future reference. 
 
The dimension of Nul A is the number of free variables in the equation Ax = 0, and the 
dimension of Col A is the number of pivot columns in A. 
 
Example 15     Find the dimensions of the null space and column space of 

-3 6 -1 1 -7
1 -2 2 3 -1
2 -4 5 8 -4

=
 
 
 
  

A  

Solution     Row reduce the augmented matrix [A   0] to echelon form and obtain 
1 -2 2 3 -1 0
0 0 1 2 -2 0
0 0 0 0 0 0

 
 
 
  
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Writing it in equations form, we get 
1 2 3 4 5

3 4 5

2 2 3 0
2 2 0

x x x x x
x x x
− + + − =
+ − =

 

Since the number of unknowns is more than the number of equations, we will introduce 
free variables here (say) x2, x4 and x5. Hence the dimension of Nul A is 3. Also dim Col 
A is 2 because A has two pivot columns. 
 
Example 16     Decide whether each statement is true or false, and give a reason for each 
answer. Here V is a non-zero finite-dimensional vector space. 

1. If dim V = p and if S is a linearly dependent subset of V, then S contains more than 
p vectors. 
2. If S spans V and if T is a subset of V that contains more vectors than S, then T is 
linearly dependent. 

Solution   
1. False. Consider the set {0}. 
2. True. By the Spanning Set Theorem, S contains a basis for V; call that basis ′S . 

Then T will contain more vectors than ′S . By Theorem 1, T is linearly dependent.  
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Exercises   
 
For each subspace in exercises 1-6, (a) find a basis and (b) state the dimension. 
 

1. 
2

: , in
3

s t
s t s t
t

 −  
  +  
    

R     2. 

2

: , , in
3
2

c
a b

a b c
b c
a b

  
  −    −   +  

R  

 

3. 

4 2
2 5 4

: , , in
2

3 7 6

a b c
a b c

a b c
a c
a b c

 − −  
  + −    − +   − + +  

R   4. 

3 6
6 2 2

: , , in
9 5 3
3

a b c
a b c

a b c
a b c
a b c

 + −  
  − −    − + +   − + +  

R   

 
5. {(a, b, c): a – 3b + c = 0, b – 2c = 0, 2b – c = 0} 
 
6 {(a, b, c, d): a - 3b + c = 0} 
 
7. Find the dimension of the subspace H of R2 spanned by 

2 4 3
, ,

5 10 6
− −     

     −     
 

 
8. Find the dimension of the subspace spanned by the given vectors. 

1 3 9 7
0 , 1 , 4 , 3
2 1 2 1

−       
       −       
       −       

 

 
Determine the dimensions of Nul A and Col A for the matrices shown in exercises 9 to 
12. 
 

9. 

1 6 9 0 2
0 1 2 4 5
0 0 0 5 1
0 0 0 0 0

− − 
 − =
 
 
 

A    10. 

1 3 4 2 1 6
0 0 1 3 7 0
0 0 0 1 4 3
0 0 0 0 0 0

− − 
 − =
 −
 
 

A  

 

11. 
1 0 9 5
0 0 1 4
 

=  − 
A    12. 

1 1 0
0 4 7
0 0 5

− 
 =  
  

A  
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13. The first four Hermite polynomials are 1, 2t, -2 + 4t2, and -12t + 8t3. These 
polynomials arise naturally in the study of certain important differential equations in 
mathematical physics. Show that the first four Hermite polynomials form a basis of P3. 
 
14. Let B be the basis of P3 consisting of the Hermite polynomials in exercise 13, and let 
p (t) = 7 – 12 t – 8 t2 + 12 t3. Find the coordinate vector of p relative to B. 
 
15. Extend the following vectors to a basis for R5: 

9 9 6
7 4 7

8 , 1 , 8
5 6 5

7 7 7

−     
     −     
     = = = −
     −     
     − −     

1 2 3v v v  
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Lecture 25 
 

Rank 
 

With the help of vector space concepts, for a matrix several interesting and useful 
relationships in matrix rows and columns have been discussed.  
For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and then 
determining both the maximum number of linearly independent columns in A and the 
maximum number of linearly independent columns in AT (rows in A). Remarkably, the 
two numbers are the same. Their common value is called the rank of the matrix. To 
explain why, we need to examine the subspace spanned by the subspace spanned by the 
rows of A. 
 
The Row Space    If A is an m n×  matrix, each row of A has n entries and thus can be 
identified with a vector in Rn. The set of all linear combinations of the row vectors is 
called the row space of A and is denoted by Row A. Each row has n entries, so Row A is 
a subspace of Rn. Since the rows of A are identified with the columns of AT, we could 
also write Col AT in place of Row A. 

Example 1     Let 

-2 -5 8 0 -17
1 3 -5 1 5

and
3 11 -19 7 1
1 7 -13 5 -3

= (-2,-5,8,0,-17)
= (1,3,-5,1,5)

=
= (3,11,-19,7,1)
= (1,7,-13,5,-3)

 
 
 
 
 
 

1

2

3

4

r
r

A
r
r

 

The row space of A is the subspace of R5 spanned by {r1, r2, r3, r4}. That is, Row A = 
Span {r1, r2, r3, r4}. Naturally, we write row vectors horizontally; however, they could 
also be written as column vectors 
Example   Let   

 

 
That is Row A=Span {r1, r2}. 
 
                     We could use the Spanning Set Theorem to shrink the spanning set to a 
basis. 
Some times row operation on a matrix will not give us the required information but row 
reducing certainly worthwhile, as the next theorem shows  
 
Theorem 1     If two matrices A and B are row equivalent, then their row spaces are the 
same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A 
as well as B. 
 
Theorem 2     If A and B are row equivalent matrices, then 

2 1 0
and

3 -1 4

= (2,1,0)
= (3,-1,4)

=  
 
 

1

2

r
r

A
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(a) A given set of column vectors of A is linearly independent if and only if the 
corresponding column vectors of B are linearly independent. 
(b) A given set of column vector of A forms a basis for the column space of A if and only 
if the corresponding column vector of B forms a basis for the column space of B. 
 
 
 
Example 2   (Bases for Row and Column Spaces) 

Find the bases for the row and column spaces of 

1 -3 4 -2 5 4
2 -6 9 -1 8 2
2 -6 9 -1 9 7
-1 3 -4 2 -5 -4

=

 
 
 
 
 
 

A . 

Solution     We can find a basis for the row space of A by finding a basis for the row 
space of any row-echelon form of A.  

Now  

 1  -3  4  - 2  5   4
 2  - 6  9  -1  8   2
 2  - 6  9  -1  9   7
-1   3 -4   2 -5  - 4

 
 
 
 
 
 

 

 1  -3  4  - 2  5  4 
 0  0  1  3  - 2  - 6 
 0  0  1  3  -1  -1 
 0  0  0  0  0  0 

1 2

1 3

1 4

-2 R + R
-2 R + R

R + R

 
 
 
 
 
 

 

 1  -3  4  - 2  5  4 
 0  0  1  3  - 2  - 6 
 0  0  0  0  1  5 
 0  0  0  0  0  0 

2 3-1R + R

 
 
 
 
 
 

 

Row-echelon form of A: 

1 -3 4 -2 5 4
0 0 1 3 -2 -6
0 0 0 0 1 5
0 0 0 0 0 0

=

 
 
 
 
 
 

R  

Here Theorem 1 implies that that the non zero rows are the basis vectors of the matrix.  
So these bases vectors are 

[ ]
[ ]
[ ]

1 -3 4 -2 5 4

0 0 1 3 -2 -6

0 0 0 0 1 5

=

=

=

1

2

3

r

r

r

 

 A and R may have different column spaces, we cannot find a basis for the column space 
of A directly from the column vectors of R. however, it follows from the theorem (2b) if 



25- Rank                                                                                                                                                        VU 
 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            343 

we can find a set of column vectors of R that forms a basis for the column space of R, 
then the corresponding column vectors of A will form a basis for the column space of A. 
 
The first, third, and fifth columns of R contains the leading 1’s of the row vectors, so 

   

1 4 5
0 1 -2
0 0 1
0 0 0

1 = = =

     
     
     ′ ′ ′
     
     
     

3 5c c c  

form a basis for the column space of R, thus the corresponding column vectors of A 

namely,  

1 4 5
2 9 8
2 9 9
-1 -4 -5

= = =

     
     
     
     
     
     

1 3 5c c c   

form a basis for the column space of A. 
 
Example   
The matrix  
 

 

is in row-echelon form. 
The vectors  

 
 
 
 
 

form a basis for the row space of R, and the vectors 
1 -2 0
0 1 0

, ,
0 0 1
0 0 0

c = c = c =

     
     
     
     
     
     

1 2 3  

form a basis for the column space of R. 
 
 
 
 

1 -2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0

R =

 
 
 
 
 
 

[ ]
[ ]
[ ]

1 -2 5 0 3

0 1 3 0 0

0 0 0 1 0

=

=

=

1

2

3

r

r

r
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Example 3   (Basis for a Vector Space using Row Operation) 
Find bases for the space spanned by the vectors 

   
= (1,-2,0,0,3) = (2,-5,-3,-2,6)
= (0,5,15,10,0) = (2,6,18,8,6)

1 2

3 4

v v
v v

 

Solution   The space spanned by these vectors is the row space of the matrix 

       

1 -2 0 0 3
2 -5 -3 -2 6
0 5 15 10 0
2 6 18 8 6

 

 
 
 
 
 
 

 

Transforming Matrix to Row Echelon Form: 
 

1  - 2    0    0    3
2  -5   -3   - 2    6
0   5  15  10    0
2   6  18    8    6

 
 
 
 
 
 

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  5  15  10  0 
 0  10  18  8  0 

1 2

1 4

2

(-2)R + R
(-2)R + R

(-1)R

 
 
 
 
 
 

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  0  0  0 
 0  0  -12  -12  0 

2 3

2 4

(-5)R + R
(-10)R + R

 
 
 
 
 
 

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  -12  -12  0 
 0  0  0  0  0 

34R

 
 
 
 
 
 

 

 1  - 2  0  0  3 
 0  1  3  2  0 
 0  0  1  1  0 
 0  0  0  0  0 

3(-1/12)R

 
 
 
 
 
 
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Therefore,  

1 -2 0 0 3
0 1 3 2 0
0 0 1 1 0
0 0 0 0 0

=

 
 
 
 
 
 

R  

The non-zero row vectors in this matrix are  
= (1,-2,0,0,3), = (0,1,3,2,0), = (0,0,1,1,0)1 2 3w w w  

These vectors form a basis for the row space and consequently form a basis for the 
subspace of R5 spanned by v1, v2, v3. 
 
Example 4   (Basis for the Row Space of a Matrix) 

Find a basis for the row space of 

1 -2 0 0 3
2 -5 -3 -2 6
0 5 15 10 0
2 6 18 8 6

=

 
 
 
 
 
 

A  consisting entirely of row 

vectors from A. 
Solution     We find AT; then we will use the method of example (2) to find a basis for 
the column space of AT; and then we will transpose again to convert column vectors back 
to row vectors. Transposing A yields 

1 2 0 2
-2 -5 5 6
0 -3 15 18
0 -2 10 8
3 6 0 6

=

 
 
 
 
 
 
  

TA  

Transforming Matrix to Row Echelon Form: 
 1   2   0     2
-2  -5   5     6
 0  -3  15   18
 0  - 2  10     8
 3   6   0     6

 
 
 
 
 
 
  

 

 1  2  0  2 
 0  -1  5  10 
 0  -3  15  18 
 0  - 2  10  8 
 0  0  0  0 

1 2

1 5

2 R + R
(-3)R + R

 
 
 
 
 
 
  
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 1  2  0  2 
 0  1  -5  -10 
 0  -3  15  18 
 0  - 2  10  8 
 0  0  0  0 

2(-1)R  

 
 
 
 
 
 
  

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  -12 
 0  0  0  -12 
 0  0  0  0 

2 3

2 4

(3)R + R
(2)R + R

 
 
 
 
 
 
  

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  1 
 0  0  0  -12 
 0  0  0  0 

3(-1/12)R  

 
 
 
 
 
 
  

 

 1  2  0  2 
 0  1  -5  -10 
 0  0  0  1 
 0  0  0  0 
 0  0  0  0 

3 412 R + R

 
 
 
 
 
 
  

 

Now   

1 2 0 2
0 1 -5 -10
0 0 0 1
0 0 0 0
0 0 0 0

=

 
 
 
 
 
 
  

R  

The first, second and fourth columns contain the leading 1’s, so the corresponding 
column vectors in AT form a basis for the column space of AT; these are 

1 2 2
-2 -5 6

and0 -3 18
0 -2 8
3 6 6

= , = =

     
     
     
     
     
     
          

1 2 4c c c  

Transposing again and adjusting the notation appropriately yields the basis vectors 
[ ] [ ] [ ]1 -2 0 0 3 2 -5 -3 -2 6 2 6 18 8 6= , = and =1 2 4r r r  

for the row space of A. 
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The following example  shows how one sequence of row operations on A leads to bases 
for the three spaces: Row A, Col A, and Nul A. 
  
 
 
Example 5     Find bases for the row space, the column space and the null space of the 
matrix  

 
 
 
 
 
 

 
Solution     To find bases for the row space and the column space, row reduce A to an 

echelon form: 

1 3 -5 1 5
0 1 -2 2 -7
0 0 0 -4 20
0 0 0 0 0

=

 
 
 
 
 
 

A B  

By Theorem (1), the first three rows of B form a basis for the row space of A (as well as 
the row space of B). Thus Basis for Row A:  

{(1, 3, -5, 1, 5), (0, 1, -2, 2, -7), (0, 0, 0, -4, 20)} 
For the column space, observe from B that the pivots are in columns 1, 2 and 4. Hence 
columns 1, 2 and 4 of A (not B) form a basis for Col A: 

-2 -5 0
1 3 1

Basis for Col : , ,
3 11 7
1 7 5

      
      
                         

A  

Any echelon form of A provides (in its nonzero rows) a basis for Row A and also 
identifies the pivot columns of A for Col A. However, for Nul A, we need the reduced 
echelon form. Further row operations on B yield 

1 0 1 0 1
0 1 -2 0 3
0 0 0 1 -5
0 0 0 0 0

=

 
 
 
 
 
 

 A B C  

The equation Ax = 0 is equivalent to Cx = 0, that is, 
1 3 5

2 3 5

4 5

x +           x            +  x  = 0
        x  - 2x            + 3x  = 0
 x     - 5x  = 0

 

-2 -5 8 0 -17
1 3 -5 1 5
3 11 -19 7 1
1 7 -13 5 -3

=

 
 
 
 
 
 

A
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So x1 = -x3 – x5, x2 = 2x3 – 3x5, x4 = 5x5, with x3 and x5 free variables. The usual 
calculations (discussed in lecture 21) show that 

-1 -1
2 -3

Basis for Nul : ,1 0
0 5
0 1

    
    
         
    
    
        

A  

 
Observe that, unlike the bases for Col A, the bases for Row A and Nul A have no simple 
connection with the entries in A itself. 
 
Note    
1.  Although the first three rows of B in Example (5) are linearly independent, it is wrong   

to conclude that the first three rows of A are linearly independent. (In fact, the third 
row of A is 2 times the first row plus 7 times the second row). 

 2.  Row operations do not preserve the linear dependence relations among the rows of a 
matrix. 

 
Definition     The rank of A is the dimension of the column space of A. 
Since Row A is the same as Col AT, the dimension of the row space of A is the rank of 
AT. The dimension of the null space is sometimes called the nullity of A. 
 
Theorem 3   (The Rank Theorem) The dimensions of the column space and the row 
space of an m n×  matrix A are equal. This common dimension, the rank of A, also equals 
the number of pivot positions in A and satisfies the equation 

rank A + dim Nul A = n 
 
Example 6   
(a) If A is a 7 9×  matrix with a two – dimensional null space, what is the rank of A? 
(b). Could a 6 9×  matrix have a two – dimensional null space? 
Solution     
 (a) Since A has 9 columns, (rank A) + 2 = 9 and hence rank A = 7. 
 (b) No, If a 6 9×  matrix, call it B, had a two – dimensional null space, it would have to 
have rank 7, by the Rank Theorem. But the columns of B are vectors in R6 and so the 
dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6. 
 
The next example provides a nice way to visualize the subspaces we have been studying. 
Later on, we will learn that Row A and Nul A have only the zero vector in common and 
are actually “perpendicular” to each other. The same fact will apply to Row AT (= Col A) 
and Nul AT. So the figure in Example (7) creates a good mental image for the general 
case.  
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Example 7   Let 
3 0 1
3 0 1
4 0 5

− 
 = − 
  

A . It is readily checked that Nul A is the x2 – axis, Row 

A is the x1x3 – plane, Col A is the plane whose equation is x1 – x2 = 0 and Nul AT is the 
set of all multiples of (1, -1, 0). Figure 1 shows Nul A and Row A in the domain of the 
linear transformation ;→x Ax  the range of this mapping, Col A, is shown in a separate 
copy of R3, along with Nul AT. 

 
Figure 1 – Subspaces associated with a matrix A 

 
Applications to Systems of Equations   
   The Rank Theorem is a powerful tool for processing information about systems of 
linear equations. The next example simulates the way a real-life problem using linear 
equations might be stated, without explicit mention of linear algebra terms such as 
matrix, subspace and dimension. 
 
 Example 8     A scientist has found two solutions to a homogeneous system of 40 
equations in 42 variables. The two solutions are not multiples and all other solutions can 
be constructed by adding together appropriate multiples of these two solutions. Can the 
scientist be certain that an associated non-homogeneous system (with the same 
coefficients) has a solution?  
Solution     Yes. Let A be the 40 42×  coefficient matrix of the system. The given 
information implies that the two solutions are linearly independent and span Nul A. So 
dim Nul A = 2. By the Rank Theorem, dim Col A = 42 – 2 = 40. Since R40 is the only 
subspace of R40 whose dimension is 40, Col A must be all of R40. This means that every 
non-homogeneous equation Ax = b has a solution. 
 

x2 
x1 

x3 

0 

Row A 

Nul A x2 

x1 

0 

Col A 

Nul AT 

x3 

R3 
R3 
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Example 9     Find the rank and nullity of the matrix 

-1 2 0 4 5 -3
3 -7 2 0 1 4
2 -5 2 4 6 1
4 -9 2 -4 -4 7

=

 
 
 
 
 
 

A . 

Verify that values obtained verify the dimension theorem. 

Solution 

 -1  2  0  4  5  -3 
 3  - 7  2  0  1  4 
 2  -5  2  4  6  1 
 4  -9  2  - 4  - 4  7 

 
 
 
 
 
 

 

 

 1  - 2  0  - 4  -5  3 
 3  - 7  2  0  1  4 
 2  -5  2  4  6  1 
 4  -9  2  - 4  - 4  7 

1(-1)R

 
 
 
 
 
 

 

  

 1  - 2  0  - 4  -5  3 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 

1 2

1 3

1 4

(-3)R + R
(-2)R + R
(-4)R + R

 
 
 
 
 
 

 

 1  - 2  0  - 4  -5  3 
 0  1  - 2  -12  -16  5 
 0  -1  2  12  16  -5 
 0  -1  2  12  16  -5 

2(-1)R

 
 
 
 
 
 

 

  

 1  - 2  0  - 4  -5  3 
 0  1  - 2  -12  -16  5 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

2 3

2 4

R + R
R + R

 
 
 
 
 
 

 

 1  0  - 4  - 28  -37  13 
 0  1  - 2  -12  -16  5 
 0  0  0  0  0  0 
 0  0  0  0  0  0 

2 12R + R

 
 
 
 
 
 

 

The reduced row-echelon form of A is 
1 0 -4 -28 -37 13
0 1 -2 -12 -16 5
0 0 0 0 0 0
0 0 0 0 0 0

 
 
 
 
 
 

     (1) 
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The corresponding system of equations will be 
1 3 4 5 6

2 3 4 5 6

x  - 4x  - 28x  - 37x  + 13x  = 0
x  - 2x  -12x  - 16x  +  5x  = 0

 

or, on solving for the leading variables, 
1 3 4 5 6

2 3 4 5 6

x  = 4x  - 28x  + 37x  - 13x
x  = 2x  +12x  + 16x  - 5x       (2) 

it follows that the general solution of the system is  
1

2

3

4

5

6

x  = 4r + 28s + 37t - 13u
x  = 2r + 12s + 16t -  5u
x  = r
x  = s
x  = t
x  = u

 

or equivalently, 

1

2

3

4

5

6

x 4 28 37 -13
x 2 12 16 -5
x 1 0 0 0

= r + s +t +u
x 0 1 0 0
x 0 0 1 0
x 0 0 0 1

         
         
         
         
         
         
         
         
          

    (3) 

The four vectors on the right side of (3) form a basis for the solution space, so  

nullity (A) = 4. The matrix 

-1 2 0 4 5 -3
3 -7 2 0 1 4
2 -5 2 4 6 1
4 -9 2 -4 -4 7

=

 
 
 
 
 
 

A  has 6 columns,  

so rank(A) + nullity(A) = 2 + 4 = 6 = n 
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Example 10     Find the rank and nullity of the matrix; then verify that the values 

obtained satisfy the dimension theorem 

1 -3 2 2 1
0 3 6 0 -3
2 -3 -2 4 4
3 -6 0 6 5
-2 9 2 -4 -5

=

 
 
 
 
 
 
  

A  

Solution     Transforming Matrix to the Reduced Row Echelon Form: 
 1  -3  2  2  1 
 0  3  6  0  -3 
 2  -3  - 2  4  4 
 3  - 6  0  6  5 
 - 2  9  2  - 4  -5 

 
 
 
 
 
 
  

 

  

 1  -3  2  2  1 
 0  3  6  0  -3 
 0  3  - 6  0  2 
 0  3  - 6  0  2 
 0  3  6  0  -3 

1 3

1 4

1 5

(-2)R + R
(-3)R + R

2R + R

 
 
 
 
 
 
  

 

 1  -3  2  2  1 
 0  1  2  0  -1 
 0  3  - 6  0  2 
 0  3  - 6  0  2 
 0  3  6  0  -3 

2(1/3)R   

 
 
 
 
 
 
  

 

  

 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  -12  0  5 
 0  0  -12  0  5 
 0  0  0  0  0 

2 3

2 4

2 5

(-3) R  + R
(-3) R + R
(-3)R + R

 
 
 
 
 
 
  

 

 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  1  0  -5/12 
 0  0  -12  0  5 
 0  0  0  0  0 

3(-1/12)R   

 
 
 
 
 
 
  
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 1  -3  2  2  1 
 0  1  2  0  -1 
 0  0  1  0  -5/12 
 0  0  0  0  0 
 0  0  0  0  0 

3 412R + R

 
 
 
 
 
 
  

 

  

 1  -3  0  2  11/6 
 0  1  0  0  -1/6 
 0  0  1  0  -5/12 
 0  0  0  0  0 
 0  0  0  0  0 

3 2

3 1

(-2 ) R  + R
(-2 ) R  + R

 
 
 
 
 
 
  

 

  

 1  0  0  2  4/3 
 0  1  0  0  -1/6 
 0  0  1  0  -5/12 
 0  0  0  0  0 
 0  0  0  0  0 

2 1(3) R  + R

 
 
 
 
 
 
  

   (1) 

Since there are three nonzero rows (or equivalently, three leading 1’s) the row space and 
column space are both three dimensional so rank (A) = 3. 
 To find the nullity of A, we find the dimension of the solution space of the linear system 
Ax = 0. The system can be solved by reducing the augmented matrix to reduced row 
echelon form. The resulting matrix will be identical to (1), except with an additional last 
column of zeros, and the corresponding system of equations will be 

 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

4x + 0x + 0x + 2x + x = 0
3

10x + x + 0x + 0x - x = 0
6
50x + 0x + x + 0x - x = 0

12

  

The system has infinitely many solutions:  

x1 = -2 x4+(-4/3) x5  x2 = (1/6) x5 

x3  = (5/12) x5   x4 = s 

x5 = t 

The solution can be written in the vector form:  

c4 = (-2, 0, 0, 1, 0)  c5 = (-4/3, 1/6, 5/12,0,1) 
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Therefore the null space has a basis formed by the set  

{(-2, 0, 0, 1, 0), (-4/3, 1/6, 5/12,0,1)} 

The nullity of the matrix is 2. Now Rank (A) + nullity (A) = 3 + 2 =5 = n 
 
Theorem 4     If A is an m x n, matrix, then 
(a) rank (A) = the number of leading variables in the solution of Ax = 0 
(b) nullity (A) = the number of parameters in the general solution of Ax = 0 
 
Example 11     Find the number of parameters in the solution set of Ax = 0 if A is a 5 7×  
matrix of rank 3. 
Solution   nullity (A) = n – rank (A) = 7-3 =4 
Thus, there are four parameters. 
 
Example    Find the number of parameters in the solution set of Ax = 0 if A is a 4 4×  
matrix of rank 0. 
Solution nullity (A) = n – rank (A) = 4-0 =4 
Thus, there are four parameters. 
 
Theorem 5     If A is any matrix, then rank (A) = rank (AT) 
 
Four fundamental matrix spaces   

   If we consider a matrix A and its transpose AT together, then there are six 
vectors spaces of interest: 
Row space of A  row space of AT 

Column space of A  column space of AT 

Null space of A null space of AT 

However, transposing a matrix converts row vectors into column vectors and column 
vectors into row vectors, so that, except for a difference in notation, the row space of AT 
is the same as the column space of A and the column space of AT is the same as row 
space of of A. 
This leaves four vector spaces of interest: 
Row space of A  column space of A  
Null space of A  null space of AT 
These are known as the fundamental matrix spaces associated with A, if A is an m x n 
matrix, then the row space of A and null space of A are subspaces of Rn and the column 
space of A and the null space of AT are subspaces of Rm. 
 
Suppose now that A is an m x n matrix of rank r, it follows from theorem (5) that AT is an 
n x m matrix of rank r . Applying theorem (3) on A and AT yields 

Nullity (A)=n-r, nullity (AT)=m-r 
From which we deduce the following table relating the dimensions of the four 
fundamental spaces of an m x n matrix A of rank r. 
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Fundamental space      Dimension 
Row space of A      r 
Column space of A      r 
Null space of A     n-r 
Null space of AT      m-r 
 
Example 12     If A is a 7 x 4 matrix, then the rank of A is at most 4 and, consequently, 
the seven row vectors must be linearly dependent. If A is a 4 x 7 matrix, then again the 
rank of A is at most 4 and, consequently, the seven column vectors must be linearly 
dependent. 
 
Rank and the Invertible Matrix Theorem     The various vector space concepts 
associated with a matrix provide several more statements for the Invertible Matrix 
Theorem. We list only the new statements here, but we reference them so they follow the 
statements in the original Invertible Matrix Theorem in lecture 13. 
 
Theorem 6     The Invertible Matrix Theorem (Continued) 
Let A be an n x n matrix. Then the following statements are each equivalent to the 
statement that A is an invertible matrix. 

m. The columns of A form a basis of Rn. 
n. Col A = Rn. 
o. dim Col A = n 
p. rank A = n 
q. Nul A = {0} 
r. dim Nul A = 0 

 
Proof     Statement (m) is logically equivalent to statements (e) and (h) regarding linear 
independence and spanning. The other statements above are linked into the theorem by 
the following chain of almost trivial implications: 

( ) ( ) ( ) ( ) ( ) ( ) ( )g n o p r q d⇒ ⇒ ⇒ ⇒ ⇒ ⇒  
Only the implication (p) ⇒  (r) bears comment. It follows from the Rank Theorem 
because A is n n× . Statements (d) and (g) are already known to be equivalent, so the 
chain is a circle of implications. 
 
We have refrained from adding to the Invertible Matrix Theorem obvious statements 
about the row space of A, because the row space is the column space of AT. Recall from 
(1) of the Invertible Matrix Theorem that A is invertible if and only if AT is invertible. 
Hence every statement in the Invertible Matrix Theorem can also be stated for AT.  
 
Numerical Note   
                 Many algorithms discussed in these lectures are useful for understanding 
concepts and making simple computations by hand. However, the algorithms are often 
unsuitable for large-scale problems in real life.  
Rank determination is a good example. It would seem easy to reduce a matrix to echelon 
form and count the pivots. But unless exact arithmetic is performed on a matrix whose 
entries are specified exactly, row operations can change the apparent rank of a matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   
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For instance, if the value of x in the matrix 
5 7
5 x
 
 
 

 is not stored exactly as 7 in a 

computer, then the rank may be 1 or 2, depending on whether the computer treats x – 7 as 
zero. 
In practical applications, the effective rank of a matrix A is often determined from the 
singular value decomposition of A. 
 
Example 13    The matrices below are row equivalent 

2 -1 1 -6 8 1 -2 -4 3 -2
1 -2 -4 3 -2 0 3 9 -12 12
-7 8 10 3 -10 0 0 0 0 0
4 -5 -7 0 4 0 0 0 0 0

= , =

   
   
   
   
   
   

A B  

1. Find rank A and dim Nul A. 
2. Find bases for Col A and Row A. 
3. What is the next step to perform if one wants to find a basis for Nul A? 
4. How many pivot columns are in a row echelon form of AT? 

Solution   
1. A has two pivot columns, so rank A = 2. Since A has 5 columns altogether, dim 

Nul A = 5 – 2 = 3. 
2. The pivot columns of A are the first two columns. So a basis for Col A is 

2 -1
1 -2

,
-7 8
4 -5

{ , }=

    
    
                 

1 2a a

The nonzero rows of B form a basis for Row A, namely {(1, –2, –4, 3, –2), (0, 3, 
9, –12, 12)}. In this particular example, it happens that any two rows of A form a 
basis for the row space, because the row space is two-dimensional and none of the 
rows of A is a multiple of another row. In general, the nonzero rows of an echelon 
form of A should be used as a basis for Row A, not the rows of A itself. 

3. For Nul A, the next step is to perform row operations on B to obtain the reduced 
echelon form of A. 

4. Rank AT = rank A, by the Rank Theorem, because Col AT = Row A. So AT has 
two pivot positions. 

 
Exercises   
 
In exercises 1 to 4, assume that the matrix A is row equivalent to B. Without calculations, 
list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A. 
 

1. 
1 4 9 7 1 0 1 5
1 2 4 1 , 0 2 5 6

5 6 10 7 0 0 0 0

− − −   
   = − − = − −   
   −   

A B   
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2. 

1 3 4 1 9 1 3 0 5 7
2 6 6 1 10 0 0 2 3 8

,
3 9 6 6 3 0 0 0 0 5

3 9 4 9 0 0 0 0 0 0

− − − −   
   − − − − −   =
   − − − −
   −   

A B =  

 

3. 

2 3 6 2 5 2 3 6 2 5
2 3 3 3 4 0 0 3 1 1

,
4 6 9 5 9 0 0 0 1 3
2 3 3 4 1 0 0 0 0 0

− −   
   − − − − −   = =
   −
   − −   

A B  

 

4. 

1 1 3 7 9 9 1 1 3 7 9 9
1 2 4 10 13 12 0 1 1 3 4 3

,1 1 1 1 1 3 0 0 0 1 1 2
1 3 1 5 7 3 0 0 0 0 0 0
1 2 0 0 5 4 0 0 0 0 0 0

− − − −   
   − − − −   
   = =− − − − −
   − − −   
   − − −   

A B  

 
5. If a 3 x 8 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT. 
 
6. If a 6 x 3 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT. 
 
7. Suppose that a 4 x 7 matrix A has four pivot columns. Is Col A = R4? Is Nul A = R3? 
Explain your answers. 
 
8. Suppose that a 5 x 6 matrix A has four pivot columns. What is dim Nul A? Is Col A = 
R4? Why or why not?  
 
9. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the 
column space of A? 
 
10. If the null space of a 7 x 6 matrix A is 5-dimensional, what is the dimension of the 
column space of A? 
 
11. If the null space of an 8 x 5 matrix A is 2-dimensional, what is the dimension of the 
row space of A? 
 
12. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the 
row space of A? 
 
13. If A is a 7 x 5 matrix, what is the largest possible rank of A? If A is a 5 x 7 matrix, 
what is the largest possible rank of A? Explain your answers. 
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14. If A is a 4 x 3 matrix, what is the largest possible dimension of the row space of A? If 
A is a 3 x 4 matrix, what is the largest possible dimension of the row space of A? Explain. 
 
15. If A is a 6 x 8 matrix, what is the smallest possible dimension of Nul A? 
 
16. If A is a 6 x 4 matrix, what is the smallest possible dimension of Nul A? 
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Lecture 26 
 

Change of Basis 
 
When a basis B is chosen for an n-dimensional vector space V, the associated coordinate 
mapping onto Rn provides a coordinate system for V. Each x in V is identified uniquely 
by its B-coordinate vector [x]B. 
In some applications, a problem is described initially using a basis B, but the problem’s 
solution is aided by changing B to a new basis C. Each vector is assigned a new C-
coordinate vector. In this section, we study how [x]C and [x]B are related for each x in V. 
To visualize the problem, consider the two coordinate systems in Fig. 1.  
In Fig. 1(a), x = 3b1 + b2, while in Fig. 1 (b), the same x is shown as x = 6c1 + 4c2. That   
is 

 
 

 
 
Example 1 shows how to find the connection between the two coordinate vectors. 
provided we know how b1 and b2 are formed from c1 and c2. 

Figure 1 – Two coordinate systems for the same vector space 
 
 
Example 1     Consider two bases B = {b1, b2} and C = {c1, c2} for a vector space V, 
such that    
                      b1=4c1+c2 and b2 = -6c1 + c2            (1) 
Suppose that x = 3b1 + b2        (2) 

 suppose that 
3

[ ] .
1
 

=  
 

Bx  Find [x]C. 

Solution      Since the coordinate mapping is a linear transformation, we apply (2) 

3c2 

0 

b2 

b1 

3b1 

x 
c1 

4c1 

c2 

x 

3 6
[ ] and [ ]

1 4
   

= =   
   

B Cx x
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[ ] [3 ]= +C 1 2 Cx b b  
[ ] [ ]C3= +1 2 Cb b  

 as a matrix equation, 

[ ] 3
[ ] [ ] [ ]

1
 

=  
 

C 1 C 2 Cx b b             (3) 

From (1), 
4 -6

[ ] = and[ ] =
1 1
   
   
   

1 C 2 Cb b  

from (3)          
4 -6 3 6

[ ] = =
1 1 1 4
     
     
     

Cx  

 
The C – coordinates of x match those of the x in Fig. 1. 
The argument used to derive formula (3) is easily generalized to yield the following 
result.  
 
Theorem     Let B = {b1, … , bn} and C = {c1, … , cn} be bases of a vector space V. Then 
there exists an n x n matrix 

←C B
P  such that 

[ ] [ ]
←

=C BC B
x P x        (4) 

The columns of 
←C B
P  are the C-coordinate vectors of the vectors in the basis B. So 

[ ] [ ] [ ]
←

 =  1 C 2 C n CC B
P b b b  

The matrix 
←C B
P  in above theorem is called the change-of-coordinates matrix from B 

to C. Multiplication by 
←C B
P  converts B-coordinates into C-coordinates. Figure 2 

illustrates the change-of-coordinates equation (4). 
The columns of 

←C B
P  are linearly independent because they are the coordinate vectors of 

the linearly independent set B. Thus
←C B
P  is invertible. Left-multiplying both sides of (4) 

by ( ) 1−

←C B
P , we obtain 

( ) 1
[ ] [ ]

−

←
=C BC B

P x x  
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•x 

 
          [  ]C             [  ]B 

 
 
 

   multiplication 
     [x]C •             • [x]B 

                    by 
←C B
P  

  Figure 2 Two coordinate system for V. 
 

Thus ( ) 1−

←C B
P is the matrix that converts C-coordinates into B-coordinates. That is, 

( ) 1−

← ←
=

C B B C
P P       (5) 

 
Change of Basis in Rn     If B = {b1, …, bn} and E is the standard basis {e1, … , en} in 
Rn, then  [b1]E = b1, and likewise for the other vectors in B. In this case, 

←E B
P  is the same 

as the change-of-coordinates matrix PB introduced in Lecture 23, namely,  
[ ]=B 1 2 nP b b b  

To change coordinates between two nonstandard bases in Rn, we need above Theorem. 
The theorem shows that to solve the change-of-basis problem, we need the coordinate 
vector of the old basis relative to the new basis. 
 
Example 2     Let D = {d1, d2, d3} and F = {f1, f2, f3} be basis for vector space V, and 
suppose that f1 = 2d1 – d2 + d3, f2 = 3d2 + d3, f3 = -3d1 + 2d3. 

(a) Find the change-of-coordinates matrix from F to D. 
(b) Find [x]D for x  = f1 – 2f2 + 2f3. 

Solution    (a)   [ ][ ] [ ] [ ]
←

= 1 D 2 D 3 DD F
P f f f  

But  1

2 0 -3
[ ] -1 ,[ ] 3 ,[ ] 0

1 1 2

     
     = = =     
          

D 2 D 3 Df f f  

∴  
2 0 -3
-1 3 0
1 1 2

←

 
 =  
  

D F
P  

 
 
 
 
 
(b)   [x]D = [f1 – 2f2 + 2f3]D = [f1]D – 2[f2]D + 2[f3]D  
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= [ ]1[ ] [ ] [ ]D 2 D 3 Df f f
1
-2
2

 
 
 
  

  

=
2 0 -3
-1 3 0
1 1 2

 
 
 
  

1
-2
2

 
 
 
  

=
- 4
-7
3

 
 
 
  

 

 

Example 3   Let 
-9 -5 1 3

= , = , = , =
1 -1 -4 -5

       
       
       

1 2 1 2b b c c  and consider the bases for 

R2 given by B = {b1, b2} and C = {c1, c2}. Find the change of coordinates matrix from B 
to C. 
Solution     The matrix 

←C B
P  involves the C – coordinate vectors of b1 and b2.  

          Let 1

2

[ ]
x
x
 

=  
 

1 Cb  and 1

2

[ ]
y
y
 

=  
 

2 Cb . Then, by definition, 

 
1 1

2 2

[ ] and [ ]
x y
x y
   

= =   
   

1 2 1 1 2 2c c b c c b                                          

To solve both systems simultaneously augment the coefficient matrix with b1 and 
b2 and row reduce: 

 
 

 
2 1

2

1 2

1 3 -9 -5
[ ]

- 4 -5 1 -1

1 3 -9 -5
4

0 7 -35 -21

1 3 -9 -5 1
0 1 -5 -3 7
1 0 6 4

3 (6)
0 1 -5 -3

R R

R

R R

 
=  
 
 

+ 
 
 
 
 
 

− 
 







1 2 1 2c c b b

   

 
6 4

[ ] and [ ]
-5 -3
   

= =   
   

1 C 2 Cb b  

therefore  

 
←C B
P [ ] 6 4

[ ] [ ]
-5 -3
 

= =  
 

1 C 2 Cb b  

 



26- Change Of Basis  VU 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            363 

Example 4        Let 
7 2 4 5

= , = , = , =
-2 -1 1 2
       
       
       

1 2 1 2b b c c  and consider the bases for 

R2 given by B = {b1, b2} and C = {c1, c2}. 
(a) Find the change – of – coordinates matrix from C to B. 
(b) Find the change – of – coordinates matrix from B to C. 
Solution   
(a) Notice that 

←B C
P  is needed rather than 

←C B
P  and compute 

1

7 2 4 5
[ ]

-2 -1 1 2

2 4 51 1
7 7 7

7-2 -1 1 2
R

 
=  
 

 
 
 
 

1 2 1 2b b c c

 

1 2

2

2 1

2 4 51
7 7 7 2
3 15 240 -
7 7 7

2 4 51 7-7 7 7
30 1 -5 -8

1 0 2 3 2-
0 1 -5 -8 7

R R

R

R R

 
 

+ 
 
  
 
 
 
 
 

+ 
 

 

so  
←B C
P

2 3
=

-5 -8
 
 
 

 

(b) By part (a) and property (5) above (with B and C interchanged), 
1 -8 -3 8 31( ) = =

5 2 -5 -2-1
−

← ←

   
=    

   C B B C
P P . 

 

Example 5     Let 
1 -2 -7 -5

= , = , = , =
-3 4 9 7
       
       
       

1 2 1 2b b c c  and consider the bases for 

R2 given by B = {b1, b2} and C = {c1, c2}. 
(a) Find the change – of – coordinates matrix from C to B. 
(b) Find the change – of – coordinates matrix from B to C. 
Solution   
(a) Notice that 

←B C
P  is needed rather than 

←C B
P  and compute 

1 -2 -7 -5 1 0 5 3
[ ]

-3 4 9 7 0 1 6 4
   

=    
   

1 2 1 2b b c c   
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so  
←B C
P

5 3
=

6 4
 
 
 

 

(b) By part (a) and property (5) above (with B and C interchanged), 
1 4 -3 2 -3/21( ) = =

-6 5 -3 5/22
−

← ←

   
=    

   C B B C
P P . 

 
Example 6   
1. Let F = {f1, f2} and G = {g1, g2} be bases for a vector space V, and let P be a matrix 

whose columns are [f1]G. Which of the following equations is satisfied by P for all v 
in V? 

(i)  [v]F = P[v]G (ii)  [v]G = P[v]F 
2. Let B and C be as in Example 1. Use the results of that example to find the change-

of-coordinates matrix from C to B. 
Solution   
1. Since the columns of P are G-coordinate vectors, a vector of the form Px must be a 

G-coordinate vector. Thus P satisfies equation (ii). 
2. The coordinate vectors found in Example 1 show that 

[ ] [ ] 4 -6
=

1 1←

  =     
1 2C CC B

P b b  

Hence  ( ) 1 1 6 0.1 0.61= =
-1 4 -0.1 0.410

−

← ←

   
=    

   B C C B
P P  

 
Exercises   
 
1. Let B = {b1, b2} and C = {c1, c2} be bases for a vector space V, and suppose that  
b1 = 6 c1 – 2 c2 and b2 = 9 c1 – 4 c2. 
(a) Find the change-of-coordinates matrix from B to C. 
(b) Find [x]C for x = -3 b1 + 2 b2. Use part (a). 
 
2. Let B = {b1, b2} and C = {c1, c2} be bases for a vector space V, and suppose that  
b1 = -c1 + 4 c2 and b2 = 5 c1 – 3 c2. 
(a) Find the change-of-coordinates matrix from B to C. 
(b) Find [x]C for x = 5 b1 + 3 b2. 
 
3. Let U = {u1, u2} and W = {w1, w2} be bases for V, and let P be a matrix whose 
columns are [u1]W and [u2]W . Which of the following equations is satisfied by P for all x 
in V? 
(i) [x]U = P[x]W    (ii) [x]W = P[x]U 
 
4. Let A = {a1, a2, a3}and D = {d1, d2, d3} be bases for V, and let 

[ ][ ] [ ] [ ]= 1 A 2 A 3 AP d d d . Which of the following equations is satisfied by P for all x in 
V? 
(i) [x]A = P[x]D    (ii) [x]D = P[x]A 
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5. Let A = {a1, a2, a3} and B = {b1, b2, b3} be bases for a vector space V, and suppose 
that a1 = 4b1 – b2, a2 = -b1 + b2 + b3, and a3 = b2 – 2 b3. 
(a) Find the change-of-coordinates matrix from A to B. 
(b) Find [x]B for x = 3 a1 + 4 a2 + a3.  
  
In exercises 6 to 9, let B = {b1, b2} and C = {c1, c2} be bases for R2. In each exercise, 
find the change-of-coordinates matrix from B to C, and change-of-coordinates matrix 
from C to B. 
 

6. 
7 3 1 2

, , ,
5 1 5 21 2 1 2b b c c

− −       
= = = =       − −       

 

 

7 
1 1 1 1

, , ,
8 5 4 11 2 1 2b b c c
−       

= = = =       −       
 

 

8. 
6 2 2 6

, , ,
1 0 1 21 2 1 2b b c c

−       
= = = =       − − −       

 

 

9. 
7 2 4 5

, , ,
2 1 1 21 2 1 2b b c c       

= = = =       − −       
 

 
10. In P2, find the change-of-coordinate matrix from the basis B = {1 – 2 t + t2, 3 – 5 t + 
4 t2, 2 t + 3 t2} to the standard basis C = {1, t, t2}. Then find the B-coordinate vector for  
–1 + 2 t. 
 
11. In P2, find the change-of-coordinates matrix from the basis B = {1 – 3 t2, 2 + t – 5 t2, 
1 + 2 t} to the standard basis. Then write t2 as a linear combination of the polynomials in 
B. 
 

12. Let 
1 2 1 2 8 7
3 5 0 , 2 , 5 , 2

4 6 1 3 2 6
1 2 3P v v v

− − − −       
       = − − = = =       
              

 

(a). Find a basis {u1, u2, u3} for R3 such that P is the change-of-coordinates matrix from 
{u1, u2, u3} to the basis {v1, v2, v3}. 
(b). Find a basis {w1, w2, w3} for R3 such that P is the change-of-coordinates matrix from 
{v1, v2, v3} to {w1, w2, w3}. 
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Lecture 27 
 

Applications to Difference Equations 
 
Recently Discrete or Digital data has been used preferably rather then continuous data in 
scientific and engineering problems. Difference equation is considered more reliable tool 
to analyze such type of data even if we are using a differential equation to analyze 
continuous process, a numerical solution is often produced from a related difference 
equation. 
In this lecture we will study some fundamental properties of linear difference equation 
that are considered best tool in Linear Algebra. 
 
Discrete-Time Signals     Let S is the space of discrete-time signals. A signal in S is a 
function defined only on the integers and is visualized as a sequence of numbers, say, 
{yk}. 
Digital signals obviously arise in electrical and control systems engineering, but discrete-
data sequences are also generated in biology, physics, economics, demography and many 
other areas, wherever a process is measured, or sampled, at discrete time intervals. 
When a process beings at a specific time, it is sometimes convenient to write a signal as a 
sequence of the form ( )0 1 2, , ,...y y y . The term ky  for k<0 either are assumed to be zero or 
are simply omitted. 
 Discrete time signals are functions defined on integers that are sequences or it takes only 
a discrete set of values. 
For Example a Radio Station broadcast’s weather report once in a day so the sampling 
period is discrete, but sampling may be uniform or constant accordingly. 
 
Example 1     The crystal clear sounds from a compact disc player are produced from 
music that has been sampled at the rate of 44,100 times per second.  At each 
measurement, the amplitude of the music signal is recorded as a number, say, yk. The 
original music is composed of many different sounds of varying frequencies, yet the 
sequence {yk} contains enough information to reproduce all the frequencies in the sound 
up to about 20,000 cycles per second, higher than the human ear can sense. 
 
Linear Independence in the Space S of Signals     To simplify notation, we consider a 
set of only three signals in S, say, {uk},{vk}and {wk}. They are linearly independent 
precisely when the equation 

k k ku v w1 2 3c +c +c = 0  for all k        (1) 
implies that c1 = c2 = c3 = 0. The phrase “for all k” means for all integers positive, 
negative and zero. One could also consider signals that start with k = 0, for example, in a 
case “for all k” would mean for all integers k > 0. 
Suppose c1, c2, c3 satisfy (1). Then the equation (1) holds for any three consecutive 
values of k, say, k, k + 1 and k + 2. Thus (1) implies that  

k+1 k+1 k+1u v w+ +1 2 3c c c = 0  for all k 

and  k+2 k+2 k+2u v w1 2 3c +c +c = 0  for all k 
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Hence c1, c2, c3 satisfy 
 

1

2

3

0
0
0

k k k

k+1 k+1 k+1

k+2 k+2 k+2

u v w
u v w
u v w

     
     =     
          

c
c
c

 for all k  (2) 

The coefficient matrix in this system is called the Casorati matrix of the signals, and the 
determinant of the matrix is called the Casoratian of {uk},{vk}, and {wk}. If for at least 
one value of k the Casorati matrix is invertible, then (2) will imply that c1 = c2 = c3 = 0, 
which will prove that the three signals are linearly independent. 
 
Example 2   Verify that 1k, (-2)k and 3k are linearly independent signals. 

Solution   The Casorati matrix is 
( )

( )
( )

k k k

k+1 k+1 k+1

k+2 k+2 k+2

 
 
 
  

1 -2 3
1 -2 3
1 -2 3

 

Row operations can show fairly easily that this matrix is always invertible. However; it is 
faster to substitute a value for k – say, k = 0 – and row reduce the numerical matrix: 

2 1

3 1 3 2

1 1 1 1 1 1
1 -2 3 ~ 0 -3 2
1 4 9 1 4 9

1 1 1 1 1 1
~ 0 -3 2 ~ 0 -3 2

0 3 8 0 0 10

R R

R R R R

   
    −   
      
   
   − +   
      

 

 
The Casorati matrix is invertible for k = 0. So 1k, (-2)k and 3k are linearly independent. 
 
If a Casorati matrix is not invertible, the associated signals being tested may or may not 
be linearly dependent. However, it can be shown that if the signals are all solutions of the 
same homogeneous difference equation (described below), then either the Casorati matrix 
is invertible for all k and the signals are linearly independent, or else for all k the Casorati 
matrix is not invertible and the signals are linearly dependent.  
 
Activity   
Verify that 2k, (-1)k and 0k are linearly independent signals. 
 
Linear Difference Equations   Given scalars a0, … , an, with a0 and an nonzero, and 
given a signal {zk}, the equation 

0 1 1...k+n k+n-1 k+1 k ky y y y z−+ + + + =n na a a a  for all k  (3) 
is called a linear difference equation (or linear recurrence relation) of order n. For 
simplicity, a0 is often taken equal to 1. If {zk} is the zero sequence, the equation is 
homogeneous; otherwise, the equation is non-homogeneous. 
 



27- Applications Of Difference Equations  VU 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            368 

In simple words, an equation which expresses a value of a sequence as a function of the 
other terms in the sequence is called a difference equation. 
In particular an equation which expresses the value an of a sequence {an} as a function of 
the term an-1 is called a first order difference equation. 
 
Example 3     In digital signal processing, a difference equation such as (3) above 
describes a linear filter and a0, … , an are called the filter coefficients. If {yk} is treated 
as the input and {zk} the output, then the solutions of the associated homogeneous 
equation are the signals that are filtered out and transformed into the zero signal. Let us 
feed two different signals into the filter 

0.35yk + 2 +0.5yk + 1 +0.35yk = zk 

Here 0.35 is an abbreviation for /2 4 . The first signal is created by sampling the 
continuous signal ( / )y cos= t 4π  at integer values of t, as in Fig. 3 (a). The discrete 
signals is {yk} = {…. cos(0), ( / ), ( / ), ( / )cos cos cos4 2 4 3 4π π π …} 
For simplicity, write 0.7±  in place of / ,± 2 2  so that 

{yk} = { … , 1,0.7, 0, -0.7, -1, -0.7, 0, 0.7, 1, 0.7, 0, ….} 
 
        k = 0 
 
 
 

 
 
Figure  Discrete signals with different frequencies 
 
The following table shows a calculation of the output sequence {zk}, where 0.35(0.7) is 
an abbreviation for ( /2 4 ).( /2 2 ) = 0.25. The output is {yk}, shifted by one term. 
 
Table  Computing the output of a filter 

K yk yk+1 yk+2 0.35yk+0.5yk+1+0.35yk+2= zk 
0 
1 
2 
3 
4 
5 
  

1 
0.7 
0 

-0.7 
-1 

-0.7 
  

0.7 
0 

-0.7 
-1 

-0.7 
0 
  

0 
-0.7 
-1 

-0.7 
0 

0.7 
  
 

0.35(1)+0.5(0.7)+0.35(0)=0.7 
0 

-0.7 
-1 

-0.7 
0 
  
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A different input signal is produced from the higher frequency signal ( / )3 t 4π=y cos . 
Sampling at the same rate as before produces a new input sequence: 

{wk} = {…., 1, -0.7, 0, 0.7, -1, 0.7, 0, -0.7, 1, -0.7, 0, …} 
 
        k = 0 
When {wk} is fed into the filter, the output is the zero sequence. The filter, called a low 
pass filter, lets {yk} pass through, but stops the higher frequency {wk}. 
In many applications, a sequence{zk} is specified for the right side of a difference 
equation (3) and a {yk} that satisfies (3) is called a solution of the equation. The next 
example shows how to find solution for a homogeneous equation. 
 
Example 4     Solutions of a homogeneous difference equation often have the form 
 yk = rk for some r. Find some solutions of the equation  

yk+3 – 2yk + 2 – 5yk + 1 + 6yk = 0 for all k    (4) 
Solution     Substitute rk for yk in the equation and factor the left side: 

rk+3 – 2rk+2 – 5rk+1 + 6rk = 0       (5) 
By synthetic division  
 rk (r3 – 2r2 – 5r + 6) = 0 

 
So we get  
rk [(x-1)(x2 – x – 6)] = 0 
rk [(x-1) (x2 - 3x + 2x – 6)]=0 
rk [(x-1) {x(x -3)+2(x-3)}] =0 

            rk (r – 1)(r + 2)(r – 3) = 0      (6) 
       
since (5) is equivalent to (6), rk satisfies the difference equation (4) if and only if r 
satisfies (6). Thus 1k, (-2)k and 3k are all solutions of (4). For instance, to verify that 3k is 
a solution of (4), compute 

3k+3 – 2.3k+2 – 5.3k+1 + 6.3k =3k(27 –18 –15 + 6) = 0 for all k 
 
In general, a nonzero signal rk satisfies the homogeneous difference equation 

1 1...k+n k+n-1 k+1 ky y y y 0−+ + + + =n na a a  for all k 
if and only if r is a root of the auxiliary equation 

1 1... .n n-1r r r 1 0−+ + + + =n na a a  
We will not consider the case when r is a repeated root of the auxiliary equation. When 
the auxiliary equation has a complex root, the difference equation has solutions of the 
form sk cos kw and sk sin kw, for constants s and w. This happened in Example 3. 
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Solution Sets of Linear Difference Equations    
Given a1, … , an, consider the mapping T: S→  S that transforms a signal {yk}into a 
signal {wk} given by 

1 1...k k+n k+n-1 k+1 kw y y y y−= + + + +n na a a  
It is readily checked that T is a linear transformation. This implies that the solution set of 
the homogeneous equation 

1 1...k+n k+n-1 k+1 ky y y y 0−+ + + + =n na a a  for all k 
is the kernel of T (kernel is the set of signals that T maps into the zero signal) and hence 
the solution set is a subspace of S. Any linear combination of solutions is again a 
solution.  
 
Theorem     If ≠na 0  and if {zk} is given, the equation 
 1 1...k+n k+n-1 k+1 k ky y y y z−+ + + + =n na a a for all k  (7) 
has a unique solution whenever y0, … , yn–1 are specified.  
Proof      If y0, …, yn–1 are specified, use (7) to define 

1[ ... ]n 0 n-1 0y z y y= − + + na a  
And now that y1, … , yn are specified, use (7) to define yn + 1. In general, use the 
recursion relation 

1[ ... ]n+k k k+n-1 ky z y y= − + + na a     (8) 
to define yn+k for k≥ 0. To define yk for k<0, use the recursion relation 

1 1
1 1 [ ... ]k k k+n k+n-1 k+1y z y y y−= − + + + n

n n

a a
a a

        (9) 

This produces a signal that satisfies (7). Conversely, any signal that satisfies (7) for all k 
certainly satisfies (8) and (9) so the solution of (7) is unique. 
 
Theorem     The set H of all solutions of the nth-order homogeneous linear difference 
equation 

1 1...k+n k+n-1 k+1 ky y y y 0−+ + + + =n na a a  for all k       (10) 
is an n-dimensional vector space. 
Proof     We explained earlier why H is a subspace of S. For {yk}in H, let F{yk}be the 
vector in Rn given by (y0, y1, … , yn-1). It is readily verified that F:H→  Rn is a linear 
transformation. Given any vector (y0, y1, … , yn-1) in Rn, the previous theorem says that 
there is a unique signal {yk} in H such that F{yk}=(y0, y1, … , yn-1). It means that F is a 
one-to-one linear transformation of H onto Rn; that is, F is an isomorphism. Thus dim H 
= dim Rn = n. 
 
Example 5     Find a basis for the set of all solutions to the difference equation 

yk+3 – 2yk+2 – 5yk+1 + 6yk = 0  for all k 
Solution    
Generally it is difficult to identify directly that a set of signals spans the solution space, 
but this problem is being resolved by two above key theorems, from the last theorem the 
solution space is exactly three – dimensional and the Basis Theorem describes that a 
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linearly independent set of n vectors in an n – dimensional space is automatically a basis. 
So 1k, (-2)k and 3k form a basis for the solution space. 
 
The standard way to describe the “general solution” of (10) is to exhibit a basis for the 
subspace of all solutions. Such a basis is usually called a fundamental set of solutions of 
(10). In practice, if we can find n linearly independent signals that satisfy (10), they will 
automatically span the n-dimensional solution space, as we saw in above example. 
 
Non-homogeneous Equations     The general solution of the non-homogeneous 
difference equation 

1 1...k+n k+n-1 k+1 k ky y y y z−+ + + + =n na a a  for all k    (11) 
can be written as one particular solution of (11) plus an arbitrary linear combination of a 
fundamental set of solutions of the corresponding homogeneous equation (10). This fact 
is analogous to the result in lecture 7 about how the solution sets of Ax = b and Ax = 0 
are parallel. Both results have the same explanation: The mapping x→Ax is linear, and 
the mapping that transforms the signal {yk} into the signal {zk} in (11) is linear. 
 
Example 6     Verify that the signal yk = k2 satisfies the difference equation 

yk+2 – 4yk+1 + 3yk = -4k  for all k      (12) 
Then find a description of all solutions of this equation. 
Solution   Substitute k2 for yk in the left side of (12): 

(k + 2)2 – 4(k + 1)2 + 3k2 = (k2 + 4k + 4) – 4(k2 + 2k + 1) + 3k2 = -4k 
So k2 is indeed a solution of (12). The next step is to solve the homogeneous equation 

yk+2 – 4yk+1 + 3yk = 0       (13) 
The auxiliary equation is  

r2 – 4r + 3 =r2-3r-r+3=r(r-3)-1(r-3)= (r – 1)(r – 3) = 0 
 

The roots are r = 1, 3. So two solutions of the homogeneous difference equation are 1k 
and 3k. They are obviously not multiples of each other, so they are linearly independent 
signals. (The Casorati test could have been used, too.) By the last Theorem, the solution 
space is two – dimensional, so 3k and 1k form a basis for the set of solutions of (13). 
Translating that set by a particular solution of the non-homogeneous equation (12), we 
obtain the general solution of (12): 

k2 + c11k + c23k,     or    k2 + c1 + c23k 
 
Reduction to Systems of First-Order Equations   A modern way to study a 
homogeneous nth-order linear difference equation is to replace it by an equivalent system 
of first order difference equations, written in the form xk+1 = Axk for k = 0, 1, 2, … 
Where the vectors xk are in Rn and A is an n x n matrix. 
 
Example 7     Write the following difference equation as a first order system: 

yk+3 – 2yk+2 – 5yk+1 + 6yk = 0 for all k 

 Solution     For each k, set 1

2

k

k k

k

y
x y

y
+

+

 
 =  
  
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The difference equation says that yk+3 = 2yk+2 + 5yk+1 - 6yk, so 

1 1

1 2 2 1

3 1 2 2

0 0 0 1 0
0 0 0 0 1

-6 5 2 -6 5 2

k k k

k k k k

k k k k k

y y y
x y y y

y y y y y

+ +

+ + + +

+ + + +

+ +       
       = = + + = =       
       + +       

 

That is, xk+1 = Axk for all k, where 
0 1 0
0 0 1
-6 5 2

A
 
 =  
  

 

 
In general, the equation yk+n + a1yk+n –1 + … + an –1yk+1 + anyk = 0 for all k 
can be written as xk+1 = Axk for all k, where 

1

1
1 2 1

0 1 0 0
0 0 1 0

0 0 0 1
- - - -

k

k
k

k n
n n n

y
y

x A

y
a a a a

+

+ −
− −

 
   
   
   = =
   
   
    



  





,  

 

Example 8     It can be shown that the signals 2k, 3k πSin k
2

, and 3k πCos k
2

 are solutions 

of yk+3 – 2yk+2 + 9yk+1 – 18yk = 0. Show that these signals form a basis for the set of all 
solutions of the difference equation. 
Solution     Examine the Casorati matrix: 

   1 1 1

2 2 2

π π
2 2

1π 1 π
2 2
2π 2 π

2 2

k k k

k k k

k k k

Sin Cos

C Sin Cos

Sin Cos

+ + +

+ + +

 
 
 
 =  
 
 
  

k k

(k + ) (k + )(k)

(k + ) (k + )

2 3 3

2 3 3

2 3 3

 

Set k = 0 and row reduce the matrix to verify that it has three pivot positions and hence is 
invertible: 

2 1

3 1

1 0 1 1 0 1
0 2 3 0 0 3 -2 2

4 0 -9 4 0 -9

1 0 1
0 3 -2 4
0 0 -13

( )
   
   = ∼ −   
      

 
 ∼ − 
  

C R R

R R
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The Casorati matrix is invertible at k = 0, so signals are linearly independent. Since there 
are three signals, and the solution space H of the difference equation has three-
dimensions (Theorem 2), the signals form a basis for H, by the Basis Theorem. 
 
Exercises   
 
Verify that the signals in exercises 1 and 2 are solution of the accompanying difference 
equation. 
 
1. 2k, (-4)k; yk+2 + 2 yk+1 – 8 yk = 0  2. 3k, (-3)k; yk+2 – 9 yk = 0 
 
Show that the signals in exercises 3 to 6 form a basis for the solution set of 
accompanying difference equation. 
 
3. 2k, (-4)k; yk+2 + 2 yk+1 – 8 yk = 0  4. 3k, (-3)k; yk+2 – 9 yk = 0 
 

5. (-3)k, k(-3)k; yk+2 + 6 yk+1 + 9 yk = 0 6. 5kCos
π
2
k

, 5kSin
π
2
k

; yk+2 + 25 yk = 0 

 
In exercises 7 to 10, assume that the signals listed are solutions of the given difference 
equation. Determine if the signals form a basis for the solution space of the equation. 
 

7. 1k, 3kCos
π
2
k

, 3kSin
π
2
k

; yk+3 – yk+2 + 9 yk+1 – 9 yk = 0 

 
8. (-1)k, k(-1)k, 5k; yk+3 – 3 yk+2 – 9 yk+1 – 5 yk = 0 
 
9. (-1)k, 3k; yk+3 + yk+2 – 9 yk+1 – 9 yk = 0 10. 1k, (-1)k; yk+4 – 2 yk+2 + yk = 0 
 
In exercises 11 and 12, find a basis for the solution space of the difference equation. 
 
11. yk+2 – 7 yk+1 + 12 yk = 0   12. 16yk+2 + 8 yk+1 – 3 yk = 0 
 
In exercises 13 and 14, show that the given signal is a solution of the difference equation. 
Then find the general solution of that difference equation. 
 
13. yk = k2; yk+2 + 3 yk+1 – 4 yk = 10 k + 7 
 
14. yk = 2 – 2 k; yk+2 – (9/2) yk+1 + 2 yk = 3 k + 2 
 
Write the difference equations in exercises 15 and 16 as first order systems, xk+1 = A xk, 
for all k. 
 
15. yk+4 – 6 yk+3 + 8 yk+2 + 6 yk+1 – 9 yk = 0 
 
16. yk+3 – (3/4)yk+2 + (1/16)yk = 0 
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Lecture 28 
 

Eigenvalues and Eigenvectors 
 
In this lecture we will discuss linear equations of the form Ax = x and, more generally, 
equations of the form Ax = xλ , where λ  is a scalar. Such equations arise in a wide 
variety of important applications and will be a recurring theme in the rest of this course. 
 
Fixed Points      
A fixed point of an n n×  matrix A is a vector x in Rn such that Ax = x. Every square 
matrix A has at least one fixed point, namely x = 0. We call this the trivial fixed point of 
A. 
The general procedure for finding the fixed points of a matrix A is to rewrite the equation 
Ax = x as Ax = Ix or, alternatively, as 

(I – A)x = 0         (1) 
Since this can be viewed as a homogeneous linear system of n equations in n unknowns 
with coefficient matrix I – A, we see that the set of fixed points of an n n×  matrix is a 
subspace of Rn that can be obtained by solving (1). 

 
The following theorem will be useful for ascertaining the nontrivial fixed points of a 
matrix. 
 
Theorem 1      
If A is an n x n matrix, then the following statements are equivalent. 
(a) A has nontrivial fixed points. 
(b) I – A is singular. 
(c) det(I – A) = 0. 
 
Example 1     
 In each part, determine whether the matrix has nontrivial fixed points; and, if so, graph 
the subspace of fixed points in an xy-coordinate system. 

3 6 0 2
( ) ( )

1 2 0 1
a b   

= =   
   

A A  

 
Solution    
(a) The matrix has only the trivial fixed point since
 

 
 

 
(b) The matrix has nontrivial fixed points since 

1 0 3 6 2 6
( )

0 1 1 2 1 1

2 6
det( ) det ( 1)( 2) ( 1)( 6) 4 0

1 1

I A

I A

− −     
− = − =     − −     

− − 
− = = − − − − − =− ≠ − − 
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1 0 0 2 1 2

( )
0 1 0 1 0 0

I A
−     

− = − =     
     

 

1 2
det( ) det 0

0 0
I A

− 
− = = 

 
 

 
The fixed points x =(x, y) are the solutions of the linear system (I – A)x=0, which we can 
express in component form as 

1 -2 0
0 0 0

x
y

     
=     

     
 

A general solution of this system is 
x = 2t, y = t         (2) 
 

which are parametric equations of the line 1
2y x= .  It follows from the corresponding 

vector form of this line that the fixed points are 
2 2

1
x t

t
y t
     

= = =     
     

x        (3) 

As a check,  
0 2 2 2
0 1

t t
t t

     
= = =     
     

Ax x  

so every vector of form (3) is a fixed point of A. 
 

   y 
                                                                                           

   1
2y x=  

                           (2, 1)•  
                
                                                                                  
 
                                                                                               x 
 
 

Figure 1 
 
Eigenvalues and Eigenvectors      
In a fixed point problem one looks for nonzero vectors that satisfy the equation Ax = x. 
One might also consider whether there are nonzero vectors that satisfy such equations as 

Ax = 2x, Ax = –3x, Ax = 2x   
or, more generally, equations of the form Ax = λx  in which λ  is a scalar.  
 
Definition     If A is an n x n matrix, then a scalar λ  is called an eigenvalue of A if there 
is a nonzero vector x such that Ax = xλ . If λ  is an eigenvalue of A, then every nonzero 
vector x such that Ax = xλ  is called an eigenvector of A corresponding to λ . 
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Example 2      

Let 
1 6 6 3

, and .
5 2 -5 -2
     

= = =     
     

A u v  Are u and v eigenvectors of A? 

Solution    
1 6 6 -24 6

-4 -4
5 2 -5 20 -5

Au u       
= = = =       
       

 

1 6 3 -9 3
5 2 -2 11 -2

Av        
= = ≠       
       

λ  

Thus u is an eigenvector corresponding to an eigenvalue – 4, but v is not an eigenvector 
of A, because Av is not a multiple of v. 
 
Example 3    

Show that 7 is an eigenvalue of
1 6
5 2
 

=  
 

A , find the corresponding eigenvectors. 

Solution      
The scalar 7 is an eigenvalue of A if and only if the equation 

Ax = 7x              (A) 
has a nontrivial solution. But (A) is equivalent to Ax – 7x = 0, or 

(A – 7I) x = 0              (B) 
To solve this homogeneous equation, form the matrix 

1 6 7 0 -6 6
- 7 -

5 2 0 7 5 -5
A I      

= =     
     

 

The columns of A – 7I are obviously linearly dependent, so (B) has nontrivial solutions. 
Thus 7 is an eigenvalue of A. To find the corresponding eigenvectors, use row operations: 

1 2

2 1

6 6 0
5 5 0

1 1 0
~ ( 1 )

5 5 0

1 1 0
~ ( 5 )

0 0 0

R R

R R

− 
 − 

− 
− − − 

− 
− 

 

 

The general solution has the form x2
1

.
1
 
 
 

 Each vector of this form with 2 0x ≠  is an 

eigenvector corresponding to 7.λ =  
 
The equivalence of equations (A) and (B) obviously holds for any λ  in place of λ = 7. 
Thus λ  is an eigenvalue of A if and only if the equation 

(A - λ I)x = 0                   (C) 
has a nontrivial solution.  
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Eigen space   
The set of all solutions of (A - λ I)x = 0 is just the null space of the matrix A - λ I. So 
this set is a subspace of Rn and is called the eigenspace of A corresponding to λ . The 
eigenspace consists of the zero vector and all the eigenvectors corresponding toλ . 
Example 3 shows that for matrix A in Example 2, the eigenspace corresponding to λ = 7 
consists of all multiples of (1, 1), which is the line through (1, 1) and the origin. From 
Example 2, one can check that the eigenspace corresponding to λ = -4 is the line through 
(6, -5). These eigenspaces are shown in Fig. 1, along with eigenvectors (1, 1) and (3/2, -
5/4) and the geometric action of the transformation x Ax→  on each eigenspace. 
 
 
 
 
 

 
 
 

Example 4     Let 
4 -1 6
2 1 6 .
2 -1 8

A
 
 =  
  

   

Find a basis for the corresponding eigenspace where eigen value of matrix is 2. 
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Solution     Form 
4 -1 6 2 0 0 2 -1 6

- 2 2 1 6 - 0 2 0 2 -1 6
2 -1 8 0 0 2 2 -1 6

A I
     
     = =     
          

 and row reduce the 

augmented matrix for (A – 2I) x = 0: 
 

 
 
 

            3 1

2 -1 6 0
~ 0 0 0 0

0 0 0 0
R R

 
  − 
  

 

At this point we are confident that 2 is indeed an eigenvalue of A because the equation  
(A – 2I) x = 0 has free variables. The general solution is 

( )

1 2 3

2 3

1

1

1

2

3

2 6 0........( )
,

2 6
1 32

/ 2 3 / 2 3 1/ 2 3
0 1 0

0 0 1

x x x a
Let x t x s then

x t s

x t s

then
x t s t s
x t t t s

s sx

− + =
= =

= −

= −

− − −           
           = = + = +           
                     

 

By back substitution the general solution is 
1

2 2 3 2 3

3

1 2 -3
1 0 , and free
0 1

     
     = +     
          

x
x x x x x
x

 

The eigenspace, shown in Fig. 2, is a two – dimensional subspace of R3. A basis is 
1 -3
2 , 0
0 1

    
    
    
        

is a basis. 

2 1

2 -1 6 0
2 -1 6 0
2 -1 6 0

2 -1 6 0
~ 0 0 0 0

2 1 6 0
R R

 
 
 
  
 
  − 
 − 
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The most direct way of finding the eigenvalues of an n n×  matrix A is to rewrite the 
equation Ax xλ=  as Ax Ixλ=  , or equivalently, as 

( - ) 0I A xλ =         (4) 
and then try to determine those values of λ , if any, for which this system has nontrivial 
solutions. Since (4) have nontrivial solutions if and only if the coefficient matrix -I Aλ is 
singular, we see that the eigenvalues of A are the solutions of the equation 

det( - ) 0I Aλ =         (5) 
Equation (5) is known as characteristic equation. Also, if λ  is an eigenvalue of A, then 
equation (4) has a nonzero solution space, which we call the eigenspace of A 
corresponding to λ . It is the nonzero vectors in the eigenspace of A corresponding to λ  
that are the eigenvectors of A corresponding to λ . 
The above discussion is summarized by the following theorem. 
 
Theorem     If A is an n n×  matrix and λ  is a scalar, then the following statements are 
equivalent. 
(i) λ  is an eigenvalue of A. 
(ii) λ  is a solution of the equation det( - ) 0I Aλ = . 
(iii) The linear system ( - ) 0I A xλ =  has nontrivial solutions. 
 
Eigenvalues of Triangular Matrices     If A is an n n×  triangular matrix with diagonal 
entries a11, a22, …, ann, then -I Aλ  is a triangular matrix with diagonal entries 

11 22- , - , , - nna a aλ λ λ . Thus, the characteristic polynomial of A is 

11 22det( - ) ( - )( - ) ( - )nnI A a a aλ λ λ λ=   
which implies that the eigenvalues of A are 

1 11 2 22, , ,= = = n nna a aλ λ λ  
Thus, we have the following theorem. 
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Theorem     If A is a triangular matrix (upper triangular, lower triangular, or diagonal) 
then the eigenvalues of A are the entries on the main diagonal of A.  
 
Example 5   (Eigenvalues of Triangular Matrices) 

By inspection, the characteristic polynomial of the matrix 

1
2

2
3

5
8

4
9

0 0 0
-1 - 0 0
7 6 0

-4 3 6

A

 
 
 =
 
 
 

 is 

21 2
2 3( ) ( - )( )( - 6)= +p λ λ λ λ . So the distinct eigenvalues of A are 1

2 ,λ =  2
3λ = − , and 

6λ = . 
 
Eigenvalues of Powers of a Matrix     Once the eigenvalues and eigenvectors of a 
matrix A are found, it is a simple matter to find the eigenvalues and eigenvectors of any 
positive integer power of A. For example, if λ  is an eigenvalue of A and x is a 
corresponding eigenvector, then 2 2( ) ( ) ( ) ( )A x A Ax A x Ax x xλ λ λ λ λ= = = = = , which 
shows that 2λ  is an eigenvalue of A2 and x is a corresponding eigenvector. In general we 
have the following result. 
 
Theorem     If λ  is an eigenvalue of a matrix A and x is a corresponding eigenvector, 
and if k is any positive integer, then kλ  is an eigenvalue of Ak and x is a corresponding 
eigenvector. 
Some problems that use this theorem are given in the exercises. 

 
A Unifying Theorem     Since λ  is an eigenvalue of a square matrix A if and only if 
there is a nonzero vector x such that Ax =λ x, it follows that λ = 0 is an eigenvalue of A 
if and only if there is a nonzero vector x such that Ax = 0. However, this is true if and 
only if det(A) = 0, so we list the following 

 
Theorem     If A is an n n×  matrix, then the following statements are equivalent.  
(a) The reduced row echelon form of A is In. 
(b) A is expressible as a product of elementary matrices. 
(c) A is invertible. 
(d) Ax = 0 has only the trivial solution. 
(e) Ax = b is consistent for every vector b in Rn. 
(f) Ax = b has exactly one solution for every vector b in Rn  
(g) The column vectors of A are linearly independent. 
(h) The row vectors of A are linearly independent. 
(i) det(A)≠ 0. 
(j) λ = 0 is not an eigenvalue of A. 
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Example 6   

(1) Is 5 an eigenvalue of 
6 -3 1
3 0 5 ?
2 2 6

A
 
 =  
  

 

(2) If x is an eigenvector for A corresponding to λ , what is A3x? 
 
Solution    
(1) The number 5 is an eigenvalue of A if and only if the equation (A-λ I) x = 0 has a 
nontrivial solution. Form 

6 -3 1 5 0 0 1 -3 1
-5 3 0 5 - 0 5 0 3 -5 5

2 2 6 0 0 5 2 2 1
A I

     
     = =     
          

 

and row reduce the augmented matrix: 

2 1

3 1

3 2

1 -3 1 0
3 -5 5 0
2 2 1 0

1 -3 1 0
~ 0 4 2 0 3

2 2 1 0

1 -3 1 0
~ 0 4 2 0 2

0 8 -1 0

1 -3 1 0
~ 0 4 2 0 2

0 0 -5 0

R R

R R

R R

 
 
 
  
 
  − 
  
 
  − 
  
 
  − 
  

 

At this point it is clear that the homogeneous system has no free variables. Thus A – 5I is 
an invertible matrix, which means that 5 is not an eigenvalue of A. 
 
(2). If x is an eigenvector for A corresponding to λ , then Ax = λ x and so  

2( )2A x A x Ax x= = =λ λ λ  
Again 2 2 3( ) ( ) .3 2A x A A x A x Ax x= = = =λ λ λ  The general pattern, ,kA x x= kλ  is 
proved by induction. 
 
 
Exercises   
 

1. Is λ 2=  an eigenvalue of 
3 2
3 8
 
 
 

? 
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2. Is 
1 2

1

 − +
 
 

 an eigenvector of 
2 1
1 4
 
 
 

? If so, find the eigenvalue. 

 

3. Is 
4
3

1

 
 − 
  

 an eigenvector of 
3 7 9
4 5 1

2 4 4

 
 − − 
  

? If so, find the eigenvalue. 

 

4. Is 
1
2

1

 
 − 
  

 an eigenvector of 
3 6 7
3 3 7
5 6 5

 
 
 
  

? If so, find the eigenvalue. 

 

5. Is λ 4=  an eigenvalue of 
3 0 1
2 3 1
3 4 5

− 
 
 
 − 

? If so, find one corresponding eigenvector. 

 

6. Is λ 3=  an eigenvalue of 
1 2 2
3 2 1
0 1 1

 
 − 
  

? If so, find one corresponding eigenvector. 

 
In exercises 7 to 12, find a basis for the eigenspace corresponding to each listed 
eigenvalue. 
 

7. 
4 2

,λ 10
3 9

A
− 

= = − 
   8. 

7 4
,λ 1 5

3 1
A . 
= = − − 

 

 

9. 
4 0 1
2 1 0 ,λ =1,2,3
2 0 1

A
 
 = − 
 − 

  10. 
1 0 1

0 ,λ = 2
1

A
− 

 = 1 −3 − 
 4 −13 

 

 

11. 
4 2 3
1 1 3 ,λ = 3

2 4 9
A

 
 = − − 
  

  12. 

3 0 2 0
1 3 1 0

,λ = 4
0 1 1 0
0 0 0 4

A

 
 
 =
 
 
 

 

 
Find the eigenvalues of the matrices in Exercises 13 and 14. 
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13. 
0 0 0
0 2 5
0 0 1

 
 
 
 − 

    14. 
4 0 0
0 0 0
1 0 3

 
 
 
 − 

 

 

15. For 
1 2 3
1 2 3 ,
1 2 3

A
 
 =  
  

 find one eigenvalue, with no calculation. Justify your answer. 

 
16. Without calculation, find one eigenvalue and two linearly independent vectors of 

5 5 5
5 5 5
5 5 5

A
 
 =  
  

. Justify your answer. 
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Lecture 29 

 
The Characteristic Equation 

 
 
The Characteristic equation contains useful information about the eigenvalues of a square 
matrix A. It is defined as 
                                                 det( ) 0,A Iλ− =   
Where λ is the eigenvalue and I is the identity matrix. We will solve the Characteristic 
equation (also called the characteristic polynomial) to work out the eigenvalues of the 
given square matrix A. 
 
 

Example 1     Find the eigenvalues of 
2 3
3 -6

A  
=  
 

. 

Solution   In order to find the eigenvalues of the given matrix, we must solve the matrix 
equation  

( - ) 0A I x =λ  
for the scalar λ  such that it has a nontrivial solution (since the matrix is non singular). 
By the Invertible Matrix Theorem, this problem is equivalent to finding all λ  such that 
the matrix -A Iλ  is not invertible, where 

2 3 0 2 - 3
- - .

3 -6 0 3 -6 -
λ λ

λ
λ λ

     
= =     
     

A I  

 
By definition, this matrix -λA I   fails to be invertible precisely when its determinant is 
zero. Thus, the eigenvalues of A are the solutions of the equation 

2 - 3
det( - ) det 0.

3 -6 -
λ

λ
λ

 
= = 

 
A I  

Recall that det - 
= 

 

a b
ad bc

c d
 

So  det( - ) (2 - )(-6 - ) - (3)(3)A I =λ λ λ  
2-12 6 - 2 -9= + +λ λ λ  

2 4 - 21= +λ λ  
                           2 4 - 21 0,+ =λ λ   
                          ( -3)( 7) 0,+ =λ λ  
 so the eigenvalues of A are 3 and  –7. 
 

Example 2     Compute det A for 
1 5 0
2 4 -1
0 -2 0

 
 =  
  

A  
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Solution   
     Firstly, we will reduce the given matrix in echelon form by applying elementary row 
operations 

                              

2 1

2 3

3 2

2
1 5 0
0 -6 -1 ,
0 -2 0

1 5 0
0 -2 0 ,
0 -6 -1

3
1 5 0
0 -2 0 ,
0 0 -1

by R R

A

by R R

by R R

−

 
 =  
  
↔

 
 
 
  
−

 
 
 
  





 

which is an upper triangular matrix. Therefore,  

                                    
det (1)( 2)( 1)

2.
A = − −
=

 

  
Theorem 1   Properties of Determinants 
Let A and B be two matrices of order n then 
 
(a) A is invertible if and only if det 0.A ≠  
(b) det (det )(det ).AB A B=  
(c) det det .TA A=  
(d) If A is triangular, then det A is the product of the entries on the main diagonal of A. 
(e) A row replacement operation on A does not change the determinant.  
(f) A row interchange changes the sign of the determinant. 
(g) A row scaling also scales the determinant by the same scalar factor. 
 
Note   These Properties will be helpful in using the characteristic equation to find 
eigenvalues of a matrix A. 
 
 
Example 3   (a) Find the eigenvalues and corresponding eigenvectors of the matrix 

1 3
4 2

A  
=  
 

 

(b) Graph the eigenspaces of A in an xy-coordinate system. 
 
Solution   (a) The eigenvalues will be worked out by solving the characteristic equation 
of A. Since 
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1 0 1 3 1 3

.
0 1 4 2 4 2

- -
- -

- -
λ

λ λ
λ

     
= =     

     
I A  

The characteristic equation det( - )I A = 0λ  becomes 
1 3

4 2
- -

0.
- -
λ

λ
=  

Expanding and simplifying the determinant, it yields 
2 - 3 -10 0,λ λ =  

 or 
 ( )( )2 - 5 0.λ λ+ =                                                   (1) 

Thus, the eigenvalues of A are 2λ = −  and 5λ = . 
 
Now, to work out the eigenspaces corresponding to these eigenvalues, we will solve the 
system 

1 3 0
4 2 0

     
=     

     

- - x
- - y
λ

λ
       (2) 

for 2λ = −  and 5λ = . Here are the computations for the two cases. 
 
 
(i) Case λ = -2   
                     In this case Eq. (2) becomes  

                                       
3 3 0

,
4 4 0

x
y

− −     
=     − −     

 

which can be written as  

                                      
3 3 0,
4 4 0 .

x y
x y x y

− − =
− − = ⇒ = −

    

In parametric form,  
              x = – t, y = t .      (3) 

Thus, the eigenvectors corresponding to 2λ = −  are the nonzero vectors of the form 
1

.
1

x -t -
t

y t
     

= = =     
     

x       (4) 

It can be verified as      

                      
1 3 2

2 2
4 2 2

x       
= = =       

       

-t t -t
- -

t - t t
 

Thus, 
                               Ax xλ=  
(ii) Case λ = 5  
 In this case Eq. (2) becomes  

                             
4 3 0

,
4 3 0

- x
- y
     

=     
     

 

which can be written as  
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4 3 0

34 3 0 .
4

x y

x y x y

− =

− + = ⇒ =
    

In parametric form,  

              3 , .
4

x t y t= =       (5) 

Thus, the eigenvectors corresponding to 5λ =  are the nonzero vectors of the form 
3 3
4 4 .

1
x t

t
y t

    
= = =    
     

x        (6) 

It can be verified as  

             
3 15 3
4 4 41 3

5 5
4 2 5

t t t
t t t

      
= = = =      
       

Ax x. 

 
(b) The eigenspaces corresponding to 2λ = −  and 5λ =  can be sketched from the 
parametric equations (3) and (5) as shown in figure 1(a).  
 
 
 
 
 
 

            y 
                                                       ( 2λ = − )              ( 5λ = ) 
                                                           y = –x        4

3=y x   
 
 
  

                                                                    x 
 
 
 

 
 

           Figure 1(a) 
 

  
It can also be drawn using the vector equations (4) and (6) as shown in Figure 1(b). When 
an eigenvector x in the eigenspace for 5λ =  is multiplied by A, the resulting vector has 
the same direction as x but the length is increased by a factor of 5 and when an 
eigenvector x in the eigenspace for 2λ = −  is multiplied by A, the resulting vector is 
oppositely directed to x and the length is increased by a factor of 2. In both cases, 
multiplying an eigenvector by A produces a vector in the same eigenspace. 
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            y 
                                                       ( 2λ = − )              ( 5λ = ) 
                       5x 

 
 

                                                                             x 
                                                                     x                                  x    

 
                                  –2x  

 
 

 
Figure 1(b) 

 
Eigenvalues of an n n×  matrix   
                                                                 Eigen values of an n n×  matrix can be found in 
the similar fashion. However, for the higher values of n, it is more convenient to work 
them out using various available mathematical software. Here is an example for a 3 3×  
matrix. 
 

Example 4   Find the eigen values of the matrix 
0 -1 0
0 0 1
-4 -17 8

A
 
 =  
  

 

Solution   

3 2

0 0 0 1 0
det( - ) det 0 0 0 0 1

0 0 4 17 8

1 0
0 -1
4 17 -8

- -8 17 4,

λ
λ λ

λ

λ
λ

λ

λ λ λ

−   
   = −   
   − −   

=

= +

I A

   (7) 

which yields the characteristic equation 
                     3 2- -+ =8 17 4 0λ λ λ                                                     (8) 

  
To solve this equation, firstly, we will look for integer solutions. This can be done by 
using the fact that if a polynomial equation has integer coefficients, then its integer 
solutions, if any, must be divisors of the constant term of the given polynomial. Thus, the 
only possible integer solutions of Eq.(8) are the divisors of –4, namely 1, 2,± ±  and 4± . 
Substituting these values successively into Eq. (8) yields that λ =4 is an integer solution. 
This implies that λ – 4 is a factor of Eq.(7), Thus, dividing the polynomial by λ – 4 and 
rewriting Eq.(8), we get 
                                      2( - )( - )+ =4 4 1 0λ λ λ . 
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Now, the remaining solutions of the characteristic equation satisfy the quadratic equation 
2 - 4 1 0.λ λ + =  

 Solving the above equation by the quadratic formula, we get the eigenvalues of A as  
4, 2 3, 2 3λ λ λ= = + = −  

Example 5   Find the characteristic equation of 

5 -2 6 -1
0 3 -8 0
0 0 5 4
0 0 0 1

 
 
 =
 
 
 

A  

 
Solution   Clearly, the given matrix is an upper triangular matrix. Forming -A Iλ , we 
get 

5 - -2 6 -1
0 3- -8 0

det( - ) det
0 0 5 - 4
0 0 0 1-

A I

 
 
 =
 
 
 

λ
λ

λ
λ

λ

 

Now using the fact that determinant of a triangular matrix is equal to product of its 
diagonal elements, the characteristic equation becomes  
                                          2(5 - ) (3- )(1- ) 0.λ λ λ =  
Expanding the product, we can also write it as 
                             4 3 2-14 68 -130 75 0.λ λ λ λ+ + =  
Here, the eigenvalue 5 is said to have multiplicity 2 because (λ - 5) occurs two times as a 
factor of the characteristic polynomial. In general, the (algebraic) multiplicity of an 
eigenvalue λ  is its multiplicity as a root of the characteristic equation. 
 
Note   
From the above mentioned examples, it can be easily observed that if A is an n n× matrix, 
then det (A – λ I) is a polynomial of degree n called the characteristic polynomial of A. 
 
 
 
 
Example 6   The characteristic polynomial of a 6 6×  matrix is 6 5 4- 4 -12λ λ λ . Find the 
eigenvalues and their multiplicities. 
Solution   
                  In order to find the eigenvalues, we will factorize the polynomial as 

6 5 4

4 2

4

- 4 -12
( - 4 -12)
( - 6)( 2)

λ λ λ

λ λ λ

λ λ λ

=

= +

 

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1) and – 2 (multiplicity 1).We 
could also list the eigenvalues in Example 6 as 0, 0, 0, 0, 6 and –2, so that the eigenvalues 
are repeated according to their multiplicities 
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Activity   
               Work out the eigenvalues and eigenvectors for the following square matrix. 

                                          
5 8 16
4 1 8 .
4 4 11

A
 
 =  
 − − − 

 

Similarity   
                      Let A and B be two n x n matrices, A is said to be similar to B if there exist 
an invertible matrix P such that 
                                                  P -1AP = B, 
 or equivalently,  
                                                    A = PBP -1. 
Replacing Q by P -1, we have  
                                                 Q -1BQ = A. 
 So B is also similar to A. Thus, we can say that A and B are similar. 
  
Similarity transformation    
                                              The act of changing A into P -1AP is called a similarity 
transformation.   
 
The following theorem illustrates use of the characteristic polynomial and it provides the 
foundation for several iterative methods that approximate eigenvalues. 
 
Theorem 2   
                     If n x n matrices A and B are similar, then they have the same 
characteristic polynomial and hence the same eigenvalues (with the same multiplicities). 
  
Proof    If B = P -1AP, then 

-1 -1 -1 -1 -1- - - ( - ) ( - )B I P AP I P AP P P P AP P P A I Pλ λ λ λ λ= = = =  
Using the multiplicative property (b) of Theorem 1, we compute 

-1det( - ) det ( - )B I P A I Pλ λ =    

                   -1det( ).det( - ).det( )P A I Pλ=     (A) 
Since 
                 det (P -1). det(P) = det(P -1P)  
                                            = det I  
                                            = 1, 
 Eq. (A) implies that            
                               det( - ) det( - ).B I A Iλ λ=  
Hence, both the matrices have the same characteristic polynomials and therefore, same 
eigenvalues. 
 
Note   It must be clear that Similarity and row equivalence are two different concepts. ( If 
A is row equivalent to B, then B = EA for some invertible matrix E.) Row operations on 
a matrix usually change its eigenvalues. 



29-The Characteristic Equation                               VU 
 

__________________________________________________________________________________                                                                      
                                                    @Virtual University Of Pakistan                                                     391 

 
Application to Dynamical Systems   
                                             Dynamical system is the one which evolves with the passage 
of time. Eigenvalues and eigenvectors play a vital role in the evaluation of a dynamical 
system. Let’s consider an example of a dynamical system. 
 

Example 7     Let 
.95 .03

.
.05 .97

A  
=  
 

 Analyze the long term behavior of the dynamical 

system defined by xk+1 = Axk (k = 0, 1, 2, …), with 
0.6
0.4
 

=  
 

0x . 

Solution     The first step is to find the eigenvalues of A and a basis for each eigenspace.  
The characteristic equation for A is 
                         0 det( )A Iλ= −  

0.95 - 0.03
0 det (.95 - )(.97 - ) - (.03)(.05)

0.05 0.97 -
λ

λ λ
λ

 
= = 

 
 

2 -1.92 .92= +λ λ  
By the quadratic formula  

21.92 (1.92) - 4(.92) 1.92 .0064
2 2

± ±
= =λ 1.92 .08 1 or .92

2
±

= =  

Firstly, the eigenvectors will be found as given below. 
,

( ) 0,
( ) 0.

Ax x
Ax x
A I x

λ
λ
λ

=
− =
− =

 

For 1λ =  
 

1

2

1

2

0.95 0.03 1 0
0,

0.05 0.97 0 1

0.05 0.03
0,

0.05 0.03

x
x

x
x

      
− =      

      
−   

=  −  

 

which can be written as 
1 2

1 2 1 2 1 2

0.05 0.03 0
0.03 30.05 0.03 0 .
0.05 5

x x

x x x x or x x

− + =

− = ⇒ = =
 

In parametric form, it becomes 

1 2
3 .
5

x t and x t= =  

 
For 0.92λ =  
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1

2

1

2

0.95 0.03 0.92 0
0,

0.05 0.97 0 0.92

0.03 0.03
0.

0.05 0.05

x
x

x
x

      
− =      

      
  

=  
  

 

It can be written as 
1 2

1 2 1 2

0.03 0.03 0
0.05 0.05 0

x x
x x x x
+ =
+ = ⇒ = −

 

In parametric form, it becomes 
1 2x t and x t= = −  

 
Thus, the eigenvectors corresponding to λ = 1 and λ  = .92 are multiples of 

3 1
and

5 -1
   

= =   
   

1 2v v  respectively. 

The next step is to write the given x0 in terms of v1 and v2. This can be done because 
{v1, v2} is obviously a basis for R2. So there exists weights c1 and c2 such that 

1
1 2

2

[ ]0 1 2 1 2x v v v v
 

= + =  
 

c
c c

c
     (1) 

In fact,  
1

1 1
0

2

3 1 .60
[ ]

5 -1 .401 2v v
−

−     
= =     

    

c
x

c
 

Here,  
13 1 3 1 1 11 1

3 15 1 5 1 5 38
5 1

Adj
− − −     
= = −     − − −     

−

 

Therefore, 
 

           1

2

-1 -1 .60 .1251
-5 3 .40 .225-8

c
c
       

= =       
      

     (2) 

 
Because v1 and v2 in Eq.(1) are eigenvectors of A, with Av1 = v1 and Av2 = (.92) v2, xk  
can be computed as    

x1  = Ax0 = c1Av1 + c2Av2 (Using linearity of x Ax→ ) 
      = c1v1 + c2 (.92)v2  (v1 and v2 are eigenvectors.) 
x2  = Ax1 = c1Av1 + c2 (.92)Av2 = c1v1 + c2 (.92)2 v2. 

Continuing in the same way, we get the general equation as  
                         xk = c1v1 + c2(.92)kv2 (k = 0, 1, 2, …). 
Using c1 and c2 from Eq.(2), 

3 1
.125 .225(.92) ( 0,1,2,...)

5 -1kx    
= + =   

   
k k    (3) 

This explicit formula for xk gives the solution of the difference equation xk+1 = Axk.  
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As k →∞ , (.92)k tends to zero and xk tends to 
.375

.125 .
.625
 

= 
 

1v  

 
 

Example 8     Find the characteristic equation and eigenvalues of 
1 -4

.
4 2

A  
=  
 

 

Solution     The characteristic equation is 
1- -4

0 det( - ) det
4 2 -

A I  
= =  

 

λ
λ

λ
 

2

(1- )(2 - ) - (-4)(4),
-3 18,
λ λ

λ λ

=

= +
 

which is a quadratic equation whose roots are given as 
 

23 (-3) - 4(18)
2

3 -63
2

λ
±

=

±
=

 

Thus, we see that the characteristic equation has no real roots, so A has no real 
eigenvalues. A is acting on the real vector space R2 and there is no non-zero vector v in 
R2 such that Av = λ v for some scalarλ . 
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Exercises   
 
Find the characteristic polynomial and the eigenvalues of matrices in exercises 1 to 12. 
 

1. 
3 2
1 1

− 
 − 

     2. 
5 3
4 3

− 
 − 

 

 

3. 
2 1
1 4

 
 − 

     4. 
3 4
4 8

− 
 
 

 

 

5. 
5 3
4 4

 
 − 

     6. 
7 2
2 3

− 
 
 

 

 

7. 
1 0 1
2 3 1
0 6 0

− 
 − 
  

    8. 
0 3 1
3 0 2
1 2 0

 
 
 
  

 

 

9. 
4 0 0
5 3 2
2 0 2

 
 
 
 − 

    10. 
1 0 1
3 4 1

0 0 2

− 
 − 
  

 

 

11. 
6 2 0
2 9 0

5 8 3

− 
 − 
  

    12. 
5 2 3
0 1 0
6 7 2

− 
 
 
 − 

 

 
For the matrices in exercises 13 to 15, list the eigenvalues, repeated according to their 
multiplicities. 
 

13. 

4 7 0 2
0 3 4 6
0 0 3 8
0 0 0 1

− 
 − 
 −
 
 

   14. 

5 0 0 0
8 4 0 0
0 7 1 0
1 5 2 1

 
 − 
 
 − 
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15. 

3 0 0 0 0
5 1 0 0 0

3 8 0 0 0
0 7 2 1 0
4 1 9 2 3

 
 − 
 
 − 
 − − 

 

 
16. It can be shown that the algebraic multiplicity of an eigenvalue λ  is always greater 
than or equal to the dimension of the eigenspace corresponding to λ . Find h in the matrix 
A below such that the eigenspace for λ =5 is two-dimensional: 
 

  

5 2 6 1
0 3 0
0 0 5 4
0 0 0 1

A

− − 
 
 =
 
 
 

h
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Lecture 30 
 

Diagonalization 
 
 Diagonalization is a process of transforming a vector A to the form A = PDP-1 for some 
invertible matrix P and a diagonal matrix D. In this lecture, the factorization enables us to 
compute Ak quickly for large values of k which is a fundamental idea in several 
applications of linear algebra. Later, the factorization will be used to analyze (and 
decouple) dynamical systems. 
The “D” in the factorization stands for diagonal. Powers of such a D are trivial to 
compute. 
 
 

Example 1   If 
2

2

5 0 5 0 5 0 5 0
, then

0 3 0 3 0 3 0 3
      

= = =       
       

2D D  and   

2 3

2 3

5 0 5 0 5 0
0 3 0 3 0 3

    
= =    
     

3D  

In general, 
5 0

for 1
0 3

k

k k
 

= ≥ 
 

kD  

The next example shows that if A = PDP-1 for some invertible P and diagonal D, then it 
is quite easy to compute Ak. 
 

Example 2     Let 
7 2

.
- 4 1
 

=  
 

A  Find a formula for Ak, given that A = PDP-1, where 

1 1 5 0
and

-1 -2 0 3
   

= =   
   

P D  

Solution     The standard formula for the inverse of a 2 2×  matrix yields 
2 1
-1 -1
 

=  
 

-1P  

By associative property of matrix multiplication, 
1

1

( )( ) ( ) PDIDP−= = = =


2 -1 -1 -1 -1 -1A PDP PDP PD P P DP PDDP  

where I is the identity matrix. 
2

2

1 1 2 15 0
-1 -2 -1 -10 3

    
= =     

    
2 -1PD P  

Again,  


1

( ) ( )= = = =3 -1 2 -1 2 -1 2 -1 3 -1A PDP A PD P P D P PDD P PD P  

Thus, in general, for 1,k ≥  
1 1 2 15 0

,
-1 -2 -1 -10 3

k

k

    
= =     

    
k k -1A PD P
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2 15 3

,
-1 -15 2.3

k k

k k

   
=    − −   

 

2.5 -3 5 -3
.

2.3 - 2.5 2.3 -5

k k k k

k k k k

 
=  
 

 

Activity   
Work out 4C , given that 1C PDP−=  where  

                                  
1 0 2 0

,
3 1 0 1

P D   
= =   
   

  

 
Remarks   
A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is, 
if A = PDP-1 for some invertible matrix P and some diagonal matrix D. The next theorem 
gives a characterization of diagonalizable matrices and tells how to construct a suitable 
factorization. 
 
Theorem 1   The Diagonalization Theorem 
An n x n matrix A is diagonalizable if and only if A has n linearly independent 
eigenvectors. 
 
In fact, A = PDP-1, with D a diagonal matrix, if and only if the columns of P are n 
linearly independent eigenvectors of A. In this case, the diagonal entries of D are 
eigenvalues of A that correspond, respectively, to the eigenvectors in P. 
 
In other words, A is diagonalizable if and only if there are enough eigenvectors to form a 
basis of Rn. We call such a basis an eigenvector basis. 
 
Proof    First, observe that if P is any n n×  matrix with columns v1, … , vn and if D is 
any diagonal matrix with diagonal entries 1,...., nλ λ  then 

[ ] [ ]... ... ,= =1 2 n 1 2 nAP A v v v Av Av Av              (1) 

while  [ ]
1

2
1 2

0 0
0 0

0 0

n

n

λ
λ

λ λ λ

λ

 
 
 = =
 
 
 

1 2 nPD P v v v







  



         (2) 

Suppose now that A is diagonalizable and A = PDP-1. Then right-multiplying this 
relation by P, we have AP = PD. In this case, (1) and (2) imply that 

[ ] [ ]1 2 nλ λ λ=1 2 n 1 2 nAv Av Av v v v                  (3) 
Equating columns, we find that 

1 2, , , nλ λ λ= = =1 1 2 2 n nAv v Av v Av v                                (4) 
 
Since P is invertible, its columns v1,…, vn must be linearly independent. Also, since these 
columns are nonzero, Eq.(4) shows that 1,....., nλ λ  are eigenvalues and v1, …, vn are 
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corresponding eigenvectors. This argument proves the “only if” parts of the first and 
second statements along with the third statement, of the theorem. 
 
Finally, given any n eigenvectors v1, …, vn use them to construct the columns of P and 
use corresponding eigenvalues 1,....., nλ λ  to construct D. By Eqs. (1) – (3). AP =PD. This 
is true without any condition on the eigenvectors. If, in fact, the eigenvectors are linearly 
independent, then P is invertible (by the Invertible Matrix Theorem), and AP = PD 
implies that A = PDP-1. 
 
Diagonalizing Matrices 

 Example 3   Diagonalize the following matrix, if possible 
1 3 3
-3 -5 -3
3 3 1

 
 =  
  

A  

Solution   To diagonalize the given matrix, we need to find an invertible matrix P and a 
diagonal matrix D such that A = PDP-1 which can be done in following four steps. 
 
Step 1   Find the eigenvalues of A.  
  The characteristic equation becomes  

3 20 det( ) 3 4A Iλ λ λ= − = − − +  
  2( 1)( 2)λ λ= − − +  
The eigenvalues are λ = 1 and λ = -2 (multiplicity 2) 
Step 2    Find three linearly independent eigenvectors of A. Since A is a 3 3×  matrix and 
we have obtained three eigen values, we need three eigen vectors. This is the critical step. 
If it fails, then above Theorem says that A cannot be diagonalized. Now we will produce 
basis for these eigen values. 
  
Basis vector for 1:λ =  

1

2

3

( ) 0
0 3 3 0
3 6 3 0 .

3 3 0 0

A I x
x
x
x

λ− =

     
     − − − =     
          

 

After applying few row operations on the matrix ( )A Iλ− , we get 

1

2

3

0 1 1 0
3 3 0 0 ,
0 0 0 0

x
x
x

     
     =     
          

 

which can be written as  
2 3

1 2

0
3 3 0
x x
x x
+ =
+ =

 

In parametric form, it becomes 
1 2 3, ,x t x t x t= = − =  
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Thus, the basis vector for 1λ =  is 1

1
1

1
v

 
 = − 
  

 

 
 
Basis vector for -2λ =  

1

2

3

( ) 0
3 3 3 0
3 3 3 0 ,

3 3 3 0

A I x
x
x
x

λ− =

     
     − − − =     
          

 

which can be written as   

                        
1 2 3

1 2 3

1 2 3

3 3 3 0
3 3 3 0

3 3 3 0

x x x
x x x

x x x

+ + =

− − − =
+ + =

 

In parametric form, it becomes 
1 2 3, ,x s t x s x t= − − = =    

Now, 
1

2

3

2 3

0 ,
0

1 1
1 0 ,
0 1

1 1
1 0 .
0 1

x s t s t
x s s
x t t

s t

x x

− − − −       
       = = +       
              

− −   
   = +   
      
− −   
   = +   
      

 

Thus, the basis for 2λ = −  is 2

1
1
0

v
− 
 =  
  

 and 3

1
0
1

v
− 
 =  
  

 

 
We can check that {v1, v2, v3} is a linearly independent set. 
Step 3   Check that {v1, v2, v3} is a linearly independent set. 
Construct P from the vectors in step 2. The order of the vectors is not important. Using 

the order chosen in step 2, form 
1 -1 -1

[ ] -1 1 0
1 0 1

1 2 3P v v v
 
 = =  
  
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Step 4   Form D from the corresponding eigen values. For this purpose, the order of the 
eigen values must match the order chosen for the columns of P. Use the eigen value λ = -
2 twice, once for each of the eigenvectors corresponding to λ = -2: 
 

1 0 0
0 -2 0
0 0 -2

D
 
 =  
  

 

Now, we need to check do P and D really work. To avoid computing P -1, simply verify 
that AP = PD. This is equivalent to A = PDP -1 when P is invertible.We compute 
    

1 3 3 1 -1 -1 1 2 2
-3 -5 -3 -1 1 0 -1 -2 0
3 3 1 1 0 1 1 0 -2

1 -1 -1 1 0 0 1 2 2
-1 1 0 0 -2 0 -1 -2 0
1 0 1 0 0 -2 1 0 -2

AP

PD

     
     = =     
          
     
     = =     
          

 

 
Example 4     Diagonalize the following matrix, if possible. 

2 4 3
-4 -6 -3
3 3 1

 
 =  
  

A  

Solution     The characteristic equation of A turns out to be exactly the same as that in 
example 3 i.e., 

3 2

2

0 det( - )
2 4 3

4 6 3
3 3 1

- -3 4
-( -1)( 2)

λ
λ

λ
λ

λ λ

λ λ

=

−
= − − − −

−

= +

= +

A I

 

The eigen values are λ = 1 and λ = -2 (multiplicity 2). However, when we look for eigen 
vectors, we find that each eigen space is only one – dimensional. 

Basis for 
1

1: -1
1

1v
 
 = =  
  

λ  

Basis for 
-1

-2 : 1
0

2v
 
 = =  
  

λ  
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There are no other eigen values and every eigen vector of A is a multiple of either v1 or 
v2. Hence it is impossible to form a basis of R3 using eigenvectors of A. By above 
Theorem, A is not diagonalizable. 
 
Theorem 2     An n x n matrix with n distinct eigenvalues is diagonalizable. 
 
The condition in Theorem 2 is sufficient but not necessary i.e., it is not necessary for an n 
x n matrix to have n distinct eigen values in order to be diagonalizable. Example 3 serves 
as a counter example of this case where the 3 x 3 matrix is diagonalizable even though it 
has only two distinct eigen values. 
 
 
 
Example 5     Determine if the following matrix is diagonalizable. 

  
5 -8 1
0 0 7
0 0 -2

A
 
 =  
  

 

Solution    In the light of Theorem 2, the answer is quite obvious. Since the matrix is 
triangular, its eigen values are obviously 5, 0, and   –2.Since A is a 3 x 3 matrix with 
three distinct eigen values, A is diagonalizable. 
 
Matrices Whose Eigenvalues Are Not Distinct      
If an n x n matrix A has n distinct eigen values, with corresponding eigen vectors v1 ,..., v 
n and if P = [v1 … vn] , then P is automatically invertible because its columns are linearly 
independent , by Theorem 2 of lecture 28. When A is diagonalizable but has fewer than n 
distinct eigen values, it is still possible to build P in a way that makes P automatically 
invertible, as shown in the next theorem. 
 
Theorem 3     Let A be an n x n matrix whose distinct eigen values are 1λ λ p, ..., . 

a. For 1≤ k≤ p, the dimension of the eigen space for λk  is less than or equal to the 
multiplicity of the eigen value λk  

b. The matrix A is diagonalizable if and only if the sum of the dimensions of the 
distinct eigen spaces is equal to n, and this happens if and only if the dimension of 
the eigen space for each of λk equals the multiplicity of λk . 

c. If A is diagonalizable and Bk is basis for the eigen space corresponding to λk  for 
each k, then the total collection of vectors in the sets B1, ..., Bp form an 
eigenvector basis for Rn . 

 
Example 6     Diagonalize the following matrix, if possible. 
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5 0 0 0
0 5 0 0
1 4 -3 0
-1 -2 0 -3

A

 
 
 =
 
 
 

 

Solution     Since A is triangular matrix, the eigenvalues are 5 and –3, each with 
multiplicity 2. Using the method of lecture 28, we find a basis for each eigen space. 

  Basis for 1 2

-8 -16
4 4

λ 5 : and
1 0
0 1

v v

   
   
   = = =
   
   
   

 

  Basis for 3 4

0 0
0 0

λ -3 : and
1 0
0 1

v v

   
   
   = = =
   
   
   

 

The set {v1,…,v4}is linearly independent, by Theorem 3. So the matrix P =[v1…v4] is 
invertible, and A=PDP -1 , where 
 
 
 
 

  

-8 -16 0 0 5 0 0 0
4 4 0 0 0 5 0 0

and
1 0 1 0 0 0 -3 0
0 1 0 1 0 0 0 -3

P D

   
   
   = =
   
   
   

  

 
Example 7   

(1) Compute A8 where 
4 -3
2 -1

A  
=  
 

 

(2) Let 1 2

-3 12 3 2
, and

-2 7 1 1
A v , v     
= = =     
     

.  Suppose you are told that v1 and 

v2 are eigenvectors of A. Use this information to diagonalize A. 
(3) Let A be a 4 x 4 matrix with eigenvalues 5, 3, and -2, and suppose that you 

know the eigenspace for λ =3 is two-dimensional. Do you have enough 
information to determine if A is diagonalizable? 

Solution   
Here, det (A- λ I)= λ 2  -3 λ +2=( λ -2)( λ -1).  
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The eigen values are 2 and 1, and corresponding eigenvectors are 

1 2

3 1
, and

2 1
v v   
= =   
   

. Next, form 

13 1 2 0 1 -1
, and

2 1 0 1 -2 3
−     

= = =     
     

P ,D P  

Since A = PDP –1, A8 = PD8P
8

8

3 1 1 -12 0
2 1 -2 30 1

    
=     
    

 

   
3 1 256 0 1 -1
2 1 0 1 -2 3
     

=      
     

    

   
766 -765
510 -509
 

=  
 

 

(2)Here, 1 1

-3 12 3 3
1 ,

-2 7 1 1
Av .v     

= = =     
     

and 

   2 2

-3 12 2 6
3

-2 7 1 3
Av .v     

= = =     
     

 

Clearly, v1 and v2 are eigenvectors for the eigenvalues 1 and 3 , respectively. Thus  

A = PDP -1, where 
3 2 1 0

and
1 1 0 3

P D   
= =   
   

 

(3) Yes A is diagonalizable. There is a basis {v1, v2 } for the eigen space corresponding 
to λ =3. Moreover, there will be at least one eigenvector for λ =5 and one for λ =-2 say 
v3 and v4. Then {v1, …., v4 }  is linearly independent and A is diagonalizable , by 
Theorem 3. There can be no additional eigen vectors that are linearly independent from  
v1 to v4 because the vectors are all in R4 .Hence the eigenspaces for λ =5 and λ =-2 are 
both one–dimensional. 
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Exercise   
 
In exercises 1 and 2, let A = PDP-1 and compute A4. 
 

1. 
5 7 2 0

,
2 3 0 1

P D =   
=    
   

   2. 
2 3 1 0

,
3 5 0 1/2

P D =
−   

=    −   
 

 
In exercises 3 and 4, use the factorization A = PDP-1 to compute Ak, where k represents 
an arbitrary positive integer. 
 

3. 
0 1 0 0 1 0

3( ) 3 1 0 3 1
       

=       − −       

a a
a b b b

 

 

4. 
2 12 3 4 2 0 1 4
1 5 1 1 0 1 1 3

− −       
=       − −       

 

 
In exercises 5 and 6, the matrix A is factored in the form PDP-1. Use the Diagonalization 
Theorem to find the eigenvalues of A and a basis for each eigenspace. 
 

5. 
2 2 1 1 1 2 5 0 0 1 4 1 2 1 4
1 3 1 1 0 1 0 1 0 1 4 1 2 3 4
1 2 2 1 1 0 0 0 1 1 4 1 2 1 4

/ / /
/ / /
/ / /

       
       = − −       
       − −       

 

 

6. 
4 0 2 2 0 1 5 0 0 0 0 1
2 5 4 0 1 2 0 5 0 2 1 4
0 0 5 1 0 0 0 0 4 1 0 2

− − −       
       =       
       − −       

 

 
Diagonalize the matrices in exercises 7 to 18, if possible. 
 

7. 
3 1
1 5

− 
 
 

     8. 
2 3
4 1
 
 
 

 

 

9. 
1 4 2
3 4 0
3 1 3

− − 
 − 
 − 

    10. 
4 2 2
2 4 2
2 2 4

 
 
 
  
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11. 
2 2 1
1 3 1
1 2 2

− 
 − 
 − − 

    12. 
4 0 2
2 5 4
0 0 5

− 
 
 
  

 

 

13. 
7 4 16
2 5 8
2 2 5

 
 
 
 − − − 

    14. 
0 4 6
1 0 3

1 2 5

− − 
 − − 
  

 

 

15. 
4 0 0
1 4 0
0 0 5

 
 
 
  

    16. 
7 16 4

6 13 2
12 16 1

− − 
 − 
  

 

 

17. 

5 3 0 9
0 3 1 2
0 0 2 0
0 0 0 2

− 
 − 
 
 
 

   18. 

4 0 0 0
0 4 0 0
0 0 2 0
1 0 0 2

 
 
 
 
 
 
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  Lecture 31 
 

Eigenvectors and Linear Transformations 
  
 
The goal of this lecture is to investigate the relationship between eigenvectors and linear 
transformations. Previously, we have learned how to find the eigenvalues and 
eigenvectors. We shall see that the matrix factorization A = PDP - 1 is also a type of linear 
transformations for some invertible matrix P and some diagonal matrix D. 
 
The Matrix of a Linear Transformation 
    
           Let V be an n-dimensional vector space, W an m-dimensional vector space, and T 
any linear transformation from V to W. To associate a matrix with T, we choose (ordered) 
bases B and C for V and W, respectively. 
Given any x in V, the coordinate vector [x]B is in Rn and the coordinate vector of its 
image, [T(x)]C, is in Rm, as shown in Fig. 1. 

 

 
  Figure 1     A linear transformation from V to W 

 
 
 
Let B={b1, …, bn} be the basis for V. If x = r1b1 ++ rnbn,  

then 
1

[ ]Bx
 
 =  
  



n

r

r
 

and T is a linear transformation 
 
   1 1( ) ( ) ( ) ( )1 n 1 nT x T b b T b T b= + + = + + n nr r r r    (1) 
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 Using the basis C in W, we can rewrite (1) in terms of C-coordinate vectors: 
1[ ( )] [ ( )] [ ( )]C 1 C n CT x T b T b= + + nr r      (2) 

Since C-coordinate vectors are in Rm, the vector equation (2) can be written as a matrix 
equation, namely 

[ ( )] [ ]C BT x M x=        (3) 
where  [ ][ ( )] [ ( )] [ ( )]1 C 2 C n CM T b T b T b=      (4) 
The matrix M is a matrix representation of T, called the matrix for T relative to the 
bases B and C.  

  

    Figure   2 
Example 1 
 
Suppose that B = {b1, b2} is a basis for V and C = {c1, c2, c3} is a basis for W. Let 

:T V W→ be a linear transformation with the property that 
( ) 3 - 2 5 and ( ) 4 7 -1 1 2 3 2 1 2 3T b c c c T b c c c= + = +  

Find the matrix M for T relative to B and C. 
 
Solution    
           Since [ ][ ( )] [ ( )] [ ( )]= 1 C 2 C n CM T b T b T b  and here  
 

3 4
[ ( )] -2 and [ ( )] 7

5 -1
1 C 2 CT b T b

   
   = =   
      

 

Hence,                       
3 4
-2 7
5 -1

M
 
 =  
  
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Linear Transformations from V into V    
           In general  when W is the same as V and the basis C is the same as B, the matrix 
M in (4) is called the matrix for T relative to B, or simply the B-matrix for T, is 
denoted by [T]B. See Fig. 3. 

 
Figure 3 

 
The B-matrix of :T V V→  satisfies 

[ ( )] [ ] [ ] ,B B BT x T x=     for all x in V    (5) 
 
Example 2   
 
         The mapping : 2 2T P P→  defined by 1 2 2( ) 22

0 1T a t t a t+ + = +a a a  
is a linear transformation. 
 
(a) Find the B-matrix for T, when B is the basis {1, t, t2}. 
(b) Verify that [T(p)]B = [T]B[p]B for each p in P2. 
 
Solution 
 
(a) We have to find the B-matrix of :T V V→  satisfies 
 
                            [ ( )] [ ] [ ] ,B B BT x T x=     for all x in V  
 
Since 1 2 2( ) 2a a a+ + = +2

0 1T a t t a t therefore  
 

  T (1) = 0 , T (t) = 1,  T (t2) = 2t  
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2

0 1 0
[ ( )] 0 , [ ( )] 0 , [ ( )] 2

0 0 0
B B BT 1 T t T t

     
     = = =     
          

 

 
 

0 1 0
[ ] 0 0 2

0 0 0
BT

 
 =  
  

 

 
(b) For a general p (t) = a0 +a1t +a2t2, we have 

  
1

2 2[ ( )] [ 2 ] 2
0

B 1 BT p a t
 
 = + =  
  

a
a a

0

1

2

0 1 0
0 0 2 [ ] [ ]
0 0 0

B BT p
   
   = =   
      

a
a
a

 

See figure 4. 
 

Figure 4 Matrix representation of a linear transformation 
 
Linear Transformations on Rn    
 
            In an applied problem involving Rn, a linear transformation T usually appears first 
as a matrix transformation, x Ax→ . If A is diagonalizable then there is a basis B for Rn 
consisting of eigenvectors of A. Theorem below shows that in this case, the B-matrix of T 
is diagonal. Diagonalizing A amounts to finding a diagonal matrix representation of 
x Ax→ . 
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Theorem: Diagonal Matrix Representation  
 
          Suppose A = PDP -1, where D is diagonal   n x n matrix. If B is the basis for Rn 
formed from the columns of P, then D is the B-matrix of the transformation x Ax→ . 
 
Proof   Denote the columns of P by b1, …, bn, so that B = {b1, …, bn} and  
P = [b1   …   bn]. In this case, P is the change-of-coordinates matrix PB discussed in 
lecture 23, where [ ] and [ ] -1

B BP x x x P x= =  
 
If T (x) = Ax for x in Rn, then 

[ ][ ] [ ( )] [ ( )]B 1 B n BT T b T b=    Definition of [T]B 

[ ][ ] [ ]1 B n BAb Ab=    Since T (x) = Ax 
-1 -1

1 nP Ab P Ab =     Change of Coordinates 

[ ]-1
1 nP A b b=     Matrix multiplication 

-1P AP=         (6) 
Since A = PDP-1, we have [T]B = P -1AP = D. 
 
Example 3   

Define : 2 2T R R→  by T (x) = Ax, where 
7 2

.
- 4 1

A  
=  

 
 Find a basis B for R2 with the 

property that the B-matrix of T is a diagonal matrix. 
 
Solution    
 
Since the eigenvalues of matrix A are 5 and 3 and the eigenvectors corresponding to 

eigenvalue 5 is 
1
1

 
 − 

 and the eigenvectors corresponding to eigenvalue 3 is 
1
2

 
 − 

  

Therefore A = PDP -1, where 
1 1 5 0

and
-1 -2 0 3

   
= =   

   
P D   

By the above theorem D matrix is the B matrix of T when B= 
1 1

,
1 2

    
    − −    

. 

Similarity of Matrix Representations 
 
         We know that A is similar to C if there is an invertible matrix P such that  
A = PCP -1, therefore if A is similar to C , then C is the B-matrix of the transformation 

→x Ax  when the basis B is formed from the columns of P by the theorem 
above.(Since in the proof , the information that D is a diagonal matrix was not used). 
 
The factorization A = PCP -1 is shown in Fig. 5. 
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Figure 5 Similarity of two matrix representations: A = PCP -1 

 
Conversely, if : n nT R R→  is defined by T (x) = Ax, and if B is any basis for Rn, then 
the B-matrix of T is similar to A. In fact, the calculations in (6) show that if P is the 
matrix whose columns come from the vectors in B, then [T]B = P -1AP. Thus, the set of 
all matrices similar to a matrix A coincides with the set of all matrix representations of 
the transformation .x Ax→  

 
An efficient way to compute a B-matrix P -1AP is to compute AP and then to row reduce 
the augmented matrix [P     AP] to [I     P -1AP]. A separate computation of P -1 is 
unnecessary.  
 
Example 4 
 
Find T ( a0 + a1t + a2 t2 ), if  T is the linear transformation from P2 to P2 whose matrix 

relative to B ={1, t, t2} is 
3 4 0

[ ] 0 5 1
1 2 7

BT
 
 = − 
 − 

 

Solution  
 
           Let p(t) = a0 + a1t + a2 t2 and compute  

0 0 1

1 1 2

2 0 1 2

3 4 0 3 4
[ ( )] [ ] [ ] 0 5 1 5

1 2 7 2 7
B B B

a a a
T p T p a a a

a a a a

+     
     = = − = −     
     − − +     

 

So T (p) = (3a0+4a1)1 + (5a1-a2)t  + (a0-2a1+7a2)t2 . 
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Example 5   
  
Let A, B, C be n x n matrices. Verify that  
(a) A is similar to A. 
(b) If A is similar to B and B is similar to C, then A is similar to C.     
 
Solution 
 
(a) A =(I)-1AI, so A is similar to A. 
(b) By hypothesis, there exist invertible matrices P and Q with the property that  
B = P -1 AP and C = Q -1BQ. Substituting, and using facts about the inverse of a product 
we have  

1 1 1 1( ) ( ) ( )C Q BQ Q P AP Q PQ A PQ− − − −= = =  
This equation has the proper form to show that A is similar to C. 
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Lecture 32 

 
Eigenvalues and Eigenvectors 

 
Definition 
       A complex scalar λ satisfies  
           det(A- λI ) =     0 
if and only if there is a nonzero vector x in Cn such that  
  Ax= λx. 
We call λ a (complex) eigenvalue and x a (complex) eigenvector corresponding to λ. 
 
Example 1 

   If 
0 -1

,
1 0

A  
=  

 
 then the linear transformation x Ax→  on R2 rotates the plane 

counterclockwise through a quarter-turn.  
 
Solution  
 
            The action of A is periodic since after four quarter-turns, a vector is back where it 
started. Obviously, no nonzero vector is mapped into a multiple of itself, so A has no 
eigenvectors in R2 and hence no real eigenvalues. In fact, the characteristic equation of A 
is 2 21 0 1 iλ λ λ+ = ⇒ = − ⇒ = ±  
         The only roots are complex: iλ =  and .iλ = −  However, if we permit A to act on C2 
then 

0 -1 1 1
1 0 - 1 -

       
= =       

       

i
i

i i
 

0 -1 1 - 1
-

1 0 1
       

= =       
       

i
i

i i
 

Thus i and –i are the eigenvalues, with 
1
-

 
 
 i

and
1
i

 
 
 

 as corresponding eigenvectors. 

Example 2 
 

Let 
0.5 -0.6
0.75 1.1

 
=  

 
A .Find the eigenvalues of A, and find a basis for each eigen-space. 

 
Solution  
 The characteristic equation of A is 

0.5 0.6
0 det (0.5 )(1.1 ) ( 0.6)(0.75)

0.75 1.1
λ

λ λ
λ

− − 
= = − − − − − 

 

                           2 1.6 1λ λ= − +  
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From the quadratic formula, 21
2 [1.6 ( 1.6) 4] 0.8 0.6 .iλ = ± − − = ±  For the eigenvalue 

0.8 0.6 ,iλ = −  we study  
0.5 0.6 0.8 0.6 0

(0.8 0.6 )
0.75 1.1 0 0.8 0.6

i
i

i
− −   

− − = −   −   
A

0.3 0.6 0.6
0.75 0.3 0.6

i
i

− + − 
=  + 

  

 (1) 
 

Since 0.8 – 0.6i is an eigenvalue, we know that the system 
1 2( 0.3 0.6 ) 0.6 0i x x− + − =  

1 20.75 (0.3 0.6 ) 0x i x+ + =                  (2) 
has a nontrivial solution (with x1 and x2 possibly complex numbers).  
                         1 20.75 ( 0.3 0.6 )x i x= − −                                                
                      ⇒   1 2( 0.4 0.8 )x i x= − −   
Taking x2 = 5 to eliminate the decimals, we have x1 = –2 – 4i. A basis for the eigenspace 

corresponding to λ  = 0.8 – 0.6i is 
2 4

51v
− − 

=  
 

i
 

Analogous calculations for λ =0 .8 + 0.6i produce the eigenvector 
2 4

52v
− + 

=  
 

i
 

Check 
Compute 
 

0.5 0.6 2 4 4 2
(0.8 0.6 )

0.75 1.1 5 4 3
i i

i
i

− − + − +     
= = = +     +     

2 2Av v  

 
Example 3  
  One way to see how multiplication by the A in Example 2 affects points is to plot an 
arbitrary initial point-say, x0 = (2, 0) and then to plot successive images of this point 
under repeated multiplications by A. That is, plot  

0.5 0.6 2 1.0
.75 1.1 0 1.5

−     
= = =     

     
1 0x Ax  

 
0.5 0.6 1.0 0.4

=
0.75 1.1 1.5 2.4

− −     
= =     

     
2 1x Ax  

,3 2x Ax=   
Figure 1 shows x0, …, x8 as heavy dots. The smaller dots are the locations of x9, …, x100. 
The sequence lies along an elliptical orbit. 
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Figure 1   Iterates of a point x0 under the action of a matrix with a complex eigenvalue 
 
Of course Figure 1 does not explain why the rotation occurs. The secret to the rotation is 
hidden in the real and imaginary parts of a complex eigenvector. 
 
Real and Imaginary Parts of Vectors  

 
The complex conjugate of a complex vector x in Cn is the vector x  in Cn whose 

entries are the complex conjugates of the entries in x. The real and imaginary parts of a 
complex vector x are the vectors Re x  and Im x  formed from the real and imaginary 
parts of the entries of x . 
 
Example 4 
 

   If 
3 3 1

0 1 ,
2 5 2 5

x
− −     

     = = +     
     +     

i
i i

i
 then 

3 1 3 1 3
Re 0 , Im 1 ,and 0 1

2 5 2 5 2 5
x x x

− − +         
         = = = − = −         
         −         

i
i i

i
 

 
If B is an m n×  matrix with possibly complex entries, then B  denotes the matrix whose 
entries are the complex conjugates of the entries in B. Properties of conjugates for 
complex numbers carry over to complex matrix algebra: 

, ,r r B B and rB r B= = =x x x x  
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Eigenvalues and Eigenvectors of a Real Matrix that Acts on Cn 

 
 

Let A be n n×  matrix whose entries are real. Then .A A A= =x x x   If λ  is an 
eigenvalue of A with x a corresponding eigenvector in Cn, then A A λ λ= = =x x x x  
Hence λ  is also an eigenvalue of A, with x  a corresponding eigenvector. This shows 
that when A is real, its complex eigenvalues occur in conjugate pairs. (Here and 
elsewhere, we use the term complex eigenvalue to refer to an eigenvalue a biλ = +  
with 0b ≠ .) 
 
Example 5  
 
  The eigenvalues of the real matrix in example 2 are complex conjugates namely,  
0.8 – 0.6i and 0.8 + 0.6i. The corresponding eigenvectors found in example 2 are also 

conjugates: 
2 4 2 4

and
5 5

11 2v v v
− − − +   

= = =   
   

i i
 

Example 6   


  If C
− 

=  
 

a b
b a

, where a and b are real and not both zero, then the eigenvalues of C are 

.a biλ = ±  Also, if 2 2r a bλ= = + , then 
 
 

 
                                                                 Figure 2 

 
 

/ / 0 cos sin
/ / 0 sin cos

C
− −     

= =     
     

a r b r r
r

b r a r r
ϕ ϕ
ϕ ϕ

 

where ϕ  is the angle between the positive x-axis and the ray from (0, 0) through (a, b). 
See Fig. 2. The angle  ϕ  is called the argument of .= +a biλ   
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Thus, the transformation x Cx→  may be viewed as the composition of a rotation 
through the angle ϕ  and a scaling by λ . 

                   

 
Figure 3   A rotation followed by a scaling 

 
Finally, we are ready to uncover the rotation that is hidden within a real matrix having a 
complex eigenvalue. 
 
Example 7 

   Let 
0.5 0.6

, 0.8 0.6 ,
0.75 1.1

iλ
− 

= = − 
 

A  and 
2 4

,
51v

− − 
=  

 

i
 as in example 2. Also, let P 

be the 2 2×  real matrix [ ] 2 4
Re Im

5 01 1P v v
− − 

= =  
 

 

and let  
0 4 0.5 0.6 2 4 0.8 0.61
5 2 0.75 1.1 5 0 0.6 0.820

− − − −       
= = =       − −       

-1C P AP  

By Example 6, C is a pure rotation because 2 2 2(.8) (.6) 1.λ = + =   
 
From C = P -1AP, we obtain   

                              
0.8 0.6
0.6 0.8

− 
= =  

 
-1 -1A PCP P P  

 
Here is the rotation “inside” A! The matrix P provides a change of variable, say, x = Pu. 
The action of A amounts to a change of variable from x to u, followed by a rotation, and  
then return to the original variable. See Figure 4. 
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Figure 4 Rotation due to a complex eigenvalue 
Theorem 
 
Let A be a real 2 x 2 matrix with complex Eigen values ( 0)ia b bλ = − ≠ and associated 
eigenvectors v  in 2

 , then  

                       

[ ]

1, ,

Re Im

a b
A PCP C

b a

P v v

− − 
= =  

 
=
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Lecture 33 
 

Discrete Dynamical Systems 
 
      For a dynamical system described by the difference equation  

1x Axk k=+ ,eigenvalues and eigenvectors provide the key to understand the long term 

behavior and evolution of the system. Here the vector xk gives information about the 
system as time (which is denoted by k) passes. Discrete dynamical system has a great 
application in many scientific fields. For example, modern state space design method of 
standard undergraduate courses in control system and steady state response of a control 
system relies heavily on dynamical system.    
In this section, we will suppose that a matrix A is diagonalizable, with n linearly 
independent eigenvectors, 1v , …, vn, and corresponding eigenvalues

1 2, ,... nλ λ λ . 
For convenience, assume that the eigenvectors are arranged so that  
                                          1 2 ... nλ λ λ≥ ≥ ≥  

Since { 1v , …, vn } is a basis for nR , any initial vector 0x  can be written uniquely as  
                            0 1 1 2 2 ... n nx c v c v c v= + + +  
Since the vi are eigenvectors,  

                    

1 0

1 1 2 2

1 1 1 2 2 2

...
...

n n

n n n

x Ax
c Av c Av c Av
c v c v c vλ λ λ

=
= + + +
= + + +

 

In general, 
1 1 1( ) ... ( ) ( 0,1, 2...)k k

k n n nx c v c v kλ λ= + + =  
We will discuss in the following examples what can happen to kx  if k→ ∞ . 
  
Example 1 

 Denote the owl and wood rat populations at time k by ,kx
 

=  
 

k

k

O
R

 where k is the time in 

months, Ok is the number of owls in the region studied, and Rk is the number of rats 
(measured in thousands). Suppose that 
 

1

1

(.5) (.4)
(1.1)

k k k

k k k

O O R
R p O R

+

+

= +
= − ⋅ +

   

where p is a positive parameter to be specified. The (.5)Ok in the first equation says that 
with no wood rats for food only half of the owls will survive each month, while the 
(1.1)Rk in the second equation says that with no owls as predators, the rat population will 
grow by 10% per month. If rats are plentiful, then (.4)Rk will tend to make the owl 
population rise, while the negative term –p.Ok measures the deaths of rats due to 
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predation by owls. (In fact, 1000p is the average number of rats eaten by one owl in one 
month.) Determine the evolution of this system when the predation parameter p is 0.104. 
 
Solution  
  The coefficient matrix A for the given equations is  

0.5 0.4
1.1

A
p

 
=  − 

 

 
 When p = .104, 
The matrix becomes  

0.5 0.4
0.104 1.1

A  
=  − 

 

 For eigenvalues of the coefficient matrix put  
det ( )A Iλ− =0  
The eigenvectors corresponding to the eigenvalues 1 1.02λ =  and 2 .58λ = are 

10 5
,

13 11 2v v   
= =   

   
. 

 
An initial x0 can be written as x0 = c1v1 + c2v2 then, for 0k ≥ , 

1 2(1.02) (.58)k 1 2x v v= +k kc c 1 2

10 5
(1.02) (.58)

13 1
k kc c   

= +   
   

 

As , (.58)kk → ∞  rapidly approaches zero. Assume 1 0.c ≠  Then, for all sufficiently large 
k, xk is approximately the same as c1(1.02)kv1, and we write 

1

10
(1.02)

13kx  
≈  

 
kc  ……………….(1)     

  
The approximation in (1) improves as k increases, and so for large k, 

1
1 1

10 10
(1.02) (1.02) (1.02) 1.02

13 13
k kc c+    

≈ = ≈   
   

k+1 kx x    

This approximation says that eventually both xk  entries i.e owls and rats grow by a factor 
of almost 1.02 each month. Also equation (1) shows that xk is approximately a multiple 
of (10,13).So we can say that the entries in xk are almost in the same ratio as 10 to 13.It 
means that for every 10 owls there are about 13 thousand rats.   
 
Trajectory of a dynamical system 
 
In a 2×2 matrix, geometric description of a system’s evolution can enhance the algebraic 
calculations. We can view that what happens to an initial point x0 in 2R , when it is 
transformed repeatedly by the mapping x→Ax. The graph of x0, x1…is called a trajectory 
of the dynamical system. 
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Example 2  
 Plot several trajectories of the dynamical system xk+1 = Axk, when  

.80 0
0 .64

A  
=  

 
 

 
Solution    
 
In a diagonal matrix the eigen values are the diagonal entries  and as A  is a diagonal 
matrix with diagonal enteries  0.8 and 0.64,Therefore the  eigenvalues of A are .8 and .64, 

with eigenvectors 
1
01v  

=  
 

 and 
0

.
12v  

=  
 

 

 If x0 = c1v1 + c2v2, then 1 2

1 0
(.8) (.64)

0 1kx    
= +   

   
k kc c  

 
Of course, xk tends to 0  because (.8)k and (.64)k both approach to 0 as .k → ∞  But the 
way xk goes towards 0  is interesting. Figure 1 shows the first few terms of several 
trajectories that begin at points on the boundary of the box with corners at ( 3, 3).± ±  The 
points on a trajectory are connected by a thin curve, to make the trajectory easier to see. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1   The origin as an attractor 
 In this example, the origin is called an attractor of the dynamical system because all 
trajectories tend towards O. This occurs whenever both eigenvalues are less than 1 in 
magnitude. The direction of greatest attraction is along the line through O and the 
eigenvector v2 as it has smaller eigenvalue. 
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Example 3 
 
Plot several typical solution of the equation 1k kx Ax+ = , when 

                                      
1.44 0
0 1.2

A  
=  

 
 

 
 

Solution 
In a diagonal matrix the eigen values are the diagonal entries and as A  is a diagonal 
matrix with diagonal entries  1.44 and 1.2,Therefore the  eigenvalues of A are 1.44 and 

1.2, with eigenvectors 
1
01v  

=  
 

 and 
0

.
12v  

=  
 

 

As 
 

0 1 1 2 2

1 2

1

2

1

2

1 0
0 1

0
0

,

x c v c v

c c

c
c

c
then

c

= +

   
= +   

   
   

= +   
   
 

=  
 

 

     1 2

1 0
(1.44) (1.2)

0 1
k k

kx c c   
= +   

   
 

 
 
Both terms grow in size as k→ ∞ ,but the first term grows faster  because it has larger 
eigenvalue. Figure 2 shows several trajectories that begin at points quite close to 0. 

             
                                                Figure 2    The origin as a repellor 
 
In this example, the origin is called a repellor of the dynamical system because all 
trajectories tend away from O. This occurs whenever both eigenvalues are greater than 1 
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in magnitude. The direction of the greatest repulsion is the line through 0 and that eigen 
vector which has a larger eigenvalue. 
 
 
Remark 
 
From the above two examples it may be noticed that when eigenvalues are less than 1 in 
magnitude, the origin  behaves as an attractor and when the eigenvalues are greater than 1 
in magnitude, the origin behaves as a repellor. 
  
Example 4 
 
 Plot several typical solutions of the equation 

1k ky Dy+ = ,where 
2.0 0
0 0.5

D  
=  

 
 

 
Show that a solution { }ky  is unbounded if its initial point is not on the 2x -axis. 
Solution 
 Mistakes   

The eigenvalues of D are 2.0 and 0.5, with eigenvectors 
1
01v  

=  
 

 and 
0

.
12v  

=  
 

 

 

0 1 1 1 2 2 2

1
0

2

1 2

,

1 0
(2.0) (0.5)

0 1
k k

k

If
y c v c v

c
y then

c

y c c

λ λ= +

 
=  

 
   

= +   
   

 

 
         If 0y  is on the 2x -axis,then 1c  =0 and ky →0 as k→ ∞ .But if 0y  is not on the 2x -
axis, then the first term in the sum for ky  becomes arbitrarily large, and so { }ky  is 
unbounded. Figure 3 shows ten trajectories that begin near or on the axis. 
 



33-Discrete Dynamical Systems                                                                                                                   VU 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            424 

 
 
In this example ‘O’ is called the saddle point because one eigenvalue  is greater than ‘1’ 
in magnitude and one is less than ‘1’ in magnitude. The origin attracts solution from 
some directions and repels them in other directions. 
 
Change of Variable   
 

The preceding three examples involved diagonal matrices. To handle the nondiagonal 
case, we return for a moment to the n n×  case in which eigenvectors of A form a basis 

{ ,..., }1 nv v  for Rn. Let [ ]1 nP v v=  , and let D be the diagonal matrix with the 
corresponding eigenvalues on the diagonal. Given a sequence {xk} satisfying xk+1 = Axk, 

define a new sequence {yk} by yk = P -1xk, or equivalently, xk = Pyk. 
Substituting these relations into the equation xk+1 = Axk, and using the fact that  
A = PDP -1, we find that Pyk+1 = APyk = (PDP -1)Pyk = PDyk 
Left-multiplying both sides by P -1, we obtain yk+1 = Dyk 
If we write yk as y(k) and denote the entries in y(k) by y1(k), …, yn(k), then 

 
1

2

( 1) 0 0 ( )
( 1) 0 ( )

0
( 1) 0 0 ( )

1 1

2 2

n n

y y
y y

y y

+     
     +     =
     
     +     





   

 n

k k
k k

k k

λ
λ

λ

 

The change of variable from xk to yk has decoupled the system of difference equations. 
The evolution of y1(k), for example, is unaffected by what happens to y2(k), …, yn(k), 
because 1( 1) ( )1 1y .y+ =k kλ  for each k. 
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Example 5  
  Show that the origin is a saddle point for solutions of xk+1 = Axk, where 

1.25 .75
.75 1.25

A
− 

=  − 
 

find the directions of greatest attraction and greatest repulsion. 
Solution  
  For eigenvalues of the given matrix put  
   det ( )A Iλ− =0  

we find that A has eigenvalues 2 and .5, with corresponding eigenvectors 
1
11v  

=  − 
 and 

1
12v  

=  
 

, respectively. Since 2 1>  and .5 1< , the origin is a saddle point of the 

dynamical system. If x0 = c1v1 + c2v2, then 
1 2(2) (.5)k kc c= +k 1 2x v v      

 
 

In figure 4, the direction of the greatest repulsion is the line through 1v , the eigenvector 
whose eigenvalue is greater than 1. 
The direction of the greatest attraction is determined by the eigenvector 2v  whose 
eigenvalue is less than 1. 
A number of trajectories are shown in figure 4.When this graph is viewed in terms of  
eigenvector axes, the diagram looks same as figure 4. 
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Complex Eigenvalues 
     Since the characteristic equation of n× n matrix involves a polynomial of degree n, the 
equation always has exactly n roots, in which complex roots  are possibly  included. If we 
have complex eigenvalues then we get complex eigen vectors which may be divided into 
two parts: which is real part of the vector and imaginary part of the vector. 
 
Note 
If a matrix has two complex eigenvalues in which absolute value of one eigenvalue is 
greater than 1,then origin behaves as a repellor and iterates of 0x  will spiral outwards 
around the origin .If the absolute value of an eigenvalue is less than 1,then the origin 
behaves as an attractor and iterates of 0x  will spiral inward towards the origin. 
 
Example 6 
Let  

1

0.8 0.5 1 2
0.9 0.2 .

0.1 1.0 1

0
,

2.5

3 0
.

0 2.5

k k

i
A has eigenvalue i with eigenvectors

Find the trajectories of the system x Ax with initial vectors

and

+

±   
= ±   −   

 
=  

 
   
   −   

 

Solution 
 
Given a matrix  

                      
0.8 0.5

0.1 1.0
A  

=  − 
 

 

The eigenvalues of the matrix are 0.9 0.2i±  and corresponding eigenvectors are 
1 2

1
i± 

 
 

 

also the initial vectors are given as 
0 3 0

,
2.5 0 2.5

and     
     −     

. 
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Example 7 
Suppose the search survival rate of a young bird is 50%,and the stage matrix A is 

0 0 0.33
0.3 0 0
0 0.71 0.94

A
 
 =  
  

 

What does the stage matrix model predict about this bird? 
 
Solution 

Given a matrix A=
0 0 0.33
0.3 0 0
0 0.71 0.94

 
 
 
  

 

for eigenvalues of A we will put det(A- λ I)=0  
 

2

3

3

3

0 0.33
det( ) 0.3 0

0 0.71 0.94

( 0.94 ) 0.33(0.3 0.71)
0.94 0.07029

det( ) 0
0.94 0.07029 0

0.94 0.07029 0

A I

for eigenvalues put A I

λ
λ λ

λ

λ λ

λ λ
λ

λ λ

λ λ

−
− = −

−

= − − + + ×

= − +
− =

− + =

− − =

 

1

2 3

it gives3values ofλ which are approximately 1. 01,-0.03+0.26i,-0.03-0.26i
eigen vector for first valueofλ will be v =(10,3 ,31) and for the next two values of
λ we willget complex eigen vectors denoted by v and v .

 

 
 
Now 

1 1 2 2 3 3(1.01) ( 0.03 0.26 ) ( 0.03 0.26 )k k k
kx c v c i v c i v= + − + + − −  

As k→ ∞ ,the second two vectors tends to 0.So kx  becomes more and more like the (real) 
vector 1 1(1.01)kc v  .Thus the long term growth rate of the owl population will be 1.01,and 
the population will grow slowly. The eigenvector describes the eventual distribution of 
the owls by life stages: For every 31 adults, there will be about 10 juveniles and three 
subadults. 
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Exercise 
 
Suppose that a 3×  3 matrix A has eigenvalues 2,2/5,3/5 and corresponding eigenvectors     

                

1 2 3

0

1 2 3
0 1 3
3 5 7

2
5
3

v v v

also x

− −     
     = = =     
     − −     

− 
 = − 
 − 

 

Find a general solution of the equation 1k kx Ax+ = also find what happens to 

kx when k → ∞ . 
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Lecture 34 
 

Applications to Differential Equations 
 
Differential equation 

A differential equation is any equation which contains derivatives, either ordinary 
derivatives or partial derivatives.  Differential equations play an extremely important and 
useful role in applied mathematics, engineering, and physics. Moreover, a lot of 
mathematical and numerical machinery has been developed for the solution of 
differential equations.  
 
 
System of linear differential equations 

 A system of linear differential equations can be expressed as: 

                                                

'
1 11 1 1
'
2 21 1 2

'
1 1

...

...
.
.
.

...

n n

n n

n n nn n

x a x a x
x a x a x

x a x a x

= + +

= + +

= + +

 

where xi(t) is a function of time, i = 1, . . . n, and the matrix of constant coefficient is  
A = ija    

                 In many applied problems, several quantities are continuously varying in time, 
and they are related by a system of differential equations: 

                                                          

'
1 11 1 1
'
2 21 1 2

'
1 1

...

...
.
.
.

...

n n

n n

n n nn n

x a x a x
x a x a x

x a x a x

= + +

= + +

= + +

 

Here 1 2, ,..., nx x x are differentiable functions of t ,with derivatives ' ' '
1 2, ,..., nx x x ,and the ija  

are constants. Write the system as a matrix differential equation 



34-Applications to Differential Equations                                                                                                    VU 
 

                                                  
                                                   ©Virtual University Of Pakistan                                                            430 

'x Ax=  

Where 
'

11 11 1

'

'
1

. . .( ) ( )
. . . .

( ) . , ( ) . , . .
. . . .

( ) ( )

n

n n nnn

a ax t x t

x t x t and A

x t a ax t

    
    
    
    = = =
    
    
        

 

 
Superposition of solutions 
 
If u and v  are two solutions of 'x Ax= , then cu dv+ is also a solution. 
 
Proof: 
         If u  and v  are two solutions of 'x Ax= then u Au′ = and v Av′ = .Therefore, 
  

                     

' ' '( )

( )

cu dv cu dv
cAu dAv
A cu dv

+ = +
= +
= +

 

Linear combination of any set of solutions is also a solution. This property is called 
superposition of solutions. 
 
 
Fundamental set of Solutions 
 
           If A is an n×  n matrix, then there are n linearly independent functions in a 
fundamental set, and each solution of 'x Ax= is a unique linear combination of these ‘n’ 
functions. So we can say that fundamental set of solutions is a basis for the set of all 
solutions of 'x Ax= ,and the solution set is n-dimensional vector space of functions. 
 
Initial value problem 
If a vector 0x  is specified, then the initial value problem is to construct the unique 
function x  such that '

0(0)x Ax and x x= =  

 
Example 1 
For the system x Ax′ = .What will be the solution when A is a diagonal matrix and is 
given by 

                               
3 0
0 5

A  
=  − 
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Solution 
The solution of the given system can be obtained by elementary calculus. Consider  

'
1 1
'

22

' '
1 1 2 2

'
1 1

'
1 1

1
1

1

1

( ) ( )3 0
0 5 ( )( )

( ) 3 ( ) ( ) 5 ( )

( ) 3 ( ) sin .

( ) 3 ( )

3

3

x t x t
x tx t

from here we have
x t x t and x t x t
first of all we will find solutionof x t x t by u g calculus

x t x t
dx x
dt
dx dt
x

Integrating both sid

    
=    −      

= = −

=

=

=

=

1

1

1 1

1 1

1

1

31

1
3

1 1

3

ln 3 ln
ln ln 3

ln( ) 3

log

( )

t

t

es
dx dt
x
x t c
x c t
x t
c

taking anti on both sides
x e
c
x t c e

=

= +
− =

=

=

=

∫ ∫

 

 
Similarly Solution of  

'
2 2

5
2 2

( ) 5 ( )

( ) t

x t x t
will be
x t c e−

= −

=

 

And it can be written in the form   
3

1 1 3 5
1 25

2 2

( ) 1 0
( ) 0 1

t
t t

t

x t c e
c e c e

x t c e
−

−

      
= = +      

        
 

 
The given system is said to be decoupled because each derivative of the function depends 
only on the function itself, not on some combination or coupling of 1 2( ) ( )x t and x t . 
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Observation  
 
From the above example we observe that a solution of the general equation 'x Ax= might 
be a linear combination of functions of the form  
                                        ( ) tx t veλ=  
Where λ is some scalar and v  is some fixed non-zero vector. 

'

'

( ) ................................(1)
. . ' '

( )
(1)

( )
, ( ) ( ) .

t

t

t

t

x t ve
differentiating w r t t

x t ve
Multiplying both sides of by A

Ax t Ave
Since e is never zero x t will equal to Ax t iff v Av

λ

λ

λ

λ

λ

λ

=

=

=

=

 

Eigenfunctions 
 
 Each pair of eigenvalue and its corresponding eigenvector provides a solution of the 
equation 'x Ax=  which is called eigenfunctions of the differential equation. 

 
Example 2 
 
The circuit in figure 1 can be described by  

1 1 2 1 2 1 1

2 2 2 2 2 2

( ) ( ) / / ( )
( ) / / ( )

v t R R C R C v t
v t R C R C v t

′ − +     
=     ′ −     

 

 
Where 1( )v t  and 2 ( )v t are the voltages across the two capacitors at time t.  

                                 
                                          Figure 1 
 
Suppose that resistor R1 is 2 ohms, R2 is 1 ohms, capacitor C1 is 2 farads, and capacitor 
C2 is 1 farad and suppose that there is an initial charge of 5 volts on capacitor C1 and 4 
volts on capacitor C2. Find formulas for v1(t) and v2(t) that describe how the voltages 
change over time. 
Solution 
 
   For the data given, we can form A as 
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1 2 1 2 1

2 2 2 2

1

2

1

2

1 2 1

2 1

2 2

2 2

( ) / /
/ /

2
1
2
1

(2 1) 3( ) / 1.52 2
1/ 0.52
1/ 11

1/ 11

R R C R C
A

R C R C
R
R
C
C so

R R C

R C

R C

R C

− + 
=  − 
=
=
=
=

− + −− + = ⇒ ⇒ −

= ⇒

= ⇒

− = − ⇒ −

 

 1

2

1.5 .5
, ,

1 1
A x

−   
= =   −   

v
v

 and 
5

.
40x  

=  
 

 The vector x0 lists the initial values of x. From 

A, we obtain eigenvalues 1 .5λ = −  and 2 2,λ = − by using det (A-λI)=0 with corresponding 

eigenvectors 
1
21v  

=  
 

 and 
1

12v
− 

=  
 

 

The eigenfunctions 1( ) tt eλ=1 1x v  and 2( )2 2x v= tt eλ  both satisfy ,x Ax′ =  and so does any 
linear combination of x1 and x2. Set 

1 2
1 2

.5 2
1 2

( )
1 1

.............(1)
2 1

t t

t t

t c e c e

c e c e

λ λ

− −

= +

−   
= +   

   

1 2x v v
 

and note that x(0) = c1v1 + c2v2. Since v1 and v2 are obviously linearly independent and 
hence span R2, c1 and c2 can be found to make x(0) equal to x0.  
We can find 1 2c and c as 

[ ]1
1 2 0

2

1 2

1 1 5
2 1 4

1 0 3
0 1 2

3 2

c
v v x

c

row reduction of this matrix gives

hence c and c

 
= 

 
− 

=  
 
 

=  − 
= = −

  

Put the value of 1 2c and c   in (1)  

.5 21 1
( ) 3 2

2 1
x − −−   

= −   
   

t tt e e  

Thus the desired solution of the differential equation x Ax′ =  is  
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0.5 2

0.5 2

3 2
( )

6 2

t t

t t

e e
x t

e e

− −

− −

   −
= −   

     

or  
0.5 2

1
0.5 2

2

( ) 3 2
( ) 6 2

− −

− −

 + 
=    −   

t t

t t

v t e e
v t e e

 

As both eigenvalues are negative so origin in this case behaves as an attractor and the 
direction of greatest attraction will be along the more negative eigenvalue 2λ = − . 
 
 

                                      
                                          Figure 2   The Origin as an attractor 
 
 
Example 3  
Suppose a particle is moving in a planar force field and its position vector x satisfies  

'x Ax=  and x(0) = 0x , where 

                             
4 5 2.9

,
2 1 2.6

−   
= =   −   

0A x  

Solve this initial value problem for 0t ≥ , and sketch the trajectory of the particle
 
Solution 
 
The eigenvalues of the given matrix can be found by using det(A-λI)=0 which are turned 

out to be 1λ = 6 and 2λ =-1 with corresponding eigen vectors 1 2

5 1
2 1

v and v
−   

= =   
   

. 

 
For any constants 1 2c and c  ,the function 

1 2
1 1 2 2

6
1 2

( )
5 1

2 1

t t

t t

x t c v e c v e

c e c e

λ λ

−

= +

−   
= +   

   
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We have to find 1 2c and c to satisfy x(0)= 0x ,so 
 

0 1 2

1 2

1 2

1 2

1 2

1 2

1 2

5 1
2 1

52.9
2.6 2

5
2

2.9 5 ....................................(1)
2.6 2 .......................................(2)

1

x c c

c c
c c

c c
c c

c c
c c

Subtracting from

−   
= +   

   
−    

= +    
     

− + 
=  + 

= − +
= +

1 1 2

6

2

3 188(1)
70 70

5 13 188( )
2 170 70

t t

we get

c and substituting this valueof c in we get c

x t e e−

= − =

−   
= − +   

   

 

 

                                       
 
 
                                               Figure 3   The Origin as a saddle point 
 
As the matrix A has both positive and negative eigenvalues so in this case origin behaves 
as a saddle point. The direction of greatest repulsion is the line through 1 0v and  
corresponding to the positive eigenvalue. The direction of greatest attraction is the line 
through 2 0v and  , corresponding to the negative eigenvalue. 
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Decoupling a Dynamical System 
 
       For any dynamical system described by x Ax′ =   when A is diagonalizable, the 
fundamental set of solutions can be obtained by the methods that we have discussed in 
examples 2 and 3. 
 Suppose that the eigenfunctions for A are 

1 , ,1 nv v

ntte eλλ  
with v1, …, vn linearly independent eigenvectors. Let P = [v1  …  vn] and let D be the 
diagonal matrix with entries 1, , ,nλ λ  so that A = PDP -1. Now make a change of 
variable, defining a new function y by 

 
( ) ( ),-1y P x=t t  or equivalently, x(t) = Py(t) 

Substituting these relations into x Ax′ =  gives 
                                                1( ) ( ) ( )Py t PDP Py t−′ =  

                                                 

1

1 1

( ) ( )

( ) ( )
( ) ( )

Py t PDy t
pre multiplying both sideby P
P Py t P PDy t
y t Dy t or
y Dy

−

− −

′ =

′ =
′ =
′ =

 

 

                              

1 1 1

2 2 2

( ) 0 0 ( )
( ) 0 ( )

0
( ) 0 0 ( )n n n

y t y t
y t y t

y t y t

λ
λ

λ

′     
     ′     =
     
     ′     





   



 

The change of variable from x to y has decoupled the system of differential equations 
because the derivative of each scalar function yk depends only on yk. Since 1 ,1 1y y′ = λ  we 
have 1

1( ) ,1y = tt c eλ  with similar formulas for y2, …, yn. Thus 
1

1

( ) ,y
 
 =  
  



n

t

t
n

c e
t

c e

λ

λ

   where  
1

2

(0) (0)-1 -1
0y P x P x

 
  = = = 
  



c

c
 

To obtain the general solution x of the original system, compute 
[ ] 1

1( ) ( ) ( )1 n 1 nx Py v v y v v= = = + + 

ntt
nt t t c e c eλλ  

This is the eigenfunction expansion as constructed in example 2. 
 
Complex Eigenvalues 
 
       As we know that for a real matrix A , complex  eigenvalues and associated eigen 
vectors come in conjugate pairs i.e if λ is an eigenvalue of A then λ  will be the 2nd 
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eigenvalue. Similarly if one eigen vector is v  then the other will be v .So there will be two 
solutions of 'x Ax=  and they are 

1 2( ) , ( )t tx t ve x t veλ λ= =  
 
Here 2 1( ) ( )x t x t=  
 

1 1

1 1

1Re( ) ( ) ( )
2
1Im( ) ( ) ( )
2

t

t

ve x t x t

ve x t x t
i

λ

λ

 = + 

 = − 

 

 
From Calculus  
 

2

2

( )

1 ... ...
2 !
( ) ( )1 ... ...

2! !

. (cos sin )

n
x

n
t

a ib t at ibt at

x xe x
n

t te t
n

If we write a ib
e e e e bt i bt

λ λ λλ

λ
+

= + + + + +
!

= + + + + +

= +

= = +

 

 

'

1 1

(Re Im ). (cos sin )
Re . cos Re . sin Im . cos Im . sin

(Re cos Im sin ) (Re sin Im cos )

( ) Re ( ) (Re )cos (Im

t at

t at at at at

t at at

So
ve v i v e bt i bt
ve v e bt v e i bt i v e bt v e bt
ve e v bt v bt ie v bt v bt
So two real solutions of x Ax are
y t x t v bt

λ

λ

λ

= + +

= + + −

= − + +

=

= = −[ ]
[ ]2 1

)sin

( ) Im ( ) (Re )sin (Im )cos

at

at

v bt e

y t x t v bt v bt e= = +

 

 
Example 4 
 
The circuit in figure 4 can be described by the equation 

2

1

1
1 1 ( )
R L L

C R C
′ − −    

=    ′ −    
L L

C C

i i
v v
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                                          Figure 4 
                
 
Where  iL is the current passing through the inductor L and vc is the voltage drop across  
the capacitor C. Suppose R1 is 5 ohms, R2 is .8 ohm, C is .1 farad, and L  is .4  henry.  
Find formulas for iL and vc, if the initial current through the inductor is 3 amperes and the 
initial voltage across the capacitor is 3 volts. 
 
 
Solution 
From the data given, We can form A as  

  
 

 
 

2

1

0.8 8 10 4 20.4 10
1011 2.50.4 4

11 100.1
1 11 ( ) 25 0.1 0.5

R L

L

C

R C

− −− = ⇒ × ⇒ −

−−− = ⇒ ⇒ −

= ⇒

− −− = ⇒ ⇒ −×

 

 

 

2 2.5
10 2
− − 

=  − 
A

2

1

1

2

1
1 1 ( )

5
0.8

0.1
0.4

R L L
A

C R C
R
R
C
L

− − 
=  − 
=
=

=
=
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2

2

2

2

2 2.5
det( )

10 2

( 2 ) 25
4 4 25

4 29
det( ) 0
4 29 0

A I

put A I

λ
λ

λ

λ

λ λ

λ λ
λ

λ λ

− − − 
− =  − − 

= − − +

= + + +

= + +
− =

+ + =

   

 

 the eigenvalues of A is 2 5i− ± with corresponding eigenvectors 
2 2
i i

and
−   

=    
   

1v  The 

complex solutions of  
x Ax′ =  are complex linear combinations of 

( 2 5 )

2 5

( )
2

.
2

i t

t it

i
t e

i
e e

− +

−

 
=  

 
 

=  
 

1x
      and ( 2 5 )( )

22x − −− 
=  

 
i ti

t e  

2( ) (cos5 sin 5 )
21x − 

= + 
 

ti
t e t i t  

By taking real and imaginary parts of x1, we obtain real solutions: 
2 2sin 5 cos5

( ) , ( )
2cos5 2sin 51 2y y− −−   

= =   
   

t tt t
t e t e

t t
 

Since y1 and y2 are linearly independent functions, they form a basis for the two-
dimensional real vector space of solutions x Ax′ = . Thus, the general solution is 

2 2
1 2

sin 5 cos5
( )

2cos5 2sin 5
x − −−   

= +   
   

t tt t
t c e c e

t t
 

To satisfy 0

3
(0)

3
x  

= =  
 

x  we need sc1 and c2  

Thus  

1 2

2

1

2

1

2

1

0 1 3
,

2 0 3

0 3
2 30

0 3
2 0 3

3
3 1.5
2

c c

c
c
c

c
c

c

     
+ =     

     
     

+ =     
    

+ =
+ =

=

= =
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2 2

1 2

2 2

2 2

2 2

2 2

2

sin 5 cos5
( )

2cos5 2sin 5

sin 5 cos5
1.5 3

2cos5 2sin 5

1.5sin 5 3cos5
3cos5 6sin 5

1.5sin 5 3cos5
3cos5 6sin 5

t t

t t

t t

t t

t t

t

t t
t c e c e

t t

t t
e e

t t

te te
te te

te te
te

− −

− −

− −

− −

− −

−

−   
= +   

   
−   

= +   
   

   −
= +   

   

− +
=

+

x

2tte−

 
 
 

 

2( ) 1.5sin 5 3cos5
( ) 3cos5 6sin 5

L t

C

i t t t
e

v t t t
−− +   

=   +  
 

 
  

                                     
 
 
                                       Figure 5   The origin as a spiral point 
 
 
 
 
In this figure, due to the complex eigenvalues a rotation is caused by the sine and cosine 
function and hence the origin is called a spiral point. The trajectories spiral inwards as in 
this example the real part of the eigenvalue is negative. 
Similarly, it is important to note that when A has a complex eigenvalue with positive real 
part, the trajectories spiral outwards .And if the real part of the eigenvalue is zero, then 
the trajectories form ellipses around the origin. 
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Exercise 1 
 
The circuit in given figure can be described by  

11
1 2 2 11

2
22 2 2 2

1 1 1 ( )( ) /( )
( ) 1 1

( )

v tCR R R Cv t
v t

v tR C R C

   − +′     =     ′ −       

 

 
Where 1( )v t  and 2 ( )v t are the voltages across the two capacitors at time t.  

                                 
  
Suppose that resistor R1 is 1 ohms, R2 is 2 ohms, capacitor C1 is 1 farad, and capacitor C2 
is 0.5 farad, and suppose that there is an initial charge of 7 volts on capacitor C1 and 6 
volts on capacitor C2. Find formulas for v1(t) and v2(t) that describe how the voltages 
change over time. 
 
Exercise 2 
 
Find formulas for the current Li  and the voltage CV  for the circuit in Example 4, assuming 
that          1 210 , 0.2 , 0.4 , 0.2R ohms R ohm C farad L henry= = = =  
the initial current is 0 amp, and the initial voltage is 16 volts. 
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Lecture 35 
Iterative Estimates for Eigenvalues 

 
Eigenvalues and eigenvectors 
 
       Let A  be an n n×  square matrix, λ is any scalar value. If there exists a non-zero 
vector X , such that it satisfies the equation AX Xλ=  then λ is called the eigenvalue and 
X is called the corresponding eigenvector. 
       i.e. if   

                              
0
0

( ) 0

AX X
AX X
AX IX
A I X

λ
λ
λ

λ

=
− =
− =

− =

 

To find the eigenvalues we have to solve the equation  
                                  0A Iλ− =  
 
Example 1 

Find the eigenvalues of
1 0
1 2

A  
=  − 

. 

Solution  
 

               

1 0
1 2

1 0 1 0 1 0 0 1 0
1 2 0 1 1 2 0 1 2

A

A I
λ λ

λ λ
λ λ

 
=  − 

−         
− = − = − =         − − − −         

 

                       (1 )( 2 )A Iλ λ λ− = − − −  

Solving 0A Iλ− = , we get  
                             (1 )( 2 ) 0λ λ− − − =  
So, either (1 ) 0λ− = or ( 2 ) 0λ− − =  
                , 1 2so λ λ= = −  are the eigenvalues of A. 
 
Power Method 
 
       Let a matrix A is diagonalizable, with n linearly independent eigenvectors, 

1 2, ,...
n

v v v and corresponding eigenvalues 
1 2, ,...

n
λ λ λ such that  

                                
1 2 ...

n
λ λ λ> ≥ ≥   

Since 1 2{ , ,... }nv v v is a basis for nR , any vector x  can be written as  

                          1 1 2 2 ... n nx c v c v c v= + + +  
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Multiplying both sides by A, we get  
1 1 2 2

1 1 2 2

1 1 2 2

1 1 1 2 2 2

( ... )
( ) ( ) .... ( )
( ) ( ) ... ( )
( ) ( ) ... ( )

n n

n n

n n

n n n

Ax A c v c v c v
A c v A c v A c v
c Av c Av c Av
c v c v c vλ λ λ

= + + +
= + +
= + +
= + +

 

Again multiplying by A and simplifying as above, we get   
 

2 2 2 2
1 1 1 2 2 2( ) ( ) ... ( )n n nA x c v c v c vλ λ λ= + +  

Continuing this process we get  
 

1 1 1 2 2 2

1 1 1 2 2 2

( ) ( ) ... ( )

( ) ( ) ) ... ( ) ( 1, 2,...)

k k k k
n n n

k k k k
n n n

A x c v c v c v
A x c v c v c v k

λ λ λ

λ λ λ

= + +

= + + =
 

2
1 1 2 2

1 1 1

1( ) ( ) ) ... ( ) ( 1, 2,...)k k k kn
n nA x c v c v c v kλλ

λ λ λ
= + + =  

1 1 1( ) k kA x c v
as k
λ − →

→ ∞
                Since 

1 2 ...
n

λ λ λ> ≥ ≥  

Thus for large k, a scalar multiple of kA x determines almost the same direction as the 
eigenvector 1 1c v . Since, positive scalar multiples do not change the direction of the 
vector, kA x  itself points almost in the same direction as 1v or 1v− , provided 1 0c ≠ .  
 
Procedure for finding the Eigenvalues and Eigenvectors  
Power Method 
 
To compute the largest eigenvalue and the corresponding eigenvector of the system  
                                                       ( ) ( )A X Xλ=  
Where A is a real, symmetric or un-symmetric matrix, the power method is widely used 
in practice.  
 
Procedure 
 
Step 1: Choose the initial vector such that the largest element is unity. 
 
Step 2: The normalized vector 

(0)v   is pre-multiplied by the matrix A. 
 
Step 3: The resultant vector is again normalized. 
 
Step 4: This process of iteration is continued and the new normalized vector is repeatedly 
pre-multiplied by the matrix A until the required accuracy is obtained. 
At this point, the result looks like 

                                             
( ) ( 1) ( )[ ]k k k

ku A v q v−= =  
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Here, kq  is the desired largest eigenvalue and 
( )kv   is the corresponding eigenvector. 

 
Example 2 
 

Let
1.8 .8
0.2 1.2

A  
=  

 
, 1

4
1

v  
=  

 
and

0.5
1

X
− 

=  
 

.  Then A has Eigenvalues 2 and 1, and the 

eigenspace for  1 2λ =  is the line through 0  and 1v .  For k=0, …, 8, compute kA x  and 
construct the line through 0 and kA x . What happens as k increases? 
 
Solution    
 
 The first three calculations are 
 

 

1.8 0.8 0.5 0.1
0.2 1.2 1 1.1

1.8 0.8 0.1 0.7
( )

0.2 1.2 1.1 1.3

1.8 0.8 0.7 2.3
( )

0.2 1.2 1.3 1.7

− −     
= =     

     
−     

= = =     
     
     

= = =     
     

2

3 2

Ax

A x A Ax

A x A A x

 

Analogous calculations complete Table 1. 
 
Table 1   Iterates of a Vector 
 
k 0 1 2 3 4 5 6 7 8 

Akx .5
1

− 
 
 

 
0.1

1.1
− 

 
 

 
0.7
1.3

 
 
 

 
2.3
1.7

 
 
 

 
5.5
2.5

 
 
 

 
11.9
4.1

 
 
 

 
24.7
7.3

 
 
 

 
50.3
13.7

 
 
 

 
101.5
26.5

 
 
 

 

 
The vectors 2, , ,..., kx Ax A x A x  are shown in Fig. 1. The other vectors are growing too 
long to display. However, line segments are drawn showing the directions of those 
vectors. In fact, the directions of the vectors are what we really want to see, not the 
vectors themselves. The lines seem to be approaching the line representing the 
eigenspaces spanned by v1. More precisely, the angle between the line (subspace) 
determined by kA x  and the line (eigenspaces) determined by 1v  goes to zero as .k → ∞  
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       Figure 1         Directions determined by x, Ax, A2x, …, A7x 
 
 
The vectors 1( ) kA x−kλ  in (3) are scaled to make them converge to 1 1c v , provided 1 0c ≠ . 
We cannot scale kA x  in this way because we do not know 1λ  but we can scale each kA x  
to make its largest entry 1. It turns out that the resulting sequence { }kx will converge to a 
multiple of 1v  whose largest entry is 1. Figure 2 shows the scaled sequence for Example 
1. The eigenvalue 1λ  can be estimated from the sequence{ }kx  too. When kx  is close to an 
eigenvector for 1λ  the vector kAx  is close to 1λ kx  with each entry in kAx approximately 

1λ  times the corresponding entry in kx . Because the largest entry in kx  is 1 the largest 
entry in kAx is close to 1λ .  
 

 
 
Figure 2         Scaled multiples of 2 7, , ,...,x Ax A x A x . 
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Steps for finding the eigenvalue and the eigenvector  
 

1. Select an initial vector  0x  whose largest entry is 1. 
2. For k=0,1,…. 

a. Compute kAx  
b. Let kµ be an entry in kAx  whose absolute value is as large as possible.     

c. Compute 1
1( )k k

k

x Ax
µ+ =  

      3. For almost all choices of 0x , the sequence { }kµ  approaches the dominant 
eigenvalue, and the sequence { }kx approaches a dominant eigenvector.  
 
Example 3 

Apply the power method to 
6 5
1 2

A  
=  

 
 with 0

0
1

x  
=  

 
. Stop when 5k = , and estimate the 

dominant eigenvalue and a corresponding eigenvector of A.  
 
Solution    
  
   To begin, we calculate 0Ax  and identify the largest entry 0µ  in 0Ax . 

0

6 5 0 5
, 5

1 2 1 20Ax      
= = =     

     
µ  

Scale 0Ax  by 01 µ  to get 1x , compute 1Ax and identify the largest entry in 1Ax  
 

0

5 11 1
2 .451 0x Ax    

= = =   
   µ

 

1

6 5 1 8
, 8

1 2 .4 1.81Ax      
= = =     

     
µ  

Scale 1Ax  by 11 µ  to get x2, compute 2Ax , and identify the largest entry in 2Ax . 

1

8 11 1
1.8 .22582 1x Ax    

= = =   
   µ

 

2

6 5 1 7.125
, 7.125

1 2 .225 1.4502Ax      
= = =     

     
µ  

Scale 2Ax  by 21 µ  to get 3x , and so on. The results of MATLAB calculations for the first 
five iterations are arranged in the Table 2. 
The evidence from the Table 2 strongly suggests that { }kx approaches (1, .2) and { }kµ  
approaches 7. If so, then (1, .2) is an eigenvector and 7 is the dominant eigenvalue. This 

is easily verified by computing 
1 6 5 1 7 1

7
.2 1 2 .2 1.4 .2

A          
= = = =         

         
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TABLE 2   The Power Method for Example 2 
 

k 0 1 2 3 4 5 
kx  0

1
 
 
 

 
1
.4

 
 
 

 
1

.225
 
 
 

 
1

.2035
 
 
 

 
1

.2005
 
 
 

 
1

.20007
 
 
 

 

kAx  5
2

 
 
 

 
8

1.8
 
 
 

 
7.125
1.450

 
 
 

 
7.0175
1.4070

 
 
 

 
7.0025
1.4010

 
 
 

 
7.00036
1.40014

 
 
 

 

kµ  5 8 7.125 7.0175 7.0025 7.00036 
 
 
Example 4 
Find the first three iterations of the power method applied on the following matrices  

            0

1 1 0 0
2 4 2 0
0 1 2 1

use x
   
         =   
      

 

 
Solution  
 
1st Iteration  

1 0

1 1 0 0 0 0 0 0
2 4 2 0 0 0 2 2
0 1 2 1 0 0 2 2

u x
+ +       

        = Α =   = + + =       
       + +       

 

Now, we normalize the resultant vector to get  

1 1 1

0 0
2 2 1
2 1

u q x
   
   = = =   
      

 

 
2nd Iteration  
 

2 1

1 1 0 0 0 1 0 1
2 4 2 1 0 4 2 6
0 1 2 1 0 1 2 3

u x
+ +       

        = Α =   = + + =       
       + +       

 

Now, we normalize the resultant vector to get  

2 2 2

1
1 6
6 6 1
3 1

2

u q x

 
  
  = = =  
     
 
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3rd Iteration  

3 2

1 71 1 0
6 61 1 0 6 1 162 4 2 1 4 1
3 3

0 1 2 1 0 1 1 2
2

u x

   + +     
      
      = Α =   = + + =      
        + +             

 

Now, we normalize the resultant vector to get  
 

3 3 3

7 7
6 3216 16 1
3 3

32
8

u q x

 
  
  
  = = =  
  
      

 

Hence the largest eigenvalue after 3 iterations is16
3

. 

The corresponding eigenvector is 

7
32
1
3
8

 
 
 
 
 
 
 

 

 
The inverse power method  
 
1. Select an initial estimate sufficiently close to λ . 
2. Select an initial vector 0x  whose large entry is 1.  
3. For k=0, 1, 2,… 
               Solve ( ) k kA I y xα− = . 
               Let kµ  be an entry in ky whose absolute value is as large as possible. 

               Compute 1( )k
k

v α
µ

= + . 

               Compute 1
1( )k k

k

x y
µ+ =  

 4. For almost all the choice of 0x , the sequence { }kv approaches the                                                    
eigenvalue λ of A, and the sequence { }kx approaches a corresponding eigenvector.  
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Example 5 
 
  It is not uncommon in some applications to need to know the smallest eigenvalue of a 
matrix A  and to have at hand rough estimates of the eigenvalues. Suppose 21, 3.3, and 
1.9 are estimates for the eigenvalues of the matrix A  below. Find the smallest 
eigenvalue, accurate to six decimal places. 

                                         

 
Solution    
 
  The two smallest eigenvalues seem close together, so we use the inverse power method 
for 1.9A I− . Results of a MATLAB calculation are shown in Table 3. Here 0x  was 
chosen arbitrarily, 1( 1.9 )k ky A I x−= − , kµ  is the largest entry in ky , 1.9 1kv = + kµ , and 

(1 ) .k+1 kx y= kµ   
 
Table 3:   The Inverse Power Method 
 

K 0 1 2 3 4 
0x  1

1
1

 
 
 
  

 
0.5736
0.0646

1

 
 
 
  

 
0.5054
0.0045

1

 
 
 
  

 
0.5004
0.0003

1

 
 
 
  

 
0.50003
0.00002

1

 
 
 
  

 

ky  4.45
0.50
7.76

 
 
 
  

 
5.0131
0.0442
9.9197

 
 
 
  

 
5.0012
0.0031
9.9949

 
 
 
  

 
5.0001
0.0002
9.9996

 
 
 
  

 
5.000006
0.000015
9.999975

 
 
 
  

 

kµ  7.76 9.9197 9.9949 9.9996 9.999975 

kv  2.03 2.0008 2.00005 2.000004 2.0000002 
 
Therefore, we can say that eigenvalue is 2 from the matrix  
 

                                           
10 8 4

8 13 4
4 5 4

A
− − 

 = − 
 − 

 

 
 
 
 

10 8 4
8 13 4
4 5 4

− − 
 = − 
 − 

A
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Exercise  
 
How can you tell that if a given vector X  is a good approximation to an eigenvector of a 
matrix A : if it is, how would you estimate the corresponding eigenvalue? Experiment 
with  
 

                      
5 8 4
8 3 1
4 1 2

A
 
 = − 
 − 

  And 
1.0
4.3

8.1
X

 
 = − 
  
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                                             Lecture 38 
    
                                          Inner Product  
 
If u  and v  are vectors in nR  , then we regard u  and v as 1n× matrices. The transpose 

tu is a 1 n× matrix, and the matrix product tu v  is a 1 1× matrix which we write as a 
single real number (a scalar) without brackets. 
The number tu v  is called the inner product of u  and v .  And often is written as .u v  
This inner product is also referred to as a dot product.  

If 

1

2

.

.

.

n

u
u

u

u

 
 
 
 

=  
 
 
 
  

 and 

1

2

.

.

.

n

v
v

v

v

 
 
 
 

=  
 
 
 
  

 

 
Then the inner product of u  and v  is 

 
 

 
Example 1 

Compute .u v  and .v u  when
2 3
5 2
1 3

u and v
   
   = − =   
   − −   

. 

Solution  
 

2 3
5 2
1 3

u and v
   
   = − =   
   − −   

 

[ ]2 5 1tu = − −  

[ ]
3

. 2 5 1 2 2(3) ( 5)(2) ( 1)( 3)
3

6 10 3 1

tu v u v
 
 = = − − = + − + − − 
 − 

= − + = −

 

 
 

1

2

1 2 1 1 2 2

.
. . . ...

.

.

n n n

n

v
v

u u u u v u v u v

v

 
 
 
 

  = + + +  
 
 
 
  
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[ ]3 2 3tv = −  

[ ]
2

. 3 2 3 5 3(2) (2)( 5) ( 3)( 1)
1

6 10 3 1

tv u v u
 
 = = − − = + − + − − 
 − 

= − + = −

 

 
Theorem  
Letu , v  and w  be vectors in nR  , and let c  be a scalar. Then 

a. . .u v v u=  
b. ( ). . .u v w u w v w+ = +  
c. ( ). ( . ) .( )cu v c u v u cv= =  
d. . 0u u ≥   and . 0u u =  if and only if 0u =  
 

Observation 
 

1 1 2 2

1 1 2 2

( .... ).

( . ) ( . ) ... ( . )
p p

p p

c u c u c u w
c u w c u w c u w

+ +

= + +
 

 
Length or Norm 

The length or Norm of v  is the nonnegative scalar v  defined by  
2 2 2

1 1

2

. ...

.
nv v v v v v

v v v

= = + + +

=
 

 
Note:      For any scalar c ,     cv c v=  
 

Unit vector  
A vector whose length is 1 is called a unit vector. If we divide a non-zero vector 
v by its length v , we obtain a unit vector u  as 

vu
v

=  

 The length of u is       1 1u v
v

= =  

 
Definition  
The process of creating the unit vector u  from v  is sometimes called normalizing v , 
and we say that u  is in the same direction as v . In this case “u ” is called the 
normalized vector.  
 
Example 2 
Let (1,2,2,0)v = in 4R . Find a unit vector u  in the same direction as v . 
Solution  
The length of v  is given by  
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2 2 2 2
1 2 3 4.v v v v v v v= = + + +  

So, 
2 2 2 21 2 2 0 1 4 4 0 9 3v = + + + = + + + = =  

The unit vector u  in the direction of v  is given as  
 

1
31

2
21 1 3
23

2
0 3

0

u v
v

 
 

   
   
   = = =
   
   
   

 
 

 

To check that 1u =  

2 2 2 21 2 2 1 4 4. ( ) ( ) ( ) (0) 0 1
3 3 3 9 9 9

u u u −
= = + + + = + + + =  

 
Example 3 

Let W be the subspace of 2R spanned by 2( ,1)
3

X = . Find a unit vector Z that is a basis 

for W. 
 
Solution   
 
 W consists of all multiples of x, as in Fig. 2(a). Any nonzero vector in W is a basis 
for W. To simplify the calculation, x is scaled to eliminate fractions. That is, multiply 
x by 3 to get 

2
3

y  
=  
 

 

Now compute 2 2 22 3 13, 13,y y= + = =  and normalize y to get 

2 2 131
313 3 13

z
  

= =   
    

 

 
 
 
 
 
See Fig. 2(b). Another unit vector is ( 2 13 , 3 13).− −  
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Figure 2   Normalizing a vector to produce a unit vector. 
 
 
Definition  
For u  and v  vectors in nR , the distance between u  and v , written as dist (u , v ), is the 
length of the vectoru v− . That is  

  
 

Example 4 
Compute the distance between the vectors u = (7, 1) and v = (3, 2) 
 
Solution   

7 3 7 3 4
1 2 1 2 1

u v
−       

− = − = =       − −       
 

 
dist (u , v ) = 2 2(4) ( 1) 16 1 17u v− = + − = + =  
 
 
Law of Parallelogram of vectors  
 
The vectors, u , v and u v−  are shown in the fig. below. When the vector u v−  is 
added to v , the result isu . Notice that the parallelogram in the fig. below shows that 
the distance from u  to v  is the same as the distance of u v−  to o . 
 

( , )dist u v u v= −
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Example 5 
If 1 2 3( , , )u u u u=  and 1 2 3( , , )v v v v= , then  

2 2 2
1 1 2 2 3 3

( , ) ( ).( )

( ) ( ) ( )

dist u v u v u v u v

u v u v u v

= − = − −

= − + − + −
 

Definition  
Two vectors in u  and v  in nR  are orthogonal (to each other)   if . 0u v =  
 
Note  
The zero vector is orthogonal to every vector in nR    because 0 . 0t v = for all v  in nR . 
 
The Pythagorean Theorem  
 
Two vectors u  and v  are orthogonal if and only if   2 2 2u v u v+ = +  
 
Orthogonal Complements  
The set of all vectors z that are orthogonal to w in W is called the orthogonal 
complement of W and is denoted by w⊥  
 
Example 6  
   Let W be a plane through the origin in R3, and let L be the line through the origin 
and perpendicular to W. If z and w are nonzero, z is on L, and w is in W, then the line 
segment from 0 to z is perpendicular to the line segment from 0 to w; that is, z . w = 0. 
So each vector on L is orthogonal to every w in W. In fact, L consists of all vectors 
that are orthogonal to the w’s in W, and W consists of all vectors orthogonal to the z’s 
in L. That is, 

L W ⊥=  and W L⊥=  
 
 
 
 
 
 
 



38- Inner Product                                                                                                                                    VU 
 

                                                  
                                               ©Virtual University Of Pakistan                                                            458 

 
Remarks 
 
The following two facts aboutW ⊥ , with W a subspace of Rn, are needed later in the 
segment.  
(1) A vector x is in W ⊥  if and only if x is orthogonal to every vector in a set that 
spans W. 
(2) W ⊥ is a subspace of Rn.   
 
Theorem 3    
Let A be m x n matrix. Then the orthogonal complement of the row space of A is the 
null space of A, and the orthogonal complement of the column space of A is the null 
space of AT:  (Row ) Nul ,A A⊥ =  (Col ) NulA A⊥ = T  
Proof  
  The row-column rule for computing Ax shows that if x is in Nul A, then x is 
orthogonal to each row of A (with the rows treated as vectors in Rn). Since the rows of 
A span the row space, x is orthogonal to Row A. Conversely, if x is orthogonal to 
Row A, then x is certainly orthogonal to each row of A, and hence Ax = 0. This 
proves the first statement. The second statement follows from the first by replacing A 
with AT and using the fact that Col A = Row AT. 
 
Angles in R2 and R3  
  If u and v are nonzero vectors in either R2 or R3, then there is a nice connection 
between their inner product and the angle ϑ  between the two line segments from the 
origin to the points identified with u and v. The formula is 

cosu v u v⋅ = ϑ      (2) 
To verify this formula for vectors in R2, consider the triangle shown in Fig. 7, with 
sides of length , ,u v  and .u v−  By the law of cosines, 

2 2 2 2 cosu v u v u v− = + − ϑ  
which can be rearranged to produce 

2 2 2

2 2 2 2 2 2
1 2 1 2 1 1 2 2 1 1 2 2

1cos
2

1 ( ) ( )
2

u v u v u v

u v

 = + − − 

 = + + + − − − − = + = ⋅ u u v v u v u v u v u v

ϑ
 

                        (u1, u2) 
 
                                                u                                u v−  
                                                                             ϑ  
                                                                             v                                        (v1, v2)                                                             
 

Figure 7   The angle between two vectors. 
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Example 7 
Find the angle between the vectors    (1, 1, 2), (2,1,0)u v= − =  
 
Solution   

. (1)(2) ( 1)(1) (2)(0) 2 1 0 1u v = + − + = − + =  
And  

2 2 2

2 2 2

(1) ( 1) (2) 1 1 4 6

(2) (1) (0) 4 1 5

u

v

= + − + = + + =

= + + = + =
 

 
Angle between the two vectors is given by 

cosϑ ⋅
=

u v
u v

 

Putting the values, we get  
 

 

Exercises  
 
Q.1 

Compute .u v  and .v u  when
1 3
5 1
3 5

u and v
−   

   = =   
      

 

Q.2 
Let (2,1,0,3)v = in 4R . Find a unit vector u  in the direction opposite to that of v . 
 
Q.3 

Let W be the subspace of 3R spanned by 1 3 5( , , )
2 2 2

X = . Find a unit vector Z that is a 

basis for W. 
 
Q.4 
Compute the distance between the vectors u = (1, 5, 7) and v = (2, 3, 5). 
 
Q.5 
Find the angle between the vectors    (2,1,3), (1,0, 2)u v= = . 
 

1

1 1cos
5 30

1cos
30

1cos 79.48
30

θ

θ

θ − °

= =

=

= =

6
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Lecture No.39 
Orthogonal and Orthonormal sets 

 
Objectives 
 
The objectives of the lecture are to learn about: 

• Orthogonal Set. 
• Orthogonal Basis. 
• Unique representation of a vector as a linear combination of Basis vectors. 
• Orthogonal Projection. 
• Decomposition of a vector into sum of two vectors. 
• Orthonormal Set. 
• Orthonormal Basis. 
•  Some examples to verify the definitions and the statements of the theorems. 
 

Orthogonal Set 
 
Let { }1 2, ,..., pS u u u= be the set of non-zero vectors in ,nR is said to be an orthogonal set 
if all vectors in S  are mutually orthogonal. That is 
O S∉  and . , , 1, 2,..., .i ju u o i j i j p= ∀ ≠ =  
 
Example 
 
Show that { }1 2 3, ,S u u u=  is an orthogonal set. Where 

1 2

3 1
1 , 2
1 1

u u
−   

   = =   
      

 and 3

1
2
2 .
7
2

u

− 
 
 

= − 
 
 
 

 

Solution 
  
To show that S  is orthogonal, we show that each vector in S  is orthogonal to other. That 
is 

. , , 1, 2,3.i ju u o i j i j= ∀ ≠ =  
For 1, 2i j= =  

1 2

3 1
. 1 . 2

1 1
3 2 1 0

u u
−   

   =    
      

=− + + =

 

Which implies 1u  is orthogonal to 2.u  
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For 1, 3i j= =   

1 3

1
3 2

. 1 . 2
1 7

2
3 72

2 2
0.

u u

− 
  
  = −  
     
 

−
= − +

=

 

Which implies 1u  is orthogonal to 3.u  
For 2, 3i j= =   

2 3

1
1 2

. 2 . 2
1 7

2
1 74
2 2
0.

u u

− 
 − 
  = −  
     
 

= − +

=

 

Which implies 2u  is orthogonal to 3.u  

Thus { }1 2 3, ,S u u u=  is an orthogonal set. 
 
Theorem 
Suppose that { }1 2, ,..., pS u u u= is an orthogonal set of non-zero vectors in nR  and 

{ }1 2, ,..., .pW Span u u u=  Then S  is linearly independent set and a basis for .W  
 
Proof 
 
Suppose 

1 1 2 20 ... .p pc u c u c u= + + +  

Where 1 2, ..., pc c c  are scalars. 

1 1 1 1 2 2

1 1 1 1 2 2 1

1 1 1 2 1 2 1

1 1 1

.0 .( ... )

0 .( ) .( ) ... .( )

( . ) ( . ) ... ( . )

( . )

p p

p p

p p

u u c u c u c u
u c u u c u u c u
c u u c u u c u u
c u u

= + + +

= + + +

= + + +

=
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Since S  is orthogonal set, so, 1 2 1. ... . 0pu u u u+ + =  but 1 1. 0.u u >   

Therefore 1 0c = . Similarly, it can be shown that 2 3 ... 0pc c c= = = =  

Therefore by definition { }1 2, ,..., pS u u u=  is linearly independent set and by definition of 
basis is a basis for subspaceW .    
 
Example 
 
If { }1 2,S u u= is an orthogonal set of non-zero vector in 2R  . Show that S is linearly 
independent set. Where 

1

3
1

u  
=  
 

 and 2

1
.

3
u

− 
=  
 

 

 
Solution 
 
To show that { }1 2,S u u= is linearly independent set, we show that the following vector 
equation  

1 1 2 2 0.c u c u+ =   
has only the trivial solution. i.e. 1 2 0.c c= =  

1 1 2 2

1 2

1 2

1 2

1 2

1 2

0

3 1 0
1 3 0

3 0
3 0

3 0

3 0

c u c u

c c

c c

c c

c c

c c

+ =

−
+ =

−
+ =

− =

+ =

     
     
     

     
     

    
 

Solve them simultaneously, gives 
1 2 0.c c= =  

Therefore if S  is an orthogonal set then it is linearly independent. 
 
Orthogonal basis 
 
Let { }1 2, ,..., pS u u u=  be a basis for a subspace W  of ,nR  is also an orthogonal basis if S  
is an orthogonal set. 
 
Theorem  
If { }1 2, ,..., pS u u u= is an orthogonal basis for a subspace W  of nR . Then each y in W can 

be uniquely expressed as a linear combination of 1 2, ,..., .pu u u  That is 

1 1 2 2 ... .p py c u c u c u= + + +   
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Where 
.
.

j
j

j j

y u
c

u u
=  

 
Proof  
 
  

1 1 1 2 2 1

1 1 1 2 2 1 1

1 1 1 2 1 2 1

1 1 1

. ( ... ).

( ). ( ). ... ( ).

( . ) ( . ) ... ( . )

( . ).

p p

p p

p p

y u c u c u c u u
c u u c u u c u u

c u u c u u c u u
c u u

= + + +

= + + +

= + + +

=

 

Since S  is orthogonal set, so, 1 2 1. ... . 0pu u u u+ + =  but 1 1. 0.u u >  
Hence 

1
1

1 1

.
.

y uc
u u

=  and similarly 2
2

2 2

.. ,... .
. .

p
p

p p

y uy uc c
u u u u

= =  

 
Example 
 
The set { }1 2 3, ,S u u u=  as in first example is an orthogonal basis for 3R . Express y as a 
linear combination of the vectors in .S  Where 

[ ]6 1 8 Ty = −  
 
Solution 
 
We want to write 

1 1 2 2 3 3y c u c u c u= + +  
Where 1 2,c c  and 3c  are to be determined. 
By the above theorem 

1
1

1 1

.
.

y uc
u u

=  

6 3
1 . 1
8 1 11 1
3 3 11
1 . 1
1 1

   
   
   
   −   = = =
   
   
   
      
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2
2

2 2

.
.

6 1
1 . 2
8 1 12 2
1 1 6
2 . 2
1 1

y uc
u u

=

−   
   
   
   − −   = = = −
− −   

   
   
      

 

And 
3

3
3 3

.
.

1
6 2
1 . 2
8 7

332 2
1 1 33/ 2

2 2
2 . 2
7 7
2 2

y uc
u u

=

− 
  
   −  
  −    − = = = −

− −   
   
   
− −   
   
   
   

 

Hence 
1 2 32 2y u u u= − − . 

 
 
Example 
 
The set { }1 2 3, ,S u u u=  is an orthogonal basis for 3R . Write y as a linear combination of 
the vectors in .S  Where 

1 2

3 1 1
7 , 1 , 1
4 0 0

y u u
     
     = = − =     
          

 and  3

0
0
1

u
 
 =  
  

 

 
Solution 
 
We want to write 

1 1 2 2 3 3y c u c u c u= + +  
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Where 1 2,c c  and 3c  are to be determined. 
By the above theorem 

1
1

1 1

3 1
7 . 1
4 0. 3 7 0 2
1 1. 1 1 0
1 . 1
0 0

y uc
u u

   
   −   
    − +   = = = =−

+ +   
   − −   
      

 

2
2

2 2

3 1
7 . 1
4 0. 3 7 0 5
1 1. 1 1
1 . 1
0 0

y uc
u u

   
   
   
    + +   = = = =

+   
   
   
      

 

And 

3
3

3 3

3 0
7 . 0
4 1. 4 4
0 0. 1
0 . 0
1 1

y uc
u u

   
   
   
      = = = =
   
   
   
      

 

Hence 
1 2 32 5 4y u u u=− + + . 

 
Exercise 
 
The set { }1 2 3, ,S u u u=  is an orthogonal basis for 3R . Write y as a linear combination of 
the vectors in .S  where 

1 2

1
52 2
21 , 1 ,
5

3 0 1

y u u

 
 

     
     = = − =     
         − 

  

 and  3

8
3

16
3
8
3

u

 
 
 
 =  
 
 
  
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An Orthogonal Projection (Decomposition of a vector into the sum of two vectors 
 
Decomposition of a non- zero vector y nR∈  into the sum of two vectors in such a way, 
one is multiple of u nR∈  and the other orthogonal tou . That is 

y y z∧= +  

Where y uα∧ =  for some scalar α  and z  is orthogonal tou . 
 
 
                                                          

                                                           y∧−               z y y∧= −  
 u  
  
                                               y             
                                                                        y uα∧ =  
                               
                               z y y∧= −                    
                                                    
       
 
                                          y∧−   
 
 
 
 
 
In the above figure a vector y is decomposed into two vectors z y y∧= − and .y uα∧ =    
Clearly it can be seen that z y y∧= −  is orthogonal to u  and y uα∧ = is a multiple ofu . 
Since z y y∧= −  is orthogonal to u.  
Therefore 

. 0
( ). 0
( ). 0

. ( . ) 0
.
.

z u
y y u
y u u

y u u u
y u
u u

α
α

α

∧

=

− =
− =
− =

⇒ =

 

And 

.

.

z y y
y uy u
u u

∧= −

= −
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Hence 

 .
.

y uy u
u u

∧ = , which is an orthogonal projection of y ontou . 

And 

.

.

z y y
y uy u
u u

∧= −

= −
    is a component of y   

 
 
Example 
 

Let 
7
6
 

=  
 

y      and  
4
2
 

=  
 

u .  

Find the orthogonal projection of y onto u. Then write y as a sum of two orthogonal 
vectors, one in span {u} and one orthogonal to u.  
 
Solution 
 
Compute 

7 4
40

6 2

4 4
20

2 2

y u

u u

   
⋅ = ⋅ =   

   
   

⋅ = ⋅ =   
   

 

The orthogonal projection of y onto u is 
4 840ˆ 2
2 420

y uy u u
u u

   ⋅
= = = =   ⋅    

 and the 

component of y orthogonal to u is 
7 8 1

ˆ
6 4 2

y y
−     

− = − =     
     

 

The sum of these two vectors is y. That is, 
7 8 1
6 4 2

ˆ ˆ( )y y y y

−     
= +     

     
−

 

 
This decomposition of y is illustrated in Fig. 3. Note: If the calculations above are 
correct, then ˆ ˆ{ , }y y y− will be an orthogonal set. As a check, compute 

8 1
ˆ ˆ( ) 8 8 0

4 2
y y y

−   
⋅ − = ⋅ = − + =   

   
 

 
 
 
 
 



39-Orthogonal and Orthonormal Sets                                                                                                          VU 

                            
                                          © Virtual University Of Pakistan                                                             468 

                             x2 
 
 
                                                                                  •y 
 
                                                                                                             L = Span {u} 
                     ˆy y−                                                         •    ŷ  
                          •  2                                                              
                                                            •u 
 
                                                                                                                               x1 
                                      1                                                8 
 

Figure 3 The orthogonal projection of y on to a line through the origin. 
 
Example 
 
Find the distance in figure below from y to L. 
 
                             x2 
 
 
                                                                                  •y 
 
                                                                                                             L = Span {u} 
                     ˆy y−                                                         •    ŷ  
                          •  2                                                              
                                                            •u 
 
                                                                                                                               x1 
                                      1                                                8 
 
 
 
Solution 
 
The distance from y to L is the length of the perpendicular line segment from y to the 

orthogonal projection ŷ . 
 
The length equals the length of ˆy y− . 
 
This distance is  

2 2ˆ ( 1) 2 5y y− = − + =  
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Example 
                  Decompose y = (-3,-4) into two vectors ŷ and z, where ŷ  is a multiple of u = 
(-3, 1) and z is orthogonal to u. Also prove that . 0y z∧ =  
Solution 
It is very much clear that y∧ is an orthogonal projection of  y onto u and it is calculated by 
applying the following formula 

.

.
y uy u
u u

∧ =  

         

3 3
.

34 1
3 3 1

.
1 1

− −   
    −−     =  − −     
   
   

   
39 4
19 1
− −

=  +  
  

31
12
− 

=  
 

  

3
2
1
2

 − 
=  
 
  

 

            
            

3
3 3 3/ 23 2
4 4 1/ 2 92

21
2

z y y∧

 
     − − − +   − = − = − = =      − − −     −     
  

 

So, 
3 3
2 2
1 9
2 2

y and z∧

   − −   
= =   
   −      

 

Now 
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3 3
2 2. .
1 9
2 2

9 9
4 4
0

y z∧

   − −   
=    
   −      

= −

=

 

Therefore, y∧  is orthogonal to z 
 
Exercise 
 
Find the orthogonal projection of a vector y = (-3, 2) onto u = (2, 1). Also prove that 
y y z∧= + , where y∧ a multiple of u and z is is an orthogonal to u. 
 
Orthonormal Set 
 
Let { }1 2, ,..., pS u u u= be the set of non-zero vectors in ,nR is said to be an orthonormal set 
if  S  is an orthogonal set of unit vectors.  
 
Example 
 
Show that { }1 2 3, ,S u u u=  is an orthonormal set. Where 

1 2

2
05

0 , 1
1 0
5

u u

 
      = = −      −   
  

 and 3

1
5

0 .
2
5

u

 
 
 

=  
 
 
  

 

 
Solution 
 
To show that S  is an orthonormal set, we show that it is an orthogonal set of unit 
vectors. 
 It can be easily prove that S is an orthogonal set because 

. 0 , , 1, 2,3.i ju u i j i j= ∀ ≠ =  
Furthermore 
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1 2 3

1 1

2 2

2 1
05 5

0 , 1 0 .
1 0 2
5 5

2 2
5 5

. 0 . 0
1 1
5 5

4 10
5 5

1
0 0

. 1 . 1
0 0

0 1 0
1

u u u

u u

u u

   
        = = − =        −     
      

   
   
   

=    
   − −   
      

= + +

=

   
   = − −   
      

= + +
=

 

And 

3 3

1 1
5 5

. 0 . 0
2 2
5 5

1 4
5 5
1

u u

   
   
   

=    
   
   
      

= +

=

 

Hence  
{ }1 2 3, ,S u u u= is an orthonormal set. 

 
Orthonormal basis 
 
Let { }1 2, ,..., pS u u u=  be a basis for a subspace W  of ,nR  is also an orthonormal basis if 
S  is an orthonormal set. 
 
Example 
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Show that { }1 2 3, ,S u u u= is an orthonormal basis of 3,R where 

1 2

1
3

6
11 2
1 , 6
11 1
1

6
11

u u

− 
   
   
   
   = =   
   
   
       

 and 3

1
66
4 .
66
7
66

u

− 
 
 

− =  
 
 
  

 

 
Solution 
 
To show that { }1 2 3, ,S u u u= is an orthonormal basis, it is sufficient to show that it is an 
orthogonal set of unit vectors. That is 

. 0 , , 1, 2,3.i ju u i j i j= ∀ ≠ =  
And 

. 1 , , 1, 2,3.i ju u i j i j= ∀ = =  
Clearly it can be seen that  

1 2

1 3

. 0,

. 0
u u
u u

=
=

 

And 
2 3. 0.u u =  

Furthermore 
1 1

2 2

. 1,
. 1

u u
u u

=
=

 

And 
3 3. 1.u u =  

Hence S is an orthonormal basis of  3.R  
 
Theorem 
                 A m n×  matrix U has orthonormal columns if and only if tU U I=  
Proof 
          Keep in mind that  in an if and only if statement, one part depends on the other, 
so, each part is proved separately. That is, we consider one part and then prove the other 
part with the help of that assumed part. 
Before proving both sides of the statements, we have to do some extra work which is 
necessary for the better understanding. 
Let 1 2, ,..., mu u u  be the columns of U. Then U can be written in matrix form as 
                  [ ]1 2 3 ... mU u u u u=  
Taking transpose, it becomes 
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1

2

3

.

.

.

t

t

t

t

t
m

u
u
u

U

u

 
 
 
 
 
 =
 
 
 
 
  

 

                   [ ]

1

2

3

1 2 3. . . .
.
.

t

t

t

t
m

t
m

u
u
u

U U u u u u

u

 
 
 
 
 
 =
 
 
 
 
  

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

...

...

...
. . . .
. . . .
. . . .

...

t t t t
m

t t t t
m

t t t t
m

t t t t
m m m m m

u u u u u u u u
u u u u u u u u
u u u u u u u u

u u u u u u u u

 
 
 
 
 
 =
 
 
 
 
  

 

                 

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

.

. . . ... .
. . . ... .
. . . ... .

. . . .

. . . .

. . . .
. . . ... .

t

m

m

m
t

m m m m m

As u v v u
Therefore

u u u u u u u u
u u u u u u u u
u u u u u u u u

U U

u u u u u u u u

=

 
 
 
 
 

=  
 
 
 
 
 

 

 
Now, we come to prove the theorem. 
First suppose that ,tU U I= and we prove that columns of U are orthonormal. 
Since, we assume that  
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1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

. . . ... .
. . . ... .
. . . ... .

. . . .

. . . .

. . . .
. . . ... .

1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
. . . .
. . . .
. . . .
0 0 0 ... 1

m

m

m
t

m m m m m

u u u u u u u u
u u u u u u u u
u u u u u u u u

U U

u u u u u u u u

 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 =  
 
 
 
  

 

 
 
Clearly, it can be seen that 

. 0 , 1, 2,...

. 1 , 1, 2,...

i j

i j

u u for i j i j m
and
u u for i j i j m

= ≠ =

= = =
 

 
 Therefore, columns of U are orthonormal. 
Next suppose that the columns of U are orthonormal and we will show that .tU U I=  
Since we assume that columns of U are orthonormal, so, we can write 

. 0 , 1, 2,...

. 1 , 1, 2,...

i j

i j

u u for i j i j m
and
u u for i j i j m

= ≠ =

= = =
 

Hence, 

1 1 1 2 1 3 1

2 1 2 2 2 3 2

3 1 3 2 3 3 3

1 2 3

. . . ... .
. . . ... .
. . . ... .

. . . .

. . . .

. . . .
. . . ... .

m

m

m
t

m m m m m

u u u u u u u u
u u u u u u u u
u u u u u u u u

U U

u u u u u u u u

 
 
 
 
 

=  
 
 
 
 
 
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1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
. . . .
. . . .
. . . .
0 0 0 ... 1

 
 
 
 
 =  
 
 
 
  

 

 
 
That is   

.tU U I=  
Which is our required result. 
 
Exercise 
Prove that the following matrices have orthonormal columns using above theorem. 

1 11(1)
1 12

2 2 1
(2) 1 2 2

2 1 2

cos sin
(3)

sin cos
θ θ
θ θ

 
 − 

− 
 
 
 − 
 
 − 

 

 
Solution (1) 
Let   

1 11
1 12
1 11
1 12

1 1 1 11
1 1 1 12
1 0
0 1

t

t

t

U

U

Then

U U

I

U U I

 
=  − 

 
=  − 

   
=    − −   

 
= = 

 
=

 

Therefore, by the above theorem, U has orthonormal columns. 
 
(2) And (3) are left for reader.  



39-Orthogonal and Orthonormal Sets                                                                                                          VU 

                            
                                          © Virtual University Of Pakistan                                                             476 

  Theorem 
 
Let U be an m n×  matrix with orthonormal columns, and let x and y be in nR . Then 
 

a)  Ux x=  
b) ( ).( ) .Ux Uy x y=  
c) ( ).( ) 0 . 0Ux Uy iff x y= =  

 
Example 
 
 

1/ 2 2 / 3
1 21/ 2 2 / 3
2 30 1/ 3

Let U and X

 
   

= − =   
   
  

 

Verify that Ux x=  
 
Solution 
 
Notice that U has orthonormal columns and  
 
 
 

1/ 2 2 / 3
1 01/ 2 1/ 2 0 1/ 2 2 / 3
0 12 / 3 2 / 3 1/ 3 0 1/ 3

TU U

 
    

= − =    −    
  

 

 
1/ 2 2 / 3 3

1 21/ 2 2 / 3 1
2 30 1/ 3 1

9 1 1 11

2 9 11

Ux

Ux

x

        = − = −             

= + + =

= + =
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Lecture No.40 

Orthogonal Decomposition 
 
Objectives  
The objectives of the lecture are to learn about: 

• Orthogonal Decomposition Theorem. 
• Best Approximation Theorem. 
 

Orthogonal Projection 
 
The orthogonal projection of a point in 2R onto a line through the origin has an important 
analogue in nR  .  
That is given a vector Y and a subspace W in nR , there is a vector ŷ  in W such that  
 
1) ŷ  is the unique vector in W for which ˆy y−  is orthogonal to W, and  
2) ŷ  is the unique vector in W closest to y. 
 
                                                                        y  
 
 
 
 
 
                0                                                      ŷ  
 
 
We observe that whenever a vector y is written as a linear combination of vectors  

1 2, , ..., nu u u   in a basis of nR , the terms in the sum for y can be grouped into two parts so 
that y can be written as 1 2y z z= + , where 1z is a linear combination of some of the iu ’s, 
and 2z is a linear combination of the rest of the 'iu s . This idea is particularly useful when  
{ }1 2, , ..., nu u u  is an orthogonal basis.  

 
Example 1 
 
Let { }1 2 5, , ...,u u u  be an orthogonal basis for 5R  and let 1 2 5 5...y c c c= + + +1 2u u u . 
Consider the subspace W= Span{u1, u2} and write y as the sum of a vector 1z  in W and a 
vector 2z  in ⊥W . 
 
 
Solution  
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Write  

1 2

1 1 2 2 3 3 4 4 5 5

z z

y c u c u c u c u c u= + + + +
 

 

where 1 1 1 2 2z c u c u= +  is in Span of {u1, u2}, and 2 3 3 4 4 5 5z c u c u c u= + +  is in Span of {u3, 
u4, u5}.  
To show that z2 is in ⊥W , it suffices to show that z2 is orthogonal to the vectors in the 
basis {u1, u2} for W. Using properties of the inner product, compute 

2 1 3 3 4 4 5 5 1 3 3 1 4 4 1 5 5 1( ) 0z u c u c u c u u c u u c u u c u u⋅ = + + ⋅ = ⋅ + ⋅ + ⋅ =  
since u1 is orthogonal to u3, u4, and u5,  a similar calculation shows that 0⋅ =2 2z u  
Thus, 2z  is in ⊥W . 
 
Orthogonal decomposition theorem 
Let W be a subspace of ,nR then each y in nR  can be written uniquely in the form 

ˆy y z= +  
Where y W and z W∧ ⊥∈ ∈  
Furthermore, if { }1 2, , ..., pu u u  is any orthogonal basis forW , then 

1 1 2 2

.
... ,

.
j

n n j
j j

y u
y c u c u c u wherec

u u
∧ = + + + =  

Proof 
 
 
 
                                             ˆz = y - y         y 
                                          •                      •  
 
 
                                                                  •                       •  
                                        0                        ˆ wy proj Y=               
 
 
                              Fig: Orthogonal projection of y on to W. 
 
 
Firstly, we show that ,y W∧ ∈ z W ⊥∈ . Then we will show that y y z∧= + can be 
represented in a unique way. 
 
          Suppose W is a subspace of nR and let  { }1 2, ,..., pu u u   be an orthogonal basis for 
W. 

As 1 1 2 2... p py c u c u c u∧ = +  where 
.
.

j
j

j j

y u
c

u u
=  
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Since { }1 2, ,..., pu u u      is the basis for W and y∧ is written as a linear combination of 

these basis vectors. Therefore, by definition of basis  .y W∧ ∈   
Now, we will show that z y y W∧ ⊥= − ∈ . For this it is sufficient to show that jz u⊥ for 
each 1,2,... .j p=  
Let 1u W∈  be an arbitrary vector. 

1 1

1 1

1 1 1 2 2 1

1 1 1 1 2 2 1 1

1 1 1 1 1

1
1 1 1

1 1

1 1

. ( ).

. .
. ( ... ).

. ( . ) ( . ) ... ( . )

. ( . ) . 0, 2,3,...

.. ( . )
.

. .
0

p p

p p

j

z u y y u
y u y u
y u c u c u c u u
y u c u u c u u c u u
y u c u u where u u j p

y uy u u u
u u

y u y u

∧

∧

= −

= −
= − + + +

= − − −

= − = =

= −

= −
=

 

Therefore, 1.z u⊥  
Since 1u  is an arbitrary vector, therefore jz u⊥ for 1, 2,... .j p=   

Hence by definition of  ,W z W⊥ ⊥∈  
Now, we must show that y y z∧= +  is unique by contradiction. 
Let y y z∧= +  and 1 1,y y z∧= +  where 1,y y W∧ ∧ ∈  and 1, ,z z W ⊥∈  
also 1 1z z and y y∧ ∧≠ ≠ . Since above representations for y are equal, that is 

1 1

1 1

y z y z
y y z z

∧ ∧

∧ ∧

+ = +

⇒ − = −
 

Let 
1s y y∧ ∧= −  

Then 
1s z z= −  

Since W is a subspace, therefore, by closure property 
1s y y W∧ ∧= − ∈  

Furthermore, W ⊥  is also a subspace, therefore by closure property  
1s z z w⊥= − ∈  

Since 
s W∈  and .s W ⊥∈  Therefore by definition s s⊥  
That is s. s=0 
Therefore 

1

1

0s y y
y y

∧ ∧

∧ ∧

= − =

⇒ =
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Also 
1z z=  

This shows that representation is unique. 
 
Example 
 

Let 1

2
5
1

u
 
 =  
 − 

,  2

2
1
1

u
− 
 =  
  

, and 
1
2
3

y
 
 =  
  

 

 
Observe that { }1 2,u u is an orthogonal basis for W=span{ }1 2,u u , write y as the sum of a 
vector in W and a vector orthogonal to W.  
 
Solution 
 
Since ,y W∧ ∈  therefore y∧  can be written as following: 

1 1 2 2

1 2
1 2

1 1 2 2

. .
. .

2 2 2 2
9 3 9 155 1 5 1
30 6 30 30

1 1 1 1

2 / 5 2
12 10
5

1/ 5 1

y c u c u
y u y uu u
u u u u

∧ = +

= +

− −       
       = + = +       
       − −       
− −   

   = =   
      

 

1 2 / 5 7 / 5
2 2 0
3 1/ 5 14 / 5

1
7 / 5 0

2

y y∧

−     
     − = − =     
          

 
 =  
  

 

Above theorem ensures that y y∧−  is in W ⊥ . 
You can also verify by 1( ). 0y y u∧− =  and 2( ). 0y y u∧− = . 
 
The desired decomposition of y is  
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1 2 / 5 7 / 5
2 2 0
3 1/ 5 14 / 5

y
−     

     = = +     
          

 

  
Example 

Let W=span{ }1 2,u u , where 1

1
3
2

u
 
 = − 
  

 and 2

4
2
1

u
 
 =  
  

 

Decompose 
2
2
5

y
 
 = − 
  

 into two vectors; one in W and one in .W ⊥  Also verify that these 

two vectors are orthogonal. 
Solution 
 
Let y W∧ ∈ and .z y y W∧ ⊥= − ∈  
Since ,y W∧ ∈  therefore y∧  can be written as following: 

1 1 2 2

1 2
1 2

1 1 2 2

. .
. .

1 4
9 33 2
7 7

2 1

3
3
3

y c u c u
y u y uu u
u u u u

y

∧

∧

= +

= +

   
   = − +   
      
 
 = − 
  

 

Now 
2 3
2 3
5 3

1
1
2

z y y

z

∧

   
   = − = − − −   
      
− 
 =  
  

 

Now we show that ,z y∧⊥ i.e. . 0z y∧ =  
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1 3
. 1 . 3

2 3
0

z y∧

−   
   = −   
      

=

  

Therefore .z y∧⊥  
Exercise 

Let W=span{ }1 2,u u , where 1

1
0
3

u
 
 =  
 − 

 and 2

3
1
1

u
 
 =  
  

 

Write 
6

8
12

y
 
 = − 
  

 as a sum of two vectors; one in W and one in .W ⊥  Also verify that these 

two vectors are orthogonal. 
 
Best Approximation Theorem 
 
                 Let W is a finite dimensional subspace of an inner product space V and y is 
any vector in V. The best approximation to y from W is then Pr y

woj , i.e for every w (that 
is not Pr y

woj ) in W, we have 

Pr .y
wy oj y w− < −  

 
Example 

Let W=span{ }1 2,u u , where 1

1
3
2

u
 
 = − 
  

 , 2

4
2
1

u
 
 =  
  

 and
2
2
5

y
 
 = − 
  

. Then using above 

theorem, find the distance from y to W. 
 
Solution  
Using above theorem the distance from y to W is calculated using the following formula 

Pr y
wy oj y y∧− = −  

Since, we have already calculated 
2 3 1
2 3 1
5 3 2

y y∧

−     
     − = − − − =     
          

 

So         6y y∧− =  
Example 
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The distance from a point y in nR to a subspace W is defined as the distance from y to the 
nearest point in W.  
Find the distance from y to W =span{ }1 2,u u , where 
 

1 2

1 5 1
5 , 2 , 2

10 1 1
y u u

−     
     = − = − =     
     −     

 

 
By the Best Approximation Theorem, the distance from y to W is ˆ ,y y−  where           
ŷ = projwy. Since, {u1, u2} is an orthogonal basis for W, we have 

1 2

5 1 1
15 21 1 7ˆ 2 2 8
30 6 2 2

1 1 4
y u u

−     
−      = + = − − = −     

     −     

 

1 1 0
ˆ 5 8 3

10 4 6

− −     
     − = − − − =     
          

y y  

2 2 2ˆ 3 6 45y y− = + =  

The distance from y to W is 45 3 5.=  
 
Theorem 
 
If { }1 2, ,..., pu u u is an orthonormal basis for a subspace W of nR , then  

 
1 1 2 2

1 2

Pr ( . ) ( . ) ...( . )

[ .... ]

Pr

w p p

p

y T n
w

oj y y u u y u u y u u
If U u u u

then oj UU y y in R

= + +

=

= ∀

 

 
Example 
 

Let 1 2

7 1 9
1 , 1 , 1
4 2 6

u u y
− − −     
     = = =     
     −     

 

 
and W =span{ }1 2,u u . Use the fact that u1 and u2 are orthogonal to compute Pr woj y . 
 
Solution 
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1 2
1 2

1 1 2 2

1 2

. .Pr
. .

88 2
66 6

7 1 9
4 11 1 1
3 3

4 2 6

w
y u y uoj y u u
u u u u

u u

y

= +

−
= +

− − −     
     = − = =     
          

 

 
In this case,y happens to be a linear combination of u1 and u2 . So y is in W.  The closest 
point in W to y is y itself.  
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Lecture # 41 

Orthogonal basis, Gram-Schmidt Process, Orthonormal basis 

 

Example 1 
 
Let W = Span {x1, x2}, where  

1 2

3 1
6 2
0 2

x and x
   
   = =   
      

 

 
Find the orthogonal basis {v1, v2} for W.  

Solution    

Let P be a projection of x2 on to x1. The component of x2 orthogonal to x1  is x2 – P, 
which is in W  as it is formed from x2 and a multiple of x1. 

            Let v1 = x1   and compute  

 

 
 

Thus, {v1, v2} is an orthogonal set of nonzero vectors in W , dim W = 2 and {v1, v2} is a 
basis of W.  

Example 2  
 
For the given basis of a subspace W = Span {x1, x2}, 
 

                                 1 2

0 5
4 6
2 7

x and x
   
   = =   
   −   

  

 
Find the orthogonal basis {v1, v2} for W.  
 

Solution 
 
Set v1 = x1 and compute 

2 1
2 2 2 1

1 1

1 3 0
.   15  2 6 0
. 45

2 0 2

x vv x P x v
v v

     
     = − = − = − =     
          
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Thus, an orthogonal basis for W is 
0 5
4 , 4
2 8

    
    
    
    −    

 

Theorem 
 
Given a basis {x1, …, xp} for a subspace W of nR . Define  
 

 

 
Then {v1, …,vp} is an orthogonal basis for W.  
  
In addition  
 
 Span {v1, …, vk}= Span {x1,…, xk} for 1 k p≤ ≤  

Example 3 

The following vectors {x1, x2, x3} are linearly independent 

                       1 2 3

1 0 0
1 1 0

, ,
1 1 1
1 1 1

x x x

     
     
     = = =
     
     
     

 

 
Construct an orthogonal basis for W by Gram-Schmidt Process. 

2 1
2 2 1

1 1

5 0
.   10 6 4
. 20

-7 2

5 0 5
16 4 4
2

-7 2 8

x vv x v
v v

   
   = − = −   
      

     
     = − =     
     −     

2 1
1 1 2 2 1

1 1

3 1 3 2
3 3 1 2

1 1 2 2

1 2 -1
1 2 -1

1 1 2 2 -1 -1

.
.

. .
. .

. . .
...

. . .
p p p p

p p p
p p

x vv x v x v
v v

x v x vv x v v
v v v v

x v x v x v
v x v v v

v v v v v v

= = −

= − −

= − − − −


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Solution    

To construct orthogonal basis we have to perform the following steps. 

Step 1   Let v1 = x1  

Step 2  

                 Let 2 1
2 2 1

1 1

.  
.

x vv x v
v v

= −   

Since   

0 1 3 / 4 3
1 1 1/ 4 13
1 1 1/ 4 14
1 1 1/ 4 1

− −       
       
       = = − = =
       
       
       

2 1v x   

Step 3  

     3 1 3 2
3 3 1 2

1 1 2 2

0 1 3 0
0 1 1 2 / 3. . 2 2
1 1 1 2 / 3. . 4 12
1 1 1 2 / 3

x v x vv x v v
v v v v

 −        
                  = − + = − + =                    
         

  

  

 

 
 

 

 

Thus, {v1, v2, v3} is an orthogonal set of nonzero vectors in W. 

 

Example 4  

Find an orthogonal basis for the column space of the following matrix by Gram-Schmidt 
Process. 

3

0 0 0
0 2 / 3 2 / 3
1 2 / 3 1/ 3
1 2 / 3 1/ 3

v

     
     −     = − =
     
     
     
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1 6 6
3 8 3
1 2 6
1 4 3

− 
 − 
 −
 − − 

 

Solution 
Name the columns of the above matrix as x1, x2, x3  and perform the Gram-Schmidt 
Process on these vectors. 

                                     

1 6 6
3 8 3

, ,1 2 31 2 6
1 4 3

x x x

−

−
= = =

−

− −

     
     
     
     
     
     

 

 
Set v1 = x1 

                                                    

2 1
2 2 1

1 1

. 
.

6 1 3
8 3 1

( 3)
2 1 1
4 1 1

x vv x v
v v

= −

−     
     −     = − − =
     −
     − −     

 

                           

3 1 3 2
3 3 1 2

1 1 2 2

. .
. .

6 1 3 1
3 3 1 11 5
6 1 1 32 2

3 1 1 1

x v x vv x v v
v v v v

= − −

− −       
       −       = − − =
       
       − − −       

 

Thus, orthogonal basis is 

1 3 1
3 1 1

, ,
1 1 3
1 1 1

 − −      
      −                   − −      
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Example 5  

Find the orthonormal basis of the subspace spanned by the following vectors. 

                      
3 0
6 , 0
0 2

x x
   
   = =   
      

1 2  

Solution 

 

Since from example # 1, we have  

1 2

3 0
6 , 0
0 2

v v
   
   = =   
      

 

 

 

 

 

Example 6 

Find the orthonormal basis of the subspace spanned by the following vectors. 

                                         1 2

2 4
5 1

1 2
andx x

   
   = − = −   
      

  

Solution  

                  Firstly we find  v1 and v2 by Gram-Schmidt Process as  

Set v1 = x1             

2 1
2 2 2 1

1 1

2

.  
.

4 2 4 2
15 11 5 1 5
30 2

2 1 2 1

x vv x x v
v v

v

= = −

       
       = − − − = − − −       
              

 

1 1 2 2
1 2

 

1/ 53 0
1 1 16 2 / 5 , 0

45 0 0 1

Orthonormal Basis

u v u v
v v

        = = = = =             
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                      2 1

4 1 6
1 5 / 2 3

2 1/ 2 3
1 1 30
54 3 6

Now v and since v

     
     = − − − =     
          

= = =  

                      

,

2 / 30 2 / 6

, 5 / 30 , 1/ 6

1/ 30 1/ 6

Thus the orthonormal basis for W is

    
        = −      

        
        

1 2

1 2

v v
v v

 

Theorem 
 
If A is an m x n matrix with linearly independent columns, then A can be factored as  
A = QR,  where Q is an m x n matrix whose columns form an orthonormal basis for Col A 
and R is an n x n upper triangular invertible matrix with positive entries on its diagonal.  
 

Example 7 

Find a QR factorization of matrix 

1 2 5
1 1 4
1 4 3

1 4 7
1 2 1

A

 
 − − 
 = − −
 − 
  

 

Solution 
 
Firstly find the orthonormal basis by applying Gram Schmidt process on the columns of 
A. We get the following matrix Q. 

                                          

1/ 5 1/ 2 1/ 2

1/ 5 0 0

1/ 5 1/ 2 1/ 2

1/ 5 1/ 2 1/ 2

1/ 5 1/ 2 1/ 2

Q

 
 
− 
 

= − 
 − 
 − 
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5 5 4 5

0 6 2
0 0 4

TNow R AQ=
 −
 

− 
 
 

=  

Verify that A=QR. 
 

Theorem  
 

1

1 1 2 2

1 2

 { ,  ...,  }

( ) ( ) ( )

  [   ...   ],

   

  ,p

w p p

p

T n
w

nIf u u is an orthonormal

proj y y u u y u u y u u

If U u u u

then proj y UU y y in R

basis for a subspaceW of R then
= ⋅ + ⋅ + + ⋅

=

= ∀

 

 

  

 


     

  

       

 

 

The Orthogonal Decomposition Theorem 
 

Let W be a subspace of  nR  Then each y in nR  can be written uniquely in the form  
  

where         is in W and z is in      
 

In fact, if {u1, …, up} is any orthogonal basis of W, then  
 
 

 
 
and z = y – ŷ   . The vector  ŷ   is called the orthogonal projection of y onto W and is 
often  written as projw y.  
 

  Best Approximation Theorem 
 
Let W be a subspace of nR , y  is  any vector in nR  and   ŷ   the orthogonal projection of y 
onto W.  Then ŷ  is the closest point in W to y, in the sense that                           
 
for all v in W distinct from  ŷ .   
  
 
 
 
 
 
 
The vector ^y     in this theorem is called the best approximation to y by elements of W.  

ˆy y z= +
W ⊥

1
1

1 1

ˆ p
p

p p

y uy uy u u
u u u u

⋅⋅
= + +

⋅ ⋅


ˆy y y v− < −
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Exercise 1 
 
Let W = Span {x1, x2}, where  
 
 
 
 
 
 
 
Construct an orthonormal basis for W.  
 

Exercise 2 

Find an orthogonal basis for the column space of the following matrix by Gram-Schmidt 
Process. 

                                                  

3 5 1
1 1 1

1 5 2
3 7 8

− 
 
 
 − − −
 − 

 

 

Exercise 3 
 
Find a QR factorization of  
 
 
  
              

    

1 1/ 3
1 1/ 31 2
1 2 / 3

x and x
   
   = =   
   −   

1 3 5
1 3 1

0 2 3
1 5 2
1 5 8

A

 
 − − 
 =
 
 
  
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Lecture # 42 

Least Square Solution 
 
 Best Approximation Theorem 
 
Let W be a subspace of nR ,  y be any vector in nR  and   ŷ   the orthogonal projection of y 
onto W. Then ŷ  is the closest point in W to y, in the sense that                           
for all v in W distinct from ŷ     
 
The vector ŷ  in this theorem is called the best approximation to y by elements of W.  
 
Least-squares solution 
 
The most important aspect of the least-squares problem is that no matter what “x” we 
select, the vector Ax will necessarily be in the column space Col A. So we seek an x that 
makes Ax the closest point in Col A to b. Of course, if b happens to be in Col A, then b is 
Ax for some x and such an x is a “least-squares solution.” 
 
Solution of the General Least-Squares Problem   
 
Given A and b as above, apply the Best Approximation Theorem stated above to the 
subspace Col A. Let ˆ

Col Ab proj b=  

Since b̂  is in the column space of A, the equation ˆAx b=  is consistent, and there is an x̂  
in Rn such that 

ˆˆAx b=         (1) 
Since b̂  is the closest point in Col A to b, a vector x̂  is a least-squares solution of Ax = b 
if and only if x̂  satisfies ˆˆAx b= . Such an x̂  in Rn is a list of weights that will build b̂  out 
of the columns of A.  
 
Normal equations for x̂  
Suppose that x̂  satisfies ˆˆ .Ax b=  By the Orthogonal Decomposition Theorem the 
projection b̂  has the property that ˆb b−  is orthogonal to Col A, so ˆb Ax−  is orthogonal 
to each column of A. If aj is any column of A, then ˆ( ) 0,ja b Ax⋅ − =  and ˆ( ) 0.T

ja b Ax− =  

Since each T
ja  is a row of AT, 

ˆ( ) 0TA b Ax− =        (2) 
ˆ 0T TA b A Ax− =  

ˆT TA Ax A b=         (3) 
The matrix equation (3) represents a system of linear equations commonly referred to as 
the normal equations for x̂.  
 
 

ˆy y y v− < −
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 Since set of least-squares solutions is nonempty and any such x̂  satisfies the normal 
equations. Conversely, suppose that x̂  satisfies ˆ .T TA Ax A b=  Then it satisfy that ˆ−b Ax  
is orthogonal to the rows of AT and hence is orthogonal to the columns of A. Since the 
columns of A span Col A, the vector ˆ−b Ax  is orthogonal to all of Col A. Hence the 
equation ˆ ˆ( )b Ax b Ax= + −  is a decomposition of b into the sum of a vector in Col A and 
a vector orthogonal to Col A. By the uniqueness of the orthogonal decomposition, ˆAx  
must be the orthogonal projection of b onto Col A. That is, ˆˆ =Ax b  and x̂  is a least-
squares solution. 
 
Definition 
 
If A is m x n and b is in nR , a least-squares solution of Ax = b is an    I x̂   in nR  such that    
 
                                    ˆ nb Ax b Ax x R− ≤ − ∀ ∈  
 
Theorem   
 
The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions 
of the normal equations  
 
 
Example 1 
  
Find the least squares solution and its error from the following matrices, 
 

                                    
4 0 2
0 2 , 0
1 1 11

A b
   
   = =   
      

 

 
Solution  
  
Firstly we find 

                               

4 0
4 0 1 17 1

0 2
0 2 1 1 5

1 1

2
4 0 1 19

0
0 2 1 11

11

T

T

A A and

A b

 
    = =         

 
    = =         

 

 

Then the equation ˆT TA Ax A b=  becomes 1

2

17 1 19
1 5 11

x
x
    

=    
    

  

ˆT TA Ax A b=
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Row operations can be used to solve this system, but since ATA is invertible and 2 2× , it 

is probably faster to compute 1 5 11( )
1 1784

TA A − − 
=  − 

  

 

Therefore, 1ˆ ( )T Tx A A A b−=
5 1 19 84 11 1
1 17 11 168 284 84

−       
= = =       −       

 

                           Now again as A= 
4 0
0 2
1 1

 
 
 
  

, 
2
0

11

 
 =  
  

b   

Then                              
4 0 4

1
ˆ 0 2 4

2
1 1 3

   
    = =           

Ax  

Hence            
2 4 2

ˆ 0 4 4
11 3 8

−     
     − = − = −     
          

b Ax  

So  2 2 2ˆ ( 2) ( 4) 8 84− = − + − + =b Ax  

The least-squares error is 84.  For any x in R2, the distance between b and the vector Ax 
is at least 84.   
 
Example 2 
 
Find the general least-squares solution of Ax = b in the form of a free variable with  
 

                                      

1 1 0 0 3
1 1 0 0 1
1 0 1 0 0

,
1 0 1 0 2
1 0 0 1 5
1 0 0 1 1

A b

−   
   −   
   

= =   
   
   
   
   

 

 
 
 
 
 
 
Solution 
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   Firstly we find, 

1 1 0 0
1 1 1 1 1 1 1 1 0 0 6 2 2 2
1 1 0 0 0 0 1 0 1 0 2 2 0 0
0 0 1 1 0 0 1 0 1 0 2 0 2 0
0 0 0 0 1 1 1 0 0 1 2 0 0 2

1 0 0 1

 
            = =             
 

TA A and  

3
1 1 1 1 1 1 1 4
1 1 0 0 0 0 0 4
0 0 1 1 0 0 2 2
0 0 0 0 1 1 5 6

1

− 
 −         −   = =             
 

TA b  

Then augmented matrix for ˆ =T TA Ax A b  is 
 
 
 
 
 
 
 
The general solution is 1 4 2 4 3 43 , 5 , 2 ,x x x x x x= − = − + = − +  and x4 is free. 
So the general least-squares solution of Ax = b has the form 
 
 
 
 
  
 
Theorem  
 
The matrix TA A  is invertible iff the columns of A are linearly independent. In this case, 
the equation Ax = b has only one least-squares solution  x̂   , and it is given by  
 
                                                         
Example 3 
Find the least squares solution to the following system of equations. 

                                        

2 4 6 0
1

1 3 0 1
2 ,

7 1 4 2
3

1 0 5 4

x
A x b

x

   
    −     = =    −
     

   

 

Solution 

6 2 2 2 4 1 0 0 1 3
2 2 0 0 4 0 1 0 1 5
2 0 2 0 2 0 0 1 1 2
2 0 0 2 6 0 0 0 0 0

   
   − − −   
   − −
   
   



4

3 1
5 1

ˆ
2 1

0 1

x

−   
   −   = +
   −
   
   

x

1ˆ ( )T Tx A A A b−=
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As 

               

2 1 7 1
4 3 1 0
6 0 4 5

2 4 6
2 1 7 1 55 12 45

1 3 0
4 3 1 0 12 26 28

7 1 4
6 0 4 5 45 28 77

1 0 5

T

TA A

A
 
 = − 
  

 
    −    = − =    
       

 

 

Now 
 

                          

0
2 1 7 1 9

1
4 3 1 0 5

2
6 0 4 5 12

4

TA b

 
−    

    = − = −    −
       

 

 

 
As                              ˆT TA Ax A b=  
 

                        
55 12 45 1 9
12 26 28 2 5
45 28 77 3 12

x
x
x

−     
     = −     
          

 

 

                                  
1 .676
2 .776
3 .834

x
x
x

−   
   = −   
      

  

 
 
 
Example 4 
 
Compute the least square error for the solution of the following equation 

2 4 6 0
1

1 3 0 1
2 ,

7 1 4 2
3

1 0 5 4

x
A x b

x

   
    −     = =    −
     

   
. 

 
Solution 
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2 4 6 2 4 6
1 .676

1 3 0 1 3 0
2 .776

7 1 4 7 1 4
3 .834

1 0 5 1 0 5

0.548
1.652

2.172
3.494

x
A x x

x

A x

   
−      − −      = = −      

         
   
 
 
 =
 −
 
 





 

 
As least square error  
 

                                                        b Ax∈ = −  
 
is as small as possible, or in other words is smaller than all other possible choices of x. 
 
 
                                                      
 
  
As 
  



2 2 2 2 2
1 2 3 4∈ =∈ +∈ +∈ +∈                                                                        

Thus, least square error is  
 

     b Ax∈ = − 2 2 2 2( 0.548) (0.652) (0.172) (1.494)= − + + +  
 
                                 =0.3003+0.4251+.02958+2.23=2.987 
 
Theorem 
 
Given an m x n matrix A with linearly independent columns.Let A = QR be a QR 
factorization of A ,then for each b in Rm, the equation Ax = b has a unique least-squares 
solution, given by  
 
 
 
 
Example 1  

0 0.548 0.548
1 1.652 0.652

ˆ
2 2.172 0.172

4 3.494 1.494

b Ax

−     
     
     − = − =
     − −
     
     

-1ˆ Tx R Q b=
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Find the least square solution for 

1 3 5 3
1 1 0 5

,
1 1 2 7
1 3 3 3

A b

   
   
   = =
   
   −   

 

 
Solution   
 
 First of all we find QR factorization of the given matrix A. For this we have to find out 
orthonormal basis for the column space of A by applying Gram-Schmidt Process, we get 
the matrix of orthonormal basis Q, 
 

                      

1 2 1 2 1 2
1 2 1 2 1 2
1 2 1 2 1 2
1 2 1 2 1 2

Q

 
 − − =
 −
 − 

 And 

1 3 5
1 2 1 2 1 2 1 2 2 4 5

1 1 0
1 2 1 2 1 2 1 2 0 2 3

1 1 2
1 2 1 2 1 2 1 2 0 0 2

1 3 3

TR Q A=

 
    
    − −    
   − −     

 

= =  

 

Then   

3
1 2 1 2 1 2 1 2 6

5
1 2 1 2 1 2 1 2 6

7
1 2 1 2 1 2 1 2 4

3

TQ b

 
    
    = − − = −    
   − −     − 

 

 

The least-squares solution x̂  satisfies ˆ ;TRx Q b=  that is, 
1

2

3

2 4 5 6
0 2 3 6
0 0 2 4

x
x
x

     
     = −     
          

 

 

This equation is solved easily and yields 
10

ˆ 6 .
2

 
 = − 
  

x  

Example 2 
 
Find the least squares solution                        to the given matrices, 
 

ˆ TRx Q b=
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3 1 1
6 2 , 2
0 2 3

A b
   
   = =   
      

 

Solution                                   
First of all we find QR factorization of the given matrix A. Thus,                                   we 
have to make  
Orthonormal basis by applying Gram Schmidt process on the columns of A, 
 
Let v1 = x1 

                 2 1
2 2 2 1

1 1

1 3 0
.   15  2 6 0
. 45

2 0 2

x vv x P x v
v v

     
     = − = − = − =     
          

  

                           
1 2

1 2

,

1 0
, 2 , 0

0 1

Thus the orthonormal basis are

v v
v v

    
       =                 

 

Thus  

                      

1 0
1 2 0

2 0
0 0 1

0 1

3 1
1 2 0

6 2
0 0 1

0 2

1
15 5 1 2 0 5

2
0 2 0 0 1 3

3

T

T

T

Q and Q

Now R Q A

And Q b

 
  = =       

 
   =        

 
      = = =             

=  

Thus, least squares solution of ˆ TRx Q b=  is 

                                     

15 5 5
ˆ

0 2 3

1
ˆ

1.8

x

x

   
=   

   
 

=  
 
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Exercise 1 
 
Find a least-squares solution of Ax = b for  
 
 
 
 
 
 
 
Exercise 2 
 
Find the least-squares solution and its error of Ax = b for  
 
 
 
 
 
 
 
 
 
Exercise 3 
 
 Find the least squares solution                     to the given matrices, 
 
       

                 

2 1 5
2 0 , 8
2 3 1

A b
−   

   = − =   
      

 

 
 
 
 

1 6 1
1 2 2

,
1 1 1
1 7 6

− −   
   −   = =
   
   
   

A b

1 3 5 3
1 1 0 5

,
1 1 2 7
1 3 3 3

   
   
   = =
   
   −   

A b

ˆ TRx Q b=
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Lecture # 43 
Inner Product Space 

 
Inner Product Space 

In mathematics, an inner product space is a vector space with the additional structure 
called an inner product. This additional structure associates each pair of vectors in the 
space with a scalar quantity known as the inner product of the vectors. Inner products 
allow the rigorous introduction of intuitive geometrical notions such as the length of a 
vector or the angle between two vectors. They also provide the means of defining 
orthogonality between vectors (zero inner product). Inner product spaces generalize 
Euclidean spaces (in which the inner product is the dot product, also known as the scalar 
product) to vector spaces of any (possibly infinite) dimension, and are studied in 
functional analysis. 

Definition 
An inner product on a vector space V  is a function that to each pair of vectors 

u and v  associates a real number ,u v〈 〉 and satisfies the following axioms, 

For all , ,u v w  in V and all scalars C: 
1) , ,u v v u〈 〉 = 〈 〉   
2) , , ,u v w u w v w〈 + 〉 = 〈 〉 + 〈 〉  
3) , ,cu v c u v〈 〉 = 〈 〉  
4) , 0 , 0 0u u and u u iff u〈 〉 ≥ 〈 〉 = =  
 
A vector space with an inner product is called inner product space. 
 
Example 1 
  Fix any two positive numbers say 4 & 5 and for vectors  1 2,u u u=   and 

1 2,v v v=  in  2R     set  

                                                 1 1 2 2, 4 5u v u v u v= +  
Show that it defines an inner product. 
 
Solution 

  Certainly Axiom 1 is satisfied, because  
,u v = 4u1v1 +5u2v2 = 4v1u1 + 5v2u2 = ,uv . 

If w = (w1, w2), then 
1 1 1 2 2 2

1 1 2 2 1 1 2 2

, 4( ) 5( )

4 5 4 5 , ,

u v w u v w u v w

u w u w v w v w u w v w

+ = + + +

= + + + = +
 

This verifies Axiom 2. 
For Axiom 3, we have 1 1 2 2 1 1 2 2, 4( ) 5( ) (4 5 ) ,c cu v cu v c u v u v c= + = + =u v u v  

For Axiom 4, note that 2 2
1 2, 4 5 0,u u u u= + ≥  and 2 2

1 24 5 0u u+ =  only if u1 = u2 = 0, that 

is, if u = 0. Also, 0,0 = 0.  

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Mathematical_structure
http://en.wikipedia.org/wiki/Scalar_(mathematics)
http://en.wikipedia.org/wiki/Length
http://en.wikipedia.org/wiki/Dot_product
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 So ,u v = 4u1v1 +5u2v2 = 4v1u1 + 5v2u2  defines an inner product on R2. 
 
 
Example 2 
Let A be symmetric, positive definite n n×   matrix and let u and v be vectors in nℜ   . 
Show that  , tu v u Av=   defines and inner product. 
Solution 
                 We check that 

                                         
( )

, . .

. ,

t

tt t t

u v u Av u Av Av u

A v u v A u v Au v u

= = =

= = = =
 

Also 

                                      
( ),

, ,

t t tu v w u A v w u Av u Aw

u v u w

+ = + = +

= +
 

And  
                                 ( ) ( ), ,t tcu v cu Av c u Av c u v= = =  
Finally since A is positive definite  

, 0 0tu u u Au for all u= > ≠  

                                    , 0 0tSo u u u Au iff u= = =  

So , tu v u Av=  is an inner product space. 
 
Example 3   
 Let t0, …, tn be distinct real numbers. For p and q in Pn, define 

0 0 1 1, ( ) ( ) ( ) ( ) ( ) ( )n np q p t q t p t q t p t q t= + + +  
Show that it defines inner product. 

 
Solution 
Certainly Axiom 1 is satisfied, because  

0 0 1 1

0 0 1 1

, ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,
n n

n n

p q p t q t p t q t p t q t

q t p t q t p t q t p t q p

= + + +

= + + + =





 

If r = 0 1( ) ( ) ( )nr t r t r t+ + + , then 
[ ] [ ] [ ]

[ ] [ ]
0 0 0 1 1 1

0 0 1 1 0 0 1 1

, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

, ,

n n n

n n n n

p q r p t q t r t p t q t r t p t q t r t

p t r t p t r t p t r t q t r t q t r t q t r t

p r q r

+ = + + + + + +

= + + + + + + +

= +



 

This verifies Axiom 2. 
For Axiom 3, we have 

 
[ ] [ ] [ ]

[ ]
0 0 1 1

0 0 1 1

, ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,
n n

n n

cp q cp t q t cp t q t cp t q t

c p t q t p t q t p t q t c p q

= + + +

= + + + =





 

For Axiom 4, note that 
2 2 2

0 1, [ ( )] [ ( )] [ ( )] 0np p p t p t p t= + + + ≥  
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Also, ,0 0 =0. (We still use a boldface zero for the zero polynomial, the zero vector in 

Pn.) If ,p p =0, then p must vanish at n + 1 points: t0, …, tn. This is possible only if p is 
the zero polynomial, because the degree of p is less than n + 1. Thus 

0 0 1 1, ( ) ( ) ( ) ( ) ( ) ( )n np q p t q t p t q t p t q t= + + +  defines an inner product on Pn. 

 
Example 4 

Compute ,p q  where p(t)= 4+t  q(t) = 5-4t2  
Refer to 2P  with the inner product given by evaluation at -1, 0 and 1 in example 2. 

Solution 

   
( 1) 3 , (0) 4 , (1) 5
( 1) 1 , (0) 5 , (1) 1

P P P
q q q
− = = =
− = = =

 

                     

                      

, ( 1) ( 1) (0) (0) (1) (1)
(3)(1) (4)(5) (5)(1)
3 20 5

p q P q P q P q= − − + +

= + +
= + +

 

Example 5 
Compute the orthogonal projection of q onto the subspace spanned by p, for p and q in 
the above example. 
Solution 

The orthogonal projection of q onto the subspace spanned by p 
 

( 1) 3 , (0) 4 , (1) 5
( 1) 1 , (0) 5 , (1) 1

P P P
q q q
− = = =
− = = =

 

 
. 28 . 50q p p p= =  

                                        

                                     

. 28 (4 )
. 50

56 14
25 25

q pq p t
p p

t

= = +

= +



 

 
Example 6  

Let V be 2P  ,  with the inner product from example 2  where                                        

0 1 2
10 , 1
2

t t and t= = =   

Let   ( ) ( )212 2 1p t t and q t t= = −     

Compute , ,p q and q q  
Solution 
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( ) ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )

( ) ( )

( ) ( ) ( )

2
2 2

2 2 2

1

2
, 0 0 1 1

0 1 3 0 12 1 12

1, 0 1
2

1 0 1 2

p q p q p p q

q q q q q

= + +

= − + + =

  = + +          

= − + + =

 

 
Norm of a Vector 
                                           Let V be and inner product space with the inner product 
denoted by ,u v   just as in nR  , we define the length or norm of a vector V to be the 
scalar  
                                2, ,v u v or v u v= =  
 

1) A unit vector is one whose length is 1. 
2) The distance between &u v  is  u v−   vectors &u v  are orthogonal if , 0u v =  
 

Example 7 
   Compute the length of the vectors in example 3. 
 
Solution 

( ) ( )

( ) ( ) ( )

2
2 22

2 2 2

1, 0 1
2

0 3 12 153

153

p p p p p p

p

  = = + +          

= + + =

=

 

 
In example 3 we found that   

                                                        
, 2

2

q q

Hence q

=

=
 

 
Example 8 

Let 2ℜ  have the inner product of example 1 and let x=(1,1) and y=(5,-1)  
a)   Find 

2
, ,x y and x y              b) Describe all vectors ( )1 2,z z  that are 

orthogonal to y. 
Solution 
          
a) We have x=(1,1) and y=(5,-1)  
And                           1 1 2 2, 4 5x y x y x y= +  
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, 4(1)(1) 5(1)(1)

4 5 9 3

x x x= = +

= + = =
 

                                
, 4(5)(5) 5( 1)( 1)

100 5 105

y y y= = + − −

= + =
 

                                       

                                        
[ ]
[ ]
[ ]

2

2

2

2

, , ,

4(1)(5) 5(1)( 1)

20 5

15 225

x y x y x y=

= + −

= −

= =

 

 
b) All vectors 1 2( , )z z z=  orthogonal to y=(5,-1) 

[ ]

1 2

1 2

1 2

1

2

, 0
4(5)( ) 5( 1)( ) 0
20 5 0
4 0

4 1 0

y z
z z

z z
z z

z
z

< >=
+ − =

− =
− =

 
− = 

 

 

So all multiples of 
4
1

 
 − 

 are orthogonal to y. 

 
Example 9 
  Le V be 4P  with the inner product in example 2 involving evaluation of 
polynomials at -2,-1,0,1,2 and view 2P  as a subspace of V. Produce an orthogonal basis 
for 2P  by applying the Gram Schmidt process to the polynomials 21, &t t . 
Solution 
 
 
Given polynomials           1        t        t2   at               -2,-1, 0, 1 and 2 

 
 
Polynomial:          1             t            t2    

Vector of values: 

1 2 4
1 1 1

, ,1 0 0
1 1 1
1 2 4

−     
     −     
     
     
     
          

 

The inner product of two polynomials in V equals the (standard) inner product of their 
corresponding vectors in R5. Observe that t is orthogonal to the constant function 1. So 
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take p0(t) = 1 and p1(t) = t. For p2, use the vectors in R5 to compute the projection of t2 
onto Span {p0, p1}: 

2 2
0

0 0

2 2
1

, ,1 4 1 0 1 4 10

, 5

, , 8 ( 1) 0 1 8 0

t p t

p p

t p t t

= = + + + + =

=

= = − + − + + + =

 

The orthogonal projection of t2 onto Span {1, t} is 0 1
10 0 .
5

p p+  Thus 
2 2

2 0( ) 2 ( ) 2p t t p t t= − = −  
An orthogonal basis for the subspace P2 of V is: 
 

Polynomial:           p0           p1            p2 
   

Vector of values: 

1 2 2
1 1 1

, ,1 0 2
1 1 1
1 2 2

−     
     − −     
     −
     −     
          

   

    
Best Approximation in Inner Produce Spaces 
 
 A common problem in applied mathematics involves a vector space V whose 
elements are functions. The problem is to approximate a function f  in V by a function 
g  from a specified subspace W of V. The “closeness” of the approximation of f  
depends on the way f g−  is defined. We will consider only the case in which the 
distance between f  and g  is determined by an inner product. In this case the best 
approximation to f  by functions in W is the orthogonal projection of f onto the 
subspace W. 
 
Example 10 
   Let V be 4P  with the inner product in example 5 and let 0 1 2, &P P P  
be the orthogonal basis for the subspace 2P , find the best approximation to  
( ) 415

2
p t t= −     by polynomials in 2P . 

 
Solution:     The values of p0, p1, and p2 at the numbers – 2, –1, 0, 1, and 2 are listed 
in R5 vectors in 

Polynomial:           p0           p1           p2  
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Vector of values: 

1 2 2
1 1 1

, ,1 0 2
1 1 1
1 2 2

−     
     − −     
     −
     −     
          

      

The corresponding values for p are: 3,9 2,5,9 2,−  and –3. 
We compute 

0 1 2

0 0 2 2

, 8 , 0 , 31

, 5, , 14

p p p p p p

p p p p

= = = −

= =
  

Then the best approximation in V to p by polynomials in P2 is 

2

0 1 2
0 1 2

0 0 1 1 2 2

28 31 8 31
0 25 14 5 14

, , ,
ˆ

, , ,

( 2).

p

p p p p p p
p proj p p p p

p p p p p p

p p t−

= = + +

= + = − −

 

 
This polynomial is the closest to P of all polynomials in P2, when the distance between 
polynomials is measured only at –2, –1, 0, 1, and 2. 
 
Cauchy – Schwarz Inquality 

 
,

,

For all u v in V

u v u v≤
 

 
 
Triangle Inequality 
 

,For all u v in V
u v u v+ ≤ +

 

Proof 
 

 
 

2 22 ,u u v v≤ + +   
2 22u u v v≤ + +  

( )22u v u v+ = +  

 
   u v u v⇒ + = +  

 
Inner product for [ ],C a b  

2 ,

, 2 , ,

u v u v u v

u u u v v v

+ = + +

= + +
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   Probably the most widely used inner product space for applications 
is the vector space [ ],C a b  of all continuous functions on an interval a t b≤ ≤ , with an 
inner product that will describe. 
 
Example 11 
  For f , g  in [ ],C a b  , set  

( ) ( ),
a

b
f g f t g t dt= ∫  

Show that it defines an inner product on [ ],C a b . 
Solution 

               Inner product Axioms 1 to 3 follow from elementary properties of 
definite integrals 

 
1. , ,

2. , , ,

3. , ,

f g g f

f h g f g h g

cf g c f g

=

+ = +

=

 

 For Axiom 4, observe that 
2, [ ( )] 0

b

a
f f f t dt= ≥∫  

 
The function [f(t)]2 is continuous and nonnegative on [a, b]. If the definite integral of 
[f(t)]2 is zero, then [f(t)]2 must be identically zero on [a, b], by a theorem in advanced 
calculus, in which case f is the zero function. Thus ,f f = 0 implies that f is the zero 
function of [a, b].  

So , ( ) ( )
b

a
t t dt= ∫f g f g  defines an inner product on C[a, b]. 

 
Example 12 

Compute     ,f g   where   [ ]2 3( ) 1 3 ( ) 0,1f t t and g t t t on v C= − = − = . 
Solution 

Let V be the space [ ],C a b  with the inner product  

( ) ( ),
a

b
f g f t g t dt= ∫  

                                               2 3( ) 1 3 , ( )f t t g t t t= − = −  
 

                                             

( )
( )

1 2 3

0
1 5 3

0
1

6 4 2

0

, (1 3 )

3 4

1 1
2 2

0

f g t t t dt

t t t dt

t t t

= − −

= − +

= − +

=

∫
∫

 

Example 13 
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Let V be the space [ ],C a b  with the inner product  

( ) ( ),
a

b
f g f t g t dt= ∫  

Let W be the subspace spanned by the polynomials       
( ) ( ) ( ) 2

1 2 31 , 2 1 & 12P t P t t P t t= = − =  
Use the Gram – Schmidt process to find an orthogonal basis for W. 
Solution 
  
Let q1 = p1, and compute 

1

0

1 2

0
, (2 1)(1) ( ) 0t dt t t= − = − =∫2 1p q  

So p2 is already orthogonal to q1, and we can take q2 = p2. For the projection of p3 onto 
W2 = Span {q1, q2}, we compute 

1

0

1 2 3

0
, 12 1 4 4t dt t= ⋅ = =∫3 1p q  

1

0

1

0
, 1 1 1dt t= ⋅ = =∫1 1q q  

1 12 3 2

0 0
, 12 (2 1) (24 12 ) 2t t dt t t dt= − = − =∫ ∫3 2p q   

1

0

1 2 3

0

1 1, (2 1) (2 1)
6 3

t dt t= − = − =∫2 2q q  

Then   
, , 4 2proj 4 6
, , 1 1 3

= + = + = +
2

3 1 3 2
w 3 1 2 1 2 1 2

1 1 2 2

p q p q
p q q q q q q

q q q q
 

And  proj 4 6= − = − −
23 3 w 3 3 1 2q p p p q q  

As a function, q3(t) = 12t2 – 4 – 6(2t – 1) = 12t2 – 12t + 2. The orthogonal basis for the 
subspace W is {q1, q2, q3} 
 
Exercises 

Let 2ℜ  have the inner product of example 1 and let x=(1,1) and y=(5,-1)  
a)   Find 

2
, ,x y and x y              b) Describe all vectors ( )1 2,z z  that are 

orthogonal to y. 
 
2)   Let 2ℜ  have the inner product of Example 1. Show that  the Cauchy-Shwarz 
inequality  holds for x=(3,-2) and y=(-2,1) 
 
  Exercise 3-8  refer to 2P  with  the inner product given by evaluation at -1,0 and 1 in 
example 2. 
3)   Compute ,p q  where p(t)= 4+t  q(t) = 5-4t2 

4)   Compute ,p q  where p(t)= 3t - t2  q(t) = 3 + t2 

      5)    Compute  P and q   for p and q  in exercise 3. 

       6)    Compute  P and q   for p and q  in exercise 4. 
       7)    Compute the orthogonal projection of q onto the subspace spanned by p, for p 
and q in Exercise 3. 
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       8)     Compute the orthogonal projection of q onto the subspace spanned by p, for p 
and q in Exercise 4. 

 
9)    Let 3P  have the inner product given by evaluation at -3,-1,1, and 3. Let 

2
1 2( ) 1 , ( ) , ( )p t p t t and p t tο = = =  

a)Computer the orthogonal projection of 2P  on to the subspace spanned by 0P  and 1P . b)     
Find a polynomial q that is orthogonal to 0P   and 1P  such tha { }0 1, ,p p q  is an orthogonal 

basis for span { }0 1, ,p p q  . Scale the polynomial q so that its vector of values at    (-3,-
1,1,3) is (1,-1,-1,1) 

10)        Let 3P  have the inner product given by evaluation at -3,-1,1, and 3. Let 
2

1 2( ) 1 , ( ) , ( )p t p t t and p t tο = = =  
Find the best approximation to 3( )p t t=  by polynomials in Span { }0 1, ,p p q . 

11)   Let 0 1 2, ,p p p  be the orthogonal polynomials described in example 5, where the 
inner product on 4P  is given by  evaluation at -2, -1, 0, 1, and 2. Find the orthogonal 
projection of 3t  onto Span { }0 1 2, ,p p p  

12)   Compute     ,f g   where   [ ]2 3( ) 1 3 ( ) 0,1f t t and g t t t on v C= − = − = . 
 
13)   Compute     ,f g   where   

 [ ]3 2( ) 5 3 ( ) 0,1f t t and g t t t on v C= − = − = . 

14)   Compute f  for f in exercise 12. 

15)    Compute g  for g in exercise 13. 
 
16) Let V be the space C[-2,2]  with the inner product of Example 7. Find an 

orthogonal basis for the subspace spanned by the polynomials 21, ,t t .   
17)  

 Let  1

2

u
u

u
 

=  
 

 and 1

2

v
v

v
 

=  
 

 be two vectors in 2R . Show that 1 1 2 2, 2 3u v u v u v= +  

defines an inner product. 
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Lecture 44 
Application of inner product spaces 

 
Definition 
 
An inner product on a vector space V is a function that associates to each pair of vectors u 
and v in V, a real number  ,u v   and satisfies the following axioms, for all u, v, w in V 
and all scalars c:  
1. , ,

2. , , ,

3. , ,

4. , 0 , 0   0.

u v v u

u v w u w v w

cu v c u v

u u and u u iff u

=

+ = +

=

≥ = =  

 

 
A vector space with an inner product is called an inner product space.  
 
Least Squares Lines  
 
               The simplest relation between two variables x and y is the linear 
equation 0 1y xβ β= + . Often experimental data produces points 1 1( , ),..., ( , )n nx y x y  that 
when graphed, seem to lie close to a line. Actually we want to determine the parameters 

0β  and 1β  that make the line as “close” to the points as possible. There are several ways 
to measure how close the line is to the data. The usual choice is to add the squares of the 
residuals. The least squares line is the line 0 1y xβ β= +  that minimizes the sum of the 
squares of the residuals. 
       If the data points are on the line, the parameters 0β  and 1β  would satisfy the 
equations 

                                       
0 1 1 1

0 1 2 2

0 1

_________________

. .
. .
. .

n n

predicted Observed
value value

x y
x y

x y

β β
β β

β β

+ =
+ =

+ =
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We can write this system as  
 

01

2 1

0

1

1
1
. . .

, ,
. . .
. . .
1 n n

X y
yx

x y

Where X y

x y

β

β
β

β

=

  
  
  
    

= = =     
    

  
  

      

 

 
Computing the least-squares solution of X yβ =  is equivalent to finding the β   that 
determines the least-squares line. 
 
Example 1 
 
Find the equation 0 1y xβ β= +   of the least-squares line that best fits the data points      
(2, 1), (5, 2), (7, 3), (8, 3).  
                 
Solution 
                  
 
 
 
 
 
 
 
 
For the least-squares solution of x yβ = , obtain the normal equations(with the new 
notation) : 
              ˆT TX X X yβ =  
i.e, compute  
 

1 2
1 1 1 1 1 5 4 22
2 5 7 8 1 7 22 142

1 8

TX X

 
     = =       
 
 

 

1
1 1 1 1 2 9
2 5 7 8 3 57

3

TX y

 
     = =       
 
 

 

0

1

1 2 1
1 5 2

, ,
1 7 3
1 8 3

X y

Here X y

β

β
β

β

=

   
       = = =     
   
   
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The normal equations are  
 

               0

1

4 22 9
22 142 57

β
β
    

=    
    

 

Hence, 
 

1
0

1

4 22 9
22 142 57

142 22 91
22 4 5784

24 2 / 71
30 5 /1484

β
β

−
     

=     
    

−   
=    −   

   
= =   

   

 

Thus, the least -squares line has the equation  

                               2 5
7 14

y x= +  

 

 
 
 
Weighted Least-Squares  
 
         Let y be a vector of n observations, 1 2, ,..., ny y y and suppose we wish to 
approximate y by a vector ŷ that belongs to some specified subspace of n

 (as discussed 
previously that ŷ  is written as Ax so that ŷ  was in the column space of A).Now suppose 
the approximating vector ŷ  is to be constructed from the columns of matrix A. Then we 
find an x̂  that makes ˆ ˆAx y= as close to y as possible. So that measure of closeness is the 
weighted error  
                        2 2ˆ ˆWy Wy Wy WAy− = −  
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Where W is the diagonal matrix with (positive) 1,..., nw w on its diagonal, that is  

                  

1

2

0 . . . 0
0
. . .
. . .
. . .
0 . . . n

w
w

W

w

 
 
 
 

=  
 
 
 
  

  

Thus, x̂ is the ordinary least-squares solution of the equation  
                                        WAx Wy=  
 
 The normal equation for the weighted least-squares solution is  
               ( ) ( )T TWA WAX WA Wy=  
Example 2 
 
Find the least squares line 0 1y xβ β= +   that best fits the data (–2, 3), (–1, 5), (0, 5), (1, 4), 
(2, 3). Suppose that the errors in measuring the y-values of the last two data points are 
greater than for the other points. Weight this data half as much as the rest of the data. 
 
Solution 
 

0

1

,
1 2 3
1 1 5
1 0 , , 5
1 1 4
1 2 3

Write X and y

X y

β

β
β

β

−   
   −    
   = = = 
    
   
      

 

 
For a weighting matrix, choose W with diagonal entries 2 , 2 , 2 , 1 and 1. 
Left-multiplication by W scales the rows of X and y: 
 

2 0 0 0 0 1 2
0 2 0 0 0 1 1
0 0 2 0 0 1 0
0 0 0 1 0 1 1
0 0 0 0 1 1 2

WX

−   
   −   
   =
   
   
      
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2 4 6
2 2 10
2 0 , 10
1 1 4
1 2 3

WX Wy

−   
   −   
   = =
   
   
      

 

For normal equation, compute  
 

14 9 59
( ) , ( )

9 25 34
T TWX WX and WX Wy

−   
= =   − −   

 

And solve  

                 

0

1

1
0

1

0

1

0

1

0

1

14 9 59
9 25 34

14 9 59
9 25 34

25 9 591
9 14 34269

25 9 591
9 14 34269

1169 4.31
55 0.2269

β
β

β
β

β
β

β
β

β
β

−

−     
=    − −    

−     
=     − −    

     
=     −    

     
=     −    

     
= =     

    

 

Therefore, the solution to two significant digits is 0 14.3 0.20andβ β= = .  
Hence the required line is 4.3 0.2y x= +  
In contrast, the ordinary least-squares line for this data can be found as: 
 

1 2
1 1

1 1 1 1 1 5 0
1 0

2 1 0 1 2 0 10
1 1
1 2

TX X

− 
 −     = =   − −     
 
  
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3
5

1 1 1 1 1 20
5

2 1 0 1 2 1
4
3

TX y

 
 
     = =   − − −    
 
  

 

 

        

0

1

1
0

1

0

1

0

1

5 0 20
0 10 1

5 0 20
0 10 1

10 0 201
0 5 150

200 4.01
5 0.150

β
β

β
β

β
β

β
β

−

    
=    −    

     
=     −    

     
=     −    

     
= =     − −    

                                       

 
Hence the equation of least-squares line is  
                                  1.0 0.1y x= −  

                   
 
What Does Trend Analysis Mean? 
 
An aspect of technical analysis that tries to predict the future movement of a stock based 
on past data. Trend analysis is based on the idea that what has happened in the past gives 
traders an idea of what will happen in the future.  
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Linear Trend 
 
A first step in analyzing a time series, to determine whether a linear relationship provides 
a good approximation to the long-term movement of the series computed by the method 
of semi averages or by the method of least squares. 
 
Note 
 
The simplest and most common use of trend analysis occurs when the points 0 1, ,..., nt t t  
can be adjusted so that they are evenly spaced and sum to zero. 
 
Example 
 
Fit a quadratic trend function to the data (-2,3), (-1,5), (0,5), (1,4) and (2,3) 
 
Solution 
 
The t-coordinates are suitably scaled to use the orthogonal polynomials found in Example 
5 of the last lecture. We have 
 
                                                                    

0 1 2Polynomial : p p p data : g
1 2 2 3
1 1 1 5

: 1 , 0 , 2 , 5
1 1 1 4
1 2 2 3

Vector of values

−       
       − −       
       −
       −       
              

 

0 1 2
0 1 2

0 0 1 1 2 2

0 1 2

2

, , ,ˆ
, , ,

20 1 7
5 10 14

ˆ ( ) 4 0.1 0.5( 2)

g p g p g pp p p p
p p p p p p

p p p

and p t t t

< > < > < >
= + +
< > < > < >

= − −

= − − −

 

 
Since, the coefficient of 2p is not extremely small, it would be reasonable to conclude 
that the trend is at least quadratic. 
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Above figure shows that approximation by a quadratic trend function 
 
Fourier series 
 
If f is a 2π -periodic function then  

0

1
( ) ( cos sin )

2 m m
m

af t a mt b mt
∞

=

= + +∑  

is called Fourier series of f where  
 

2

0

1 ( ) cosma f t mt dt
π

π
= ∫          and  

 
2

0

1 ( )sinmb f t mt dt
π

π
= ∫  

 
Example 
 
Let [0, 2 ]C π  has the inner product  

2

0

, ( ) ( )f g f t g t dt
π

< >= ∫  

and let m and n be unequal positive integers. Show that cos mt and  cos nt  
are orthogonal. 
 
Solution 
 
When  m n≠  
 

2

0
2

0

cos ,cos cos cos

1 [cos ( ) cos( )
2

mt nt mt nt dt

mt nt mt nt dt

π

π

< >=

= + + −

∫

∫
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2

0

1 sin ( ) sin ( )
2

0

mt nt mt nt
m n m n

π
+ − = + + − 

=

 

 
 
Example 
 
Find the nth-order Fourier approximation to the function  
 

( )f t t=  on the interval[0,2 ]π . 
 
Solution 
 
We compute  
 

22
20

00

1 1 1 1.
2 2 2 2
a t dt t

ππ

π
π π

 
= = = 

  
∫  

 
and for k>0, using integration by parts, 
 

            

22

2
00

22

2
00

1 1 1cos cos sin 0

1 1 1 2sin sin cos

k

k

ta t kt dt kt kt
k k

tb t kt dt kt kt
k k k

ππ

ππ

π π

π π

 = = + =  

 = = − = −  

∫

∫

 

 
Thus, the nth-order Fourier approximation of ( )f t t=  is  
 

2 22sin sin 2 sin 3 sin
3

t t t nt
n

π − − − − ⋅⋅⋅−  

 
The norm of the difference between f and a Fourier approximation is called the mean 
square error in the approximation. 
It is common to write  
 

0

1
( ) ( cos sin )

2 m m
m

af t a mt b mt
∞

=

= + +∑  

This expression for f (t) is called the Fourier series for f on[0,2 ]π . The term cosma mt , 
for example, is the projection of f onto the one-dimensional subspace spanned by cos mt . 
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Example 
 
Let 2

1 2 3( ) 1, ( ) , ( ) 3 4q t q t t and q t t= = = − .Verify that 1 2 3{ , , }q q q is an orthogonal set in 
C{-2,2] with the inner product 
 

, ( ) ( )
b

a

f g f t g t dt< >= ∫  

 
Solution: 

22
2

1 2
22

2
22 2

1 3 2
2

22
2 4 2

2 3
22

1, 1. 0
2

, 1.(3 4) ( 4 ) 0

3, .(3 4) ( 2 ) 0
4

q q t dt t dt

q q t dt t t

q q t t dt t t

−−

−
−

−−

< >= = =

< >= − = − =

< >= − = − =

∫

∫

∫

 

 
Exercise 
 

1. Find the equation 0 1y xβ β= +   of the least-squares line that best fits the data 
points (0, 1), (1, 1), (2, 2), (3, 2).  

2. Find the equation 0 1y xβ β= +   of the least-squares line that best fits the data 
points (-1, 0), (0, 1), (1, 2,),(2, 4).  

3. Find the least-squares line 0 1y xβ β= + that best fits the data  
         (-2, 0), (-1, 0), (0, 2,),(1, 4),(2, 4), assuming that the first and last data points are 
      less reliable. Weight them half as much as the three interior points.  

      4:   To make a trend analysis of six evenly spaced data points, one can use orthogonal  
            polynomials with respect to evaluation at the points t=-5, -3, -1, 1, 3and 5 
     (a).  Show that the first three orthogonal polynomials are  

            2
0 1 2

3 35( ) 1, ( ) , ( )
8 8

p t p t t and p t t= = = −  

     (b)   Fit a quadratic trend function to the data  
            (-5, 1), (-3, 1), (-1, 4), (1, 4), (3, 6), (5, 8) 
      5:    For the space [0,2 ]C π  with the inner product defined by 

2

0

, ( ) ( )f g f t g t dt
π

< >= ∫  

     (a)   Show that sin mt and sin nt  are orthogonal when m n≠  
     (b)   Find the third–order Fourier approximation to ( ) 2f t tπ= −  
     (c)   Find the third order Fourier approximation to 3cos t , without performing any 
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             integration calculations.  
 
6:  Find the first-order and third order Fourier approximations to  
 

( ) 3 2sin 5sin 2 6cos 2f t t t t= − + −  
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	Multiplicative Identity For a given any integer , the   matrix
	Zero Matrix or Null matrix A matrix whose all entries are zero is called zero matrix or null matrix and it is denoted by .
	Associative Law The matrix multiplication is associative. This means that if   and  are ,  and   matrices, then
	Determinant of a Matrix Associated with every square matrix A of constants, there is a number called the determinant of the matrix, which is denoted by  or   . There is a special way to find the determinant of a given matrix.
	Example 8  Find, if possible, the multiplicative inverse for the matrix .
	Example 9 Find, if possible, the multiplicative inverse of the following matrix
	Example 10 Find the multiplicative inverse for the following matrix

	Solution The derivative and integral of the given matrix are, respectively, given by

	Lecture 03
	Linear System with Two Unknowns
	Linear System with Three Unknowns
	Example 1 Solve the linear system
	Matrix Notation
	Solving a Linear System
	Two Fundamental Questions


	Lecture 04
	Echelon form of a matrix
	A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties:
	Theorem 1 (Uniqueness of the Reduced Echelon Form) Each matrix is row equivalent to one and only one reduced echelon matrix.
	Pivot Positions
	The Row Reduction Algorithm consists of four steps, and it produces a matrix in echelon form. A fifth step produces a matrix in reduced echelon form.
	The algorithm is explained by an example.
	STEP 1 Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.
	STEP 2 Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position
	STEP 3 Use row replacement operations to create zeros in all positions below the pivot
	STEP 4 Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1 –3 to the sub-matrix, which remains. Repeat the process until there are no more nonzero rows to modify.
	Solutions of Linear Systems
	(6)

	Exercise


	Lecture 05
	Geometric Descriptions of R2
	(3)

	Linear Combinations in Applications
	Vector Equation of a Line
	Parametric Equations of a Line in R2
	Parametric Equations of a Line in R3
	Vector Equation of a Plane
	Parametric Equations of a Plane

	Lecture 06
	Definition  If A is an   matrix, with columns a1, a2, … , an and if x is in Rn, then the product of A and x denoted by Ax, is the linear combination of the columns of A using the corresponding entries in x as weights, that is,
	Example 1
	Theorem 1 If A is an   matrix, with columns a1, a2 ,... , an and if b is in Rm, the matrix equation   Ax = b has the same solution set as the vector equation
	Existence of Solutions  The equation Ax = b has a solution if and only if b is a linear combination of the columns of A.
	Example 4 Which of the following are linear combinations of
	Solution


	Lecture 07
	Lecture 7
	Solution Sets of Linear Systems
	Solutions of Non-homogeneous Systems

	Lecture 08
	Linear Independence of Matrix Columns
	Sets of One or Two Vectors
	Sets of Two or More Vectors
	Figure 4 A linearly dependent set in R2.

	Lecture 09
	Example 2 Let  ,
	and define a transformation   by T(x) = Ax, so that
	A projection transformation

	Linear Transformations
	Definition   A transformation (or mapping) T is linear if:
	L (1, 0, 0) = (2, -1),
	L (0, 1, 0) = (3, 1), and
	L (0, 0, 1) = (-1, 2).
	Then find L (-3, 4, 2).
	Solution   Since (-3, 4, 2) = -3i + 4j + 2k,
	Exercise


	Lecture 10
	Lecture 10
	The Matrix of a Linear Transformation
	A rotation transformation
	Geometric Linear Transformations of R2
	Existence and Uniqueness of the solution of   T(x)=b
	Proof:
	Exercises


	Lecture 11
	Matrix Multiplication
	A convenient way to determine whether A and B conform for the product AB and, if so, to find the size of the product is to write the sizes of the factors side by side as in Figure below  (the size of the first factor on the left and the size of the se...
	Example 5 (An Undefined Product) Find the product BA for the matrices
	Multiplication by AB

	Finding Specific Entries in a Matrix Product Sometimes we will be interested in finding a specific entry in a matrix product without going through the work of computing the entire column that contains the entry.
	Finding Specific Rows and Columns of a Matrix Product
	Properties of Matrix Multiplication


	Lecture 12
	Theorem
	Elementary Matrices

	Lecture 13
	Solving Linear Systems by Matrix Inversion
	Solving Multiple Linear Systems with a Common Coefficient Matrix
	Multiplication


	Lecture 14
	Addition of Blocked Matrices
	Multiplication of Partitioned Matrices
	Inverses of Partitioned Matrices

	17.   Let

	Lecture 15
	An LU Factorization Algorithm
	Ep … E1A = U       (1)

	Solution
	* denotes an unknown entry of L.
	Matrix Inversion by LU-Decomposition
	A Matrix Factorization in Electrical Engineering
	Exercises

	Lecture 16
	General Framework for an Iterative Solution of Ax = b
	1) Jacobi’s Method
	Repeating this process until two successive iterations match to four decimal places yields the results in the following table:
	The Gauss-Seidel Method
	This method uses the recursion (1) with M the lower triangular part of A. That is, M has the same entries as A on the diagonal and below, and M has zeros above the diagonal. See Fig. 1. As in Jacobi’s method, the diagonal entries of A must be nonzero ...


	Exercises

	Lecture 17
	Determinants of Triangular Matrices
	Exercises

	Lecture 18
	Example 3   Evaluate the determinant of the matrix
	Algorithm means a sequence of a finite number of steps to get a desired result. The word Algorithm comes from the famous Muslim mathematician AL-Khwarizmi who invented the word algebra.
	Theorem 6 (Multiplicative Property)
	For example,


	If   and  . Then   Exercise

	Lecture 19
	Cramer’s Rule   Cramer’s rule is needed in a variety of theoretical calculations. For instance, it can be used to study how the solution of Ax = b is affected by changes in the entries of b. However, the formula is inefficient for hand calculations, e...
	Formula for A–1
	Cramer’s rule leads easily to a general formula for the inverse of   matrix A. The jth column of A-1 is a vector x that satisfies Ax = ej
	Determinants as Area or Volume
	In the next application, we verify the geometric interpretation of determinants and we assume here that the usual Euclidean concepts of length, area, and volume are already understood for R2 and R3.
	Linear Transformations
	Theorem 4   Let   be the linear transformation determined by a   matrix A. If S is a parallelogram in R2, then
	{area of T (S)} = |detA|. {area of S}

	Solution   We claim that E is the image of the unit disk D under the linear transformation A:D→E determined by the matrix , given as
	Au = x  where u =  , x = .
	Now  Au = x  then

	Lecture 20
	Definition  Let V be an arbitrary nonempty set of objects on which two operations are defined, addition and multiplication by scalars (numbers). If the following axioms are satisfied by all objects u, v, w in V and all scalars k and l, then we call V ...
	Examples of vector spaces   The following examples will specify a non empty set V and two operations: addition and scalar multiplication; then we shall verify that the ten vector space axioms are satisfied.
	Example 1   Show that the set of all ordered n-tuple Rn is a vector space under the standard operations of addition and scalar multiplication.
	Example 3    Let V be the set of all real-valued functions defined on the entire real line . If f, g V, then f + g is a function defined by
	Solution
	(i) Closure Property If f, g V, then by definition
	(f +g) (x) = f (x) + g (x)  V. Therefore, V is closed under addition.


	Note   If W is a part of a larger set V that is already known to be a vector space, then certain axioms need not be verified for W because they are “inherited” from V. For example, there is no need to check that u + v = v + u (Axiom 2) for W because t...
	Theorem 2   If W is a set of one or more vectors from a vector space V, then W is subspace of V if and only if the following conditions hold.
	Proof   If W is a subspace of V, then all the vector space axioms are satisfied; in particular, Axioms 1 and 6 hold. But these are precisely conditions (a) and (b).
	Example 9   Consider the set W consisting of all 2x3 matrices of the form
	Note    Let V is a vector space then every subset of V is not necessary a subspace of V. For example, let V =R2 then any line in R2 not passing through origin is not a subspace of R2. Similarly, a plane in R3 not passing through the origin is not a su...
	Example 10   Let W be the subset of R3 consisting of all vectors of the form  (a, b, 1), where a, b are any real numbers. To check whether property (a) and (b) of the above theorem holds. Let  be vectors in W.
	Example 11   Which of the following are subspaces of R3

	Solution   Let W is the set of all vectors of the form (a, 0, 0).
	Example 12   Determine which of the following are subspaces of P3.
	Solution   (i) Let W is the set of all polynomials a0 + a1 x + a2 x2 + a3 x3 for which a0 = 0.

	Example 13   Determine which of the following are subspaces of M22.

	Solution   Let W is the set of all matrices   where a + b +c + d = 0.
	Example 14   Determine which of the following are subspaces of the space  .
	Solution   (i) Let W is the set of all f such that f (x)  0 for all x.

	Remark   Let n be a non-negative integer, and let   be the set of real valued function of the form  where  real numbers, then is a subspace  .
	Example 15    Show that the invertible n x n matrices do not form a subspace of M n x n.
	Theorem   If Ax = 0 is a homogeneous linear system of m equations in n unknowns, then the set of solution vectors is a subspace of Rn.

	A Subspace Spanned by a Set: The next example illustrates one of the most common ways of describing a subspace. We know that the term linear combination refers to any sum of scalar multiples of vectors, and Span {v1, … , vp} denotes the set of all vec...


	Lecture 21
	NULL SPACE
	An Explicit Description of Nul A
	There is no obvious relation between vectors in Nul A and the entries in A. We say that Nul A is defined implicitly, because it is defined by a condition that must be checked. No explicit list or description of the elements in Nul A is given. Howev...
	The Column Space of a Matrix   Another important subspace associated with a matrix is its column space. Unlike the null space, the column space is defined explicitly via linear combinations.
	Theorem 3   The column space of an   matrix A is a subspace of Rm.
	The Contrast between Nul A and Col A
	It is natural to wonder how the null space and column space of a matrix are related. In fact, the two spaces are quite dissimilar. Nevertheless, a surprising connection between the null space and column space will emerge later.
	Solution
	(a) The columns of A each have three entries, so Col A is a subspace of Rk, where k = 3.
	W

	Lecture 22
	Example 8     Check whether the set of vectors
	{-4  + 1 t + 3 t2 ,  6  + 5 t + 2 t2 ,  8  + 4 t + 1 t2} is a basis for P2?
	Solution   The set S = {p1 (t), p2 (t), p3 (t)} of vectors in P2 spans V = P2 if
	c1 p1 (t) + c2 p2 (t) + c3 p3 (t) = d1 q1 (t) + d2 q2 (t) + d3 q3 (t)  (*)
	with q1(t) = 1  + 0 t  + 0 t 2  , q2(t) = 0  + 1 t  + 0 t 2  , q3(t) = 0  + 0 t  + 1 t 2 has at least one solution for every set of values of the coefficients d1, d2, d3. Otherwise (i.e., if no solution exists for at least some values of d1, d2, d3), ...
	c1 (-4 + 1 t + 3 t2) + c2 (6 + 5 t + 2 t2) + c3 (8 + 4 t + 1 t2) =
	d1 (1  + 0 t  + 0 t 2 )  +  d2 (0  + 1 t  + 0 t 2 )  +  d3 (0  + 0 t  + 1 t 2 )
	Rearranging the left hand side yields
	(-4 c1 +6 c2 +8 c3)1  + (1 c1 +5 c2 +4 c3) t + (3 c1 +2 c2 +1 c3) t2 = (1 d1 +0 d2 +0 d3)1 + (0 d1 +1 d2 +0 d3) t + (0 d1 +0 d2 +1 d3) t2
	In order for the equality above to hold for all values of t, the coefficients corresponding to the same power of t on both sides of the equation must be equal. This yields the following system of equations:
	(A)

	We find that c1 = a, c2 = b, c3 = c, and c4 = d so that S spans V.
	The basis S in this example is called the standard basis for M22. More generally, the standard basis for Mmn consists of mn different matrices with a single 1 and zeros for the remaining entries
	Example 10     Show that the set of vectors
	Now let x be any vector in H – say, x = c1v1 + c2v2 + c3v3. Since v3 = 5v1 + 3v2, we may substitute
	The Spanning Set Theorem


	Two Views of a Basis When the Spanning Set Theorem is used, the deletion of vectors from a spanning set must stop when the set becomes linearly independent. If an additional vector is deleted, it will not be a linear combination of the remaining vecto...

	Lecture 23
	Let S = {v1, v2, v3} be the basis for R3, where v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4).
	Solution
	Since S is a basis for R3, Thus
	Example 3
	Find the coordinates vector of the polynomial p = a0 + a1x + a2x2 relative to the basis S = {1, x, x2} for p2.
	Find the coordinates vector of the polynomial p = 5 – 4x + 3x2 relative to the basis S = {1, x, x2} for p2.
	Find the coordinate vector of A relative to the basis S = {A1, A2, A3, A4}
	Solution
	A= c1 A1+ c2 A2+ c3 A3+ c4 A4


	A coordinate system on a set consists of a one-to-one mapping of the points in the set into Rn. For example, ordinary graph paper provides a coordinate system for the plane when one selects perpendicular axes and a unit of measurement on each axis. Fi...
	b1 (= e1) and b2 from Example 1, that is,
	Vector , the coordinates 1 and 6 give the location of x relative to the standard basis: 1 unit in the e1 direction and 6 units in the e2 direction.
	Coordinates in Rn    When a basis B for Rn is fixed, the B-coordinate vector of a specified x is easily found, as in the next example.

	The Coordinate Mapping     Choosing a basis B = {b1, b2 , … , bn} for a vector space V introduces a coordinate system in V. The coordinate mapping   connects the possibly unfamiliar space V to the familiar space Rn. See Figure 5. Points in V can now b...
	V
	Solution

	Lecture 24
	Example 1     The n dimensional set of real numbers Rn, set of polynomials of order n Pn, and set of matrices of order    Mmn are all finite- dimensional vector spaces. However, the vector spaces F (- , ), C (- , ), and Cm (- , ) are infinite- dimensi...
	Example 2
	(a)   Any pair of non-parallel vectors a, b in the xy-plane, which are necessarily linearly independent, can be regarded as a basis of the subspace R2. In particular the set of unit vectors {i, j} forms a basis for R2. Therefore, dim (R2) = 2.
	Bases for Nul A and Col A
	We already know how to find vectors that span the null space of a matrix A. The discussion in Lecture 21 pointed out that our method always produces a linearly independent set. Thus the method produces a b...
	Solution     The null space of A is the solution space of homogeneous system

	The general solution of the given system is
	which shows that the vectors   span the solution space .Since they are also linearly independent,{v1,v2} is a basis for Nul A.
	Procedure
	Basis and Linear Combinations

	Transforming Matrix to Reduced Row Echelon Form:
	The leading entries occur in columns 1,2 and 4 so that {w1, w2, w4} is a basis for the column space of  (B) and consequently {v1, v2, v4} is the basis for column space of (A).

	Subspaces of a Finite-Dimensional Space     The next theorem is a natural counterpart to the Spanning Set Theorem.
	Example 16     Decide whether each statement is true or false, and give a reason for each answer. Here V is a non-zero finite-dimensional vector space.
	Solution


	Lecture 25
	The Row Space    If A is an   matrix, each row of A has n entries and thus can be identified with a vector in Rn. The set of all linear combinations of the row vectors is called the row space of A and is denoted by Row A. Each row has n entries, so Ro...
	Solution     We can find a basis for the row space of A by finding a basis for the row space of any row-echelon form of A.

	A and R may have different column spaces, we cannot find a basis for the column space of A directly from the column vectors of R. however, it follows from the theorem (2b) if we can find a set of column vectors of R that forms a basis for the column ...
	Solution   The space spanned by these vectors is the row space of the matrix
	Solution     We find AT; then we will use the method of example (2) to find a basis for the column space of AT; and then we will transpose again to convert column vectors back to row vectors. Transposing A yields

	Solution
	(a) Since A has 9 columns, (rank A) + 2 = 9 and hence rank A = 7.
	Applications to Systems of Equations
	The Rank Theorem is a powerful tool for processing information about systems of linear equations. The next example simulates the way a real-life problem using linear equations might be stated, without explicit mention of linear algebra terms such a...
	Example 10     Find the rank and nullity of the matrix; then verify that the values obtained satisfy the dimension theorem
	Solution     Transforming Matrix to the Reduced Row Echelon Form:
	Theorem 4     If A is an m x n, matrix, then
	Four fundamental matrix spaces
	If we consider a matrix A and its transpose AT together, then there are six vectors spaces of interest:
	Rank and the Invertible Matrix Theorem     The various vector space concepts associated with a matrix provide several more statements for the Invertible Matrix Theorem. We list only the new statements here, but we reference them so they follow the sta...
	Theorem 6     The Invertible Matrix Theorem (Continued)
	Numerical Note
	Many algorithms discussed in these lectures are useful for understanding concepts and making simple computations by hand. However, the algorithms are often unsuitable for large-scale problems in real life.

	Solution


	Lecture 26
	Suppose that x = 3b1 + b2        (2)
	Solution
	Solution

	Example 6
	Solution

	Lecture 27
	Applications to Difference Equations
	Discrete-Time Signals     Let S is the space of discrete-time signals. A signal in S is a function defined only on the integers and is visualized as a sequence of numbers, say, {yk}.
	Linear Independence in the Space S of Signals     To simplify notation, we consider a set of only three signals in S, say, {uk},{vk}and {wk}. They are linearly independent precisely when the equation
	Linear Difference Equations   Given scalars a0, … , an, with a0 and an nonzero, and given a signal {zk}, the equation
	for all k  (3)
	rk+3 – 2rk+2 – 5rk+1 + 6rk = 0       (5)

	Solution Sets of Linear Difference Equations
	Given a1, … , an, consider the mapping T: S  S that transforms a signal {yk}into a signal {wk} given by
	Theorem     If   and if {zk} is given, the equation
	Theorem     The set H of all solutions of the nth-order homogeneous linear difference equation
	Non-homogeneous Equations     The general solution of the non-homogeneous difference equation
	Example 6     Verify that the signal yk = k2 satisfies the difference equation

	Lecture 28
	Fixed Points
	A fixed point of an   matrix A is a vector x in Rn such that Ax = x. Every square matrix A has at least one fixed point, namely x = 0. We call this the trivial fixed point of A.
	Figure 1
	Eigenvalues and Eigenvectors
	In a fixed point problem one looks for nonzero vectors that satisfy the equation Ax = x. One might also consider whether there are nonzero vectors that satisfy such equations as
	To solve this homogeneous equation, form the matrix
	Eigenvalues of Triangular Matrices     If A is an   triangular matrix with diagonal entries a11, a22, …, ann, then   is a triangular matrix with diagonal entries  . Thus, the characteristic polynomial of A is
	Eigenvalues of Powers of a Matrix     Once the eigenvalues and eigenvectors of a matrix A are found, it is a simple matter to find the eigenvalues and eigenvectors of any positive integer power of A. For example, if   is an eigenvalue of A and x is a ...
	A Unifying Theorem     Since   is an eigenvalue of a square matrix A if and only if there is a nonzero vector x such that Ax = x, it follows that  = 0 is an eigenvalue of A if and only if there is a nonzero vector x such that Ax = 0. However, this is ...
	Example 6
	(1) Is 5 an eigenvalue of
	Solution
	(1) The number 5 is an eigenvalue of A if and only if the equation (A- I) x = 0 has a nontrivial solution. Form



	Lecture 29
	The Characteristic Equation
	Theorem 1   Properties of Determinants
	Example 3   (a) Find the eigenvalues and corresponding eigenvectors of the matrix

	Similarity
	Let A and B be two n x n matrices, A is said to be similar to B if there exist an invertible matrix P such that
	P -1AP = B,
	or equivalently,
	A = PBP -1.
	Replacing Q by P -1, we have
	Q -1BQ = A.
	So B is also similar to A. Thus, we can say that A and B are similar.
	Similarity transformation
	The act of changing A into P -1AP is called a similarity transformation.
	Theorem 2
	If n x n matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).
	Application to Dynamical Systems
	Dynamical system is the one which evolves with the passage of time. Eigenvalues and eigenvectors play a vital role in the evaluation of a dynamical system. Let’s consider an example of a dynamical system.
	Solution     The characteristic equation is

	Lecture 30
	Diagonalizing Matrices
	Solution     The characteristic equation of A turns out to be exactly the same as that in example 3 i.e.,

	Example 5     Determine if the following matrix is diagonalizable.
	Matrices Whose Eigenvalues Are Not Distinct
	If an n x n matrix A has n distinct eigen values, with corresponding eigen vectors v1 ,..., v n and if P = [v1 … vn] , then P is automatically invertible because its columns are linearly independent , by Theorem 2 of lecture 28. When A is diagonalizab...
	Theorem 3     Let A be an n x n matrix whose distinct eigen values are  .

	Example 7
	Solution


	Lecture 31-35
	Lecture 31
	Eigenvectors and Linear Transformations
	Figure 3
	Theorem: Diagonal Matrix Representation
	Suppose A = PDP -1, where D is diagonal   n x n matrix. If B is the basis for Rn formed from the columns of P, then D is the B-matrix of the transformation .
	Similarity of Matrix Representations
	The factorization A = PCP -1 is shown in Fig. 5.
	An efficient way to compute a B-matrix P -1AP is to compute AP and then to row reduce the augmented matrix [P     AP] to [I     P -1AP]. A separate computation of P -1 is unnecessary.
	Example 4
	Example 5
	Solution


	Lecture 32
	Example 1
	Example 2
	Example 3

	The complex conjugate of a complex vector x in Cn is the vector   in Cn whose entries are the complex conjugates of the entries in x. The real and imaginary parts of a complex vector x are the vectors Re  and Im   formed from the real and imaginary pa...
	Example 4
	Eigenvalues and Eigenvectors of a Real Matrix that Acts on Cn
	Let A be   matrix whose entries are real. Then    If   is an eigenvalue of A with x a corresponding eigenvector in Cn, then

	Example 6
	...
	Figure 2

	,where
	Show that a solution   is unbounded if its initial point is not on the  -axis.
	Change of Variable
	The preceding three examples involved diagonal matrices. To handle the nondiagonal case, we return for a moment to the   case in which eigenvectors of A form a basis   for Rn. Let  , and let D be the diagonal matrix with the corresponding eigenvalues ...

	Lecture 36
	Lecture 37
	Lecture 38
	Lecture 39
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	Figure 3 The orthogonal projection of y on to a line through the origin.
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	Lecture 40
	Lecture 41
	Lecture 42
	Lecture 43
	Lecture 44
	Lecture 45

