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1-Introduction and Overview VU

Lecture 1

Introduction and Overview

What is Algebra?

History
Algebra is named in honor of Mohammed Ibn-e- Musa al-Khowarizmi. Around 825, he

wrote a book entitled Hisb al-jabr u'l muqgubalah, (“the science of reduction and
cancellation™). His book, Al-jabr, presented rules for solving equations.

Algebra is a branch of Mathematics that uses mathematical statements to describe
relationships between things that vary over time. These variables include things like the
relationship between supply of an object and its price. When we use a mathematical
statement to describe a relationship, we often use letters to represent the quantity that
varies, since it is not a fixed amount. These letters and symbols are referred to as
variables.

Algebra is a part of mathematics in which unknown quantities are found with the help of
relations between the unknown and known.

In algebra, letters are sometimes used in place of numbers.

The mathematical statements that describe relationships are expressed using algebraic
terms, expressions, or equations (mathematical statements containing letters or symbols
to represent numbers). Before we use algebra to find information about these kinds of
relationships, it is important to first introduce some basic terminology.

Algebraic Term

The basic unit of an algebraic expression is a term. In general, a term is either a product
of a number and with one or more variables.

For example 4x is an algebraic term in which 4 is coefficient and x is said to be variable.

Study of Algebra

Today, algebra is the study of the properties of operations on numbers. Algebra

generalizes arithmetic by using symbols, usually letters, to represent numbers or

unknown quantities. Algebra is a problem-solving tool. It is like a tractor, which is a
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1-Introduction and Overview VU

farmer's tool. Algebra is a mathematician's tool for solving problems. Algebra has
applications to every human endeavor. From art to medicine to zoology, algebra can be a
tool. People who say that they will never use algebra are people who do not know about
algebra. Learning algebra is a bit like learning to read and write. If you truly learn
algebra, you will use it. Knowledge of algebra can give you more power to solve
problems and accomplish what you want in life. Algebra is a mathematicians’ shorthand!

Algebraic Expressions

An expression is a collection of numbers, variables, and +ve sign or —ve sign, of
operations that must make mathematical and logical behaviour.

For example 8x*+9x -1 is an algebraic expression.

What is Linear Algebra?

One of the most important problems in mathematics is that of solving systems of linear
equations. It turns out that such problems arise frequently in applications of mathematics
in the physical sciences, social sciences, and engineering. Stated in its simplest terms, the
world is not linear, but the only problems that we know how to solve are the linear ones.
What this often means is that only recasting them as linear systems can solve non-linear
problems. A comprehensive study of linear systems leads to a rich, formal structure to
analytic geometry and solutions to 2x2 and 3x3 systems of linear equations learned in
previous classes.

It is exactly what the name suggests. Simply put, it is the algebra of systems of linear
equations. While you could solve a system of, say, five linear equations involving five
unknowns, it might not take a finite amount of time. With linear algebra we develop
techniques to solve m linear equations and n unknowns, or show when no solution exists.
We can even describe situations where an infinite number of solutions exist, and describe
them geometrically.

Linear algebra is the study of linear sets of equations and their transformation properties.

Linear algebra, sometimes disguised as matrix theory, considers sets and functions, which

preserve linear structure. In practice this includes a very wide portion of mathematics!
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Thus linear algebra includes axiomatic treatments, computational matters, algebraic
structures, and even parts of geometry; moreover, it provides tools used for analyzing
differential equations, statistical processes, and even physical phenomena.

Linear Algebra consists of studying matrix calculus. It formalizes and gives geometrical
interpretation of the resolution of equation systems. It creates a formal link between
matrix calculus and the use of linear and quadratic transformations. It develops the idea
of trying to solve and analyze systems of linear equations.

Applications of Linear algebra

Linear algebra makes it possible to work with large arrays of data. It has many
applications in many diverse fields, such as

e Computer Graphics,

e Electronics,

e Chemistry,

e Biology,

e Differential Equations,

e Economics,

e Business,

e Psychology,

e Engineering,

e Analytic Geometry,

e Chaos Theory,

e Cryptography,

e Fractal Geometry,

e Game Theory,

e Graph Theory,

e Linear Programming,

e Operations Research

It is very important that the theory of linear algebra is first understood, the concepts are

cleared and then computation work is started. Some of you might want to just use the
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1-Introduction and Overview VU

computer, and skip the theory and proofs, but if you don’t understand the theory, then it
can be very hard to appreciate and interpret computer results.

Why using Linear Algebra?

Linear Algebra allows for formalizing and solving many typical problems in different
engineering topics. It is generally the case that (input or output) data from an experiment
IS given in a discrete form (discrete measurements). Linear Algebra is then useful for
solving problems in such applications in topics such as Physics, Fluid Dynamics, Signal
Processing and, more generally Numerical Analysis.

Linear algebra is not like algebra. It is mathematics of linear spaces and linear functions.
So we have to know the term "linear" a lot. Since the concept of linearity is fundamental
to any type of mathematical analysis, this subject lays the foundation for many branches
of mathematics.

Objects of study in linear algebra

Linear algebra merits study at least because of its ubiquity in mathematics and its
applications. The broadest range of applications is through the concept of vector spaces

and their transformations. These are the central objects of study in linear algebra

1. The solutions of homogeneous systems of linear equations form paradigm
examples of vector spaces. Of course they do not provide the only examples.

2. The vectors of physics, such as force, as the language suggests, also provide
paradigmatic examples.

3. Binary code is another example of a vector space, a point of view that finds

application in computer sciences.

Solutions to specific systems of differential equations also form vector spaces.

Statistics makes extensive use of linear algebra.

Signal processing makes use of linear algebra.

N g &

Vector spaces also appear in number theory in several places, including the
study of field extensions.

8. Linear algebra is part of and motivates much abstract algebra. Vector spaces
form the basis from which the important algebraic notion of module has been
abstracted.
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9. Vector spaces appear in the study of differential geometry through the tangent
bundle of a manifold.

10. Many mathematical models, especially discrete ones, use matrices to represent
critical relationships and processes. This is especially true in engineering as

well as in economics and other social sciences.

There are two principal aspects of linear algebra: theoretical and computational. A major
part of mastering the subject consists in learning how these two aspects are related and

how to move from one to the other.

Many computations are similar to each other and therefore can be confusing without
reasonable level of grasp of their theoretical context and significance. It will be very

tempting to draw false conclusions.

On the other hand, while many statements are easier to express elegantly and to
understand from a purely theoretical point of view, to apply them to concrete problems
you will need to “get your hands dirty”. Once you have understood the theory sufficiently
and appreciate the methods of computation, you will be well placed to use software
effectively, where possible, to handle large or complex calculations.
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Course Segments

The course is covered in 45 Lectures spanning over six major segments, which are given

below;

Linear Equations
Matrix Algebra
Determinants
Vector spaces

Eigen values and Eigenvectors, and

o g bk~ w N oE

Orthogonal sets

Course Objectives

The main purpose of the course is to introduce the concept of linear algebra, to explain
the underline theory, the computational techniques and then try to apply them on real life

problems. Mayor course objectives are as under;

e To master techniques for solving systems of linear equations

e To introduce matrix algebra as a generalization of the single-variable algebra of
high school.

e To build on the background in Euclidean space and formalize it with vector space
theory.

e To develop an appreciation for how linear methods are used in a variety of
applications.

e To relate linear methods to other areas of mathematics such as calculus and,
differential equations.
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Recommended Books and Supported Material

I am indebted to several authors whose books I have freely used to prepare the lectures

that follow. The lectures are based on the material taken from the books mentioned

below.
1. Linear Algebra and its Applications (3 Edition) by David C. Lay.
2. Contemporary Linear Algebra by Howard Anton and Robert C. Busby.
3. Introductory Linear Algebra (8" Edition) by Howard Anton and Chris Rorres.
4. Introduction to Linear Algebra (3" Edition) by L. W. Johnson, R.D. Riess and
J.T. Arnold.
5. Linear Algebra (3" Edition) by S. H. Friedberg, A.J. Insel and L.E. Spence.

6. Introductory Linear Algebra with Applications (6" Edition) by B. Kolman.

I have taken the structure of the course as proposed in the book of David C. Lay. | would
be following this book. | suggest that the students should purchase this book, which is
easily available in the market and also does not cost much. For further study and
supplement, students can consult any of the above mentioned books.

I strongly suggest that the students should also browse on the Internet; there is plenty of
supporting material available. In particular, | would suggest the website of David C. Lay;

www.laylinalgebra.com, where the entire material, study guide, transparencies are readily

available. Another very useful website is www.wiley.com/college/anton, which contains a

variety of useful material including the data sets. A number of other books are also
available in the market and on the internet with free access.

I will try to keep the treatment simple and straight. The lectures will be presented in
simple Urdu and easy English. These lectures are supported by the handouts in the form
of lecture notes. The theory will be explained with the help of examples. There will be
enough exercises to practice with. Students are advised to go through the course on daily

basis and do the exercises regularly.
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Schedule and Assessment

The course will be spread over 45 lectures. Lectures one and two will be introductory and
the Lecture 45 will be the summary. The first two lectures will lay the foundations and
would provide the overview of the course. These are important from the conceptual point

of view. | suggest that these two lectures should be viewed again and again.

The course will be interesting and enjoyable, if the student will follow it regularly and
completes the exercises as they come along. To follow the tradition of a semester system
or of a term system, there will be a series of assignments (Max eight assignments) and a

mid term exam. Finally there will be terminal examination.

The assignments have weights and therefore they have to be taken seriously.
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Lecture 2
Background

Introduction to Matrices

Matrix A matrix is a collection of numbers or functions arranged into rows and columns.

Matrices are denoted by capital letters A, B,...,Y,Z. The numbers or functions are called
elements of the matrix. The elements of a matrix are denoted by small lettersa,b,...,y,z.

Rows and Columns The horizontal and vertical lines in a matrix are, respectively, called the
rows and columns of the matrix.

Order of a Matrix The size (or dimension) of matrix is called as order of matrix. Order of
matrix is based on the number of rows and number of columns. It can be writtenas r xc; r

means no. of row and ¢ means no. of columns.

If a matrix has m rows and n columns then we say that the size or order of the matrix
ismxn.If A isamatrix having m rows and ncolumns then the matrix can be written as

a; ap fi. a,

ay ay fi. ay,

A= fi fi.
fi fi.

8mi  @m2 fi. 8mn

The element, or entry, in the ith row and jth column of a mxn matrix A is written as a;j

-1

2
For example: The matrix A:( A

3
6} has two rows and three columns. So order of A
will be 2x3

Square Matrix A matrix with equal number of rows and columns is called square matrix.

4 7 -8
For Example The matrix A=|9 3 5 | has three rows and three columns. So it is a
1 -1 2

square matrix of order 3.

Equality of matrices

The two matrices will be equal if they must have
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a) The same dimensions (i.e. same number of rows and columns)
b) Corresponding elements must be equal.
4 7 -8 4 7 -8
5| and B=|9 3 5 |equal matrices

Example The matrices A=9 3
-1 2

1 -1 2 1

(i.e A = B) because they both have same orders and same corresponding elements.

Column Matrix A column matrix X is any matrix having n rows and only one column.
Thus the column matrix X can be written as

b1y

byq

X = bz |=[bj]nx1

bnl
A column matrix is also called a column vector or simply a vector.

Multiple of matrix A multiple of a matrix A by a nonzero constant k is defined to be

i kall ka12 ka]_n l
ka21 ka22 cee ka2n
KA = ~ [=[kajjImxn

Notice that the product kA is same as the product Ak . Therefore, we can write kA = Ak.

It implies that if we multiply a matrix by a constant k, then each element of the matrix is to

be multiplied by k.

Example 1
2 -3 10 -15
(@) 5.1 4 -1|=(20 -5

1/5 6 1 30

11
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1 el
(b) et .| —2|=]-2et
4 4et

Since we know that kA = Ak . Therefore, we can write
2 2e_3t 2

o3t _ _ o3t
5| |5e—3t 5

Addition of Matrices Only matrices of the same order may be added by adding
corresponding elements.
If A=[a;;] and B =[bjj] are two mxn matrices then A+ B =[a;j + bj;]

Obviously order of the matrix A + B is mxn

Example 2 Consider the following two matrices of order 3x3
2 -1 3 4 7 -8
) 10 -5 1 -1 2

Since the given matrices have same orders, therefore, these matrices can be added and their
sum is given by

2+4 -1+7 3+(-8) 6 6 -5
A+B=| 0+9 4+3 6+5 |[=| 9 7 11
-6+1 10+ (-2) -5+2 -5 9 -3

Example 3 Write the following single column matrix as the sum of three column vectors
3t% —2¢'
t? + 7t
5t
Solution

©Virtual University Of Pakistan 12
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3t°-2¢'| (3% (o) (—2¢t) (3 0y (-2
247t |=| t2 |+ 7t 0 |=[1[t°+| 7 |t+] O |e
5t 0 5t 0 0 5 0

Difference of Matrices The difference of two matrices A and B of same order mxn is
defined to be the matrix A—B = A+ (-B)

The matrix — B is obtained by multiplying the matrix B with—1. Sothat—B=(-1)B

Multiplication of Matrices We can multiply two matrices if and only if, the number of
columns in the first matrix equals the number of rows in the second matrix.

Otherwise, the product of two matrices is not possible.

OR

If the order of the matrix A is mxn then to make the product AB possible order of the
matrix B must benx p. Then the order of the product matrix AB ismx p. Thus

Amxn * Bnx p~ Crnx p

If the matrices A and B are given by

a;p app - @y | b1 by - by
apy Ay v Ay bp1 by -+ bpp
A=  B=
l8m1 @m2 - amn _bnl brp - bnp_
Then
a;p ajp -+ oag [[bu b - byp
dp; apy - agy ||P21 P2 - byp
AB =
l8mt @m2 - @mn ]| Pt Bn2 o bpp

i a11b11 + a12b21 et alnbnl fi allblp + a12b2p +i-+ alnbnp |
by, +agby, +-+a by i ayb, +ayb, +f-+a, b,
: fi fi
Ay +a,,0, +--+a b, fioagb,+aLb, +fi-+a, b

mn™nl m2~2p mnnp |
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n
=| > aikbyj
k=1 nxp

Example 4 If possible, find the products AB and BA, when

47 9 -2
S
35 6 8

5 8
~4 -3
(b) A=|1 0], B=[ J
2 0
2

Solution (a) The matrices A and B are square matrices of order 2. Therefore, both of the
products AB and BA are possible.

4 79 -2\ (4.947-6 4-(-2)+7-8) (78 48
AB: = =
35|6 8) (39456 3.(—2)+5-8) |57 34

9 -2\4 7 9-4+(-2)-3 9-7+(-2)-5 30 53
Similarly BA = = =
6 8 \3 5 6-4+8-3 6-7+8-5 48 82

Note From above example it is clear that generally a matrix multiplication is not
commutative i.e. AB = BA .

(b) The product AB is possible as the number of columns in the matrix A and the number of
rows in B is 2. However, the product BA is not possible because the number of column in the
matrix B and the number of rows in A is not same.

5 8
4 -3
AB=|1 0
2 0
2 7
5.(-4)+8-2  5-(-3)+8-0) (-4 -15
=|1-(-4)+0-2  1.(-3)+0-0 |=| -4 -3
2.(-4)+7-2  2.(-3)+7-0) | 6 -6

78 48 30 53
AB = , BA=
57 34 48 82

Clearly AB # BA.
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~4 -15
AB=|-4 -3
6 -6

However, the product BA is not possible.

Example 5
2 -1 3)-3) (2-(3)+(-1)-6+3-4) (0
(a) 0 4 5| 6 |=| 0-(-3)+4-6+5-6 |=|44

1 -79)4) (1:(-3)+(-7)-6+9-4) (-9

-4 2\ X —4x+2y
L)
3 8y 3x +8y

Multiplicative Identity For a given any integern, the nxn matrix

100 --0
010 -0
=001 --0
000 --1

is called the multiplicative identity matrix. If A is a matrix of ordernxn, then it can be
verifiedthat I -A=A-1=A

01

o O -
o - O

0
10
Example | :( j | = 0 | are identity matrices of orders 2 x 2 and 3 x 3
1

9 -2
then we can easily prove that Bl = 1B =B

respectively and If B =
6 8

N—
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Zero Matrix or Null matrix A matrix whose all entries are zero is called zero matrix or null
matrix and it is denoted by O.

00
0 00

For example 0= ; O= ; O0=/00
0 00

00

and so on. If Aand O are the matrices of same orders, then A+O=0+A=A

Associative Law The matrix multiplication is associative. This means that if A, B and
Caremx p, pxrand rxn matrices, then A(BC) = (AB)C

The result isa mxn matrix. This result can be verified by taking any three matrices which
are confirmable for multiplication.

Distributive Law If B and C are matrices of order rxn and A is a matrix of order mxr,
then the distributive law states that
A(B+C)=AB+ AC
Furthermore, if the product (A + B)C is defined, then
(A+B)C=AC+BC

Remarks

It is important to note that some rules arithmetic for real numbersR do not carry over the
matrix arithmetic.

For example, Va,b,cand d e R

)} if ab=cdand a=0, then b=c (Law of Cancellation)

i) if ab=0, then least one of the factors a or b (or both) are zero.
However the following examples shows that the corresponding results are not true in case of
matrices.

Example
01 11 2 5 1 7 )
Let A= , B= , C= and D= , then one can easily check that
0 2 3 4 3 4 00

3 4
AB = AC = ButB=C.
o s

- . . 00
Similarly neither A nor B are zero matrices but AD = 0 0

1 0
But if D is diagonal say D = {O 7} , then AD = DA.

Determinant of a Matrix Associated with every square matrix A of constants, there is a
number called the determinant of the matrix, which is denoted by det(A) or |A| There is a

special way to find the determinant of a given matrix.
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3 6 2

Example 6 Find the determinant of the following matrix A=| 2 5 1

-12 4
Solution The determinant of the matrix A is given by
3 6 2
det(A)=(2 5 1
-12 4
We expand the det(A) by first row, we obtain
3 6 2
5 1 |2 1 2 5
det(A)=|2 5 1/=3 - +2
2 4 -1 4 |-1 2
-12 4
or det(A) =3(20-2)-6(8+1) +2(4+5) =18

Transpose of a Matrix The transpose of mxn matrix A is denoted by A" and it is
obtained by interchanging rows of A into its columns. In other words, rows of A become the

columns of A™". Clearly A" is nxm matrix.

al al e al a11 a21 aml
1 2 n
a .-~ a
Ay 8y A, A" = %z .22 r.nz
If A= , then
a -1
aml am2 amn aln 2n mn

Since order of the matrix A ismxn, the order of the transpose matrix A" isnxm.

Properties of the Transpose

The following properties are valid for the transpose;

e The transpose of the transpose of a matrix is the matrix itself:
e The transpose of a matrix times a scalar (k) is equal to the constant times the

transpose of the matrix: (ABC)" =C'B" A" (kA)" = kAT

e The transpose of the sum of two matrices is equivalent to the sum of their
transposes: (A+B)" = A" +B'

e The transpose of the product of two matrices is equivalent to the product of their
transposes in reversed order: (AB)" =BT A'

« The same is true for the product of multiple matrices: (ABC)" =C'B" A’
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3 6 2 3 9 1
Example 7 (a) The transpose of matrix A=| 2 5 1|isA'= |6 5 2
2 1 4

-12 4
5)

(b) IFX =[O, then X" =[5 0 3]
3

Multiplicative Inverse Suppose that A is a square matrix of ordernxn. If there exists an
nxn matrix B such that AB=BA =1, then B is said to be the multiplicative inverse of the

matrix A and is denoted by B = AL,
1l 4

5
For example: If A:[ J then the matrix B:(

is multiplicative inverse of A
-1 1/2

2 10

1 4 5 =2 10
because AB = = =|
(2 10} (—1 1/2} [O 1}

Similarly we can check that BA =1

Singular_and Non-Singular_Matrices A square matrix A is said to be a non-singular
matrix ifdet(A) =0, otherwise the square matrix A is said to be singular. Thus for a

singular matrix A we must have det(A)=0

2 3 -1
Example: A= |1 1 0
2 -3 5

|Al = 2(5-0) —3(5-0) -1(-3-2)
=10 -15 +5 =0

which means that A is singular.

Minor of an element of a matrix

Let A be a square matrix of order n x n. Then minor M, of the element a; € A is the

determinant of (n—-1)x(n—1) matrix obtained by deleting the ith row and jth column
fromA.
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2 3 -1
Example If A= |1 1 0 | is a square matrix. The Minor of 3 A is denoted by
2 -3 5

1
M, and is defined tobe M,, = )

Cofactor of an element of a matrix

Let A be a non singular matrix of order nxn and let C; denote the cofactor (signed minor)

of the corresponding entry ajj € A , then itis definedtobe  Cjj = (—1)i+j Mjj

2 3 -1
Example If A= |1 1 0 | is a square matrix. The cofactor of 3€ A is denoted by
2 -3 5
. : .1 0
C,,and is defined to be C,= =(-1) 5 & =-(5-0=-5

Theorem If A is asquare matrix of order nxn then the matrix has a multiplicative inverse
A Llifand only if the matrix A is non-singular.

Theorem Then inverse of the matrix A is given by Al= L (Ci-)tlr
det(A) "

1. For further reference we take n=2so that A is a 2x2 non-singular matrix given by
{311 alzj
A=
a1 a
Therefore Cy1 =ayy, Cip =—ay1, Cy1 =—a1p andCyy =ag7. So that
tr
Al 1 dp —dx) 1 a2 —@a12
det(A)| -ap, agy det(A) | -ap; ayy
81 &2 a3
2. For a 3x3 non-singular matrix A=| a,; ay, as3

31 dzp dz3
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22 daz3 dz1 @23 a, a
Cyy = ,Clp =— , C,= 2 "#|andso on.
dgzp diz3 dz1 diz3 31 Ay
1 Cll C21 C31
Therefore, inverse of the matrix A is given by A™ = LA Cc, C, C,|
e
13 23 C33

1 4
Example 8 Find, if possible, the multiplicative inverse for the matrix A = ( } :
2 10

1 4
Solution The matrix A is non-singular because det(A) = =10-8=2

2 10

-2 1 -11/2
1 1 45 -2 5-4 -2+2 10
Check AA™ = = = =
2 10\-11/2 10-10 —-4+5 01
1 5 —-2\1 4 5-4 20-20 10
AA_ = = = =|
-11/2)\2 10 -1+1 -4+5 01

Example 9 Find, if possible, the multiplicative inverse of the following matrix

2 2
A =
33
Solution The matrix is singular because
2 2

10 -4 5 -2
Therefore, A~lexists and is givenby A~ :%[ ] = [ }

det(A)=| [=2-3-2-3=0

3 3

Therefore, the multiplicative inverse A~Lof the matrix does not exist.

Example 10 Find the multiplicative inverse for the following matrix

2 2 0
A= -2 1 1|
3 01
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2 20
Solution  Since det(A)=|-2 1 1/=2(1-0)-2(-2-3)+0(0-3)=12+0
3 01

Therefore, the given matrix is non singular. So, the multiplicative inverse A~Lof the matrix
A exists. The cofactors corresponding to the entries in each row are

1 -2 -2 1
Cu=| |=1 Cpp =— =5 Cpg= -3
0 3 3 0

20 2 0 2 2
Cop=— |=-2, Copy= =2 Cyy=- |=6
01 3 30
20 2 0 2 2
Ca1 = =2, Cap=- =-2, C33= =6
11 -2 -21
1 -2 2 1/12 -1/6 1/6
Hence Afl=i 5 2 -2|=|5/12 1/6 -1/6
12
-3 6 6 -1/4 1/2 1/2

We can also verify that A- Al=atl A=

Derivative of a Matrix of functions
Suppose that

A =[aj®)]

is a matrix whose entries are functions those are differentiable in a common interval, then
derivative of the matrix A(t) is a matrix whose entries are derivatives of the corresponding

entries of the matrix A(t). Thus

d_A 3 daij
dt | dt
mxn
The derivative of a matrix is also denoted by A'(t).

Integral of a Matrix of Functions

Suppose that A(t) = (aij (t))mxn is a matrix whose entries are functions those are continuous

on a common interval containingt, then integral of the matrix A(t) is a matrix whose entries
are integrals of the corresponding entries of the matrix A(t) . Thus
t

jA(s)ds:Utto aij(s)dsj

tO mxn
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sin 2t
Example 11 Find the derivative and the integral of the following matrix X (t) = e?’t
8t-1
Solution The derivative and integral of the given matrix are, respectively, given by
t
d (sin2t) Isin 2sds
—(sin
dtOI 2cos 2t 0 ~1/2cos2t+1/2
X'(t) = E(e3t) = 3% | and [X(s)ds=| [e¥ds |=|1/3¢"-1/3
d 3 0 0 4% -t
—(8t-1) ¢
dt j8s—1ds
0
Exercise
Write the given sum as a single column matrix
2 -1 3t
Lostt |+@-1)-t|-2 4
-1 3 -5t
1 -3 4 t —t 2
2. |2 5 1| 2t-1|+| 1 |-| 8
0 -4 -2 —t 4 -6
Determine whether the given matrix is singular or non-singular. If singular, find AL
3 2 1
3. A= 4 1 O
-2 5 -1
4 1 -1
4. A= 6 2 -3
-2 -1 2
Find ax
dt
1.
5. % - ES|n2t—4cos2t
—3sin2t +5cos 2t
e* cosart : !
6. If A(t)= then find (a) j A(t)dt, (b) [ A(s)ds.
2t 3t?-1 0 0

7. Find theintegral.sz(t)dt if B(t)—( o 2]
' 1 1/t 4t
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Lecture 3

Systems of Linear Equations

In this lecture we will discuss some ways in which systems of linear equations arise, how
to solve them, and how their solutions can be interpreted geometrically.

Linear Equations

We know that the equation of a straight line is written as y = mx+c, where m is the
slope of line(Tan of the angle of line with x-axis) and c is the y-intercept(the distance at
which the straight line meets y-axis from origin).
Thus a line in R? (2-dimensions) can be represented by an equation of the form
a,x+a,y=b (where as, a, not both zero). Similarly a plane in R® (3-dimensional space)

can be represented by an equation of the form ax+a,y+a,z=b (where a;, a,, as not
all zero).

A linear equation in n variables X, X,,--+, X, can be expressed in the form

ax +a,X, +---+a, X, =b(hyper plane in R" ) -------- (1)

where @,,a,,--,a,and b are constants and the ““a’s™ are not all zero.

Homogeneous Linear equation

In the special case if b = 0, Equation (1) has the form ax +a,x,+:--+a,x, =0 (2)
This equation is called homogeneous linear equation.

Note A linear equation does not involve any products or square roots of variables. All
variables occur only to the first power and do not appear, as arguments of trigonometric,
logarithmic, or exponential functions.

Examples of Linear Equations

1) The equations
2% +3%,+2=x, and X,= 2(\@+ x1)+ 2x, are both linear

(2)  The following equations are also linear
X+3y=7 X, —2X, —3%;+ X, =0

ix-y+3z=-1 X+ X+t X, =1

(3)  Theequations 3x, —2x, =xX, and Xx,= 4\/2—6

are not linear because of the presence of X; X, in the first equation and \/Z in the second.
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System of Linear Equations

A finite set of linear equations is called a system of linear equations or linear system. The
variables in a linear system are called the unknowns.

For example,
4X =X, +3%, =-1
3X +X,+9x, =4
is a linear system of two equations in three unknowns X1, X2, and Xs.

General System of Linear Equations
A general linear system of m equations in n-unknowns X;, X,,--+, X, can be written as

X +apX, o+ a X, :bl
Ay X +8yX, ++-+a,, X, =D,

| 3)

A Xt a8, X, o+ a X, = bm

Solution of a System of Linear Equations
A solution of a linear system in the unknowns X;, X,,---, X, is a sequence of n numbers

$.,S,,-++,S,such that when substituted for X;,X,,---,X, respectively, makes every

equation in the system a true statement. The set of all such solutions {s,,s,,---,s,}of a
linear system is called its solution set.

Linear System with Two Unknowns

When two lines intersect in R?, we get system of linear equations with two unknowns

a1X+b1y:C1

For example, consider the linear system
a,Xx+hb,y=c,

The graphs of these equations are straight lines in the xy-plane, so a solution (x, y) of this
system is infact a point of intersection of these lines.

Note that there are three possibilities for a pair of straight lines in xy-plane:

1. The lines may be parallel and distinct, in which case there is no intersection and
consequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly
one solution.

3. The lines may coincide, in which case there are infinitely many points of
intersection (the points on the common line) and consequently infinitely many
solutions.
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Consistent and inconsistent system

A linear system is said to be consistent if it has at least one solution and it is called
inconsistent if it has no solutions.

Thus, a consistent linear system of two equations in two unknowns has either one
solution or infinitely many solutions — there is no other possibility.

Example consider the system of linear equations in two variables
X, —2X, ==1, =X +3X,=3

Solve the equation simultaneously:

Adding both equations we get x, =2, Put x, = 2 in any one of the above equation we

getx, = 3. So the solution is the single point (3, 2). See the graph of this linear system

X2
2__
e X
T 11 L
P —+ 3
I (a)

This system has exactly one solution

See the graphs to the following linear systems:

(a) x-2x,=-1 (b) x-2x,=-1
—X1+2X2= 3 —X1+2X2= 1
X2 X2
T 2|
2_/ —/
T T
I, -4 3 / 3
l1 Bl
1 (@) (b)
(@) No solution. (b) Infinitely many solutions.
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Linear System with Three Unknowns

Consider r a linear system of three equations in three unknowns:
ax+by+cz=d,
a,x+hb,y+cz=d,
a,Xx+hby+c,z=d,

In this case, the graph of each equation is a plane, so the solutions of the system, If any
correspond to points where all three planes intersect; and again we see that there are only
three possibilities — no solutions, one solution, or infinitely many solutions as shown in
figure.

by Solution space is a line Solution space is a plane
Solution space is {0}. through the origin. through the origin.

Theorem 1 Every system of linear equations has zero, one or infinitely many solutions;
there are no other possibilities.

x-y=1
Example 1  Solve the linear system y
2X+y=06

Solution
Adding both equations, we getx:%. Putting this value of x in 1st equation, we

gety :% . Thus, the system has the unique solution x :g, y= %

Geometrically, this means that the lines represented by the equations in the system

. . . 7 4 . .
intersect at a single point (E'Ej and thus has a unique solution.

X+ y=4
Example 2 Solve the linear system 4
3Xx+3y=6
Solution
Multiply first equation by 3 and then subtract the second equation from this. We obtain
0=6

This equation is contradictory.
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Geometrically, this means that the lines corresponding to the equations in the original
system are parallel and distinct. So the given system has no solution.

4x-2y =1

Example 3  Solve the linear system
16x—-8y =4

Solution

Multiply the first equation by -4 and then add in second equation.

-16x+8y=—4
16x-8y= 4
0 =0

Thus, the solutions of the system are those values of x and y that satisfy the single
equation 4x—2y =1

Geometrically, this means the lines corresponding to the two equations in the original
system coincide and thus the system has infinitely many solutions.

Parametric Representation

It is very convenient to describe the solution set in this case is to express it
parametrically. We can do this by letting y = t and solving for x in terms of t, or by
letting x =t and solving for y in terms of t.

The first approach yields the following parametric equations (by taking y=t in the
equation 4x-2y=1)

4x-2t=1 y=t
11

X=—+—1, y=t
4 2 y

We can now obtain some solutions of the above system by substituting some numerical
values for the parameter.

Example Fort =0 the solution is (%,O). For t = 1, the solution is (%,1) and for t=-1

the solution is(—%,—l) etc.

X— y+2z=5
Example 4  Solve the linear system 2Xx-2y+4z=10
3x-3y+6z=15
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Solution
Since the second and third equations are multiples of the first.

Geometrically, this means that the three planes coincide and those values of x, y and z
that satisfy the equation x— y+2z =5 automatically satisfy all three equations.

We can express the solution set parametrically as

X=5+t-2t,,y=t, z=t,
Some solutions can be obtained by choosing some numerical values for the parameters.

For example if wetake y=t =2 and z=t, =3 then

X=5+t -2t,
=5+2-2(3)
=1

Put these values of X, y, and z in any equation of linear system to verify

X— y+2z=5
1-2+2(3)=5
1-2+6=5
5=5
Hence x =1,y =2, z =3 is the solution of the system. Verified.

Matrix Notation

The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix.

X, —2X,+ % =0
Given the system 2X, 8%, = 8
—4X, +5X, +9%; =-9
1 -2 1
With the coefficients of each variable aligned in columns, the matrix | 0 2 -8
-4 5 9

is called the coefficient matrix (or matrix of coefficients) of the system.

An augmented matrix of a system consists of the coefficient matrix with an added column
containing the constants from the right sides of the equations. It is always denoted by Ay
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1 -2 1 0
A,=10 2 -8 8
-4 5 9 -9

Solving a Linear System

In order to solve a linear system, we use a number of methods. 1st of them is given
below.

Successive elimination method In this method the X, term in the first equation of a
system is used to eliminate the X, terms in the other equations. Then we use the X, term
in the second equation to eliminate the X, terms in the other equations, and so on, until
we finally obtain a very simple equivalent system of equations.

X, —2X,+ % =0
Example5 Solve 2X,—8%, = 8
—4X, +5X, +9%X; =-9

Solution We perform the elimination procedure with and without matrix notation,
and place the results side by side for comparison:
X, —2X,+ %, =0 1 -2 1 0
2X,—8%; = 8 0O 2 -8 8
—4X, +5X, +9%; =9 -4 5 9 -9

To eliminate the x, term from third equation add 4 times equation 1 to equation 3,
4x, —8%, +4X, =0
—4X, +5X, +9%, =-9
—3X, +13%, =-9

The result of the calculation is written in place of the original third equation:

X, —2X, +X; =0 1 -2 1 0
2X, —8%; =8 0 2 -8 8
—3x, +13%x, = —9 0 -3 13 -9

Next, multiply equation 2 by % in order to obtain 1 as the coefficient for X,
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X, —2X,+ X, =0 1 -2 1 0
X, —4X; =4 0 1 -4 4
—3x%, +13%x, =—9 0 -3 13 -9

To eliminate the x, term from third equation add 3 times equation 2 to equation 3,

The new system has a triangular form

X —2%, +%, =0 1 -2 1 O
X, —4X, =4 0 1 -4 4
X, =3 0 0 1 3

Now using 3" equation eliminate the X5 term from first and second equation i.e. multiply
3" equation with 4 and add in second equation. Then subtract the third equation from first
equation we get

X, —2X, =—3 1 -2 0 -3
X, =16 0 1 0 16
X, =3 0 0 1 3

Adding 2 times equation 2 to equation 1, we obtain the result

X =29 1 00 29
X, =16 0 1 0 16
X; = 0 01 3

This completes the solution.
Our work indicates that the only solution of the original system is (29, 16, 3).

To verify that (29, 16, 3) is a solution, substitute these values into the left side of the
original system for x1, X, and x3 and after computing, we get

(29) - 2(16) + (3)=29-32+3=0
2(16) - 8(3)=32-24=8
—4(29) + 5(16) + 9(3) = —116 + 80 + 27 =—9

The results agree with the right side of the original system, so (29, 16, 3) is a solution of
the system.
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This example illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

Elementary Row Operations

1. (Replacement) Replace one row by the sum of itself and a nonzero multiple of
another row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row equivalent matrices

A matrix B is said to be row equivalent to a matrix A of the same order if B can be
obtained from A by performing a finite sequence of elementary row operations of A.
If A and B are row equivalent matrices, then we write this expression mathematically as
A ~B.
1 -2 1 0 1 -2 1 0
For example 0O 2 -8 8|~|0 2 -8 8| are row equivalent matrices
-4 5 9 -9 0 -3 13 -9
because we add 4 times of 1% row in 3 row in 1% matrix.

Note If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Row operations are extremely easy to perform, but they have to be learnt and practice.

Two Fundamental Questions

1. Isthe system consistent; that is, does at least one solution exist?
2. If asolution exists is it the only one; that is, is the solution unique?

We try to answer these questions via row operations on the augmented matrix.

Example 6  Determine if the following system of linear equations is consistent
X —2X%,+ X, =0
2X, —8x,;= 8
—4X, +5X, +9%; =-9

Solution

First obtain the triangular matrix by removing X; and X, term from third equation and
removing X, from second equation.
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First divide the second equation by 2 we get

X, —2%X,+ % =0 1 -2 1 0
X, ~4% = 4 0 1 -4 4
—4x, +5X, +9x, = -9 -4 5 9 9

Now multiply equation 1 with 4 and add in equation 3 to eliminate X1
from third equation.

X, —2X,+ % =0 1 -2 1 O
X,—4xX,= 4 0O 1 -4 4
-3, +13x, =-9 0 -3 13 -9

Now multiply equation 2 with 3 and add in equation 3 to eliminate X,
from third equation.

X —2%, +%, =0 1 -2 1 0
X, —4X, =4 0 1 -4 4
X, =3 0 0 1 3

Put value of X3 in second equation we get

X, —4(3) =4

X, =16

Now put these values of x, and x3 in first equation we get
X, —2(16)+3=0

X, =29

So a solution exists and the system is consistent and has a unique solution.

Example 7  Solve if the following system of linear equations is consistent.
X, —4X, =8
2%, —3X, +2%X; =1
SX, —8X, + 7%, =1
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Solution The augmented matrix is
0 1 -4 8
2 3 2 1
5 8 7 1

To obtain Xy in the first equation, interchange rows 1 and 2:

2 3 2 1
0 1 -4 8
5 8 7 1

To eliminate the 5X; term in the third equation, add -5/2 times row 1 to row 3:
2 -3 2 1
O 1 -4 8
0 -1/2 2 -3/2

Next, use the X, term in the second equation to eliminate the —(1/2) X, term from the
third equation. Add Y2 times row 2 to row 3:

2 3 2 1
0 1 4 8
0 0 0 5/2

The augmented matrix is in triangular form.
To interpret it correctly, go back to equation notation:

2X, —3X%, +2%; =1
X, —4%, =8
0=25

There are no values of X1, X,, X3 that will satisfy because the equation 0 = 2.5 is never
true.
Hence original system is inconsistent (i.e., has no solution).
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Exercises

1.

State in words the next elementary “row” operation that should be performed on the
system in order to solve it. (More than one answer is possible in (a).)

a. X +4x,-2x,+8x, =12 b. X —3X,+5%,-2%x,= 0
X, = TX; +2X, =—4 X, +8X%, =—4

X — X, = 7 2X, =7

X;+3X, =5 X,= 1

The augmented matrix of a linear system has been transformed by row operations into
the form below. Determine if the system is consistent.

1 5 2 -6
0 4 -7 2
00 5 0

Is (3, 4, -2) a solution of the following system?

SX — X, +2X%;= 7
—2X, +6X, +9%, = 0
—7X, +5X, =3%;, =—7

For what values of h and k is the following system consistent?

2X,— X, =h
—6X, +3X, =k

Solve the systems in the exercises given below;

X, + 5%, = —4 X, —5X, +4X, =-3
X, +4X, +3X, =2 6. 2X, —TX, +3%X; =2
2X +TX, + X, =-1 2X, — X, — 71X, =1
X, +2X, =4 2, —4x, =-10
X, —3X, —=3%;, =2 8. X, +3X; =2

X,+ X, =0 3%, +5X, +8x, =6
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Determine the value(s) of h such that the matrix is augmented matrix of a consistent

linear system.
1 h -2
10.
-4 2 10

1 -3 h
9.

-2 6 -5
Find an equation involving g, h, and that makes the augmented matrix correspond to a
consistent system.

1 4 7 ¢ 2 5 -3 g
11.|0 3 -5 h 12.|4 7 -4 h
2 5 -9 Kk 6 -3 1 kK

Find the elementary row operations that transform the first matrix into the second, and
then find the reverse row operation that transforms the second matrix into first.

1 3 -1|[1 3 -1 0 5 3|15 2
13./]0 2 —4},0 1 -2 14.11 5 2,0 5 -3
0 3 4]/0 -3 4 2 1 8 2 1 8

3 -1 5|1 3 -1
1510 1 4 2|0 1 -4
2 5 -1/|0 0 3 -5
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Lecture 4

Row Reduction and Echelon Forms
To analyze system of linear equations, we shall discuss how to refine the row reduction
algorithm. While applying the algorithm to any matrix, we begin by introducing a non
zero row or column (i.e. contains at least one nonzero entry) in a matrix,

Echelon form of a matrix

A rectangular matrix is in echelon form (or row echelon form) if it has the following three
properties:

1. All nonzero rows are above any rows of all zeros

2. Each leading entry of a row is in a column to the right of the leading entry of the
row above it.

3. All entries in a column below a leading entry are zero.

Reduced Echelon Form of a matrix

If a matrix in echelon form satisfies the following additional conditions, then it is in
reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.
5. Each leading 1 is the only nonzero entry in its column.

Examples of Echelon Matrix form

The following matrices are in echelon form. The leading entries (o) may have any
nonzero value; the started entries (*) may have any values (including zero).

2 3 2 1
1.0 1 4 8
0 0 0 5/2
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_OO********_
o * ¥ 0 0 0 o * * * *x * =
0 o * *
2. 3./]0 0 00 o * * * *x %
O 00O

0 00 OO0 o * * * *
O 00O

0 0000O0O0O0 o *|
1 -3 7 110
4, |10 1 6 5.0 1 0
00 1 5 000
0 2 6 0
6. |0 1 -1 0
000 0 1

Examples of Reduced Echelon Form

The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1.

100 29
1.0 1 0 16
001 1
i 0 1 * 000 * * 0 *]
10**
000100 =**o0 *
01**
2. 3/0 00010 * *o0 *
0000
000001=**o0 *
0000
- 0 00000O0O0O0 1 *|
01 201
100 4 100
00 0 1 3
410 1.0 7 510 1 0 6
00 0 00
001 -1 00 1
00 0 00

Note A matrix may be row reduced into more than one matrix in echelon form, using
different sequences of row operations. However, the reduced echelon form obtained from
a matrix, is unique.

Theorem 1 (Unigueness of the Reduced Echelon Form) Each matrix is row equivalent
to one and only one reduced echelon matrix.
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Pivot Positions
A pivot position in a matrix A is a location in A that corresponds to a leading entry in an
echelon form of A.

Note When row operations on a matrix produce an echelon form, further row operations
to obtain the reduced echelon form do not change the positions of the leading entries.

Pivot column
A pivot column is a column of A that contains a pivot position.

Example 2  Reduce the matrix A below to echelon form, and locate the pivot columns
0 -3 6 4 9
-1 -2 -1 3 1

A=
-2 -3 0 3 -1
1 4 5 -9 -7
Solution Leading entry in first column of above matrix is zero which is the pivot

position. A nonzero entry, or pivot, must be placed in this position. So interchange first
and last row.

1 P 4 5 -9 —7
-1 -2 -1 3 1
-2 -3 0 3 -1
0 -3 -6 4 9

L’ Pivot Column

Since all entries in a column below a leading entry should be zero. For this add row 1 in
row 2, and multiply row 1 by 2 and add in row 3.

Pivot
4| 5 -9 7
4 6 -6 R +R,

5 10 -15 -15 2R +R,
-3 -6 4 9
Next pivot column

o O O -

Add -5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4.
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1 4 5 -9 7 50 L h
0 2 4 -6 -6 ot
0 0 0 0 0

§&+&
0 0 0 -5 0 2

Interchange rows 3 and 4, we can produce a leading entry in column 4,

Pivot
1 4 5 9|7 o K* *x x %
0 2 4 -6|-6 0 o * * =
General form
0O 0 0 - 0 o *
0O 0 O 0 O 0 00
| | | Pivot column

This is in echelon form and thus columns 1, 2, and 4 of A are pivot columns.

J Pivot positions
0 —3J—6 419

-1 211 3|1
-2 -3 0 3—/-1

i I I

Pivot columns

Pivot element

A pivot is a nonzero number in a pivot position that is used as needed to create zeros via
row operations

The Row Reduction Algorithm consists of four steps, and it produces a matrix in
echelon form. A fifth step produces a matrix in reduced echelon form.

The algorithm is explained by an example.

Example 3  Apply elementary row operations to transform the following matrix first
into echelon form and then into reduced echelon form.

0 3 6 6 4 -5
3 -7 8 5 8 9
3 912 -9 6 15
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Solution

STEP 1 Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.

0 3 6 6 4 -5
3 -7 8 5 8 9
3 912 -9 6 15

Pivot column

STEP 2 Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

Pivot
349 12 -9 6 15

3 -7 8 -5 8 9
0 3 6 6 4 -5

STEP 3 Use row replacement operations to create zeros in all positions below the pivot

Subtract Row 1 from Row 2.i.e.R, =R,

Pivot
3.1-9 12 9 6 15

0 2 4 4 2 -6
0O 3 6 6 4 -5

STEP 4 Cover (or ignore) the row containing the pivot position and cover all rows, if
any, above it. Apply steps 1 -3 to the sub-matrix, which remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
we’ll select as a pivot the “top” entry in that column.
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Pivot
3 —JlZ -9 6 15
0 22 -4 4 2 -6

0 -6 6 4 -5
Next pivot column

According to step 3 “All entries in a column below a leading entry are zero”. For this
subtract 3/2 time R, from R3

3 -9 12 -9 6 15 ,
0 2 4 4 2 8RR,
0 0 0 0 1 4

When we cover the row containing the second pivot position for step 4, we are left with a
new sub matrix having only one row:

3 912 9 6 15
0 2 4 4 2 -6

O 0 0 O 1“4
Pivot

This is the Echelon form of the matrix.
To change it in reduced echelon form we need to do one more step:

STEP 5 Make the leading entry in each nonzero row 1. Make all other entries of that
column to 0.

Divide first Row by 3 and 2™ Row by 2

1 -3 4 3 2 5
0 1 2 2 1 3 ZR . R
0 0 0 0 1 4

Multiply second row by 3 and then add in first row.

1 0 -2 3 5 -4
0 1 -2 2 1 -3 3R, +R,
0 0 0 0 1 4

Subtract row 3 from row 2, and multiply row 3 by 5 and then subtract it from first row
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1 o -2 3 0 -24

0 1 -2 2 0o -7

0 0 0 0 1 4
This is the matrix is in reduced echelon form.

Rz - R3
R, —5R,

Solutions of Linear Systems

When this algorithm is applied to the augmented matrix of the system it gives solution set
of linear system.

Suppose, for example, that the augmented matrix of a linear system has been changed
into the equivalent reduced echelon form

1 0 51
01 1 4
0 0 0 O

There are three variables because the augmented matrix has four columns. The associated
system of equations is
X, —5X%x; =1
X, + Xy = 4 (1)
O0=0 which means x, is free

The variables x; and X, corresponding to pivot columns in the above matrix are called
basic variables. The other variable, X3 is called a free variable.

Whenever a system is consistent, the solution set can be described explicitly by solving
the reduced system of equations for the basic variables in terms of the free variables. This
operation is possible because the reduced echelon form places each basic variable in one
and only one equation.

In (4), we can solve the first equation for X, and the second for X,. (The third equation is
ignored,; it offers no restriction on the variables.)

X, =1+5X%,

X, =4-X%, 2

X, is free

By saying that x3 is “free”, we mean that we are free to choose any value for x3. When
x3 = 0, the solution is (1, 4, 0); when x5 = 1, the solution is (6, 3, 1 etc).

Note The solution in (2) is called a general solution of the system because it gives an
explicit description of all solutions.
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Example 4  Find the general solution of the linear system whose augmented matrix has
1 6 2 -5 -2 -4

been reduced to o o 2 -8 -1 3
o 0 o o0 1 7

Solution The matrix is in echelon form, but we want the reduced echelon form
before solving for the basic variables. The symbol “~” before a matrix indicates that the
matrix is row equivalent to the preceding matrix.

1 6 2 -5 -2 -4
o 0 2 -8 -1 3
o 0 0 0 1 7
By R +2R;and R,+R, Weget

1 6 2 -5 0 10
~10 0 2 -8 0 10
o 0 0 o0 1 7

By %Rz we get

1 6 2 -5 0 10
~10 0 1 -4 0
0 0 0 0 1

1 6 3 0
~10 0 1 -4
0 O 0 7

The matrix is now in reduced echelon form.
The associated system of linear equations now is

X, +6x, +3x, =0
X;—4X, =5 (6)
X =1

The pivot columns of the matrix are 1, 3 and 5, so the basic variables are X1, X3, and Xs.
The remaining variables, X, and X4, must be free.
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Solving for the basic variables, we obtain the general solution:
-
X1 = -6X5 —3X4
X, 1S free
< X3 =5+ 4X4 (7)
X4 1S free
Xs =7
-

Note that the value of X5 is already fixed by the third equation in system (6).

Exercise

1. Find the general solution of the linear system whose augmented matrix is

-3

1
0 1

-5 0
1 3

2. Find the general solution of the system

X, —2X, — X, +3X%, =0
—2X, +4X, +5X, —5X, =3
3x, —6X, —6x, +8x, =2

Find the general solutions of the systems whose augmented matrices are given in

Exercises 3-12

(10 2 5

4,
_2036}
[0 3 6 9

6.
11 -2 -1
1 2 -7
-1 -1 1 8.
2 1 5

1 3

1
-2

2

-3 0

2

-3

1

-3 7

39 41

4
-5
-1

|

1 )
-3 7 0 9

|
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10 9 0 4
2 -4 3
01 3 0 -1
9. -6 12 -9 10.
00 0 1 -7
4 -8 6
00 0 01
1 -2 00 7 -3 10 -5 0 83
0 1 00-31 01 4 -10 6
11. 12.
0 0 015 4 00 0 0 10
0 0 000 O 00 0 O OO

Determine the value(s) of h such that the matrix is the augmented matrix of a consistent
linear system.

1 4 2 1 h 3
13. 14,
-3 h -1 2 81
Choose h and k such that the system has (a) no solution, (b) a unique solution, and (c)

many solutions. Give separate answer for each part.

15. X +hx, =1 16. X1 -3%x2, =1
2X1 + 3%, =k 2X1 + hxs =k
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Lecture 5

Vector Equations
This lecture is devoted to connect equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will study later, while studying “Vector Spaces”. Until then, we will use vector
to mean a list of numbers. This simple idea enables us to get interesting and important
applications as quickly as possible.

Column Vector

“A matrix with only one column is called column vector or simply a vector™.

2
3
eg. U=[3 1] :{ J, V=[2 3 5] =[3], Wz[w1 W, W, W4:|T are all
5
column vectors or simply vectors.

Vectors in R?

If Ris the set of all real numbers then the set of all vectors with two entries is denoted

byR> =RxR.
3
For example: the vector U=[3 —1] { J eR’®

Here real numbers are appeared as entries in the vectors, and the exponent 2 indicates that
the vectors contain only two entries.

Similarly R® and R* contain all vectors with three and four entries respectively. The
entries of the vectors are always taken from the set of real numbers R. The entries in
vectors are assumed to be the elements of a set, called a Field. It is denoted by F .
Algebra of Vectors

Equality of vectors in R?

Two vectors in R? are equal if and only if their corresponding entries are equal.

ul Vl 2 .
Ifu:{ },V={ ]ER then u=viff ju=v,| A |u,=V,
u2 v2

So 4 # 4 as 4=4 but 6«3
6 3
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X
Note In fact, vectors {

y

representing the position of a point with respect to origin.
Addition of Vectors

} in R? are nothing but ordered pairs (X, y)of real numbers both

Given two vectors u and v in R? their sum is the vector u + v obtained by adding

corresponding entries of the vectors u and v, which is again a vector in R?

u V. u V. u, +Vv.
For u=| "|,v=| ‘|eR*Then u+v=| *|+| *|=| * * |eR?
u, Vv, u, v, u, +v,
1 2 1+2 3
+ = =
For example, 5 5 o5 3

Scalar Multiplication of a vector

Given a vector u and a real number c, the scalar multiple of u by c is the vector cu

obtained by multiplying each entry in u by c.
3 3 15
For example, if u :{ J and c¢c=5 then cu= 5{ J { 5}

Notations The number c in cu is a scalar; it is written in lightface type to distinguish it

from the boldface vector u.

1 2
Examplel Given u :{ 2} and v :{ 5]find 4u, (-3)v,and4u+ (-3)v

Solution 4u == 4{1 } = [4X1 } :[ 4 } (=3)v = (_3){2 } = {_6}
-2 4 x (—2) -8 -5 15
And  4u+(-3)v= [ 4 }r [_6} ~ {_2}
-8 15 7
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. . . 3.
Note: Sometimes for our convenience, we write a column vector { in the form

(3, -1). In this case, we use parentheses and a comma to distinguish the vector (3, -1)

from the 1x2 row matrix [3 -1], written with brackets and no comma.

Th 3 3 -1] but 3 =(3,-1
us {_1}&[ -1] bu _1—(,—)

Geometric Descriptions of R?

Consider a rectangular coordinate system in the plane. Because each point in the plane is

determined by an ordered pair of numbers, we can identify a geometric point (a, b) with

a L
the column vecto{b} . So we may regard R? as the set of all points in the plane.

See Figure 1. X2
(2,2)
X1
(-2! _1) (3’ _1)
Figure 1 Vectors as points.

Vectors in R®
Vectors in R® are 3x1 column matrices with three entries. They are represented
geometrically by points in a three-dimensional coordinate space, with arrows from the
origin sometimes included for visual clarity.
Vectors in R®
If n is a positive integer, R" (read “r-n”) denotes the collection of all lists (or ordered

n- tuples) of n real numbers, usually written as nx1 column matrices, such as
T
u=[u, u, --u,]

The vector whose all entries are zero is called the zero vector and is denoted by O.

(The number of entries in O will be clear from the context.)
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Algebraic Properties of R®

For all u, v, w in R" and all scalars c and d:

(i) u+v=v+u (Commutative)
(i) (u+v)y+w=u+(v+w) (Associative)
(i) u+0=0+u=u (Additive Identity)
(iv) u+(-u)=(-u)+u=0 (Additive Inverse)
where —u denotes (-1)u
(v) c(u+v)=cu+cv (Scalar Distribution over Vector Addition)
(vi) (c+d)u=cu+du (Vector Distribution over Scalar Addition)
(vii) c(du) = (cd)u
(viii)  1lu=u

Linear Combinations Given vectors vi, vz, ..., vy in R" and given scalars ¢y, ¢y, ..., Cp

the vector defined by
Y =CVy +CyV, +--+CpV,
is called a linear combination of v4, ... , v, using weights c4, ... , Cp.
Property (ii) above permits us to omit parenthesis when forming such a linear
combination. The weights in a linear combination can be any real numbers, including
zero.

Example

-1 2
For v, =[ } Vv, = { }  if W=§V1 —lv2 then we say that w is a linear combination of
1 1 2 2

vy and vs.
Example As (3,5,2)=3(1,0,0)+5(0,1,0)+2(0,0,1)
(3,5,2)= 3V, +5V,+ 2V, where V;,=(1,0,0), v,=(0,1,0) v;=(0,0,1)

So (3,5, 2) is a vector which is linear combination of V,, V,, V,

1 2 7
Example5 Leta =|-2|,a,=/5|,and b=| 4 |.
-5 6 -3
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Determine whether b can be generated (or written) as a linear combination of a; and a,.
That is, determine whether weights x; and X, exist such that
X1a; +Xpa,=b (@D)
If the vector equation (1) has a solution, find it.
Solution Use the definitions of scalar multiplication and vector addition to rewrite the

vector equation

-,
= —2% +5x, |=| 4 (2
3

X, +2X, =7
= —2X, +5x, =4 3)
—5X, +6X, =-3

We solve this system by row reducing the augmented matrix of the system as follows:

1 2 7
-2 5 4
-5 6 -3

By R, +2R, ;R, +5R,

1 2 7
0 9 18
~/0 16 32

1 1
By|=|R,;| — |R!/
y(gjz(mjs
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1
o o -
R RN
N NN

ByR,—R,;R —2R,

1 0 3
~ 10 1 2
0 0O

The solution of (3) is x; = 3 and x, = 2. Hence b is a linear combination of a; and a,,
with weights x; = 3 and x, = 2.
Spanning Set

If vi, ... , vpare in R", then the set of all linear combinations of vy, ... , vy is
denoted by Span { vy, ... ,Vvp }and is called the subset of R" spanned (or generated) by
Vi, ... ,Vp . Thatis, Span {vi, ... ,vp}is the collection of all vectors that can be
written in the form of Cqvy + Covy + ... + CpVp, withcy, . . ., Cp scalars.
If we want to check whether a vector b is in Span {vi, ... , v, } then we will see whether
the vector equation

X1V1 +XaVp + ... + XpVp = b has a solution, or

Equivalently, whether the linear system with augmented matrix [ vq, ... ,vp b] has a
solution.

Note

(1) The set Span { vy, ... , Vp} contains every scalar multiple of v,

because cvy = cvy + Ovy + .... + Ovp i.e every cv; can be written as a linear

combination of vy, . .. , Vp

(2) Zero vector =0 e Span{v

1,\/2,...\/n} as O can be written as the linear combination of

V., V,,---V, thatis Ov = OFv1+0Fv2 +---+0Fvn here for the convenience it is mentioned
that 0, is the vector(zero vector) while O is zero scalar (weight of all v,,v,,---v,) and in

particular not to make confusion that O, and 0. are same!

© Virtual University Of Pakistan 51



5-Vector Equations VU

A Geometric Description of Span {v} and Span {u, v}

Let v be a nonzero vector in R®. Then Span {v} is the set of all linear combinations of v
or in particular set of scalar multiples of v, and we visualize it as the set of points on the
line in R® through v and 0.

If u and v are nonzero vectors in R®, with v not a multiple of u, then Span {u, v} is the
plane in R® that contains u, v and 0. In particular, Span {u, v} contains the line in R®

through u and 0 and the line through v and 0.

1 5 -3
Example6 Leta =|-2|,a,=|-13|,andb=| 8
3 -3 1

Then Span {a1, a,} is a plane through the origin in R®. Does b lie in that plane?

Solution First we see the equation x;a; + X;a, = b has a solution?

To answer this, row-reduce the augmented matrix [a; a, Db]:

1 5 -3
2 -13 8
3 3 1
ByR, + 2R
1 5 -3
~0 -3 2
0 18 10
By R, +6R,
1 5 -3

~ 10 -3 2
0 0 -2

Last row = 0x, =—2 which can not be true for any value of x, e R

= Given system has no solution

~beSpan{a.,a,} and

in geometrical meaning, vector b does not lie in the plane spanned by vectors

a, and a,
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Linear Combinations in Applications

The final example shows how scalar multiples and linear combinations can arise when a
quantity such as “cost” is broken down into several categories. The basic principle for the

example concerns the cost of producing several units of an item when the cost per unit is

number cost | total
of units| |perunit| |cost

Example 7 A Company manufactures two products. For one dollar’s worth of product

known:

B, the company spends $0.45 on materials, $0.25 on labor, and $0.15 on overhead. For
one dollar’s worth of product C, the company spends $0.40 on materials, $0.30 on labor

and $0.15 on overhead.

45 40
Letb=|.25 and c¢=|.30|, then b and c represent the “costs per dollar of income”
15 A5

for the two products.

a) What economic interpretation can be given to the vector 100b?
b) Suppose the company wishes to manufacture x; dollars worth of product B and X,
dollars worth of product C. Give a vector that describes the various costs the

company will have (for materials, labor and overhead).

Solution
45 45
(a) We have 100b=100|.25|=|25
15 15

The vector 100b represents a list of the various costs for producing $100 worth of product

B, namely, $45 for materials, $25 for labor, and $15 for overhead.

(b) The costs of manufacturing x; dollars worth of B are given by the vector x;b and the
costs of manufacturing x, dollars worth of C are given by x,c. Hence the total costs
for both products are given by the vector x;b + x,c.
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Vector Equation of a Line

Let xo be a fixed point on the line and v be a nonzero vector that is parallel to the
required line. Thus, if x is a variable point on the line through X, that is parallel to v,

then the vector x — Xo is a vector parallel to v as shown in fig below,

Jl'}’
xX—Xxp
x
X
.o-""'-'-ﬂfﬂ v
- X
(b)
J" f
x=xptiv
Xg
—] ¥ x =gy
- X

So by definition of parallel vectors x—Xxo =tv for some scalar t.
it is also called a parameter which varies from —oo to +oo. The variable point x traces
out the line, so the line can be represented by the equation
X=X =tV -=--m-mmmme- 1) (-0 <t < 40)
This is a vector equation of the line through X, and parallel to v.
In the special case, where X = 0, the line passes through the origin, it simplifies to
X=tv (-0 <t < +m0)

Parametric Equations of a Line in R?

Let x = (x, y)e R? be a general point of the line through Xo = (Xo, Yo) € R* which is
parallel to
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v = (a, b)e R?, then eq. 1 takes the form
(X, ¥) - (X0, Yo) =t(a, b) (-0 <t <+o0)
= (X-Xo,Y-Yo)=(ta,th) (—oo<t<+w0)
= X=Xg+at, y=yo+bt (—oo<t<+w)
These are called parametric equations of the linein R? .

Parametric Equations of a Line in R®

Similarly, if we let x = (X, y, z) € R® be a general point on the line through
Xo = (Xo Yo, Zo) € R® that is parallel to v = (a, b, ¢) € R?, then again eq. 1 takes the form
(X, Y, 2) = (Xo, Yo, Zo) + t(a, b, €) (-0 <t < +o0)
= X=Xo+at, y=yo+bt, z=zp+ct (—oo<t<+on0)

These are the parametric equations of the linein R®

Example 8

(a) Find a vector equation and parametric equations of the line in R? that passes

through the origin and is parallel to the vector v = (-2, 3).

(b) Find a vector equation and parametric equations of the line in R® that passes
through the point Po(1, 2, —3) and is parallel to the vector v = (4, -5, 1).

(c) Use the vector equation obtained in part (b) to find two points on the line that are
different from P.

Solution

(@) We know that a vector equation of the line passing through origin is x = tv.
Let x = (X, y). Then this equation can be expressed in component form as
X, y)=t(=2,3)
This is the vector equation of the line.
Equating corresponding components on the two sides of this equation yields the
parametric equations Xx==2t, y=3t
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(b) The vector equation of the lineis x = Xg + tv.
Let x = (X, Y, z), Here xo = (1, 2, -3) and v = (4, -5, 1), then above equation can
be expressed in component form as
x,y,2)=(1,2,-3)+t(4,-5,1)

Equating corresponding components on the two sides of this equation yields the

parametric equations

Xx=1+4t, y=2-5t, z=-3+t

(c) Specific points on a line can be found by substituting numerical values for the

parameter t.

For example, if we take t = 0 in part (b), we obtain the point (x, y, z) = (1, 2, -3),
which is the given point P.
t = 1 yields the point (5, -3, -2) and
= -1 yields the point (-3, 7, — 4).

Vector Equation of a Plane

Let xo be a fixed point on the required plane W and v; and v, be two nonzero vectors that
are parallel to W and are not scalar multiples of one another. If x is any variable point in
the plane W. Suppose vi; and v, have their initial points at Xo, we can create a
parallelogram with adjacent side’s tiv; and tav, in which x — X is the diagonal given by
the sum

X —Xp =1t1v1 + tovy

or, equivalently, N R A R L —— (1)

where t; and t, are parameters vary independently from —c to + o0,

This is a vector equation of the plane through xo and parallel to the vectors v, and v,. In
the special case where xo = 0, then vector equation of the plane passes through the origin
takes the form
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X=11v1 + vy (—<>O<t1 <-I—OO,—OO<t2 <+OO)

Parametric Equations of a Plane

Let x = (X, y, 2) be a general or variable point in the plane passes through a fixed point
Xo = (Xo, Yo, Zo) and parallel to the vectors v, = (a1, by, ¢1) and v, = (az, by, ¢2), then the
component form of eq. 1 will be
(X, Y, 2) = (Xo, Yo, 20) + t1(az, by, €1) +t2(az, bz, C2)

Equating corresponding components, we get

X = Xo +ait; + asts

y =Yo + bit; + byt (-0 <t <+00,—00 <t, < +0)

Z=170+City +Cot

These are called the parametric equations for this plane.
Example 9  (Vector and Parametric Equations of Planes)

@) Find vector and parametric equations of the plane that passes through the origin of
R® and is parallel to the vectors v; = (1, -2, 3) and v, = (4, 0, 5).

(b) Find three points in the plane obtained in part (a).
Solution

@) As vector equation of the plane passing through origin is x =t;vy + tov,.
Let x = (X, Y, z) then this equation can be expressed in component form as
(X, y,2)=t1(1,-2,3) +12 (4,0, 5)
This is the vector equation of the plane.
Equating corresponding components, we get
X=1t; +4t,, y=-2t;, z=3t;+5t
These are the parametric equations of the plane.
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(b) Points in the plane can be obtained by assigning some real values to the

parameters t; and t:

ty=0andt, =0 produces the point (0, 0, 0)

ty =-2andt, =1 produces the point (2, 4, -1)

ty =% andt, =% produces the point (5/2, -1, 4)

Vector equation of Plane through Three Points

If Xo, X1 and x, are three non collinear points in the required plane, then, obviously, the
vectors v = X1 — Xg and v, = X, — Xo are parallel to the plane. So, a vector equation of the
plane is
X = Xo + t1(X1 — Xo) + t2(X2 — Xo)

Example Find vector and parametric equations of the plane that passes through the
points. P(2, — 4, 5), Q (-1, 4, -3) and R(1, 10, 7).
Solution
Let x = (X, Y, z), and if we take Xo, X1 and X, to be the points P, Q and R respectively,
then x,—x,=PQ=(-38-8) and X,—x, =PR=(-114,-12)
So the component form will be

(x,y,2) =(2,-4,5) +1,(-3,8,-8) +1,(-1,14,-12)
This is the required vector equation of the plane.
By equating corresponding components, we get

x=2-3t—-t,, y=—4+8t +14t,, z=5-8t —12t,

These are the parametric equations of the required plane.

Question: How can you tell that the points P, Q and R are not collinear?

Finding a Vector Equation from Parametric Equations

Example 11 Find a vector equation of the plane whose parametric equations are

X=4+5 -t,, y=2-t +8t,, z=t+t,
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Solution First we rewrite the three equations as the single vector equation

(x,y,z)=(4+5t, -t,,2—t +8t,,t +t,)
= (X% Y,2)=(4,2,0)+ (5, -t,,t,) + (-1,,8t,,t,)
= (x,¥,2)=(4,2,00+t,(5-11) +t,(-1,8,1)

This is a vector equation of the plane that passes through the point (4, 2, 0) and is parallel
to the vectors vy = (5,-1, 1) and v, = (-1, 8, 1).

Finding Parametric Equations from a General Equation

Example 12 Find parametric equations of the plane x —y + 2z = 5.

Solution First we solve the given equation for x in terms of y and z
X=5+y-2z
Now make y and z into parameters, and then express x in terms of these parameters.
Lety=t;andz=t;
Then the parametric equations of the given plane are

X=5+1t; -2ty y=t;, z=1,

Exercises

1. Provethatu+v=v+uforanyuandvinR".

2. For what value(s) of h, y belongs to Span {v1, vz, v3}? Where

1 5 -3 -4
v, =|-1], v, =| -4 v,=| 1 |,and y=
-2 7 0 h

3. Determine whether b is a linear combination of a1, a,, and as.

© Virtual University Of Pakistan 59



5-Vector Equations VU

1 -2 -6 11
).a=|0|a,=|3 |,a=|7 |,b=]-5

1 -2 9

1 —4 2 3
ii).a =0 |,a,=|3 |,a=|5 |,b=|-7

-2 8 —4 -3

4. Determine if b is a linear combination of the vectors formed from the columns of the

matrix A.
1 0 2 -5 1 0 5 2
). A=|-2 5 0|,b=|11 ii). A=|-2 1 —-6|,b=|-1
2 5 8 —7 0 2 8 6

In exercises 7-10, list seven vectors in Span {vi, v,}. For each vector, show that the
weights on v; and v, used to generate the vector and list the three entries of the vector.

Give also geometric description of the Span {v1, v,}.

5 -2 1
7. v={-1], v,=|1 8. v=0| v,=|0
3 -5 1 2
2 -3 -3.7 5.8
9. v=| 61 Vv,=/-9 10.  v,=| 04|, v,=|21
—4 6 11.2 5.3
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1 -5 3
11. Let &, =|3 |,a,=[-8|, b=|-5| . For what value(s) of h is b in the plane spanned
-1 2 h

by a; and a,?

1 -2 h
12. Let v,=|0 |,v,=|1 |,andy=|-3|. For what value(s) of h is y in the plane
-2 7 -5

generated by v, and v,?

2 2 h
13. Let u :[ J and L} Show that {k} is in Span{u, v} for all h and k.
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Lecture 6

Matrix Equations

A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition will permit us to rephrase some
of the earlier concepts in new ways.

Definition If A isan mxn matrix, with columns a, a,, ... , a, and if x is in R", then the
product of A and x denoted by Ax, is the linear combination of the columns of A using

the corresponding entries in x as weights, that is,

X
Ax=[a, a, .. a,]| ! |=%a+Xa,+...+X3,
X

n

Note that Ax is defined only if the number of columns of A equals the number of entries

in Xx.
Example 1
~ 4
1 2 -1 1 2 -1 4 6 -7 3
a) 3|=4| [+3 +7 = |+ + =
' 0 -5 3 . 0 -5 3 0 -15 21 6
2 -3 A 2 -3 8 -21 -13
b) |8 0 {7}:4 8 |+7/ 0 (|=|32 |+ 0 |=]| 32
-5 2 -5 2 -20 14 -6

Example 2 For vy, vz, v3 in R™, write the linear combination 3v; — 5v, + 7v3 as a
matrix times a vector.
Solution Place vi, V2, vs into the columns of a matrix A and place the weights 3, -5,
and 7 into a vector Xx.

3
That is, v, —5v, +7v, =[v, Vv, V,]| -5|=Ax

7
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We know how to write a system of linear equations as a vector equation involving a

linear combination of vectors. For example, we know that the system

X +2X, =X =4 . . 1 2 -1 4
is equivalent to X | [+ X% + X, =
—5%, +3x, =1 0 -5 3 1

Writing the linear combination on the left side as a matrix times a vector, we get

12 1] [4
X, | =

0 -5 3 1
X3

Which has the form Ax = b, and we shall call such an equation a matrix equation, to

distinguish it from a vector equation.

Theorem 1 If A is an mxn matrix, with columns ai, a; ,... , a, and if b is in R™, the
matrix equation Ax = b has the same solution set as the vector equation

X1@1 + Xpaz + ... + Xpan =D
which, in turn, has the same solution set as the system of linear equations whose

augmented matrixis [a, a, .. a, b]

n

Existence of Solutions The equation Ax = b has a solution if and only if b is a linear

combination of the columns of A.

1 3 4 b
Example3 LetA=|-4 2 —6|andb=|b,|.
-3 -2 -7 b,

Is the equation Ax = b consistent for all possible b1, by, b3?

Solution Row reduce the augmented matrix for Ax = b:

4R +R,,3R +R,

1 3 4 b 1 3 4 b,
4 2 -6 b,|~| 0 14 10 b,+4b
3 -2 -7 b, 0 7 5 b,+3b
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1
R—5R.
1 -2 1 b
- 0 14 10 b, +4b,
0 0 0 b3+3b1—%(b2+4b1)

The third entry in the augmented column is b, +3b, —%(b2 +4b,)

The equation Ax = b is not consistent for every b because some choices of b can make

b, —%bz +b, nonzero.

The entries in b must satisfy b, — 3 b, +b; =0

This is the equation of a plane through the origin in R®. The plane is the set of all linear

combinations of the three columns of A. See figure below.

Span {a),aa3)

%2

E4]

The equation Ax = b fails to be consistent for all b because the echelon form of A has a
row of zeros. If A had a pivot in all three rows, we would not care about the calculations
in the augmented column because in this case an echelon form of the augmented matrix

could not have arow suchas [0 0 0 1].
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Example 4 Which of the following are linear combinations of

S R R A

6 -8
@ |5 4
b) 0 0 © 6 0
0 0 3 8
Solution

6 -8
@) { 8}:aA+bB+cC

o 3l )l

| 4a+b —b+2c
| —2a+20+c —2a+3b+4c

= 4da+b=6 1)
-b +2c=-8 (2
2a+2b+c=-1 3)
-2a+3b+4c=-8 4)

Subtracting equation (4) from equation (3), we obtain
-b-3c=7 (5)

Subtracting equation (5) from equation (2):
5c=-15=c¢c=-3

From (2), -b+2(-3)=-8 =>b=2

From (3), 2a+2(2)-3=-1=a=1

Now we check whether these values satisfy equation (1).
4(1)+2=6
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\4Y)

6
It means that {

Thus

6 -8
-1 -8

0

} is the linear combination of A, B and C.

}=1A+ZB—3C

00
(b) { O}:aA+bB+cC

o B )i

| 4a+b —b+2c
| —2a+2b+c —2a+3b+4c

4a+b=0 (1)
-b+2c=0 (2
-2a+2b+c=0 3)
-2a+3b+4c=0 4)

Subtracting equation (3) from equation (4) we get

b+3c=0 (5)

Adding equation (2) and equation (5), we get

5c=0 = ¢=0

Put ¢ =0 in equation (5),we get b=0

Putb =c=0inequation (3), we geta=0

=

{0
It means that
0

a=b=c=0

0
0} is the linear combination of A, B and C.

00
Thus =0A+0B+0C
0 0

6 0
(©) { 8}aA+bB+cC

3
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4 0 1 -1 0 2
=a +b +c
ISR N ET
_ da+b —-b+2c
| —2a+2b+c —2a+3b+4c

= 4da+b=6 1)
-b+2c=0 2
-2a+2b+c=3 3)
-2a+3b+4c=8 4)
Subtracting (4) from (3), we obtain
-b-3c=-5 (5)

Subtracting (5) from (2):
5c=5=c=1

From (2), -b+2(1)=0=b=2

From (3), 2a+2(2)+1=3=a=1

Now we check whether these values satisfy (1).
4(1)+2=6

6 0
It means that {3 8} is the linear combination of A, B and C.

6 0
Thus =1A+2B +1C
3 8

Theorem 2 Let A be an mxn matrix. Then the following statements are logically
equivalent.

(a) For each b in R™, the equation Ax = b has a solution.

(b) The columns of A Span R™.

(c) A has a pivot position in every row.
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This theorem is one of the most useful theorems. It is about a coefficient matrix, not an
augmented matrix. If an augmented matrix [A b] has a pivot position in every row, then

the equation Ax = b may or may not be consistent.

2 3 4 X,
Example4 Compute Ax, where A=|-1 5 -3|and x=|X,
6 -2 8 X,
Solution From the definition,

2 3 4|lx 2 3 4

-1 5 B X [=X]-1]+X| 5 [+X|-3

6 -2 8 ||x 6 -2 8

2%, 3X, 4x,

==X [+]| 5%, |+]|—=3X;
6%, —2X, 8%,

2%, +3X, +4X,
=| =X, +5X, —3X,
| 6%, —2X, +8X,

Note
In above example the first entry in Ax is a sum of products (sometimes called a dot

product), using the first row of A and the entries in Xx.

Xl

That is [2 3 4] %, |=[2% +3X, +4X%]
X3

Examples

In each part determine whether the given vector span R®

(@ v,=(2 2 2),v,=(0,0,3),
v,=(0,11)

() v,= @31 4), v,=(2,-35),
v,=(5,-2,9),v,=1 4, -1)

(€) v,=@ 2,6), v,=(3,4,1),
v,=(4,31),v,=(3 3,1
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Solutions
(@) We have to determine whether arbitrary vectors b= (b, b,, b;) in R® can be
expressed as a linear combination b=kVv, +kV, +kyv;  of the vectors v,,v,,V,

Expressing this in terms of components given by
(b, b,, b)) =k (2,2,2)+k,(0,0,3) +k,(0,1,1)
(b, b,, by) = (2k, + 0k, +0k;, 2k, + 0k, +k;, 2k, +3k, +k;)
2k, + 0k, + 0k, =b,
2k, + 0k, +k, =D,
2k, + 3k, +k, =b,

2 00

A=|2 0 1 has a non zero determinant
2 31

Now

det(A)=-6=0

Therefore v,,v,,v, span R®
(b) The set  S{v,v,,v,,v,}of vectors in R* spans V=R® if
CV, +C,V, +Cv, +C,v, =d,w, +d,w, +d,w;, ... @

with

w, =(10,0)
w, =(0,1,0)
w, =(0,0,1)

With our vectors v,,v,,v,,v, equation (1) becomes
¢,(3.1,4)+¢,(2,-3,5)+¢,(5,-2,9) +¢, (1, 4,—1) = d,(1,,0,0) +d,(0,1,0) +d,(0,0,1)
Rearranging the left hand side yields

3c, +2¢, +5¢, +1c, =1d, +0d, +0d,

1c, —3c, —2¢, +4c, =0d, +1d, +0d,

4c, +5c¢, +9c, —1c, =0d, +0d, +1d,
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2 5 1 1 00
-3 2 4 010
45 9 1001

= w

011 101

N[~ N

0 00O0 1 3 -2

The reduce row echelon form

1011 O > 3
17 17
011 10 4 1
17 17
0000 1 I_; _% Corresponds to the system of equations

5 3
1c, +1c, +1c, = (—)d, + (—)d
, +1c; +1c, (17)2 (17)3

-4 1
1c, +1c, +-1c, = (ﬁ)dz + (ﬁ)ds ..(2)

—7 11
0=1d, +(—)d, +(—=)d

)+,
So this system is inconsistent. The set S does not span the space V.

Similarly Part C can be solved by the same way.

Exercise
3
1 5 -2 0 ) -7
1. let A=|-3 1 9 —5,x=_0 and b=| 9
4 -8 -1 7 0
-4

It can be shown that Ax = b. Use this fact to exhibit b as a specific linear

combination of the columns of A.
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2 5 4 -3
2. Let A:{ },u:{ 1},and V:L_)}.VerifyA(u+v): Au +Av.

2 4 -6 2
3. Solve the equation Ax =b, with A=| 0 1 3 |,b=|5
-3 5 7 -3
-5 3 5
4. Let u=|-3|land A=| 1 1 |. Is u belongs to the plane in R® spanned by the
-6 -2 -8
columns of A? Why or why not?
8 4 3 5
5.Let u=|2|and A=|0 1 -1|. Is u in the subset of R® spanned by the columns of
3 1 2 0
A? Why or why not?

-3 1
6. Let A :{ 6 2} andb = {El } Show that the equation Ax = b is not consistent for all

2

possible b, and describe the set of all b for which Ax = b is consistent.

1 3 -2 =2
0 1 -1 5 . e

7. How many rows of A= {2 1 7 contain pivot positions?
1 1 0 -6

In exercises 8 to 13, explain how your calculations justify your answer, and mention an

appropriate theorem.

1 3 -4
8. Do the columns of the matrix A=| 3 2 -6/ span R*?
-5 -1 8
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1 3 -2 =2
: 0 1 -1 5 4
9. Do the columns of the matrix A= span R™?
-1 -2 1 7
1 1 0 -6

0 0 2
10. Do the columns of the matrix A=|0 -5 1 | span R%?
|4 6 -3
'3 5
11. Do the columns of the matrix A=| 1 1 |span R%?
-2 -8
1 0
0 1 0 4
12. Let v, = 1 WV, = 0 WV, = ol Does {v1, V2, Vz}span R™?
0 -1 -1
1 -1 3

13.Letv,=|0 |,v,=|3 |,v,=|-2|. Does { V1, vz, v3} span R*?
-1 7 -2

4 1 2| -1 4
14. It can be shownthat | -2 0 8 || 4 |=|18|. Use this fact(and no row operations)
3 5 -6 2 5

4 4 1 2
to find scalars c4, c2, cz such that |18 |=c,| -2 |+C,| O |+C;| 8
5 3 5 —6
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\4Y)

3

1

15. Let u=|8|,v=|3|,andw=|1|. It can be shown that 2u — 5v — w = 0. Use this

fact(and no row operations) to solve the equation | 8 3 [Xl

4

1

Determine if the columns of the matrix span R*.

7 2 -5 8
5 -3 4 -9
6.
6 10 -2 7
7 9 2 15

1
3
31
X
4 11|-72
12
-9
17.
-6
4

|

1

=1].

3

11
-8

10

-9 5
7 =3
3 -9

-5 12
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Lecture 7

Solution Sets of Linear Systems
Solution Set
A solution of a linear system is an assignment of values to the variables x, X2.... , X, such
that each of the equations in the linear system is satisfied. The set of all possible solutions

is called the Solution Set

Homogeneous L inear System

A system of linear equations is said to be homogeneous if it can be written in the form
Ax =0, where A is an mxn matrix and 0 is the zero vector in R™.

Trivial Solution

A homogeneous system Ax = 0 always has at least one solution, namely, x = 0 (the zero
vector in R"). This zero solution is usually called the trivial solution of the homogeneous
system.

Nontrivial solution

A solution of a linear system other than trivial is called its nontrivial solution.

i.e the solution of a homogenous equation Ax = 0 such that x # 0 is called nontrivial
solution, that is, a nonzero vector x that satisfies Ax = 0.

Existence and Unigueness Theorem

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation
has at least one free variable.
Example 1  Find the solution set of the following system

3%, +5%, -4%x, =0
3%, +2X,—4X%, =0

6X, + X, —8%, =0
Solution
3 5 -4 X, 0
LetA=|3 2 -4|, X=|x,| , b=|0
6 1 -8 X 0

3
The augmented matrix is
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3 5 4 0
3 2 4 0
6 1 -8 O

For solution set, row reduce to reduced echelon form

3 5 4 0
~f0 83 0 O -1R +R,,—2R, +R,
0 9 0 O
3 5 -4 0
~f0 -3 0 O -3R, +R,
0 0 0 O
1 0 4 0
3
~10 -1 0 O 1/3R,,1/3R,,5/3R, + R,
0O 0 0 0
1 0 _4 0
3
~10 1 0 O -DR,
0O 0 0 0
4
X, —gxgzo
X, =0
0 =0

It is clear that Xj is a free variable, so Ax = 0 has nontrivial solutions (one for each
choice of x3). From above equations we have,

X, :%xs, X, =0, with x3 free.

As a vector, the general solution of Ax = 0 is given by:
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4 ] [4] 4]

_X3 J— —

X 3 3 3
X=X [=| 0 |[=%X]0[=xv, where v=|0
X, X; 1 1

This shows that every solution of Ax = 0 in this case is a scalar multiple of v (it means
that v generate or spans the whole general solution).The trivial solution is obtained by
choosing x3 = 0.

Geometric Interpretation

Geometrically, the solution set is a line through 0 in R®, as given in the Figure below:

X3

X2

o\

Note: A nontrivial solution x can have some zero entries so long as not all of its entries
are zero.

Example 2
Solve the following system

10x, —3x, —2x, =0 (1)

Solution
Solving for the basic variable x; in terms of the free variables,
dividing eg. 1 by 10 and solve for x

X1 = 0.3X, + 0.2x3 where X, and X3 free variables.

As a vector, the general solution is:

X 0.3x, +0.2x, 0.3x, 0.2x,
X = = X2 = X2 + O

X
X, X 0 X,
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0.3 0.2
=X,| 1 [+%] O (2)
1
u v

This calculation shows that every solution of (1) is a linear combination of the vector u, v
shown in (2). That is, the solution set is Span {u, v}

Geometric Interpretation

Since neither u nor v is a scalar multiple of the other, so these are not parallel, the
solution set is a plane through the origin, see the Figure below:

X3
X3

X2
X1

Note:

Above examples illustrate the fact that the solution set of a homogeneous equation
Ax = 0can be expressed explicitly as Span {vi, v2, ..., Vp} for suitable vectors
Vi, V2, ..., Vp(because solution sets can be written in the form of linear combination of
these vectors). If the only solution is the zero-vector then the solution set is Span {0}.

Example 3 (For Practice) Find the solution set of the following homogenous system:
X, +3X, + X, =0

—4x —-9%, +2%,=0

—3X, —6x,=0
Solution:
1 3 1 X, 0
Let A=| -4 -9 21, X=X/, b=|0
0 -3 -6 X 0

The augmented matrix is:
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-4 -9 2 0
0 -3 -6 0
1 3 1 0
{0 3 6 0 4R +R,,
0 3 6 0
1 3 1 0
~/0 3 6 0 R, + R,
10 0 00
1 5 0
~1 0 1 2 0 %RZ,(—3)R2+Rl
| 0 0
SO
X -5%, =0
X, +2%, =0
0=0

From above results, it is clear that x3 is a free variable, so Ax = 0 has nontrivial solutions
(one for each choice of x3).
From above equations we have,

X, =5X%;, X, =—2X,, With Xz a free variable.
As a vector, the general solution of Ax = 0 is given by

X 5X, 5 5
X=X, |=| 2% |=%|—2|=%XV, where v=|-2
X X 1 1

Parametric Vector Form of the solution

Whenever a solution set is described explicitly with vectors, we say that the solution is in
parametric vector form

The equation

X=su+tv (s5,tinR)
is called a parametric vector equation of the plane. It is written in this form to
emphasize that the parameters vary over all real numbers.

Similarly, the equation x = x3v (with x3 free), or x = tv (with t in R), is a parametric
vector equation of a line.
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Solutions of Non-homogeneous Systems

When a non-homogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

To clear this concept consider the following examples,

Example: 5 Describe all solutions of Ax = b, where

3 5 4 7
A=|-3 -2 4| and b=|-1
6 1 -8 4

Solution
Row operations on [A b] produce

(3 5 4 7

-3 -2 4 -1

6 1 -8 -4

3 5 4 7
~l0 3 0 6 R +R,,—2R +R,
0 -9 0 -18

3 -4 7
~l0 1 0 2 3R2+R3,%R2
0 0 0

1 0 -2 4

3

~l0 1 0 2 —5R2+R1,%R1

0 0 0 ©

OR X, =2

Thus x, = —1+%x3, X, =2, and xs is free.

As a vector, the general solution of Ax = b has the form
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-1+—=X 4x 4

X 37 [-1] |37 [-1] |3
X=|X, |= 2 =2 |+ 0 |=| 2 |+X%]0
X, X, X, 0 1

p v

The equation x = p + X3V, or, writing t as a general parameter,
Xx=p+tv (tinR) 3)
Note

We know that the solution set of this question when Ax = 0 (example 1) has the
parametric vector equation

X =tv (tin R) 4)
With the same v that appears in equation (3) in above example.

Thus the solutions of Ax = b are obtained by adding the vector p to the solutions of
Ax = 0. The vector p itself is just one particular solution of Ax = b (correspondingtot=0

in (3)).

The following theorem gives the precise statement.

Theorem

Suppose the equation Ax = b is consistent for some given b, and let p be a solution.
Then the solution set of Ax = b is the set of all vectors of the form

w = p + Vi, where vy, is any solution of the homogeneous equation Ax = 0.

Example 6: (For practice)

X +3%,+ X, =1
—4x 9%, + 2%, =-1
—3X, —6X; =3
Solution
1 3 1 X, 1
Let A=| -4 -9 21, X=X/, b=|-1
0 -3 -6 X, -3

The augmented matrix is
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! 3 1 1
-4 -9 -1
| 0 -3 -6 -3
1 3 1 1
~10 3 6 3 4R +R,,
' 0 3 -6 -3
1 3 1 1]
~/0 3 6 3 R, +R;
0 0 0 0
1 3 1 1]
~10 1 21 lR2
10 0 0 0] 3
1 -5 -2
~1 0 1 2 1 (-3)R, +R,
0 0
SO
X,  —9%X;=-2
X, +2% = 1
0=0

Thus x, ==2+5%,, X, =1-2x,, and X3 is free.
As a vector, the general solution of Ax = b has the form

X, —2+5X, -2 5%, -2 5
X=X, |=| 1-2%, |=| 1 [+| =2 |=| 1 |+X| -2
Xy X, 0 X, 0 1

p v

So we can write solution set in parametric vector form as
X= P+ XV
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Steps of Writing a Solution Set (of a Consistent System)
in a Parametric Vector Form

Step 1:
Row reduces the augmented matrix to reduced echelon form.

Step 2:
Express each basic variable in terms of any free variables appearing in an
equation.

Step 3:
Write a typical solution x as a vector whose entries depend on the free variables
if any.

Step 4:
Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

Exercise

Determine if the system has a nontrivial solution. Try to use as few row operations as
possible.

1.X1=5X, +9%3=0 2. 3X1+6Xs—4X3—-%4=0
X1+ 4%, —3X3=0 -5X1 +8Xx3+3x4=0
2X1—8X2 +9x3=0 8X1—X>o +7x4=0

3.5X1 = X2 +3x3=0
41— 33X, + 7x3=0

Write the solution set of the given homogeneous system in parametric vector form.

4, X1—3X—2X3=0 5. X1+ 2X,—7x3=0
Xo—X3=0 -2X1—=3X2 +9%3=0
“2X1+3X, +7X3=0 —2X, + 10x3 =0

In exercises 6-8, describe all solutions of Ax = 0 in parametric vector form where A is
row equivalent to the matrix shown.

1 502 0 -4 1 6 0 8 -1 -2
600010—3 7001—346
l10 0 001 5 1000 0 0 1
0 0 00O O 000 0 O O
8.[1 -5 0 4]
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9. Describe the solution set in R® of x; — 4x, + 3x3 = 0, compare it with the solution set
of X1 —4Xs + 3Xx3 =7.

10. Find the parametric equation of the line through a parallel to b.

SR

11. Find a parametric eguation of the line M through p and g.

SHEEH

5 10
12. Given A=| -8 -16 |, find one nontrivial solution of Ax = 0 by inspection.
| 7 14
1 3
13. Given A=| 2 6 |, find one nontrivial solution of Ax = 0 by inspection.
39
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Lecture 8

Linear Independence

Definition

An indexed set of vectors {vi, Vs, ... , vp} in R" is said to be linearly
independent if the vector equation x,v, +X,V, +---+ X v, =0 has only the trivial solution.
The set {vi, v, ..., Vp} is said to be linearly dependent if there exist weights ¢y, .... , Cp,
not all zero, such that ¢\, +¢,v, +---+c,v, =0 (1)

Equation (1) is called a linear dependence relation among v1 ,..., vV, , when the weights
are not all zero.

Example 1
1 4 2
Letv,={2|, v,=|5]|, v,=|1
3 6 0

(a) Determine whether the set of vectors {vi, vz, v3} is linearly independent or not.
(b) If possible, find a linear dependence relation among v, V2, Vs.

Solution

(a) Row operations on the associated augmented matrix show that

14 2 0
2 510
3600
(1 4 2 0
-0 -3 -3 0 (-2)R +R,, (-3)R +R,
0 6 -6 0
1 4 2 0
~l0 -3 -3 0| R,+R )
0 0 0 0

Clearly, x; and x; are basic variables and x5 is free. Each nonzero value of x5 determines
a nontrivial solution.
Hence vi, vy, vs are linearly dependent (and not linearly independent).

(b) To find a linear dependence relation among vi, v, v3, completely row reduce the
augmented matrix and write the new system:
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1 4 20

0110 %Rz

0 0 00

1 0 -2 0
~f0 1 1 0] R-4R,

0 0 O

X, —2%,=0

= X, +X%, =0

0 =0
Thus X1 = 2X3, X2 =-X3, and Xz is free.

Choose any nonzero value for x3, say, X3 =5, then x; =10, and X, = -5.
Substitute these values into xv, + X,V, + X;v, =0

= 10v; —-5v, +5v3=0
This is one (out of infinitely many) possible linear dependence relation among v, vz, Vs.

Example (for practice)

Check whether the vectors are linearly dependent or linearly independent.

v, =(3,-1) v, =(-2,2)
Solution

Consider two constants C, andC, . Suppose:
c,(B-D+c,(-2,2)=0
(3c, —2c,,—c, +2¢,) =(0,0)

Now, set each of the components equal to zero to arrive at the following system of
equations:

3c,—2¢,=0
-, +2¢,=0

Solving this system gives the following solution,

The trivial solution is the only solution, so these two vectors are linearly independent.
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Linear Independence of Matrix Columns
Suppose that we begin with a matrix A:[a1 .. a ] instead of a set of vectors. The

n

matrix equation Ax = 0 can be written as x,a, + X,a, +---+X.a, =0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax = 0.

Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation
AX=0 has only the trivial solution.

01 4
Example2 Determine whether the columns of A=|1 2 -1| are linearly
58 0
independent.
Solution To study Ax = 0, row reduce the augmented matrix:
[0 1 4 0]
1 2 -1 0
15 8 0 0]
(1 2 -1 0]
~10 1 R,
58 0 0]
1 2 -1 0
~l0 1 4 0 (-5)R, + R,
0 -2 5 0
12 -1 0
~/0 1 4 0} (2R, +R,
0 0 13 0

At this point, it is clear that there are three basic variables and no free variables. So the
equation Ax = 0 has only the trivial solution, and the columns of A are linearly
independent.

Sets of One or Two Vectors

A set containing only one vector (say, V) is linearly
independent if and only if v is not the zero vector. This is because the vector equation
X1V = 0 has only the trivial solution whenv =0. The zero vector is linearly dependent
because x;0 = 0 has many nontrivial solutions.
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Example 3
Check the following sets for linearly independence and dependence.

e
o

Solution

a) Notice that v, is a multiple of vi, namely, v, = 2v;.
Hence —2v; + v, = 0, which shows that {v1, v,} is linearly dependent.

b) vi and v, are certainly not multiples of one another. Could they be linearly
dependent?

Suppose ¢ and d satisfy cvy + dv, =0

If ¢ =0, then we can solve for v, in terms of v,, namely, vy = (-d/c) v,. This result is

impossible because v; is not a multiple of v,. So, ¢ must be zero. Similarly, d must
also be zero.
Thus {vi1, v2} is a linearly independent set.

Note A set of two vectors {vi, v} is linearly dependent if and only if one of the vectors
is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the same
line through the origin. Figure 1, shows the vectors from Example 3.

X2

(6,2)

(3,1
X1
Linearly dependent

X2

3.2 (6,2)

X1
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Figure 1 Linearly independent

Sets of Two or More Vectors

Theorem (Characterization of Linearly dependent Sets)
An indexed set s={v,,v,,---,v } of two or more vectors is linearly dependent if and only

if at least one of the vectors in S is a linear combination of the others. In fact, if S is
linearly dependent, andv =0, then some v, (with j>1) is a linear combination of the

preceding vectors, v,,---,V, ;.

Proof
If some v; in S equals a linear combination of the other vectors, then

v; can be subtracted from both sides of the equation, producing a linear dependence
relation with a nonzero weight (-1) on v; .

For instance, if vi = covy + C3vs, then 0 = (—1)vy + CaVp +C3vs + Ovy + ... + Ovp.
Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If v, is zero, then it is a (trivial) linear
combination of the other vectors in S.

If v#0 and there exist weights c1, ... , Cp, not all zero(because vectors are linearly
dependent), such that

C1Vy + CoVp +...+ CpVp = 0

Let j be the largest subscript for whichc; = 0. If j =1, then c,v; = 0, which is
impossible becausev; =0 .

So j>1,and €V, +---+CVv;+0v;,+---+0v, =0

j+1

CV.=-CV, —C,V, —---—C;

J—1V'

j—1

Note: This theorem does not say that every vector in a linearly dependent set is a linear
combination of the preceding vectors. A vector in a linearly dependent set may fail to be
a linear combination of the other vectors.
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3 1
Example4 Letu=|1| and v=|6|. Describe the set spanned by u and v, and prove
0 0

that a vector w is in Span {u, v} if and only if {u, v, w} is linearly dependent.
Solution

The vectors u and v are linearly independent because neither vector is a multiple
of the other, nor so they span a plane in R®. In fact, Span {u, v} is the x;X,-plane
(with x3 = 0). If w is a linear combination of u and v, then {u, v, w} is linearly dependent.
Conversely, suppose that {u, v, w} is linearly dependent.

Some vector in {u, v, w} is a linear combination of the preceding vectors (sinceu =0).
That vector must be w, since v is not a multiple of u. So w is in Span {u, v}

X3

AN

X1 W

X2

Linearly dependent w in Span {u, v}.

/\V X2
X1 u

Linearly independent w not in Span {u, v}

Figure 2: Linear dependence in R®.
This example generalizes to any set {u, v, w} in R® with u and v linearly independent. The
set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by u and v.
Theorem

If a set contains more vectors than there are entries in each vector, then the set
is linearly dependent. That is, any set {vi, vz, ..., v} in R"is linearly dependent if p > n.
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4
-1
three vectors in the set and there are only two entries in each vector.

2 -2
Example 5 The vectors L} { } { ) } are linearly dependent, because there are

Notice, however, that none of the vectors is a multiple of one of the other vectors. See
Figure 4.

X2

(=2.2)

(2,1)
X1

(4’ _1)

Figure 4 A linearly dependent set in R?

Theorem

IfasetS={vi, Vs, ...,Vp}inR"contains the zero vector, then the set is linearly
dependent.

Proof

By renumbering the vectors, we may suppose that v, = 0.
Then (1)vi+0vy + ...+ 0vy, =0 shows that S is linearly dependent( because in this
relation coefficient of v, is non zero).

Example 6  Determine by inspection if the given set is linearly dependent.

2 3
2 4 2 0
4 -6
a . 101, .11 b 31,10/, c ,
6 -9
6 9 8 0
10 15

Solution

a) The set contains four vectors that each has only three entries. So,the set is linearly
dependent by the Theorem above.

b) The same theorem does not apply here because the number of vectors does not exceed
the number of entries in each vector. Since the zero vector is in the set, the set is
linearly dependent by the next theorem.
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c) As we compare corresponding entries of the two vectors, the second vector seems to
be —3/2 times the first vector. This relation holds for the first three pairs of entries, but
fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and
hence they are linearly independent.

Exercise

3 —6 0 3

1. Letu=| 2 |,v=| 1 |,w=|-5|,and z=| 7

-4 7 2 -5

(i) Are the sets {u, v}, {u, w}, {u, z}, {v, w}, {v, z}, and {w, z} each linearly

independent? Why or why not?

(it) Does the answer to Problem (i) imply that {u, v, w, z} is linearly independent?

(iii)
(iv)

To determine if {u, v, w, z} is linearly dependent, is it wise to check if, say w is a
linear combination of u, v and z?
Is {u, v, w, z} linear dependent?

Decide if the vectors are linearly independent. Give a reason for each answer.

3||-3||6 1 -3]10
0,2 [,|4 3.3 [,|-5]|5
013 0 -2|16 —6

Determine if the columns of the given matrix form a linearly dependent set.

For

_ (3 4 3
1 3 -2 0
-1 -7 7
3 10 -7 1 5.
1 3 =2
-5 -5 3 7
- 0 2 -6
1 1 0 4 1 -1 30
-1 0 3 -1 ; 0 1 5 4
0 -2 1 1 -1 2 8 5
1 0 -1 3 '3 -1 1 3
what values of h is v3 in span {v1, v,} and for what values of h is {vi, v,, v3}

linearly dependent?

1 -2 1 1 3 -2
8. v, = WV, =|—6],v;=|2 9.v,={3|,v,=| 9 |,v,=| -6
-2 4 h 3 -1 h
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Find the value(s) of h for which the vectors are linearly dependent.

1 -2||-1 1 -3| |4
10. |3 |,| 4,1 11. |-51,| 8 |,| h
=3[ 11(]|h -2(|6||-8

Determine by inspection whether the vectors are linearly independent. Give reasons for
your answers.

o 2 610
51623
1 } H H } 13 s)5 ||o
5((1]]4]|-6
- - = 1 3 0
6 ]1[3
14.12 |,|1
-8 -2
2 3 5
. -5 1 - i ) .
15. Given A= A , observe that the third column is the sum of the first two
1 0 1

columns. Find a nontrivial solution of Ax = 0 without performing row operations.

Each statement in exercises 16-18 is either true(in all cases) or false(for at least one
example). If false, construct a specific example to show that the statement is not always
true. If true, give a justification.

16. If vy, ..., vs are in R* and v3 = 2v; + vy, then {v1, vy, V3, Va} is linearly dependent.

17. If v1 and v, are in R*, and v; is not a scalar multiple of v2, then {v1, v2} is linearly
independent.

18. . If vy, ..., v4 are in R*, and{vy, vz, v} is linearly dependent, then {v1, v, V3, v4} is
also linearly dependent.

8 -3 0 -7 2
-9 4 5 11 -7 :
19. Use as many columns of A= ) 9 4 as possible to construct a

5 -1 7 0 10
matrix B with the property that equation Bx = 0 has only the trivial solution. Solve
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Bx = 0 to verify your work.
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Lecture 9

Linear Transformations
Outlines
e Matrix Equation
e Transformation, Examples, Matrix as Transformations

e Linear Transformation, Examples, Some Properties

Matrix Equation

An equation Ax = b is called a matrix equation in which a matrix A acts on a vector x by
multiplication to produce a new vector called b.

For instance, the equations

A b
and
1
4 -3 1 3] 4] Jo
[2 0 5 1} —1 :[o}
3
A o]

[

Solution of Matrix Equation

Solution of the Ax = b consists of those vectors x in the domain that are transformed into
the vector b in range.

Matrix equation Ax = b is an important example of transformation we would see later in
the lecture.

Transformation or Function or Mapping
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A transformation (or function or mapping) T from R " to R ™ is a rule that assigns to
each vector x in R", an image vector T(x) in R™.

T:R" — R™

The set R " is called the domain of T, and R ™ is called the co-domain of T. For x in R"
the set of all images T(x) is called the range of T.

Note
To define a mapping or function, domain and co-domain are the ordinary sets.
However to define a linear transformation, the domain and co-domain has to be

R™(or R"). Moreover a map T:R™ — R"is a linear transformation if for any two

vectors say u,veR"™ and the scalarsc,,c,, the following equation is satisfied
T(cu+c,v)=cT(u)+c,T(v)

Examplel Consider a mappingT :R> - R®> defined by T(x,y)=(-x,y). This

transformation is a reflection about y-axis in xy plane.

Here T(1,2) =(-12). T has transformed vector (1,2) into another vector (-1,2).
In matrix form:

werr=[ & ]

Further the projection transformation T : R> — R? defined by T(x, y) = (x,0) is given as:

AR MEN

1 -3
2
Example2 Let A=| 3 5|, u:[ J, b=| 2], c=|2],
-1 7 -5
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and define a transformation T : R> — R® by T(x) = AX, so that

1 -3 X, —3X,
T(x)=Ax=3 5 {Xl}: 3x, +5X,
-1 7 |FT | ex + X,

a) Find T (u), the image of u under the transformation T.
b) Find an x in R?, whose image under T is b.

c) Is there more than one x whose image under T is b?
d) Determine if ¢ is in the range of the transformation T.

Solution (a)
1 -3
Tw=Au=|3 5 {2}= 1
-1 7|77 |-9
5
Here Tw=|1
-9
5
Here the matrix transformation has transformed u:{ ZJ into another vector | 1
-9

(b) We have to find an x such that T (x) =b or Ax=Db

1 -3 3
ie |3 5 {Xl}: 2 1)
X2
17 5

Now row reduced augmented matrix will be:

©Virtual University Of Pakistan 96



9-Linear Transformations VU
1 -3 3
3 5 2|-3R+R,,R+R,
-1 7 -5
1 -3 3
~10 14 -7 %Rz, —4R, +R,,
0 4 -2
1 -3 3
~/0 1 -513R,+R,
0 0 O
(1 0 15
~10 1 -5
00 O
Hence x; =1.5, X, =-0.5,and x= {12}
The image of this x under T is the given vector b.
(c) From (2) it is clear that equation
(1) has a unique solution. So, there is exactly one x whose image is b.

(d)  The vector c is in the range of T if ¢ is the image of some x in R?, that is, if
¢ =T(x) for some x. This is just another way of asking if the system Ax =c is
consistent. To find the answer, we will row reduce the augmented matrix:

1 -3 3
3 5 2|-3R+R,, R+R,
-1 7 5
1 -3 3]
~10 14 -7 lR3, R,
0 4 8| 4
3 N
~0 1 2 |-14R,+R,
0 14 -7
1 -3 3
~10 1 2
0 0 -35
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X —3X,=3

0x, +X, =2

0x, +0x,=-35=0=35hut 0+ 35
Hence the system is inconsistent. So c is not in the range of T.

So from the above example we can view a transformation in the form of a matrix.
We’ll see that a transformation T : R" — R™ can be transformed into a matrix of
order mxn and every matrix of order mxn can be viewed as a linear
transformation.

The next two matrix transformations can be viewed geometrically. They reinforce the
dynamic view of a matrix as something that transforms vectors into other vectors.

1 00
Example3 If A={0 1 0/, then the transformation x — Ax projects points in R®
0 0O
X, 1 0 0 x X,
onto the x,x, —coordinate planebecause |x [0 1 0| x,|=|x,
, 0 0 0ffx 0

X1

A projection transformation

1 3
Example 4 Let A= {O J., the transformation T : R> — R? defined by T (x) = Ax is

called a shear transformation.
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0 1 3|0 6
The image of the point u = is T(u)= = :
2 0 1|2 2

o] 1 2]

Here, T deforms the square as if the top of the square was pushed to the right while the
base is held fixed. Shear transformations appear in physics, geology and crystallography.
X2 X2

X1 X1

A shear transformation

Linear Transformations

We know that if A is mxn matrix, then the transformation x — Ax has the properties
A(u+Vv)=Au+ Av and A(cu) =cAu forall u, vin R" and all scalars c.

These properties for a transformation identify the most important class of transformations
in linear algebra.

Definition A transformation (or mapping) T is linear if:

1. T(u+v)=T(u)+ T(v) forall u,vinthe domain of T;
2. T(cu)=cT(u) forall uand all scalars c.

Example 5 Every matrix transformation is a linear transformation.
Example 6 Let L:R*® — R* be defined by L(x,y,2)=(X,Y).

we let u=(x,Y,,z) and v=(x,,Y,,Z,).

L(u+Vv)=L((X, Y, 2)+ (X, Y,,2,))
=L+ X, Y, +Y,,2,+2,)
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=(X1+X2’y1+y2)

= (X1’ Y1) + (Xz’ yZ) =L(u)+L(v)

Also, if k is a real number, then

L(ku) = L(le, kyl’ kzl) = (kxl’ kyl) =kL(u)

Hence, L is a linear transformation, which is called a projection. The image of the vector
(or point) (3, 5, 7) is the vector (or point) (3, 5) in xy-plane. See figure below:

ZA

(3.5, 7)

*/

3, 5)

Geometrically the image under L of a vector (a, b, ¢) in R®is (a, b) in R? can be found by
drawing a line through the end point P(a, b, ¢) of u and perpendicular to R?, the xy-plane.
The intersection Q(a, b)of this line with the xy-plane will give the image under L. See the

figure below:

L(u)

Q(a, b)

v

(a, b)
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Example 7 Let L:R — R be defined by L(x)=x’
Letxandyin R and

L(X+y)=(X+y)? =x"+y>+2xy # x>+ y* = L(x) + L(y)
= L(x+y)#L(X)+L(y)

So we conclude that the function L is not a linear transformation.

Linear transformations preserve the operations of vector addition and scalar
multiplication.

Properties
If T is a linear transformation, then
1. T(0)=0
2. T(cu +dv) =cT(u) +dT(v)
3. T(Civi+ ...+ CpVvp) =CiT(v1) + ... + CpT(vp)

for all vectors u, v in the domain of T and all scalars c, d.

Proof

1. By the definition of Linear Transformation we have T(cu) = cT(u) for all uand all
scalars c. Put ¢ =0 we’ll get T(Ou)=0T(u) This implies T(0) =0

2. Just apply the definition of linear transformation. i. e
T(cu +dv) = T(cu) + T(dv) =cT(u) + dT(v)

Property (3) follows from (ii), because T(0) = T (Ou) =0T (u) = 0.
Property (4) requires both (i) and (ii):

OBSERVATION Observe that if a transformation satisfies property 2 for all u, v and c,
d, it must be linear  (Take ¢ = d = 1 for preservation of addition, and take d = 0)
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3. Generalizing Property 2 we’ll get 3

T(CeVy + .o+ CpVp) = C1T(Ve) + ... + CpT(Vp)

Applications in Engineering

In engineering and physics, property 3 is referred to as a superposition principle.

Think of vy, ..., v, as signals that go into a system or process and T(v1), ..., T(vp) as the
responses of that system to the signals. The system satisfies the superposition principle if
an input is expressed as a linear combination of such signals, the system’s response is the
same linear combination of the responses to the individual signals.

Example 8 Given a scalar r, define T:R — R by
T (X) = x+1.

T is not a linear transformation (why!) because T (0) = 0 (by property 3)

Example 9 Given a scalar r, defineT :R> - R® by T (X) =rx.
T is called a contraction when 0<r <1

and a dilation when r >1.

Let r = 3 and show that T is a linear transformation.

Solution Let u, v be in R? and let ¢, d be scalars, then

T (cu +dv) =3 (cu +dv) Definition of T
= 3cu + 3dv
=¢ (3u) +d(3v) Vector arithmetic

=cT (u) +dT (v)
Thus T is a linear transformation because it satisfies (4).

Example 10 Define a linear transformation T : R> — R* by
0 —1[x ] [-x
T(x)= || T
1 0 |[%] X

4] 2 6
Find the imagesunderTofu:L, v:[?’] and u+v:[4}.
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o o TS
ol STHE

In the above example, T rotates u, v and u + v counterclockwise through 90°.

In fact, T transforms the entire parallelogram determined by u and v into the one
determined by T (u) and T (v)

Example 11 Let L: R®—» R? be a linear transformation for which:
L (1,0,0)=(2,-1),
L (0,1,0)=(3,1),and
L (0,0,1)=(-1,2).
Then find L (-3, 4, 2).

Solution Since (-3, 4, 2) = -3i + 4j + 2k,

L(=3,4,2) = L(=3i + 4] +2k) = =3L(i) + 4L(j) + 2L(K)
=—3(2,-1) +4(3,1) + 2(~1,2) = (4,11)

Exercise

1. Suppose that T : R® — R? and T(x) = Ax for some matrix A and each x in R°. How
many rows and columns do A have?

1 0
2. Let A= {O J . Give a geometric description of the transformation x — Ax.

3. The line segment from 0 to a vector u is the set of points of the form tu, where
0<t<1. Show that a linear transformation T maps this segment into the segment
between 0 and T(u).

2 00 1 5
4. Let A=|0 2 O|,u=| 0 |,and|-1|. Define T:R*>R%by T (x) = Ax. Find T (u)
00 2 -3 4

and T (v).

In exercises 5 and 6, with T defined by T (x) = Ax, find an x whose image under T is b,
and determine if x is unique.
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1 0 3 1
1 0 -1 0
0O 1 -4 -5
5. A= 3 1 -5|,b=|-5 6. b=
3 2 1 -7
-4 2 1 —6
-2 -1 -2 3

Find all x in R*that are mapped into the zero vector by the transformation x — Ax.

1 2 -75
1 3 4 -3
1 40
7. A= 80 1 3 -2
1 0 1 6
37 6 -5
2 -1 6 8
1
9.Let b=| —1]| and let A be the matrix in exercise 8. Is b in the range of the linear
7

transformation x — Ax?

9
5 . : : .
10. Let b= N and let A be the matrix in exercise 7. Is b in the range of the linear

-9
transformation x - Ax?

Let T (x) = Ax for x in R%
(@) On a rectangular coordinate system, plot the vectors u, v, T (u) and T (V).
(b) Give a geometric description of what T does to a vector x in R.

a2 oo ] Yoo

13. Let T: R? > R? be a linear transformation that maps
u= [5} into {0} and mapsv = L} into[ 4}. Use the fact that T is linear find the images

under T of 2u, 3v, and 2u + 3v.
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1
transformation that maps e; into y; and maps e, into y,. Find the images of

oz

X

X,

14, Let e =| ey =| Ly, =|° |andy,=| :RZ>R%beali
: etel_o,ez_ Y, = 5 ,an y2_7 . Let T: R"—>R" be a linear

—7 3 ,
15. Let x :[ },vl = L }and v, ={ 8}' Let T: R?— R? be a linear transformation that

maps X into xv, + X,V, . Find a matrix A such that T (x) is Ax for each x.
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Lecture 10

The Matrix of a Linear Transformation
Outline
e Matrix of a Linear Transformation.

e Examples, Geometry of Transformation, Reflection and Rotation
e Existence and Uniqueness of solution of T(x)=0

In the last lecture we discussed that every linear transformation from R" to R™ is actually
a matrix transformation x — Ax, where A is a matrix of ordermxn. First see an example

10 1 0
Examplel  The columnsof I, 2{0 J are e, :{0} ande, :[J.

Suppose T is a linear transformation from R? into R® such that

5 -3
T(e)=|-7| and T(e,)=| 8
2 0

with no additional information, find a formula for the image of an arbitrary x in R?.

. X, 1 0
Solution Letx = X, =X 0 + X, 1 = X6 +X,8,

Since T is a linear transformation,  T(X)=xT () + X,T (&,)

5 -3 59X, —3X,
TX)=X |7 [+X,| 8 |=] 7% +8X%,
2 0 2x,+0
5%, —3X,
Hence T(x)=|-7x +8X,
2x,+0

Theorem Let T:R" — R™ be a linear transformation. Then there exists a unique matrix
A such that T(x) = Ax forall x in R"
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In fact, A is the mxn matrix whose jth column is the vector T (g;j), where e; is the jth
column of the identity matrix in R".

A=[T(e) .. T(e,)]
Proof Write
X, X, 0 0 1 0 0
x| [0] |x 0 0 1 0
X= o I R B R I R DU 0 Y RO S &
x| 0] |0 X, 0 0 1
Xl
X2
=xe+..+xe =[e .. e]."|=[e . &]x
X

Since T is Linear, So

TX)=T(xe +...+%x,.&,)=%xT(e)+...+Xx,T(e,)

X
=[T) .. T()] i |=Ax (1)
X

n

The matrix A in (1) is called the standard matrix for the linear transformation T. We
know that every linear transformation from R" to R™ is a matrix transformation and vice
versa.

The term linear transformation focuses on a property of a mapping, while matrix
transformation describes how such a mapping is implemented, as the next three examples
illustrate.

Example 2 Find the standard matrix A for the dilation transformation T (x) = 3x, x € R®.
Solution Write

3 0
T(e1)=3e1:{0} and T(ez):BeZ:[s}

i
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X X+Yy
Example 3 Let L:R® — R®is the linear operator defined by L| |y | |=|y—2z |.
z X+2

Find the standard matrix representing L and verify L (X) = Ax.

Solution
The standard matrix A representing L is the 3 x 3 matrix whose columnsare L (e1), L
(e2), and L (e3) respectively. Thus

1 1+0 1
L(e)=L||0||=|0-0|=|0|=col(A)
0 1+0 1
0]} [0+1] [1
L(e,)=L||1||=]|1-0 |=|1 |=col,(A)

10+0 0

0 [0+0] [0
L(e,))=L|{|0]||=|0-1|=|-1|=col,(A)

1)) [0+1] |1
1 1 0]
Hence A=0 1 -1
11 0 1
11 0|[x] [x+y
Now Ax=10 1 -1j||ly|=|y—-z|=L(x)
11 0 1]z X+2

Hence verified.

Example 4 Let T:R*>—R? be the transformation that rotates each point in R?
through an angle ¢, with counterclockwise rotation for a positive angle. We could show

geometrically that such a transformation is linear. Find the standard matrix A of this
transformation.

. 1 . COS @ 0 ) —sing
Solution rotates into | . , and rotates into )
0 sing 1 Cos @

See figure below.
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cosg —sin
By above theorem A:{ ¢ (P}

sinp  CcoS¢

b
: 0. 1)
(-sin @, €Os tf)., .-Jp-.___\

/ \\
!/ \d \(cos Q. 5in P)
9 3 X
: ‘ [(1.0) !
\ /

A rotation transformation

Example 5 A reflection with respect to the x-axis of a vector u in R? is defined by the

o 1]
R A R i

1 0
Hence the standard matrix representing L is A= [O }

-1
Thus we have L(u) = Au= F 0 }{al } = {ai }
0 -1fa -a,

To illustrate a reflection with respect to the x-axis in computer graphics, let the triangle T
have vertices (-1, 4), (3, 1), and (2, 6).
3

. . -1
To reflect T with respect to x-axis, we let u, = L ]uz :L

2
},us :{ } and compute the
6

images L (u1), L (u2), and L (u3) by forming the products

©Virtual University Of Pakistan 109



10- The Matrix of a Linear Transformation VU

mfs SO

1 013 3
Au2 = = ,

0 -1{1 -1

1 012 2
Au3 = =

0 -1(|6 —6

Thus the image of T has vertices (-1, -4), (3, -1), and (2, -6).

Geometric Linear Transformations of R?

Examples 3-5 illustrate linear transformations that are described geometrically. In
example 4 transformations is a rotation in the plane. It rotates each point in the plane
through an angle ¢ . Example 5 is reflection in the plane.

Existence and Uniqgueness of the solution of T(x)=b

The concept of a linear transformation provides a new way to understand existence and
uniqueness questions asked earlier. The following two definitions give the appropriate
terminology for transformations.

Definition A mapping T :R" — R" is said to be onto R™ if each b in R™ is the image of
at least one x in R".
OR

Equivalently, T is onto R™ if for each b in R™ there exists at least one solution of
T (x) = b. “Does T map R" onto R™?” is an existence question.

The mapping T is not onto when there is some b in R™ such that the equation T (x) = b
has no solution.

Definition A mapping T :R" — R" is said to be one-to-one (or 1:1) if each b in R™ is
the image of at most one x in R".
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OR

Equivalently, T is one-to-one if for each b in R™ the equation T (x) = b has either a
unique solution or none at all, “Is T one-to-one?” is a uniqueness question.

The mapping T is not one-to-one when some b in R™ is the image of more than one
vector in R". If there is no such b, then T is one-to-one.

Example 6 Let T be the linear transformation whose standard matrix is

1 4 8 1
A=0 2 -1 3
0 0 0 5

Does T map R onto R3? Is T a one-to-one mapping?

Solution Since A happens to be in echelon form, we can see at once that A has a pivot
position in each row.

We know that for each b in R® the equation Ax = b is consistent. In other words, the
linear transformation T maps R* (its domain) onto R®.

However, since the equation Ax = b has a free variable (because there are four variables
and only three basic variables), each b is the image of more than one x. That is, T is not
one-to-one.

Theorem Let T:R" — R™ be a linear transformation. Then T is one-to-one if and only if
the equation T (X) = 0 has only the trivial solution.

Proof: Since T is linear, T (0) = 0 if T is one-to-one, then the equation T (x) = 0 has at
most one solution and hence only the trivial solution. If T is not one-to-one, then there is
a b that is the image of at least two different vectors in R" (say, u and v).

Thatis, T (u)=band T (v) =b.

But then, since T is linear T(u—-v)=T(u)=b-b=0

The vector u — v is not zero, since u = v . Hence the equation T (x) = 0 has more than one
solution. So either the two conditions in the theorem are both true or they are both false.

Kernel of a Linear Transformation
Let T :V — W be a linear transformation. Then kernel of T (usually written as KerT),
is the set of those elements in V which maps onto the zero vector in W .Mathematically:

KerT ={veV|T(v)=0in W}
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Vv w
/- z l".

kernel

Remarks
1) KerT is subspace of V
i) T is one-one iff KerT =0 inV

One-One Linear Transformation
Let T:V —>W be a linear transformation. Then T is said to be one-one if for any
u,veV with u=vimplies Tu=Tv. Equivalently if Tu=Tv then u=v.
T is said to be one-to-one or bijective if
i) T is one-one
ii)T is onto
Theorem Let T:R" — R™ be a linear transformation and let A be the standard matrix for
T. Then

(@) T maps R" onto R™ if and only if the columns of A span R™;
(b) T is one-to-one if and only if the columns of A are linearly independent.

Proof:

(a) The columns of A span R™ if and only if for each b the equation Ax = b is consistent —
in other words, if and only if for every b, the equation T(x) = b has at least one
solution. This is true if and only if T maps R" onto R™.

(b) The equations T (x) = 0 and Ax = 0 are the same except for notation. So T is one-to-
one if and only if Ax = 0 has only the trivial solution. This happens if and only if the
columns of A are linearly independent.

We can also write column vectors in rows, using parentheses and commas. Also, when
X
X

we apply a linear transformation T to a vector — say, x:{
2

}:(xl,xz) we write
T(x,,%,) instead of the more formal T ((x;,X,)).

Example 7 Let T (X1, X2) = (3X1 + X2, 5X1 + 7X2, X1 + 3X2).

Show that T is a one-to-one linear transformation.
Does T map R? onto R%?
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Solution When x and T (x) are written as column vectors, it is easy to see that T is
described by the equation

31 y 3%, + X,

5 7 [ 1}: 5%, +7X, (4)
X

1 3|-7 X, +3X,

so T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns of A are linearly independent because they are not multiples. Hence T is one-to-
one. To decide if T is onto R®, we examine the span of the columns of A. Since A is 3x 2,
the columns of A span R® if and only if A has 3 pivot positions. This is impossible, since
A has only 2 columns. So the columns of A do not span R® and the associated linear
transformation is not onto R®,
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Exercises

1. Let T :R* — R? be transformation that first performs a horizontal shear that maps
e, into e, —.5¢, (but leaves e, unchanged) and then reflects the result in the x, — axis.

Assuming that T is linear, find its standard matrix.

Assume that T is a linear transformation. Find the standard matrix of T.
2. T:R* > R%T(4,0)=(4,-1,2)and T(0,1) = (-5,3,-6)

3. T:R*>R*T(e)=(L4),T(e,) =(-2,9),and T (e;) = (3,-8), where ey, €5, and e; are
the columns of the identity matrix.

4. T :R? - R? rotates points clockwise through 7 radians.

5. T :R?> — R? is a “vertical shear” transformation that maps e; into e; + 2e, but leaves
the vector e, unchanged.

6. T :R?> > R? is a “horizontal shear” transformation that maps e; into e, — 3e; but
leaves the vector e; unchanged.

7. T :R® = R® projects each point (x1, X», X3) vertically onto the x;x,-plane (where
X3:0).

8. T :R* — R? first performs a vertical shear mapping e; into e; — 3e,(leaving e;
unchanged) and then reflects the result in the x,-axis.

9. T :R* — R? first rotates points counterclockwise through 7 /4 radians and then
reflects the result in the x;-axis.

Show that T is a linear transformation by finding a matrix that implements the mapping.
Note that X, X2, ... are not vectors but are entries in vectors.

10. T(X, Xy, X5, X,) = (X, 4 X5, X, + X5, X3 + X, 0)
11, T (X, Xy, X3) = (8%, — X5, X, +4X, +X;)
12, T (X, Xy, X5, X,) = 3X, —4X, +8X,

13. Let T : R* — R? be a linear transformation such that T (X, X,) = (X, + X,, 4% +7X,).
Find x such that T (x) =(-2, -5).
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13. Let T : R? = R? be a linear transformation such that
T (X, X,) = (X +2X,, — X, —3X,,—3X, —2X,) . Find x such that T (x) =(-4, 7, 0).

In exercises 14 and 15, let T be the linear transformation whose standard matrix is given.

14. Decide if T is one-to-one mapping. Justify your answer.

-5 10 5 4
8 3 -4 7
4 -9 5 3

-3 -2 5 4

15. Decide if T maps R® onto R>. Justify your answer.

-7 3 7 5
6 -8 5 12 -8
-7 10 -8 -9 14
3 5 4 2 -6
-5 6 -6 -7 3
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Lecture 11

Matrix Operations
(i-])th Element of a matrix
Let A be an mxn matrix, where m and n are number of rows and number of columns

respectively, then a; represents the i-th row and j-th column entry of the matrix. For

example a,, represents 1% row and 2" column entry.
Similarly a,, represents 3" row and 2" column entry. The columns of A are vectors in
R™ and are denoted by (boldface) a,,a,,--,a,.

These columnsare A=[a, a, .. a,]
The number &; is the i-th entry (from the top) of j-th column vector a; .
Column
J
I - T
Row i| &, ... & .. &, |[=A
_aml a'mj amn_
T T T
a, a, a,
Figure 1 Matrix notation.
Definitions
A diagonal matrix is a square matrix whose non-diagonal entries are zero.
d, 0 - 0
p| 9 %= O
0 0 .. d

The diagonal entries in A= [aij] are a,;,a,,,a,, -~ and they form the main diagonal
of A.
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10 0 O
2 00
50 00 0O .
For example 0 3 0 are all diagonal
0 7 0 0 16 0
0 0 11
00 0 O

matrices.

Null Matrix or Zero Matrix

An mxn matrix whose entries are all zero is a Null or zero matrix and is always written
as O. A null matrix may be of any order.

0 00 0O
0 0O 00
0 00 0O
Forexample |0 O O 00
0 00 0O
0 0O 00
0 00 0O
3x3 3x2 4x5

are all Zero Matrices

Equal Matrices

Two matrices are said to be equal if they have the same size (i.e., the same number of
rows and columns) and same corresponding entries.

Example 1 Consider the matrices

2 1 2 1 2 10
A= ,  B= , C=
LR S
The matrices A and B are equal if and only if x+1 =5 or x = 4. There is no value of x for
which A = C, since A and C have different sizes.

If A and B are mxn matrices, then the sum, A + B, is the mxn matrix whose columns
are the sums of the corresponding columns in A and B. Each entry in A + B is the sum of
the corresponding entries in A and B. The sum A + B is defined only when A and B are of
the same size.

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns
are r times the corresponding columns in A.

Note: Negative of a matrix A is defined as — A to mean (-1)A and the difference of A and
B is written as A-B, which means A + (-1) B.

4 0 5 111 2 -3
Example2 Let A= , B= , C=
-1 3 2 3 57 0 1

51 6
Then A+B=
2 8 9
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But A + C is not defined because A and C have different sizes.
111 2 2 2
2B=2 =
[3 5 7} {6 10 14}

4 0 5 2 2 2 2 -2 3
[—1 3 2} [6 10 14} [—7 7 —12}

Theorem 1 Let A, B, and C are matrices of the same size, and let r and s are scalars.

a. A+B=B+A d. r(A+B)=rA+rB
b. (A+B)+C=A+(B+C) e (rt+s)A=rA+sA
C. A+0=A f. r (sA) =(rs) A

Each equality in Theorem 1 can be verified by showing that the matrix on the left side
has the same size as the matrix on the right and that corresponding columns are equal.
Size is no problem because A, B, and C are equal in size. The equality of columns
follows immediately from analogous properties of vectors.

For instance, if the jth columns of A, B, and C are a;,b; and c;, respectively, then the
jthcolumnsof (A+B)+Cand A+ (B +C) are

(@; +b;) +c, and a; +(b; +c;)
respectively. Since these two vector sums are equal for each j, property (b) is verified.

Because of the associative property of addition, we can simply write A + B + C for the
sum, which can be computed either as (A + B) + C or A + (B + C). The same applies to
sums of four or more matrices.

Matrix Multiplication

Multiplying an mxn matrix with an nxp matrix results in an mxp matrix. If many
matrices are multiplied together, and their dimensions are written in a list in order, e.g.
mxn, nxp, pxd, gxr, the size of the result is given by the first and the last numbers (mxr).

It is important to keep in mind that this definition requires the number of columns of the
first factor A to be the same as the number of rows of the second factor B. When this
condition is satisfied, the sizes of A and B are said to conform for the product AB. If the
sizes of A and B do not conform for the product AB, then this product is undefined.

Definition If A is an mxn matrix, and if B is an nx p matrix with columnsb,,---,b_,

then the product AB is the mx p matrix whose columns are Ab,,---, Ab
That is AB=Alb b, .. b, |=[Ab Ab, .. Ab,]

P
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This definition makes equation (1) true for all x in RP. Equation (1) proves that the
composite mapping (AB) is a linear transformation and that its standard matrix is AB.
Multiplication of matrices corresponds to composition of linear transformations.

A convenient way to determine whether A and B conform for the product AB and, if so,

to find the size of the product is to write the sizes of the factors side by side as in Figure

below (the size of the first factor on the left and the size of the second factor on the
right).

A

m X s

B
S X
T Inside T

Outside

= AB
n mxn

If the inside numbers are the same, then the product AB is defined and the outside
numbers then give the size of the product.

2 3 4 3 6
ExamQIeBComputeAB,WhereA={1 5}md B:L ) 3}

Solution: Here B =[b; b, bs], therefore

o w2 e
EURE M
w1 ]

11 0 21
AB=Ab b, bl=| T T
Ab; Ab, Abjz

Note from the definition of AB that its first column, Ab;, is a linear combination of the
columns of A, using the entries in by as weights. The same holds true for each column of
AB. Each column of AB is a linear combination of the columns of A using weights from
the corresponding column of B.
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Example 4 Find the product AB for

4 1 4 3
1 2 4
A= and B=/0 -1 3 1
2 60
2 7 5 2

Solution It follows from definition that the product AB is formed in a column-by-column
manner by multiplying the successive columns of B by A. The computations are

C, C, G
(1] 2] 4] 4 1 12
2060 (; =4c, +0c, +2c, —(4)[2}(0){ }(Z){ } [8}
) ) :1
Similarly ! NE -1]1=(1) L +(1) +(7) )
' 2 0] E 2 0
1 4] 4] 1 2 47 [30
26 =<4>H+<3>M+<5>M:LJ
o ]
124:1:(3)1+(1) (2)4 13
2 6 0 2 I 12

4 1 4 3
1 2 4 12 27 30 13
Thus, AB = 0 -1 3 1|=
2 6 0 8 -4 26 12

Example 5 (An Undefined Product) Find the product BA for the matrices

4 1 4 3
1 2 4
= and B={0 -1 3 1
2 6 0
2 7 5 2

Solution The number of columns of B is not equal to number of rows of A so BA
multiplication is not possible.

The matrix B has size 3x4 and the matrix A has size 2x3. The “inside” numbers are
not the same, so the product BA is undefined.

Obviously, the number of columns of A must match the number of rows in B in order for
a linear combination such as Ab; to be defined. Also, the definition of AB shows that AB
has the same number of rows as A and the same number of columns as B.
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Example 6 If Ais a 3x5 matrix and B is a 5x2 matrix, what are the sizes of AB and
BA, if they are defined?

Solution The product of matrices A and B of orders 3%9and 9% 2 will result in
3%2 matrix AB.

But for BA we have 9%2 and 3%5 here number of columns inlst matrix are 2 which is
not equal to number of rows in 2nd matrix. So BA is not possible.

Since A has 5 columns and B has 5 rows, the product AB is defined and isa 3x 2
matrix:

A B AB
e
* * * * * * * * *
* * * * * * * — * *
* * * * * * * * *
* *
3x x 2 3x2
Match
Size of AB

The product BA is not defined because the 2 columns of B do not match the 3 rows of A.
The definition of AB is important for theoretical work and applications, but the following
rule provides a more efficient method for calculating the individual entries in AB when
working small problems by hand.

Row-Column Rule for Computing AB

Explanation
If a matrix B is multiplied with a vector X, it transforms x into a vector Bx. If this vector
is then multiplied in turn by a matrix A, the resulting vector is A (Bx).

Multiplication Multiplication
/%N /%N
Xe ) °

Bx A(BX)
Multiplication by B and then A

Thus A(BX) is produced from x by a composition of mappings. Our goal is to represent
this composite mapping as multiplication by a single matrix, denoted by AB, so that
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A (BX) = (AB) X-mmmmmmmmm e m oo (1)
Multiplication Multiplication
%N /%N

Bx
Multiplication

A(BX)

by AB
Multiplication by AB

If Ais mxn, Bis nxp, and x is in R?, denote the columns of B by b, ,---, b, and the
entries in X by X;,-++, X, then BX=Xb, +X,0, +---+ X b,
By the linearity of multiplication by A,

A(BXx) = A(xb) + A(x,b,) +---+ A(X,b,)

=X Ab + X, Ab, +---+ X Ab,

The vector A (Bx) is a linear combination of the vectors Ab, -+, Abp, using the entries in
x as weights. If we rewrite these vectors as the columns of a matrix, we have

A(Bx)=[ Ab, Ab, .. Ab,|x

Thus multiplication by [Ab1 Ab, .. Abp] transforms x into A(Bx).
We have found the matrix we sought!

Row-Column Rule for Computing AB

If the product AB is defined, then the entry in row i and column j of AB is the sum of the
products of corresponding entries from row i of A and column j of B. If (AB);; denotes
the (i, j) —entry in AB, and if A isan mxn matrix, then

(AB);; = a;b; +a;,b,; +...+a,b

in"nj

To verify this rule, let B = [bl bp]. Column j of AB is Abj, and we can compute

Abj. The ith entry in Ab; is the sum of the products of corresponding entries from row i of
A and the vector bj, which is precisely the computation described in the rule for
computing the (i, j) — entry of AB.
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Finding Specific Entries in a Matrix Product Sometimes we will be interested in
finding a specific entry in a matrix product without going through the work of computing
the entire column that contains the entry.

Example 7  Use the row-column rule to compute two of the entries in AB for the
matrices in Example 3.

Solution: To find the entry in row 1 and column 3 of AB, consider row 1 of A and
column 3 of B. Multiply corresponding entries and add the results, as shown below:

\

3 oo eoo o

For the entry in row 2 and column 2 of AB, use row 2 of A and column 2 of B:

)
%ﬁ —35}{‘11 5 ﬂ{% 1(3)5[5(—2) ZDl}:E 1D3 ZDl}

Example 8 Use the dot product rule to compute the individual entries in the product of

4 1 4 3
1 2 4
AB where A= and B=/0 -1 3 1].
2 6 0
2 7 5 2

Solution Since A has size 2x3 and B has size 3x4, the product AB is a 2x4 matrix of
the form

| nA)*c(B) n(A)xc,(B) n(A)xc(B) n(A)xc,(B)
) L(A)’< C(B) nR(A)*xc,(B) n(A)xcy(B) r(A)x C4(B)}

wherer,(A) and r,(A) are the row vectors of A and c,(B),c,(B),c;(B) and c,(B) are
the column vectors of B. For example, the entry in row 2 and column 3 of AB can be

computed as
41 4 3
A R

2 7 5 2
(2x4)+(6%x3)+(0x5) =26
and the entry in row 1 and column 4 of AB can be computed as
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i BB

(1x3)+(2x1)+(4x2) =13

Here is the complete set of computations:
(AB),, = (1x4)+(2x0) +(4%x2) =12
(AB),, = (I1x1)+(2x-1)+(4x7) =27
(AB),; = (1x4)+(2x3)+(4%x5) =30
(AB),, = (1x3)+(2x1)+(4x2) =13
(AB), = (2x4) +(6x0) +(0x2) =8
(AB),, = (2x1) +(6x-1) +(0x7) = -4
(AB),, = (2x4)+(6x3)+(0x5) =26
(AB),, =(2x3)+(6x1)+(0x2) =12

Finding Specific Rows and Columns of a Matrix Product
The specific column of AB is given by the formula

AB=A[b, b, - b]=[Ab Ab, - Ab]

a, [a,B ]

a, a,B
Similarly, the specific row of AB is given by the formula AB =| . |B=

a, amB

Example 9  Find the entries in the second row of AB, where
2 -5 0

4 —6
-1 3 4
A= , B=|7 1
6 -8 -7
3 2
-3 0 9

Solution: By the row-column rule, the entries of the second row of AB come from row 2
of A (and the columns of B):

Ll T
. 0 0100

- 4 -6 -4+21-12 6+3-8 5 1
>l-1 3 -4 = =

MM L 0 O [oo
M ER 0 0O )lo0o
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Example 10 (Finding a Specific Row and Column of AB)

4 1 4 3
1 2 4

Let A= and B=({0 -1 3 1
2 6 0

2 7 5 2

Find the second column and the first row of AB.

Solution cz(AB):Acz(B){1 2 4} -1 {27}

2 6 0 -4
7_
4 1 4 3
n(AB)=r,(A)B=[L 2 4]|0 -1 3 1|=[12 27 30 1]
2 752

Properties of Matrix Multiplication
These are standard properties of matrix multiplication. Remember that | represents the

mxm identity matrix and 1_x=x for all x belong to R™.

Theorem 2 Let Abe mxn, and let B and C have sizes for which the indicated sums and
products are defined.

a. A(BC)=(AB)C (associative law of multiplication)
b. A(B+C)=AB+AC (left distributive law)

C. (B+C)A=BA+CA (right distributive law)

d. r (AB) = (r A)B = A(r B) (for any scalar r)

e. I, A=A=AI_, (identity for matrix multiplication)

Proof. Properties (b) to (e) are considered exercises for you. We start property (a)
follows from the fact that matrix multiplication corresponds to composition of linear
transformations (which are functions), and it is known (or easy to check) that the
composition of functions is associative.

Here is another proof of (a) that rests on the “column definition” of the product of two
matrices. Let C = [Cl Cp]

By definition of matrix multiplication BC = [BC1 Bcp}
A(BC)=[ A(Bc,) ... A(Bc,)]

From above, we know that A(Bx) = (AB)x for all x, so
A(BC)=|(AB)c, .. (AB)c,|=(AB)C

The associative and distributive laws say essentially that pairs of parentheses in matrix
expressions can be inserted and deleted in the same way as in the algebra of real
numbers. In particular, we can write ABC for the product, which can be computed as
A(BC) or as (AB)C. Similarly, a product ABCD of four matrices can be computed as
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A(BCD) or (ABC)D or A(BC)D, and so on. It does not matter how we group the matrices
when computing the product, so long as the left-to-right order of the matrices is

preserved.

The left-to-right order in products is critical because, in general, AB and BA are not the
same. This is not surprising, because the columns of AB are linear combinations of the

columns of A, whereas the columns of BA are constructed from the columns of B.

If AB = BA, we say that A and B commute with one another.

5 1 2 0
Example 11 LetA:{3 2}and B:[4 3}

Show that these matrices don not commute, i.e. AB = BA.
Solution:
AB—5 112 0_10+4 O+3_14
13 2|4 3] |6-8 0-6] |-2

BA_205 17 [10+0 2-0] [10
14 3|3 =2| |20+9 4-6] |29

3
—6
2
-2

|
|

For emphasis, we include the remark about commutativity with the following list of

important differences between matrix algebra and ordinary algebra of real numbers.

WARNINGS
1. In general, AB = BA . Clear from the Example # 11.
2. The cancellation laws do not hold for matrix multiplication. That is, if
AB = AC, then it is not true in general that B=C.
For example: Consider the following three matrices
-3 2 -1 2 -1 2
-6 4 3 2 3 2
9 -10
AB = =AC ButB=C
18 -20
3. If a product AB is the zero matrix, you cannot conclude in general that

either A=0o0orB=0.

For example:

If AB= {8 ﬂ then it can be either
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Example
5 112 0 14 3
AB = =
3 2|4 3 -2 -6
AB—5 113 0] |15-1 0+3] |14 3
13 -2||-1 3] |6-8 0-6] |2 -6
Powers of a Matrix If A isan nxn matrix and if k is a positive integer, A* denotes the
product of k copies of A, A* = A...A Also, we interpret A’ as I.
k
Transpose of a Matrix Given an mxn matrix A, the transpose of A is the nxm matrix,
denoted by A", whose columns are formed from the corresponding rows of A.
OR, if A is an m x n matrix, then transpose of A is denoted by A', is defined to be the nxm

matrix that is obtained by making the rows of A into columns; that is, the first column of
Alis the first row of A, the second column of A'is the second row of A, and so forth.

Example 12 (Transpose of a Matrix)
The following is an example of a matrix and its transpose.

2 3
A=|1 4
5 6
At:{z 1 5}
3 46
-5 2
Example 13 Let A:{a b}, B=| 1 -3, C:{l 11 1}
c d -3 5 -2 7
0 4
1 -3
Then At{a c}’ BI{_S 1 0] ci |t S
b d 2 -3 4 1 -2
1 7

Theorem 3 Let A and B denote matrices whose sizes are appropriate for the following
sums and products.
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a. (A)'=A

b. (A+B)'=A"+B!

c. For any scalar r,(rA)' =rA'
d. (AB)' =B'A!

The generalization of (d) to products of more than two factors can be stated in words as

follows.
“The transpose of a product of matrices equals the product of their transposes in

the reverse order.”
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Lecture 12

The Inverse of a Matrix

In this lecture and the next, we will consider only square matrices and we will investigate
the matrix analogue of the reciprocal or multiplicative inverse of a nonzero real number.

Inverse of a square Matrix

If Alisan nxn matrix, A matrix C of order nxn is called multiplicative inverse of A if
AC =CA=1 where | isthe nxn identity matrix.

Invertible Matrix

If the inverse of a square matrix exists, it is called an invertible matrix.
In this case, we say that A is invertible and we call C an inverse of A.
Note: If B is another inverse of A, then we would have

B=BI =B(AC)=(BA)C=IC=C.
Thus when A is invertible, its inverse is unique.
The inverse of A is denoted by A™, so that

AAT = and ATA=1
Note: A matrix that is not invertible is sometimes called a singular matrix, and an
invertible matrix is called a non-singular matrix.

Warning
By No means A".A= AA™ =1 Theidentity matrix A™ :%, as in case of

real number, we have3™ :%.

A is, in fact the nxn matrix corresponding to the nxn matrix A, which satisfies the
property

A" A= AA" =1 Theidentity matrix
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2
Example1l If A={ 3

5 -7 -5
and C-= , then
-7 3 2

2 51-7 -5 -14+15 -10+10
AC = = = and
-3 7| 3 2 21-21 15-14
-7 5|2 5 -14+15 -35+35
CA = = =
3 21||-3 -7 6-6 15-14

Thus C =A™,

a b
Theorem Let A= { }
- c d

If ad —bc # 0, then A is invertible or non singular and A™ =

1 d -b
ad-bc|—-c a

The quantity ad —bc is called the determinant of A, and we write
det A=ad —bc

If ad —bc =0, then A is not invertible or singular.

This implies that a 2x2 matrix A is invertible if and only if det A= 0.

3 4
Example 2  Find the inverse of A:{5 6}'

Solution We have det A =3(6) - 4(5) = -2 #0.

. : , 1,6 -4 6/(-2) -4/(-2) -3 2
Hence A is invertible A~ =— = =
-2|-5 3 -5/(-2) 3/(-2) 5/2 -3/2
The next theorem provides three useful facts about invertible matrices.

Theorem
a. If Ais an invertible matrix, then A is invertible and (A™)™* = A

b. If A and B are nxn invertible matrices, then so is AB, and the inverse of AB is
the product of the inverses of A and B in the reverse order. That is
(AB)* =BA™

c. If Ais an invertible matrix, then so is AT, and the inverse of AT is the transpose of
Al Thatis (A")*=(A™Y)
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Proof
(a) We must find a matrix C such that A™C =1 and CA*' =1

However, we already know that these equations are satisfied with A in place of C. Hence
Al is invertible and A is its inverse.

(b) We use the associative law for multiplication:

(AB)(B*A') = A(BB)A™
= AIA™?
= AA™
=

A similar calculation shows that (B™*A™)(AB) =1 .
Hence AB is invertible, and its inverse is B'A™ i.e (AB) " =B*A™"

Generalization
Similarly we can prove the same results for more than two matrices i.e

((A)AA)-(A)) =ATAL T ATATAT

The product of nxn invertible matrices is invertible, and the inverse is the product of
their inverses in the reverse order.

Example 3 (Inverse of a Transpose). Consider a general 2x2 invertible matrix and its

transpose:
a b . |a ¢
A= and A =
c d b d

Since A is invertible, its determinant (ad — bc) is nonzero. But the determinant of A'is
also (ad — bc ), so A'is also invertible. It follows that

d _c
(At =| N be ada— be | (1)
- ad —bc ad-bc
d _ b
Now Al ad —bc ad —hc
ad —bc ad-bc
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d ¢
Therefore,  (A™)'= ad —bc ad-bc| ()
B b a
ad —bc ad-bc
From (1) and (2), we have
(At)—l — (A—l)t '

Example 4 (The Inverse of a Product). Consider the matrices

S

7 6
AB = |
Here 8 6 4 3
(AB)—lzLAdj(ABFi U=
| AB| 209 7|7|-2 2
3 2] [3 -2
A‘l:iAdj(A):l{ }[ }
Al -1 1|7|-1 1
2 27 [1 -1
B =1 Adj(B) =1 - ,
B 222 3|7 |4

3
2
s [T 13 2] [4 -8
[ I 1 R N [ R
Thus, (AB)'=B*A™
Theorem: If A is invertible and n is a non-negative integer, then:
(a) A" is invertible and (A" = A" = (A™)"
(b) kA is invertible for any nonzero scalar k, and (kA)* = k*A™,

Example 5 (Related to the above theorem)
@) Let

12 3 2] [3 -2
A= then A = = Adj(A) = - -
13 A 11 1|71 1

S TE e P M S e
T o A R

- 1 41 -30] [41 -30] ., ..,
- stamals w5 T
(11)(41) - (30)15)|-15 11 | |-15 11

(b)
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30 3 —6] [-1/15 2/15
kA=3A= , (kA —1:(3A —1:L _|-v15 2ns "
° 3 9-54|-9 3| | 15 -1/15

P
5|-3 1
A=S0 k'lA'lz\g'l,A\-lzl__1 1 2| -1/15 2/15 "
3’5(-3 1| | 1/5 -1/15

From (1) and (2), we have
(BA)*=3"A"

There is an important connection between invertible matrices and row operations that
leads to a method for computing inverses. As we shall see, an invertible matrix A is row
equivalent to an identity matrix, and we can find A by watching the row reduction of A
to I.

Elementary Matrices
As we have studied that there are three types of elementary row operations that can be
performed on a matrix:
There are three types of elementary operations
e Interchanging of any two rows
e Multiplication to a row by a nonzero constant
e Adding a multiple of one row to another

Elementary matrix

An elementary matrix is a matrix that results from applying a single elementary row
operation to an identity matrix.

Some examples are given below:
100 0

1 0 3 1 0 O
1 0 0O 0O 0 1
[0_3},0010,010,010

O 0 1 0O 0 1

0O 1 0 O

Multiply the Interchange the ~ Add 3 times the Multiply the
second row second and third row of I3 t0  first row of
of Lby-3.  fourth rows of I,.  the first row. I3 by 1.

From Def it is clear that elementary matrices are always square.

Elementary matrices are important because they can be used to execute elementary row
operations by matrix multiplication.
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Theorem If Aisan nxn identity matrix, and if the elementary matrix E results by
performing a certain row operation on the identity matrix, then the product EA is the
matrix that results when the same row operation is performed on A.

In short, this theorem states that an elementary row operation can be performed on a
matrix A using a left multiplication by and appropriate elementary matrix.

Example 6 (Performing Row Operations by Matrix Multiplication). Consider the

1 0 2 3
matrix A=12 -1 3 6
1 4 40

Find an elementary matrix E such that EA is the matrix that results by adding 4 times the
first row of A to the third row.

Solution: The matrix E must be 3x3 to conform to the product EA. Thus, we obtain E

1 00

by adding 4 times the first row of I, to the third row. ThisgivesusE={0 1 0
4 01

1 0 02 0 2 3 1 0 2 3

As a check, the product EAis EA={0 1 0(|2 -1 3 6(=|2 -1 3 6
4 0 1|1 4 40 5 4 12 12

So left multiplication by E does, in fact, add 4 times the first row of A to the third row.

If an elementary row operation is applied to an identity matrix I to produce an elementary
matrix E, then there is a second row operation that, when applied to E, produces I back
again.

For example, if E is obtained by multiplying the i-th row of | by a nonzero scalar c, then
I can be recovered by multiplying the i-th row of E by 1/c. The following table explains
how to recover the identity matrix from an elementary matrix for each of the three
elementary row operations. The operations on the right side of this table are called the
inverse operations of the corresponding operations on the left side.

Row operation on | that produces E Row operation on E that reproduces |
Multiply row i by c#0 Multiply row i by 1/c

Interchange rows i and j Interchange rows i and j

Add c times row i to row j Add —c times row i to row j
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Example 7 (Recovering ldentity Matrices from Elementary Matrices). Here are three
examples that use inverses of row operations to recover the identity matrix from

o i)l 7)ol 2]

. Multiply
tngg% d the second
row by 7 row by 1/7.
B o 1)
— —
0 1 Interchange 10 Interchange 0 1
the first and the first and
second rows. second rows.
1 O 1 5 1 0
- -
0 1 0 1 0O 1
Add 5 times Add -5 times
the sert]:o?.d row the second row
fo the first. to the first.

The next theorem is the basic result on the invertibility of elementary matrices.

Theorem An elementary matrix is invertible and the inverse is also an elementary

matrix.
1 0 010 100
Example8 Let E,=| 0 1 10 0, E=0120
-4 0 0 01 0 05

0
0|, E,=
1

C

f

a b
A=|d e
g h i

Compute E; A, E,A, E3A and describe how these products can be obtained by elementary
row operations on A.

Solution We have

a b C d e f a b c
E,A=| d e f |, EA=la b c| ESA=|d e f
g—4a h-4b i-4c g h i 5g 5h 5i
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Addition of (-4) times row 1 of A to row 3 produces E;A. (This is a row replacement
operation.) An interchange of rows 1 and 2 of A produces E,A and multiplication of row
3 of A by 5 produces EzA.

Left-multiplication (that is, multiplication on the left) by E; in Example 8 has the same
effect on any 3xn matrix. It adds — 4 times row 1 to row 3. In particular, since E; | =
E;, we see that E; itself is produced by the same row operation on the identity. Thus
Example 8 illustrates the following general fact about elementary matrices.

Note: Since row operations are reversible, elementary matrices are invertible, for if E is
produced by a row operation on I, then there is another row operation of the same type
that changes E back into 1. Hence there is an elementary matrix F such that FE = 1. Since
E and F correspond to reverse operations, EF = I.

Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the
same type that transforms E back into 1.

1 00
Example Find the inverseof E,=| 0 1 0].
-4 0 1

Solution: To transform E into I, add + 4 times row 1 to row 3.

1 00
The elementary matrix which does thatis E;*=| 0 1 0
+4 0 1

Theorem An nxn matrix A is invertible if and only if A is row equivalent to I,,, and in
this case, any sequence of elementary row operations that reduces A to I, also transforms
I into A,

An Algorithm for Finding A If we place A and | side-by-side to form an augmented
matrix [A 1], then row operations on this matrix produce identical operations on A and I.
Then either there are row operations that transform A to I, and I, to A, or else A is not
invertible.

Algorithm for Finding A™

Row reduce the augmented matrix [A I]. If A is row equivalent to I, then [A 1] is
row equivalentto [I A™]. Otherwise, A does not have an inverse.
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0 1 2
Example 9  Find the inverse of the matrix A{l 0 3|, ifitexists.
4 -3 8
0 1 2100 1 0 3010
Solution [AI]l=(1 0 3 01 O0(~(0 1 21 0 0R,
4 -3 8 001 4 -3 8 001
-4R +R, 3R, +R,

-2R, +R, -3R,+ R,
103 0 1 O 100 -9/2 7 -=3/2
~l0 12 1 0 O0|~01 0 -2 4 -1
0 0 1 3/2 -2 1/2 0 01 3/2 -2 1/2
-9/2 7 -3/2
Since A~ I, we conclude that A is invertible,and A" =| -2 4 -1
3/2 -2 1/2

It is a good idea to check the final answer:
0 1 2|-9/2 7 -=3/2

1 00
AA*=|1 0 3| -2 4 -1 (=010
4 -3 8| 3/2 -2 1/2 0 01

It is not necessary to check that A™A = | since A is invertible.

1

301

Example 10 Find the inverse of the matrix A= , if it exists.

R O W N
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1 2 3 1 1 2 31
-1 3 -3 -2 0 5 -6 -
Consider detA= =
0 1 5 0 4 7 3
1 -2 5 0 5 7 2
operating R2 + Rl’ R3 -2R1, R4 -3R1
5 6 -1 5 6 -

Expand from first column ={-4 7 3|=1 1 2|=5(1-2)+6(1-0)-1(1-0)=0
S5 7 21011
As the given matrix is singular, so it is not invertible.

1 01
Example 11 Find the inverse of the given matrix if possible A=|2 1 1
3 11
10
Solution detA=12 1 1=-1
31

As the given matrix is non-singular therefore, inverse is possible.

101 100
2 11 010
311 001
10 1 1

01 -1 2 1
01 -2 3 0
R,—2R,R, 3R,
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10 1 1
01 -1 2 1
00 -1 -1 -1 1
R,-R,

10 1 1
01 -1 -2
00 1 1 1 -1

MultiplyR, by -1

1 00 0 -1 1
010 -1 2 -1
0 01 1 1 -1
R —R;,R, +R,
0 -1 1
Hence the inverse of matrix Ais A*=|-1 2 -1
1 1 -1
1 2 2
Example 12 Find the inverse of the matrix A=|2 2 3
5 2 3
1 2 2
Solution detA=2 2 3=6
5 2 3

As the given matrix is non-singular, therefore, inverse of the matrix is possible.
We reduce it to reduce echelon form.

1 2 2
2 2 3
5 2 3

o O -
o — O
— O O
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1 2 2 1
0 -2 -1 -2 1
0 -8 -7 -5 0
R, -2R,,R, —5R,
1 2 2 1 0 O
0 1 1/2 1 -1/2 0
0 -8 -7 -5 0 1
multiply 2nd row by -1/2
1 2 2 1 0 O
0 1 1/2 1 -1/2 0
0 0 -3 3 4 1
R; +8R,
1 2 2 1 0 0
0 1 1/2 1 -1/2 0
0 0 1 -1 4/3 -1/3
Multiply 3rd row by -1/3
_ g ) 7
3 = =
0 3 3
10 3/2 -7/6 1/6
1 -1 4/3 -1/3
00 0 -1/3 1/3]
10 3/2 -7/6 1/6
01 -1 4/3 -1/3]
R,-(1/2)R;,R -2R,
0 -1/3 1/3
Hence the inverse of the original matrix A" =|3/2 —-7/6 1/6
-1 4/3 -1/3
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Exercises

In exercises 1 to 4, find the inverses of the matrices, if they exist. Use elementary row
operations.

_ 1 05
1. . 2} 2.1 1 0
59
- 13 2 6
1 4 -3 1 -1
3.|-2 -7 6 4,10 1 2
17 2 -1 0 8
3 4 -1 -1 3 -4
511 0 3 6.2 4 1
2 5 4 -4 2 -9
(-1 5 -7
7.Let A=| 2 5 6 |.Find the third column of A™ without computing the other
|1 3 4
columns.
[-25 -9 -27
8.Let A=|546 180 537 |.Find the second and third columns of A without
1154 50 149

computing the first column.

9. Find an elementary matrix E that satisfies the equation.
@EA=B (b)EB=A (c)EA=C (dEC=A

3 4 1 8 1 5 3 4 1
where A={2 -7 -1|,B=|2 -7 -1{,C=|2 -7 -1].
8 1 5 3 4 1 2 -7 3
1 0 -2
10. Consider the matrix A={0 1 0
00 2

(a) Find elementary matrices E; and E; such that E;E;1A=I.
(b) Write A™ as a product of two elementary matrices.
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(c) Write A as a product of two elementary matrices.
In exercises 11 and 12, express A and A™ as products of elementary matrices.

2 11 110
11. A=|1 2 1 12. A=|1 1 1
1 1 2 011
0O 1 7 8
13. Factor the matrix A=| 1 3 3 8 | as A=EFGR, whereE, F, and G are
-2 -5 1 -8

elementary matrices and R is in row echelon form.
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Lecture 13

Characterizations of Invertible Matrices

This chapter involves a few techniques of solving the system of n linear equations in n
unknowns and transformation associated with a matrix.

Solving Linear Systems by Matrix Inversion

Theorem
Let A be an nxn invertible matrix. For any beR", the equation Ax =b ..... (1) has the
unique solution i.e. x = A™b.

Proof

Since A is invertible and be R" be any vector. Then, we must have a matrix A™b which
is a solution of eq. (1) .i.e. Ax=A(A'b)=1lb=bh.
Unigqueness
For uniqueness, we assume that there is another solution u. Indeed, it is a solution of
eq.(1) so it must be u = A™'b, it means x = A b = u. This shows that u = x.
Theorem
Let A and B be the square matrices such that AB = I. Then, A and B are invertible with
B=A'andA=B"
Example 1
Solve the system of linear equations
2X, + X, + %X, =1
SX, + X, +3X, =3
X, + 4%, =6

Solution

Consider the linear system
2X, + X, + %X, =1

SX, + X, +3%;, =3

X, + 4x, =6

The Matrix form of system is Ax = b, where
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2 11 X,
A=|5 1 3|, x=|x,|, b=
10 4 X,
Here, det (A) =2(4)-1(20-3)+1(0-1)=8-17-1=-10#0
So, A is invertible. Now, we apply the inversion algorithm:
2 1 1 0]
3 0
_1 0 .
1 4 0 0 1]
5 3 010
|2 1 0 0]
1 0 4 0 0 1
0 1 -17 0 1 5|, -5R +R,, -2R +R;,
01 -7 1 0 -2
1 0 4 0 0 1
0 1 -17 0 1 5|, -R,+R;,
0 0 10 1 -1 3
1 4 0O 0 1 R
1 -17 0 1 -5 =2
1 1 3 10
00 1 - = =
L 10 10 10
1 00 2 2 -
5 5 5
17 -7 1
010 — — —|, -4R, + ,—17R, +R
10 10 10 s+ R 0
0 0 1 i __l i
i 10 10 10|
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2 2 ]
5 5 5
Hence, I L
10 10 10
1 13
110 10 10
2 2 —2]
5 5 5| 5
Thus, the solution of the linear system isx = A"b= A" = r-r 1, 1
10 10 10 6 5
1 13 8
110 10 10 5 |
X, +2X, +3%, =5
Example # 2 Solve the system< 2x, +5x, + 3%, =3 by inversion method.
X, + 8x; =17
X, +2X, +3%, =5
Solution Consider the linear system< 2x, +5X, +3X; =3
X, + 8x; =17
This system can be written in matrix form as Ax = b, where
1 2 3 X, 5
A=|2 5 3|, x=|X,|, b=|3
1 0 8 X, 17
Here, [det (A)] =40-2(16-3)+3(0-5)=40-26-15=-1+0
Therefore, A is invertible.
Now, we apply the inversion algorithm:
1 2 3 1 00
2 5 3 010
1 0 8 0 01
1 2 3 1 00
1 -3 -2 1 0|-2R+R,, —-1R +R,
0 -2 5 -1 01
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1 2 3 1 00
01 -3 |21 0|2R+R,
00 -1 | 521
1 2 3 1 0 0]
01 -3 | -2 1 0]|-IR,
00 1 5 —2 1]
1 2 0 14 6 3]
010 |13 -5 -3|3R,+R,, -3R,+R,
0 0 1 5 2 —1]
1.0 0 40 16 9|
010 |13 -5 -3|-2R,+R
001 |5 -2 -1

40 16 9

Hence, A't=| 13 -5 -3
5 -2 -1

-40 16 9 || 5 1
Thus, the solution of the linear systemisx=A"b=| 13 -5 -3 3 |=|-1
5 -2 -1||17 2

Thusx, =1,X, =-1,X,=2.

Note: Itis only applicable when the number of equations = number of unknown and fails
if given matrix is not invertible.
Example 3
Solve the system of linear equation
X, +6X, +4X; =2
2X, +4X, — X, =3
—X, +2X, +5X; =3
Solution
The matrix coefficient

1 6 4

A= 2 4 -1
-1 2 5

det (A) =1(20 + 2) - 6(10 — 1) + 4 (4+4)
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=22-54+32
=0
Thus, A is not invertible. Hence, the inversion method fails.
Solution for the system of a nx n Homogeneous linear equations with
an Invertible Coefficient Matrix:-
Let see if the system is considered as homogeneous then what does the above theorem
say?
Theorem:-
Let Ax = 0 be a homogeneous linear system of n equations and n unknowns. Then, the
coefficient matrix A is invertible iff this system has only a trivial solution.

Example 4
State whether the following system of linear equation has a solution or not?

2X, + X, +3%, =0

X, —3X, + X, =0
X, -4x, =0
Solution
We see
2 1 3
A=1 -3 1 |isaninvertible matrix (det (A) #0)
1 0 4

Thus, this homogeneous linear system has only the trivial solution.

Example 5

X, +X,+ %X, =8
Solve 2X, + 3%, = 24
5X +5X, +X; =8

Solution This system can be written in matrix form as Ax = b, where

111 X, 8
A=|0 2 3|, x=|X|, b=|24
551 X, 8
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Here [det (A)] =1(2-15)-1(0-15)+1(0-10) =-13+15-10=-8 #0
Therefore, A is invertible.

Now, we apply the inversion algorithm:

A I3
11 1 100
0 2 3 010
551 00 1
11 1 1 00
0 2 3 0 1 0| -5R+R,
0 0 -4 50 1
1 1 1 0 0
01§ ololR2
2 2 2
0 0 -4 5 0 1
10 % 1 1o
2 2
3 1
01 = 0 = 0 1R, +
> > , TR
0 0 -4 5 0 1
10—1 1—10
2 2
01 3 o LI o —le
2 2 4
00 1 S o 1
i 4 ]
10—1 1—10
2 2
01 0 | B L 3] 3p.p
8 2 8 2
00 1 S o4 1
L 4 4
100 | B L1
8 2 8
15 1 3 1
010 = - = R+
8 2 8 23R1
00 1 E0—1
. 4 4]
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13 1 1]
8 2 8
Hence, ato| 1 3
8 2 8
5 o 1
L 4 ]
Thus, the solution of the linear system is
13 1 1]
X:Ailb: —35 E g 24 = O
8 8
5 o 1
L 4 ]

Thus x, =0,x, =0,X, =8.

Theorem (Invertible Matrix Theorem) Let A be a square nxn matrix. Then the

following statements are equivalent. (Means if any one holds then all are true).
@) A'is an invertible matrix.
(b) A is row equivalent to the nxn identity matrix.
(©) A has n pivot positions.
(d) The equation Ax = 0 has only the trivial solution.
(e) The columns of A form a linearly independent set.
U] The linear transformation x — Ax is one-to-one.
(9) The equation Ax = b has at least one solution for each b in R".
(h)  The columns of A span R".
(i) The linear transformation x — Ax maps R" onto R".
() There is a nxn matrix C such that CA=1.
(K) There isa nxn matrix D such that AD = 1.

()  ATisan invertible matrix.

Example 6
1 0 -4

Show that the matrix A=|1 1 5 | isinvertible by using Invertible Matrix Theorem
01 2
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Solution

By row equivalent,

10 -4

A=[1 1 5| -R+R,
01 2

1 0 -4

01 9|-R+R,

01 2

1 0 -4

01 9

00 -7

It shows that A has three pivot positions and hence is invertible, by the Invertible Matrix

Theorem (c).

Example 7
Use the Invertible Matrix Theorem to decide if A is invertible, where
1 0 -2
A=|3 1 =2
-5 -1 9
Solution
1 0 -2 1 0 -2
A=|0 1 4 |~|0 1 4 | Here, A has three pivot positions and hence is
0o -1 -1 0 0 3

invertible by the Invertible Matrix Theorem (c).

Example 7  Find A'and show that A'is an invertible matrix.

1 210
A:2411
1 011
0111
Solution
1 210
At=2401
1111
0111
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Now, by row equivalent of A,

R2_2R1’R3_R1 R23
1 210l 1 2 1 0] 1 2 10
A_2411 0 0 -1 1| |0 2 0 1
11 011 ]0o =2 0 1/ |0 0 -1 1
011110 1 1 1/ 1|0 1 1 1
1
—ER2 R, —R, (-DR, ~Ry+R,
1201 o1 ]t 21 0 121 0 1 2 0
10 lo1 o X lo1o 2 o100 2
010—5 2 2 2
00 1 1 00 -1 1 001 -1/ [0 0 1 -1
01 1 00 1 3 001 2 000 2
: 0 2 || 2] | 2 |

Here A has 4 pivot positions so by Invertible Matrix Theorem (c) A is invertible. Thus,

by (I) A'is invertible.

Example 8
Use the Invertible Matrix Theorem to decide if A is invertible, where
1 210
A 2 41 2
1 01 2
0112
Solution
R2_2R1’R3_R1 R23
1 210 1 2 1 0 1 2 1 0
A—2412~00_12~0_202
1 01 2 0 -2 0 2 0O 0 -1 2
0112 0 1 1 2 0O 1 1 2
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1
- E Rz R4 - Rz (_1) R3 3
1 2 1 O 1 2 1 0 1 21 O 1 21 0
01 0 -1 01 0 -1 01 0 -1 01 0 -1
0 0 -1 2 0 0 -1 2 0 01 -2 0 01 -2
01 1 2 0 0 1 3 0 01 3 0 00 5

Here, A has 4 pivot positions and hence is invertible by Invertible Matrix Theorem (c).

Solving Multiple Linear Systems with a Common Coefficient Matrix

This technique is used in solving a sequence of linear systems
Ax, =b, Ax,=b,, ---, Ax =D, (1)
where coefficient matrix A remains same and off course if it is invertible, then we have a
sequence of solutions. i.e.
x, =AM, x,=A",, -+, x, =A"Db,.

Find a Matrix from Linear Transformation

We can find a matrix corresponding to every transformation. In this section we will learn
how to find a matrix attached with a linear transformation.

Example 9

Let L be the linear transformation from R? to P, (Polynomials of order 2) defined by
T(X, y) =xyt+(x+y)t’

Find the matrix representing T with respect to the standard bases.

Solution

Let A = {(1,0),(0,1)} be the basis of R?, then

T(1,0) =t* = (0,0,1) (This triple represents the coefficients of polynomial t?)

ie t?=0.1+0t+1t

Similarly, T (0, 1) = £ =(0,0,1). Hence, the matrix is given by

0 0
A=|0 0
1 1

Now, we will proceed with a more complicated example.

©Virtual University Of Pakistan 152



13- Characterization of Invertible Matrices VU

Example 10
Let T be the linear transformation from R? to R® such that T(x, y) = (x , y + 2x). Find a

matrix A for T.
Solution
This matrix is found by finding T (1, 0) = (1, 2) and T(0,1) = (0, 1)The matrix

. 10
ISA= )
3

Important Note

It should be clear that the Invertible Matrix Theorem applies only to square matrices. For
example, if the columns of a 4x3 matrix are linearly independent, we cannot use the
Invertible Matrix Theorem to conclude any thing about the existence or nonexistence of
solutions to equations of the form Ax = b.

Invertible Linear Transformations

Recall that matrix multiplication corresponds to composition of linear transformations.
When a matrix A is invertible, the equation A*Ax = x can be viewed as a statement about
linear transformations. See Figure 2.

Multiplication

by A

o AX

Multiplication

by A*
Figure 2 A™ transforms Ax back to x

Definition
A linear transformation T : R" — R" be a linear Transformation and A be a standard
matrix for T. Then, T is invertible if and only if A is an invertible matrix in that case
linear transformation S given by S(x) = A™x is a unique function satisfying (1) and (2)
S(MT(x))=xV xeR" @
T(S(x))=xV xeR" (2)
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Important Note

If the inverse of a linear transformation exits then it is unique.

Proposition
Let T : R" — R™be linear transformation, given asT (x) = Ax ,V xeR", where A is

a mxn matrix. The mapping T is invertible if the system y = Ax has a unique solution.

Case 1:

If m<n, then the system Ax =y has either no solution or infinitely many solutions, for
any y in R™ Therefore, y = Ax is non-invertible.

Case 2:

If m=n, then the system Ax =y has a unique solution if and only if Rank (A) = n.
Case 3:

If m > n, then the transformation y = Ax is non-invertible because we can find a vector

y in R™ such that Ax =y is inconsistent.
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Exercises

1.Solve the system of linear equations by inverse matrix method.

X, +X, +4%X, =2
2X, +3%;, = 4
OX +X, =% =3

s o 2o mn{]

(a) Find A™ and use it to solve the equations Ax = by, Ax = by, AX = bz, AX = b,
(b) Solve the four equations in part (a) by row reducing the augmented matrix
[A b b, b b].
3. (a) Solve the two systems of linear equations
X +2X, + % =-1
X, +3X, +2X%, =3
X, +2X, =4
&
X, +2X,+ X% =0
X, +3X, +2%, =0
X, +2X, =4
by row reduction.
(b) Write the systems in (a) as Ax = b; and Ax = b,, and then solve each of them by the
method of inversion.

Determine which of the matrices in exercises 4 to 10 are invertible?

5 0 3 2 3 4 5 -9 3

-4 16
4. 3 _g 5.7 0 2 6./2 3 4 7.10 3 4
9 01 2 3 4 1 0 3
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1 3 0 -1 100 0 7 -6 -4 1
g |0 1 2 -1 12500 o |5 1 0 2
2 6 3 2 368 0 10 11 7 -3
3 5 8 -3 47 9 10 19 9 7 1
(5 4 3 6 3]
7 6 5 9 5
1.8 6 4 10 4
9 8 9 -5 8
10 8 7 -9 7]

12. Suppose that A and B are nxn matrices and the equation ABx = 0 has a nontrivial
solution. What can you say about the matrix AB?

13. What can we say about a one-to-one linear transformation T from R" into R"?

14. Let T : R> — R?be a linear transformation given asT (x) = 5x, then find a matrix A of
linear transformation T.

In exercises 15 and 16, T is a linear transformation from R? into R?. Show that T is
invertible.

15. T(x,, X,) = (-5% +9X,,4X, —7X,)

16. T(x,,X,) = (6%, —8X,,—5% +7X,)

17. Let T : R™ — R" be a linear transformation and let A be the standard matrix for T.

Then T is invertible if and only if A is an invertible matrix.
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Lecture 14

Partitioned Matrices

A block matrix or a partitioned matrix is a partition of a matrix into rectangular
smaller matrices called blocks.Partitioned matrices appear often in modern applications
of linear algebra because the notation simplifies many discussions and highlights
essential structure in matrix calculations. This section provides an opportunity to review

matrix algebra and use of the Invertible Matrix Theorem.

General Partitioning of a Matrix -
A matrix can be partitioned (subdivided) into sub matrices (also called blocks) in

various ways by inserting lines between selected rows and columns.

Example 1
The matrix
112 2
112 2
P:
3 3 4 4
3 3 4 4

can be partitioned into four 2x2 blocks

F)_11p_22p_33p_44
Bl 1) 2 2)7 (3 32 (4 4)

The partitioned matrix can then be written as

(B %)
P21 P22

Example 2
3 0 115 9 |2
The matrixA=| -5 2 4 |0 -3 |1

can also be written as the 2x3 partitioned (or block) matrix
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A:[An A /ﬂ
Au Ay A,

whose entries are the blocks or sub matrices.
Note:-

It is important to know that in how many ways to block up an ordinary matrix A. See the
following example in which a matrix A is block up into three different ways.

Example 3

Let A be a general matrix of 5x 3 order, we have

Partition (a)

(a,|a, a,
N li_izz ::3 {Au Au}
HEOE AL A,

A, | 8y Ay

|85 | &5, 8s3 |

In this case we partitioned the matrix into four sub matrices. Also notice that we
simplified the matrix into a more compact form and in this compact form we’ve mixed
and matched some of our notation. The partitioned matrix can be thought of as a smaller
matrix with four entries, except this time each of the entries are matrices instead of
numbers and so we used capital letters to represent the entries and subscripted each one
with the location in the partitioned matrix.

Be careful not to confuse the location subscripts on each of the sub matrices with the size

of each sub matrix. In this case A1 is a2 x1 sub matrix of A, A1, isa2x2 sub matrix

of A, Ao isa 3x1sub matrix of A and A isa 3x3sub matrix of A.

©Virtual University Of Pakistan 158



14-Partitioned Matrices VU

Partition (b)

8y | @ | &g
Ay | 8y | 8y
A= Ay | Ay | Qg :[Cl | C | Cs]
Ay | Qg | Gy3
| 81| 5, | 853 |

In this case, we partitioned A into three column matrices each representing one column in
the original matrix. Again, note that we used the standard column matrix notation (the
bold face letters) and subscripted each one with the location in the partitioned matrix.
The c; in the partitioned matrix are sometimes called the column matrices of A.
Partition (c)

a; a, a I N i
8y dp Ay Tg
A=lay, a, a; |= E
8 dp A I’_4

851 85 85 | L f5 ]

Just as we can partition a matrix into each of its columns as we did in the previous part
we can also partition a matrix into each of its rows. The r; in the partitioned matrix are
sometimes called the row matrices of A.

Addition of Blocked Matrices

If matrices A and B are the same size and are partitioned in exactly the same way, then it
is natural to make the same partition of the ordinary matrix sum A + B. In this case, each
block of A + B is the (matrix) sum of the corresponding blocks of A and B.

Theorem
If Aismxnand B is nxp, then

©Virtual University Of Pakistan 159



14-Partitioned Matrices VU

Row, (B)

Row, (B)
AB =Col, (A) + Col, (A) +...+Col, (A) :

Row, (B)
= Col, (A)Row, (B) + Col, (A)Row, (B) +...+Col , (A)Row, (B)
Proof
For each row index | and column index j, the (i,j) entry in coly (A) rowy (B) is the product
of ajk from coly (A) and by; from rowy (B).

Hence, the (i,j)-entry in the sum shown in (2) is

aubu + aZlb2j +oF anlbnj

(k=12,...,n)
This sum is also the (i,j)- entry in AB by the row column rule
Example 4
Let
B, B
A:[All Aﬂ} and B ={ H 12} , then
A21 AZZ BZl BZZ

A_I_B:{An A12:|+|:Bll Blz}
Ay Ay, B, B

:|:A11+Bll A12+812:|
A21 + BZl AZZ + BZZ

Similarly, subtraction of blocked matrices is defined.

Multiplication of a partitioned matrix by a scalar is also computed block by block.

Multiplication of Partitioned Matrices

A Ay
Bll BlZ
If A=A, A, and B=
A3 A3 BZl BZZ
1 2

and if the sizes of the blocks confirm for the required operations, then
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Ail A12 B Ail Bll + A12 BZl Ail BlZ + AiZ BZZ
AB=| A, A, |:Bll 12}: AuBy +A,B,  ABL +A,B,,
A31 ABZ “ * A31 Bll + A32 BZl A?.l BlZ + A32 BZZ
It is known as block multiplication.
Example 5
Find the block multiplication of the following partitioned matrices:
g
1 2 1|0 2 3 0 B
A=|-1 -2 3 ]1 1 =[A“ A”] B=|-5 1 {Bﬂ}
2 1 211 3| M 0 8 a
L 0 2_
Solution
Let
1 2 1 0 2 )
A= 1 23 VA, = 11 A, =[2 1 -2]and A, =[1 3]
(2 1
0 8 B,
B,=/3 0|, B,= So B=
£ 1 0 2 B,,
Now )
AB:|:A11 AJ.2:||:Bll}:|:AllBll+A12821j|
AZl A22 BZl AZl Bll + A22 BZl

This is a valid formula because the sizes of the blocks are such that all of the operations
can be performed:

2 1
5 . B_1 2 1 30+0208_3 4
AuBy Al“l_—l—zs 1 1)l0 2| |-23 14
5 1
2 1
0 8
AB,+A,B,=[2 1 2] 3 0+ 3]0 )
5 1

=[17 0]+[0 14]=[17 14]
Thus,
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AB — |:A11 Bll + A12 BZl:| — _23 162
A21 Bll + A22 BZl 17 14
Note - We see result is same when we multiply A and B without partitions
2 1

1 2 1 0 23 0 3 6

AB=-1 -2 3 1 1||-5 1|=|-23 12

2 1 -2 1 3|0 8 17 14

L O 2_

Note - Sometimes it is more useful to find the square and cube powers of a matrix.
Example 6

The block version of the row —column rule for the product AB of the partitioned matrices

2 -1
3 -4 110 2 3 0
A=|-1 5 —3]1 4 =[A“ Aﬁz}, B=[-5 1 =[B“}
2 0 211 6| L M 4 3| LPa
_O 2_
where
2 -1
4 -3
B,=/3 0 |and 821:[0 2}
-5 1
So

AB_ Ail A12 Bll _ AilBll+A12821
{Am AJ{BHHAMBNAQBJ

This is a valid formula because the sizes of the blocks are such that all of the operations
can be performed:

2 -1
B+B—3_4130+024_3__112
A1111A1221__15_3 1402_323
-5 1
2 -1
4 -3
AuBL+AB,=[2 0 2]/ 3 0 |+]1 6]{0 2}:[18 °
-5 1

Thus,

©Virtual University Of Pakistan 162



14-Partitioned Matrices VU

-11 2
AB :{AilBll_F AiZBZl}: 32 3
A21Bll + A22 BZl 18 5
This result can be confirmed by performing t_he compl_Jtation.
2 -1

3 4 1 0 2|3 O -11 2
AB=|-1 5 -3 1 4||-5 1|=/32 3
2 0 -2 1 6|4 -3 18 5

Example 7
Making block up of matrix

2 0 00

. evaluate A??

o O o o
o o o N
o O N O
o N O O
N O N N DN

Solution

We partition A as shown below

where A, =

>

Il
O O o o N
O OO N O
o O/lN O O
O N O O O
N O N NN DN

o O O

Now
AZ — 2'3 A32 2'3 A32
O,, 21,){0, 2I,

(4l 4A,
o, 41,
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Hence

AZ =

O O O O b
o O O ~ O

Example 8

Let A=

. O O O O k-

Solution

o O ~ O O

R O O O +— O

o M O O O
A~ O 00 0 0o

Evaluate A ?

R O O —r O O
o O O O O
O r O O O O

P O O F B B

We partition A as shown below

Now

|3 032 Al 1
=0, I, O,| where A=|1
A" O, 1 1

>

I
RO OO O B+
IO OO +— O
Ol B O O O
Ol OO O O

O O, O O
RO Ok Kk -

A l,+AA" O, A+A
021 = 023 |2 O21
1

A'+A" O, A'A+L

|
A*=|0, I, 0O,]lO

N
w
N

>
Ke)
-
>
ke

2 11 2
L+AA'=1 2 1[,A+A=|2|,A'+A'=[2 2 2]
11 2

]

2
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Hence A? =

O O O O O
O r O O O O

N O O PN
N O O F N -
N O O N - -
A O O DD DD

Toeplitz matrix

A matrix in which each descending diagonal from left to right is constant is called a
Toeplitz matrix or diagonal-constant matrix

al 2 3
. 4 a 1 2|, . )
Example 9  The matrix A= 5 4 1 is a Toeplitz matrix.
a
6 5 4 a

Block Toeplitz matrix

A blocked matrix in which blocks (blocked matrices) are repeated down the diagonals of
the matrix is called a blocked Toeplitz matrix.

A block Toeplitz matrix B has the form

"BL1) B(L2 B(L3) B(L4) B(L5)]
B(21) B(Ll) B2 B(L3) B(L4)
B=|B@31) B(21) B@LD) B2 B(L3)
B(4,1) B(31) B(21) Bl B(2)
BG.1) B(41) BGE1 B@21) B |

Inverses of Partitioned Matrices

In this section, we will study about the techniques of inverse of blocked matrices.

Block Diagonal Matrices

A partitioned matrix A is said to be block diagonal if the matrices on the main diagonal

are square and all other position matrices are zero, i.e.
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D, O 0
0 D 0

A=| 1)
0 0 D,

where the matrices D;, D», ..., Dy are square. It can be shown that the matrix A in (1) is

invertible if and only if each matrix on the diagonal is invertible. i.e.

DY 0 .. 0
at_| O D,* .. 0
o 0 ..D"

Example 10 Let A be a block diagonal matrix

1 210 0|0]

1 -1/0 0|0

A=|0 0|1 1|0

0 5 4]0

0 0 0)2]
FindA™.
Solution

There are three matrices on the main diagonal, two are 2x2 matrices and one
iIs1x1matrix.

In order to find A™', we evaluate the inverses of three matrices lie in main diagonal of A.

1 2 11
LetA, = (1 _J, A, = (5 4} and A,, =(2) are matrices of main diagonal of A. Then

-1 -2
4 AdiA, (-1 01

An -3

Au

Wl Wk
I
oo||_\ wlN
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4 -1
-1 (_5 1
Similarly Ao =
L (41
Ao :(5 -1
% % O 0| O
1 O 0] O
= A'= 33
O 0|4 1, 0
O 0|5 -1 0
0 0|0 o =
L 2]
Example 11 Consider the block diagonal matrix
8 -7/0 0]0
1 -110 0|0
A=|0 0|3 1|0
0 0|5 2|0
|10 0|0 0|4

There are three matrices on the main diagonal — two 2x2 matrices and one 1x1 matrix.

1 -7 |0 0]0
1 8]0 010
41|00 ]2 -1}0
0 0 -5 3|0

0o 0olo ot

i 4

Block Upper Triangular Matrices

A partitioned square matrix A is said to be block upper triangular if the matrices on the
main diagonal are square and all matrices below the main diagonal are zero; that is, the

matrix is partitioned as
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A, A, ... Ay
O

A= A,QQ Aai where the matrices Ajr, Az,..., Ak are
O O A,

square.

Note The definition of block lower triangular matrix is similar.
Here, we are going to introduce a formula for finding inverse of a block upper triangular
matrix in the following example.

Example 12
Let A be a block upper triangular matrix of the form

A{Al A,

0 A }where the orders of A1; and Ay, are px pand qx q respectively. Find A
2

1

Solution

Bll BlZ . . 1
LetB = be inverse of A .i.e. A~ =B, then

AB=|:A11 AJ.2:||:811 Bl2:|:|:lp O:|
O AZZ BZl BZZ O Iq

|:A.lBll+A.ZBZI 'AJ.1812+A&.ZBZZ:|:|:IP Oi|

A,B,, A,B,, (O
By comparing corresponding entries, we have
A;B, +A,B, =1, 1)
A.B,+A,B,=0 2
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A;B, =0 ©)

A,B,= 1, (4)
Since Ay, is a square matrix, so by Invertible Matrix Theorem, we have A, is invertible.
Thus by eq.(4), B2z = A»™. Now by eq. (3), we have B,, = A,O = O .Fromeq.()
A.B, +O =1,

= A11Bll = Ip
= B,; = 'A‘llil

Finally, form (2),
A11812 = _A12 Bzz = _AleS and BlZ = _A111A12A;21

Thus
A1 A1 -1 -1 pA-1 -1
Ng[lz}{% Aﬂﬁﬂ )
O A, O Ay
Example 13
Find A? of
1 9 -5 0
3 3 3 -2
A=
O 0 7 O
O 0 3 1
Solution
Let partition given matrix A in form
1 9/1-5 O
3 3|13 -2
A =
0O 07 O
0 013 1
Put A L 91 4 = 0 d [
= , = an =
11 3 3 12 3 _2 A‘22 3 1
[3 —9} 1 9 1,
] -3 1 _Q a4 -
Thus A, ! = AdjA _ _| -8 24 and A, = 7
det(A) -24 1 1 -3 ]
8 -24 7
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Moreover,

- Al 1711412‘42271 =

So by (5), we have

Example 14

Confirm that A =

1 2 1 o (2 3
8 24 ||-5 0| 7 |7 4
113 23 a1
8 -24 7 4 12
-1 3 4 3]
8 8 7 4
-1
111 o
A*lz 8 24 4‘
0O O 1 0
7
0O O =3 1
L 7 _
4 7 -5 3
3 5 3 2. . . : :
00 7 is an invertible block upper triangular matrix, and
0 0 3 1

then find its inverse by using formula (9).
Solution  The matrix is block upper triangular because it can be partitioned into form

A=
as

A=
where A, =
Now Al

_All AIQ Alk

O A, Ay

0 O A,

(4 71|-5 3

3 5|3 2| [A, A,

0 0|7 2| |0 A,

0 0|3 1

4 7 ) 5 3 [7 2
|3 572 3—2’A22_31
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4 0 -5 7|5 3|1 -2 -133 295
Moreover, —ATALA, = =

3 4|3 2|3 7 78 173

-5 7 -133 295
-4 78 -173

So it follows from (9) that the inverse of Ais A~ =

O O 1 -2
O O -3 7

NUMERICAL NOTES

1.

When matrices are too large to fit in a computer’s high-speed memory,
partitioning permits a computer to work with only two or three sub-
matrices at a time. For instance, in recent work on linear programming, a
research team simplified a problem by partitioning the matrix into 837
rows and 51 columns. The problem’s solution took about 4 minutes on a
Cray supercomputer.

Some high-speed computers, particularly those with vector pipeline
architecture, perform matrix calculations more efficiently when the
algorithms use partitioned matrices.

The latest professional software for high-performance numerical linear
algebra, LAPACK, makes intensive use of partitioned matrix calculations.

The exercises that follow give practice with matrix algebra and illustrate typical
calculations found in applications.
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Exercises

In exercises 1 to 3, the matrices A, B, C, X, Y, Z, and | are all n x n and satisfy the
indicated equation.

o e [ s 2
oo

4. Suppose that Aj; is an invertible matrix. Find matrices X and Y such that the product
below has the form indicated. Also compute B;.

X 0 0
Y 0 |

W o >

I 0 0 All AJ.Z Bll BlZ
X 10 A21 Azz =1 0 Bzz
Y 0 T][A Ay 0 By
I 0 O I 0 0
5.Theinverseof |[C | Ofis|Z 1 O0f.Find X,Y and Z.
A B | XY |

6. Find the Inverse of matrix A.

>

Il
o|lo o+
oo ok~ w
ol w|o o
ol rRr|lO O
o oo o

I 0
7. Show that {A I} is invertible and find its inverse.

8. Compute X'X, when X is partitioned as [X1 Xz].

In exercises 9 and 10, determine whether block multiplication can be used to compute
the product using the partitions shown. If so, compute the product by block
multiplication.
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-2 14 -2 1|4
-1 2|15 -1 2 1|5
-3 512 -3 5|2
9.(@|0 -3/4 2 — (b)|]0 -3 4|2
7 -1|5 7 1|5
[1 5|6 1] 1 5 61 —
0 3|-3 0 3|3
2 -4 1 2 -5
3 -1 0]-3(|3 0 2 1 312 -1/3 4
10. (a) (b)
2 1 4|51 -3 5 0 5|0 1|5 7
2 1 4 1 4
3 141 2 0] .
11. Compute the product using the column row-rule, and check
2 -4(-1 6 2
your answer by calculating the product directly.
In exercises 11 and 12, find the inverse of the block diagonal matrix A.
_ 5 2 0 0 0]
2 10 0
320 0 31000
12.(a) A= (b){0O 0 5 0 O
0 0 3 4
0 00 27
0 01 -1
- 0 0 0 1 4]
_ (2 0 0 0 0]
51 0 0
41 0 o0 01200
13.(a) A= ()|0 3 7 0 O
00 2 -3
0 00 49
0 0 3 5
- 0 0 0 1 2]
14. Find the inverse of the block upper triangular matrix A
2 1 3 -6 -1 -1 2 5
117 4 2 1 -3 8
(i) A= (i) A=
0 03 5 0 0 4 1
0 0 2 3 0O 0 7 2
B B B
15. Find By, given that ACBDA B (A B,
0 CJ| 0 C, 0 C,
and
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2 Yocft el
SN

16. Consider the partitioned linear system

5 2|2 3 2
{21—31 18],
104 1 0
{0102 0

Solve this system by first expressing it as

A Bllu b . Au+Bv=Db
= or equivalently,
| DIlv 0 u+Dv=0

next solving the second equation for u in terms of v, and then substituting in the first
equation. Check your answer by solving the system directly.

3 1 2 a b
17. Let A= and B=|c d|.
1 45
e f
Verify that ~ AB = col,(A)row,(B) +col, (A)row, (B) + col,(A)row, (B)
4 7 -5 3
S 3 -
18. Find inverse of the matrix A = 2
O o0 7 2
0O 0 3 1
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Lecture 15

Matrix Factorizations

Matrix Factorization

A factorization of a matrix as a product of two or more matrices is called Matrix
Factorization.
Uses of Matrix Factorization
Matrix factorizations will appear at a number of key points throughout the course. This
lecture focuses on a factorization that lies at the heart of several important computer
programs widely used in applications.

LU Factorization or LU-decomposition

LU factorization is a matrix decomposition which writes a matrix as the product of a
lower triangular matrix and an upper triangular matrix. This decomposition is used to
solve systems of linear equations or calculate the determinant.

Assume A is an MxN matrix that can be row reduced to echelon form, without row
interchanges. Then A can be written in the form A = LU, where L is an MxM Jower
triangular matrix with 1’s on the diagonal and U is an M*N echelon form of A. For
instance, such a factorization is called LU factorization of A. The matrix L is invertible
and is called a unit lower triangular matrix.

l 0 O O ° * * * *

* 1 O O 0 ° * * *
A=
* * 1 0|0 0 O *
* * * 110 0 0 0O
L U
LU factorization.
Remarks

1) If A is the square matrix of order m, then the order of both L and U will also be m.

2) In general, not every square matrix A has an LU-decomposition, nor is an LU-
decomposition unique if it exists.

Theorem If a square matrix A can be reduced to row echelon form with no row
interchanges, then A has an LU-decomposition.

Note

The computational efficiency of the LU factorization depends on knowing L and U. The
next algorithm shows that the row reduction of A to an echelon form U amounts to an LU
factorization because it produces L with essentially no extra work.

An LU Factorization Algorithm
Suppose A can be reduced to an echelon form U without row interchanges. Then, since
row scaling is not essential, A can be reduced to U with only row replacements, adding a
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multiple of one row to another row below it. In this case, there exist lower triangular
elementary matrices Eq, ..., E, such that

E,...ElA=U (1)
So A=(E,..E1)'U=LU
Where L=(Ep ... E1)* (2)

It can be shown that products and inverses of unit lower triangular matrices are also unit-
lower triangular. Thus, L is unit-lower triangular.

Note that the row operations in (1), which reduce A to U, also reduce the L in (2) to I,
because E, ... EiL = (Ep...E1)(Ep ... E:)! = I. This observation is the key to
constructing L.

Procedure for finding an LU-decomposition

Step 1: Reduce matrix A to row echelon form U without using row interchanges, keeping
track of the multipliers used to introduce the leading 1’s and the multipliers used to
introduce zeros below the leading 1’s.

Step 2: In each position along the main diagonal of L, place the reciprocal of the
multiplier that introduced the leading 1 in that position in U.

Step 3: In each position below the main diagonal of L, place the negative of the
multiplier used to introduce the zero in that position in U.

Step 4: Form the decomposition A = LU.

Example 1 Find an LU-decomposition of

6 -2 0
A=|9 -1 1
3 7 5

Solution We will reduce A to a row echelon form U and at each step we will fill in an
entry of L in accordance with the four-step procedure above.

6 -2 0 * 00

A=19 -1 1 * * 0

3 7 5 [k oxx

* denotes an unknown entry of L.

10 (6 0 0]

9 -1 1|« multiplier=2¢ ** 0

3 7 5 Rl

N . 6 0 0]
<« multiplier =-9

o 2 1 . 9 * 0

< multiplier =-3 . x

o 8 5 KR
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1 -3
0 1
0 8
L
0 1
0 [0
1
u=[0 1
0 0

VU

Cl’ 6 0 0
= |« multiplier =1 9 20
2

* *
c 3
0 6 0 0
1 |« multiplier =-8 9 20
1 3 8 *
0 6 0 0
3 |« multiplier =1 L=|9 2 O
3 8 1

(No actual operation is performed here since there is already a leading 1 in the third row.)

So

wl—

6 0 0|1
A=LU=/9 2 00 1
3 8 1|0 O

o

| i

OR

Solution We will reduce A

to a row echelon form U and at each step we will fill in an

entry of L in accordance with the four-step procedure above.

6 -2 0 *00
A=19 -1 1 ** 0
3 7 5 * ok
* denotes an unknown entry of L.
6 -2 0
6 6 6 . 6 0 0
~|9 -1 1 ER1 * * 0
3 7 5 * ok ok
1 2o
3
=9 -1
3 7
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Q

Q

o N o

Q

-

o O

-

[

o O

9-9(1)

© N WL

© NN WL

R

oo

1-9(3) 1-9(0)

0

o

g N

o

g N

8-8(1) 5-&%)

ol

= N

1
3
-1

1

3-3(1) 7-&%» 5-3(0)

R, —9R,
R,-3R

R, -8R,

w O o

¥* N O

* O O

w O o

w ©O© o

o N O

* O

*

* O O

* O O
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1 -+ 0 6 0 O
U=|0 1 3 |« multiplier=1 L=(9 2 0
0 0 3 81
So
6 0 0|1 -3 O
A=LU=l9 2 0|0 1 3
3 8 1|0 0 1
[2 -4 -2 ]
6 -9 -5
Example 2 Find an LU factorizationof A=| 2 -7 -3
4 -2 -2 -1
-6 3 3 4]
Solution
2 -4 -2 3 10000
6 -9 -5 8 100 O
A=12 -7 -3 9 ** 1 00
4 -2 -2 -1 *x * 10
-6 3 3 4] e
* denotes an unknown entry of L.
1 -2 -1 gemultiplier% (2 0 0 0 O]
6 9 -5 8 © 1000
2 7 -3 9 ©r 100
4 2 2 1 A
* ok okox ]
-6 3 3 4] L -
1 -2 -1 3 2 0 0 O]
0 3 1 _21 <~ multiplier -6 6 1 0 0 O
0 -3 -1 6 <~ multiplier -2 2 1 00
06 2 _7 < multiplier —4 4 * * 1 0
0 -9 -3 13 «multiplier 6 6 * * * 1
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2 00 0 O]

6 3 00 O

100

*

* * 1 O

1

6 * * *

1
3

™|

-2 -1

1

1 |« multiplier

3

-
3

0

-3 -1

0

-3 13

-9

0

_ o 0o 0o o A
o o o o o o 0o 0o o d
O O o - % o o o W «x o o o v Qg
o O « ¥ % O O d o o ©O O 4 o o
o m M o O o m M o O o m M o
N © N T @ N © N T @ N O N @
L L L
Il
~
o
-
3n_ug _5 n
- [ -
p -
= 8 2 ks ks
S = o = =
= .2 S 2 m.
_— ) = 4+
mum > >
%m% S =
I 1T 1 T 1
3_21__35 0 9 3_21__35 - 9 3_21__35 - o
T dmo oo 7 Admo oo T HdAlmo o o
3 -+ o oo Y - o oo Y " © o o
s © o oo o © oo o o © o o o
Il
o

Thus, we have constructed the LU-decomposition

5
1
0

0 0 O

6 3 0 0 O

2

31 0 O

_50000
6 -9 010 1|0 0 O

4 6 0

A=LU =

180
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Example 3 Find LU-decomposition of A=

Solution

e

2
3
1 |«
2
0

6 -2
-3

-12 8
-6 0

“«— multiplieré

multiplier — 3

« multiplier 12
« multiplier 6

1
multiplier — =
P 2

1
*

* = O

*

* *

*» = O O

S O O

1

* denotes an unknown entry of L.

(6 0
* 1

0
0
1

0

— O O

* = O O
- O O O

* = O O
= O O O
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p L2 2

3 3 3

0 1 2 1
2 |« multiplier — 4

0 0 5 2 « multiplier 2

L2 2
3 3 3
o1 2 %
2

2

0 O 1 = | < multi lierl
5 p 5

1 22
3 3 3
0 1 2 1
2
2
00 1 5 « multiplier 10
00 0 8]
ol 2 2]
3 3 3
1
0O 1 2 =
U= 2
2
0 O 1 5 <—multiplier§1
0o 0 0 1 |
p L 2
6 0 0 O 3 3
3 -2 0 O
Thus A=LU = 01 2
-12 4 5 O
-6 -2 -10 8]|0 O 1
0 0 O

6 0 0 O
3 -2 00
-12 4 1 O
-6 -2 * 1
6 0 0 O
3 -2 00
-12 4 5 O
-6 -2 * 1

w

N

o
— O O O

w

N

o
o O O O

-6 -2 -10
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2 4 -1 5 -2
. L -4 -5 3 -8 1
Example 4 Find an LU factorization of A =
-5 4 1 8
-6 0 7 -3 1
Solution
2 4 -1 5 -2 10 0 O
-4 -5 3 -8 1 *1 0 O
A = L =
2 -5 4 1 8 ** 1 0
-6 0 7 -3 1 o1
* denotes an unknown entry of L.
12 2L 2 e multiplierl [2 0 0 O
2 2 *1 00
-4 -5 3 -8 1 . .
2 -5 4 1 8 . . 1 0
-6 0 7 -3 1] - :
12 -1 g -1 2 000
0 3 1 o2 -3¢ mul?lp?zer 4 -4 1 O O
0 -9 -3 -4 10|¢ multz;.)lze.r -2 2 ) 1 0
0 12 4 12 -5] « multiplier 6 | -6 1
_ | s -
12 -5 5 - 2 00 0
0 1 1 2 1] multiplierl -4 3 0 O
3 3 2 * 10
0O -9 -3 4 10 6 * * 1
10 12 4 12 -5]
[ 1 5
L2 -5 5 - 2 000
0 1 1 2 1 -4 3 00
3 3 2 910
00 0 2 1| multiplier 9 -6 12 * 1
00 0 4 7] multiplier —12
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12—15—1
2 2 2 0 0 0
0113—1 4 3 0 O
U= 3 3 L=l 91 0
OO0 0 2 1 B
6 12 0 4
7 1
_O 0 0 1 Z_(—multlplzerZ
12—15—1
2 0 00 125
-4 3 0 001 = £ 1
ThusA:LU=2 9 1 0 3 3
B 00 0 2 1
6 12 0 4 ;
00 0 1 =
L 4 |

Matrix Inversion by LU-Decomposition
Many of the best algorithms for inverting matrices use LU-decomposition. To understand
how this can be done, let A be an invertible nxn matrix, let A* =[x x, --- x,] be
its unknown inverse partitioned into column vectors, and let | =[e, e, --- e, ] be then
nxn identity matrix partitioned into column vectors. The matrix equation AA™ =1 can
be expressed as

A[X1 )(2 Xn]:[el ez en]

[Ax, Ax, - Ax]=[e, e - &]
which tells us that the unknown column vectors of A™ can be obtained by solving the n-
linear systems.

Ax, =e, AX,=e,,-, AX, =¢e, (1%)

As discussed above, this can be done by finding an LU-decomposition of A, and then
using that decomposition to solve each of the n systems in (1%*).

Solving Linear System by LU-Factorization

When A =LU, the equation Ax = b can be written as L (Ux) = b. Writing y for Ux, we can
find x by solving the pair of equations; Ly=band Ux =y (2%)

First solve Ly = b for y and then solve Ux =y for x. Each equation is easy to solve
because L and U are triangular.
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Procedure

Step 1: Rewrite the system Ax=basLUXx=Db

Step 2: Define a new unknown y by letting U x =y
And rewrite (3*)asLy=b

Step 3: Solve the system L y = b for the unknown y.
Step 4: Substitute the known vector y into (4*) and solve for x.

This procedure is called the method of LU-Decomposition.

(3%)
(4%)

Although LU-Decomposition converts the problem of solving the single system A x = b
into the problem of solving the two systems, L y = b and U x =y, these systems are easy

to solve because their co-efficient matrices are triangular.

Example 5 Solve the given system (Ax =b) by LU-Decomposition
2%, +6X, + 2%, =2

—3x%, —8X,

=2

4X +9X, + 2%, =3

Solution We express the system (1) in matrix form:

2 6 2][x] [2

We derive an LU-decomposition of A.

2

A=|-3

4

-3 -8 0| x,|=|2
4 9 2| X 3

A X = b
6 2
-8 0
9 2
R

|

0 <—mu|t|pI|er§
2_
L
3 | <« multiplier3
—2 | < multiplier —4

1 3|« multiplier 3

01

1)

|
> o
* =

N )
-~ o
o
~ o o P O o ——
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1 31 2
Uu=/0 1 3 <—mu|tip|ier% L=|-3 1
0 01 4 -3 7
2 6 2] [2 0 o1 31
Thus -3 8 0|=|-3 1 00 1 3 2
4 9 2| |4 3 7|0 01
A = L U
From (2) we can rewrite this system as
2 0 0|1 3 1|x 2
-3 1 0|0 1 3jx,|=|2 (3)
4 -3 7]|0 0 1]|x 3
L U X = b
As specified in Step 2 above, let us define y1, y» and y3 by the equation
13 1)Ix Yi
0 1 3|x%|=|Y, (4)
10 0 1§[x A
U X =y
which allows us to rewrite (3) as
2 0 0|y, 2
-3 1 0|y, ={2 (5)
|4 =3 T7]|y, 3
L y = b
2y, =2
or equivalently,as -3y, +Y, =2

4y1_3y2 +7Y3 =3

This system can be solved by a procedure that is similar to back substitution, except that
we solve the equations from the top down instead of from the bottom up. This procedure,
called forward substitution, yields

y1:1, y2:5, y3:2.
As indicated in Step 4 above, we substitute these values into (4), which yields the linear
system

13 1[x] [1
0 1 3|/x|=|5
00 1{x]| |2

3
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X +3X, +%X; =1
or equivalently, X, +3X; =5

X, =2
Solving this system by back substitution yields x; =2, x;=-1, X3=2

Example 6 It can be verified that

3 -7 -2 2 1 0 0 0][3 -7 =2 2
-3 5 1 0 -1 1 0 0/|0 -2 -1 2
A= = =LU

6 -4 0 -5 2 51 0/|0 0 -1 1

-9 5 -5 12 -3 8 3 1j|0 0 0 -1
[—9
. L. 5
Use this LU factorization of A to solve Ax = b, where b= ;
|11

Solution The solution of Ly = b needs only 6 multiplications and 6 additions, because the
arithmetic takes place only in column 5. (The zeros below each pivot in L are created
automatically by our choice of row operations.)

1 0 0 0 -9 100 0 -9
-1 1 0 0 5 010 0 -

L b = ~ = I

[ ] 2 510 7 0 01 0 5 vl
-3 8 31 11 0 00 1 1

Then, for Ux = vy, the “backwards” phase of row reduction requires 4 divisions, 6
multiplications, and 6 additions. (For instance, creating the zeros in column 4 of [U y]
requires 1 division in row 4 and 3 multiplication — addition pairs to add multiples of row
4 to the rows above.)

3 -7 22 9 [1000 3 3
0 2 -1 2 -4/ |0 100 4 4
U yl= ~ . X=
0 0 -1 1 5| 1/0010 -6 -6
00 0 -1 1] (0001 -1 -1

To find x requires 28 arithmetic operations, or “flops” (floating point operations),
excluding the cost of finding L and U. In contrast, row reduction of [A Db] to [I x] takes
62 operations.

Numerical Notes
The following operation counts apply to an nxn dense matrix A (with most entries
nonzero) for n moderately large, say, n > 30.
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1. Computing an LU factorization of A takes about 2n*3 flops (about the same as
row reducing [A b]), whereas finding A requires about 2n* flops.

2. Solving Ly = b and Ux =y requires about 2n? flops, becausenxn triangular
system can be solved in about n? flops.

3. Multiplication of b by A™ also requires about 2n® flops, but the result may not be
as accurate as that obtained from L and U (because of round off error when
computing both A™* and Ab).

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too,
whereas A™ is likely to be dense. In this case, a solution of Ax = b with an LU
factorization is much faster than using A™.

Example 7(Gaussian Elimination Performed as an LU-Decomposition)
In Example 5, we showed how to solve the linear system

2 6 2| x 2
-3 -8 0%, |=|2 (6)
4 9 2| x 3
using an LU-decomposition of the coefficient matrix, but we did not discuss how the
factorization was derived. In the course of solving the system, we obtained the
1
intermediate vector y =| 5 | by using forward substitution to solve system (5).
2

We will now use the procedure discussed above to find both the LU-decomposition and
the vector y by row operations on the augmented matrix for (6).

2 6 2|2 *00
[Ab]=|-3 -8 0 |2 * * (0|=L (*=unknown entries)

4 9 2|3 ok x
1 3 11 2 0 0]
-3 -8 0 2 * * 0
4 9 283 x ok
1 3 1 1 2 0 0]
0 1 3 b -3 * 0
0 3 2 1 a—_—
1 3 1] 1] 2 0 0
01 3|5 -3 1 0
0 0 7|14 4 -3 *
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1311 2 00
[Uly]=]0 1 35 -3 1 0|=L
00 1|2 4 37

These results agree with those in Example 5, so we have found an LU-decomposition of
the coefficient matrix and simultaneously have completed the forward substitution
required to find y.

All that remains to solve the given system is to solve the system Ux =y by back
substitution. The computations were performed in Example5b.

A Matrix Factorization in Electrical Engineering

Matrix factorization is intimately related to the problem of constructing an electrical
network with specified properties. The following discussion gives just a glimpse of the
connection between factorization and circuit design.

Suppose the box in below Figure represents some sort of electric circuit, with an input

Vi

and output. Record the input voltage and current by { } (with voltage v in volts and

1
V2

current i in amps), and record the output voltage and current by{ } Frequently, the

2

V. v
transformation {ﬂ—)[ﬂ is linear. That is, there is a matrix A, called the transfer
Il |2

matrix, such that[\_lz} = A{\q

I, L

L I,

—_— —
input v, electric v, output
terminals circuit terminals
Figure A circuit with input and output terminals.

Above Figure shows a ladder network, where two circuits (there could be more) are
connected in series, so that the output of one circuit becomes the input of the next circuit.
The left circuit in Figure is called a series circuit, with resistance R; (in ohms);

The right circuit is a shunt circuit, with resistance R,. Using Ohm’s law and Kirchhoff’s
laws, one can show that the transfer matrices of the series and shunt circuits, respectively,
are:
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1 -R 1 0
0 1 ~1/R, 1

Transfer matrix Transfer matrix
of series circuit of shunt circuit

Example 8
a) Compute the transfer matrix of the ladder network in the above Figure .

b) Design a ladder network whose transfer matrix is [ 01 . 58}.

Solution

a) Let A; and A, be the transfer matrices of the series of the series and shunt circuits,
respectively. Then an input vector x is transformed first into Aix and then into
Az (A1x). The series connection of the circuits corresponds to composition of linear
transformations; and the transfer matrix of the ladder network is (note the order)

[ 1 o)t -R][ 1 R,
AzAi{—l/R2 J{o 1}_{—1/& 1+R1/Rj(6)

b) We seek to factor the matrix { . } into the product of transfer matrices, such

as in (6). So we look for R; and R to satisfy

1 R ][ 1 -8
~1/R, 1+R/R,| |05 5

From the (1, 2) — entries, R; = 8 ohms, and from the (2, 1) — entries, 1/R, = 0.5 ohm and
R, = 1/0.5 = 2 ohms. With these values, the network has the desired transfer matrix.

Note

A network transfer matrix summarizes the input-output behavior (*Design
specifications™) of the network without reference to the interior circuits. To physically
build a network with specified properties, an engineer first determines if such a network
can be constructed (or realized). Then the engineer tries to factor the transfer matrix into
matrices corresponding to smaller circuits that perhaps are already manufactured and
ready for assembly. In the common case of alternating current, the entries in the transfer
matrix are usually rational complex-valued functions. A standard problem is to find a
minimal realization that uses the smallest number of electrical components.
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Exercises
Find an LU factorization of the matrices in exercises 1 to 8.
3 -1 2
2 5
1. { } 2. -3 -2 10
-3 4
' 9 -5 6
1 3 -5 -3
3 6 3
-1 5 8 4
3 6 -7 2 4.
4 2 -5 -7
-1 7 0
-2 -4 7 5
(2 -6 6|
2 -4 -2 -4 5 -7
5. 6 -9 7 -3 6. 3 5 -1
-1 -4 0 -6 4 -8
|8 -3 9|
(2 -4 -2 3
1 4 -1 5
6 -9 -5 8
3 7 -2 9
7. 8. 2 -7 -3 9
-2 -3 1 -4
4 -2 -2 -1
-1 6 -1 7
6 3 3 4]
Solve the equation Ax = b by using LU-factorization.
3 -7 -2] -7 (4 3 -5 2
9 A=-3 5 1 |b=|5 10. A=|-4 -5 7 |b=|-4
6 -4 0 | 2 |8 6 -8 6
2 -1 2] 1 2 -2 4 0
11. A=|-6 0 -2|,b=|0 12. A=|1 -3 1|,b=|-5
8 -1 5| 4 |13 7 5 7
1 -2 -4 -3 1 1 3 4 0 1
2 -7 -7 -6 7 -3 6 -7 2 -2
13. A= b= 14. A= b=
-1 2 6 4 0 3 3 0 4 -1
-4 -1 9 8] 3 -5 -3 2 9 2
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Lecture 16

Iterative Solutions of Linear Systems

Consistent linear systems are solved in one of two ways by direct calculation (matrix
factorization) or by an iterative procedure that generates a sequence of vectors that
approach the exact solution. When the coefficient matrix is large and sparse (with a high
proportion of zero entries), iterative algorithms can be more rapid than direct methods
and can require less computer memory. Also, an iterative process may be stopped as soon
as an approximate solution is sufficiently accurate for practical work.

General Framework for an Iterative Solution of Ax=b
Throughout the section, A is an invertible matrix. The goal of an iterative algorithm is
to produce a sequence of vectors,

X(O), X(l),..., X(k),...

that converges to the unique solution say X of Ax = b, in the sense that the entries

- - - - - * - -
in x are as close as desired to the corresponding entries in x for all k sufficiently
large.

To describe a recursion algorithm that produces x®*? from x , we write A=M-N
for suitable matrices M and N, and then we rewrite the equation Ax =b as Mx - Nx =D
and

Mx = NX + b

If a sequence { x } satisfies
Mx®™ = Nx® +b (k=0,1,..) (1)

and if the sequence converges to some vector x*, then it can be shown that A = b.[The
vector on the left in (1) approaches Mx*, while the vector on the right in (1) approaches
NX +b. This implies that Mx =Nx +b and AX =b.

For x®** to be uniquely specified in (1), M must be invertible. Also, M should be

chosen so that x™*? is easy to calculate. There are two iterative methods below to
illustrate two simple choices for M.

1) Jacobi’s Method

This method assumes that the diagonal entries of A are all nonzero.

Choosing M as the diagonal matrix formed from the diagonal entries of A. So next
N=M-A,

)= Mx*EP = (M = A)x® +b (k=0,1,...)

For simplicity, we take the zero vector as x as the initial approximation.

©Virtual University Of Pakistan 192



16-Iterative Solutions of Linear Systems VU

Example 1
Apply Jacobi’s method to the system
10x; + Xp - X3 = 18
X1 + 15%, + X3 =-12
X1+ Xo+20x3 = 17 (2)

Take x = (0, 0, 0) as an initial approximation to the solution, and use six iterations (that
is, compute X, ..., x®).

Solution
X Y1
For some k, let x® = | x, [=(x1, X2, X3) and x®** D =]y [=(y1, y2, ya)

X Y

Firstly we will construct M and N from A.
Here

10 1 -1
A=1 15 1
-1 1 20

Its diagonal entries will give
10 0 O

M=/0 15 0| and
0 0 20

10 0 O 10 1 -1 0 -1 1
N=M-A=/0 15 0|-1 15 1 (=-1 0 -1
0 0 20| |-1 1 20 1 -1 0
Now the recursion: Mx®** =(M — A)x® +b (here k =0,1,...6)
implies
10 0 0|y 0 -1 1]/x 18
0 15 0|ly,|=l-1 0 -1 x,|+|-12
0 0 20|y, 1 -1 0% 17
10y, 0x, —1x, +1x, 18
= |15y, |=|-1Ix +0X, = X; |+| 12
20y, 1x, —1x, +0x, 17
10y, 0x, —1x, +1x, +18
= |15y, |=|-1x, +0x, - x, —12
20y, 1x, —1x, +0x; +17

Comparing the corresponding entries on both sides, we have
10y1 = Xp+ X3+ 18
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15y, =-x3  -X3—-12
20y3 =X1—Xo + 17
And

y1 = (- X2 + X3 + 18)/10
Y2 = (- X1 —x3—12)/15 3
Y3 = (X1 — X2 + 17)/20

1st lteration

For k=0, put x @ = (x, X2, X3) = (0, 0, 0) in (3) and compute
x W= (y1, ya, ys) = (18/10, — 12/15, 17/20) = (1.8, -0.8, 0.85)

2" Iteration
Fork =1, putx ®=(1.8, -.8, .85)

y1=[-(-0.8) + (0.85) + 18]/10 = 1.965
y»=[-(1.8) - (0.85) — 12]/15 = -0.9767
ys = [(1.8) — (-0.8) + 17]/20 = 0.98

Thus, x @ = (1.965, -.9767, .98).

The entries in x ©® are used on the right in (3) to compute the entries in x ©, and so on.
Here are the results, with calculations using MATLAB and results reported to four

decimal places:
x©@ 5@ x@ x® x@ x®) ()

0O 1.8 1.965 1.9957 | [1.9993 | | 1.9999 2.0000
O |-8]| |—9767| | —9963| |—-9995| | —-9999 | | -1.0000
0| |.85 .98 9971 .9996 .9999 1.0000

If we decide to stop when the entries in x © and x ® =% differ by less than .001, then we
need five iterations (k = 5).

Alternative Approach

If we express the above system as

101 + Xo - X3 = 18:>x1:18_x—2+x3
10

X1+ 15+ X3 =-12:>x2:%

X1+ X+ 20x3 = 17:>x3=17+;((1)_x2

.. the equivalent system is
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18X, +X,
10
X, :—12—x1—x3
15
17+ x - X,
20

Now put (X,X2,X3)=(0,0,0)= X in the RHS to have
x1=(18-0+0)/10 = 1.80
Xz= (-12-0-0)/15 =-0.80
X3 = (17+0-0)/20 = 0.85
Which gives x) = (1.80,-0.80,0.85) ----put this again on RHS of the equivalent system
to get
X;=(18+0.80+0.85)/10 =1.965
Xo= (-12-1.80-0.85)/15 = -0.9767
x3= (17+1.80+0.80)/20 = 0.98
So in the similar fashion, we can get the next approximate solutions: xX® x® x® and x©
Next example will be solved by following this approach.
Example 2
Use Jacobi iteration to approximate the solution of the system
20 X, + X, =X, =17
X, —10x, + x, =13
—-X; + X, +10x, =18
Stop the process when the entries in two successive iterations are the same when rounded
to four decimal places.

Solution
As required for Jacobi iteration, we begin by solving the first equation for x;, the second
for X,, and the third for xs. This yields

S+ X =0.85-0.05x, +0.05x,
20 20 20
=B, 1 X, =—1.3+0.1x +0.1x (4)
2_1o1ox1 ST R,
18 1 1
X, =—+—X ——X, =1.8+0.1x, —0.1x
*T10 10" 10 ?

which we can write in matrix form as
X, 0 -0.05 0.05|| x, 0.85

X, =101 0 0.1 || x, [+|-1.3 (5)
X, 01 01 0 ||x 1.8
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Since we have no special information about the solution, we will take the initial
approximation to be x, = X, = x, =0. To obtain the first iterate, we substitute these values

into the right side of (5). This yields

0.85
13
18

To obtain the second iterate, we substitute the entries of y; into the right side of (5). This
yields

Y, =

[ %, 0 -0.05 0.05(085| [0.85 1.005
Y, =X, |=/01 O 0.1 | -13|+|-1.3|=|-1.035
RS 01 01 O 1.8 1.8 2.015

Repeating this process until two successive iterations match to four decimal places yields
the results in the following table:

Yo Y1 Y2 Y3 Y4 Y5 Ye y7
X1 0 0.8500 |1.0050 | 1.0025 |1.0001 | 1.0000 | 1.0000 | 1.0000
X2 0 -1.3000 | -1.0350 | -0.9980 | -0.9994 | -1.0000 | -1.0000 | -1.0000
X3 0 1.8000 | 2.0150 | 2.0040 | 2.0000 |1.9999 | 2.0000 | 2.0000

The Gauss-Seidel Method

This method uses the recursion (1) with M the lower triangular part of A. That is, M has
the same entries as A on the diagonal and below, and M has zeros above the diagonal. See
Fig. 1. As in Jacobi’s method, the diagonal entries of A must be nonzero in order for M to
be invertible.

[N * * * * || _*OOOO_
* A\ * * * * *N\0 0 0
A=| * * *\* =* M=| * * *\0 0
* Kk Kk K\ K * ok kX \(
* * * X * * *x *x * *

Figure 01:The Lower Triangu_lar Part of A

Example 3
Apply the Gauss — Seidel method to the system in Example 1 with

x @ =(0,0,0) and six iterations.

10 + Xo - X3 = 18
X1+ 15% + Xx3=-12
X1+ Xo+20x3= 17 (6)

Solution
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X Y1
For some k, let x® = | x, |=(x1, X2, X3) and x** Y =| y, |=(y1, y2, y3)
X3 y3
Again, firstly we construct matrices M and N from the coefficient matrix A.
10 1 -1
Here A= 1 15 1
-1 1 20

Since matrix M is constructed by
1) taking the values along the diagonal and below the diagonal of coefficient
matrix A.
2) putting the zeros above the diagonal at upper trianular position.
So

10 0 O
M=1 15 0
-1 1 20

Now,
10 0 O 10 1 -1} (0 -1 1

N=M-A={1 15 0|-|1 15 1|=|0 0 -1
-1 1 20 -1 1 20 0 0 O
Now the recursion: Mx®** =(M — A)x® +b (here k =0,1,...6)

implies

10 0 0|y, 0 -1 1|x 18
1 15 0|ly,|=|0 0 -1|x,|+|-12
-1 1 20y, 0 0 0]|x%] |17
10y, O 0 —X, + X, 18 |

=y, 15y, 0 |=| —-Xx3 [|+|-12
__Y1 yz 20y3 0 17 i
10y, O 0 —X, + X, +18

=y 15y, 0 |= -x-12
-y, Y, 20y, 0+17

Comparing the corresponding entries on both sides, we have

10y; = -Xp + X3+ 18

y1+15y; = - X3 — 12

-y1 + Y2 + 20y3 =17
This further implies as
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10y, = —X, — X, +18 =y, = (=X, + X, +18) /10
y, +156y, ==X, 12 =y, = (=Y, — X, —12) /15 p ----------- (7)
~y, +Y, +20y, =17=y, =(y, -y, +17)/ 20

Another way to view (7) is to solve each equation in (6) for X1, Xo, X3, respectively and
regard the highlighted x’s as the values:

X1 = (- Xo + X3+ 18)/10

Xo = (' X1 — X3 — 12)/15

X3 = (Xl - Xy + 17)/20 (8)

Use the first equation to calculate the new x; [called y; in (7)] from X, and x3. Then, use
this new x; along with x3 in the second equation to compute the new x,. Finally, in the
third equation, use the new values for x; and x, to compute x3. In this way, the latest
information about the variables is used to compute new values. [A computer program
would use statements corresponding to the equations in (8).]

From x @ = (0, 0, 0), we obtain
x1=[-(0)+(0) +18)/10=18
|

xe=[-(1.8)] - (0)-12)/15 = -92

X3 = [+(1.8) - (-.42) +17]/20 = .986

Thus, x @ = (1.8, -.92, .986). The entries in x Y are used in (8) to produce x ® and so on.

Here are the MATLAB calculations reported to four decimal places:
x© 5@ x@ x® x@ () x(®)

0 1.8 1.9906 | | 1.9998 2.0000 2.0000 2.0000
0| |—92| |—-9984| | -9999| | -1.0000 | |-1.0000 | |-1.0000
0] |.986 9995 1.0000 1.0000 1.0000 1.0000

Observe that when k is 4, the entries in x ) and x ®~ differ by less than .001. The values
in x ® in this case happen to be accurate to eight decimal places.

Alternative Approach

If we express the above system as

10X, + Xo- Xg= 18 = X = (- Xo + X3 + 18)/10 ------ (a)
X1+15X2+ X3:-12 = X2:(-X1—X3—12)/15 ------ (b)
X1+ Xo + 20X3 = 17= X3 = (Xl — Xy + 17)/20 —————— (C)

Ist Iteration
Put x,=x3 =0 in (a)
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x;= 18/10 =1.80
Put x;,=1.80 and x3=0 in (b)

Xp = (-1.80-0-12)/15=-0.92
Put x,=1.80, X, =-0.92 in (c)
x3=(1.80+0.92+17)/20 = 0.9863

x1 1.8
So, | x2|=|-.92|=x®
x3| |.986

2nd iteration

Put x, = -0.92, x3=0.9863 in (a)
x,=(0.92+0.9863+18)/10 = 1.9906

Put x;=1.9906(from 2" iteration) and x3=0.9863(from 1% iteration) in (b)
X»=(-1.9906-0.9863-12)/15 = -0.9984

Put x;=1.9906, x2=-0.9984(both from 2" iteration) in (c)
X3=(1.9906+0.9984+17)/20 = 0.9995

x1 1.9906
So, | x2|=|-.9984 | = x®?
X3 .9995

So in the similar fashion, we can get the next approximate solutions: xX® x® x® and x©
Next example will be solved by following this approach.

Example 4
Use Gauss-Seidel to approximate the solution of the linear system in example 2 to four

decimal places.
Solution
As before, we will take x =x, =x,=0as the initial approximation. First, we will

substitute x, = 0 and x3 = 0 into the right side of the first equation of (4) to obtain the new
X1, Then, we will substitute x3 = 0 and the new X; into the right side of the second
equation to obtain the new X,, and finally, we will substitute the new x; and new X, into
the right side of the third equation to obtain the new x3. The computations are as follows:

X, = 0.85—(0.05)(0) + (0.05)(0) = 0.85

X, =—-1.3+(0.1)(0.85) + (0.1)(0) = -1.215

X, =1.8+(0.1)(0.85) - (0.1)(-1.215) = 2.0065

Thus, the first Gauss-Seidel iterate is
0.8500

y, =| —1.2150
2.0065
Similarly, the computations for second iterate are
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X, = 0.85—(0.05)(~1.215) + (0.05)(2.0065) =1.011075
X, =—1.3+(0.1)(1.011075) + (0.1)(2.0065) = —0.9982425

X, =1.8+(0.1)(1.011075) — (0.1)(—0.9982425) = 2.00093175
Thus, the second Gauss-Seidel iterate to four decimal places is
1.0111

y, ~| —0.9982
2.0009

The following table shows the first four Gauss-Seidel iterates to four decimal places.
Comparing both tables, we see that the Gauss-Seidel method produced the solution to
four decimal places in four iterations whereas, the Jacobi method required six.

Yo Y1 Y2 Y3 Y4
X1 0 0.8500 1.0111 1.0000 1.0000
X2 0 -1.2150 -0.9982 -0.9999 -1.0000
X3 0 2.0065 2.0009 2.0000 2.0000

Comparison of Jacobi’s and Gauss-Seidel method

There exist examples where Jacobi’s method is faster than the Gauss-Seidel
method, but usually a Gauss-Seidel sequence converges faster (means to say iterative
solution approaches to the unique solution), as in Example 2. (If Parallel processing is
available, Jacobi might be faster because the entries in x* can be computed
simultaneously.) There are also examples where one or both methods fail to produce a
convergent sequence, and other examples where a sequence is convergent, but converges
too slowly for practical use.

Condition for the Convergence of both Iterative Mthods

Fortunately, there is a simple condition that guarantees (but is not essential for)
the convergence of both Jacobi and Gauss-Seidel sequences. This condition is often
satisfied, for instance, in large-scale systems that can occur during numerical solutions of
partial differential equations (such as Laplace’s equation for steady-state heat flow).

An nxn matrix A is said to be strictly diagonally dominant if the absolute value of
each diagonal entry exceeds the sum of the absolute values of the other entries in the
same row.

In this case it can be shown that A is invertible and that both the Jacobi and Gauss-Seidel

sequences converge to the unique solution of Ax = b, for any initial x©. (The speed of
the convergence depends on how much the diagonal entries dominate the corresponding
row sums.)

The coefficient matrices in Examples 1 and 2 are strictly diagonally dominant, but the
following matrix is not. Examine each row:
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6 2 -3 |—6| > 2| +|—3|
1 4 =2 14| > 1] +|—2]
3508 8 =13l +|-9]

The problem lies in the third row, because |8| is not larger than the sum of the
magnitudes of the other entries.

Note
The practice problem below suggests a TRICK(rearrangement of the system of
equations) that sometimes works when a system is not strictly diagonally dominant.

Example 5
Show that the Gauss-Seidel method will produce a sequence converging to the

solution of the following systems, provided the equations are arranged properly:
X1 —3Xp + Xzg=-2
—6X1 +4x2 +11x3=1
5x1 — 2X2 - 2X3 =9
Solution
The system is not strictly diagonally dominant, as for the 1% row

|coefficient of x,| < |coefficient of x,|+|coefficient of x,|
or [ <[-3+[t
so neither Jacobi nor Gauss- Seidel is guaranteed to work. In fact, both iterative methods
produce sequences that fail to converge, even though the system has the unique solution
X1 = 3, X2 = 2, X3 = 1. However, the equations can be rearranged as
BX1—2X— 2X3=9
X1—3X2+  Xz=-2
—6x; +4x, + 11x3=1
So,
for 1% equation (row);
|coefficient of x| > [coefficient of x,|+|coefficient of x,|
or [5>|-2|+|-2
for 2" equation(row);
|coefficient of x,| > |coefficient of x,|+|coefficient of x,|
or |-3> [+
for 3" equation(row);
|coefficient of x,|>|coefficient of x|+ |coefficient of x,|
or [11>|-6|+|4|

Now the coefficient matrix is strictly diagonally dominant, so we know Gauss-Seidel
works with any initial vector. In fact, if X = 0, then x® = (2.9987, 1.9992, .9996).
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Exercises

Solve the system in exercise 1 to 3 using Jacobi’s method, with x® = 0 and three
iterations. Repeat the iterations until two successive approximations agree within a
tolerance of .001 in each entry.

1 A +X, =7 5 10x, - x, =25
X 45X, =7 "X, +8x, =43
3% + X, =11 S0x — X, =149
3. =X —5X, +2%; =15 4. x —100x, +2x, =-101
3X, + 77X, =17 2X, +50x, =-98

In exercises 5 to 8, use the Gauss Seidel method, with xX® = 0 and two iterations.
Compare the number of iterations needed by Gauss Seidel and Jacobi to make two
successive approximations agree within a tolerance of .001.

5. The system in exercise 1 6. The system in exercise 2

7. The system in exercise 3 8. The system in exercise 4

Determine which of the matrices in exercises 9 and 10 are strictly diagonally dominant.

c 4 (9 5 2
9. (2) [4 3} 0|5 -8 -1
2 1 4
- 5 3 1
10. (2) [2 3} 0|3 6 -4
1 -4 7

Show that the Gauss Seidel method will produce a sequence converging to the solution of
the following system, provided the equations are arranged properly:

X, —3X,+ Xy;=-2 —X +4X,—X; =3
11. -6x, +4x, +11x, =1 12. 4x, - X, =10
5 X —2X, —2X%, =9 — X, +4X%,=6
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Lecture 17

Introduction to Determinant

In algebra, the determinant is a special number associated with any square matrix.
As we have studied in earlier classes, that the determinant of 2 x 2 matrix is defined as
the product of the entries on the main diagonal minus the product of the entries off the
main diagonal. The determinant of a matrix A is denoted by det (A) or |A|

a b
For example: A= { }

c d
Then det (A) = ad-bc.
or |A| =ad - bc

1 2
Example Find the determinant of the matrix A= {3 4}
1

Al =
||‘3

2
4‘ = 1x4-2x3 =4-6=—-2

To extend the definition of the det(A) to matrices of higher order, we will use subscripted

entries for A.
a a
A { 11 12}
boy  boo

a1 a2

det (A) =
A bpy b2

= a11bpp — 3y2bp1

This is called a 2x2 determinant.

The determinant of a 3x3 matrix is also called a 3x3 determinant is defined by the
following formula.

aj; a2 43
a1 422 423 1)
az] a3z asz

For finding the determinant of the 3x3 matrix, we look at the following diagram:

2 1
azy azp
a: 8.3
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We write 1% and 2" columns again beside the determinant. The first arrow goes from
a1 to ass which gives us product: a;1a>0a33 . The second arrow goes from aj» to aay,

which gives us product: ajoas3az . The third arrow goes from ai3 to as, which gives us
the product: a;3ap1a37 . These values are taken with positive signs.

The same method is used for the next three arrows that go from right to left downwards,
but these products are taken as negative signs.

= da11dppa33+a1pap3a31+3d13a213a32 - d13appa3zq - d11a23a32 - d12dp1433

1 2 3
Example 2 Find the determinant of the matrixA=| -4 5 6
7 -89
1 2
detA=|-4 5
7 -8
1 2 3112
=-4 5 6/-45
7 -8 9/7-8

=1x5x9 + 2x6x7 + 3x(-4)x(-8)-3x5x7 -1x6 x(-8)-2x(-4)x9
=45+84+96-105+48+72
=240
We saw earlier that a2x2 matrix is invertible if and only if its determinant is nonzero.
In simple words, a matrix has its inverse if its determinant is nonzero. To extend this
useful fact to larger matrices, we need a definition for the determinant of the nxn matrix.

We can discover the definition for the 3x3 case by watching what happens when an
invertible 3x 3 matrix A is row reduced.

Gauss’ algorithm for evaluation of determinants

1) Firstly, we apply it for 2x2 matrix say
2 3
A p—
<
R; — R, — 2R, (Multiplying 1* row by 2 and then subtracting from 2" row)

2 3 | J2 3
~Lt—z(z) 3—2(3)H0 —3}

Now the determinant of this upper triangular matrix is the product of its entries on main
diagonal that is
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Det(A) = 2(-3)-0x3 =—6-0 =—6
2) For 3x3 matrix say
-2 2 -3
B=(-1 1 3
2 0 -1
By R], — R,, (Interchanging of 1% and 2™ rows)
-1 1 3
~-2 2 -3
2 0 -1

R, — R, — 2R, (Multiplying 1% row by ‘-2 and then adding in the 2" row)
R — R, + 2R, (Multiplying 1 row by ‘2’ and then adding in the 3 row)

-1 1 3]
~0 0 -9
0 2 5|
By R}, — R,, (Interchanging of 2" and 3" rows)
-1 1 3]
~10 2 5
(0 0 -9

Now the determinant of this upper triangular matrix is the product of its entries on main

diagonal and that is
Det(B) =(-1)-2-(-9) =18
So in general,

For a 1x1matrix
say, A=[a;] - we definedetA=a,, .

For 2x2 matrix

{au au}
a21 a22

By R, —>R2—[

ﬁj R, provided that a, #0

1
Ay A,

~ a
0 a _ial
22 all 2

. A =det A= product of the diagonal entries
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a21
=ay, {azz _;an = 8,8y, — 8,8y
1
For 3x3matrix say
a; dp
8y 8y Ay
8 8y dy
' a, ' ay .
By R, =R, —(—J R, Ry >R, —(—J R, provided that a,, #0
8y &
8 &, 83
-0 Ay — A8y, g8y — 858y,
8 &
0 A58y — 8,8 8,853 — 58,
i i T
A58, — 8,85
By R, >R, - N T R, provided that % 8% L
Aydy; — 8,8y a,;
&
a, a, a,
~l 0 Appyy — 3458y Ay38y; — 38y ay # 0
* 1
i T
A58, — 8,85
0 0 1833 — 8438y _ 8y38; — A58y A
a, a, 883 — 8,8y,
N
Which is in echelon form.Now,
A = det A= product of the diagonal entries
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—a, ( A8y — 3,8y, J[ A 853 — A58y _ ( Apdyy — 438, ]( gy — 38y j]
G a; a 8y —8p8y

_ _ ;855 — 138y _ _ Ay38y; — 838, A58, — 8,8y
—(azzan a12a21)( a, j (azzan a12a21)( a, j(azzaﬂ_auaﬂj

1
= ;{(azzau - a12a21)(a11a33 - a13a31) - (a23a11 - a13a21)(aszau - a12a31)}
1

1
= ;{aflazzass — 8,8,5,8383; — 88,8855 + &8y, 8385, — a23a121a32 T 838,883 + 838838 — a12a21a13a31}
1

1
= ;{aﬂ.zlaZZaG(% — 8,8,5,838; — &p85,8;85; — a23a121a32 T 888,85 + a13a21asza11}
1

:&{

1

Q185,855 — 8y, Q385 — 81851853 — 838,85, +Ap3dy,85 + a13a21a32}
= 818,,833 + 81,8538 + 8138583, — 81585853 — &3 8p385, — 838,585

Since A is invertible, A must be nonzero. The converse is true as well.

To generalize the definition of the determinant to larger matrices, we will use
2x 2 determinants to rewrite the 3x3 determinant A described above. Since the
terms in A can be grouped as:

A= (a11azzas3 —ay azsasz) - (a12a23a31 - a12a21ass) + (a13a21a32 - a13a22a31)
= a11(a22a33 - azsasz) —a, (a21a33 - a23331) +ay; (a21a32 - a22a31)

a a a a a a
A: det 22 23:|_ det|: 21 23:|+ det|: 21 22:|
“u {a@ a,| " a, a, ™ e, a,

a22 a‘23 aZl a23 aZl a‘22

3 8 8y ay
For brevity, we writteA =a,, -det A, —a,, -det A, +a,-det A, (3)

A=ay,- —ap +a;-

a‘32 a33

a‘21 a‘22

A Ay

a22 a23 a21 a23

det(A,) =

where

A11 is obtained from A by deleting the first row and first column.

A1, is obtained from A by deleting the first row and second column.

A3 is obtained from A by deleting the first row and third column.

So in general, for any square matrix A, let Aj; denote the sub-matrix formed by deleting
the ith row and jth column of A.

, det(A,) = and det(A;) =

2 33 31 33

Let’s understand it with the help of an example.
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Example3

1 4 3
Find the determinant of the matrix A={5 2 4
3 6 3

1 4 3

Solution Given A=|5 2 4

|3 6 3

1 4 3

|A|=5 2 4

3 6 3
:1‘2 4‘_4‘5 4‘+3‘5 2
6 3 3 3] 3 6

=1(2x3—-4x6)-4(5x3-4x3)+3(5x6-2x3)
=1(6-24)-4(15-12)+3(30-6)
=1(-18)-4(3)+3(24)

=-18-12+72
=42
1 -2 5 0
For instance, if A=l2 0 4 -1
31 0 7
0O 4 -2 0

then As; is obtained by crossing out row 3 and column 2,

1 +2 5 0
2 o 4 - so that

3 1 0 7
o 4 -2 O

We can now give a recursive definition of a determinant.

A,=|2 4 -1

(@) [

|

N

o o
[

When n = 3, det A is defined using determinants of the 2x 2 submatrices A ;.
When n = 4, det A uses determinants of the 3x 3 submatrices A
In general, an nxndeterminant is defined by determinants of (n —1) x (n—1) sub matrices.

©Virtual University Of Pakistan 208



17-Introduction to Determinant VU

Definition
For n>2,the determinant of nxn matrix A =[a;]is the sum of n terms of the form

+a,; x (det A;), with plus and minus signs alternating, where the entries a,;,a,,,---,a,
are from the first row of A.

Here for g,
1=123...,n (1<i<n)

j=123,...,n (1<j<n)
In symbols,det A=a,, det A, —a,, det A, +....+ (-1)""a,, det A, =" (-1)"'a,, det A,

j=1

Example 4
1 5 0
Compute the determinantof A={2 4 -1
0 -2 0
Solution
Here A is nxn=3x3matrix such that
i=12,3
j=12,3
n -
- det(A) =) (-1)""'a,; det A ; and here j =1,2,3
j=1

3
~det(A) =Y (-1)"Ta, det A = (-1)"a,, det A, +(-1)"?a, det A, + (~1)*a,, det A,

it

=a; det Au —a; det A12 +ay; det A13

det A=1.det 4 - —5.det 2 -1 +0.det 2 4
-2 0 0 O 0 -2

4 -1 _|2 - 2 4
oin-1l’, Asf ool

= 114(0) - (-1)(-2)1 -5 [ 2(0) - 0(-1)] +0[2(-2) - 4(0)]

=1(0-2)-5(0—0) +0(-4—0) = -2

Minor of an element

If A is a square matrix, then the Minor of entry aj (called the ijth minor of A) is
denoted by Mj; and is defined to be the determinant of the sub matrix that remains when
the ith row and jth column of A are deleted.

©Virtual University Of Pakistan 209



17-Introduction to Determinant VU

In the above example, Minors are as follows:

4 — > _ > 4
M“:‘—z oﬂ’ M”:‘o oﬂ’ M“:‘o —2‘

Cofactor of an element
The number Cjj=(-1)"'M;; is called the cofactor of entry aj;(or the ijth cofactor of A).
When the + or — sign is attached to the Minor, then Minor becomes a cofactor.

In the above example, following are the Cofactors:

C11 :(_1)1+l M., C12 :(_1)1+2 M12 , C13 :(_1)1+3M13
4 — 2 — 2 4
C. =(—D* , C..=(—=1)*2 . C.=(-1 1+3
1 =( —2 0 12 = 0 0 13 = 0 -2
31 4
Example 5 Find the minor and the cofactor of the matrix A={2 5 6
1 4 8
31 -4
Solution Here A=|2 5 6
1 4 8

The minor of entry a; is

5 6
M,=[2 5 6 =‘4 8‘:5x8—6x4:40—24:16
{ 4 8

and the corresponding cofactor is
Cu= (_1)1+1M11 =M, =16
The minor of entry as; is

3 -4
M,, =|2 6= =26
2 6
and the corresponding cofactor is
C, =(-)*’M,, =-M,, = — 3 A 5
32 32 32 2 6 -
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Alternate Definition
Given A=[a;], the (i, j)-cofactor of A is the number C,; given by

C,, = (-1 det A, (4)
Then detA=a,C,+a,C,+....+a,C,

This formula is called the cofactor expansion across the first row of A.

1
Example 6 Expand a 3x3 determinant using cofactor conceptA=(-4 5 6
7 -89

Solution _ Using cofactor expansion along the first column;

1 2 3 :
4 5 6 =@

6 2
+_4 _12+l

° Jrcaen

7 -8 9

3 3+1 2 3
PR GICE ‘

5 6

Nowif we compareit with the formula (4),

=1C, + (-4)C,, +7C,,

6 3
=D’ ot (-4(-1)° ot (MED*

23‘

2
—8 5 6

5
—8

5 6 2 3
=(1)(1)‘_8 9 +(7)(1)‘5 6

2 3
+(-4)(-D) ‘_8 .

5 6
-8 9

2 3
-8 9

=1‘ ‘+4‘ +7

2 3
5 6

=1(45— (—48)) +4 (18— (—24)) +7 (12 — 15)
=1(45+48) +4(18+ 24) +7 (12—15)
= (1)(93) + (4)(42) + (7)(—3) = 240

Using cofactor expansion along the second column,
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1 23 -4 6 1 3
-4 5 6/=(2-n"’ 7 9+(5)(—l)2*27 +( 8)(-1)* 4 6‘
7 -89
3
—4 6
-4 6
=(2)(—1)‘7 9+(5)(1) ‘ (-8)(-1) ‘_4 6‘
‘—4 6 |1 3 1 3‘
=-2 + +8
7 9 |7 9 |4 6

=-2(-36 -42)+5(9-21)+8(6-(-12))

=(-2)(-78) + (5)(-12) + (8)(18) = 240

Theorem 1  The determinant of an nxn matrix A can be computed by a cofactor
expansion across any row or down any column. The expansion across the ith row using
the cofactors in (4) is

detA=4a,C,+a,C,+---+a,C

n=n

The cofactor expansion down the jth column is

detA=a,C;+a,C, +--+a,C

nj ~nj

The plus or minus sign in the (i, j)-cofactor depends on the position of a; in the matrix,

regardless of the sign of a;itself. The factor (-1)"! determines the following
checkerboard pattern of signs:

+ - +
_+_
+ - +
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Example 7 Use a cofactor expansion across the third row to compute det A, where

1 5 0
A=[2 4 -1
0 -2 0

Solution Computedet A=a,,C,, +a,,C,, +a,,C,,

= (_]-)3+l a31 det A31 + (_1)3+2 a32 det A32 + (_1)3+3 a33 det A33

5 0 1 0 1 5
=0 -(-2) +0
4 -1 2 -1 (2 4

=0+2(-1)+0=-2

Theorem 1 is helpful for computing the determinant of a matrix that contains many
zeros. For example, if a row is mostly zeros, then the cofactor expansion across that row
has many terms that are zero, and the cofactors in those terms need not be calculated.

The same approach works with a column that contains many zeros.

2 0 0 5
. -1 2 4 1
Example 8 Evaluate the determinant of A= 3 00 3
8 6 0O
2 0 0 5
-1 2 4 1
Solution det(A) =
3 0 0 3
8 6 0 O

Expand from third column
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det(A) =0xC,; +4xC,, +0xC,; +0xC,,

=0 +4xC,; +0+0

= 4xC,,
2 0 5
=4x(-1)**3 0 3
8 6 0

Expand from second column

= 4[0+O+(6)‘2
T 3

w ol
N——

2 5
=(-4) (—6)‘3 3‘

=-216

Example 9 Show that the value of the determinant is independent of &

sin@ cosd 0
A=| -—coséd sin@ 0
cos@—-singd sin@+cosd 1

sin@ cosd 0
Solution Consider A=| —cosé@ sin@ 0

cos@—sin@ sin@+cosd 1
Expand the given determinant from 3 column we have

=0-0+(-1)**[sin?@ +cos* F] =1
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3 -7 8 9 -6
0 2 5 7 3
Example 10 Compute det A, where A={0 0 1 5 0
0 0 2 4 -1
0 0 0 -2 0]

Solution _ The cofactor expansion down the first column of A has all terms equal to zero
except the first.

2 5 7 3
01 5 0

Thus detA=3|  _ |-0Cy+0Cy-0C,+0C,
00 -2 0

Henceforth, we will omit the zero terms in the cofactor expansion.

Next, expand this 4x4 determinant down the first column, in order to take advantage of
the zeros there.

1 5 0
We have det A=3x2|12 4 -
0 -2 0

This 3x3 determinant was computed above and found to equal —2.
Hence, det A = 3x2x(-2) =-12.

The matrix in this example was nearly triangular. The method in that example is easily
adapted to prove the following theorem.

Trianqular Matrix

A triangular matrix is a special kind of m x n matrix where the entries either below or
above the main diagonal are zero.

1 4 2 I 00
0 3 4 2 8 0
0 01 4 9 7

is upper triangular and 25x 25 is lower triangular matrices.

Determinants of Triangular Matrices

Determinants of the triangular matrices are also easy to evaluate regardless of size.
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Theorem If A is triangular matrix, then det (A) is the product of the entries on the main
diagonal.

Consider a 4x4 lower triangular matrix.

a, 0 0 O |
A a, a, 0 0
a31 a32 a33 0

L Ay 8y 3 Ay i

Keeping in mind that an elementary product must have exactly one factor from each row
and one factor from each column, the only elementary product that does not have one of
the six zeros as a factor is (a;,a,,8;,8,,) . The column indices of this elementary product

are in natural order, so the associated signed elementary product takes a +.

Thus, det (A)= ay, x @, xay,x 8,
2 5 7
Example 11 0 3 8/=(-2)(3)(55)=-30
0 05
1.0 0 0
4 9 0 0
= (D)(9)(=1)(-2) =18
26 1 0 DO)(-1)(-2)
3 8 -5 -2
12 7 -3
O N hoee =6
00 2 7| B
00

The strategy in the above Example of looking for zeros works extremely well when an
entire row or column consists of zeros. In such a case, the cofactor expansion along such
a row or column is a sum of zeros. So, the determinant is zero. Unfortunately, most
cofactor expansions are not so quickly evaluated.

Numerical Note By today’s standards, a 25x25matrix is small. Yet it would be
impossible to calculate a 25x 25 determinant by cofactor expansion. In general, a cofactor

expansion requires over n! multiplications, and 25!~1.5x10%.
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If a supercomputer could make one trillion multiplications per second, it would have to
run for over 500,000 years to compute a 25x25 determinant by this method.
Fortunately, there are faster methods, as we’ll soon discover.

5 -7 2 2
Example 12 Compute 0 4
-5 -8 0 3
0O 5 0 -6

Solution _ Take advantage of the zeros. Begin with a cofactor expansion down the third
column to obtain a 3x3 matrix, which may be evaluated by an expansion down its first
column,

5 -7 2 2
0 3 0 -4 0 3 4
= (-1)"%2|-5 -8 3

5 8 0 3
0 5 -6

0 5 0 -6

3 -4
=2.(-1)**(-5 =20
()2 )‘5 _6‘

The -1 in the next-to-last calculation came from the position of the -5 in the3x3
determinant.
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Exercises
Compute the determinants in exercises 1 to 6 by cofactor expansions. At each step,
choose a row or column that involves the least amount of computation.

6 0 0 5 1 2 5 2
1 7 2 5 0 0 3 O
1. 2.
2 00 O 2 6 -7 5
8 3 1 8 5 0 4 4
3 5 -8 4 4 0 O
0 -2 3 -7 7 -1 0 O
3 4
0 0 1 5 2 6 3 O
0O 0 0 2 5 -8 4 3
4 0 -7 3 -5 6 3 2 40
00 2 0 O 9 0 410
5 7 3 6 4 -8 6 8 5 6 71
5 0 5 2 -3 3 0 0 0
00 9 -1 2 4 2 3 2 0

Use the method of Example 2 to compute the determinants in exercises 7 and 8. In
exercises 9 to 11, compute the determinant of elementary matrix. In exercises 12 and 13,

a b
verify that det EA = (det E) . (det A), where E is the elementary matrix and A= L } .

d
30 4 2 -4 3 100 k 00
7. 232 8 31 29 010l 20 |010
05 - 1 4 -1 0 k 1 001
0 10 )
1k} {01}
1. (1 0 0| 12 13,
0 1 10
00 1 -

31
14. Let A= 4 2}. Write 5A. Is det 5A =5 det A?

ab
15. Let A= . d} and k be a scalar. Find a formula that relates det (kA)to k and det A.
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Lecture 18

Properties of Determinants

In this lecture, we will study the properties of the determinants. Some of them have
already been discussed and you will be familiar with these. These properties become
helpful, while computing the values of the determinants. The secret of determinants lies
in how they change when row or column operations are performed.

Theorem 3 (Row Operations): Let A be a square matrix.
a. If a multiple of one row of A is added to another row, the resulting
determinant will remain same.
b. If two rows of A are interchanged to produce B, then det B = —det A.
c. If one row of A is multiplied by k to produce B, then det B =k . det A.

The following examples show how to use Theorem 3 to find determinants efficiently.
a. If a multiple of one row of A is added to another row, the resulting determinant
will remain same.

Example

&, dp
A=la, @, ay

a31 a32 a33
Multiplying 2nd row by non — zero scalar say 'k'as
ka,, ka,, ka,;————adding this in st row then'A"becomes

all + ka21 a12 + ka22 a13 + I(a23
= Ay Ay A3 Rl’ >R+ kRz
8 83 833

If each element of any row(column) can be expressed as sum of two elements then the
resulting determinant can be expressed as sum of two determinants, so in this case

all a12 a13 kaZl ka22 ka23

A=18y 8y ayplt|dy 8y Ay

a31 a32 a33 a31 a32 a33

all a12 a13 a21 a22 a23

A=la, a, axp|+kl|a,, a, a,| Byusingproperty (c)ofabove theorem 3.

a31 a32 a33 a31 a32 a33
If any two rows or columns in a determinant are identical then value of this determinant
is zero. So in this case R, =R,
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&; d, a3

Ay By ayu|+k(0)

A3 85 g

&; dp

=18y @, ayl=A
83 8y g3

A=

b. If two rows of A are interchanged to produce B, then det B = —det A.
Example 1

1 2 3
A=l5 1 1
0 8 9
1 2 3
Now,detA=|5 1 1/=1(9-8)-2(45-0)+3(40-0)=1-90+120=31
0 8 9
2 1 3
Now interchange column 1st with 2" we get a new matrix, B=1 5 1
8 0 9
2 1 3
detB=|1 5 1/=2(45-0)-1(9-8)+3(0—40)=90-1-120=-31
8 0 9

c. Ifonerow of A is multiplied by k to produce B, then det B =k . det A.

1 2 3
A=|5 0 1
0 8 9
|A|:1(O —8)—2(45-0)+3(40-0)
=-8-90+120=22
MultiplingR, by k, we get say
1k 2k 3k
B=|5 0 1
0 8 9
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|B|=k(40-0) — 2k (45— 0) + 3k (40— 0)

— 40K
=k[A

—90k +120k =22k

Example 2

Evaluate A=

A W DN -
P B W DN
N P B W
w N P b

Solution

det A=

o O O B+

-1
= |-2
-7

N R W
A W N F N

1 -2 -7
2 -8 -10
-7 -10 -13

by R, - R, +(-2)R,R, = R, +(-3)R,,R, = R, + (-4)R,

S
-8 -10 expanding from Ist column
-10 -13

1 2 7

=(-1)(-2)(-1)]1 4 5| taking (-1),(—2)and (—1)common from1st,2nd,3rd rows

~(-2)

(-2

7 10 13

1 2 7
0 2 -2 byR, >R, +(-)R,R, >R, +(-7)R,
0 -4 -36
2 —2‘

expanding by1st column
-4 -36 P ghy

1 —
=(-2)(2)(-4) |1 91‘ taking 2and (-4) common from1st and 2nd rows respectively.

1
=16
:

=160

10| by Rz + (_1) Rl
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4 2 5 10
: : 1 16 3
Example 3 Evaluate the determinant of the matrix A = 2 30 5
0 25 8
Solution
4 2 510
1 16 3
det A=
730 5
0 25 8
1 16 3
:—: 2 > 150 interchanging R, and R, (R/,)
0 25 8
1 1 6 3
) T T2 By R SR (ARR SR (TR
0 -4 -42 -16
0 2 5 8
-2 -19 -2
=—|-4 -42 -16 expanding from 1st column
2 5 8
2 19 2
=(-1)*|4 42 16 taking (-1) asa common factor from R, and R,
2 5 8
2 19 2
=—|4 42 16
2 5 8
1 19 2
=-2|2 42 16
1 5 8
1 19 2
=(-2)/0 4 12 ByR,’ >R, +(-2R,R, >R, +(-1R,
0 -14 6
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1 19 2

=(-2)0 4 120 R,+(-2)R,R;+(-DR
0 -14 6

= —2‘ 114 expand from Ist column

=—-2(24+168)=—-384

X a+X b+c
Example 4 Without expansion, show that [x b+x c+a|=0
X C+X a+b

Solution
X a+X b+c

X b+x c+a
X C+X a+b

X a+X—-X b+c

=[x b+x-x c+a] ByC, »C,-C,
X C+X—X a+b

X a b+c

=|x b c+a

X € a+b

Taking 'x'common fromC,
1 a b+c
=xl b c+a
1 ¢ a+b
1 a+b+c b+c
=x{l b+c+a c+a| ByC, »C,+C,

1 c+a+b a+b

Now taking (a+b+c) common form C,
1 1 b+c

=x(a+b+c)[l 1 c+a
1 1 a+b

=0 as column Ist and 2nd are identical (C, =C,). So its value will be zero.
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2 3101
11312
Example 5 Evaluate A=2 1 2 3 4
32112
4 1100
Solution _ Interchanging R; and R, we get
11312
2 3101
A=-2 1 2 3 4
3 2112
41100
R, ->R,-2R,R’ >R, -2R,R/ > R,-3R,R, > R, —4R,
1 1 3 1 2
0 1 -5 -2 -3
=0 -1 -4 1 O
0 -1 -8 -2 -4
0 -3 -11 -4 -8

expand from C1

1 5 2 -3
14 10
1 8 2 4

3 11 -4 -8

R/ >R,+R,R, >R +R,R >R, +3R
1 5 -2 -3
0 -9 -1 -3
0 -13 -4 -7
0 —26 -10 -17

expand from C

1

9 -1 -3
=—|-13 -4 -7
26 -10 -17
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taking (-1) common from Ist,2nd and 3rd row

9 1 3
=13 4 7
26 10 17
interchange Ist and 2nd Column(C,,)
1 9 3
=-|4 13 7
10 26 17
C,—>C,-9C,C, >C,-3C,
1 0 0
=—|4 -23 -5
10 —-64 -13
expand from Ist row
:-"23 > ‘ =—(299-320) =21
-64 -13

An Algorithm to evaluate the determinant

Algorithm means a sequence of a finite number of steps to get a desired result. The word
Algorithm comes from the famous Muslim mathematician AL-Khwarizmi who invented
the word algebra.

The step-by-step evaluation of det(A) of order n is obtained as follows:

Step 1: By an interchange of rows of A (and taking the resulting sign into account) bring
a non zero entry to (1,1) the position (unless all the entries in the first column are zero in
which case det A=0).

Step 2: By adding suitable multiples of the first row to all the other rows, reduce the
(n-1) entries, except (1,1) in the first column, to 0. Expand det(A) by its first column.
Repeat this process or continue the following steps.

Step 3: Repeat step 1 and step 2 with the last remaining rows concentrating on the second
column.

Step 4: Repeat step 1,step2 and step 3 with the remaining (n-2) rows, (n-3) rows and so
on, until a triangular matrix is obtained.

Step5: Multiply all the diagonal entries of the resulting triangular matrix and then
multiply it by its sign to get det(A)
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1 -4 2
Example 6 Compute det A, whereA=|-2 8 -9|.
-1 7 0

Solution _ The strategy is to reduce A to echelon form and then to use the fact that the
determinant of a triangular matrix is the product of the diagonal entries. The first two
row replacements in column 1 do not change the determinant:

1 -4 2
detA=|-2 8 -9
-1 7 0
1 -4 2
=0 0 -5 ByR,->R,+2R,R;—>R+R,
0 3 2
An interchange of rows 2 and 3 (R, ), it reverses the sign of the determinant, so
1 -4 2
detA=-0 3 2|=—D@R)(-5)=15
0 0 -5

Example 7 Compute det A, where

2 -8 6 8
3 -9 5 10
A= :
-3 0 1 -2
1 -4 0 6
Solution _ Taking’2’ common from 1% row
1 -4 3 4
3 -9 5 10
detA=2
-3 0 1 -2
1 -4 0 6
1 -4 3 4
0 3 -4 2
detA=2o 0 -6 By R, > R,-3R,R; >R, +3R,R; > R, —R,
0 0 -3
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1 -4 3 4
0 3 -4 -2 ,

detA=2| | (BYR>R-3R)
00 0 1

=2{(MG)(-6)D}=-36

X 2 2 2
2 X 2 2 3
EXﬂpIe_8Showthat2 5y 2:(x+6)(x—2)
2 2 2 X
Solution
X 2 2 2
2 X 2 2
2 2 x 2
2 2 2 X
X+6 2 2 2
e X2 2 g o hc, 4,4 C)
X+6 2 x 2 PO e
X+6 2 2 X
Taking (x+6) common from 1% column
1 2 2 2
:(x+6)1 X 2 2
1 2 x 2
1 2 2 x
1 2 2 2
0 x-2 0 0
:(x+6)0 0 x-2 0 By R, > R,-R,R; > R,-R,R, > R, —R,
0O O 0 x-2

And this is the triangular matrix and its determinant is the prodcut of main diagonal’s
entries.

= (Xx+6)(x—2)°
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3 -1 2

0 5 3
-6 7 -7
-5 -8 0

Example 9 Compute det A, where A=

3 -1 2 -5
0 5 -3 -6
-6 7 -7 4
-5 -8 0 9
3 -1 2 -5
getaz| 0 2 2 Ol g +2R,
o 5 -3 -6° °
5 -8 0 9
=0 asR, =R,
Examplel0 Compute det A, where
0o 1 2 -1
2 5 -7 3
A=
0 3 6 2
-2 -5 4 2
Solution

Solution A=

A=

01 2 -1
2 5 -7 3
0 3 6 2
0 0 3 1

R’ —R,+R,

1 2 -1
5 -7 3
3 6 2
0 0 -3 1
Expanding from 1% row and 1% column

O O N

= (_1) By Rl'z

-5
-6
4
9
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5 -7 3
=—2]3 6 2

0 -3 1
=(~2){5(6+6) - (~7)(3—0) +3(-9-0)}
=54
Remarks

Suppose that a square matrix A has been reduced to an echelon form U by row
replacements and row interchanges.

If there are r interchanges, thendet(A) = (-1)" det(U)

Furthermore, all of the pivots are still visible in U (because they have not been scaled to
ones). If A is invertible, then the pivots in U are on the diagonal (since A is row
equivalent to the identity matrix). In this case, det U is the product of the pivots. If A is
not invertible, then U has a row of zero and det U = 0.

@ o o o @ o o o

0 ® O o 0 [} o o
U = U =

0 0 ® o© 0 0 [} o

0 0 0 e 0 00O

detU =0 detU =0

Thus we have the following formula
{(—1)r .(Product of pivotsinU) When Aisinvertible

det A= . . . (1)
0 When Ais notinvertible

Example
Case-01 For 2x2 invertible matrix

Reducing given 2x 2 invertible matrix into Echelon form as follows;
4 5

A=

By interchanging 1% and 2™ rows(R/,)

3 2
~ 5} ~ one replacement of rows has occurred, ..r =1

4
3 2 4 3 2
“lo 7By R’ >R, -3 R,, we have desired row-echelon form U = 71
3 3

Thus using the above formula as follows;
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det A= (-1)".(Product of pivotsinU) = (—1)1(3%) =—7

Case-02  For 2x2 non-invertible matrix
In this case say;

4 5
A:
{8 10}

4 5 , 4 5
~ By R, — R, —2R, desired row-echelon formis U =
0 0 0 0

Here no interchange of rows has occurred. So,r =0 and
-.det A= (-1)".(Product of pivotsinU)=(-1)°(4-0)=0

Theorem 5 If A isan nxn matrix, then det AT =det A.
1 4 1

Example11 IfA=|2 1 2|, find det(A)and det (A")
313
1 4 1
detA=2 1 2/=1(3-2)-4(6-6)+1(2-3)=1-0-1=0
313
Now

N P DN

3
1
3
1 2 3

detA =4 1 1|=1(3-2)-2(12-1)+3(8-1)=1-22+21=0
1 2 3

Remark
Column operations are useful for both theoretical purposes and hand computations.
However, for simplicity we’ll perform only row operations in numerical calculations.

Theorem 6 (Multiplicative Property)

If A and B are nxn matrices, thendet(AB) = (det A)(det B) .

. 6 1 4 3
Example 12 Verify Theorem 6 for A= 3 2 and B= 1 2
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. 6 1|4 3 25 20
Solution  AB = =
- 3 2|1 2 14 13
anddet AB =25.13-20.14 =325-280=45
Since det A=9and det B =5, (det A)(det B) =9.5=45=det AB
Remark
det (A + B) = det A + det B, in general.
For example,
2 3 -2 -
If A= and B = 3 . Then
1 -5 -1 5
00
A+B= = det(A+B)=0
00
2 3| |[-2 -3
det A+detB = + =(-10-3)+(-10-3)=-26 = det(A+ B)
1 -5 |-1 5
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Exercise

Find the determinants in exercises 1 to 6 by row reduction to echelon form.

1 3 0 2 1 3 3 -4
. -2 5 7 ) 0 1 2 -5
3 5 2 1 2 5 4 3
1 -1 2 -3 -3 -7 -5 2
-1 0 -2
1 -1 30
2 -4 -1 -6
0 1 5 4
3. 4 -2 6 2 3 9
-1 2 8 5
-3 8 -7
3 -1 -2 3
5 2 7
1 3 1 5 3
1 -2 3 1
-2 -7 0 -4 2
5 -9 6
5 6 0 0 1 0 1
-1 2 -6 -2
0 0 2 1
2 8 6 1
0 0 O 1

Combine the methods of row reduction and cofactor expansion to compute the
determinants in exercises 7 and 8.

2 5 3 -1 2 5 4 1
3 0 1 -3 6 4 7 6 2
-6 0 -4 9 ' 6 -2 -4 0
4 10 -4 -1 -6 7 7 0
2 0 0 8
. . . i 1 -7 50
9. Use determinant to find out whether the matrix is invertible 38 6 0
0 7 5 4

10. Let A and B be 3x3 matrices, with det A = 4 and det B = -3. Use properties of
determinants to compute

(@) det AB  (b)det7A  (c)detBT  (d)det AT
(e) det ATA

©Virtual University Of Pakistan 232



18-Properties of Determinants VU

11 Show that
a b a+b+c| | b ¢
(@la, b, a+b,+c,/=la, b, ¢,
aS b3 a3+b3+03 a3 b3 C3
a1+b1 a’l_bl C Ch b1 C,
(b) la,+b, a,-b, c,|=-2la, b, c,
a3+b3 as_bs C CH bs Cs
12 Show that
a, +bt a,+bt a,+hbt a a, a,
@) |at+b at+b, at+b|=@@-t?)|b, b, b,
C, C, C, C, C G

a b+ta, c+rb+sa| | a &
(b) |a, b,+ta, c,+rb,+sa,l=b, b, b,
a, by+ta, c,+rby+sa,l |c, ¢, C

1 x X
13.Showthat 1 y y?*|=(y—-x)(z=x)(z-Y)
1 z 7°
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Lecture 19

Cramer’s Rule, Volume, and Linear Transformations

In this lecture, we shall apply the theory discussed in the last two lectures to obtain
important theoretical formulae and a geometric interpretation of the determinant.

Cramer’s Rule  Cramer’s rule is needed in a variety of theoretical calculations. For
instance, it can be used to study how the solution of Ax = b is affected by changes in the
entries of b. However, the formula is inefficient for hand calculations, except for 2x2 or
perhaps 3x3 matrices.

Theorem 1 (Crammer’s Rule)  Let A be an invertible nxn matrix. For any b in R",
the unique solution x of Ax = b has entries given by

xizw, i=12,..,n 1)
det A

Example 1 Use Cramer’s rule to solve the system
3%, —2X, =6
—5X, +4x, =8
Solution _ Write the system in matrix form, Ax =b

N

where
-2
A= 3  X= % &b= 0
-5 4 X, 8
3 2
detA:{ 4}:12—10=2

6 -2 3 6
Al(b){g 4},&@){_5 8}

Since det A = 2, the system has a unique solution. By Cramer’s rule,
_detA(b) 24+16

=20
det A 2

X, = det A, (b) _ 24 +30 _ 97
det A 2
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Example 2 Consider the following system in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution and use Cramer’s
3sx, —2X, =4

—6X, +5X, =1

rule to describe the solution.

Solution Here

3s -2 4 4 -2 3s 4
el et T el

Since det A=3s”-12=3(s+2)(s-2)
the system has a unique solution when

det A=0

=3(s+2)(s—2)#0

=s°-420

=>Ss#12

For such an s, the solution is (X1, X2), where
_detA(b)  4s+2

~ detA  3(5+2)(s-2)°

« _detAj(b)  3s+24 s+8

) = = ) S#=+2
det A 3(s+2)(s—2) (s+2)(s-2)

S# 12

Example 3 Solve, by Cramer’s Rule, the system of equations
2X, — X, +3%, =1
X, +2X, =X, =2
3%, +2X, +2X%, =3

2 -1 3 1 1 -1 3
Solution HereA=|1 2 -1|,b=|2|,A=|2 2 -1
3 2 2 3 3 2 2

2 1 3 2 -11

A=l1 2 -1|,A=|1 2 2

3 3 2 3 2 3
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D=detA=2.6-1-(-5)+3(-4) =5
D, =detAb=1.6+2-8+3(-5)=7

D, =det Ab=2-(7)-1-(5) +3(-3) =0
D, =det Ab=2.(2)+1-(-3) +1(-4) = -3

Sox1:D1:7, xzz%:o, x3:D 3

=
D 5
Example 4 Use Cramer’s Rule to solve.

X, + 2X; =6
—3%, +4X, +6X, =30
— X, —2X, +3%X; =8

Solution
1 0 2 6
A=-3 4 6|,b=]30
-1 -2 3 8
6 0 2 1 6 2 1 0 6
~A=|30 4 6[,A,=-3 30 6 A=-3 4 30
8 -2 3 -1 -8 3 -1 -2 8
Therefore,

_det(Ab) 40 _-10  _dei(Ab) 72 _18
det(A) 44 11 7 det(A) 44 11
. _Jet(Ab) 152 38
° det(A) 44 11

Note For any nxn matrix A and any b in R", let A;(b) be the matrix obtained from A by
replacing ith column by the vector b.

Ab)=[a, .. b .. a]
T

Ith column

Formula for A™

Cramer’s rule leads easily to a general formula for the inverse of nxn matrix A. The
jth column of A™ is a vector x that satisfies Ax = g
where e; is the jth column of the identity matrix, and the ith entry of x is the (i, j)-entry of
A™. By Cramer’s rule,

{(i, j)—entryof A} =x, _detAE) )

v det A
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Recall that A; denotes the submatrix of A formed by deleting row j and column i. A
cofactor expansion down column i of A;(e;j) shows that

det A(e;) = (-1 det A, =C; (3)
where Cj; is a cofactor of A.
By (2), the (i, j)-entry of A™ is the cofactor Cji divided by det A.
[Note that the subscripts on Cj; are the reverse of (i, j).] Thus

Cll C21 Cnl

a1 |C: Cy . Cp @
detA| : : :
C C C

1n 2n nn
The matrix of cofactors on the right side of (4) is called the adjugate (or classical
adjoint) of A, denoted by adj A. (The term adjoint also has another meaning in advance

texts on linear transformations.) The next theorem simply restates (4).

Theorem 2 (An Inverse Formula)

Let A be an invertible nxn matrix, then A™ = ﬁadj A
e

Example
For the matrrix say
2 3
Az{ 1 5} = detA=10-(-3)=13

= Awill also be a 2x 2 matrix
As
Aji =submatrix of A formed by deleting row j and column i

So in this case
A, = submatrix of A formed by deleting row 1 and column 1 =[5]

A, = submatrix of A formed by deleting row 1 and column 2 =[-1]
A,, = submatrix of A formed by deleting row 2 and column 1 =[3]

A,, = submatrix of A formed by deleting row 2 and column 2 =[2]
and

det A (e;) = (-1 det(A;) =C;
where e, is the jth column of identity matrix I,

So in this case
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C, =detA(e)=(-1)""det A, = (+1)det[5]=5
C,, =det A, () = (1) det A, = (1) det[-1] = (-1)(-1) =1
C,, =det A(e,) = (-1)*" det A, = (-1) det[3] = -3
C,, =detA (e,) =(-1)*?*det A, = (+1)det[2] = 2
By Cramer’s rule,
B det A(e)) ~ Cj
det A det A

{(i, j) —entry of A‘l} = X;
So for the current matrix;

_ detA(e) C 5

1) —entryof Al =x. = o 2
{( ) y } T TgetA  detA 13
_ detA(e,) C -3
1,2)—entryof Al =x, = 2/ _ . _ %
{( ) y } 2T T etA  detA 13

_ detA,(e) C 1
2,1)—entryof A*tl=x, = 1 2
@D d =% detA  detA 13
_ detA,(e,) C 2
2,2)—entryof Atl=x = 2/ = 2 =
122 d f=% detA  detA 13

Hence by using equation # 4, we get
C11 C21 i __3
A_l{xu Xlz}: detA detA|_ 1 |:C11 Cu} 13 13

X Xy C12 sz :detA C12 C22 1 2
detA detA 13 13
1
Example 5 Find the inverse of the matrix A=|1 -1 1
4 -2
Solution _ The nine cofactors are
co=+ & Yo c =—‘1 1‘—3 C =+ —1‘:5
11 4 _2 ! 12 _2 ! 13 1 4
C :—1 3‘:14 C :+2 3‘— 7, C —‘2 1‘=—7
214 2 T 12l % 14
C :+1 3:4 C :—2 3=1 C :+2 1‘:—3
31 _1 1 ! 32 1 1 1 33 1 _1

The adjoint matrix is the transpose of the matrix of cofactors. [For instance, C1, goes in
the (2, 1) position.] Thus
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C, C, C,] [-2 14 4
adjA=|C, C, C,|=/3 -7 1
Cs: Cs Cyu| |5 -7 -3

We could compute det A directly, but the following computation provides a check on the
calculations above and produces det A:

-2 14 4192 1 3 14 0 O
(adjpd).A=[ 3 -7 11 -1 1 (=0 14 0 |=14l
5 -7 3|1 4 -2 0 0 14
Since (adj A) A =14 1, Theorem 2 shows that det A = 14 and
-2 14 4 -2/14 14/14 4/14
3 -7 1 |=|3/14 -7/14 1/14
5 -7 -3| |5/14 -7/14 -3/14

at=L
14

Determinants as Area or Volume

In the next application, we verify the geometric interpretation of determinants and we
assume here that the usual Euclidean concepts of length, area, and volume are already
understood for R? and R®.

Theorem 3 If A is a 2x2 matrix, the area of the parallelogram determined by the
columns of A is|det A|. If A'is a 3x3 matrix, the volume of the parallelepiped determined

by the columns of A is |det A|.

Example 6  Calculate the area of the parallelogram determined by the points (-2, -2),
(0, 3), (4, -1) and (6, 4).

Solution
Let A(-2,-2), B(0,3), C(4,-1) and D(6,4). Fixing one point say A(-2,-2) and find the
adjacent lengths of parallelogram which are given by the column vectors as follows;

AB = {0_ (_2)} = H
3-(=2)| |5
AC:[‘H_Z)}N
“1-(-2)| |1

So the area of parallelogram ABCD determined by above column vectors

2 6
de{ }
51

Now we translate the parallelogram ABCD to one having the origin as a vertex. For
which we subtract the vertex (-2, -2) from each of the four vertices. The new
parallelogram has the vertices say

=|2-30|=|-28|=28
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A'=(-2-(-2),-2-(-2))=(0, 0)
B'=(0-(-2),3-(-2))=(2, 5)
C'=(4-(-2),-1-(-2))=(6.1)
D'=(6-(-2),4-(-2))=(8, 6)

And fixing A’(0,0) in this case, so

2-0 2
A'B = =
5-0 5
6-0] [6
AC'= =
ol
See Fig below. The area of this parallelogram is also determined by the above columns

(2 6
det
5 1

vectors = =[2-30|=|-28/=28

[

Translating a parallelogram does not change its area

Linear Transformations

Determinants can be used to describe an important geometric property of linear
transformations in the plane and in R®. If T is a linear transformation and S is a set in the
domain of T, let T (S) denote the set of images of points in S. We are interested in how
the area (or volume) of T (S) compares with the area (or volume) of the original set S.
For convenience, when S is a region bounded by a parallelogram, we also refer to S as a
parallelogram.

Theorem 4 Let T:R* — R? be the linear transformation determined by a 2x2 matrix
A. If S is a parallelogram in R?, then

{area of T (S)} = |detA|. {area of S}
If T is determined by a 3 x 3 matrix A, and if S is a parallelepiped in R®, then

{volume of T (S)} = |detA|. {volume of S}

Example 7 Let a and b be positive numbers. Find the area of the region E bounded by
2 2

. . X
the ellipse whose equation is )(1—2+L2 =1.
a b
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Solution _ We claim that E is the image of the unit disk D under the linear transformation

a o0
A:D—E determined by the matrix A= {O b} , given as

u
Au = X whereu:[ 1}eD,x:{X1}eE.
u2 X2

0 bjilu, X,
Now Au = X :[aul}:{xl} then
bu, X,

=au,=x and bu,=Xx,

X
:>u1:ﬁ and u, =%

Since u e D (in the circular disk),it follows that the distance of u from origin will be less
than unity i-e

(uf =0)+(uz -0)<1

2 2
a b a b

Hence by the generalization of theorem 4,
{area of ellipse} = {area of A(D)} (here T = A)

= |det A|. {area of D}
=ab.z(1)°= zab

uz
X2

Lo,
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1 5
Example 8 Let S be the parallelogram determined by the vectors b, = {3} and b, = L} ,

1 -1
and let A= {0 5 } Compute the area of image of S under the mapping x — AXx.

15
de{ }
31

image of S under the mapping x — Ax is |det A|. {area of S} =2.14 = 28

Solution The areaof Siis =14, and det A = 2. By theorem 4, the area of
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Exercises

Use Cramer’s Rule to compute the solutions of the systems in exercises 1 and 2.

2%, *+X, =7 2%+ X, + X, =4
1. -3+ x,=-8 2. X + 2%, =2
X, + 2X;=-3 3X, + X, +3X, = -2

In exercises 3-6, determine the values of the parameter s for which the system has a
unique solution, and describe the solution.

Bsx, +4x, =5 3sX, -5X, =3
: 4.
9x, +2sX, = -2 9x, + 58X, = 2
SX, - 28X, =-1 2sx,+ Xx,=1
" 3x, +65x, =4 © 35X, +65x, =2

In exercises 7 and 8, compute the adjoint of the given matrix, and then find the inverse of
the matrix.

3 5 4 3 0
7./1 0 1 8.1-1 1
2 11 -2 3

In exercises 9 and 10, find the area of the parallelogram whose vertices are listed.
9.(0,0), (5, 2), (6, 4), (11, 6) 10. (-1, 0), (0, 5), (1, -4), (2, 1)

11. Find the volume of the parallelepiped with one vertex at the origin and adjacent
vertices at (1, 0, -2), (1, 2, 4), (7, 1, 0).

12. Find the volume of the parallelepiped with one vertex at the origin and adjacent
vertices at (1, 4, 0), (-2, -5, 2), (-1, 2, -1).

-2 -2
13. Let S be the parallelogram determined by the vectors b; = {3} and b, = L_) } , and

6 -2
let A= { 3 9 } . Compute the area of the image of S under the mapping X — AX.
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4 0
14. Let S be the parallelogram determined by the vectors b; = { 7} and b, = L} , and
7 2 _ :
let A= 11l Compute the area of the image of S under the mapping X — AX.

15. Let T: R®*— R®be the linear transformation determined by the matrix

a 0 o0
A=|0 b 0], wherea, b, care positive numbers. Let S be the unit ball, whose
0 0 c
bounding surface has the equation X,” + X,” + X;° = 1.
X2 X2 X°
a. Show that T (S) is bounded by the ellipsoid with the equation %er% = =1.
a C

b. Use the fact that the volume of the unit ball is 47 / 3 to determine the volume of the
region bounded by the ellipsoid in part (a).
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Lecture 20

Vector Spaces and Subspaces

Case Example

The space shuttle's control systems are absolutely critical for flight. Because the
shuttle is an unstable airframe, it requires constant computer monitoring during
atmospheric flight. The flight control system sends a stream of commands to
aerodynamic control surfaces.
Mathematically, the input and output signals to an engineering system are functions. It
is important in applications that these functions can be added, and multiplied by
scalars. These two operations on functions have algebraic properties that are completely
analogous to the operation of adding vectors in R" and multiplying a vector by a scalar,
as we shall see in the lectures 20 and 27. For this reason, the set of all possible inputs
(functions) is called a vector space. The mathematical foundation for systems
engineering rests on vector spaces of functions, and we need to extend the theory of
vectors in R" to include such functions. Later on, we will see how other vector spaces
arise in engineering, physics, and statistics.

Definition Let V be an arbitrary nonempty set of objects on which two operations are
defined, addition and multiplication by scalars (numbers). If the following axioms are
satisfied by all objects u, v, w in V and all scalars k and I, then we call V a vector space.

Axioms of Vector Space

1. Closure Property For any two vectorsu & v eV, impliesu +v eV
2. Commutative Property For any two vectorsu & v €V, impliessu+v=v+u
3. Associative Property For any three vectorsu, v,w eV, u+ (v+w) =(u+v) +w

4. Additive Identity For any vector u €V, there exist a zero vector 0 such that
O+u=u+0=u

5. Additive Inverse For each vector u €V, there exist a vector —u in V such that
-u+u=0=u+(-u)

6. Scalar Multiplication For any scalar k and a vector u eV impliesk u eV
7. Distributive Law For any scalar kifu & v eV, thenk (u+v) =ku+ kv
8. For scalars m, n and for any vectoru eV, (m+n)u=mu+nu

9. For scalars m, n and for any vector u €V, m (nu) = (mn) u =n (mu)
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10. For any vector u €V, 1u = u where 1 is the multiplicative identity of real numbers.

Examples of vector spaces The following examples will specify a non empty set V and
two operations: addition and scalar multiplication; then we shall verify that the ten vector
space axioms are satisfied.

Example 1 Show that the set of all ordered n-tuple R" is a vector space under the
standard operations of addition and scalar multiplication.

Solution

(i) Closure Property:

Suppose that u = (uy, Uy, ..., Uy) and v = (v, vz, ..., Vy) € R"

Then by definition, u + v = (ug, Uy, ..., Uy) + (V1, Vo, ..., Vp)

=(Ug+ Vg, Uz +Va, ..., Up +Vy)e R" (By closure property)
Therefore, R" is closed under addition.

(i) Commutative Property

Suppose that u = (uy, Uy, ..., Uy) and v = (v, vz, ..., Vy) € R"

Now u + v = (U, Uz, ..., Up) + (V1, V2, ..., Vp)

= (U1 + Vg, U2+ V2, ..., Un + V) (By closure property)

= (V1+ Uy, V2 + Uz, ..., Vo + Up) (By commutative law of real numbers)
= (v1, V2, ..., Vn) + (U, Uz, ..., Up) (By closure property)
=v+u

Therefore, R" is commutative under addition.

(iii) Associative Property
Suppose that u = (ug, Uz, ..., Up), V.= (V1, V2, ..., V) and w = (wg, Wy, ..., Wp) eR"

Now (u +v) +w = [(ug, Uz, ..., Un) + (V1, V2, ..., V)] + (W1, Wo, ..., Wp)

= (up+ Vg, U+ Vy, ..., Uy + V) + (W1, Wa, ..., Wp) (By closure property)

= ((ug +vy) +wy, (Uz +V2) + W, ..., (Uy+ Vy) + Wy)) (By closure property)

= (up + (vi +wq), Ug+ (V2 +w3), ..., up + (vp + wy)) (By associative law of real numbers)

= (Ug, Uz, ..., Up) + (Vi + Wy, Vo + Wy, ..., Vq + Wp) (By closure property)
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= (U1, Uz, ..., Up) + [(v1, V2, ...y Vi) + (W1, W2, ..., Wp)] (By closure property)
=u+(v+w)
Hence R" is associative under addition.
(iv) Additive Identity
Suppose u = (ug, Uy, ..., Uy) € R". There exists 0 = (0, 0, ..., 0) € R" such that
0+u=(0,0,...,0)+ (ug, uy, ..., uy)
=0 +u,0+uy, .., 0+up) (By closure property)
= (ug, Uz, ..., Uy) = U (Existence of identity of real numbers)
Similarly,u+0=u
Hence 0 = (0, 0, ..., 0) is the additive identity for R".
(v) Additive Inverse
Suppose u = (Ug, Uy, ..., Uy) € R". There exists -u = (-ug, -Uy, ..., -Uy)eR"
Such that u + (-u) = (ug, Uz, ..., up) + (-ug, -Uz, ..., -Up)
= (U + (-u1), Uz + (-Uz), ..., Up + (-Un)) (By closure property)
=(0,0,..,0)=0
Similarly, (-u) +u=20
Hence the inverse of each element of R" exists in R".
(vi) Scalar Multiplication
If k is any scalar and u = (ug, Uy, ..., Uy) € R".
Then by definition, k u =k (us, Uz, ..., uy) = (Kug, k Uz, ..., ku,) € R"
(By closure property)

(vii) Distributive Law
Suppose k is any scalar and u = (uy, U, ..., Uy), V= (V1, V2, ..., Vo) € R"
Now k (u +v) =k [(u1, Uz, ..., Un) + (V1, Vo, ..., Vn)]
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=k (up+ Vi, U+ Vy, ..., Up+Vy) (By closure property)
=(k(up+vy), k(uz+vy), ...,k (uy+vp)) (By scalar multiplication)
=(kug +kvy,kuz +kvy, ..., ku, + kvy) (By Distributive Law)
=(kuy, kug, ..., kup) + (kvy, kva, ..., kvy) (By closure property)
=k (uy, Uz, ..., Up) + k (v, Vo, ..., V) (By scalar multiplication)
=ku+kv

(viii) Suppose k and | be any scalars and u = (uy, Uy, ..., uy) € R"

Then (k+ ) u=(k+1) (ug, uy, ..., up)

= ((k+ Dug, (k+ Dug, ..., (k+ Nup) (By scalar multiplication)
=(kug+lug, kup+1luy, ..., kuy + lup) (By Distributive Law)

= (kug, kug, ..., kup) + (lug, luy, ..., lup) (By closure property)

=k (uy, Uz, ..., un) + 1 (ug, Uy, ..., Up) (By scalar multiplication)
=ku+lu

(ix) Suppose k and | be any scalars and u = (ug, uz, ..., Uup) € R"

Thenk (I u) =k [l (u, uz, ..., uy)]

=k (lup, 1 Up, ..., | Un) (By scalar multiplication)
= (k(lua), k (Tuz), ..., k (un)) (By scalar multiplication)

= ((k Dua, (k Duz, ..., (k Dun) (By associative law)

= (k1) (ug, uz, ..., un) (By scalar multiplication)
=kDu

(X) Suppose u = (uy, Uz, ..., Uy) € R"
Then1u =1 (u, uy, ..., Uy)

= (1ug, 1uy, ..., 1up) (By scalar multiplication)
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= (ug, Uz, ..., Uy) = U (Existence of identity in scalrs)

Hence, R" is the real vector space with the standard operations of addition and scalar
multiplication.

Note The three most important special cases of R" are R (the real numbers), R? (the vectors
in the plane), and R® (the vectors in 3-space).

Example 2 Show that the set VV of all 2x2 matrices with real entries is a vector space if
vector addition is defined to be matrix addition and vector scalar multiplication is defined to
be matrix scalar multiplication.

. u u V V. W, W,
Solution  Suppose that u= { " 12} V= { 1 12}andw = { 1 12} cV
Uz Uz Va Vo W Wy

and k and | be two any scalars.

(i) Closure property To prove axiom (i), we must show that u + v is an object in V: that is,
we must show that u + v is a 2x2 matrix. But this is clear from the definition of matrix

u u v " u,, +v u, +v
addition, since u+v:{ 1 12}4_[ 11 12}:{ 1" Vi 12 12}
Uy Uy Va Vo Uy FVy  Up V5,

(By closure property)

(i) Commutative property Now it is very easy to verify the Axiom (ii)

u u \Y " u,, +v
u+v:{ 11 12]'{ 11 12}:{ 17 '
Uy Uy, Va Vo Uz FVy
— Vip Fuy V12+u12}
Vo, T Uy,

v,, Vv U, u
— 11 12}+|: 11 12i|:V+u
V21 V22 u21 u22

u, u V,, V W, W
(iii)Associativeproperty(u+v)+wzq 1 12}+{ 1 12D+{ 1 12}

u12 + V12

} (By closure property)
l"122 +V22

(Commutative property of real numbers)

u21 u22 V21 V22 W21 W22

U, +V.. U,+V W, W
= n TR 12}+{ 1 12} (By closure property)

_u21 + V2l u22 + V22 W21 W22

[ (Uyy + Vg )+ W
[ (Upy +Vyy )+ Wy,
Uy + (Vg W, )
| Upy + (Vo + Wy, )

(Uyy +Vi, )+ W, |
(Up, +V,, )+ W, |

ulZ +(V12 + W12 )_

Ugy + (Vo + Wy, )

(By associative property of real numbers)
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— ull u12 + |:V11 + Wll V12 + W12 i|
V21 + W21 V22 + W22

— u11 u12 _l_[{vll V12:|+{W11 W12:|JZU+(V+W)
u21 u22_ V21 V22 W21 W22
Therefore, V is associative under “+’.
(iv) Additive Identity Now to prove the axiom (iv), we must find an object 0 in V such

00
that 0 + v=v + 0=v forall uinV. This can be done by defining 0= {O } :

0
0+U:|:0 0:|+{u11 ulZ}:{o-l_ull O+u12:|:|:u11 ulZ:|:u
O O u21 u22 0+U21 0+UZZ L'121 u22
and similarly u + 0 = u.

(v) Additive Inverse Now to prove the axiom (v) we must show that each object u in V
has a negative —u such that u + (-u) = 0 = (-u) + 0. Defining the negative of u to be

-u -u
-u= |: 11 12:| .
Uy -Uy,

u+(_u):{u11 u12:|+|:'u11 'Ulz}:|:u11+('u11) u12+('u12):|:|:0 O}:O
Uy Uz Uy Uy Uy, + ('u21) Up, + ('Uzz ) 00
Similarly, (-u) +u=0

(vi) Scalar Multiplication

Axiom (vi) also holds because for any real number k we have

u, u ku,, ku
ku= k{ noe } = { H 12} (By closure property)
u21 u22 kuZl ku22

so that k u is a 2x2 matrix and consequently is an object in V.

(vii) Distributive Law

k(u+v)=k(|:ull u12:|+|:vll V12:|J
u21 u22 V21 V22
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Y {un v, Uy tvg, } _ _k(un +vy, ) KUy, +vy, )}
Uy +Vy Uy +V,, | | KUy +V, ) KUy, +Vsy,)

— kull + kVll kulZ + I(\/12 | — kull ku12 + kvll kle
ku,, +kv,, ku,,+ kvzz_ ku,, ku,, kv,, kv,

u u V \"
:k|: 11 12:|+k|: 11 12:|:ku+kv
u21 u22 V21 V22

(viii) (k +Du=(k + |)|:U11 U12:|: |:(k + |)U11 (k + |)U12i|

n Uy | [(kK+NDuy (k+1uy,
_ {ku11 +lu,  kuy, + Iulz} _ {ku11 kulz} N {Iu11 Iulz}
ku,, +lu,, ku,, +lu,, ku,, ku,, lu,, lu,,
— k|:ull u12:| + I |:u11 u12:|: kU + |U
u21 u22 uZl u22
_ u, u lu. lu
(ix) k(Iu)=k(I{ 1 12D:k{ 1 12}
u21 u22 Iu21 Iu22

_ {k(luﬂ) k(lu,, )} _ {(kl)u11 (kl)ulz} _ (kl){uﬂ ulz} = (KI)u
k(luy, ) k(luy, ) (kDuy,  (kNuy, Uy Uy

(x) Finally axiom (x) is a simple computation

lU — 1{”11 u12 } — |:1U11 lu12 } — |:U11 u12 i| =u

u21 u22 1u21 1u22 u21 u22
Hence the set of all 2x2 matrices with real entries is vector space under matrix addition
and matrix scalar multiplication.

Note Example 2 is a special case of a more general class of vector spaces. The arguments in
that example can be adapted to show that a set V of all mxn matrices with real entries,

together with the operations of matrix addition and scalar multiplication, is a vector space.
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Example 3 Let V be the set of all real-valued functions defined on the entire real
line (—o0,00). If f, geV, then f + g is a function defined by
(F+g) () =f (X) + g (x), for all xeR.
The product of a scalar aeR and a function f in V is defined by
(@af) (x) =af(x), forall xeR.
Solution
(i) Closure Property If f, geV, then by definition
(F+g) (x) = (x) + g (x) €V. Therefore, V is closed under addition.
(i) Commutative Property If fand g are in V, then for all xeR

(f+9 (x)=f(x)+g(x (By definition)

=g (x)+f(x) (By commutative property)
=@+ KX (By definition)

So that f+g=g+f

(iii) Associative Property If f, g and h are in V, then for all xeR

(fF+g)+h)(x)=(F+g) X)+h(x) (By definition)

=(f(xX) +g(x)) +h(x) (By definition)

=f(X) + (g (x) + h (X)) (By associative property)
=f(xX)+(g+h) (X (By definition)
=({f+(@+h) X

And so (f+g)+h=f+(Q+h)

(iv) Additive Identity The additive identity of V is the zero function defined by

0 (x) =0, for all xeR because (0 + f) (x) =0 (x) + f (X) (By definition)
=0+f(x)=f(x) (Existence of identity)

i.e. 0+ f=f Similarly,f+0=f.

(v) Additive Inverse The additive inverse of a function fin V is (-1) f = -feV because

(F+ (-f)) xX) = (x) + (-F) (X) (By definition)
=f(x)-f(X) (By definition)
=0 (Existence of inverse)
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i.e. f+ (-f) = 0. Similarly, (-f) + f=0.

(vi) Scalar Multiplication If fis in V and a is in R, then by definition (a f) (x) = a f (x)
eVv.

(vii) Distributive Law If f, g are in V and a€R, then
@f+g)x)=af+g(x)=af(x)+gKx)=af(x)+ag(x)

= (af) (x) + (ag) (x) = (af+ag) (x) and, therefore, a (f+g) =af+ag

(viii) Let a, b in R and feV, then

(@+b)H ) =@+b)fx)=af(x)+bfx)=@f) X +bOF K =@f+bf)(x
Thus (@ +b)f=af+bf

(ix)a (b f) (x) = a (b f (x)) = (ab) f (x) showing that a (b f) = (a b)

X) (1) () = 1F(x) = f (x) (Existence of identity)
And so 1f=f

Hence V is a real vector space.

Example4 If p(x)=a,+a,x+a,x*+...+a x"

and q(x)=b, +bx+b,x*+...+Db x"

We define

p(x)+q(x)=(a, +a,x+a,x*+...+a x")+(o, +bx+b,x* +...+b x")

=(a, +b, )+(a, +b, )x+(a, +b, )x* +..+(a, +h, )x" and for any scalar k,
kp(x)=k(a, +a,x+a,x* +...+a,x")=ka, + ka,x +ka,x* +...+k a x"

Clearly the given polynomial is a vector space under the addition and scalar
multiplication.

Example 5 (The Zero Vector Space) Let V consists of a single object, which we define
by 0Oand 0 + 0 =0 and k 0 = 0 for all scalars k. It is easy to check that all the vector space
axioms are satisfied. We call V={0} as the zero vector space.
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Example 6 (Every plane through the origin is a vector space)

Let V be any plane through the origin in R®. We shall show that the points in V form a
vector space under a standard addition and scalar multiplication operations for vectors in
R,

From examplel, we know that R itself is a vector space under these operations. Thus,
Axioms 2, 3, 7, 8, 9 and 10 hold for all points in R* and consequently for all points in the
plane V. We therefore need only show that Axioms 1, 4, 5 and 6 are satisfied.

Since the plane is passing through the origin, it has an equation of the form
ax+by+cz=0 1)

Thus, if u = (uy, Uy, uz) and v = (vy, Vo, v3) are points in V, then
aup+bu;+cuz=0andavy; +bvy,+cv3=0.

Adding these equations gives a (u; +vi) + b (U2 +vz) +c (ug +v3) =0

This equality tell us that the coordinates of the point
u+v=(u +vg, Uy +Vy, Uz +V3)

satisfies (1); thus, u + v lies in plane V. This proves that the Axiom 1 is satisfied.

There exists 0 = (0, 0, 0) such that a (0) +b (0) + ¢ (0) = 0. Therefore, Axiom 4 is
satisfied.

Multiplying a u; + b u, + ¢ uz = 0 through by k gives
a (kuy) + b (kup) + ¢ (kuz) =0

Thus, (kug, k uz, kuz) =k (us, uz, uz) =k ueV. Hence, Axiom 6 is satisfied.

We shall prove the axiom 5 is satisfied. Multiplying a u; + b u, + ¢ uz = 0 through by -1
givesa (-1uy) + b (-1uz) + ¢ (-1uz) =0

Thus, (-uy, - Uz, - U3) = - (Ug, Uz, Uz) = -ue V. This establishes Axiom 5.

Example 7 (A set that is not a vector space)
Let V=R? and define addition and scalar multiplication operation as follows. If
u=(u,,u, )andv=(v,,v, ) then define

u+v=(u,+v,,u,+v,) and if k is any real number then define ku= (ku,,0).

For any vector u €V, 1u =1(uy, uz) = (1 ug, 0) = (ug, 0) # u where 1 is the multiplicative
identity of real numbers. Therefore, the axiom 10 is not satisfied.
Hence, V=R? is not a vector space.
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Theorem 1 LetV be a vector space, u a vector in V, and k is a scalar, then
MHOu=0 (ilko=0
@ii) ((-)u=-u (iv)Ifku=0thenk=00ru=0

Definition _ A subset W of a vector space V is called a subspace of V if W itself a vector
space under the addition and scalar multiplication defined on V.

Note If W is a part of a larger set V that is already known to be a vector space, then
certain axioms need not be verified for W because they are “inherited” from V. For
example, there is no need to check that u + v =v + u (Axiom 2) for W because this holds
for all vectors in V and consequently for all vectors in W. Other Axioms are inherited by
W from V are 3, 7, 8, 9, and 10. Thus, to show that a set W is a subspace of a vector space
V, we need only verify Axioms 1, 4, 5 and 6. The following theorem shows that even
Axioms 4 and 5 can be omitted.

Theorem 2 _If W is a set of one or more vectors from a vector space V, then W is
subspace of V if and only if the following conditions hold.

(@) Ifuand v are vectors in W, thenu + visin W

(b) If k is any scalar and u is any vector in W, then k u is in W.

Proof _ If W is a subspace of V, then all the vector space axioms are satisfied; in
particular, Axioms 1 and 6 hold. But these are precisely conditions (a) and (b).

Conversely, assume conditions (a) and (b) hold. Since these conditions are vector space
Axioms 1 and 6, we need only show that W satisfies the remaining 8 axioms. The vectors
in W automatically satisfy axioms 2, 3, 7, 8, 9, and 10 since they are satisfied by all
vectors in V. Therefore, to complete the proof, we need only to verify that vectors in W
satisfy axioms 4 and 5.

Let u be any vector in W. By condition (b), k u is in W for every scalar k. Setting
k =0, it follows from theorem 1 that 0 u = 0 is in W, and setting k = - 1, it follows that
(-l)u=-uisinW. |

Remark

(1) The theorem states that W is a subspace of V if and only if W is closed under addition
and closed under scalar multiplication.

(2) Every vector space has at least two subspaces, itself and the subspace {0} consisting
only of the zero vector. Thus the subspace {0} is called the zero subspace.

Example 8 Let W be the subset of R® consisting of the all the vectors of the form
(a, b, 0), where a and b are real numbers. To check if W is subspace of R®, we first see
that axiom 1 and 6 of a vector space holds.
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Let u=(a,,b,,0) and v=(a,,b,,0) be vectors in W then
u+v=(a,,b,0)+(a,,b,,0)=(a, +a,,b, +b,,0) isin W. Since the third component is
zero. Also ¢ is scalar, and then cu = c(a, b, ,0)= (ca, ,cb; ,0) is in W. Therefore the I*and

6" axioms of the vector space holds. We can also verify the other axioms of vector space.
Hence W is a subspace.

Example 9 Consider the set W consisting of all 2x3 matrices of the form

a b 0
{0 d} , Where a, b, c and d are arbitrary real numbers. Show that the W is a
Cc

subspace Mays.

] ] a b 0 a b, 0.
Solution Consider u= V= in W
- 0 ¢ d, 0 ¢, d,

a, b 0 a, b, O a,+a, b +b, 0 .
Then u+v= + = isin W.
0 c d 0 ¢, d, 0 c,+c, d,+d,
So that the (a) part of the theorem is satisfied. Also k is a scalar, and then
U= ka, kb, O
0 ke, kd;
Hence W is a subspace of M 3.

} is in W. So the (b) part of the above theorem is also satisfied.

Note LetV is a vector space then every subset of V is not necessary a subspace of V.
For example, let V =R? then any line in R? not passing through origin is not a subspace of
R2. Similarly, a plane in R® not passing through the origin is not a subspace of R>.

Example 10 Let W be the subset of R® consisting of all vectors of the form (a, b, 1),
where a, b are any real numbers. To check whether property (a) and (b) of the above
theorem holds. Let u=(a,,b,,1)and v =(a,,b,,1)be vectors in W.

Then u+v=(a,,b;,1)+(a,,b,,1)=(a, +a,,b, +b,,1+1) which is not in W because

the third component 2 is not 1. As the Ist property does not hold therefore, the given set
of vectors is not a vector space.

Example 11 Which of the following are subspaces of R
(i) All vectors of the form (a, 0, 0)

(i1) All vectors of the form (a, 1, 1)

(iii) All vectors of the form (a, b, c), whereb=a + ¢

(iv) All vectors of the form (a, b, ¢), whereb =a + ¢ +1
Solution Let W is the set of all vectors of the form (a, 0, 0).
(i) Suppose u = (uy, 0,0) and v = (v4, 0, 0) are in W.

Thenu +v = (uy, 0,0) + (v, 0, 0) = (u; + vy, 0, 0) which is of the form (a, 0, 0).
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Therefore, u + veW

If k is any scalar and u = (uy, 0, 0) is any vector in W, then k u =k (uy, 0, 0) = (k uy, 0,
0)
which is of the form (a, 0, 0). Therefore, k ueW. Hence W is the subspace of R®.

(i1) Let W is the set of all vectors of the form (a, 1, 1).

Suppose u = (ug, 1, 1) and v=(vy,1,1)areinW. Thenu+v=(ug, 1,1)+ (v,
1, 1) = (u; + vy, 2, 2) which is not of the form (a, 1, 1). Therefore, u + vg¢ W. Hence W is
not the subspace of R®.

(iii) Suppose W is the set of all vectors of the form (a, b, ¢), whereb=a+ ¢
Suppose u = (ug, U; + us, uz) and v =(vy, vi +vs, v3) arein W.

Thenu + v = (ug, u; +us, uz) + (Vy, Vi + V3, V3)
=(Up + Vi, Up + U3+ Vg + V3, Ug +V3)
= (uy + vy, (U; +vy) + (us + v3), uz + v3), which is of the form (a, a + ¢, c).

Therefore, u + veW

If k is any scalar and u = (uy, U; + us, us) is any vector in W, then

ku=Kk(ug, u; +us, us) = (kug, k (up +us), kus) (By definition)

=(kug, ku; +kus, kus) (By Distributive Law)
Which is of the form (a, a + ¢, c). Therefore, k ueW. Hence W is the subspace of R®.

(iv) Let W is the set of all vectors of the form (a, b, c), whereb =a +c +1
Suppose u = (ug, Uy +uz+ 1, uz)andv =(vq, vy + vz +1,v3)arein W.
Thenu+v=(u;, Uy +uz+1,usg)+(vy, vy +vz+1 vs3)
:(U1+V1,U1+U3+1+V1+V3+1, us +V3)

= (U1 + vy, (U1 + V1) + (U3 + V3) +2,u3 + V3)

Which is not of the form (a, a + ¢ + 1, c). Therefore, u + vg¢ W. Hence W is not the
subspace of R®.

Example 12 Determine which of the following are subspaces of Ps.

(i) All polynomials ag + a; x + az x* + as x° for which ag = 0

(ii) All polynomials ao + a; X + a, X* + as x° for whichag +a; +a, +az =0

(iii) All polynomials ao + a; x + az x* + as x° for which ag, a1, a2, and as are integers
(iv) All polynomials of the form ag + a; X, where ap and a; are real numbers.
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Solution (i) Let W is the set of all polynomials ao + a1 x + a, x* + as x® for which ag =
0.

Suppose that u = co + €1 X + €2 X + €3 X° (Where ¢o = 0) and v = by + by X + by x* + b
x* (where by = 0) are in W. Then u + v = (Co + C1X + CoX? + €3X°) + (bg + bix + box? +
bsx®) = (co + bo) + (C1 + b1)X + (2 + bo)X? + (c3 + bs) X3, where co + by = 0.
Therefore,u +v eW

If k is any scalar and u = co + c1 X + ¢, X + 3 X° (where co = 0) is any vector in W.
Then k u =k (Co + C1X + CoX° + c3x°) = (kco) + (kcy) X + (keo) X% + (kes) x° where
k co = 0. Therefore, k ue W. Hence W is the subspace of P3.

(ii) Let W is the set of all polynomials ag + aix + a,x* + asx for which
aot+a;+a+asz = 0.

Suppose that u = co + €1 X + C2 X* + 3 X° (Where ¢o + €1 + C, + ¢3 = 0) and
Vv =ho + by x + by X* + bz x* (Where bo + by + by + bs = 0) are in W.

Now
U+V=(Co+CyX+CoX°+C3xX°) + (bo + by X+ by x2+ b3 x°)

= (Cco + bp) + (c1 + b)) X+ (c2 + by) X2 + (c3 + b3) X3

Where (co+bg) + (c1+b1) + (C2+b2) + (c3+b3) = (Co+Ci+Co+C3) + (bo+by+bo+b3) =0
+ 0 =0. Therefore,u +v eW

If k is any scalar and u = ¢ + €1 X + €5 X* + ¢c3 X° (where co + C1 + C, + 3 = 0) is any

vector in W. Then k u =k (co + c1x + €ox% + ¢3X°) = (kco) + (ker) x + (kez) X2 + (Kes)
3

X

Where (k ¢co) + (kcy) + (kcp) + (kcs) =k(co+cy +c,+c3)=k0=0
Therefore, k ue W. Hence W is the subspace of P3.

(iii) Let W is the set of all polynomials ao + a1 X + a, X* + az x° for which ao, a1, az,
and a3 are integers.

Suppose that the vectors u = ¢ + ¢1 X + ¢, X? + c3 X° (where cg, €1, Co, and c; are
integers) and v = bg + by X + b, X* + b3 x3 (where by, b1, by, and b are integers) are in
W.

Now

U+V=(Co+CyX+Cyx*+C3x°)+ (by + by X+ by X* + by x°)

= (Co + bg) + (c1 + by) X + (c2 + by) x* + (c3 + bs) X°, where

(co + bp), (c1 + by), (c2 + by), and (c3 + b3) are integers (integers are closed under
addition). Therefore, u +v e W

If k is any scalar and u = co + c1 X + ¢, X* + 3 X° (Where co, C1, C2, and Cs are integers)
is any vector in W. Then k u = k (Co + c1x + C2x% + €ax® = (kco) + (keg) x + (kez) X° +
(kcs) x3, where (k co), (k c1), (k c2), and (k c3) are not integers (product of real number
and integer). Therefore, k ugW. Hence, W is not the subspace of Ps.
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(iv) Let W is the set of all polynomials of the form ap + a; X, where ap and a; are real
numbers. Suppose that u = ¢y + ¢; X (where ¢ and c; are real numbers) and
v =Dy + b; x (where by and b, are real numbers) are in W.

Thenu +v=(co+cy X)+ (bp + by X)=(co +bg) +(c1 +by1) X
Where (co + bp) and (cy1 + by) are real numbers.
Therefore,u +v eW

If k is any scalar and u = ¢ + ¢1 X (where co and ¢, are real numbers) is any vector in W.
Thenku=k(co+c1x) =(kcg)+ (kcy)x

Where (k ¢co) and (k c1) are real numbers.

Therefore, k ue W. Hence W is the subspace of Ps.

Example 13 Determine which of the following are subspaces of M.
a b

(1) All matrices { d} wherea+b+c+d=0
c

(i1) All 2 x 2 matrices A such that det (A) =0

a b
(iii) All the matrices of the form {0 }
c

a
Solution Let W is the set of all matrices {

b
}Wherea+b+c+dzo.
c d

e f I m
(i)Supposeu:{ }(wheree+f+g+h:0)andv:{ }
g h n p

(Wherel +m+n+p=0)areinW.

e f I m e+l f+m .
Thenu+v= + = (By definition)
g h n p g+n h+p

Where(e+ )+ (f+m)+(g+n)+ (h+p)
=(e+f+g+h)+(I+m+n+p)=0+0=0
Therefore, u + veW

e f]
If k is any scalar and u = {g H (where e + f+ g + h =0) is any vector in W.
e f] [ke Kf] -
Thenku =Kk = (by definition)
g h kg kh |

Whereke +kf+kg+kh=k(e+f+g+h)=k0=0
Hence, k ue W. Therefore, W is subspace of M.

(if) Let W is the set of all 2 x 2 matrices A such that det (A) =0

e f Il m
Suppose u = { } (Where det (u)=eh-fg=0)andv = { }
g h n p
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(Where det (vV) =lp—-mn=0)areinW.
e f Il m e+l f+m I
Thenu+v= + = (By definition)
g h n p g+n h+p

Wheredet(u+v)=(e+)(h+p)-(f+m)(g+n)
=eh+ep+lh+Ilp-fg-fn-mg-mn
=(eh-fg)+(p-mn)+ep+lh-fn-mg=ep+lh-fn-mg=0
Therefore, u + vgW. Therefore, W is not subspace of M»,.

a b
(iii) Let W is the set of all matrices of the form {O }

c
e f I m )
Suppose u = andv = arein W.
0 ¢ 0 n

e f I m e+l f+m L
Thenu +v= + = (By definition)
0 g 0 n 0 g+n

a
Which is of the form
0 ¢

b
}. Therefore, u + veW

e f
If k is any scalar and u = {O } is any vector in W.
g

e f| [ke kf .
Thenku =Kk = (By definition)
0 g| [0 kg
o a b
Which is of the form 0 C}. Hence, kueW

Therefore, W is subspace of M.

Example 14 Determine which of the following are subspaces of the space F(-00,0).
(i) All f such that f (x) <0 for all x (ii) all f such that f (0) =0

(iii) All fsuch that f (0) =2 (iv) all constant functions

(v) All f of the form k; + k3 sin x, where k; and k, are real numbers

(vi) All everywhere differentiable functions that satisfy f'+2f =0.

Solution (i) Let W is the set of all f such that f (x) <0 for all x.

Suppose g and h are the vectors in W. Then g (x) <0 for all x and h (x) <0 for all x.
Now (g + h) (x) =g (X) + h (x) <0. Therefore, g+h eW

If k is any scalar and g is any vector in W. Then g (x) <0 for all x

Now (k g) (x) = k g (x), which is greater than O for negative real values of k.
~kgegW Vk<O.

Hence W is not the subspace of F (-o0,0) .
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(ii) Let W is the set of all f such that f (0) = 0.

Suppose g and h are the vectors in W. Theng (0)=0and h (0) =0

Now (g + h) (0)=g (0) + h (0) =0+ 0=0. Therefore, g+ heW

If k is any scalar and g is any vector in W. Then g (0) =0

Now (kg) (0)=kg (0)=k0=0. ..kg € W . Hence W is the subspace of F(-00,0).

(iii) Let W is the set of all f such that f (0) =2
Suppose g and h are the vectors in W. Theng (0) =2and h (0) =2
Now (g +h) (0)=g (0)+h(0)=2+2 # 2..kg ¢ W . Hence W is not the subspace of

F(-0,0).

(iv) Let W is the set of all constant functions. Suppose g and h are the vectors in W.
Then g (x) =aand h (x) = b, where a and b are constants.

Now (g + h) (x) =g (x) + h (x) = a + b, which is constant. Therefore, g +h e W

If k is any scalar and g is any vector in W. Then g (x) = a, where a is any constant.
Now (k g) (x) =k g (x) = k a, which is a constant. ..kg € W . Hence W is the subspace

of F(-00,0).

(v) Let W is the set of all f of the form k; + k3 sin x, where k; and k; are real numbers
Suppose g and h are the vectors in W. Then g (X) = m;+m3sin x and h (x) = ny+n; sin x,
where my, mz, nyand n, are real numbers.

Now (g + h) (x) =g (x) + h (X) = [m1+m,sin X]+[ny+n,sin X] = (My+ny)+(my+ny) sin
X
Which is of the form k; + k; sin x. Therefore, g+h e W

If k is any scalar and g is any vector in W. Then g (X) = my + m; sin x, where m; and m,
are any real numbers.

Now (k@) (x) =k g (x) =k [m1 + m sinx] = (kmj) + (k my) sin x
Which is of the form k; + k; sinx. ..kg € W . Hence W is the subspace of F(-c0,0).

(vi) Let W is the set of all everywhere differentiable functions that satisfy f'+2f =0.
Suppose g and h are the vectors in W. Then g'+2g=0 and h'+2h=0

Now (g+h)+2(g+h)=g'+h'+2(g+h) =(g'+2g)+(h"+2h) =0+0=0
Therefore, g+h eW

If k is any scalar and g is any vector in W. Then g’'+2g =10

Now (kg ) +2(kg)=kg'+2kg =k(g'+29)=k0=0

-.kg e W . Hence W is the subspace of F(-c0,00).
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Remark Let n be a non-negative integer, and let P be the set of real valued function of
the form p(x)=a,+a,x+a,x’+..+a x" where a,,a,,a,,..,a are real numbers,
then P, is a subspace F(-00,0).

Example 15  Show that the invertible n x n matrices do not form a subspace of M .

Solution _ Let W is the set of invertible matrices in M ,x . This set fails to be a subspace
on both counts- it is closed under neither scalar multiplication nor addition.

1 2 -1 2
For example consider invertible matrices W = L 5} AY, 2{ 5 5} inM_ ..,

The matrix 0.U is a 2x2 zero matrix, hence is not invertible; and the matrix U + V has a
column of zeros, hence is not invertible.

Theorem If Ax =0 is a homogeneous linear system of m equations in n unknowns, then
the set of solution vectors is a subspace of R".

Example 16 _ Consider the linear systems

1 -2 3| x 0 2 3[x] [0
(@) 2 4 6|y|=|0 (b) | - 8] y|[=|0

3 6 9]z 0 2 4 z| |0

1 -2 3][x] [0 0 0 ofx] [
(c) -3 7 -8|ly|=|0 (dj0 0 0fy|=

4 1 2|z 0 0 0 0fz

Each of the systems has three unknowns, so the solutions form subspaces of R®.
Geometrically, this means that each solution space must be a line through origin, a plane
through origin, the origin only, or all of R®.

Solution _(a) The solutions are x = 2s - 3t, y = s, z = t. From which it follows that
X=2y-3zorx-2y+3z=0.
This is the equation of the plane through the origin with n =(1, -2,3) as a normal vector.

(b) The solutions are x = -5t, y = - t, z = t, which are parametric equations for the line
through the origin parallel to the vector v =(-5, -1,1).

(c) The solutionisx =0,y =0, z = 0 so the solution space is the origin only, that is {0}.

(d)The solutions are x =r,y = s, z =t. where r, s and t have arbitrary values, so the
solution space is all R®.

A Subspace Spanned by a Set: The next example illustrates one of the most common
ways of describing a subspace. We know that the term linear combination refers to any
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sum of scalar multiples of vectors, and Span {vi, ..., vp} denotes the set of all vectors that
can be written as linear combinations of vy, ... , vp.

Example 17 Given vy and v, in a vector space V, let H = Span {v1, v,}. Show that H is
a subspace of V.

Solution _ The zero vector is in H, since 0 = Ov; + 0v,. To show that H is closed under
vector addition, take two arbitrary vectors in H, say,

U=353vy +Spvy, and  w=tyv; + vy
By Axioms 2, 3 and 8 for the vector space V.

u+w= (51V1 +32V2) + (t1V1 + tsz)

=(s1+t) Vi + (2 +12) Vo

So u +w s in H. Furthermore, if c is any scalar, then by Axioms 7 and 9,

cu =c (s1V1 + Spv2) = (CS1) Vi + (CS2)V2
Which shows that cu is in H and H is closed under scalar multiplication.
Thus H is a subspace of V. i
Later on we will prove that every nonzero subspace of R® other than R® itself, is either
Span {vi, v,} for some linearly independent v, and v, or Span {v} for v =0. In the first
case the subspace is a plane through the origin and in the second case a line through the

origin. (See Figure below) It is helpful to keep these geometric pictures in mind, even for
an abstract vector space.

X3

Vi

V2
/0

X1

X2

Figure 9 — An example of a subspace

The argument in Example 17 can easily be generalized to prove the following theorem.
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Theorem 3 Ifvq, ..., v, are in a vector space V, then Span {v, ..., vy} is a subspace of
V.

We call Span {vi, ... , vp} the subspace spanned (or generated) by {vi,... , Vvp}.
Given any subspace H of V, a spanning (or generating) set for H is a set {vy, ..., vp}in H
such that H = Span {vy, ..., vp}.

Proof

j=n j=n
The zero vector is in H, since 0 = Ovy + Ova+ ...+0v,= > 0V, =0 (Zvj]:o
j=0 j=0

To show that H is closed under vector addition, take two arbitrary vectors in H, say,
i=n

uUu=3S1Vy +82V2+...+thn:ZSiVi
i=0

and

k=n
W = t1Vy + toVz L+ Ve= D LV,
k=0

By Axioms 2, 3 and 8 for the vector space V.
i=n k=n

U+W= D sV, + D 1V, = (S1v1 +SaVo+...+5qVn )+( 11V + tovy .. +taVy)
i=0 k=0

p=n
= (51 + tl) vy + (82 + tz) V2+...+(Sn + tn) Vn:Z:(Sp +tp)Vp
p=0

So u + w is in H. Furthermore, if ¢ is any scalar, then by Axioms 7 and 9,

r=n

CU = C(S1V1 +S2Va+...+5qV )= (€S1) V1 + (CS2)V2+...+(CSn )Vn= D CS,V, .
r=0

Which shows that cu is in H and H is closed under scalar multiplication.

Thus H is a subspace of V. O

Example 18 Let H be the set of all vectors of the form (a —3b, b — a, a, b), where a and
b are arbitrary scalars. That is, let H = {(a — 3b, b — a, a, b): a and b in R}. Show that H
is a subspace of R*.

Solution _ Write the vectors in H as column vectors. Then an arbitrary vector in H has
the form

a-3b 1 -3
b;a 4 —11 b (1)
b 0 1
T T

Vl V2
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This calculation shows that H = Span {v1, v,}, where v; and v, are the vectors indicated
above. Thus H is a subspace of R* by Theorem 3. m

Examplel8 illustrates a useful technique of expressing a subspace H as the set of linear
combinations of some small collection of vectors. If H = Span {vi, ..., vy}, we can think
of the vectors vy, ..., vp in the spanning set as “handles” that allow us to hold on to the
subspace H. Calculations with the infinitely many vectors in H are often reduced to
operations with the finite number of vectors in the spanning set.
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Exercises

In exercises 1-13 a set of objects is given together with operations of addition and scalar
multiplication. Determine which sets are vector spaces under the given operations. For
those that are not, list all axioms that fail to hold.

1. The set of all triples of real numbers (x, y, z) with the operations
x,y,2)+X,y,z2)=(x+x",y+y,z+z)and k(x,y,z) = (kx,y,2)

2. The set of all triples of real numbers (x, y, z) with the operations
xy,2)+X,y,z2)=(x+x",y+y',z+z)andk(x,y,z)=(0,0,0)

3. The set of all pairs of real numbers (x, y) with the operations
(X, ¥)+(X,y)= (x+X,y+y)and k(x, y) = (2kx, 2ky)

4.2The set of all pairs of real numbers of the form (x, 0) with the standard operations on
R”.

5. The set of all pairs of real numbers of the form (x, y), where x>0, with the standard
operations on R,

6. The set of all n-tuples of real numbers of the form (x, x, ..., X) with the standard
operations on R",

7. The set of all pairs of real numbers (x, y) with the operations.
(X, y)+ (X', y)=(x+x+1,y+y +1)andk(x, y) = (kx,ky)

1
8. The set of all 2x2 matrices of the form b with matrix addition and scalar

multiplication.

a
9. The set of all 2x2 matrices of the form 9 with matrix addition and scalar

multiplication.

10. The set of all pairs of real numbers of the form (1, x) with the operations
@Ly)+@y)=@y+y)andk(, y) =1 ky)

11. The set of polynomials of the form a + bx with the operations
(8 +2,%)+ (b, +b,x)= (8, +b, )+(a, +b, )xand k(a, +a,x)= (ka, )+ (ka, )x

12. The set of all positive real numbers with operations x +y = xy and kx = x*

13. The set of all real numbers (X, y) with operations
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(X, y)+(X,y")=(xx,yy" Yandk(x, y) = (kx,ky)

14. Determine which of the following are subspaces of M.

(@) all n x n matrices A such that tr (A) =0

(b) all n x n matrices A such that A" = -A

(c) all n x n matrices A such that the linear system Ax =0 has only the trivial solution
(d) all n x n matrices A such that AB = BA for a fixed n x n matrix B

15. Determine whether the solution space of the system Ax = 0 is a line through the
origin, a plane through the origin, or the origin only. If it is a plane, find an equation for
it; if it is a line, find parametric equations for it.

101 1 1 2 3
@ A=|3 -1 0 b) A=|-3 6 9
2 4 5 2 4 6
12 3 [ 6
() A=[2 5 3 d) A=|1 4 4
10 8 3 10 6

16. Determine if the set “all polynomial in p, such that p(0) = 0" is a subspace of P, for
an appropriate value of n. Justify your answer.

S
17. Let H be the set of all vectors of the form | 3s |. Find a vector v in R® such that H =

2S
Span {v}. Why does this show that H is a subspace of R*?

5b+2c
18. Let W be the set of all vectors of the form b , Where b and c are arbitrary.

C

Findsvectors u and v such that W = Span {u, v}. Why does this show that W is a subspace
of R*?

[s+3t]

S-t
19. Let W be the set of all vectors of the form 2s-t | Show that W is a subspace of R,
S -

4t
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1 2 4 3
20.Letv, =| 0 |,v,=|1|Vv,=2],andw=|1].
-1 3 6 2

(@) Isw in {vy, v, v3}? How many vectors are in {vy, Vo, V3}?
(b) How many vectors are in Span {v1, Vo, V3}?
(c) Is w in the subspace spanned by {vi, vz, v3}? Why?

In exercises 21 and 22, let W be the set of all vectors of the form shown, where a, b and ¢
represent arbitrary real numbers. In each case, either find a set S of vectors that spans W
or give an example to show that W is not a vector space.

a-b
3a+b
b-c
21. 4 22.
c-a
a-5b
b

23. Show that w is in the subspace of R* spanned by v, v, v3, where

-9 7 4 -9
7 4 5 4
W = WV, = 2 WV, = 1 WV, = A
'8 9 7 7

24. Determine if y is in the subspace of R* spanned by the columns of A, where

(5 5 -9]

y A 8 8 -6
’ 5 -9 3

-4 3 2 7
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Lecture 21

Null Spaces, Column Spaces, and Linear Transformations

Subspaces arise in as set of all solutions to a system of homogenous linear equations as
the set of all linear combinations of certain specified vectors. In this lecture, we compare
and contrast these two descriptions of subspaces, allowing us to practice using the
concept of a subspace. In applications of linear algebra, subspaces of R" usually arise in
one of two ways:

» as the set of all solutions to a system of homogeneous linear equations or

> as the set of all linear combinations of certain specified vectors.
Our work here will provide us with a deeper understanding of the relationships between
the solutions of a linear system of equations and properties of its coefficient matrix.

Null Space of a Matrix

Consider the following system of homogeneous equations:
X, —3X,—2%X; =0
—5% +9X, +%X; =0
In matrix form, this system is written as Ax = 0, where
1 -3 -2
A= )
5 9 1
Recall that the set of all x that satisfy (1) is called the solution set of the system (1). Often
it is convenient to relate this set directly to the matrix A and the equation Ax = 0. We call
the set of x that satisfy Ax = 0 the null space of the matrix A. The reason for this name is
that if matrix A is viewed as a linear operator that maps points of some vector space V
into itself, it can be viewed as mapping all the elements of this solution space of AX =0

into the null element "0". Thus the null space N of A is that subspace of all vectors in V
which are imaged into the null element “0" by the matrix A.

1)

NULL SPACE

Definition  The null space of an mxn matrix A, written as Nul A, is the set of all
solutions to the homogeneous equation Ax = 0. In set notation,
Nul A = {x: xis in R" and Ax = 0}
OR
Nul(A) ={x/Vvxe R, Ax =0}

A more dynamic description of Nul A is the set of all x in R" that are mapped into the
zero vector of R™ via the linear transformation x — Ax, where A is a matrix of
transformation. See Figurel
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Figure 1
5
Example 1 Let A:{l ; ﬂ and let u=| 3 |. Determine ifue Nul A.
) -2

Solution  To test if u satisfies Au = 0, simply compute

5

1 -3 -2 5-9+4 0 L.

Au = 3|= = . Thus uis in Nul A.
5 9 1 -25+27-2 0

Example Determine the null space of the following matrix:

4 0
A=
(—8 20]
Solution To find the null space of A we need to solve the following system of equations:
4 0 (x) (0
-8 20){x,) |0
4x, + 0x, 0
f— =
-8x, +20x, 0
=4x +0x,=0 =X =0
and = -8x+20x,=0 =x,=0

We can find Null space of a matrix with two ways i.e. with matrices or with system of
linear equations. We have given this in both matrix form and (here first we convert the
matrix into system of equations) equation form. In equation form it is easy to see that by
solving these equations together the only solution isx, =X, =0. In terms of vectors from

R? the solution consists of the single vector {0} and hence the null space of A is{0} .

Activity Determine the null space of the following matrices:
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000
1 0=(0 0 0
000
1 -5
2. M =
-5 25)

In earlier (previous) lectures, we developed the technique of elementary row operations
to solve a linear system. We know that performing elementary row operations on an
augmented matrix does not change the solution set of the corresponding linear system
Ax=0. Therefore, we can say that it does not change the null space of A. We state this
result as a theorem:

Theorem 1 Elementary row operations do not change the null space of a matrix.
Or
Null space N(A) of a matrix A can not be changed (always same) by changing the matrix
with elementary row operations.

Example Determine the null space of the following matrix using the elementary row
operations: (Taking the matrix from the above Example)

4 0
A=
(—8 zoj

Solution First we transform the matrix to the reduced row echelon form:

4 0 1 0 1
-8 20 -8 20) 4 R
L0 R,+8
0 20 78R
10
_ 1
01 20
which corresponds to the system
x =0
X, =0

Since every column in the coefficient part of the matrix has a leading entry that means
our system has the trivial solution only:

X =0
X, =0
This means the null space consists only of the zero vector.

We can observe and compare both the above examples which show the same result.
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Theorem 2 The null space of an mxn matrix A is a subspace of R". Equivalently, the
set of all solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns
is a subspace of R".

Or simply, the null space is the space of all the vectors of a Matrix A of any order those
are mapped (assign) onto zero vector in the space R" (i.e. Ax = 0).

Proof We know that the subspace of A consists of all the solution to the system Ax =0.

First, we should point out that the zero vector, 0, in R" will be a solution to this system
and so we know that the null space is not empty. This is a good thing since a vector
space (subspace or not) must contain at least one element.

Now we know that the null space is not empty. Consider u, v be two any vectors
(elements) (in) from the null space and let ¢ be any scalar. We just need to show that the
sum (u+v) and scalar multiple (c.u) of these are also in the null space.

Certainly Nul A is a subset of R" because A has n columns. To show that Nul(A) is the
subspace, we have to check three conditions whether they are satisfied or not. If Nul(A)
satisfies the all three condition, we say Nul(A) is a subspace otherwise not.

First, zero vector “0” must be in the space and subspace. If zero vector does not in the
space we can not say that is a vector space (generally, we use space for vector space).
And we know that zero vector maps on zero vector so 0 is in Nul(A). Now choose any
vectors u, v from Null space and using definition of Null space (i.e. Ax=0)

Au=0and Av=0

Now the other two conditions are vector addition and scalar multiplication. For this we
proceed as follow:

Let start with vector addition:

To show that u + v is in Nul A, we must show that A (u + v) = 0. Using the property of
matrix multiplication, we find that

AUu+v)=Au+Av=0+0=0

Thus u + visin Nul A, and Nul A is closed under vector addition.

For Matrix multiplication, consider any scalar , say c,

A(cu)y=c(Au)=c(0)=0

which shows that cu is in Nul A. Thus Nul A is a subspace of R".

Example 2 The set H, of all vectors in R* whose coordinates a, b, ¢, d satisfy the

equations
a-2b+5c=d
c-a=bh

is a subspace of R*.

Solution Since a-2b+5c=d
c-a=b

By rearranging the equations, we get

a-2b+5c-d=0
-a-b +c =0
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We see that H is the set of all solutions of the above system of homogeneous linear
equations.
Therefore from the Theorem 2, H is a subspace of R*.

It is important that the linear equations defining the set H are homogeneous. Otherwise,
the set of solutions will definitely not be a subspace (because the zero-vector (origin) is
not a solution of a non- homogeneous system), geometrically means that a line that not
passes through origin can not be a subspace, because subspace must hold the zero vector
(origin). Also, in some cases, the set of solutions could be empty. In this case, we can not
find any solution of a system of linear equations, geometrically says that lines are parallel
or not intersecting.

If the null space having more than one vector, geometrically means that the lines intersect
more than one point and must passes through origin (zero vector) .

An Explicit Description of Nul A

There is no obvious relation between vectors in Nul A and the entries in A. We say that
Nul A is defined implicitly, because it is defined by a condition that must be checked. No
explicit list or description of the elements in Nul A is given. However, when we solve the
equation Ax = 0, we obtain an explicit description of Nul A.

Example 3 Find a spanning set for the null space of the matrix
-3 6 -1 1 -7
A=1 -2 2 3 -1
2 -4 5 8 -4

Solution  The first step is to find the general solution of Ax = 0 in terms of free
variables.
After transforming the augmented matrix [A 0] to the reduced row echelon form and we
get;
1 -2 0-1320
0 01 2 -20
0O 000 OO
which corresponds to the system
X -2X, - X, +3x,=0
Xy + 2%, -2%, =0
0=0
The general solution is
X, = 2X, + X, - 3X,
X, = free variable
Xy =-2X, + 2X;
X, = free variable
Xs = free variable
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Next, decompose the vector giving the general solution into a linear combination of
vectors where the weights are the free variables. That is,

X | [ 2%, 4%, -3x; | 2 1 -3
X, X, 1 0
Xg [=] 2%, +2X; |=X, |0 [|+X, -2 |+ X[ 2
X, X, 0 1 0
X | | Xs | 10| | 0] 1]
T T 0
u v w
=X,U +X,V +XW (3)

Every linear combination of u, v and w is an element of Nul A. Thus {u, v, w} is a
spanning set for Nul A.

Two points should be made about the solution in Example 3 that apply to all problems of
this type. We will use these facts later.
1. The spanning set produced by the method in Example 3 is automatically linearly
independent because the free variables are the weights on the spanning vectors.
For instance, look at the 2", 4™ and 5™ entries in the solution vector in (3) and
note that x,u +Xx,v +x,w can be 0 only if the weights x,, x4 and x5 are all zero.

2. When Nul A contains nonzero vector, the number of vectors in the spanning set
for Nul A equals the number of free variables in the equation Ax = 0.

(1 -3 2 2 1]
0 3 6 0 -3
Example 4 Find a spanning set for the null space of A={ 2 -3 -2 4
3 6 0 6
-2 9 2 -4 5]
Solution The null space of A is the solution space of the homogeneous system
X =3X, +2%X; +2X,+ x. =0
0x, + 3X, +6x; +0x, -3X;, =0
2X, - 3X, = 2%y +4X, +4x, =0
3X, -6X, +0x; +6X,+5%, =0
-2X, + 9X, + 2X; - 4%, - 5%, =0
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0 |(1/3)R,

-2R,+R,
2R, +R,

-12
-12

0 |(-1/12)R,

-5/12

0

-12

0 [12R,+R,

-5/12

0

o O O O O o

0
11/6
-1/6
-5/12

0
2
0
0
0
0

275
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1 0 0 2 43 0
o 1 o0 0 -1 0
o o0 1 0  -512 0|3R,+R,
o o0 0 0 0 0

o o 0o 0 0 0]

The reduced row echelon form of the augmented matrix corresponds to the system

1x, + 2x,+(4/3)x;, =0

1x,+ (-1/6) x, =0
1x,+ (-5/12) x, =0.

0=0

0=0

No equation of this system has a form zero = nonzero; Therefore, the system is
consistent. The system has infinitely many solutions:

X, =-2%+(-4/3)x;, X, =+(1/6) X, X;=+(5/12) X,
X, = arbitrary X = arbitrary

The solution can be written in the vector form:
¢,=(-2,0,0,1,0) ¢, =(-4/3,1/6,5/12,0,1)

Therefore {(-2,0,0,1,0), (-4/3,1/6,5/12,0,1)} is a spanning set for Null space of A.

Activity:  Find an explicit description of Nul A where:

355 39
1. A=
51 10 3
4 1 -1 0 1
-1 -1 2 -3 1
2. A=
1 1 -2 0 -1
0 0 1 1 1

The Column Space of a Matrix Another important subspace associated with a matrix
is its column space. Unlike the null space, the column space is defined explicitly via
linear combinations.
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Definition (Column Space) The column space of an mxn matrix A, written as Col A,
is the set of all linear combinations of the columns of A. IfA =[a; ... ay], then
ColA=Span{ai,...,an}

Since Span {ay, ..., an } is a subspace, by Theorem of lecture 20 i.e. if v,,...,v, are in a

vector space V , then Span {V;,...,v, } is a subspace of V

The column space of a matrix is that subspace spanned by the columns of the matrix
(columns viewed as vectors). It is that space defined by all linear combinations of the
column of the matrix.

Example, in the given matrix,
11 3

2 1 4
315
4 1 6

The column space ColA is all the linear combination of the first (1, 2, 3, 4), the second (1,
1, 1, 1) and the third column ( 3, 4, 5, 6). That is, ColA={a-(1,2,3,4) +b-(1,1,1,1) +
c-(3,4,5,6) }. Ingeneral, the column space ColA contains all the linear
combinations of columns of A.

The next theorem follows from the definition of Col A and the fact that the columns of A
are in R™.

Theorem 3 The column space of an mxn matrix A is a subspace of R™.

Note that a typical vector in Col A can be written as Ax for some x because the notation
Ax stands for a linear combination of the columns of A. That is,

Col A = {b: b = Ax for some x in R"}
The notation Ax for vectors in Col A also shows that Col A is the range of the linear
transformation x — AxX.

6a-b
Example 6 Find a matrix A such that W= Col A. W =<| a+b |:a,binR
-7a |
Solution  First, write W as a set of linear combinations.
6 -1 6|]-1
W=<a|1l|+b|1|:abinR{=Spanq|1|,|1
-7 0 -7
6 -1
Second, use the vectors in the spanning set as the columns of A. Let A= 1 1 |.
-7 0

Then W = Col A, as desired.
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X3 X2

X1

We know that the columns of A span R™ if and only if the equation Ax =b has a
solution for each b. We can restate this fact as follows:

The column space of an m x n matrix A is all of R™ if and only if the equation Ax = b has
a solution for each b in R™.

Theorem 4 A system of linear equations Ax = b is consistent if and only if b in the
column space of A.

Example 6 A vector b in the column space of A. Let Ax = b is the linear system
-1 3 24X 1
1 2 -3|| X, |=]|-9]. Show that b is in the column space of A, and express b as a
2 1 -2 X -3

linear combination of the column vectors of A.

Solution Augmented Matrix is given by

1 3 2 1

1 2 -3 9
2 1 2 3
1 3 -2 17 -IR,

0 -1 -8|-1R, +R,
0 7 2 -1|-2R, +R,
1 3 =2 -

1/5R,
0 1 -5 -8/5
7R, +R,
0 17/5 51/5
1 30 5] (5/17)R,

0 1 0 -1|(1/5)R, +R,

0 0o 1 3| 2R,+R
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1 0o 0 2
0 1 0 -1[3R, +R,
0 0o 1 3

=X, =2,X, =-1,%, = 3. Since the system is consistent, b is in the column space of A.
1) |3 2 1

Moreover, 2|1 (-|2(+3/-3|=|-9
2|11 -2 -3

Example  Determine whether b is in the column space of A and if so, express b as a
linear combination of the column vectors of A:

11 2 -1
A=|1 0 1|: b=

2 1 3 2
Solution

The coefficient matrix Ax="b is:
1 1 2)\(x -1
1 0 1|x|=|0
2 1 3)\x 2

The augmented matrix for the linear system that corresponds to the matrix
equation Ax =b is:

11 2|1
1 01|0
2 1 3| 2
We reduce this matrix to the Reduced Row Echelon Form:
11 2|1 1 1 2|-1
1010 |~|0 -1 -1 R, +(-1)R,
2 1 3| 2 2 1 3|2
1 1 2|1
~ 10 -1 1] 1| R+(-2)R
0 -1 -1|4
1 1 2|41
~ (0 1 1]-1] (R,
0 -1 -1| 4
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O
I
W
0
w
+
<9

R, +R,

l
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=
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The new system for the equation Ax=Db is
X, +X% =0
X, +X; =0
0=1
Equation 0=1 cannot be solved, therefore, the system has no solution (i.e. the system is

inconsistent).
Since the equation Ax = b has no solution, therefore b is not in the column space of A.

Activity Determine whether b is in the column space of A and if so, express b as a
linear combination of the column vectors of A:

1.
1 -1 2 5
A=9 1]; b=|1
1 1 1 0
1 1 1 1
2. A=l 1 1 -1|;b=
-1 -1 -1
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1 1 -2 1

0O 2 0 1 2
3. A= b=

1 1 1 -3 3

0 2 2 1 4

Theorem 5 If xo denotes any single solution of a consistent linear system Ax=Db and if
V,,V,,V,,...,V, form the solution space of the homogeneous system Ax=0, then every

solution of Ax=b can be expressed in the form X = X, +C,v, +C,V, +...+C,V, and,
conversely, for all choices of scalarsc,,c,,Cs,...,C, , the vector x is a solution of Ax=b.

General and Particular Solutions: The vector X is called a particular solution of Ax=b
.The expression Xo+ €1 V1 +CoVo+ . . . +Ck Vi is called the general solution of Ax=b , and
the expression ¢ vi +Covat . . . +Ck Vi IS called the general solution of Ax=0.

Example 7 Find the vector form of the general solution of the given linear system
AX = b; then use that result to find the vector form of the general solution of Ax=0.

X, +3X, - 2%, + 2Xg =0

2X, +6X, - 5X, - 2X, +4X; - 3%s = -1

5%, +10x,  +15%x,=5

2X, +6X, +8x, +4x. +18x, =6
Solution We solve the non-homogeneous linear system. The augmented matrix of this
system is given by

1 3 2 0 2 0 0

2 6 5 2 4 -3 1

0 O 5 10 0 15 5

2 6 0 8 4 18 6

1 3 2 0 2 0 0

o o -1 -2 0 -3 -1 [-2R,+R,
o o0 5 10 0 15 5 |-2R,+R,
0o o0 4 8 0o 18 6

1 3 2 0 2 0 0

o o0 1 2 0 3 1

0 0 5 10 0 15 5 |17
0o o0 4 8 0o 18 6
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1 3 -2 0 2 0 0]
o o 1 2 0 3 1 |-5R,+R,
o 0 0 0 0 O 0 |-4R,+R,
o 0 0 0 0 6 2 |
1 3 -2 0 2 0 0]
o o 1 2 0 3 1
R34
o 0 0 0 0 6 2
o 0 o0 0 0 0 0
1 3 -2 0 2 0 0
o o 1 2 0o 3 1
(LUB)R,
o o0 o0 o0 0 1 1/3
o 0 o0 0 0 0 0
1 3 -2 0 2 0 0 ]
o o 1 2 0 0 0
-3R,+R,
o o0 o0 o0 0 1 1/3
o 0 o0 0 0 0 0
1 3 0 4 2 0 0
o o 1 2 0 0 0
2R, +R,
o o0 o0 o0 0 1 1/3
o 0 o0 0 0 0 0

The reduced row echelon form of the augmented matrix corresponds to the system

1x,+3x,+ 4x,+2x =0

Ix,+2x, =0
1x,=(1/3)

0=0

No equation of this system has a form zero = nonzero; Therefore, the system is
consistent. The system has infinitely many solutions:

X, =-83X,-4X,-2X%X X =r X; =-2 X,
X, =S X; =t X; =1/3
X, =-3r-4s-2t X, =T Xy = -28
X, =S X, =1 x6—1
4 5 3
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This result can be written in vector form as

%, -3r-4s-2t 0 31 a1 T-27
X, ' Ol 11] |o| |o
% |2 = = X +r 0 +5s 2 +t 0 (A)
X, 3 O o™ 1o
X t O o] ol |12
1 1
Xs = = 0 0 0
- - L 3 ] _3_ (- - - - - -
which is the general solution of the given system. The vector Xq in (A) is a particular
3] [-4] [-2]
1 0 0
: : . o 0 -2 0. :
solution of the given system; the linear combination r 0 +S 1 +t 0 in (A) is the
0 0 1
0] [0] |0

general solution of the homogeneous system.

Activity:
1. Suppose that x, =-1, X, =2, X, =4, X, =-3 is a solution of a non-homogenous
linear system Ax =b and that the solution set of the homogenous system Ax=0
is given by this formula:

X, =—=3r +4s,
X, =r—Ss,

X; =T,

X, =S

(a) Find the vector form of the general solution of Ax=0.
(b) Find the vector form of the general solution of Ax=0.

Find the vector form of the general solution of the following linear system Ax = b; then
use that result to find the vector form of the general solution of Ax=0:
X, —2X%, =1
3% —9%, =2

X, +2X,—=3%;+ X, = 3
=3X = X +3%+ X, =-1
- X+ 3%, = X;+2X,= 2

4x, —5X, -3X,=-5
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The Contrast between Nul A and Col A

It is natural to wonder how the null space and column space of a matrix are related. In
fact, the two spaces are quite dissimilar. Nevertheless, a surprising connection between
the null space and column space will emerge later.

2 4 -2 1
Example8 Let A=|-2 -5 7 3
3 7 -8 6

(a) If the column space of A is a subspace of R¥, what is k?
(b) If the null space of A is a subspace of R¥, what is k?

Solution

(a) The columns of A each have three entries, so Col A is a subspace of R¥, where k = 3.
(b) A vector x such that Ax is defined must have four entries, so Nul A is a subspace of
R¥, where k = 4.

When a matrix is not square, as in Example 8, the vectors in Nul A and Col A live in
entirely different “universes”. For example, we have discussed no algebraic operations
that connect vectors in R® with vectors in R*. Thus we are not likely to find any relation
between individual vectors in Nul A and Col A.

2 4 -2 1
Example9 IfA=|-2 -5 7 3], find anonzero vector in Col A and a nonzero vector
3 7 -8 6
in Nul A
2
Solution It is easy to find a vector in Col A. Any column of A will do, say, |-2|. To
3
find a nonzero vector in Nul A, we have to do some work. We row reduce the augmented
10 9 00
matrix [A 0] to obtain[A 0]~|{0 1 -5 0 0|. Thus if x satisfies Ax = 0,
000 10

then x, =-9x,,X, = 5x,,X, =0, and xs is free. Assigning a nonzero value to X3 (say), X3 =
1, we obtain a vector in Nul A, namely, x = (-9, 5, 1, 0).

3
2 4 -2 1 3
Example 10 WithA=|-2 -5 7 3|, letu= 1 and v=|-1].
3 7 -8 6 0 3

(@) Determine if uisin Nul A. Could u be in Col A?
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(b) Determine if visin Col A. Could v be in Nul A?
Solution (a) An explicit description of Nul A is not needed here. Simply compute the
product

3
2 2 1 5 0 0
Au=|-2 -5 7 3 =|-3|#|0
3 7 -8 6 3 0

0

Obviously, u is not a solution of Ax = 0, so u is not in Nul A.
Also, with four entries, u could not possibly be in Col A, since Col A is a subspace of R®.
(b) Reduce [A V] to an echelon form:

2 4 21 3] [24 -2 1 3
[A v]=|2 5 7 3 -1|~|0 1 -5 -4 2
3 7 86 3[]00 017 1

At this point, it is clear that the equation Ax = v is consistent, so v is in Col A. With only
three entries, v could not possibly be in Nul A, since Nul A is a subspace of R*.

The following table summarizes what we have learned about Nul A and Col A.

1. Nul A'is a subspace of R". 1. Col A is a subspace of R™.

2. Nul Ais implicitly defined; i.e. we 2. Col Aiis explicitly defined; that is,
are given only a condition (Ax = 0) we are told how to build vectors in
that vectors in Nul A must satisfy. Col A.

3. It takes time to find vectors in Nul 3. ltiseasy to find vectors in Col A
A. Row operations on [A 0] are The columns of A are displayed;
required. others are formed from them.

4. There is no obvious relation 4. There is an obvious relation
between Nul A and the entries in A. between Col A and the entries in

A, since each column of Ais in Col
A.

5. Atypical vector v in Nul A has the 5. Atypical vector vin Col A has the

property that Av = 0. property that the equation Ax =v
IS consistent.

6. Given a specific vector v, it is easy 6. Given a specific vector v, it may
to tell if vis in Nul A. Just compute take time to tell if vis in Col A.
Av. Row operations on [A V] are

required.

7. Nul A ={0} if and only if the 7. Col A.=R™if and only if the
equation Ax = 0 has only the trivial equation Ax = b has a solution for
solution. every binR".

8. Nul A={0}if and only if the linear 8. Col A=R"™if and only if the linear
transformation x — AX is one-to- transformation x — Ax maps R"
one. onto R™.
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Kernel and Range of A Linear Transformation

Subspaces of vector spaces other than R" are often described in terms of a linear
transformation instead of a matrix. To make this precise, we generalize the definition
given earlier in Segment 1.

Definition A linear transformation T from a vector space V into a vector space W is
a rule that assigns to each vector x in V a unique vector T (x) in W, such that

D) TU+V)=T@U)+T(V) forall u,vinV, and

(i) T(cu)=cT(u) for all uinV and all scalars c.

The kernel (or null space) of such a T is the set of all u in V such that T (u) = 0 (the zero
vector in W). The range of T is the set of all vectors in W of the form T (x) for some X in
V. If T happens to arise as a matrix transformation, say, T (X) = Ax for some matrix A —
then the kernel and the range of T are just the null space and the column space of A, as
defined earlier. So if T(x) = Ax, col A =range of T.

Definition If T:V —W is a linear transformation, then the set of vectors in V that T
maps into 0 is called the kernel of T; it is denoted by ker(T). The set of all vectors in W
that are images under T of at least one vector in V is called the range of T; it is denoted
by R(T).

Example If T,:R" - R" is multiplication by the mxn matrix A, then from the
above definition; the kernel of T, is the null space of A and the range of T, is the column
space of A.

Remarks The kernel of T is a subspace of V and the range of T is a subspace of W.

Range

Domain TN

Kernel

Kernel is a Range is a
subspace of V subspace of W

Figure 2 Subspaces associated with a linear transformation.

In applications, a subspace usually arises as either the kernel or the range of an
appropriate linear transformation. For instance, the set of all solutions of a homogeneous
linear differential equation turns out to be the kernel of a linear transformation. Typically,
such a linear transformation is described in terms of one or more derivatives of a
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function. To explain this in any detail would take us too far a field at this point. So we
present only two examples. The first explains why the operation of differentiation is a
linear transformation.

Example 11  Let V be the vector space of all real-valued functions f defined on an

interval [a, b] with the property that they are differentiable and their derivatives are
continuous functions on [a, b]. Let W be the vector space of all continuous functions on
[a, b] and let D:V —-W be the transformation that changes f in V into its

derivative f'. In calculus, two simple differentiation rules are
D(f +g)=D(f)+D(g)and D(cf)=cD(f)
That is, D is a linear transformation. It can be shown that the kernel of D is the set of

constant functions of [a, b] and the range of D is the set W of all continuous functions on
[a, b].

Example 12  The differential equation y” +wy =0 4)

where w is a constant, is used to describe a variety of physical systems, such as the
vibration of a weighted spring, the movement of a pendulum and the voltage in an
inductance — capacitance electrical circuit. The set of solutions of (4) is precisely the
kernel of the linear transformation that maps a function y= f(t) into the
function f"(t) + wf (t). Finding an explicit description of this vector space is a problem in

differential equations.

a
Example 13 LetW ={|b|:a-3b-c=0}. Show that W is a subspace of R® in
C

different ways.

Solution  First method: W is a subspace of R® by Theorem 2 because W is the set of all
solutions to a system of homogeneous linear equations (where the system has only one
equation). Equivalently, W is the null space of the 1x3 matrix A=[1 -3 -1].

Second method: Solve the equation a — 3b — ¢ = 0 for the leading variable a in terms of
the free variables b and c.

3b+c
Any solution has the form b |, where b and c are arbitrary, and
c
3b+c 3 1
b |=bl1l|+c|0
c 0 1
(.
Vl V2
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This calculation shows that W = Span{v:, v»}. Thus W is a subspace of R® by Theorem
i.e.if v,,...,v  are ina vector spaceV , then Span {vl,...,vp} is a subspace ofV . We could

also solve the equation a — 3b — ¢ = 0 for b or ¢ and get alternative descriptions of W as a
set of linear combinations of two vectors.

7 35 2 7
Example 14 LetA=|-4 1 -5|, v=|1|,and W=|6
5 2 -4 -1 -3

Suppose you know that the equations Ax = v and Ax = w are both consistent. What can
you say about the equation Ax =v + w?

Solution Both v and w are in Col A. Since Col A is a vector space, v + w must be in
Col A. That is, the equation Ax = v + w is consistent.

Activity
1. LetV and W be any two vector spaces. The mapping T :V —W such that T (v) =
0 for every v in V is a linear transformation called the zero transformation. Find
the kernel and range of the zero transformation.

2. Let V be any vector space. The mapping 1:V —V defined by I(v) = v is called
the identity operator on V. Find the kernel and range of the identity operator.
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Exercises

5 5 21 19
1. Determine if w=| -3 | isin Nul A, where A=|13 23

2 8 14 1

In exercises 2 and 3, find an explicit description of Nul A, by listing vectors that span the
null space.

1 -2 0 40
1 350
2. 3.0 01 9 0
01 4 -2
01

In exercises 4-7, either use an appropriate theorem to show that the given set, W is a
vector space, or find a specific example to the contrary.

a
a
b| a-2b=4c
4.{|bl:a+b+c=2 5. :
c| 2a=c+3d
c
d
b-2d
-a+2b
5+d
6. :b,d real 7.1 a-2b |:a,breal
b+ 3d
g 3a-6b

In exercises 8 and 9, find A such that the given set is Col A.

[ 25 +3t | b-c
r+s-2t 2b+c+d
8. 'r,s,treal 0. ‘b, c,d real
4r +s 5¢c-4d
| 3r-s-t | i d i

For the matrices in exercises 10-13, (a) find k such that Nul A is a subspace of R¥, and
(b) find k such that Col A is a subspace of R¥.
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(2 -6 7 2 0
-1 3 2 0 -5
10. A= 11. A=
-4 12 0 5 7
'3 9] 5 7 -2]
4 5 -2 6 0
12. A= 13.A=[1 -3 9 0 -5]
11 0 10
-6 12 2 . .
14. Let A= 5 and w = Ll Determine if wis in Col A. Isw in Nul A?
-8 -2 -9 2|
15.Let A=| 6 4 8 |andw=| 1 |. Determine if wis in Col A. Isw in Nul A?
4 0 4 -2

p(0) |

. For instance, if p (t) = 3 + 5t + 7t% then
p(1) |

16. Define T: P, > R?by T (p) = {

CEM

a. Show that T is a linear transformation.
b. Find a polynomial p in P that spans the kernel of T, and describe the range of T.

p(0)

p(1)
and p2 in P, that span the kernel of T, and describe the range of T.

17. Define a linear transformation T: P, —R? by T (p) { } . Find polynomials p;

18. Let M2y, be the vector space of all 2x2 matrices, and define T: Mo, — Moy, by

. a b
T(A)=A+ A", where A= :
c d
(a) Show that T is a linear transformation.
(b) Let B be any element of My, such that B'=B. Find an A in My, such that T (A) = B.
(c) Show that the range of T is the set of B in My, with the property that B'=B.
(d) Describe the kernel of T.

19. Determine whether w is in the column space of A, the null space of A, or both, where
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(1] 7 6 -4 1] 1] -8 2 0
1 S5 -1 0 -2 2 S5 2 1 -2
(@ w= A= (b) w= VA=
-1 9 -11 7 -3 1 10 -8 -3
-3 19 9 7 1] 0] 13 2 1 0
20. Let ay, ..., as denote the columns of the matrix A, where
5 1 2 2 0]
A_332-1 -12 B—[a a a]
|8 4 4 5 12|t 2
2110 -2
(a) Explain why a3z and as are in the column space of B
(b) Find a set of vectors that spans Nul A
(c) Let T: R>— R*be defined by T (x) = Ax. Explain why T is neither one-to-one nor
onto.
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Lecture 22

Linearly Independent Sets; Bases
First we revise some definitions and theorems from the Vector Space:

Definition  Let V be an arbitrary nonempty set of objects on which two operations are
defined, addition and multiplication by scalars.

If the following axioms are satisfied by all objects u, v, w in V and all scalars | and
m, then we call V a vector space.

Axioms of Vector Space

For any set of vectors u, v, w in VV and scalars |, m, n:
u+visinV

u+v=v+u

u+(v+w)=(Uu+v)+w

There exist a zero vector 0 such that
O+u=u+0=u

There exist a vector — u in V such that
-u+u=0=u+(-u)

(Tu)isinVv

lu+v)=lu+lyv
mnu)=(mn)u=n(mu)
(I+m)u=1lu+mu

0. 1u = u where 1 is the multiplicative identity

APwnhE

o

BoOoo~NO®

Definition A subset W of a vector space V is called a subspace of V if W itself is a
vector space under the addition and scalar multiplication defined on V.

Theorem If W is a set of one or more vectors from a vector space V, then W is
subspace of V if and only if the following conditions hold:

(@) If uand v are vectors in W, thenu + visin W
(b) If k is any scalar and u is any vector in W, then k u is in W.

Definition The null space of an m x n matrix A (Nul A) is the set of all solutions of the
hom equation Ax =0
Nul A = {x: xis in R" and Ax = 0}

Definition ~ The column space of an m x n matrix A (Col A) is the set of all linear
combinations of the columns of A.

IfA=[a; ... ay],

then

ColA=Span{ai,...,an}

©Virtual University Of Pakistan 292



22- Linear Independence Sets; Bases VU

Since we know that a set of vectors S = {vl,vz,v3,...vp} spans a given vector space V if

every vector in V is expressible as a linear combination of the vectors in S. In general
there may be more than one way to express a vector in V as linear combination of vectors
in a spanning set. We shall study conditions under which each vector in V is expressible
as a linear combination of the spanning vectors in exactly one way. Spanning sets with
this property play a fundamental role in the study of vector spaces.

In this Lecture, we shall identify and study the subspace H as “efficiently” as possible.
The key idea is that of linear independence, defined as in R".

Definition An indexed set of vectors {vi,..., vp} in V is said to be linearly
independent if the vector equation
¢V, +CVv, +..+c v, =0 (1)

has only the trivial solution, i.e.c; =0, ..., c, = 0.

The set {v1,...,vp} is said to be linearly dependent if (1) has a nontrivial solution, that is,
if there are some weights, c4,...,Cp, not all zero, such that (1) holds. In such a case, (1) is
called a linear dependence relation among vy, ..., vp. Alternatively, to say that the v’s
are linearly dependent is to say that the zero vector 0 can be expressed as a nontrivial
linear combination of the v’s.

If the trivial solution is the only solution to this equation then the vectors in the set are
called linearly independent and the set is called a linearly independent set. If there is
another solution then the vectors in the set are called linearly dependent and the set is
called a linearly dependent set.

Just as in R", a set containing a single vector v is linearly independent if and only ifv =0 .
Also, a set of two vectors is linearly dependent if and only if one of the vectors is a
multiple of the other. And any set containing the zero-vector is linearly dependent.

Determining whether a set of vectors a,, a,,a,,...a, is linearly independent is easy when
one of the vectors is O: if, say, a, =0, then we have a simple solution to

X,.a, +X,a, + X, &, +...+ X,a, = 0given by choosing x, to be any nonzero value and putting

all the other x’s equal to 0. Consequently, if a set of vectors contains the zero vector, it
must always be linearly dependent. Equivalently, any set of linearly independent vectors
cannot contain the zero vector.

Another situation in which it is easy to determine linear independence is when there are
more vectors in the set than entries in the vectors. If n > m, then the n vectors
a,,d,,a,,..., in R™are columns of an mxnmatrix A. The vector equation

X,a, +X,8, + X, 8, +...+ X,a, =0 is equivalent to the matrix equation Ax = 0 whose

corresponding linear system has more variables than equations. Thus there must be at
least one free variable in the solution, meaning that there are nontrivial solutions
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to X,a, +X,8, + X; 8, +...+ X,a,=0: If n >m, then the set {a,,a,,a,,..a, } of vectors in R™
must be linearly dependent.

When n is small we have a clear geometric picture of the relation amongst linearly
independent vectors. For instance, the case n = 1 produces the equation x,a =0, and as
long asa, =0, we only have the trivial solution x, =0. A single nonzero vector always
forms a linearly independent set.

When n = 2, the equation takes the form x,a, + x,a, = 0. If this were a linear dependence
relation, then one of the x’s, say X,, would have to be nonzero. Then we could solve the
equation for a and obtain a relation indicating that a is a scalar multiple ofa,.

Conversely, if one of the vectors is a scalar multiple of the other, we can express this in
the form x,a + X,a, =0. Thus, a set of two nonzero vectors is linearly dependent if and

only if they are scalar multiples of each other.

Example (linearly independent set)
Show that the following vectors are linearly independent:

-2 2 0
vi=| 1|, v,=| 1], v,=|0
1 -2 1

Solution  Let there exist scalars c,,c,,c, in R such that
C\V, +CV, +C,v, =0

-2 2 0
= ¢| 1|+c,| 1|+c;|0(=0

Therefore,

1 | -2 1
-2¢, | [ 2c,] [0
= c,|[+| ¢ |[+]0 ] 0
¢ | |-2¢,]| |G
—-2¢, +2¢, 0
= C, +C, } =0
| ¢, —2¢C, +C, 0

-2c,+2¢,=0 ... ()= -c,+c,=0........ (4) (dividing by 2 onboth sides of (1))
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Solving (2) and (4) implies:

c,+¢,=0 . L
. . Solving (3)implies:
—C,+¢C,=0 Solving (2)implies:
0+0+c,=0
c,+0=0
=, =0
0+2¢,=0 =c =0
=c,=0

=, =C,=¢, =0 ;scalarsc,,c,,c, R are all zero
", The system has trivial solution.
Hence the given vectors v,, v,, v, are linearly independent.

Example (linearly dependent set)
Ifv, ={2,-1,0,3},v, ={1,2,5,-1} and v,={7,-15,8} , then the set of vectors

S ={V,,V,,V, }is linearly dependent, since 3v, +v, —v, =0

Example (linearly dependent set)
The polynomials p, =—x+1, p, =—-2x*+3x+5, and p, =—x*+3x+1 form a linearly

dependent set in p, since3p, —p,+2p, =0.

Note The linearly independent or linearly dependent sets can also be determined using
the Echelon Form or the Reduced Row Echelon Form methods.

Theorem 1  An indexed set { vy, ... , vp } of two or more vectors, with v, #0, is
linearly dependent if and only if some v; (with j>1) is a linear combination of the
preceding vectors, v, ... , Vj.1.

The main difference between linear dependence in R" and in a general vector space is that
when the vectors are not n — tuples, the homogeneous equation (1) usually cannot be
written as a system of n linear equations. That is, the vectors cannot be made into the
columns of a matrix A in order to study the equation Ax = 0. We must rely instead on the
definition of linear dependence and on Theorem 1.

Example 1 Letpy (t)=1,p2t)=tandps(t)=4-t. Then{p1, p2, ps}islinearly
dependent in P because  ps; = 4p; — pe.

Example 2  The set {Sin t, Cos t} is linearly independent in C [0, 1] because Sin t and
Cos t are not multiples of one another as vectors in C [0, 1]. That is, there is no scalar ¢
such that Cos t = c. Sin t for all t in [0, 1]. (Look at the graphs of Sin t and Cos t.)
However, {Sint Cost, Sin 2t} is linearly dependent because of he identity:

Sin2t =2 Sint Cos t, for all t.
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Useful results
e A set containing the zero vector is linearly dependent.
e A set of two vectors is linearly dependent if and only if one is a multiple of the
other.

e A set containing one nonzeoro vector is linearly independent. i.e. consider the set
containing one nonzeoro vector {v,} so {v,} is linearly independent when v, #0.

e A set of two vectors is linearly independent if and only if neither of the vectors is
a multiple of the other.

Activity  Determine whether the following sets of vectors are linearly independent or
linearly dependent:

1. 1=(10,0,0), j=(0,1,0,0),k=(0,0,0,1) inR*.
v, =(2,0,-1), v, =(-3,-2,-5), v, =(-6,1,-1), v, =(-7,0,2) inR®.
i=(10,0,..,0), j=(0,1,0,...,0),k =(0,0,0,....1) in R™.

4. 3x°+3x+1, 4x* +X, 3X* +6X+5, — x> +2x+7 in p,

Definition  Let H be a subspace of a vector space V. An indexed set of vectors B =
{b1,..., bp} in Vis a basis for H if

Q) B is a linearly independent set, and
(i) the subspace spanned by B coincides with H; that is,
H = Span {b1,...,.by }
The definition of a basis applies to the case when H =V, because any vector space is a
subspace of itself. Thus a basis of V is a linearly independent set that spans V. Observe
that when H =V , condition (ii) includes the requirement that each of the vectors bq,...,b,
must belong to H, because Span { bs,...,b, } contains by,...,b,, as we saw in lecture 21.

Example 3 Let A be an invertible nxn matrix — say, A =[a; ... an]. Then the columns
of A form a basis for R" because they are linearly independent and they span R", by the
Invertible Matrix Theorem.

Example 4 Letey,..., ey be the columns of the nxn identity matrix, I,. That is,

0

1 0

e, =|. |, &=[.| - &=,
0 0 1

The set {e1, ..., e} is called the standard basis for R " (Fig. 1).
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X3

€3

A\ 4

€2

X2
€1
X1
Figure 1 - The standard basis for R
3 -4 -2
Example5 Letv,=|0|,v,=|1 |,and v,=| 1 |. Determine if {vq, V2, v3} is a basis
-6

for R®.

Solution Since there are exactly three vectors here in R®, we can use one of any
methods to determine whether they are basis for R*or not. For this, let solve with help of
matrices. First form a matrix of vectors i.e. matrix A = [vy vy  vz]. If this matrix is
invertible (i.e. |A| # 0 determinant should be non zero).

For instance, a simple computation shows that det A = 6= 0. Thus A is invertible. As in
example 3, the columns of A form a basis for R®.

Example 6 LetS={1,t t’ ..., t"}. Verify that S is a basis for P,. This basis is called
the standard basis for P,,.

Solution  Certainly S spans P,,. To show that S is linearly independent, suppose that
Co,..., Cp Satisfy

Co.l+cit+Cot? + ...+ Cpt" =0 (1) (2)
This equality means that the polynomial on the left has the same values as the zero
polynomial on the right. A fundamental theorem in algebra says that the only polynomial
in P with more than n zeros is the zero polynomial. That is, (2) holds for all t only if
Co = ...= ¢y = 0. This proves that S is linearly independent and hence is a basis for Py.
See Figure 2.
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y=t
y=t

N

Figure 2 — The standard basis for P,

Problems involving linear independence and spanning in P, are handled best by a
technique to be discussed later.

E§<am|:_)le 7  Check whether the set of vectors {(2, -3, 1), (4, 1, 1), (0, -7, 1)} is basis for
R>?
Solution  The set S = {vy, v,, v3} of vectors in R® spans V = R® if
C1V1 + CoVa + C3Vy = diwy + dowo + dsws *)
with w; = (1,0,0), w, = (0,1,0) , w3 = (0,0,1) has at least one solution for every set of
values of the coefficients di, d», d3. Otherwise (i.e., if no solution exists for at least some
values of d1, d», d3), S does not span V. With our vectors vy, vy, v3, (*) becomes
c1(2,-3,1) + c»(4,1,1) + c3(0,-7,1) = d4(1,0,0) + d»(0,1,0) + d3(0,0,1)
Rearranging the left hand side yields
2c,+4c,+0c,=1d,+0d,+0d,
-3¢, +1c¢,-7¢,=0d,+1d,+0d, (A)
lc,+1c,+1c,=0d,+0d,+1d,
2 4 0flc d,
=/-3 1 -7]|c, |=|d,
1 1 1]|c, d,

2 4 0
We now find the determinant of coefficient matrix | -3 1 -7 | to determine whether the
1 1 1

system is consistent (so that S spans V), or inconsistent (S does not span V).
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2 4 0
Now det|-3 1 -7|=2(8)-4(4)+0=0
1 1 1

Therefore, the system (A) is inconsistent, and, consequently, the set S does not span the
space V.

Example 8 Check whether the set of vectors
{-4 +1t+3t%, 6 +5t+2t*, 8 +4t+ 1t} is abasis for P,?
Solution The set S = {p; (t), p2 (t), ps (t)} of vectors in P, spans V = P, if

C1p1(t) + CaP2 (t) + Capa(t) = diqu(t) + d202(t) + ds g (1) *)
withgqa() =1 +0t +0t? ,g(t)=0 +1t +0t° ,gs(t) =0 +0t +1t%hasat least
one solution for every set of values of the coefficients d, d,, ds. Otherwise (i.e., if no
solution exists for at least some values of dy, d, ds3), S does not span V. With our vectors
P(t), P2(t), ps(t), (*) becomes:

CL(-4+1t+3t)+c, (6+5t+2t)+c3(8+4t+1t9)=

d(1 +0t +0t?) + d, (0 +1t +0t?) + dg (0 +0t +1t?)
Rearranging the left hand side yields

(-dcy +6Co+8¢c3)l + (Lcy+5c, +4c3)t+ (3ci+2¢c, +1cg) P =

(1 d; +0d, +0 d3)1 + (O d; +1d, +0 d3) t+ (0 d; +0d, +1 d3) tz
In order for the equality above to hold for all values of t, the coefficients corresponding to
the same power of t on both sides of the equation must be equal. This yields the
following system of equations:

-4c,+6¢c,+8c,=1d,+0d,+0d,

1c,+5c,+4c,=0d,+1d,+0d, (A)
3c,+2¢c,+1c,=0d,+0d,+1d,
-4 6 8| d,
=1 5 4jc,|=|d,
3 2 1]|c d,
-4 6 8
We now find the determinant of coefficient matrix | 1 5 4| to determine whether the
3 21
system is consistent (so that S spans V), or inconsistent (S does not span V).
-4 6 8
Now det| 1 5 4| =-26=0. Therefore, the system (A) is consistent, and,
3 21

consequently, the set S spans the space V.

The set S = {p1 (t), p2 (1), p3 (1)} of vectors in Py is linearly independent if the only
solution of
C1p1(t) +Cap2(t) +Cc3ps(t) =0 (**)
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IS C1, C2, €3 = 0. In this case, the set S forms a basis for span S. Otherwise (i.e., if a
solution with at least some nonzero values exists), S is linearly dependent. With our
vectors ps (t), p2 (t), ps (1), (2) becomes: ¢; (-4 + 1t +3t) +c, (6+5t+2t5) +c3 (8 +
4t + 1% = 0 Rearranging the left hand side yields

(-dcy +6Co +8c3)l +(1cy +5¢, +4cs)t+ (3¢, +2¢, +1c3) P =0
This yields the following homogeneous system of equations:

-4c,+6¢c,+8¢c,=0 -4 6 8||c 0
lc,+5¢c,+4c¢,=0 =|1 5 4|/c,|=|0
3c,+2¢c,+1c,=0 3 2 1||c, 0
-4 6 8
As det| 1 5 4| =-26=0. Therefore the set S = {p; (t), p2 (t), p3 (1)} is linearly
3 21

independent. Consequently, the set S forms a basis for span S.

Example 9 Theset S = 10110 1110 0170 0 is a basis for the vector
“1lo ollo ol'l1 o]0 1

space V of all 2 x 2 matrices.
Solution  To verify that S is linearly independent, we form a linear combination of the
vectors in S and set it equal to zero:

1 0 0 1 0 0 00 00
C1 + C»o + C3 + Cy =
0 0 00 10 01 00

o c, ¢
This gives v
c, C,

linearly independent.

00 o :
= 0 0 , Which implies that c; = ¢, =c3 =c¢4 =0. Hence S is

a
To verify that S spans V we take any vector [
C

b
d} in V and we must find scalars c1, C»,

Cs3, and ¢4 such that
10 01 0 0 0 0| |a b c, G a b
C1 +C +C3 + Cy = = =
00 00 10 0 1 c d c; C, c d
We find that c; = a, ¢, = b, c3 = ¢, and ¢4 = d so that S spans V.
The basis S in this example is called the standard basis for M,,. More generally, the
standard basis for My, consists of mn different matrices with a single 1 and zeros for the
remaining entries
Example 10  Show that the set of vectors

(R P T

is a basis for the vector space V of all 2 x 2 matrices (i.e. Myy).
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Solution  The set S = {vi, vy, V3, V4} Of vectors in My, spans V = My, if
C1Vi+CoVo+C3Vz+Cava=diwy +dowy +dswz +dswy
(*)
. 1 0 0 1 0 0 0 0
with Wy = , Wp = , W3 = , Wq =
0 0 0 0 1 0 0 1

has at least one solution for every set of values of the coefficients d;, d», ds, ds.

Otherwise (i.e., if no solution exists for at least some values of d;, d, ds, d4), S does not

span V. With our vectors vy, Vo, Vs, Vs, (*) becomes:

3 6 0 -1 0 -8 1 0
C1 +C2 +C3 +C4
{3 -6} [-l 0 } {-12 -4} {-1 2}
O L O T L I
0 0 0 0 1 0 0 1

Rearranging the left hand side yields

3¢, +0c,+0c,+1c,  6¢,-1c,-8¢,+0¢c, |

[301-1(:2-1203-104 -6c1+0c2-4c3+2cj_
1d,+0d,+0d,+0d, 0d,+1d,+0d,+0d,
{Odl+0d2+1d3+0d4 0d1+0d2+0d3+1dj

The matrix equation above is equivalent to the following system of equations

3c,+ 0c,+0c,+1c,=1d,+0d,+0d,+0d,
6c,- 1lc,- 8c,+0c,=0d,+1d,+0d,+0d,
3c,- lc,-12c,- 1c,=0d,+0d,+1d,+0d,
-6¢,+0c,- 4¢c,+2c¢,=0d,+0d,+0d,+1d,

3 0 0 1jc d,
6 -1 -8 0]c, d,
j— =

3 -1 -12 -1||c, d,

6 0 -4 2|c, d,
3 0 0 1

. . . ) 6 -1 -8 .
We now find the determinant of coefficient matrix A= 3 .1 to determine

6 0 -4 2

whether the system is consistent (so that S spans V), or inconsistent (S does not span V).
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Now det (A) = 48= 0. Therefore, the system (A) is consistent, and, consequently, the set
S spans the space V.

Now, the set S = {v1, v, V3, V4} of vectors in My, is linearly independent if the only
solution of cjvy + Cavp + C3v3 +Cqvs =0 IS Cy, Co, C3, C4 = 0. In this case the set S
forms a basis for span S. Otherwise (i.e., if a solution with at least some nonzero values
exists), S is linearly dependent. With our vectors vy, vy, V3, V4, We have

3 6 0 -1 0 -8 1 0] |0 0
C1 + C2 + C3 + Cyq =
3 -6 -1 0 12 4 -1 2| |0 0
Rearranging the left hand side yields

3¢, +0c,+0c, +1c, 6¢c-1c,-8¢c,+0c, | |0 0
3¢,-1c,-12¢c,-1¢, -6¢c,+0c,-4c,+2¢, 0 0

The matrix equation above is equivalent to the following homogeneous equation.

3 0 0 1c] [0
6 -1 -8 0c,| |0
3 -1 -12 -1|c,| |0
6 0 -4 2|c| |0
As det (A) =48+0

Therefore the set S = {vi, v, Vs, V4} is linearly independent. Consequently, the set S
forms a basis for span S.

1 -3 -4
Example 11 Letv,=|-2|, v,=|5|, v,=| 5|, and H =Span{v,,v,,V,}.
-3 7 6

Note that v3 = 5v; + 3v;, and show that Span {vi, vz, v3} = Span {vi, v2}. Then find a
basis for the subspace H.

Solution

Every vector in Span {v3, v2} belongs to H because
C1Vi+CaVa=C1Vi+CoV2 +0V3
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X3
X2

\1

Vo

X1

Now let x be any vector in H — say, X = Cjv; + Cav2 + C3vs. Since vz = 5v; + 3v,, we may
substitute
X =C1Vy + Cavy + €3 (Bvy + 3vy)
= (C1 + 5C3) Vi + (Cz + 3C3) Vo
Thus x is in Span {vi, v2}, so every vector in H already belongs to Span {vi, v;}. We
conclude that H and Span {v1, v,} are actually the same set of vectors. It follows that
{v1, v} is a basis of H since {vi, v2} is obviously linearly independent.

Activity  Show that the following set of vectors is basis for R® :

v,=(1,0,0),v,=(0,2,1),v,=(3,0,1)

v,=(1,2,3),v,=(0,1,1),v,=(0,1,3)

The Spanning Set Theorem
As we will see, a basis is an “efficient” spanning set that contains no unnecessary vectors.
In fact, a basis can be constructed from a spanning set by discarding unneeded vectors.

Theorem 2 (The Spanning Set Theorem) Let S = {v4, ..., vp} be asetinV and let
H = Span {v, ..., vp}.
a. If one of the vectors in S — say, vk — is a linear combination of the
remaining vectors in S, then the set formed from S by removing vy still
spans H.
b. If H ={0}, some subset of S is a basis for H.
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Since we know that span is the set of all linear combinations of some set of vectors and
basis is a set of linearly independent vectors whose span is the entire vector space. The

spanning set is a set of vectors whose span is the entire vector space. "The Spanning set
theorem” is that a spanning set of vectors always contains a subset that is a basis.

Remark LetV=R"andletS={vy,V,,..., Vvn} be a set of nonzero vectors in V.

Procedure
The procedure for finding a subset of S that is a basis for W = span S is as follows:
Step 1 Write the Equation,
C1Vi+ CoVo + ...+ Cph vy =0 3)
Step 2 Construct the augmented matrix associated with the homogeneous system of
Equation (1) and transforms it to reduced row echelon form.
Step 3 The vectors corresponding to the columns containing the leading 1’s form a basis
for W = span S.
Thus if S = {v1, va,..., Ve} and the leading 1’s occur in columns 1, 3, and 4, then { vi , v3, V4} IS
a basis for span S.

Note In step 2 of the procedure above, it is sufficient to transform the augmented matrix to row
echelon form.

Example 12  Let S = {vy, V2, V3, V4, Vs} be a set of vectors in R*, where
vi =(1,2,-2,1), v, = (-3,0,-4,3), v3 = (2,1,1,-1), v4 = (-3,3,-9,6), and vs = (9,3,7,-6).
Find a subset of S that is a basis for W = span S.
Solution  Step 1 Form Equation (3),
c1(1,2,-2,1) + c2(-3,0,-4,3) + c3(2,1,1,-1)+ c4(-3,3,-9,6) + ¢5(9,3.7,-6) = (0,0,0,0).
Step 2 Equating corresponding components, we obtain the homogeneous system
c,- 3c,+2¢,- 3c,+9c.=0
2¢, + c,+ 3c,+3c, =0
-2¢c,-4c,+ c¢,- 9¢c,+7¢,=0
c,+3c, - c,+6¢c,-6c, =0
The reduced row echelon form of the associated augmented matrix is
1 0 ) 32 32 :0
0 1 -1/2 3/2 -5/2 : 0
0 0 0 0 0 :0
0 0 0 0 0 :0
Step 3 The leading 1’s appear in columns 1 and 2, so {v1, v»} is a basis for W = span S.
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Two Views of a Basis When the Spanning Set Theorem is used, the deletion of
vectors from a spanning set must stop when the set becomes linearly independent. If
an additional vector is deleted, it will not be a linear combination of the remaining
vectors and hence the smaller set will no longer span V. Thus a basis is a spanning set
that is as small as possible.

A basis is also a linearly independent set that is as large as possible. If S is a basis for V,
and if S is enlarged by one vector — say, w — from V, then the new set cannot be linearly
independent, because S spans V, and w is therefore a linear combination of the elements
inS.

Example 13 The following three sets in R® show how a linearly independent set can be
enlarged to a basis and how further enlargement destroys the linear independence of the
set. Also, a spanning set can be shrunk to a basis, but further shrinking destroys the

B HHH R

Linearly independent A basis Spans R® but is
but does not span R® for R® linearly dependent
1 0 S
Example 14 Letv,=|0|,v,=|1]|, and H =4| s |:sinR . then every vector in H is a
0 0 0
S 1 0
linear combination of v, and v, because| s |=s| 0 |+s| 1 |. Is{vy, v,} a basis for H?
0 0 0

Solution  Neither vy nor v, is in H, so {v1, v,} cannot a basis for H. In fact, {vi, vo}isa
basis for the plane of all vectors of the form (c1, ¢z, 0), but H is only a line.

Activity  Find a Basis for the subspace W in R® spanned by the following sets of
vectors:

1. v,=(1,0,2),v,=(3,2,1),v,=(1,0,6),v,=(3,2,1)

2. v,=(1,2,2),v,=(3,2,1),v,=(1,1,7), v, =(7,6,4)
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Exercises

Determine which set in exercises 1-4 are bases for R? or R®. Of the sets that are not bases,
determine which one are linearly independent and which ones span R? or R®. Justify your
answers.

11]3]]-3 1([-2]({0(|0
1 | 21,5 2.0-31, 91,01, -3
2] |41 1010 ][0]]5
1] [-4 1][0][3
3 | -5 4.1-41,3|[,|-5], 2
1-3] 6] 3|1 [4][2

5. Find a basis for the set of vectors in R® in the plane x + 2y + z = 0.

6. Find a basis for the set of vectors in R? on the line y = 5x.

7. Suppose R* = Span {v1, V2, v3, v4}. Explain why {v1, vy, v, v4} is a basis for R*.

8. Explain why the following sets of vectors are not bases for the indicated vector spaces.
(Solve this problem by inspection).

(a) u; = (1, 2), u2 = (0, 3), us = (2, 7) for R?

(b) us = (-1, 3, 2), up = (6, 1, 1) for R®
(€)p1=1+x+x% po=x-1forP,

{1 1} {6 0} {3 o} {5 1} {7 1}

d) A= B = ,C = ,D = E = for My,

2 3 -1 4 1 7 4 2 2 9

9. Which of the following sets of vectors are bases for R*?

(a) (2; 1)! (3’ 0) (b) (4! 1)’ ('7! '8) (C) (0, 0)! (1’ 3) (d) (3! 9)’ ('4! '12)

10. Let V be the space spanned by v; = Cos® x, v, = Sin®X, V3 = COS 2X.
(a) Show that S = {vy, v, v3} is not a basis for V. (b) Find a basis for V

In exercises 11-13, determine a basis for the solution space of the system.

X, +X%- X;=0 2%, + X, +3%,=0
11. 2%, - X, +2%X; =0 12. X+ 9%, =0
- X+ X, =0 X, + X=0
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X+ y+z=0
3x+2y-22=0
"4x+3y- z=0
6x+5y+ z=0
14. Determine bases for the following subspace of R
(@) the plane 3x -2y +5z2 =0 (b) the planex -y =0
(c)thelinex=2t,y=-t,z=4t (d) all vectors of the form (a, b, ¢), whereb=a+c¢

15. Fi3nd a standard basis vector that can be added to the set {v1, v,} to produce a basis
for R
@vi=(1223),v2=(1,-2,-2) (b)vi=(1,-1,0),v>.=(3,1,-2)

16. Find a standard basis vector that can be added to the set {v1, v,} to produce a basis
for R*.
V1= (1, -4, 2, -3), Vo = (-3, 8, -4, 6)
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Lecture No.23
Coordinate System
OBJECTIVES

The objectives of the lecture are to learn about:

Unique representation theorem.

e Coordinate of the element of a vector space relative to the basis B.

e Some examples in which B- coordinate vector is uniquely determined using basis
of a vector space.

e Graphical interpretation of coordinates.

e Coordinate Mapping

Theorem
Let B={h,,b,,....b,} be a basis for a vector space V. Then for each x inV,

there exist a unique set of scalars c,,c,,...,C, such that
X=cb,ch,,...,C0, i (1)

Proof

Since B is a basis for a vector space V, then by definition of basis every element
of V can be written as a linear combination of basis vectors. That is if x eV, then
X=chb,c,h,,...,c.b, . Now, we show that this representation for x is unique.

For this, suppose that we have two representations for x .
i.e.

X=cb,ch,,....,CH0, i (2)
and

x=db,d,b,,...db .............. (3)
We will show that the coefficients are actually equal. To do this, subtracting (3) from (2),
we have

0=(c,—d,)b +(c,—d,)b, +...+(c,—d )b, .
Since B is a basis, it is linearly independent set. Thus the coefficients in the last linear
combination must all be zero. That is
¢, =d,...cC

Thus the representation for x is unique.

L =d,.

Definition (B-Coordinate of X)

Suppose that the set B ={b;,b,,...,b, } is a basis for Vand x is in V. The coordinates of x
relative to basis B (or the B-coordinate of x) are the weights c,,c,,...,c, such that
X=chb,ch,,...,.ch, .
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Note

If ¢, c,,...,c, are the B- coordinates of x , then the vector inR", [x]B =| | isthe

coordinate vector of x (relative to B) or B- coordinates of x .

Example 1
. . ) 1 1
Consider a basis B={b,,b,} for R* , where b, = 0 andb, = 5 |

-2
Suppose an x in R? has the coordinate vector [x]B =[ 3} . Find x

Solution
Using above definition xis uniquely determined using coordinate vector and

the basis. That is
X =Cb,c,D,

=(=2)b, +(3)b,

i

Example 2
Let S = {vi, V,, Va} be the basis for R®, where vi= (1, 2, 1) v, = (2, 9, 0),
andvs=(3, 3, 4).
(a) Find the coordinates vector of v = (5, -1, 9) with respect to S.

(b) Find the vector v in R® whose coordinate vector with respect to the basis S is

[V]s= (-1, 3, 2)
Solution
Since S is a basis for R®, Thus
X =CV, +C,V, +C,V,.
Further
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(5,-1,9)=c,(1L,2,1)+¢,(2,9,0)+¢,(3,3,4) ...vv v (A)
To find the coordinate vector of v, we have to find scalarsc,,c,,c,.
For this equating corresponding components in (A) gives

c,+2c,+3¢c,=5 (1)
2c,+9c,+3c,=-1 (2)
c,+ 4¢c,=9 (3)

Now find values of c;, c, and c, from these equations.
From equation (3)

c, =9-4c,

Put this value of c, in equations (1) and (2)
9-4c,+2c,+3¢C,=5

2c,—C,=—4 4)

and

2(9—-4c,)+9c,+3c,=-1

18-8c, +9c, +3c, =-1

9c¢, —5¢, =-19 (5)
Multiply equation (4) by 5

10c, —5¢, =-20

Subtract equation (5) from above equation
10c, —5¢, =-20

+9c, ¥5¢, =F19

c,=-1

Put value of c, in equation (4) to get c,
2(-1)-c,=-4

—2-C,=-4

C,=4-2=2

Put value of c, in equation (3) to get c,
c,+4(2)=9

c,=9-8=1

Thus, we obtainc;=1,c,=-1,¢c3=2
Therefore, [Vls=(1,-1,2)

Using the definition of coordinate vector, we have
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V =CV, +C,V, +C,V,
=(-1)v, +3v, +2v,
=(-1)(1,2,1)+3(2,9,0)+2(3,3,4)
=(-1+6+6,-2+27+6,-1+0+8)
=(11,31,7)

Therefore
v=(113L7)

Example 3
Find the coordinates vector of the polynomial p = ap + aix + a,x* relative to

the basis S = {1, x, x*} for p,.
Solution

To find the coordinator vector of the polynomial p , we write it as a linear combination of
the basis setS . That is
a, +ax+a,x* =¢ (1) +¢,(X) +c,(x%)
=C, =2,,C,=a,C,=4a,
Therefore
[pl, = (9.2, 8,)

Example 4

Find the coordinates vector of the polynomial p = 5— 4x + 3x? relative to the
basis S = {1, X, X°} for p,.
Solution

To find the coordinator vector of the polynomial p , we write it as a linear combination of
the basis setS . That is
5—4x+3x* =¢, (1) +¢,(X) +cy(x?)
=c, =5¢C,=-4,¢c,=3
Therefore
[p], =(5-4,3)

Example 5
Find the coordinate vector of A relative to the basis S = {Al, A2, A3, A4}

o2 Jacfi dmfy el ol ]

Solution
To find the coordinator vector of A, we write it as a linear combination of the
basis setS . That is
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A= C1 A1+ Cy Ayt C3 Azt Cy Ay
2 0 -1 1 11 00 00
= +c, +C, +C,
-1 3 00 00 10 01
|G G |G c2+0 0+OO
0 0 0 0] |c; O] |0 ¢
_[-c,+¢,+0+0 ¢, +c,+0+0
__ 0+0+c;+0 0+0+0+c,

2 0] _[-c,+c, c +c,
-1 3] | ¢ C,

-C,+C, = 2 (1)
c,+¢,=0 )
c,=-1 (3)
c,=3 4)

Adding (1) and (2), gives

20,=2=> =1

Putting the value of c; in (2) to get ¢4, cp=-1
So c1=-1,c,=1,¢c3=-1,¢c4=3

Therefore, [Vls=(-1,1, -1, 3)
Graphical Interpretation of Coordinates

A coordinate system on a set consists of a one-to-one mapping of the points in the
set into R". For example, ordinary graph paper provides a coordinate system for the plane
when one selects perpendicular axes and a unit of measurement on each axis. Figure 1
shows the standard basis {es, e,}, the vectors
b; (= e1) and b, from Example 1, that is,

]

1 . . . .
Vector x = [6} the coordinates 1 and 6 give the location of x relative to the standard

basis: 1 unit in the e; direction and 6 units in the e, direction.
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[ata)

s 0] b=e 3
Figure 1
Figure 2 shows the vectors by, by, and x from Figure 1. (Geometrically, the three

vectors lie on a vertical line in both figures.) However, the standard coordinate grid was
erased and replaced by a grid especially adapted to the basis B in Example 1. The

. 2| . . : :
coordinate vector [x]B = { 3} gives the location of x on this new coordinate system: — 2

units in the by direction and 3 units in the b, direction.
X
b2

o/ " b

Figure 2

Example 6
In crystallography, the description of a crystal lattice is aided by choosing a basis

{u, v, w} for R® that corresponds to three adjacent edges of one “unit cell” of the crystal.
An entire lattice is constructed by stacking together many copies of one cell. There are
fourteen basic types of unit cells; three are displayed in Figure 3.
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(a) Body centered (b) Face centered (c) Simple
cubic orthorhombic monoclinic

Figure 3 — Examples of unit cells

The coordinates of atoms within the crystal are given relative to the basis for the lattice.
1/2
For instance, | 1/2 | identifies the top face-centered atom in the cell in Figure 3(b).
1

Coordinates in R" When a basis B for R" is fixed, the B-coordinate vector of a
specified x is easily found, as in the next example.

ﬂx:[ﬂ and B = {b1, b,}.

Find the coordinate vector [X]g of x relative to B.

2
Example 7 Letb, = L} b, :{

Solution The B - coordinates ¢, , ¢, of x satisfy
M
Cl +C2 =
1 1 5
bl bz X
2 -1|| c 4
or 1| = 3)
1 1 c, 5
b1 b X
1 1
2 -1 1 1 Q a
Now, inverse of matrix :l _| 3 3
1 1 311 2 —_1 E
3 3

From equation (3) we get
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i1
G |_| 3 3|4
C, -1 2|5

3 3

1 1
B 5(4)"‘5(5) I3
- 2 |2

-1
3 4) + 3 )

Thus, c; =3,¢, = 2.
(Equation (3) can also be solved by row operations on an augmented matrix. Try it
yourself )

3
Thus x = 30y + 2by and [ X1, = [EIJ — [2}
2

b,

Figure 4 — The B-coordinate vector of x is (3,2)

The matrix in (3) changes the B-coordinates of a vector x into the standard coordinates
for x. An analogous change of coordinates can be carried out in R" for a basis
B={bi,bz,..,bn}.

Let Ps=[b, b, .. b,]
Then the vector equation x=c,b, +c,b, +...+c b,
is equivalentto x = Pg[x]; 4)

We call P the change-of-coordinates matrix from B to the standard basis in R".
Left-multiplication by Pg transforms the coordinate vector [x]; into x. The change-of-

coordinates equation (4) is important and will be needed at several points in next lectures.
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Since the columns of Pg form a basis for R", Pg is invertible (by the Invertible Matrix
Theorem). Left-multiplication by P;* converts x into its B-coordinate vector:

Ps_lx = [X]B
The correspondence x —[x], produced here by P!, is the coordinate mapping
mentioned earlier. Since Pg* is an invertible matrix, the coordinate mapping is a one-to-

one linear transformation from R" onto R", by the Invertible Matrix Theorem. (See also
Theorem 3 in lecture 10) This property of the coordinate mapping is also true in a general
vector space that has a basis, as we shall see.

The Coordinate Mapping  Choosing a basis B = {b,, by, ..., by} for a vector space V
introduces a coordinate system in V. The coordinate mapping X —[X]; connects the

possibly unfamiliar space V to the familiar space R". See Figure 5. Points in V can now
be identified by their new “names”.

Figure 5 — The coordinate mapping from V onto R"

Theorem 2 Let B = {by, b2, ... , by} be a basis for a vector space V. Then the
coordinate mapping x —[x], is a one-to-one linear transformation from V onto R".
Proof Take two typical vectors in V, say
u=c,b, +c,b,+...+cb,
w=db, +d,b,+...+d b,
Then, using vector operations, u+w = (c, +d,)b, +(c,+d,)b, +...+(c,+d, )b,
c,+d, C, d,
It follows that [u+w]; = : = [+] ¢ |=[uls +[W]g
c,+d, C, d,
Thus the coordinate mapping preserves addition. If r is any scalar, then
ru=r(cb, +c,b, +---+c,b,) =(rc,)b, +(rc,)b, +---+(rc,)b,
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rc, o)
So [rulg=| : |=r|: |=r[uls
rc c

Thus the coordinate mapping also preserves scalar multiplication and hence is a linear
transformation. It can be verified that the coordinate mapping is one-to-one and maps V
onto R".

The linearity of the coordinate mapping extends to linear combinations, just as in lecture
9.1fui,uz,...,upareinVandifcy,cz, ..., Cp are scalars, then
[Clul +C2u2 + "'+Cpup]B = Cl[ul]B +C2[u2]B + "'+Cp[up]B (5)

In words, (5) says that the B-coordinate vector of a linear combination of us, Uz, ..., Up
is the same linear combination of their coordinate vectors.

The coordinate mapping in Theorem 2 is an important example of an isomorphism from
V onto R". In general, a one-to-one linear transformation from a vector space V onto a
vector space W is called an isomorphism from V onto W (iso from the Greek for “the
same”, and morph from the Greek for “form” or “structure”). The notation and
terminology for V and W may differ, but the two spaces are indistinguishable as vector
spaces. Every vector space calculation in V is accurately reproduced in W, and vice versa.

Example 8 Let B be the standard basis of the space P3 of polynomials; that is, let B =
{1, t, t*, t’}. A typical element p of P3 has the formp () =ao + a1 t + a, t? + a3 t*
Since p is already displayed as a linear combination of the standard basis vectors, we

8

a

conclude that [p]; = a | Thus the coordinate mapping p —[p]; is an isomorphism

2

8
from P5 onto R*. All vector space operations in P3 correspond to operations in R*,

If we think of P; and R* as displays on two computer screens that are connected via the
coordinate mapping, then every vector space operation in Pz on one screen is exactly
duplicated by a corresponding vector operation in R* on the other screen. The vectors on
the P35 screen look different from those on the R* screen, but they “act” as vectors in
exactly the same way. See Figure 6.
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ag+ast+at’+azt

|

Figure 6 — The space P is isomorphic to R*

Example 9  Use coordinate vector to verify that the polynomials 1 + 2t%, 4 +t + 5t
and 3 + 2t are linearly dependent in P,.

Solution  The coordinate mapping from Example 8 produces the coordinate vectors (1,
0,2), (4,1,5 and (3, 2, 0), respectively. Writing these vectors as the columns of a
matrix A, we can determine their independence by row reducing the augmented matrix

1 4 3 0 1 4 30
forAx=0:/0 1 2 0(~|0 1 2 O
2500 0 00O

The columns of A are linearly dependent, so the corresponding polynomials are linearly
dependent. In fact, it is easy to check that column 3 of A is 2 times column 2 minus 5
times column 1. The corresponding relation for the polynomials is

342t =2(4 +t + 5t%) = 5(1 + 2t)

3 -1 3
Example 10  Let v,=|6|, v,=|0|, x=|12]|, and B = {vy, vo}. Then B is a
2 1 7

basis for H = Span {vi, v2}. Determine if x is in H and if it is, find the coordinate vector
of x relative to B.

Solution _ If x is in H, then the following vector equation is consistent.

3 -1 3
c,|6|+c,|0(=]12
2 1 7

The scalars, ¢; and c;, if they exist, are the B — coordinates of x.
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3 -1 3 1 0 2
Using row operations, we obtain [6 0 12|~{0 1 3].
2 1 7 0 0O

2
Thus ¢c; = 2, ¢c; = 3 and [Xx]; :L}. The coordinate system on H determined by B is

shown in Figure 7.

=2V1+8V,

Figure 7 — A coordinate system on a plane H in R®

If a different basis for H were chosen, would the associated coordinate system also make
H isomorphic to R?? Surely, this must be true. We shall prove it in the next lecture.

1 -3 3 -8
Example11 Leth, ={0|,b,=| 4|, b,=|-6], and x=| 2 |.
0 0 3 3

Show that the set B = {ba, b,, bs} is a basis of R®.

a.
b. Find the change-of-coordinates matrix from B to the standard basis.
c. Write the equation that relates x in R® to [x]g.
d. Find [X]s, for the x given above.
Solution
a. It is evident that the matrix Pg = [b1 b, bs] is row equivalent to the

identity matrix. By the Invertible Matrix Theorem, Pg is invertible and its
columns form a basis for R®,
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1 -3 3
b. From part (a), the change-of-coordinates matrixis P, =|0 4 -6]|.
0 0 3
C. X =Pg[X];.
d. To solve part (c), it is probably easier to row reduce an augmented matrix

instead of computing P;*. We have

1 -3 3 -8/ (100 -5
0 4 6 2|~|01 0 2
0 0 3 3 0 011
Ps X I [X]B
-5
Hence [x]; =| 2
1

Example 12 ThesetB={1+t, 1+ t* t + t°} is a basis for P,. Find the coordinate
vector of p(t) = 6 + 3t —t? relative to B.
Solution  The coordinates of p (t) = 6 + 3t — t* with respect to B satisfy

c,(1+t)+c,(1+t*)+c,(t+t*)=6+3t-t°

C,+Ct+c, +Ct? +ct+ct? =6+3t—t?

C, +C, +Ct+Ct+C,t° +c,t? =6+3t —t?

C,+C, +(c +C)t+(C, +C)t* =6+3t —t?
Equating coefficients of like powers of t, we have

c,+¢ = B-------------- (1)

C, +C,= 3-------------- (2)
C,+C= -1l----cccncnnn-- (3)

Subtract equation (2) from (1) we get

C,-C,=6-3=3

Add this equation with equation (3)

2c,=-1+3=2

=c,=1

Put value of c, in equation (3)

1+c,= -1
=Cy;=-2
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From equation (1) we have
c,+C,=6
c,=6-1=5

Solving, we find thatc; =5,¢c, =1,c3 =-2,and [pl;=| 1 |.
-2

Exercises

In exercises 1 and 2, find the vector x determined by the given coordinate vector [X]g and
the given basis B.

3774 5 11154 3
SN ) P PPN 1| | o P
31|1-2||0 -1

In exercises 3-6, find the coordinate vector [X]g of X relative to the given basis B = {b,,
b2, caay bn}

(1] 2] [ 1 5 4
3.b,=| _[b,=| " [x= 4.0, =| " |b=|" | x=

ElE 1 2 6 0

(17 [-3] 2 8
5.b,=|-1|b,=|4|b,=|-2|,x=|-9

3] |9 4 6

1 2 1 3
6.b,=|0[b,=|1|b,=|-1|,x=|-5

3 8 2 4

In exercises 7 and 8, find the change of coordinates matrix from B to standard basis in
R".
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In exercises 9 and 10, use an inverse matrix to find [x]g for the given x and B.

b N i B

11. The set B = {1 + t%, t + t2, 1 + 2t + t*} is & basis for P,. Find the coordinate vector of
p (t) = 1 + 4t + 7t relative to B.

1 2 -3
12. The vectors v, = { 3},v2 ={ 8}’\/3 = { 7} span R? but do not form a basis. Find

1

J as a linear combination of vy, vy, vs.

two different ways to express {

11(-2
13. Let B= {{ 4}{ 9 }} . Since the coordinate mapping determined by B is a linear

transformation from R? into R?, this mapping must be implemented by some 2 x 2 matrix
A. Find it.

In exercises 14-16, use coordinate vectors to test the linear independence of the sets of
polynomials.

14.1+6,3+t-2t% -t+3t* - 15. (t-1)%, -2, (t-2)°
16.3+ 71,5+t —2t%, t—2t2, 1 + 16t — 6t° + 2t°

17. Let H = Span {v3, vo} and B = {v1, vo}. Show that x is in H and find the B-

[11] 14 19
i -5 -8 -13
coordinate vector of x, for v, = WV, = X = :
10 13 18
|7 110 | | 15 |
18. Let H = Span {v1, v2, v} and B = {v1, v, v3}. Show that B is a basis for H and x is
6] 8] 9] [ 4]
. : : 4 -3 5 7
in H, and find the B-coordinate vector of x, forv, = WV, = Vg = X =
-9 7 -8 -8
| 4 | -3 ] | 3] | 3]
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Lecture 24

Dimension of a VVector Space

In this lecture, we will focus over the dimension of the vector spaces. The
dimension of a vector space V is the cardinality or the number of vectors in the basis B of
the given vector space. If the basis B has n (say) elements then this number n (called the
dimension) is an intrinsic property of the space V. That is it does not depend on the
particular choice of basis rather, all the bases of V will have the same cardinality. Thus,
we can say that the dimension of a vector space is always unique. The discussion of
dimension will give additional insight into properties of bases.

The first theorem generalizes a well-known result about the vector space R".
Note

A vector space V with a basis B containing n vectors is isomorphic to R" i.e., there
exist a one-to-one linear transformation from V to R".

Theorem 1 If a vector space V has a basis B = {by, ..., bn}, then any set in V containing
more than n vectors must be linearly dependent.

Theorem 2 _If a vector space V has a basis of n vectors, then every basis of V must
consist of exactly n vectors.

Finite and infinite dimensional vector spaces

If the vector space V is spanned or
generated by a finite set, then V is said to be finite-dimensional, and the dimension of V,
written as dim V, is the number of vectors in a basis for V. If V is not spanned by a finite
set, then V is said to be infinite-dimensional. That is, if we are unable to find a finite set
that can generate the whole vector space, then such a vector space is called infinite
dimensional.

Note

(1) The dimension of the zero vector space {0} is defined to be zero.
(2) Every finite dimensional vector space contains a basis.

Example 1 The n dimensional set of real numbers R", set of polynomials of order n
Pn, and set of matrices of order mxn My, are all finite- dimensional vector spaces.
However, the vector spaces F (-o0,®), C (-,x), and C™ (-o0,) are infinite-
dimensional.

Example 2
(@) Any pair of non-parallel vectors a, b in the xy-plane, which are necessarily linearly

independent, can be regarded as a basis of the subspace R% In particular the set of unit
vectors {i, j} forms a basis for R%. Therefore, dim (R?) = 2.
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Any set of three non coplanar vectors {a, b, c} in ordinary (physical) space, which will be
necessarily linearly independent, spans the space R®. Therefore any set of such vectors forms a
basis for R®. In particular the set of unit vectors {i, j, k} forms a basis of R®. This basis is called
standard basis for R®. Therefore dim (R®) = 3.

The set of vectors {es, ey, ..., €n} Where

e:=(1,0,0,0, ..., 0),
e2 = (Oa 11 O; O; ey 0)|
es=(0,0,1,0, ..., 0),

en=(0,0,0,0,...,1)

is linearly independent.
Moreover, any vector X = (X1, X2, ..., X5) in R" can be expressed as a linear combination of these
vectors as

X = X161 + Xo€o + X3€3 ...+ Xp€h.
Hence, the set {e1, e,, ..., en} forms a basis for R". It is called the standard basis of R", therefore
dim (R") = n. Any other set of n linearly independent vectors in R" will form a non-standard
basis.

(b) Theset B = {1, x, X, ... x"} forms a basis for the vector space P, of polynomials of degree
<n. Itis called the standard basis with dim (P,) =n + 1.

(c) The set of 2 x 2 matrices with real entries (elements) {ui, U, us, us} where

L1 o], o 1], _[oo]  _[oo
o ool ool P 1ol "o 1

is a linearly independent and every 2 x 2 matrix with real entries can be expressed as their linear
combination. Therefore, they form a basis for the vector space Max,. This basis is called the
standard basis for Myx, with dim (Max2) = 4.

Note

(1) dim (R™) = n { The standard basis has n vectors}.

(2) dim (P,) =n+ 1 { The standard basis has n+1 vectors}.
(3) dim (M n) = mn { The standard basis has mn vectors.}

Example 3 Let W be the subspace of the set of all (2 x 2) matrices defined by

b
w:m:[i d}:Za—b+30+d:O}.

Determine the dimension of W.
Solution  The algebraic specification for W can be rewritten as d = -2a + b — 3c.
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[a b}
Now A=
c d

Substituting the value of d, it becomes

a b
A=
c -2a+b- Sc}

This can be written as

ER 0O b| (0 O
A= + +
0 2a] |0 b ] |[c -3¢

Lo |t it

=aA; +DbA, +cA;

1 0 01 0 O
where A= Ay = ,and Az =
0 -2 01 1 -3

The matrix Ais in W if and only if A = aA; + bA; + cAs, so {A1, Az, A3z} is a spanning set for
W. Now, check if this set is a basis for W or not. We will see whether {A1, A,, A3} is linearly
independent or not. {A1, Az, A3} is said to be linearly independent if

aA, +bA, + cA,=0 =a=b=c=0i.e.,

1 0 0 1 0 O 00
a +b +C =

o 2)o 1l S)lo o
a o0 0 b 0 0 00

+ + =

-2a 0 b c -3 0 0
a b |00

—2a+b-3c| [0 0
Equating the elements, we get

a=0,b=0,c=0

This implies {A1, Az, A3z} is a linearly independent set that spans W. Hence, it’s the basis of W
with dim( W)= 3.

o

(@]

3 -1
Example4 Let H = Span {vi, vo}, where v, =| 6| and v, =| 0 |. Then H is the plane
2 1

studied in Example 10 of lecture 23. A basis for H is {vi, v,}, since v; and v, are not
multiples and hence are linearly independent. Thus, dim H = 2.
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3V2 '
1
LA oyt
v . X=2V1t2V>o
2V2 v
Vo : |
]
0 , —~
V]_ [ e
__________ &
2Vy

A coordinate system on a plane H in R®

Example 5 Find the dimension of the subspace

a-3b+6¢C
5a+4d
H= a,b,c,deR
b-2c-d
5d
Solution _ The representative vector of H can be written as
a—-3b+6¢c 1 -3 6 0
5a+4d 5 0 0 4
=al _|+b +C +d
b-2c-d 0 1 -2 -1
5d 0 0 0 5

Now, it is easy to see that H is the set of all linear combinations of the vectors

1 -3 6 0

5 0 0 4
vV, = , v, = , vV, = , v, =

0 1 -2 -1

0 0 0 5

Clearly, v, #0,v, is not a multiple of v4, but v3 is a multiple of v,. By the Spanning Set
Theorem, we may discard vz and still have a set that spans H. Finally; v, is not a linear
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combination of vy and v;. So {v1, v, v4} is linearly independent and hence is a basis for
H. Thus dim H = 3.

Example 6  The subspaces of R® can be classified by various dimensions as shown in
Fig. 1.
0-dimensional subspaces

The only 0-dimensional subspace of R® is zero space.

1-dimensional subspaces
1-dimensional subspaces include any subspace spanned by a single non-zero
vector. Such subspaces are lines through the origin.

2-dimensional subspaces
Any subspace spanned by two linearly independent vectors. Such subspaces are
planes through the origin.

3-dimensional subspaces
The only 3-dimensional subspace is R® itself. Any three linearly independent
vectors in R® span all of R®, by the Invertible Matrix Theorem.

X3
X3

3dim —\

0dim

X X2 X 2 di
Im
! 1 dim

Figure 1 — Sample subspaces of R®

Bases for Nul A and Col A

We already know how to find vectors that span the null
space of a matrix A. The discussion in Lecture 21 pointed out that our method always
produces a linearly independent set. Thus the method produces a basis for Nul A.
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(2 2 -1 0 1]
_ _ -1 -1 2 31
Example 7 Find a basis for the null space of A= 11 2 0 4l
0 0 1 1 1]
Solution _ The null space of A is the solution space of homogeneous system
2%, +2X, - X +Xx. =0
=X - X+ 2% -3X,+ X% =0
X, + X, -2X, -% =0
X;+ X, +X =0
The most appropriate way to solve this system is to reduce its augmented matrix into
reduced echelon form.
2 2 -1 0 0
-1 -1 2 -3 0 R,~R, R, ~R
1 1 -2 0 -1 o ¢ 7
1 1 1 0
1 1 -2 -1 0]
~ 0 0 : ! 0 R,-2R, R,—3R
2 2 -1 0| ° e
-1 -1 2 -3 0 |
1 1 -2 -1 0]
0 1 1 1 0
~ R, —3R,
0 0 3 0 0
-1 -1 -3 1 0 |
1 1 -2 0 -1 0|
0 1 1 1 0 1
"o o o0 -3 0|3
-1 -1 2 -3 1 0
1 1 -2 -1 0|
~ 0 1 1 0 R, +R
0 0 0 ol "
-1 -1 2 -3 1 0
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1 1 2 0
0 o 1 1
“lo o o0 1
0 0 3
1 1 2 0
0 0o 1 1
“lo o o0 1
0 0 0 o0
1 1 0 2
0 o 1 1
1o o o0 1
0 0 0 o0
1 10 0
0 0o 1 0
“lo o o0 1
0 0 0 0

Thus, the reduced row echelon form of the augmented matrix is

1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

which corresponds to the system

Ix, +1x,+ 1x.=0
1x,+ 1x.=0
1x, =0

0=0

1

1
0
0

oo r P oor

1
1
0

0

No equation of this system has a form zero
consistent. Since the number of unknowns is more than the number of equations, we will
assign some arbitrary value to some variables. This will lead to infinite many solutions of

the system.

R, +3R,

o O O O

R +2R,

R,—R,, R 2R,

O O O O O O o o

o O O O

0

0
0
0

nonzero. Therefore, the system is
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X, =-1X, -1X,
X, =S

X, =-1X;

X, =0

Xs =1

The general solution of the given system is
X1=-S-1 , Xo=5, X3=-t, x4=0 , X5=t
Therefore, the solution vector can be written as

x, | [-s-t] [-s] [-t -1 -1

X, S S 0 1 0

X, |=] -t [=]0 [+]-t]|=s]|0 [+t|-1

X, 0 0 0 0 0

X [t ] [0 [t] [0} [1]
1 1]
1 0

which shows that the vectors v, =| 0 |andv, =| -1| span the solution space .Since they

0 0
0 1

are also linearly independent,{v1,v,} is a basis for Nul A.

The next two examples describe a simple algorithm for finding a basis for the column
space.

140 20

: : 001-10

Example 8 Find a basis for Col B, where B=[b, b,, .., b]= 000 0 1
00O0O00O

Solution Each non-pivot column of B is a linear combination of the pivot columns. In
fact, b, = 4b; and b, = 2b; — bs. By the Spanning Set Theorem, we may discard b, and
b, and {b1, b3, bs} will still span Col B. Let

17[o][o
o||1]|0
S={b,, by, by}= Al
{1 3 5} O 0 1
0||0]|O

Since by # 0 and no vector in S is a linear combination of the vectors that precede it, S is
linearly independent. Thus S is a basis for Col B.

What about a matrix A that is not in reduced echelon form? Recall that any
linear dependence relationship among the columns of A can be expressed in the form Ax
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= 0, where x is a column of weights. (If some columns are not involved in a particular
dependence relation, then their weights are zero.) When A is row reduced to a matrix B,
the columns of B are often totally different from the columns of A. However, the
equations Ax = 0 and Bx = 0 have exactly the same set of solutions. That is, the columns
of A have exactly the same linear dependence relationships as the columns of B.

Elementary row operations on a matrix do not affect the linear dependence relations
among the columns of the matrix.

Example 9 It can be shown that the matrix

1 4 0 2 -1
A<l a .. a5]:3 12 15 5
2 8 1 3 2
5 20 2 8 8

IS row equivalent to the matrix B in Example 8. Find a basis for Col A.
Solution  In Example 8, we have seen that b, =4b, and b, =2b, -b,

so we can expect that a, =4a, and a,=2a,-a,. This is indeed the case.

Thus, we may discard a, and a5 while selecting a minimal spanning set for Col A. In fact,
{a1, as, as} must be linearly independent because any linear dependence relationship
among ai, as, as would imply a linear dependence relationship among b;, bs, bs. But we
know that {b1, b3, bs} is a linearly independent set. Thus {ai, as, as} is a basis for Col A.
The columns we have used for this basis are the pivot columns of A.

Examples 8 and 9 illustrate the following useful fact.
Theorem 3 The pivot columns of a matrix A form a basis for Col A.

Proof The general proof uses the arguments discussed above. Let B be the reduced
echelon form of A. The set of pivot columns of B is linearly independent, for no vector in
the set is a linear combination of the vectors that precede it. Since A is row equivalent to
B, the pivot columns of A are linearly independent too, because any linear dependence
relation among the columns of A corresponds to a linear dependence relation among the
columns of B. For this same reason, every non-pivot column of A is a linear combination
of the pivot columns of A. Thus the non-pivot columns of A may be discarded from the
spanning set for Col A, by the Spanning Set Theorem. This leaves the pivot columns of A
as a basis for Col A.

Note Be careful to use pivot columns of A itself for the basis of Col A. The columns of
an echelon form B are often not in the column space of A. For instance, the columns of
the B in Example 8 all have zeros in their last entries, so they cannot span the column
space of the A in Example 9.
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1 -2
Example 10 Letv,=|-2|and v, =| 7 |. Determine if {v1, v,} is a basis for R3. Is {v1,
3 9
v,} a basis for R??
1 -2 1 -2
Solution Let A = [v; V2]. Row operations show that A={-2 7 |~|0 3 |. Not every
3 -9 0 0

row of A contains a pivot position. So the columns of A do not span R®, by Theorem 4 in
Lecture 6. Hence {v1, v,} is not a basis for R®. Since v; and v are not in R?, they cannot
possibly be a basis for R%. However, since v, and v, are obviously linearly independent,
they are a basis for a subspace of R%, namely, Span {v1, v2}.

1 6 2 -4
Example 11 Let v,=|-3|,v,=|2|,v;=|-2|,v,=|-8|. Find a basis for the subspace
4 -1 3 9

W spanned by {vi, v, V3, V4}.
Solution _ Let A be the matrix whose column space is the space spanned by {vi, v, v3,
Val},

(1 6 2 -4]
A=|-3 2 -2 -8
|4 -1 3 9
Reduce the matrix A into its echelon form in order to find its pivot columns.
1 6 2 4
A=|-3 2 -2 -8
|4 -1 3 9
1 6 2 -4
~|0 20 4 -20|byR,+3R, R,—-4R
10 -25 -5 25
(1 6 2 -4
~/0 5 1 -5]|by lRz, —3R3, R,—R,
000 O 4 >

The first two columns of A are the pivot columns and hence form a basis of Col A = W.
Hence {v1, v,} is a basis for W.

Note that the reduced echelon form of A is not needed in order to locate the pivot
columns.
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Procedure
Basis and Linear Combinations

Given a set of vectors S = {v1, v, ...,vk} in R", the following procedure produces a subset

of these vectors that form a basis for span (S) and expresses those vectors of S that are

not in the basis as linear combinations of the basis vector.

Stepl: Form the matrix A having vi, Va,..., Vk as its column vectors.

Step2: Reduce the matrix A to its reduced row echelon form R, and let
W1, Wa,..., Wi be the column vectors of R.

Step3: Identify the columns that contain the leading entries i.e., 1’s in R. The
corresponding column vectors of A are the basis vectors for span (S).

Step4: Express each column vector of R that does not contain a leading entry as
a linear combination of preceding column vector that do contain leading entries
(we will be able to do this by inspection). This yields a set of dependency
equations involving the column vectors of R. The corresponding equations for the
column vectors of A express the vectors which are not in the basis as linear
combinations of basis vectors.

Example 12 Basis and Linear Combinations

(a) Find a subset of the vectors vy = (1, -2, 0, 3),v>.=(2,-4,0,6),vs=(-1, 1, 2,0)and
vq = (0, -1, 2, 3) that form a basis for the space spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors.

Solution _(a) We begin by constructing a matrix that has vy, vy, vs, v4 as its column

vectors

1 2 -1 0
2 -4 1 4
0 0 2 2
3 6 0 3
T (A)

vV, V, V, V,
Finding a basis for column space of this matrix can solve the first part of our problem.
Transforming Matrix to Reduced Row Echelon Form:

1 2 1 0

2 4 1 4

o 0 2 2

'3 6 0 3

1 2 1 0

0 0 -1 -1[2R+R,
o 0 2 2 |3R+R,
0o o0 3 3
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1 2 -1 0
0 0 1 1
~ -1R,
0 0 2 2
0 0 3 3
1 2 -1 0
0 0 1 1 |-2R,+R,
o 0 0  0[3R,+R,
0 0 0 0
1 2 0 1
0 0 1 1
~ R,+R,
0 0 0 0
0 0 0 0
Labeling the colu;nn vectors of the resulting matrix as wy, w,, ws and wy, yields
1 2 0 1
0 0 1 1
0 0 0 0
0 0 0 0 ®)
T T T
w, W, W, w,

The leading entries occur in column 1 and 3 so {w1, w3} is a basis for the column space
of (B) and consequently {vi, vs} is the basis for column space of (A).

(b) We shall start by expressing w, and w, as linear combinations of the basis vector w;
and ws. The simplest way of doing this is to express w, and w, in term of basis vectors
with smaller subscripts. Thus we shall express w, as a linear combination of wy, and we
shall express wy as a linear combination of w; and ws_ By inspection of (B), these linear
combinations are w, = 2w, and w4 = w; + w3. We call them the dependency equations.
The corresponding relationship of (A) are vz = 2v; and vs = v; + vs.

Example 13 Basis and Linear Combinations

(a) Find a subset of the vectorsv; = (1, -1, 5, 2), v, =(-2, 3,1, 0),v3 = (4, -5, 9, 4),

vy = (0, 4, 2, -3) and vs = (-7, 18, 2, -8) that form a basis for the space spanned by these
vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors
Solution __ (a) We begin by constructing a matrix that has vi, v, ..., Vs as its column
vectors
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1 -2 4 0 -7
-1 3 -5 4 18
5 1 9 2 2 A
2 0 4 -3 -8 )
T T T T )
A v, V, v, A
Finding a basis for column space of this matrix can solve the first part of our problem.
Transforming Matrix to Reduced Row Echelon Form:
1 -2 4 0 -7
-1 3 -5 4 18
5 1 9 2 2
2 0 4 -3 -8
1 -2 4 0 -7
R, +R,
0 1 -1 4 11
-5R, +R,
0 11 -11 2 37
-2R,+R,
0 4 -4 -3
1 -2 4 0 -7
0 1 -1 4 11 |-11R,+R,
0 0 0 -42 -84 | -4R,+R,
0 0 0 -19  -38 |
1 -2 4 0 -7
0 1 -1 4 11
(-1/42)R,
0 0 0 1 2
0 0 0 -19  -38 |
1 -2 4 0 -7
0 1 -1 4 11
19R, +R,
0 0 0 1 2
0 0 0 0 0 |
1 -2 4 0 -7
0 1 -1 0 3 (4)R. +R
0 0 0 1 2 o
0 0 0 0 0 |
1 0 2 0 -1
0 1 -1 0 3
2R, +R,
0 0 0 1
0 0 0 0
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Denoting the column vectors of the resulting matrix by w1, w; , ws, Wy, and ws yields

1 0 2 0 -1

0 1 -1 0 3

0 0 0 1 2

0 0 0 0 0 ®)
0 T 1 0 0

w,oow, W, w, W,

The leading entries occur in columns 1,2 and 4 so that {w;, w,, ws} is a basis for the
column space of (B) and consequently {vi, Vo, v4} is the basis for column space of (A).
(b) We shall start by expressing ws and ws as linear combinations of the basis vector wy,
Wz, W4. The simplest way of doing this is to express ws and ws in term of basis vectors
with smaller subscripts. Thus we shall express w3 as a linear combination of wy and wo,
and we shall express ws as a linear combination of wi, w», and wa, By inspection of (B),
these linear combination are w3 = 2w; —w, and ws = -w; + 3w, + 2wy,

The corresponding relationship of (A) are vz = 2v; — v, and vs = -v; + 3v, + 2vy.

Example 14 Basis and Linear Combinations

(a) Find a subset of the vectors vy = (1, -2, 0, 3), v. = (2, -5, -3, 6), v3 = (0, 1, 3, 0),
ve=1(2,-1,4,-7)and vs = (5, -8, 1, 2) that form a basis for the space spanned by these
vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors.
Solution __ (a) We begin by constructing a matrix that has vy, v, ..., Vs as its column
vectors

1 2 0 2 5
2 51 -1 -8

0 33 4 1
3 6 0 -7 2
2 Y N N (A)

vV, Y, Vv, Vg
Finding a basis for column space of this matrix can solve the first part of our problem.
Reducing the matrix to reduced-row echelon form and denoting the column vectors of the
resulting matrix by wi, wo, w3, Wa, and ws yields

1 0 2 0o 1

0 1 -1 0 1
0 0 0 1 1
0 0 0 0 0 ®)
£ T 1
w,owW, W, W, W

The leading entries occur in columns 1, 2 and 4 so {w1, W, W4} is a basis for the column
space of (B) and consequently {v1, vz, v4} is the basis for column space of (A).
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(b) Dependency equations are w3 = 2w; — Wy, and Ws = Wy + Wy + Wy
The corresponding relationship of (A) are vz = 2v; —vy and vs=v; + v, + vy

Subspaces of a Finite-Dimensional Space  The next theorem is a natural counterpart
to the Spanning Set Theorem.

Theorem 5 Let H be a subspace of a finite-dimensional vector space V. Any linearly
independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-
dimensional anddimH <dimV .

When the dimension of a vector space or subspace is known, the search for a basis is
simplified by the next theorem. It says that if a set has the right number of elements, then
one has only to show either that the set is linearly independent or that it spans the space.
The theorem is of critical importance in numerous applied problems (involving
differential equations or difference equations, for example) where linear independence is
much easier to verify than spanning.

Theorem 5 (The Basis Theorem)  Let V be a p-dimensional vector space, p=> 1. Any
linearly independent set of exactly p elements in V is automatically a basis for V. Any set
of exactly p elements that spans V is automatically a basis for V.

The Dimensions of Nul A and Col A _ Since the pivot columns of a matrix A form a
basis for Col A, we know the dimension of Col A as soon as we know the pivot columns.
The dimension of Nul A might seem to require more work, since finding a basis for Nul
A usually takes more time than a basis for Col A. Yet, there is a shortcut.

Let A be an mxn matrix, and suppose that the equation Ax = 0 has k free variables.
From lecture 21, we know that the standard method of finding a spanning set for Nul A
will produce exactly k linearly independent vectors say, ui, ... , Uk, one for each free
variable. So {ug, ..., ux} is a basis for Nul A, and the number of free variables determines
the size of the basis. Let us summarize these facts for future reference.

The dimension of Nul A is the number of free variables in the equation Ax = 0, and the
dimension of Col A is the number of pivot columns in A.

Example 15 Find the dimensions of the null space and column space of

3 6 11 -7
A=|1 -2 2 3 -1
2 4 5 8 4
Solution _ Row reduce the augmented matrix [A 0] to echelon form and obtain
1 -2 2 3 -10
0 012 -20
0 000 OO
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Writing it in equations form, we get
X, —2X, +2X; +3X, — X% =0
X; +2X, —2%; =0
Since the number of unknowns is more than the number of equations, we will introduce

free variables here (say) X2, x4 and xs. Hence the dimension of Nul A is 3. Also dim Col
A is 2 because A has two pivot columns.

Example 16  Decide whether each statement is true or false, and give a reason for each
answer. Here V is a non-zero finite-dimensional vector space.
1. If dim V = p and if S is a linearly dependent subset of V, then S contains more than
p vectors.
2. If S spans V and if T is a subset of V that contains more vectors than S, then T is
linearly dependent.
Solution
1. False. Consider the set {0}.
2. True. By the Spanning Set Theorem, S contains a basis for V; call that basis S’.
Then T will contain more vectors than S’. By Theorem 1, T is linearly dependent.
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Exercises

For each subspace in exercises 1-6, (a) find a basis and (b) state the dimension.

[ 2¢
s—2t
. a-b ]
1.{/s+t |:s,tinR 2. :a,b,cinR
b-3c
3t
la+2b
a—4b—-2c [3a+6b—c
2a+5b—4c . 6a—2b—-2c .
3. :a,b,cinR 4. :a,b,cinR
—a+2c —9a+5b+3c
—-3a+7b+6¢ | —3a+b+c

5{(a,b,c):a-3b+c=0,b-2c=0,2b-c=0}
6{(a,b,c,d):a-3b+c=0}
7. Find the dimension of the subspace H of R? spanned by

ol

8. Find the dimension of the subspace spanned by the given vectors.

11]13]19 7
0,|1,|4 []|-3
2111 |-2|]|1

Determine the dimensions of Nul A and Col A for the matrices shown in exercises 9 to
12.

1 6 9 0 -2 1 3 -4 2 -1 6
0 1 2 -4 5 00 1 -3 7 0
9. A= 10. A=
0 0 0 5 1 00 0 1 4 -3
0 00 0 O 00 0 0 0 O
1 -1 0
[1095}
11. A= 12. A=|0 4 7
0 01 -4
0 0 5
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13. The first four Hermite polynomials are 1, 2t, -2 + 4t%, and -12t + 8t°. These
polynomials arise naturally in the study of certain important differential equations in
mathematical physics. Show that the first four Hermite polynomials form a basis of P3.

14. Let B be the basis of P3 consisting of the Hermite polynomials in exercise 13, and let
p(t)=7-12t-8t*+ 12 t*. Find the coordinate vector of p relative to B.

15. Extend the following vectors to a basis for R:

-9 9 6
-7 4 7
v,={8 |,v,=|1 |,v,=-8
-5 6 5
7] 7] =
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Lecture 25
Rank

With the help of vector space concepts, for a matrix several interesting and useful
relationships in matrix rows and columns have been discussed.
For instance, imagine placing 2000 random numbers into a 40 x 50 matrix A and then
determining both the maximum number of linearly independent columns in A and the
maximum number of linearly independent columns in A" (rows in A). Remarkably, the
two numbers are the same. Their common value is called the rank of the matrix. To
explain why, we need to examine the subspace spanned by the subspace spanned by the
rows of A.

The Row Space If Aisan mxn matrix, each row of A has n entries and thus can be
identified with a vector in R". The set of all linear combinations of the row vectors is
called the row space of A and is denoted by Row A. Each row has n entries, so Row A is
a subspace of R". Since the rows of A are identified with the columns of AT, we could
also write Col A" in place of Row A.

2 5 8 0 -17 r=(-2,-5,8,0,-17)
Example 1 Let A= 3 5 15 an = (1.3-515)

3 11 19 7 1 r,=(3,11,-19,7,1)

1 7 -13 5 -3 r,=(1,7,-13,5,-3)

The row space of A is the subspace of R spanned by {ri, ry, rs, rs}. That is, Row A =
Span {r1, ra, r3, ra}. Naturally, we write row vectors horizontally; however, they could
also be written as column vectors

Example Let
r,=(2,1,0)
210 r,=(3,-1,4
A= and ( )
3-14

That is Row A=Span {ry, r,}.

We could use the Spanning Set Theorem to shrink the spanning set to a
basis.
Some times row operation on a matrix will not give us the required information but row
reducing certainly worthwhile, as the next theorem shows

Theorem 1  If two matrices A and B are row equivalent, then their row spaces are the
same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A
as well as B.

Theorem 2 If A and B are row equivalent matrices, then
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(a) A given set of column vectors of A is linearly independent if and only if the
corresponding column vectors of B are linearly independent.

(b) A given set of column vector of A forms a basis for the column space of A if and only
if the corresponding column vector of B forms a basis for the column space of B.

Example 2  (Bases for Row and Column Spaces)
(1 3 4 -2 5 4]
_ 6 9 -1 8 2
Find the bases for the row and column spaces of A=
2 6 9 -1 9 7
-1 3 4 2 5 4

Solution ~ We can find a basis for the row space of A by finding a basis for the row
space of any row-echelon form of A.
1 -3 4 -2 5
2 -6 9 -1 8
Now
2 -6 9 -1 9
-1 3 4 2 5 -4
1 -3 4 -2 5 4
2R +R,
0 0 1 3 -2 -6
2R, +R,
0 0 1 3 -1 -1
R, +R,
0 0 0 0 0 0 |
1 -3 4 -2 5 4
0 0 1 3 -2 -6
-1R, +R,
0 0 0 0 1 5
0 0 0 0 0 |
1 -3 4 -2 5 4]
0O 01 3 -2 -6
Row-echelon form of A: R=
0O 000 1 5
0 00 0 0 0

Here Theorem 1 implies that that the non zero rows are the basis vectors of the matrix.
So these bases vectors are

n=[L 3 4 2 5 4]
n=[0 0 13 2 -]
h=[0 0 0 0 1 5

A and R may have different column spaces, we cannot find a basis for the column space
of A directly from the column vectors of R. however, it follows from the theorem (2b) if
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we can find a set of column vectors of R that forms a basis for the column space of R,
then the corresponding column vectors of A will form a basis for the column space of A.

The first, third, and f_ift[] columns of_R_contains the_leading 1’s of the row vectors, so

1 4 5
, |0 . |1 . |2
C, = 0 Cy= 0 Cy = 1
0 0 0
form a basis for the c::ol_u_mn space of R_,_thus the coEres:ponding column vectors of A
1 4 5
namely, C, = 2 C, = ) Cs = 8
2 9 9
-1 -4 -5
form a basis for the c_oll]mn space ofA._ o
Example
The matrix
1 -2 5 0 3 |
R= 0 1 300
0 0 010
0 0 00 0 |

is in row-echelon form.
The vectors

n=[1 -250 3 ]
n=[0 1300 ]
L=[0 0 01 0 ]

form a basis for the row space of R, and the vectors

-2 0

0 1 0
Q= gl =] %=,
0 0 0

form _a t_)asis for_the column space of R.
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Example 3  (Basis for a Vector Space using Row Operation)
Find bases for the space spanned by the vectors

v, =(1,-2,0,0,3) v, =(2,-5,-3,-2,6)
v,=(0,5,15,10,0) v,=(2,6,18,8,6)

Solution The space spanned by these vectors is the row space of the matrix
1 -2 0 0 3
2 5 -3 -2 6
0 5 15 10 O

2 6 18 8 6]

Transforming Matrix to Row Echelon Form:

1 -2 0 0 3
2 -5 -3 -2 6
0 5 15 10 0
2 18 8 6
(1 2 0 0 3
(-2R, +R,
0 3 2 0
(-2R, +R,
0 15 10 0
('1)R2
0 10 18 8 0|
M1 -2 0 3]
0 1 3 2 0 | (-5)R,+R,
0 0 0 0 |(-10)R, +R,
0 0 12 12 0|
(1 2 0 0 3
0 1 3 2 0
R34
0 0 12 -12 0
0 0 0 0 0|
(1 2 0 0 3
0 1 3 2 0
(-1/12)R,
0 0 1 1 0
0 0 0 0 0|
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1 -2 0 0 3]
01 3 20
Therefore, R=
0O 0110
0O 0 00O

The non-zero row ve_ctors in this matri>z are
w, =(1,-2,0,0,3),w, =(0,1,3,2,0),w, =(0,0,1,1,0)

These vectors form a basis for the row space and consequently form a basis for the
subspace of R® spanned by v, V2, V.

Example 4  (Basis for the Row Space of a Matrix)

1 2 0 0 3]
: : 2 -5 3 26 - :
Find a basis for the row space of A= consisting entirely of row
0 5 15 10 O
2 6 18 8 6]

vectors from A.

Solution ~ We find AT; then we will use the method of example (2) to find a basis for
the column space of A"; and then we will transpose again to convert column vectors back
to row vectors. Transposing A yields

1 2 0 2]
-2 5 5 6
AT=|0 -3 15 18
0 -2 10 8
'3 6 0 6
Transforming Matrix to Row Echelon Form:
1 2 0 2
-2 -5 5 6
0 -3 15 18
0 -2 10 8
3 6 0 6]
1 2 0 2 ]
0 -1 5 10
2R, +R,
0 -3 15 18 (3R +R
0 -2 10 8 vl
0 0 0 0 |
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1 0 2
0 1 -5 -10
0 -3 15 18 |(-1R,
0o -2 10 8
0 0 0 |
(1 2 2
o 1 -5 -10
B)R, +R,
00 0 2ot o
o o0 0 o-12[7Ee
0 o0 0 |
(1 2 2
0o 1 -5 -10
0 0 0 1 [-112R,
0o 0 0  -12
0 0 0 |
(1 2 0 2 ]
0 1 -5 -10
0 0 0 1 [12R+R,
0 0 0
o 0o 0 0 |
(1 2 0 2]
01 -5 -10
Now R=(0 0 0 1
000 O
000 O

The first, second and fourth columns contain the leading 1’s, so the corresponding
column vectors in AT form a basis for the column space of A; these are

1 2 2
-2 -5 6
c, =|0], c,=|-3]andc, =|18
0 -2 8
3 6 6

Transposing again ana ad_justing tﬁe n_otation app_rop_riately yields the basis vectors
r1=[1 2 00 3],r2=[2 5 -3 -2 G]and r4=[2 6 18 8 6]
for the row space of A.
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The following example shows how one sequence of row operations on A leads to bases
for the three spaces: Row A, Col A, and Nul A.

Example 5  Find bases for the row space, the column space and the null space of the
matrix

2 -5 8 0 -17

1 3 5 1 5
A=

3 11 -19 7 1

1 7 -13 5 -3

Solution  To find bases for the row space and the column space, row reduce A to an
13 5 1 5
01 -2 2 -7

echelon form: A~B=
0 00 -4 20

00 0 0 O
By Theorem (1), the first three rows of B form a basis for the row space of A (as well as
the row space of B). Thus Basis for Row A:
{(1,3,-5,1,5), (0, 1, -2, 2,-7), (0, O, O, -4, 20)}
For the column space, observe from B that the pivots are in columns 1, 2 and 4. Hence
columns 1, 2 and 4 of A (not B) form a basis for Col A:

25|10

) 1 3 1
Basisfor Col A , ,

3 11| |7

1 7 5

Any echelon form of A provides (in its nonzero rows) a basis for Row A and also
identifies the pivot columns of A for Col A. However, for Nul A, we need the reduced
echelon form. Further row operations on B yield

101 01

01 -2 0 3
00 0 1 5
00 0 0O
The equation Ax = 0 is equivalent to Cx = 0, that is,
X, + X, + X, =0
X, - 2%, +3x,=0
X, -5%=0

A~-B~C=
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S0 X3 = -X3 — X5, X2 = 2X3 — 3Xs5, X4 = 5Xs5, with X3 and xs free variables. The usual
calculations (discussed in lecture 21) show that

1)1
2|1-3
Basisfor Nul A:<| 1 |,
0
_0_ _1_

Observe that, unlike the bases for Col A, the bases for Row A and Nul A have no simple
connection with the entries in A itself.

Note

1. Although the first three rows of B in Example (5) are linearly independent, it is wrong
to conclude that the first three rows of A are linearly independent. (In fact, the third
row of A is 2 times the first row plus 7 times the second row).

2. Row operations do not preserve the linear dependence relations among the rows of a
matrix.

Definition  The rank of A is the dimension of the column space of A.
Since Row A is the same as Col A", the dimension of the row space of A is the rank of
A". The dimension of the null space is sometimes called the nullity of A.

Theorem 3 (The Rank Theorem) The dimensions of the column space and the row
space of an mxn matrix A are equal. This common dimension, the rank of A, also equals
the number of pivot positions in A and satisfies the equation

rank A + dim Nul A =n

Example 6
(@) If Alisa 7x9 matrix with a two — dimensional null space, what is the rank of A?

(b). Could a 6x9 matrix have a two — dimensional null space?

Solution

(@) Since A has 9 columns, (rank A) + 2 = 9 and hence rank A = 7.

(b) No, If a 6x9 matrix, call it B, had a two — dimensional null space, it would have to
have rank 7, by the Rank Theorem. But the columns of B are vectors in R® and so the
dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6.

The next example provides a nice way to visualize the subspaces we have been studying.
Later on, we will learn that Row A and Nul A have only the zero vector in common and
are actually “perpendicular” to each other. The same fact will apply to Row AT (= Col A)
and Nul AT. So the figure in Example (7) creates a good mental image for the general
case.
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3 0 -1
Example 7 Let A={3 0 -1|. Itis readily checked that Nul A is the x, — axis, Row
4 0 5

A is the x1x3 — plane, Col A is the plane whose equation is x; — X = 0 and Nul AT is the
set of all multiples of (1, -1, 0). Figure 1 shows Nul A and Row A in the domain of the
linear transformation x — AX; the range of this mapping, Col A, is shown in a separate

copy of R, along with Nul A™.
X3 X3

/
. —

\Nul A le X2
X I A
Row{ A 2 / co
X1

X1

RS

Figure 1 — Subspaces associated with a matrix A

Applications to Systems of Equations

The Rank Theorem is a powerful tool for processing information about systems of
linear equations. The next example simulates the way a real-life problem using linear
equations might be stated, without explicit mention of linear algebra terms such as
matrix, subspace and dimension.

Example 8 A scientist has found two solutions to a homogeneous system of 40
equations in 42 variables. The two solutions are not multiples and all other solutions can
be constructed by adding together appropriate multiples of these two solutions. Can the
scientist be certain that an associated non-homogeneous system (with the same
coefficients) has a solution?

Solution Yes. Let A be the 40x42 coefficient matrix of the system. The given
information implies that the two solutions are linearly independent and span Nul A. So
dim Nul A = 2. By the Rank Theorem, dim Col A = 42 — 2 = 40. Since R is the only
subspace of R* whose dimension is 40, Col A must be all of R*. This means that every
non-homogeneous equation Ax = b has a solution.
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-1 2 0 4 -3
72 0 4
Example 9 Find the rank and nullity of the matrix A= 5 9 4
9 2 -4 4
Verify that values obtained verify the dimension theorem.
-1 2 0 4 5 -3
. 3 -7 2 0 1 4
Solution
2 -5 2 4 6 1
4 -9 2 -4 -4 7
1 -2 0 -4 -5 3
3 -7 2 0 1 4
('1)R1
2 -5 2 4 6 1
4 -9 2 -4 -4 7
1 -2 0 -4 -5 3 ]
(-3)R, +R,
0 -1 2 12 16 -5
('2)R1 + Rs
0 -1 2 12 16 -5
(-4)R, +R,
0 -1 2 12 16 -5 |
1 -2 0 -4 -5 3 ]
0 1 -2 -12 -16 5
(‘l)Rz
0 -1 2 12 16 -5
0 -1 2 12 16 -5 |
1 -2 0 -4 -5 3
0 1 -2 -12 -16 5 |R,+R;
0 0 0 0 0 0 |R,+R,
0 0 0 0 0 0
1 0 -4 -28 -37 13
0 1 -2 -12 -16 5
2R, +R;
0 0 0 0 0 0
0 0 0 0 0 0
The reduced row-echelon form of A is
1 0 -4 -28 -37 13
o 1 -2 -12 -16 5 )
o o0 O o0 o0 o
0 0 0 0 0 O
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The corresponding system of equations will be
X, - 4%, - 28X, - 37X, +13%, =0
X, - 2X; -12X, - 16X, + 5%, =0
or, on solving for the leading variables,
X, = 4X; - 28X, + 37X, - 13X,

_ )
X, = 2X; + 12X, + 16X, - 5X;
it follows that the general solution of the system is
X, =4r+28s+37t-13u
X, =2r+12s+16t- 5u
X; =T
X, =S
X, =t
Xs=U
'x, ] [4] [28] [37] [-13]
X, 2 12 16 -5
_ X, 1 0 0 0
or equivalently, =r| _|+s +t +u 3)
X, 0 1 0 0
Xs 0 0 1 0
| % | 0 0 0 1

The four vectors on the ri_gh_t side_: of (3) f_orm a ba_sis f_or the solution space, so
-1 2 0 4 5 -3

. . 3 -7 2 0 1
nullity (A) = 4. The matrix A= has 6 columns,
2 5 2 4 6
4 9 2 -4 -4 7

so rank(A) + nullity(A) =2+ 4=6=n
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Example 10 Find the rank and nullity of the matrix; then verify that the values
(1 -3 2 2 1]

0 3 6 0 -3
obtained satisfy the dimension theorem A= 2 -3 -2 4 4
3 6 0 6 5
2 9 2 4 5
Solution  Transforming Matrix to the Reduced Row Echelon Form:

1 302 2 1
o 3 6 0 -3

2 -3 -2 4 4

3 6 0 6 5

2 9 2 -4 5]

1 302 2 1]

0 3 6 0 -3|(2R+R
0 3 -6 0 2 |[(-3R+R,
0O 3 -6 0 2 |2R+R
o 3 6 0 -3]

1 3 2 2 1]

0o 1 2 0 -1

0 6 0 2 |[(13R,
0o 3 -6 0

o 3 6 0 -3

1 302 2 1

0o 1 2 0  -1|(-3)R,+R,
0 120 (-3)R,+R,
0o 0 -12 0 (-3)R, +R,
0 0 0 O |

1 302 2 1]

o 1 2 0 -1

o o0 1 0  -5/12 |(-1/12)R,
o o0 12 0 5

o o o 0 0 |
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1 -3 2 2 1
0 1 2 0 -1
0 0 1 0 -5/12 |12R,+R,
0 0 0 0 0
0 0 0 0 0o |
1 -3 0 2 11/6
0 1 0 0 -1/6
('2 )Rs + Rz
0 0 1 0 -5/12 (2)R +R
0 0 0 0 0 P
0 0 0 0 0 |
1 0 0 2 4/3
0 1 0 0 -1/6
0 0 1 0 -5/12 |(3)R, +R, (1)
0 0 0 0 0
0 0 0 0 0

Since there are three nonzero rows (or equivalently, three leading 1’s) the row space and
column space are both three dimensional so rank (A) = 3.

To find the nullity of A, we find the dimension of the solution space of the linear system
Ax = 0. The system can be solved by reducing the augmented matrix to reduced row
echelon form. The resulting matrix will be identical to (1), except with an additional last
column of zeros, and the corresponding system of equations will be

X, +0X, +Ox3+2x4+%x5 =0
1

0x, + X, +0x; +0x, -EXS =0
5

0x, +0x, + x; +0x, —EXS =0

The system has infinitely many solutions:

X1 = -2 X4+(-4/3) X5 X2 = (1/6) Xs
X3 = (5/12) x5 X4=S
Xs=1

The solution can be written in the vector form:

cs=(-2,0,0,1,0) cs = (-4/3, 1/6, 5/12,0,1)
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Therefore the null space has a basis formed by the set
{(-2,0,0, 1, 0), (-4/3, 1/6, 5/12,0,1)}
The nullity of the matrix is 2. Now Rank (A) + nullity (A) =3+ 2=5=n

Theorem4 If Aiisan m x n, matrix, then
(a) rank (A) = the number of leading variables in the solution of Ax =0
(b) nullity (A) = the number of parameters in the general solution of Ax =0

Example 11  Find the number of parameters in the solution set of Ax =0 if Aisa 5x7
matrix of rank 3.

Solution nullity (A) =n-rank (A) =7-3=4

Thus, there are four parameters.

Example  Find the number of parameters in the solution set of Ax =0 if Ais a 4x4
matrix of rank 0.

Solution nullity (A) =n—rank (A) =4-0 =4

Thus, there are four parameters.

Theorem 5  If A is any matrix, then rank (A) = rank (A")
Four fundamental matrix spaces

If we consider a matrix A and its transpose A" together, then there are six
vectors spaces of interest:

Row space of A row space of AT
Column space of A column space of A"
Null space of A null space of AT

However, transposing a matrix converts row vectors into column vectors and column
vectors into row vectors, so that, except for a difference in notation, the row space of AT
is the same as the column space of A and the column space of A" is the same as row
space of of A.

This leaves four vector spaces of interest:

Row space of A column space of A

Null space of A null space of A"

These are known as the fundamental matrix spaces associated with A, if Aisanm x n
matrix, then the row space of A and null space of A are subspaces of R" and the column
space of A and the null space of A" are subspaces of R™.

Suppose now that A is an m x n matrix of rank r, it follows from theorem (5) that A" is an
n x m matrix of rank r . Applying theorem (3) on A and A" yields

Nullity (A)=n-r, nullity (AT)=m-r
From which we deduce the following table relating the dimensions of the four
fundamental spaces of an m x n matrix A of rank r.
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Fundamental space Dimension
Row space of A r

Column space of A r

Null space of A n-r

Null space of A" m-r

Example 12 If Ais a 7 x 4 matrix, then the rank of A is at most 4 and, consequently,
the seven row vectors must be linearly dependent. If A is a 4 x 7 matrix, then again the
rank of A is at most 4 and, consequently, the seven column vectors must be linearly
dependent.

Rank and the Invertible Matrix_Theorem The various vector space concepts
associated with a matrix provide several more statements for the Invertible Matrix
Theorem. We list only the new statements here, but we reference them so they follow the
statements in the original Invertible Matrix Theorem in lecture 13.

Theorem 6 The Invertible Matrix Theorem (Continued)
Let A be an n x n matrix. Then the following statements are each equivalent to the
statement that A is an invertible matrix.
m. The columns of A form a basis of R".
ColA=R".
dimColA=n
rank A=n
Nul A = {0}
dimNulA=0

~oD o>

Proof  Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other statements above are linked into the theorem by
the following chain of almost trivial implications:

(9) = ()= (0) = (p) = (r) = (q) = (d)
Only the implication (p) = (r) bears comment. It follows from the Rank Theorem
because A is nxn. Statements (d) and (g) are already known to be equivalent, so the
chain is a circle of implications.

We have refrained from adding to the Invertible Matrix Theorem obvious statements
about the row space of A, because the row space is the column space of A". Recall from
(1) of the Invertible Matrix Theorem that A is invertible if and only if AT is invertible.
Hence every statement in the Invertible Matrix Theorem can also be stated for A",

Numerical Note

Many algorithms discussed in these lectures are useful for understanding
concepts and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.
Rank determination is a good example. It would seem easy to reduce a matrix to echelon
form and count the pivots. But unless exact arithmetic is performed on a matrix whose
entries are specified exactly, row operations can change the apparent rank of a matrix.
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5 7
For instance, if the value of x in the matrix L } is not stored exactly as 7 in a
X

computer, then the rank may be 1 or 2, depending on whether the computer treats x — 7 as
zero.
In practical applications, the effective rank of a matrix A is often determined from the

singular value decomposition of A.

Example 13 The matrices below are row equivalent

2 -1 1 -6 8 1 -2 4 3 -2

1 -2 4 3 -2 0 3 9 -12 12
A= , B=

-7 8 10 3 -10 0 0 0 0 O

4 5 -7 0 4 0 0 0 0 O

1. Find rank A and dim Nul A.
2. Find bases for Col A and Row A.
3. What is the next step to perform if one wants to find a basis for Nul A?
4. How many pivot columns are in a row echelon form of A™?
Solution
1. A has two pivot columns, so rank A = 2. Since A has 5 columns altogether, dim
NulA=5-2=3.
2. The pivot columns of A are the first two columns. So a basis for Col A is
-1
111]-2
{a,,a,}= 7' 8
411-5
The nonzero rows of B form a basis for Row A, namely {(1, -2, -4, 3, -2), (0, 3,
9, =12, 12)}. In this particular example, it happens that any two rows of A form a
basis for the row space, because the row space is two-dimensional and none of the
rows of A is a multiple of another row. In general, the nonzero rows of an echelon
form of A should be used as a basis for Row A, not the rows of A itself.
3. For Nul A, the next step is to perform row operations on B to obtain the reduced
echelon form of A.
4. Rank AT = rank A, by the Rank Theorem, because Col A" = Row A. So A" has
two pivot positions.
Exercises

In exercises 1 to 4, assume that the matrix A is row equivalent to B. Without calculations,
list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

1.

1 4 9 -7 1 0 -1 5

A=|-1 2 4 1| B=0 -2 5 -6

5 -6 10 7 0 0 0 O
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1 3 4 -1 9 1 30 5 -7
2 6 -6 -1 -10 0 0 2 -3 8
2. A= B =
3 9 -6 6 -3 0000 5
'3 9 4 9 0 0000 O
(2 36 2 5 2 36 25
2 3 -3 -3 4 0 0 3 -11
3. A= B=
4 6 9 5 9 0 00 1 3
2 3 3 -4 1 0 0000
11 37 9 9] [11-37 9 -9]
1 2 -4 10 13 -12 01 -13 4 -3
4. A=1 -1 -1 1 1 -3,B=[0 0 0 1 -1 -2
131 5 -7 3 00000 O
1 2 0 0 -5 -4/ |00 0 0 0 O]

5. If a 3 x 8 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT,
6. If a 6 x 3 matrix A has rank 3, find dim Nul A, dim Row A, and rank AT,

7. Suppose that a 4 x 7 matrix A has four pivot columns. Is Col A = R*? Is Nul A = R*?
Explain your answers.

8. Suppose that a 5 x 6 matrix A has four pivot columns. What is dim Nul A? Is Col A =
R*? Why or why not?

9. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the
column space of A?

10. If the null space of a 7 x 6 matrix A is 5-dimensional, what is the dimension of the
column space of A?

11. If the null space of an 8 x 5 matrix A is 2-dimensional, what is the dimension of the
row space of A?

12. If the null space of a 5 x 6 matrix A is 4-dimensional, what is the dimension of the
row space of A?

13. If Ais a 7 x 5 matrix, what is the largest possible rank of A? If A'isa 5 x 7 matrix,
what is the largest possible rank of A? Explain your answers.
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14. If A'is a 4 x 3 matrix, what is the largest possible dimension of the row space of A? If
A'is a 3 x 4 matrix, what is the largest possible dimension of the row space of A? Explain.

15. If A'is a 6 x 8 matrix, what is the smallest possible dimension of Nul A?

16. If A'is a 6 x 4 matrix, what is the smallest possible dimension of Nul A?
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Lecture 26

Change of Basis

When a basis B is chosen for an n-dimensional vector space V, the associated coordinate
mapping onto R" provides a coordinate system for V. Each x in V is identified uniquely
by its B-coordinate vector [X]s.

In some applications, a problem is described initially using a basis B, but the problem’s
solution is aided by changing B to a new basis C. Each vector is assigned a new C-
coordinate vector. In this section, we study how [x]c and [x]g are related for each x in V.

To visualize the problem, consider the two coordinate systems in Fig. 1.

In Fig. 1(a), x = 3by + by, while in Fig. 1 (b), the same x is shown as x = 6¢; + 4c,. That

IS
3 6
[, =M and  [x]; =[ 4}

Example 1 shows how to find the connection between the two coordinate vectors.
provided we know how b; and b, are formed from c; and c..

C2

S
<)

C1 X
b1

\ 3b1 4Cl

/

Figure 1 — Two coordinate systems for the same vector space

Example 1 Consider two bases B = {b1, b,} and C = {c,, c,} for a vector space V,
such that

bi1=4c;+c, and b, =-6¢1 + C; 1)
Suppose that x = 3b; + b, (2

3
suppose that [x]; :[J. Find [X]c.

Solution  Since the coordinate mapping is a linear transformation, we apply (2)
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[X]c = [3b1 + bz ]C

= 3[b1]c + [bz]c
as a matrix equation,

3
[X]c = [[bl]C [bz ]c ]|:1:| 3)

4 -6
bl = Mand[bzlc —L }
LI HEH

The C - coordinates of x match those of the x in Fig. 1.
The argument used to derive formula (3) is easily generalized to yield the following
result.

From (1),

Theorem  LetB = {by, ..., by} and C ={cy, ..., Cn} be bases of a vector space V. Then
there exists an n x n matrix CPB such that

[X]C = CEB[X]B (4)
The columns of CPB are the C-coordinate vectors of the vectors in the basis B. So

P =[] b1 - bl ]
The matrix CPB in above theorem is called the change-of-coordinates matrix from B
to C. Multiplication by CPB converts B-coordinates into C-coordinates. Figure 2

illustrates the change-of-coordinates equation (4).
The columns of CPB are linearly independent because they are the coordinate vectors of

the linearly independent set B. Thus CPB is invertible. Left-multiplying both sides of (4)

by (CEB)_l , We obtain

(,P.) Xl =[x1a
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o X
[ Ic [ Is
multiplication
[X]c o < *[x]e
by . Pe
Figure 2 Two coordinate system for V.

1
Thus (CPB) is the matrix that converts C-coordinates into B-coordinates. That is,

( P )_1= P 5)

C<«B B<«C

Change of Basis in R® _ If B = {by, ..., bn} and E is the standard basis {e1, ... , en} in
R", then [b1]e = by, and likewise for the other vectors in B. In this case, P is the same

E<B

as the change-of-coordinates matrix Pg introduced in Lecture 23, namely,
P, :[bl b, - bn]
To change coordinates between two nonstandard bases in R", we need above Theorem.

The theorem shows that to solve the change-of-basis problem, we need the coordinate
vector of the old basis relative to the new basis.

Example 2 Let D ={d;, d, d3} and F = {f, f,, f3} be basis for vector space V, and
suppose that f; = 2d, —d, + ds3, f, = 3d, + d3, f3=-3d; + 2ds.

(@) Find the change-of-coordinates matrix from F to D.

(b) Find [X]p for x = f, — 2f, + 2f3.

M (a) DEF :[[ fl]D [fZ]D [fS]D]
2 0 -3
But [flo=|-1|.[f.]o=|3|[f:]o=| O
1 1 2
2 0 -3
DPF =/-1 3 0
1 1 2
(b) [X]p = [f1 — 2f2 + 2f3]p = [f1]o — 2[f2]p + 2[f3]D
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1
[[fl]D [fZ]D [fS]D] -2
2

2 0 3||1}| |-4
13 0f|-2|=-7
11 2]|2] 13

-9 -5 1 3
Example3 Letb, = [ J, b, :[ J, C, :{ 4] c, :{ 5} and consider the bases for

R? given by B = {b1, b,} and C = {c1, c,}. Find the change of coordinates matrix from B

to C.
Solution  The matrix CPB involves the C — coordinate vectors of b; and bs.

Y1

X
Let [b,]. :[Xl} and [b,]. ={y ]Then, by definition,
2

2

) n
[c. ¢l =b, and [c; ¢,] =
X Y2

To solve both systems simultaneously augment the coefficient matrix with b; and
b, and row reduce:

1 3,9 -5
C b
[c, ,1= { A _5]1 }
! R,+4
o]7 35 21|
1 3 -9
s af7®
0 1 -5 7
1 6 4
~ R, —3R 6
[o ]2 _3}1 2 ©
6 4
[bllc{_J and [b,]c {_3}
therefore

6 4
= [[bl]C [b, ] ] = {_5 _3}
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7 2 4 5
Example 4 Let b, :{ 2] b, :{ J, C, = L} C, = [2} and consider the bases for

R2 given by B= {bl, bz} and C = {Cl, Cz}.
(a) Find the change — of — coordinates matrix from C to B.
(b) Find the change — of — coordinates matrix from B to C.

Solution
(a) Notice that BPC is needed rather than CPB and compute
7 2 45
[bl bz ]C1 Cz]:[ ] }
L 24 5],
7 77 7R1
2 11 2
1 2 4 >
T 7 TIR+R,
0 31 2
L 77 7
L 24 5]
77 7 -ng
0 1 -5 -8
1 0 2 3 R s
015 -8/7° i
SO P =
B<«C -5 -8

(b) By part (a) and property (5) above (with B and C interchanged),
, 1|8 -3 8 3
P=(P) == = :
C«B B«C -11 5 2 -5 2

-7

4 9

R? given by B = {b1, bo} and C = {c1, c,}.

(a) Find the change — of — coordinates matrix from C to B.
(b) Find the change — of — coordinates matrix from B to C.
Solution

(a) Notice that BPC is needed rather than CPB and compute

2|7 5] [1 0]5 3
b, b, | ¢, ¢ ~
5 2] ' ][3 4]9 7} {o 1]6 4}

1 -2 -5
Example5 Let b, :{ 3] b, :[ } C, :{ } C, = {7} and consider the bases for
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{5 3}
S0 P =
B<«C 6 4

(b) By part (a) and property (5) above (with B and C interchanged),
, 114 -3 2 -3/2
P=(P) == = .
CeB  'B«C 2|6 5 -3 5/2
Example 6

1. LetF={f, f,}and G = {g1, g} be bases for a vector space V, and let P be a matrix
whose columns are [f1]c. Which of the following equations is satisfied by P for all v
inV?

(i) Vlr = Plvle (i) [vle = Pv]e

2. Let B and C be as in Example 1. Use the results of that example to find the change-
of-coordinates matrix from C to B.

Solution

1. Since the columns of P are G-coordinate vectors, a vector of the form Px must be a
G-coordinate vector. Thus P satisfies equation (ii).

2. The coordinate vectors found in Example 1 show that

4 -6
Pl B[4 7]
1+ 171 6] [01 06
Hence Bw:&&)_5{14}{ﬂlaJ

Exercises

1. Let B ={by, by} and C = {c1, c,} be bases for a vector space V, and suppose that
bi=6c1—-2cyand b, =9c; -4 co.

(a) Find the change-of-coordinates matrix from B to C.

(b) Find [X]c for x =-3 by + 2 b,. Use part (a).

2. Let B ={bs, b} and C = {c4, ¢} be bases for a vector space V, and suppose that
bi=-c1+4c,and b, =5¢; -3 cCo.

(a) Find the change-of-coordinates matrix from B to C.

(b) Find [X]c forx =5 by + 3 b,.

3. Let U ={u;, u} and W = {w,, w,} be bases for V, and let P be a matrix whose
columns are [u;]w and [uz]w . Which of the following equations is satisfied by P for all x
inV?

() [X]u = P[X]w (i1) [XJw = P[x]u

4. Let A={a1, a, az}and D = {d, d,, d3} be bases for V, and let

P= [[dl]A [d,]. [d3]A] . Which of the following equations is satisfied by P for all x in
V?

(i) [X]a = PIX]o (i) [x]o = P[x]a
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5. Let A={ai, a, az} and B = {by, b,, b3} be bases for a vector space V, and suppose
that a; =4b1—-b,, a, =-b1 + by, + b3, and a3 = b, -2 bs.

(a) Find the change-of-coordinates matrix from A to B.

(b) Find [X]g forx =3 a; +4 a, + as.

In exercises 6 t0 9, let B = {b1, b,} and C = {c1, c,} be bases for R?. In each exercise,
find the change-of-coordinates matrix from B to C, and change-of-coordinates matrix
from C to B.

1] 0 -1 -2
7] 2 4] 5

9- b = ,b = ,C = ’C =
2] _—J ! L_ 2 _2}

10. In P2, find the change-of-coordinate matrix from the basis B={1-2t+t*, 3-5t+
41, 2t + 3 t°} to the standard basis C = {1, t, t°}. Then find the B-coordinate vector for
-1+2t.

11. In P2, find the change-of-coordinates matrix from the basisB= {1 -3t 2 +t—5t%,
1 + 2 t} to the standard basis. Then write t* as a linear combination of the polynomials in
B.

1 2 -1 -2 -8 —7
12.Let P=|-3 -5 0 [,v;=| 2 |,v,=| 5 |,V,=| 2
4 6 1 3 2 6

(a). Find a basis {u1, U,, us} for R® such that P is the change-of-coordinates matrix from
{u1, Uy, uz} to the basis {vi, vz, vs}.

(b). Find a basis {w:, w5, w3} for R® such that P is the change-of-coordinates matrix from
{v1, V2, v3} to {wy, wy, ws}.
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Lecture 27

Applications to Difference Equations

Recently Discrete or Digital data has been used preferably rather then continuous data in
scientific and engineering problems. Difference equation is considered more reliable tool
to analyze such type of data even if we are using a differential equation to analyze
continuous process, a numerical solution is often produced from a related difference
equation.

In this lecture we will study some fundamental properties of linear difference equation
that are considered best tool in Linear Algebra.

Discrete-Time Signals_ Let S is the space of discrete-time signals. A signal in Sis a
function defined only on the integers and is visualized as a sequence of numbers, say,
{yi}-

Digital signals obviously arise in electrical and control systems engineering, but discrete-
data sequences are also generated in biology, physics, economics, demography and many
other areas, wherever a process is measured, or sampled, at discrete time intervals.

When a process beings at a specific time, it is sometimes convenient to write a signal as a

sequence of the form(yo, Vi y2,...) . The term y, for k<O either are assumed to be zero or

are simply omitted.

Discrete time signals are functions defined on integers that are sequences or it takes only
a discrete set of values.

For Example a Radio Station broadcast’s weather report once in a day so the sampling
period is discrete, but sampling may be uniform or constant accordingly.

Example 1 The crystal clear sounds from a compact disc player are produced from
music that has been sampled at the rate of 44,100 times per second. At each
measurement, the amplitude of the music signal is recorded as a number, say, yx. The
original music is composed of many different sounds of varying frequencies, yet the
sequence {yx} contains enough information to reproduce all the frequencies in the sound
up to about 20,000 cycles per second, higher than the human ear can sense.

Linear Independence in the Space S of Signals  To simplify notation, we consider a
set of only three signals in S, say, {ux},{vk}and {wi}. They are linearly independent
precisely when the equation

c,u, +c,v, +c,w, =0 forallk (1)
implies that c; = ¢, = ¢3 = 0. The phrase “for all k” means for all integers positive,
negative and zero. One could also consider signals that start with k = 0, for example, in a
case “for all k” would mean for all integers k > 0.
Suppose ¢, Cz, €3 satisfy (1). Then the equation (1) holds for any three consecutive
values of k, say, k, k + 1 and k + 2. Thus (1) implies that

CUp,q +CoVy g +C3W,,, =0 forall k

and CiUy.p +CoVy , +CW ., =0 forallk
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Hence ¢, ¢y, C3 satisfy

u, V, w, || C 0
Uor Vier Wi |G =0 forank 2
uk+2 Vk+2 Wk+2 CS O

The coefficient matrix in this system is called the Casorati matrix of the signals, and the
determinant of the matrix is called the Casoratian of {ux},{v«}, and {w}. If for at least

one value of k the Casorati matrix is invertible, then (2) will imply thatc; =c, =c3 =0,

which will prove that the three signals are linearly independent.

Example 2 Verify that 1%, (-2) and 3" are linearly independent signals.
1k (_2)k 3k
Solution The Casorati matrix is | 1**  (-2)*** 3!
lk+2 (_2)k+2 3k+2

Row operations can show fairly easily that this matrix is always invertible. However; it is
faster to substitute a value for k — say, k = 0 — and row reduce the numerical matrix:

11 1] 1 1 1

1 2 3|~|0 -3 2|R,-R
1 4 9| |1 4 9

11 1 11 1
~10 -3 2|R,-R ~|0 -3 2|R,+R,
0 3 8 0 0 10

The Casorati matrix is invertible for k = 0. So 1%, (-2)* and 3 are linearly independent.

If a Casorati matrix is not invertible, the associated signals being tested may or may not
be linearly dependent. However, it can be shown that if the signals are all solutions of the
same homogeneous difference equation (described below), then either the Casorati matrix
is invertible for all k and the signals are linearly independent, or else for all k the Casorati
matrix is not invertible and the signals are linearly dependent.

Activity
Verify that 2%, (-1)* and 0% are linearly independent signals.

Linear Difference Equations Given scalars ay, ... , an, with ap and a, nonzero, and
given a signal {zc}, the equation

aO yk+n + a1yk+n-1 t.o..+ a'n—1yk+1 + an yk = Zk for all k (3)
is called a linear difference equation (or linear recurrence relation) of order n. For

simplicity, ao is often taken equal to 1. If {zi} is the zero sequence, the equation is
homogeneous; otherwise, the equation is non-homogeneous.
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In simple words, an equation which expresses a value of a sequence as a function of the
other terms in the sequence is called a difference equation.

In particular an equation which expresses the value a, of a sequence {a,} as a function of
the term a1 is called a first order difference equation.

Example 3 In digital signal processing, a difference equation such as (3) above
describes a linear filter and ay, ... , a, are called the filter coefficients. If {y\} is treated
as the input and {zx} the output, then the solutions of the associated homogeneous
equation are the signals that are filtered out and transformed into the zero signal. Let us
feed two different signals into the filter

0.35yk+2 +0.5yk +1 +0.35yk = z
Here 0.35 is an abbreviation for ~/2 /4. The first signal is created by sampling the
continuous signal y =cos(zt/4) at integer values of t, as in Fig. 3 (a). The discrete

signals is {yx} ={.... cos(0), cos(z/4),cos(2x/4),cos(3x/4)...}
For simplicity, write 0.7 in place of +/2/2, so that
{w}={...,1070-07-1,-0700.71070,..}

f

k=0

@

Figure Discrete signals with different frequencies

The following table shows a calculation of the output sequence {z«}, where 0.35(0.7) is
an abbreviation for (v/2/4).(~/2/2) = 0.25. The output is {y\}, shifted by one term.

Table Computing the output of a filter

K Yk Yi+1 Yi+2 0.35y,+0.5y+1+0.35Y k4= 7k
0 1 0.7 0 0.35(1)+0.5(0.7)+0.35(0)=0.7
1 0.7 0 -0.7 0

2 0 -0.7 -1 -0.7

3 -0.7 -1 -0.7 -1

4 -1 -0.7 0 -0.7

5 -0.7 0 0.7 0
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A different input signal is produced from the higher frequency signal y =cos(3zt/4).

Sampling at the same rate as before produces a new input sequence:
{w3}={...,1-07007-1070-071,-070,..}

k=0
When {w\} is fed into the filter, the output is the zero sequence. The filter, called a low
pass filter, lets {yx} pass through, but stops the higher frequency {wy}.
In many applications, a sequence{zx} is specified for the right side of a difference
equation (3) and a {y«} that satisfies (3) is called a solution of the equation. The next
example shows how to find solution for a homogeneous equation.

ExamEIe 4 Solutions of a homogeneous difference equation often have the form
yk = r" for some r. Find some solutions of the equation

Yi+3 — 2Yk+2 — SYk+1 + 6yx = 0 for all k (4)
Solution  Substitute r* for y, in the equation and factor the left side:
rk+3 _ 2rk+2_ 5rk+1 + 6rk =0 (5)

B}(/ synthetic division
r(r*-2r’=5r+6)=0

1 2 5|6

110 1 1| 6

1 4 6o

So we get

r* [(x-1)(x* = x - 6)] = 0

r*[(x-1) (x* - 3x + 2x — 6)]=0

r* [(x-1) {x(x -3)+2(x-3)}] =0

M (r=1)r+2)(r-3)=0 (6)

since (5) is equivalent to (6), r* satisfies the difference equation (4) if and only if r
satisfies (6). Thus 1%, (-2)“ and 3% are all solutions of (4). For instance, to verify that 3% is
a solution of (4), compute

3 _ 232 _ 53 4+ 6.3=3%27-18-15 + 6) = 0 for all k

In general, a nonzero signal r* satisfies the homogeneous difference equation
Yien + & Yirna +ooF 8 Vi 8,y =0 forallk
if and only if r is a root of the auxiliary equation
r+ar"t+...+a _,r+a,.1=0
We will not consider the case when r is a repeated root of the auxiliary equation. When

the auxiliary equation has a complex root, the difference equation has solutions of the
form s cos kw and s* sin kw, for constants s and w. This happened in Example 3.
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Solution Sets of Linear Difference Equations
Given ay, ..., an, consider the mapping T: S— S that transforms a signal {yx}into a
signal {wy} given by

Wi = Yien T Yinaa o33 Vi 78, Y

It is readily checked that T is a linear transformation. This implies that the solution set of
the homogeneous equation

yk+n + alyk+n—1 +o.+ an—1yk+1 + an yk = O forall k
is the kernel of T (kernel is the set of signals that T maps into the zero signal) and hence
the solution set is a subspace of S. Any linear combination of solutions is again a
solution.

Theorem If a, #0 and if {z} is given, the equation

yk+n + a1yk+n-1 +.ot an—1yk+1 + a'n yk = Zk for a” k (7)
has a unique solution whenever yo, ..., yn_1 are specified.
Proof  Ifyo, ..., yn1 are specified, use (7) to define
Yn = 2o _[alyn-l +...+a, yo]
And now thaty, ..., yn are specified, use (7) to define y,+1. In general, use the
recursion relation

yn+k = Zk _[aiyk+n-1+"'+anyk] (8)
to define yn+ for k> 0. To define yi for k<O, use the recursion relation
1 1
Yk :a_zk_a_[yk+n+a1yk+n-l+"'+an—lyk+1] (9)

This produces a signal that satisfies (7). Conversely, any signal that satisfies (7) for all k
certainly satisfies (8) and (9) so the solution of (7) is unique.

Theorem  The set H of all solutions of the nth-order homogeneous linear difference
equation

yk+n + a1yk+n-1 t..t a'n—1yk+1 + an yk = 0 forall k (10)
is an n-dimensional vector space.
Proof  We explained earlier why H is a subspace of S. For {yx}in H, let F{y\}be the
vector in R" given by (Yo, Y1, ... , Yn1). It is readily verified that F:H — R" is a linear
transformation. Given any vector (yo, Y1, ... , Yn1) in R", the previous theorem says that
there is a unique signal {yx} in H such that F{y«}=(yo, Y1, ... , Yn-1). It means that F is a
one-to-one linear transformation of H onto R"; that is, F is an isomorphism. Thus dim H
=dimR"=n.

Example 5 Find a basis for the set of all solutions to the difference equation

Yik+3 — 2Yk+2 — DYk+1 + 6yx =0 for all k
Solution
Generally it is difficult to identify directly that a set of signals spans the solution space,
but this problem is being resolved by two above key theorems, from the last theorem the
solution space is exactly three — dimensional and the Basis Theorem describes that a
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linearly independent set of n vectors in an n — dimensional space is automatically a basis.
So 1% (-2)* and 3* form a basis for the solution space.

The standard way to describe the “general solution” of (10) is to exhibit a basis for the
subspace of all solutions. Such a basis is usually called a fundamental set of solutions of
(10). In practice, if we can find n linearly independent signals that satisfy (10), they will
automatically span the n-dimensional solution space, as we saw in above example.

Non-homogeneous Equations  The general solution of the non-homogeneous
difference equation

Yien T Yiina oot Yo Y = 2, forall k (11)
can be written as one particular solution of (11) plus an arbitrary linear combination of a
fundamental set of solutions of the corresponding homogeneous equation (10). This fact
is analogous to the result in lecture 7 about how the solution sets of Ax =b and Ax =0
are parallel. Both results have the same explanation: The mapping x — Ax is linear, and
the mapping that transforms the signal {yx} into the signal {zx} in (11) is linear.

Example 6 Verify that the signal yi = k® satisfies the difference equation
Y2 — 4Yke1 + 3yk = -4k for all k (12)
Then find a description of all solutions of this equation.
Solution Substitute k? for y in the left side of (12):
(k +2)2 = 4(k + 1)* + 3k* = (K* + 4k + 4) — 4(k* + 2k + 1) + 3k? = -4k
So k? is indeed a solution of (12). The next step is to solve the homogeneous equation
Yi+2 — 4Yk+1 + 3y =0 (13)
The auxiliary equation is
r’ — 4r + 3 =r%-3r-r+3=r(r-3)-1(r-3)= (r - 1)(r-3) = 0

The roots are r = 1, 3. So two solutions of the homogeneous difference equation are 1
and 3%. They are obviously not multiples of each other, so they are linearly independent
signals. (The Casorati test could have been used, too.) By the last Theorem, the solution
space is two — dimensional, so 3“and 1 form a basis for the set of solutions of (13).
Translating that set by a particular solution of the non-homogeneous equation (12), we
obtain the general solution of (12):

K>+ c11%+ 3%, or K% +cy +cp3"

Reduction to Systems of First-Order Equations A modern way to study a
homogeneous nth-order linear difference equation is to replace it by an equivalent system
of first order difference equations, written in the form X1 = Axx fork =0, 1, 2, ...
Where the vectors xi are in R" and A is an n X n matrix.

Example 7 Write the following difference equation as a first order system:
Yi+z — 2Yk+2 — BYk+1 + Byx = 0 for all k

Yk
Solution  For each k, set X, =| Y, 4

yk+2
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The difference equation says that yx+3 = 2Yk+2 + SYk+1 - 6k, SO

Ya 0+ Y, +0 0 10 Yk
Xt =| Yisz | = 0+0+ Yy, =0 0 1 Yiu
Yiss 6y +5Yin +2Yx,0 6 5 2 Y2
0 10
That is, Xx+1 = Axi for all k, where A= 0 0 1
6 5 2

In general, the equation yy+n + @1Yksn-1 + ... + @n_1Yke1 + anyx = 0 for all k
can be written as Xx+1 = Axy for all k, where

_ B} 0o 1 0 - 0]
Vi 0 O 1 0
X, = Y|§+1 A=
0 O 0 1
_yk+n—1_ __an _an ) _an72 _al_

. .k k .
Example 8 It can be shown that the signals 2¥, 3 Sm%, and 3"Cos7n are solutions

Of Yik+3 — 2Yks+2 + 9yYks+1 — 18yx = 0. Show that these signals form a basis for the set of all
solutions of the difference equation.
Solution  Examine the Casorati matrix:

2k 3k3ink—7E 3"Cosk—n
2 2
(k4 %

C(k)=| 2% 3k+15in@ 31 Cos

2k+2 3k+2 Sln (k +227) 3k+2 COS (k -QZ T)

Set k = 0 and row reduce the matrix to verify that it has three pivot po;itions and hence is
invertible:

10 1] 10 1
C(0)=|2 3 0|~|0 3 -2(R,-2R,
40 9] (40 9

10 1
~[0 3 -2 |R,-4R,
0 0 -13
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The Casorati matrix is invertible at k = 0, so signals are linearly independent. Since there
are three signals, and the solution space H of the difference equation has three-
dimensions (Theorem 2), the signals form a basis for H, by the Basis Theorem.
Exercises

Verify that the signals in exercises 1 and 2 are solution of the accompanying difference
equation.

1. 2% (-4)%; Yisz + 2 Yo — 8 Y = 0 2.3 (-3) Y2 =9y =0

Show that the signals in exercises 3 to 6 form a basis for the solution set of
accompanying difference equation.

3.2 (-4 yir2 + 2yie1 —8yk =0 4.3% (-3 yie2 =9y =0
K K K kﬂ: Ke: ka
5.(-3)% K(-3)"; Yke2 + 6 yke1 + 9yk =0 6.5 0057, 5 Sm7; Yie2 25y =0

In exercises 7 to 10, assume that the signals listed are solutions of the given difference
equation. Determine if the signals form a basis for the solution space of the equation.

k .k
7. 1k, 3kCOS?n, 3kSln7n; Yieza = Y2 + OYke1—9yk =0

8. (-1) k(-1)%, 5% yirs =3 Yir2 =9 Yis1 =5 yk = 0

9. (-1 3 Yiws + Vis2 =9 Vs —9 Yk =0 10. 1% (-1)%; Yira = 2 Yk + Yk = 0

In exercises 11 and 12, find a basis for the solution space of the difference equation.
11. ka2 = 7 Y1 + 12y =0 12. 16Yk+2 + 8 Yks1 —3 Yk =0

In exercises 13 and 14, show that the given signal is a solution of the difference equation.
Then find the general solution of that difference equation.

13.yk =K% Yie2 + 3Yke1 — 4y = 10k + 7
14.yk=2-2K; Yks2 = (9/2) Yks1 + 2y =3 k + 2

Write the difference equations in exercises 15 and 16 as first order systems, Xx+1 = A Xk,
for all k.

15 Vi+a =6 Yke3 + B Yks2 + 6 Yks1 =9y =0

16. Yirs — (3/4)yis2 + (1/16)yy = 0
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Lecture 28

Eigenvalues and Eigenvectors

In this lecture we will discuss linear equations of the form Ax = x and, more generally,
equations of the form Ax =Ax, where A is a scalar. Such equations arise in a wide
variety of important applications and will be a recurring theme in the rest of this course.

Fixed Points
A fixed point of an nxn matrix A is a vector x in R" such that Ax = x. Every square
matrix A has at least one fixed point, namely x = 0. We call this the trivial fixed point of
A.
The general procedure for finding the fixed points of a matrix A is to rewrite the equation
Ax = x as Ax = Ix or, alternatively, as

(I-Ax=0 1)
Since this can be viewed as a homogeneous linear system of n equations in n unknowns
with coefficient matrix 1 — A, we see that the set of fixed points of an nxn matrix is a
subspace of R" that can be obtained by solving (1).

The following theorem will be useful for ascertaining the nontrivial fixed points of a
matrix.

Theorem 1

If A'is an n x n matrix, then the following statements are equivalent.
(a) A has nontrivial fixed points.

(b) I = Ais singular.

(c) det(l —A) =0.

Example 1
In each part, determine whether the matrix has nontrivial fixed points; and, if so, graph

the subspace of fixed points in an xy-coordinate system.

3 6 0 2
@ AZL 2} (®) A{o J
Solution

(a) The matrix has only the trivial fixed point since.

R P El

det(l — A) =det (:1 _J: (-1)(-2) - (-1)(-6)=—4#0

(b) The matrix has nontrivial fixed points since
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a5 o D6 )

1 -2
det(l — A) =det ( j:O
0 0

The fixed points x =(x, y) are the solutions of the linear system (I — A)x=0, which we can
express in component form as

1 -2jx| |0
0 ofly| |0
A general solution of this system is

Xx=2ty=t (2)

which are parametric equations of the line y=+x. It follows from the corresponding
vector form of this line that the fixed points are

IR
i N

so every vector of form (3) is a fixed point of A.

y

Il
N[~
>

Figure 1

Eigenvalues and Eigenvectors

In a fixed point problem one looks for nonzero vectors that satisfy the equation Ax = x.

One might also consider whether there are nonzero vectors that satisfy such equations as
AX = 2x, Ax = -3x, AX = +/2x

or, more generally, equations of the form Ax = Ax in which A is a scalar.

Definition _ If A'is an n x n matrix, then a scalar A is called an eigenvalue of A if there
is a nonzero vector x such that Ax =Ax. If A4 is an eigenvalue of A, then every nonzero
vector x such that Ax = Ax is called an eigenvector of A corresponding to A .
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Example 2
1 6 6 3 .
Let A= g ol u= 5 and v= o Are u and v eigenvectors of A?

Solution

4
ol oA

Thus u is an eigenvector corresponding to an eigenvalue — 4, but v is not an eigenvector
of A, because Av is not a multiple of v.

Example 3

1 6
Show that 7 is an eigenvalue of A = L 2} , find the corresponding eigenvectors.

Solution
The scalar 7 is an eigenvalue of A if and only if the equation

AX = 7X (A)
has a nontrivial solution. But (A) is equivalent to Ax — 7x =0, or

(A-71)x=0 (B)

To solve this homogeneous equation, form the matrix

w71y oo 7S 3|

The columns of A — 71 are obviously linearly dependent, so (B) has nontrivial solutions.
Thus 7 is an eigenvalue of A. To find the corresponding eigenvectors, use row operations:

-6 6 0
5 50

{1 - 0}(—1&—&)

5 -5 0
1 -1 0
0 o

1
The general solution has the form X{J. Each vector of this form with x, #0 is an

eigenvector correspondingto 4 =7.

The equivalence of equations (A) and (B) obviously holds for any A in place of A1=7.
Thus A is an eigenvalue of A if and only if the equation

(A-A)x=0 ©
has a nontrivial solution.
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Eigen space

The set of all solutions of (A - A1)x = 0 is just the null space of the matrix A - A1. So
this set is a subspace of R" and is called the eigenspace of A corresponding to A. The

eigenspace consists of the zero vector and all the eigenvectors corresponding to A4 .

Example 3 shows that for matrix A in Example 2, the eigenspace corresponding to A =7
consists of all multiples of (1, 1), which is the line through (1, 1) and the origin. From
Example 2, one can check that the eigenspace corresponding to A= -4 is the line through
(6, -5). These eigenspaces are shown in Fig. 1, along with eigenvectors (1, 1) and (3/2, -

5/4) and the geometric action of the transformation x — Ax on each eigenspace.

4 Muiltiplication . ¥
by 7 -

Eigenspace
forA=7

1 1 1 \.'L
1 T 1 1

L
= |
-

- . e
Multipiication

b A Eigenspace
y e

for A =-—4

FICURE 2 EigenspacesforA = —4and A = 7.

4 -1 6
Example4 Let A=12 1 6]
2 -1 8

Find a basis for the corresponding eigenspace where eigen value of matrix is 2.
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4 -1 6112 0O 2 -1 6
Solution Form A-21={2 1 6|-|0 2 0|=|2 -1 6| and row reduce the
2 -1 8/|0 0 2 2 -1 6
2 -1 60 augmented matrix for (A -21) x = 0:
2 -1 ]
12 -1 60
(2 -1 6 0
~/0 0 0 O|R,—R
2 -1 6 0
(2 -1 6 0
~10 0 0 O|R,—R,
0 00O

At this point we a_re confident that 2 is indeed an eigenvalue of A because the equation
(A -2I) x =0 has free variables. The general solution is
2X, — X, +6X; =0........ (a)

Letx, =t, X, =5 then

2Xx, =t—-6s

xiz(%)t—&%

then

x| [t/2-3s] [t/2] [-3s 1/2 -3
X, |[=]|t =t |+0 |=t|1 |+s|0
X | |S 0 S 0 1

By back substitution the general solution is

X, y2) ]38
X, |[=X%| 1 [+X%| 0 [, x,and x, free
ES 0 | 1
The eigenspace, shown in Fig. 2, is a two — dimensional subspace of R®. A basis is
1] [-3]
21,] O is a basis.
0] 1 |
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Mmli.pliu:u.h:m
hy A

FIGURE 3 A ucts a5 a dilmion on fhe eigemspae-

The most direct way of finding the eigenvalues of an nxn matrix A is to rewrite the
equation Ax=Ax as Ax = Alx , or equivalently, as

(A1-A)x=0 4)
and then try to determine those values of A, if any, for which this system has nontrivial
solutions. Since (4) have nontrivial solutions if and only if the coefficient matrix A1 - Aiis
singular, we see that the eigenvalues of A are the solutions of the equation

det(A1-A)=0 (5)
Equation (5) is known as characteristic equation. Also, if A is an eigenvalue of A, then
equation (4) has a nonzero solution space, which we call the eigenspace of A
corresponding to 4. It is the nonzero vectors in the eigenspace of A corresponding to A
that are the eigenvectors of A correspondingto 4.
The above discussion is summarized by the following theorem.

Theorem  If Alisan nxn matrix and A is a scalar, then the following statements are
equivalent.

(i) A is an eigenvalue of A.

(i) 4 is asolution of the equation det(Al - A)=0.

(iii) The linear system (Al - A)x =0 has nontrivial solutions.

Eigenvalues of Triangular Matrices  If Ais an nxn triangular matrix with diagonal
entries a1, az, ..., am, then Al-A is a triangular matrix with diagonal entries
A-a,,A-a,,...,A-a,. Thus, the characteristic polynomial of A is

det(Al - A) = (1-a,)(A-,)-(1-a,,)
which implies that the eigenvalues of A are

j'l :all’ /12 :a22’ te ;Ln =a‘nn
Thus, we have the following theorem.
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Theorem If A is a triangular matrix (upper triangular, lower triangular, or diagonal)
then the eigenvalues of A are the entries on the main diagonal of A.

Example 5 (Eigenvalues of Triangular Matrices)

2 0 00
. : - : : -1 -2 0 0].
By inspection, the characteristic polynomial of the matrix A= : 6 0 is
B
3+ -4 36

p(A)=(A-3)(A+2)(1-6)°. So the distinct eigenvalues of A are 1=1, A=
A=6.

2
—-%, and

Eigenvalues of Powers of a Matrix Once the eigenvalues and eigenvectors of a
matrix A are found, it is a simple matter to find the eigenvalues and eigenvectors of any
positive integer power of A. For example, if A is an eigenvalue of A and x is a

corresponding eigenvector, then A*x = A(Ax) = A(A1x) = A(AX) = A(AX) = A°x, which
shows that A2 is an eigenvalue of A? and x is a corresponding eigenvector. In general we
have the following result.

Theorem _ If A is an eigenvalue of a matrix A and X is a corresponding eigenvector,
and if k is any positive integer, then A* is an eigenvalue of A* and x is a corresponding
eigenvector.

Some problems that use this theorem are given in the exercises.

A Unifying Theorem _ Since A is an eigenvalue of a square matrix A if and only if
there is a nonzero vector x such that Ax = A x, it follows that 4 =0 is an eigenvalue of A
if and only if there is a nonzero vector x such that Ax = 0. However, this is true if and
only if det(A) = 0, so we list the following

Theorem  If Aisan nxn matrix, then the following statements are equivalent.
(@) The reduced row echelon form of Ais I,.

(b) A is expressible as a product of elementary matrices.
(c) Alis invertible.

(d) Ax = 0 has only the trivial solution.

(e) Ax = b is consistent for every vector b in R".

(f) Ax = b has exactly one solution for every vector b in R"
(9) The column vectors of A are linearly independent.

(h) The row vectors of A are linearly independent.

(i) det(A) = 0.

(1) A=01is not an eigenvalue of A.
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Example 6
6 -3 1
(1) Is5aneigenvalue of A={3 0 5|?
2 2 6

(2) If x is an eigenvector for A corresponding to 4, what is A®x?

Solution

(1) The number 5 is an eigenvalue of A if and only if the equation (A- A1) x =0 has a
nontrivial solution. Form

6 -3 1|/|5 00 1 31
A-51=|3 0 5|-|0 5 0|=|3 5 5
2 2 6[|0 0 5 2 2 1
and row reduce the augmented matrix:
1 310
5 5
2

-3

w

N
N R PN -

l
O Ok O O F, N O PFP DN

31
4 R, - 2R,
0

O oo oo o 9 9 o <

-5

At this point it is clear that the homogeneous system has no free variables. Thus A — 51 is
an invertible matrix, which means that 5 is not an eigenvalue of A.

(2). If x is an eigenvector for A corresponding to A, then Ax = A x and so

A?X = A(AX) = AAX = A°X
Again  A’x = A(A?X) = A(A®X) = A’Ax = A°x. The general pattern, A*x=A*x, is
proved by induction.

Exercises

3 2
1.1s A =2 an eigenvalue of {3 8}?
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= 2 1
2.1s 1-;\/5} an eigenvector of L 4} ? If so, find the eigenvalue.
4] 3 7 9
3.1s | =3 | an eigenvector of | -4 -5 1 |? If so, find the eigenvalue.
1 2 4 4
(1] (3 6 7
4.1s | -2 | an eigenvector of | 3 3 7 |? If so, find the eigenvalue.
1 | 5 6 5
3 0 -1
5.1s A=4 aneigenvalueof | 2 3 1 |?Ifso, find one corresponding eigenvector.
-3 4 5
1 2 2
6.1s A =3 aneigenvalue of | 3 -2 1 |?Ifso, find one corresponding eigenvector.
0 1 1

In exercises 7 to 12, find a basis for the eigenspace corresponding to each listed
eigenvalue.

4 -2 7 4
7. A= A =10 8. A= 1,x =15
4 0 1 1 0 -1
9. A=|-2 n.=A|2,3 10. A=|1 -3 0A= 2-
-2 0 1 4 -13 1
) -
4 2 3 30 0
1 310
11. A=|-1 In=3]|, 12. A= A=4
0110
2 4 9
0 0 0 4]

Find the eigenvalues of the matrices in Exercises 13 and 14.
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0 0 O
13. |10 5 14.10 0 O
-1 1 -3
1 2 3
15.For A=|1 2 3|, find one eigenvalue, with no calculation. Justify your answer.
1 2 3

16. Without calculation, find one eigenvalue and two linearly independent vectors of
5 5 5

A=|5 5 5. Justify your answer.
555
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Lecture 29

The Characteristic Equation

The Characteristic equation contains useful information about the eigenvalues of a square
matrix A. It is defined as

det(A-A41)=0,
Where A is the eigenvalue and | is the identity matrix. We will solve the Characteristic
equation (also called the characteristic polynomial) to work out the eigenvalues of the
given square matrix A.

2 3
Example 1 Find the eigenvalues of A:{3 6]

Solution__ In order to find the eigenvalues of the given matrix, we must solve the matrix
equation

(A-A1)x=0
for the scalar A4 such that it has a nontrivial solution (since the matrix is non singular).
By the Invertible Matrix Theorem, this problem is equivalent to finding all 4 such that
the matrix A-Al is not invertible, where

w3 5 M

By definition, this matrix A-Al fails to be invertible precisely when its determinant is
zero. Thus, the eigenvalues of A are the solutions of the equation

2-2 3
det(A-M):det[ }:o.
3 -6-4

Recall that det[a b } —ad -be
c d
So det(A-A1)=(2-2)(-6-1)-(3)(3)
=-12+61-2A+A"-9
=A% +41-21
AP +41-21=0,
(1-3)(1+7)=0,
so the eigenvalues of A are 3and —7.

1 5 0
Example 2 Compute det Afor A={2 4 -1
0 -2 0
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Solution
Firstly, we will reduce the given matrix in echelon form by applying elementary row
operations

by R, — 2R,
[1 5 0]
A=/0 -6 -1|,
10 -2 0]

byR, < R,
1 5 0]
~10 -2 0|,
0 -6 -1)

by R, —3R,
1 5 0]
~10 -2 0,
0 0 -1

which is an upper triangular matri>;. Therefore,
det A=(1)(-2)(-2)

=2.

Theorem 1  Properties of Determinants
Let A and B be two matrices of order n then

(@) Ais invertible if and only if det A= 0.

(b) det AB = (det A)(det B).

(c) det A" =det A.

(d) If Ais triangular, then det A is the product of the entries on the main diagonal of A.
(e) A row replacement operation on A does not change the determinant.

(F) A row interchange changes the sign of the determinant.

(9) A row scaling also scales the determinant by the same scalar factor.

Note  These Properties will be helpful in using the characteristic equation to find

eigenvalues of a matrix A.

Example 3 (a) Find the eigenvalues and corresponding eigenvectors of the matrix

o, ]

(b) Graph the eigenspaces of A in an xy-coordinate system.

Solution _ (a) The eigenvalues will be worked out by solving the characteristic equation
of A. Since
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ety S 7

The characteristic equation det(41 - A) =0 becomes
A-1 -3
-4 A-2

Expanding and simplifying the determinant, it yields

A%-31-10=0,

or

(1+2)(1-5)=0. (1)
Thus, the eigenvalues of Aare 1 =-2 and 1 =5.

=0.

Now, to work out the eigenspaces corresponding to these eigenvalues, we will solve the

system
A-1 -3 7[x] [o ,
byt ¢

for A=-2 and A =5. Here are the computations for the two cases.

(i) Case A=-2
In this case Eq. (2) becomes
-3 3| x| |0
4 —4|y| |o]
which can be written as
-3x-3y =0,
—A4X—-4y=0=x=-Y.
In parametric form,

=-ty=t. 3)
Thus, the eigenvectors corresponding to A =—2 are the nonzero vectors of the form

[ -t -1
| *]- }:{ } @
Ly] [t 1
It can be verified as
1 3|[-t] [2t -t
= =-2 =-2X
M NEEEEN

AX = AX

Thus,

(if) Case A =5
In this case Eq. (2) becomes

= 2]

which can be written as

@Virtual University Of Pakistan 386



29-The Characteristic Equation VU

4x-3y=0
3
—4Xx+3y=0=> X=Zy.

In parametric form,
3
X==t, y=t. 5
2y ()

Thus, the eigenvectors corresponding to A =5 are the nonzero vectors of the form
X 3t 3
X = = 4 :t 4 . (6)
y t 1
It can be verified as
1 3|3t Lt 3t
AX = “Tl=| *|=5|* |=5x
4 2|t 5t t
(b) The eigenspaces corresponding to A=-2 and A=5 can be sketched from the
parametric equations (3) and (5) as shown in figure 1(a).

Figure 1(a)

It can also be drawn using the vector equations (4) and (6) as shown in Figure 1(b). When
an eigenvector x in the eigenspace for A =5 is multiplied by A, the resulting vector has
the same direction as x but the length is increased by a factor of 5 and when an
eigenvector x in the eigenspace for A =-2 is multiplied by A, the resulting vector is
oppositely directed to x and the length is increased by a factor of 2. In both cases,
multiplying an eigenvector by A produces a vector in the same eigenspace.
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Figure 1(b)

Eigenvalues of an N XN matrix

Eigen values of an nxn matrix can be found in
the similar fashion. However, for the higher values of n, it is more convenient to work
them out using various available mathematical software. Here is an example for a 3x3
matrix.

0 -1 0
Example 4 Find the eigen values of the matrix A={ 0 0 1
-4 -17 8

Solution
A 00 0 -1 0

det(A1-A)=det{0 4 0|-|0 0 1
00 A| |4 -17 8

A1 0
o 2 )
4 17 2-8

=1%-81%+171-4,
which yields the characteristic equation
A-8A°+171-4=0 (8)

To solve this equation, firstly, we will look for integer solutions. This can be done by
using the fact that if a polynomial equation has integer coefficients, then its integer
solutions, if any, must be divisors of the constant term of the given polynomial. Thus, the
only possible integer solutions of Eq.(8) are the divisors of -4, namely +1,+2, and +4.
Substituting these values successively into Eq. (8) yields that 4 =4 is an integer solution.
This implies that A - 4 is a factor of Eq.(7), Thus, dividing the polynomial by 41— 4 and
rewriting Eq.(8), we get
(A-4)(A*-44+1)=0.
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Now, the remaining solutions of the characteristic equation satisfy the quadratic equation
AP-42+1=0.

Solving the above equation by the quadratic formula, we get the eigenvalues of A as

A=4, A=2++3, A=2-3

5 -2 6 -1
. - . 0 3 80

Example 5 Find the characteristic equation of A= 0 0 5
0 0 0 1

Solution _ Clearly, the given matrix is an upper triangular matrix. Forming A- A1, we
get
5-4 -2 6 -1
0 3-2 -8 0
0 5-4 4
0 0 0 1-4
Now using the fact that determinant of a triangular matrix is equal to product of its
diagonal elements, the characteristic equation becomes
(5-1)*(3-2)(1-1) =0.
Expanding the product, we can also write it as
A*-142° +684%-130A +75=0.
Here, the eigenvalue 5 is said to have multiplicity 2 because (A - 5) occurs two times as a
factor of the characteristic polynomial. In general, the (algebraic) multiplicity of an
eigenvalue A is its multiplicity as a root of the characteristic equation.

det(A- A1) =det

Note
From the above mentioned examples, it can be easily observed that if A is an nxnmatrix,
then det (A — A1) is a polynomial of degree n called the characteristic polynomial of A.

Example 6 The characteristic polynomial of a 6x6 matrix isA°-44°-121*. Find the
eigenvalues and their multiplicities.
Solution
In order to find the eigenvalues, we will factorize the polynomial as
A%-42°-122°

=A*(A%-44-12)

=1*(1-6)(1+2)
The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1) and — 2 (multiplicity 1).We
could also list the eigenvalues in Example 6 as 0, 0, 0, 0, 6 and -2, so that the eigenvalues
are repeated according to their multiplicities
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Activity
Work out the eigenvalues and eigenvectors for the following square matrix.
5 8 16
A= 4 1 8
-4 -4 -11
Similarity

Let A and B be two n X n matrices, A is said to be similar to B if there exist
an invertible matrix P such that

P AP =B,
or equivalently,
A=PBP ™,
Replacing Q by P *, we have
Q'BQ=A.

So B is also similar to A. Thus, we can say that A and B are similar.

Similarity transformation

The act of changing A into P AP is called a similarity
transformation.

The following theorem illustrates use of the characteristic polynomial and it provides the
foundation for several iterative methods that approximate eigenvalues.

Theorem 2
If n x n matrices A and B are similar, then they have the same
characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Proof If B =P AP, then

B-Al =P*'AP-Al =P*'AP-AP'P =P*(AP-AP) =P*(A-A1)P
Using the multiplicative property (b) of Theorem 1, we compute

det(B - A1) = det[ P*(A-1)P ]

=det(P™").det(A- A1).det(P) (A)

Since
det (P ™). det(P) = det(P "'P)

=det |

= 1,
Eq. (A) implies that

det(B-Al) =det(A- Al).

Hence, both the matrices have the same characteristic polynomials and therefore, same
eigenvalues.

Note It must be clear that Similarity and row equivalence are two different concepts. ( If
A is row equivalent to B, then B = EA for some invertible matrix E.) Row operations on
a matrix usually change its eigenvalues.
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Application to Dynamical Systems

Dynamical system is the one which evolves with the passage
of time. Eigenvalues and eigenvectors play a vital role in the evaluation of a dynamical
system. Let’s consider an example of a dynamical system.

95 .03

05 97}. Analyze the long term behavior of the dynamical

Example 7 Let A:{

0.6
system defined by xi1 = Axy (k =0, 1, 2, ...), with x, = {0 4}
Solution _ The first step is to find the eigenvalues of A and a basis for each eigenspace.
The characteristic equation for A is
0=det(A-Al)

0.95-12  0.03
0 = det = (.95- 2)(.97 - 2) - (.03)(.05
[ 0.05 o.97-/J (95-2)(97-2)-(03)(09)
= 17-1.921+.92

By the quadratic formula

1.92+4/(1.92)*-4(.92) 1.92++/.0064 1.92+.08
2

A= > 5 lor .92
Firstly, the eigenvectors will be found as given below.

AX = AX,

(AXx—Ax) =0,

(A-Al)x=0.

For =1
095 003) (1 0)](%)_,
0.05 097) (0 1)(lx,)

~0.05 0.03(x)_,
0.05 -0.03){x,)

which can be written as
—0.05x, +0.03x, =0

0.03 3
0.05x, —0.03x, =0 = X, =——X, Or X, =—X,.
1 2 Xl 005 2 Xl 5 2
In parametric form, it becomes

xlzgt and x, =t.

For 2 =0.92
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Ko.gs o.os)_(o.gz 0 H(xlj o
0.05 0.97 0 0.92)|x, ’
(0.03 o.osj(xll o

0.05 0.05)\ x,

It can be written as

0.03x, +0.03x, =0

0.05x, +0.05%, =0 = x, =X,

In parametric form, it becomes
X, =tand x, =—t

Thus, the eigenvectors correspondingto A=1and A = .92 are multiples of

3 1
v, = LJ and v, = [J respectively.

The next step is to write the given xo in terms of vy and v,. This can be done because
{v1, v, } is obviously a basis for R So there exists weights ¢, and ¢, such that

c
Xo:C1V1+C2V2:[V1 V2]|:Cl} (1)
2
c i 3 17°[.60
In fact, [Cjz[vl v,] 1XO:{5 _J [40}
Here,
3 17" 1 1 -1
SV A R
5 - 3 1 5 41 8/-5 3
5 -1
Therefore,

¢ | 1(-1 -1.60| |.125 @
c,| -8/-5 3| .40| |.225
Because v; and v, in Eq.(1) are eigenvectors of A, with Av; =v; and Av, = (.92) vy, Xk
can be computed as
X1 = AXp = C1Avs + CLAV,  (Using linearity of X — AX)
=Cyv1 +C2 (.92)v2 (v1 and v, are eigenvectors.)

X, = AX1 = C1AV; + Cp (92)AV, = C1v1 + €3 (.92)° Vo,
Continuing in the same way, we get the general equation as

Xk = C1V1 + €2(.92)"v, k=012 ..).
Using ¢, and ¢, from Eq.(2),
3 1
X, = .125{5}.225(.92){ J (k=0,12,..) (3)

This explicit formula for x gives the solution of the difference equation Xx+1 = AXx.
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375
Ask — oo, (.92)¢ tends to zero and xi tends to [ 625} =.125v,.

1 -4
Example 8  Find the characteristic equation and eigenvalues of A= L ) }

Solution  The characteristic equation is
1-4 -4
0=det(A- A1) =det
4 2-2
=(1-2)(2-2)-(-4)(4),
=1%-31+18,
which is a quadratic equation whose roots are given as

1= 3+4/(-3)* -4(18)
2
3+/-63
2
Thus, we see that the characteristic equation has no real roots, so A has no real
eigenvalues. A is acting on the real vector space R? and there is no non-zero vector v in
R? such that Av = A v for some scalar A .
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Exercises

Find the characteristic polynomial and the eigenvalues of matrices in exercises 1 to 12.

3 -2
1.
_1 _1_
SR
3.
__1 4_
5 3
5
-4 4
1 0 -1
7 3 -1
06 0
4 0 0
9.5 3 2
-2 0 2
6 -2 0
11.]-2 9 0
5 8 3

5 -3
2.
-4 3
2
4.
_4 8_
S
6.
- 3_
0 3 1
8./3 0 2
120
-1 0 1
10.|-3 4 1
|0 0 2
5 -2 3
12210 1 0
6 7 -2

For the matrices in exercises 13 to 15, list the eigenvalues, repeated according to their

multiplicities.
4 7 0 2]
0 3 4 6
13.
0O 0 3 -8
0 0 0 1

5 0

8 -4
14.

7

1 -5

o
O O O
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3 0
-5 0
153 8 0
0 -7 2
4 1 9

16. It can be shown that the algebraic multiplicity of an eigenvalue A is always greater

O O O

|
N

w O O O O

than or equal to the dimension of the eigenspace corresponding to A. Find h in the matrix

A below such that the eigenspace for A =5 is two-dimensional:

o O O o

2 6 -1
3 h 0
0 5 4
0 0 1
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Lecture 30

Diagonalization

Diagonalization is a process of transforming a vector A to the form A = PDP™ for some
invertible matrix P and a diagonal matrix D. In this lecture, the factorization enables us to
compute A* quickly for large values of k which is a fundamental idea in several
applications of linear algebra. Later, the factorization will be used to analyze (and
decouple) dynamical systems.

The “D” in the factorization stands for diagonal. Powers of such a D are trivial to
compute.

50 5 0|5 0 2
Example 1 IfD:[0 3},thenD2={O }[ }:{5 0}and

0 3
D3:5 0|52 o:53 0
0 3//o0 3| |0 3
k
In general, D":5 ciforkzl
0 3

The next example shows that if A = PDP™ for some invertible P and diagonal D, then it
is quite easy to compute A,

7 2
Example 2 Let A:{ 4 J. Find a formula for A¥, given that A = PDP™, where

1 1 50
P= and D =
5 3Jmao-s

Solution _ The standard formula for the inverse of a 2x2 matrix yields

o1 _ 2 1
1A

By associative property of matrix multiplication,
A’ = (PDP*)(PDP™*)=PD(P*P)DP™ =PDIDP" = PDDP*
1
where | is the identity matrix.

_pprpr|1 L[5 o]f2 1
1 -2)[0 -1 -1

Again, A’ =(PDP")A*’=(PDP*)P D*P* =PDD’P* =PD*P™
—_—

1

1 115" 2 1
_ A" =PD*P* = > 0 ,
Thus, in general, for k >1, -1 200 31 -1
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5 3 |[2 1
{;ﬁ 43@{1-J’
| 25-3¢ 5.3
_{zy-zﬁ 23“54'
Activity
Work outC*, given that C = PDP ™ where

10 2 0
P= , D=
LR
Remarks

A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that is,
if A = PDP™* for some invertible matrix P and some diagonal matrix D. The next theorem
gives a characterization of diagonalizable matrices and tells how to construct a suitable
factorization.

Theorem1 The Diagonalization Theorem
An n x n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In fact, A = PDP™, with D a diagonal matrix, if and only if the columns of P are n
linearly independent eigenvectors of A. In this case, the diagonal entries of D are
eigenvalues of A that correspond, respectively, to the eigenvectors in P.

In other words, A is diagonalizable if and only if there are enough eigenvectors to form a
basis of R". We call such a basis an eigenvector basis.

Proof _ First, observe that if P is any nxn matrix with columns vy, ... , vy and if D is
any diagonal matrix with diagonal entries 4,,...., 4, then
AP=Av, v, .. v ]=[Av, Av, .. Av], (1)
A 0 - 0
0 4 0
while PD=P| . '’ Cl=lA AV, e AV, (2)
0 0 - A

Suppose now that A is diagonalizable and A = PDP™. Then right-multiplying this
relation by P, we have AP = PD. In this case, (1) and (2) imply that

[Avl Av, - AVn] = [ﬂ‘lvl AN, o ﬂ’nvn] 3
Equating columns, we find that
Av, = AV, AV, = 4V, AV, = AV, 4)

Since P is invertible, its columns vy,..., v, must be linearly independent. Also, since these
columns are nonzero, Eq.(4) shows that A,....., 4, are eigenvalues and vy, ..., v, are
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corresponding eigenvectors. This argument proves the “only if” parts of the first and
second statements along with the third statement, of the theorem.

Finally, given any n eigenvectors vy, ..., v use them to construct the columns of P and
use corresponding eigenvalues A,,....., 4, to construct D. By Egs. (1) — (3). AP =PD. This
IS true without any condition on the eigenvectors. If, in fact, the eigenvectors are linearly
independent, then P is invertible (by the Invertible Matrix Theorem), and AP = PD
implies that A = PDP™.

Diagonalizing Matrices

1 3 3
Example 3 Diagonalize the following matrix, if possible A=|-3 -5 -3
3 3 1

Solution _ To diagonalize the given matrix, we need to find an invertible matrix P and a
diagonal matrix D such that A = PDP™ which can be done in following four steps.

Step 1 Find the eigenvalues of A.
The characteristic equation becomes
0=det(A-A1)=-1>-31"+4
=—(A-1)(1+2)°
The eigenvalues are A =1and 4 =-2 (multiplicity 2)
Step 2 Find three linearly independent eigenvectors of A. Since A is a 3x3 matrix and
we have obtained three eigen values, we need three eigen vectors. This is the critical step.

If it fails, then above Theorem says that A cannot be diagonalized. Now we will produce
basis for these eigen values.

Basis vector for_4 =1:

(A= Al)x=0

[0 3 37[x] [0
3 -6 -3|x [=[0].
3 3 0]x]| |0

After applying few row operations on the matrix (A— A1), we get
0 1 1][x] [O
3 3 0}|x |=]|0],
10 0 Of[x| [O
which can be written as
X, +%X, =0
3%, +3X%, =0
In parametric form, it becomes
X =t, X, =-t, X; =t
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1
Thus, the basis vector for A=11is v, =| -1
1
Basis vector for_1 =-2
(A-A1)x=0
3 3 3| X 0
-3 -3 3% |=|0],
3 3 3|lx 0
which can be written as
3%, +3X, +3%, =0
—3%X, —3X, —3%; =0
3%, +3X, +3%, =0
In parametric form, it becomes
X, =-S—t, X, =8, X; =t
Now,
X —-Ss—t -S —t
X, [=| s |=|s |[+| 0]
X, t 0 t
-1] [-1
=s| 1 |+t] 0|,
| 0| 1
1] -1
=X,| 1 [+X%| 0
| 0] 1
-1 -1
Thus, the basisfor A=-2isv,=| 1 |and v,=| O
0 1

We can check that {v1, v2, v3} is a linearly independent set.
Step 3 Check that {v1, v, v3} is a linearly independent set.
Construct P from the vectors in step 2. The order of the vectors is not important. Using

1 -1 -1
the order chosen instep 2, form P =[v, v, v,]=|-1 1 O
1 0 1
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Step 4 Form D from the corresponding eigen values. For this purpose, the order of the
eigen values must match the order chosen for the columns of P. Use the eigen value 4 = -
2 twice, once for each of the eigenvectors corresponding to 4 =-2:

1 0 O
D={0 -2 O
0 0 -2

Now, we need to check do P and D really work. To avoid computing P *, simply verify
that AP = PD. This is equivalent to A = PDP ™ when P is invertible.We compute

1 3 3|1 1 1] [1 2 2
AP=|3 5 -3||-1 1 0|=[-1 -2 0
3 3 11 0 1| |1 0 -2
1 1 1)1 0 0] 1 2 2
PD=|-1 1 0|0 2 0|=|-1 2 0
1 0 1/lo 0 -2] |1 0 -2

Example 4 Diagonalize the following matrix, if possible.

2 4 3
A=|-4 6 -3
3 3 1

Solution _ The characteristic equation of A turns out to be exactly the same as that in
example 3 i.e.,

0=det(A-Al)
2-4 4 3
=| -4 -6-1 -3
3 3 1-4
=-1%-31°+4

=-(A-1)(A+2)?
The eigen values are A= 1 and A= -2 (multiplicity 2). However, when we look for eigen
vectors, we find that each eigen space is only one — dimensional.
1

Basisfor A=1: v, =|-1

Basisfor A=-2: v,=|1
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There are no other eigen values and every eigen vector of A is a multiple of either v; or
V2. Hence it is impossible to form a basis of R® using eigenvectors of A. By above
Theorem, A is not diagonalizable.

Theorem 2 Ann x n matrix with n distinct eigenvalues is diagonalizable.
The condition in Theorem 2 is sufficient but not necessary i.e., it is not necessary for an n
X n matrix to have n distinct eigen values in order to be diagonalizable. Example 3 serves

as a counter example of this case where the 3 x 3 matrix is diagonalizable even though it
has only two distinct eigen values.

Example 5 Determine if the following matrix is diagonalizable.

5 8 1
A=0 0 7
0 0 -2

Solution  In the light of Theorem 2, the answer is quite obvious. Since the matrix is
triangular, its eigen values are obviously 5, 0, and -2.Since A is a 3 x 3 matrix with
three distinct eigen values, A is diagonalizable.

Matrices Whose Eigenvalues Are Not Distinct

If an n x n matrix A has n distinct eigen values, with corresponding eigen vectors vy ,..., v
nand if P =[v; ... vq], then P is automatically invertible because its columns are linearly
independent , by Theorem 2 of lecture 28. When A is diagonalizable but has fewer than n
distinct eigen values, it is still possible to build P in a way that makes P automatically
invertible, as shown in the next theorem.

Theorem 3  Let A be an n x n matrix whose distinct eigen values are A, ...,Kp .

a. For 1<k<p, the dimension of the eigen space for A, is less than or equal to the
multiplicity of the eigen value A,

b. The matrix A is diagonalizable if and only if the sum of the dimensions of the
distinct eigen spaces is equal to n, and this happens if and only if the dimension of

the eigen space for each of A, equals the multiplicity of A, .
c. If Ais diagonalizable and B is basis for the eigen space corresponding to A, for

each k, then the total collection of vectors in the sets By, .., By form an
eigenvector basis for R" .

Example 6 Diagonalize the following matrix, if possible.
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5 0 0 O
0 5 0 O
A=
1 4 3 0
-1 -2 0 -3]
Solution Since A is triangular matrix, the eigenvalues are 5 and -3, each with
multiplicity 2. Using the method of lecture 28, we find a basis for each eigen space.
8] [-16]
. 4 4
Basisfor A=5:v, = and v, =
1 0
10 L 1]
- o]
0 0
Basis for A =-3:v, = and v, =
1 0
0 1

The set {v1,...,v4}is linearly indep_enaent, by The_zor_em 3. So the matrix P =[v;...v4] is
invertible, and A=PDP * , where

-8 -16 0 O 5 0 0 O
4 4 00 050 O
P= and D =
1 0 1 0 0 0 -3 0
0 1 0 1] 0 0 0 -3]
Example 7
8 4 -3
(1) Compute A® where A= -

-3 12 3 2
2 LetA:{ 5 7 ]vl = L} ,andv, = {J Suppose you are told that v, and
v, are eigenvectors of A. Use this information to diagonalize A.

(3) Let A be a 4 x 4 matrix with eigenvalues 5, 3, and -2, and suppose that you
know the eigenspace for A=3 is two-dimensional. Do you have enough
information to determine if A is diagonalizable?

Solution
Here, det (A- A 1)=A% -31+2=(A-2)(L-1).
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The eigen values are 2 and 1, and corresponding eigenvectors are

3 1
v,=|_|,and v, =| |.Next, form
2 1
31 2 0 L1 -1
P= D= ,and P =
2 1 01 2 3

3 1)|2° 1 -1
SinceA:PDP‘l,AB:PDBP:{ }{2 OM }

2 1jlo 2*||-2 3
[3 1][256 o1 -1
1210 1]2 3
_[766 -765
510 -509
-3 12][3] [3]
(2)Here, Av, = = =1v,,and
2 7]1] |1
-3 1227 [6]
Av, = = _|=3V,
2 7]1] [3]

Clearly, vy and v, are eigenvectors for the eigenvalues 1 and 3 , respectively. Thus

. {3 2} 1 o}

A=PDP ~, where P = and D =
11 10 3

(3) Yes A is diagonalizable. There is a basis {v1, v, } for the eigen space corresponding
to A=3. Moreover, there will be at least one eigenvector for A =5 and one for A=-2 say
vz and v4. Then {vi, ...., v4 } is linearly independent and A is diagonalizable , by
Theorem 3. There can be no additional eigen vectors that are linearly independent from
v1 to v4 because the vectors are all in R* .Hence the eigenspaces for =5 and A=-2 are
both one-dimensional.
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Exercise

In exercises 1 and 2, let A = PDP™ and compute A”.

5 7 2 0 2 -3 1 0
1. P= D= 2.P= D=
{2 3} {o J {—3 5} {o 1/2}

In exercises 3 and 4, use the factorization A = PDP* to compute A¥, where k represents
an arbitrary positive integer.

> :B(aa—b) E}:E ﬂg ﬂ{—ls ﬂ
e S

In exercises 5 and 6, the matrix A is factored in the form PDP™. Use the Diagonalization
Theorem to find the eigenvalues of A and a basis for each eigenspace.

2 17 [t 1 205 0 O|[1/4 1/2 1/4
5/1 3 1|=(1 0 -1|[0 1 0|1/4 1/2 -3/4
12 2] |1 -1 0]l0 0 1][1/4 -1/2 1/4
40 2] [-2 0 -1][5 0 0][0 0O 1
6./12 5 4|=/0 1 2|0 502 1 4
00 5|/ |1 0 0J00 4/[-10 -2

Diagonalize the matrices in exercises 7 to 18, if possible.

3 -1 2 3
7. 8.

1 5} {4 J
-1 4 -2

4
9.|-3 4 0 10. | 2
-3 1 3 2
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Lecture 31

Eigenvectors and Linear Transformations

The goal of this lecture is to investigate the relationship between eigenvectors and linear
transformations. Previously, we have learned how to find the eigenvalues and
eigenvectors. We shall see that the matrix factorization A = PDP " is also a type of linear
transformations for some invertible matrix P and some diagonal matrix D.

The Matrix of a Linear Transformation

Let V be an n-dimensional vector space, W an m-dimensional vector space, and T
any linear transformation from V to W. To associate a matrix with T, we choose (ordered)
bases B and C for V and W, respectively.

Given any x in V, the coordinate vector [x]g is in R" and the coordinate vector of its
image, [T(X)]c, is in R™, as shown in Fig. 1.

Figure 1 A linear transformation from V to W

Let B={by, ..., bn} be the basis for V. If x =r;b; +---+ rpby,
n

then [x]; =
r

n

and T is a linear transformation

T(X)=T(b, +---+rb,)=rT(O)+---+rT(b,) 1)
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Using the basis C in W, we can rewrite (1) in terms of C-coordinate vectors:

I.T(X)]c = rll.—r (bl)]C oot rnl.—r(bn)]c 2)

Since C-coordinate vectors are in R™, the vector equation (2) can be written as a matrix
equation, namely

[T ()] = M[x]g (3)
where M=[[T(b)l [T®) - [Th)]] 4)

The matrix M is a matrix representation of T, called the matrix for T relative to the
bases B and C.

T
x > T(x)
¥
Fultiplication v
[x]z » [T(20)]:
b b
Figure 2

Example 1

Suppose that B = {b1, by} is a basis for V and C = {c4, ¢y, c3} is a basis for W. Let
T:V — W be a linear transformation with the property that

T(b,)=3c, -2¢c, +5¢c, and T (b,) =4c, +7c, -C,
Find the matrix M for T relative to B and C.

Solution

Since M =[[T(b)lc [T(b)]c - [T(b,)]c] and here

3 4

[T(b)]e =| -2 | and [T (b,)]c =| 7

5 -1
3 4
Hence, M=|-2 7
5 -1
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Linear Transformations from V into V

In general when W is the same as V and the basis C is the same as B, the matrix
M in (4) is called the matrix for T relative to B, or simply the B-matrix for T, is
denoted by [T]s. See Fig. 3.

T
x » Tix)
v . Fultiplication v
[%]g p [T(x)]z
by [T]g
Figure 3
The B-matrix of T :V —V satisfies
[T(X)]s =[Tlg[x]s, forallxinV (5)

Example 2

The mapping T : P, — P, defined by T(a, +a,t +a,t*) =a, +2a,t
is a linear transformation.

(a) Find the B-matrix for T, when B is the basis {1, t, t°}.
(b) Verify that [T(p)]s = [T]s[p]s for each p in P,.

Solution
(a) We have to find the B-matrix of T :V —V satisfies
[T(X)]g =[Tlg[x]g, forallxinV
Since T (a, +a,t +a,t*) = a, +2a,t therefore

TQ)=0,T@®)=1 TE)=2t
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o
1
oSO N O

1
[T(Dle =| 0, [T®]=| 0|, [Tt)]s =
0

a 0 1 0fa,
[T(P)ls =[a, +2a,t]s =| 28, | =| 0 0 2| & |=[T][Pls
0 0 0 0]fa,
See figure 4.
-

FU>
L
+
[
b
b,

=]

s
%
ol
¥ % Multiplication .
— —w¥ | G
L by [T]s /R3

3
/__jq___ir.r 2&2
0

Figure 4 Matrix representation of a linear transformation

Linear Transformations on R

In an applied problem involving R", a linear transformation T usually appears first
as a matrix transformation, x — Ax . If A is diagonalizable then there is a basis B for R"
consisting of eigenvectors of A. Theorem below shows that in this case, the B-matrix of T
is diagonal. Diagonalizing A amounts to finding a diagonal matrix representation of

X = AX.
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Theorem: Diagonal Matrix Representation

Suppose A = PDP ™, where D is diagonal n x n matrix. If B is the basis for R"
formed from the columns of P, then D is the B-matrix of the transformation x —> AX.

Proof Denote the columns of P by b, ..., by, so that B = {b,, ..., by} and
P=[b; ... bp]. Inthiscase, P is the change-of-coordinates matrix Pg discussed in

lecture 23, where P[x], = x and [X], = P™*X

If T (x) = Ax for x in R", then
I.T]B :[l—r (bl)]B I.T(bn)]s] Definition of [T]B

=[[AbJs -+ [Ab];] Since T (x) = Ax

=[P*Ab, - PAb, | Change of Coordinates
=P*A[b, - b,] Matrix multiplication

=P*AP (6)

Since A = PDP™, we have [T]g = P AP =D.

Example 3
;
Define T : R* - R? by T (x) = Ax, where A:{

2
J. Find a basis B for R? with the

property that the B-matrix of T is a diagonal matrix.
Solution

Since the eigenvalues of matrix A are 5 and 3 and the eigenvectors corresponding to

1 1
eigenvalue 5 is { J and the eigenvectors corresponding to eigenvalue 3 is [ 2}

1 1 50
Therefore A = PDP !, where P = and D =
-1 -2 0 3

1 1
By the above theorem D matrix is the B matrix of T when B= { J[ 2}}

Similarity of Matrix Representations

We know that A is similar to C if there is an invertible matrix P such that
A =PCP ™ therefore if A is similar to C , then C is the B-matrix of the transformation
X — Ax when the basis B is formed from the columns of P by the theorem
above.(Since in the proof , the information that D is a diagonal matrix was not used).

The factorization A = PCP ! is shown in Fig. 5.
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hultiplication

x PV
by A
Fultiplication
by gl tAultiplication
by P
v
kultiplication v
[x]a p [Ax];
by

Figure 5 Similarity of two matrix representations: A = PCP ™

Conversely, if T:R" — R" is defined by T (x) = Ax, and if B is any basis for R", then
the B-matrix of T is similar to A. In fact, the calculations in (6) show that if P is the
matrix whose columns come from the vectors in B, then [T]g = P “AP. Thus, the set of
all matrices similar to a matrix A coincides with the set of all matrix representations of
the transformation x — AX.

An efficient way to compute a B-matrix P AP is to compute AP and then to row reduce
the augmented matrix [P AP]Jto [I P "AP]. A separate computation of P " is
unnecessary.

Example 4

Find T (@0 + ast + &, t°), if T is the linear transformation from P, to P, whose matrix
3 4 0

relative to B ={1,t, t*}is [T]; =|0 5 -1
1 -2 7

Solution

Let p(t) = ao + ast + a, t* and compute
3 4 0]a, 3a, +4a,
[T(Ple =[TIg[pls ={0 5 -1lja |=| 5a-a,
1 -2 7|4, a,—2a, +7a,
So T (p) = (Bap+4a1)l + (5a1-ax)t + (ag-2a1+7a,)t%.
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Example 5

Let A, B, C be n x n matrices. Verify that
(@) A'is similar to A.
(b) If Ais similar to B and B is similar to C, then A is similar to C.

Solution

(@) A =(1)*Al, so A is similar to A.

(b) By hypothesis, there exist invertible matrices P and Q with the property that

B=P AP and C = Q 'BQ. Substituting, and using facts about the inverse of a product
we have

C=Q7'BQ=Q(P"AP)Q =(PQ)"A(PQ)

This equation has the proper form to show that A is similar to C.
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Lecture 32

Eigenvalues and Eigenvectors

Definition
A complex scalar A satisfies
det(A-Al)= O
if and only if there is a nonzero vector x in C" such that
Ax=Ax.
We call A a (complex) eigenvalue and x a (complex) eigenvector corresponding to A.

Example 1

-1 ] ]
If Az{1 0}, then the linear transformation x — Ax on R? rotates the plane

counterclockwise through a quarter-turn.
Solution

The action of A is periodic since after four quarter-turns, a vector is back where it
started. Obviously, no nonzero vector is mapped into a multiple of itself, so A has no
eigenvectors in R? and hence no real eigenvalues. In fact, the characteristic equation of A

is A +1=0 > A°=-1= A =+i
The only roots are complex: 4 =i and A =—i. However, if we permit A to act on C?

AR
R HENEN

1 1
Thus i and —i are the eigenvalues, with } and{} as corresponding eigenvectors.

then

Example 2
05 -06| . . . : :

Let A= [0 25 11 } .Find the eigenvalues of A, and find a basis for each eigen-space.
Solution
The characteristic equation of A is

05-4 -0.6

0 =det =(0.5-4)(1.1-1)—(-0.6)(0.75
{ 0.75 1.1—/1} ( X )= (-08)0.75)

=1%-161+1
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From the quadratic formula, 2 =2[1.6+4/(-1.6)>—4]=0.8+0.6i. For the eigenvalue
A =0.8-0.6i, we study

. {0.5 —0.6} {0.8—0.6i 0 } {—0.3+0.6i ~0.6 }
A—(0.8—0.6i) = - _

075 1.1 0 0.8—0.6i 0.75 0.3+0.6i
(1)
Since 0.8 — 0.6i is an eigenvalue, we know that the system
(-0.3+0.6i)x, — 0.6x,=0
0.75x, +(0.3+0.6i)x, =0 (2)

has a nontrivial solution (with x; and x, possibly complex numbers).
0.75x, = (-0.3-0.6i)x,
= X, =(-0.4-0.8i)x,
Taking x, = 5 to eliminate the decimals, we have x; = -2 — 4i. A basis for the eigenspace

-2—4i
correspondingto 4 =0.8-0.6iis v, ={ . }

-2+ 4i
Analogous calculations for 4=0 .8 + 0.6i produce the eigenvector v, :{ c }

Check
Compute
05 -0.6|-2+4i —4+2i .
Av, = = . |=(0.8+0.6i)v,
075 11 5 4+3i
Example 3

One way to see how multiplication by the A in Example 2 affects points is to plot an
arbitrary initial point-say, xo = (2, 0) and then to plot successive images of this point
under repeated multiplications by A. That is, plot

(0.5 -0.6][2] [1.0
Xl = AXO = =
75 11 |lo] |15

05 -06]([1.0 -0.4
X, = A)(1 = =

10.75 1.1 |15 2.4
Xy = AX,,...

Figure 1 shows Xo, ..., Xg as heavy dots. The smaller dots are the locations of Xg, ..., X100.
The sequence lies along an elliptical orbit.
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x
R S
. : .
4 7 | T
;A -
) ~ X
1
.
tx, .
L] h
N 1
3 1 x
. 1
Xy b ? xl:l
s v
h-\-\._\_ {."
A
Xy

Figure 1 Iterates of a point Xo under the action of a matrix with a complex eigenvalue

Of course Figure 1 does not explain why the rotation occurs. The secret to the rotation is
hidden in the real and imaginary parts of a complex eigenvector.

Real and Imaginary Parts of VVectors

The complex conjugate of a complex vector x in C" is the vector x in C" whose
entries are the complex conjugates of the entries in x. The real and imaginary parts of a
complex vector x are the vectors Re X and Im x formed from the real and imaginary
parts of the entries of X.

Example 4
31 3 -1
If x=| 1 |[=|0|+i| 1 |, then
2+5i 2 5
3 -1 3] [-1] [3+i
Rex=|0|,Imx=| 1 |,and x=|0|-i| 1 |=| -i
2 5 2 5 2-5i

If B is an mxn matrix with possibly complex entries, then B denotes the matrix whose
entries are the complex conjugates of the entries in B. Properties of conjugates for
complex numbers carry over to complex matrix algebra:

rx=rx, Bx=Bx,and rB=rB
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Eigenvalues and Eigenvectors of a Real Matrix that Acts on C"

Let A be nxn matrix whose entries are real. Then Ax=Ax=Ax. If A isan
eigenvalue of A with x a corresponding eigenvector in C", then Ax = AX =AX=A4X

Hence A is also an eigenvalue of A, with x a corresponding eigenvector. This shows
that when A is real, its complex eigenvalues occur in conjugate pairs. (Here and
elsewhere, we use the term complex eigenvalue to refer to an eigenvalue A=a-+bhi
withb=0.)

Example 5

The eigenvalues of the real matrix in example 2 are complex conjugates namely,
0.8 — 0.6i and 0.8 + 0.6i. The corresponding eigenvectors found in example 2 are also

. —2— 4 —2+4i] -
conjugates: v, = . and V.= |FV

Example 6

a -b
If C= [b . } , Where a and b are real and not both zero, then the eigenvalues of C are

A=a=bi. Also, if r =||=+va®+b?*, then

(@ b
b
T
w
2
[=1
Figure 2

c. r[a/r —b/r} :[r OHCOS(/) —sin (p}
b/r alr O rj/sing cose
where ¢ is the angle between the positive x-axis and the ray from (0, 0) through (a, b).
See Fig. 2. The angle ¢ is called the argument of 2 =a+bi.
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Thus, the transformation x —Cx may be viewed as the composition of a rotation
through the angle ¢ and a scaling by |4

scaling x

L T
vy . {#_’_gt

o Fiotation

v

Figure 3 A rotation followed by a scaling

Finally, we are ready to uncover the rotation that is hidden within a real matrix having a
complex eigenvalue.

Example 7
05 -06 _ -2—4i .
Let A= ,A=0.8-0.6i, and v, = , as in example 2. Also, let P
075 11 5

2 -4
be the 2x 2 real matrix P =[Rev, Imvl]={ c O}

) 170 47705 -06|[-2 -4] [08 -06
and let C=P " AP=— =
200-5 -2({075 1115 O 06 0.8
By Example 6, C is a pure rotation because |/I|2 =(.8)* +(.6)* =1.

From C = P "1AP, we obtain
. o8 -06] .
A=PCP=P P

06 0.8

Here is the rotation “inside” A! The matrix P provides a change of variable, say, x = Pu.
The action of A amounts to a change of variable from x to u, followed by a rotation, and
then return to the original variable. See Figure 4.
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A,
X ._Ax
F
Change of | 77 Change of
variahle F | warahle
=
L P Cy
Fotation

Figure 4 Rotation due to a complex eigenvalue
Theorem

Let A be a real 2 x 2 matrix with complex Eigen values A =a—b, (b= 0) and associated
eigenvectors v in C?, then

A=PCP?, C{a _b}
b a

P=[Rev Imyv]
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Lecture 33

Discrete Dynamical Systems

For a dynamical system described by the difference equation
Xe 11~ AXk ,eigenvalues and eigenvectors provide the key to understand the long term

behavior and evolution of the system. Here the vector xix gives information about the
system as time (which is denoted by k) passes. Discrete dynamical system has a great
application in many scientific fields. For example, modern state space design method of
standard undergraduate courses in control system and steady state response of a control
system relies heavily on dynamical system.

In this section, we will suppose that a matrix A is diagonalizable, with n linearly

independent eigenvectors, Vv,, ..., Vn, and corresponding eigenvalues A Ay Ay
For convenience, assume that the eigenvectors are arranged so that
ZARIZA VN
Since { v,, ..., Vo } is a basis for R", any initial vector x, can be written uniquely as

X, =CV, +C,V, +...+C,V,
Since the vi are eigenvectors,
X = AX,
=CAV, +C,AV, +...+C Av,
=C AV, +CAV, +...+C AV,

In general,
X, =C(A)V, +..+¢ (4)"V, (k=0,12.)
We will discuss in the following examples what can happen to x, if k— oo.

Example 1

O,

Denote the owl and wood rat populations at time k by x, :{ } where K is the time in

k

months, Oy is the number of owls in the region studied, and R is the number of rats
(measured in thousands). Suppose that

O,.; =(.50, + (4R,

Reu=-P-O +(1.DR,
where p is a positive parameter to be specified. The (.5)Ok in the first equation says that
with no wood rats for food only half of the owls will survive each month, while the
(1.1)Rk in the second equation says that with no owls as predators, the rat population will

grow by 10% per month. If rats are plentiful, then (.4)Rx will tend to make the owl
population rise, while the negative term —p.Ox measures the deaths of rats due to
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predation by owls. (In fact, 1000p is the average number of rats eaten by one owl in one
month.) Determine the evolution of this system when the predation parameter p is 0.104.

Solution
The coefficient matrix A for the given equations is

{0.5 0.4}
A =

-p 11

When p =.104,

The matrix becomes

0.5 0.4
A=
-0.104 11
For eigenvalues of the coefficient matrix put
det(A-11)=0
The eigenvectors corresponding to the eigenvalues A4, =1.02 and A,=.58are

)

An initial xo can be written as Xo = c1v1 + CoVs then, for k>0,
10 5
X, = ¢ (1.02)"v, +¢,(.58)"v, =, (1.02)" {13} +¢,(.58)" u

As k — oo, (.58)" rapidly approaches zero. Assume c, = 0. Then, for all sufficiently large
k, X is approximately the same as ¢1(1.02)*v+, and we write
10
X, ~ ¢, (1.02)" TR
 ~6(1.02) M @

The approximation in (1) improves as k increases, and so for large k,
k+1 10 k 10
X4, ~ C,(1.02) 13|~ (1.02)c,(1.02) 13 ~1.02x,

This approximation says that eventually both xy entries i.e owls and rats grow by a factor
of almost 1.02 each month. Also equation (1) shows that xx is approximately a multiple
of (10,13).So we can say that the entries in xx are almost in the same ratio as 10 to 13.1t
means that for every 10 owls there are about 13 thousand rats.

Trajectory of a dynamical system

In a 2x2 matrix, geometric description of a system’s evolution can enhance the algebraic
calculations. We can view that what happens to an initial point xo in R?, when it is
transformed repeatedly by the mapping x—Ax. The graph of X, X;...is called a trajectory
of the dynamical system.
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Example 2
Plot several trajectories of the dynamical system Xy+1 = AXk, when
80 0
A=
0 .64
Solution

In a diagonal matrix the eigen values are the diagonal entries and as A is a diagonal
matrix with diagonal enteries 0.8 and 0.64,Therefore the eigenvalues of A are .8 and .64,

1 0
with eigenvectors v, = [0} and v, = L}
k 1 k 0
If Xo = C1v1 + CaV2, then X, =c,(.8) 0 +¢,(.64) 1

Of course, X tends to 0 because (.8)¢ and (.64) both approach to 0 as k — o. But the
way Xy goes towards O is interesting. Figure 1 shows the first few terms of several
trajectories that begin at points on the boundary of the box with corners at (£3,£3). The
points on a trajectory are connected by a thin curve, to make the trajectory easier to see.

Ay

Figure 1 The origin as an attractor
In this example, the origin is called an attractor of the dynamical system because all
trajectories tend towards O. This occurs whenever both eigenvalues are less than 1 in
magnitude. The direction of greatest attraction is along the line through O and the
eigenvector v, as it has smaller eigenvalue.
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Example 3

Plot several typical solution of the equation x, ,, = Ax, , when
144 0
A=
0 1.2

Solution
In a diagonal matrix the eigen values are the diagonal entries and as A is a diagonal
matrix with diagonal entries 1.44 and 1.2, Therefore the eigenvalues of A are 1.44 and

1 0
1.2, with eigenvectors v, = {0} and v, = L}

AS

X, =GV, +C,V,

<olels
ol
={zj then

k 1 k 0
X, =C, (1.44) [0}02(1.2) {J

Both terms grow in size as k— oo ,but the first term grows faster because it has larger
eigenvalue. Figure 2 shows several trajectories that begin at points quite close to 0.

X2

Figure 2 The origin as a repellor

In this example, the origin is called a repellor of the dynamical system because all
trajectories tend away from O. This occurs whenever both eigenvalues are greater than 1
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in magnitude. The direction of the greatest repulsion is the line through 0 and that eigen
vector which has a larger eigenvalue.

Remark

From the above two examples it may be noticed that when eigenvalues are less than 1 in
magnitude, the origin behaves as an attractor and when the eigenvalues are greater than 1
in magnitude, the origin behaves as a repellor.

Example 4

Plot several typical solutions of the equation
Y1 = DY swhere

20 0
D:
{o 0.5}

Show that a solution {y, } is unbounded if its initial point is not on the x,-axis.

Solution
Mistakes

1 0
The eigenvalues of D are 2.0 and 0.5, with eigenvectors v, = LJ and v, = L}

If
Yo = CAV; +C AV,

4
Yo = ,then
C2
=¢,(2.0)" L 0.5)" 0
Y =€.(2.0) sz( -5) M

Ify, ison the x,-axis,then ¢, =0 and y, —0 as k— o .But if y, is not on the x,-
axis, then the first term in the sum for y, becomes arbitrarily large, and so {yk} is
unbounded. Figure 3 shows ten trajectories that begin near or on the axis.
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]

FIGURE 3 The origin as a saddle point.

In this example ‘O’ is called the saddle point because one eigenvalue is greater than *1’
in magnitude and one is less than ‘1’ in magnitude. The origin attracts solution from
some directions and repels them in other directions.

Change of Variable

The preceding three examples involved diagonal matrices. To handle the nondiagonal
case, we return for a moment to the nxn case in which eigenvectors of A form a basis

{v,,...v,} forR" Let P=[v, --- v,],and let D be the diagonal matrix with the

corresponding eigenvalues on the diagonal. Given a sequence {X} satisfying Xy+1 = AXx,
define a new sequence {yi} by yi = P "xy, or equivalently, X, = Py

Substituting these relations into the equation Xy+1 = AXk, and using the fact that

A=PDP ™ wefindthat  Pywi1 = APyx = (PDP )Py, = PDyy

Left-multiplying both sides by P *, we obtain yy:1 = Dy

If we write yy as y(k) and denote the entries in y(k) by y1(k), ..., yn(k), then

yi(k+D | A4 0 - 0 y(k)

Y(k+D)| |0 4 L Y2(K)
: BE “. 0 :

Yak+D] [0 - 0 A J[Ya(k)

The change of variable from Xy to yx has decoupled the system of difference equations.
The evolution of y;(k), for example, is unaffected by what happens to y,(k), ..., yn(k),
because vy, (k+1) =4 .y, (k) for each k.
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Example 5
Show that the origin is a saddle point for solutions of Xx+1 = AXk, Where

1.25 -75
A=
-75 1.25
find the directions of greatest attraction and greatest repulsion.
Solution

For eigenvalues of the given matrix put
det(A-A41)=0

1
we find that A has eigenvalues 2 and .5, with corresponding eigenvectors v, :{ J and

1
v, :L] respectively. Since [2/>1 and |5/<1, the origin is a saddle point of the

dynamical system. If Xo = C1v;1 + CoVo, then
Xy = Cl(z)kvl +C (-S)kvz

In figure 4, the direction of the greatest repulsion is the line throughv,, the eigenvector
whose eigenvalue is greater than 1.

The direction of the greatest attraction is determined by the eigenvector v, whose
eigenvalue is less than 1.

A number of trajectories are shown in figure 4.When this graph is viewed in terms of
eigenvector axes, the diagram looks same as figure 4.

FICURE 4 Tha crigin as a saddle point.
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Complex Eigenvalues

Since the characteristic equation of nx n matrix involves a polynomial of degree n, the
equation always has exactly n roots, in which complex roots are possibly included. If we
have complex eigenvalues then we get complex eigen vectors which may be divided into
two parts: which is real part of the vector and imaginary part of the vector.

Note
If a matrix has two complex eigenvalues in which absolute value of one eigenvalue is
greater than 1,then origin behaves as a repellor and iterates of x, will spiral outwards

around the origin .If the absolute value of an eigenvalue is less than 1,then the origin
behaves as an attractor and iterates of x, will spiral inward towards the origin.

Example 6
Let

08 05 _ S 1+2i
A= haseigenvalue 0.9+0.2i with eigenvectors .
-0.1 1.0 1

0
Find the trajectories of thesystem x, ., = Ax, with initial vectors{2 5},

m e [—2.5}'

Solution

Given a matrix
08 05
A=
-0.1 1.0
: . : . 1+2i
The eigenvalues of the matrix are 0.9+0.2i and corresponding eigenvectors are 1

. . 0 3 0
also the initial vectors are given as , and .
25(10 -2.5

*a
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\4V,

Example 7

Suppose the search survival rate of a young bird is 50%,and the stage matrix A is
0 0 0.33

A=|03 0 0
0 071 094

What does the stage matrix model predict about this bird?

Solution

0 0 033
Givenamatrix A={ 0.3 0 0

0 071 094

for eigenvalues of A we will put det(A- A4 1)=0

-4 0 033
det(A-A1)=03 -4 O
0 0.71 094-2
=-1(-0.94+ 1%)+0.33(0.3x0.71)
=0.941-1°+0.07029
for eigenvalues putdet(A—-A41)=0

0.941-1°+0.07029=0
2°-0.942-0.07029=0

itgives3valuesaf which are approximately 1. 01,-0.03+0.26i,-0.03-0.26i
eigen vector for first valuedfvill bev =(10,3 ,31) and for the next two values of

A we will get complex eigen vectors denoted by v, and v..

Now
X, = cl(l.Ol)kvl +¢,(—0.03+ 0.26i)kv2 +C, (—0.03—0.26i)kv3

As k— oo ,the second two vectors tends to 0.So x, becomes more and more like the (real)

vector ¢, (1.02)"v, .Thus the long term growth rate of the owl population will be 1.01,and
the population will grow slowly. The eigenvector describes the eventual distribution of

the owls by life stages: For every 31 adults, there will be about 10 juveniles and three

subadults.
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Exercise

Suppose that a 3x 3 matrix A has eigenvalues 2,2/5,3/5 and corresponding eigenvectors

1 -2 -3
vi=| 0|v,=| 1]|v,=| 3
-3 -5 7
-2
also x,=|-5
-3

Find a general solution of the equation x,,, = Ax, also find what happens to
X, whenk — .
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Lecture 34

Applications to Differential Equations

Differential equation

A differential equation is any equation which contains derivatives, either ordinary
derivatives or partial derivatives. Differential equations play an extremely important and
useful role in applied mathematics, engineering, and physics. Moreover, a lot of
mathematical and numerical machinery has been developed for the solution of
differential equations.

System of linear differential equations

A system of linear differential equations can be expressed as:

X = a X+t a,X,
X, = @, X, +...F 8, X

2n"'n

Xn = anlxl +"'+annxn

where X;(t) is a function of time, i =1, . . . n, and the matrix of constant coefficient is
A= [aij}

In many applied problems, several quantities are continuously varying in time,
and they are related by a system of differential equations:

X =a X+t X,
X, = 8y X, + .ot 8y, X

2n"*n

X, =a X +...+a, X,

Here X, X,,..., x, are differentiable functions of t ,with derivativesx;, X,,...,x, ,and thea,
are constants. Write the system as a matrix differential equation
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X = AX
Where_ ) i i

X(t) X(t) A Ay, |
x(t) = X () = ,and A=

_'Xn(t)_ _lx;](t)_ a, a, |

Superposition of solutions

If uand v are two solutions of x = Ax, then cu +dv is also a solution.

Proof:
If u and v are two solutions of x = Axthen u’ = Auand v’ = Av .Therefore,

(cu+dv) =cu +adv
= CAu + dAv
= A(cu +dv)

Linear combination of any set of solutions is also a solution. This property is called
superposition of solutions.

Fundamental set of Solutions

If A is an nx n matrix, then there are n linearly independent functions in a

fundamental set, and each solution of x = Axis a unique linear combination of these ‘n’
functions. So we can say that fundamental set of solutions is a basis for the set of all

solutions of x = Ax,and the solution set is n-dimensional vector space of functions.

Initial value problem
If a vectorx, is specified, then the initial value problem is to construct the unique

function x such that x = Ax and x(0) = x,

Example 1
For the system x'= Ax.What will be the solution when A is a diagonal matrix and is

given by
3 0
A —
o )
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Solution
The solution of the given system can be obtained by elementary calculus. Consider

%(t) {3 OHW)}
x{t)| [0 5] X
from here we have

X () =3x(t) and x,(t) =-5x,(t)
first of all wewill find solutionof x,(t) = 3x,(t) by usin g calculus.

X, (t) =3%,(t)
ax,
dt

P _ 3t

X
Integrating both sides

dx,
I71_3Idt

Inx, =3t+Inc,
Inx, —Inc, =3t
In(%) = 3t
Cl
taking antilog on both sides

C,
X1(t) = Clegt

3t

Similarly Solution of

X, (t) = 5%, (t)

will be

X, (t) =c,e™

And it can be written in the form

= =c|  |e*+c,|  |e
Xt)] |ce™ 0 1

The given system is said to be decoupled because each derivative of the function depends
only on the function itself, not on some combination or coupling of x (t) and x,(t) .
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Observation

From the above example we observe that a solution of the general equation x = Axmight
be a linear combination of functions of the form

x(t) = ve™
Where A is some scalar and v is some fixed non-zero vector.
X() =Ve™ oo )]
differentiating w.rt 't
X (t) = Ave™

Multiplying both sidesof (1) by A
AX(t) = Ave™
Since e is never zero, x (t) will equalto Ax(t) iff Av= Av.

Eigenfunctions

Each pair of eigenvalue and its corresponding eigenvector provides a solution of the
equation X = Ax which is called eigenfunctions of the differential equation.

Example 2

The circuit in figure 1 can be described by
VO] [-R+R)/C R,/C W)
v, (t) R,/C, -R,/C, || v,(t)

Wherev, (t) and v, (t) are the voltages across the two capacitors at time t.

Figure 1

Suppose that resistor Ry is 2 ohms, R, is 1 ohms, capacitor C; is 2 farads, and capacitor
C, is 1 farad and suppose that there is an initial charge of 5 volts on capacitor C; and 4
volts on capacitor C,. Find formulas for vi(t) and v,(t) that describe how the voltages
change over time.

Solution

For the data given, we can form A as
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a_|"RHR)IC RIC,
| RIC, -R,/C,

0.0 3o .o
o
=N

N

2
1 so

~(R+R)IC, =" 8/ 15
R,/C,=1Y,=05
R,/C, =Y =1

-R,IC,=-Y =1
-15 5 v 5
A= ,x=| *1, and x, =| |. The vector Xy lists the initial values of x. From
1 -1 v, 4
A, we obtain eigenvalues 4, =-.5 and A, =-2, by using det (A-A)=0 with corresponding

1 -1
eigenvectors v, = {2} and v, :[ 1 }

The eigenfunctions x, (t) =v,e™ and x,(t) =v,e* both satisfy x’'= Ax, and so does any
linear combination of x; and x,. Set
X(t) = cv,e™ +c,v,e”

_ 1 -5t -1 -2t 1
_cl{z}e +c2[1}e ............. @

and note that x(0) = c,vy + c,V2. Since vy and v, are obviously linearly independent and
hence span R?, ¢, and ¢, can be found to make x(0) equal to Xo.
We can find ¢, and c,as

1 5
1 4
1 0 3
{o 1 —2}
hence ¢, =3 and ¢, =-2
Put the value of ¢, and ¢, in (1)

1 -5t -1 -2t
x(t)zi{z}e —ZL}

Thus the desired solution of the differential equation x'= Ax is
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3e—0.5[ _2e—21
X(t) = |:6e0.5t N 2a2
or v,(t) | [3e®+2e™
V2 (t) 6e—0.5t _ 2e—2t

As both eigenvalues are negative so origin in this case behaves as an attractor and the
direction of greatest attraction will be along the more negative eigenvalue 1 =-2.

LN
- NSO\ e
e - \ #
., i f
o _.J\\\\_ "\. ) #
o v
N AU )//_T
NN N
. _
\_\‘ h . \"ng VL ‘.\\\ \'..

Figure 2 The Origin as an attractor

Example 3
Suppose a particle is moving in a planar force field and its position vector x satisfies

X = Ax and x(0) = x,, where
4 -5 2.9
A= , Xo =
-2 1 2.6
Solve this initial value problem for t >0, and sketch the trajectory of the particle.
Solution

The eigenvalues of the given matrix can be found by using det(A-AI)=0 which are turned

-5 1
out to be 4,= 6 and A4, =-1 with corresponding eigen vectors v, { 2} and v, = L} .

For any constantsc, and c, ,the function
x(t) = cv,e™ +c,v,e™

-5 1
=C [2 }eet +C, L} e
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We have to find ¢, and c, to satisfy x(0)=x,,s0

[

5¢c, +¢,
- {Zc1 +c, }
2.9=-5C +Cyurvrrirrriiiiiiiinin, @
2.6 =2C+Cprriiriiiiiiiin (2)

Subtracting 1 from 2 we get

C, = —% and substituting thisvalueof ¢, in (1) we getc, = %

-5 1
x(t) = 3 e® +@ e
70( 2 70 |1

A
=

Figure 3 The Origin as a saddle point

As the matrix A has both positive and negative eigenvalues so in this case origin behaves
as a saddle point. The direction of greatest repulsion is the line throughv,and 0

corresponding to the positive eigenvalue. The direction of greatest attraction is the line
throughv, and 0 , corresponding to the negative eigenvalue.
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Decoupling a Dynamical System

For any dynamical system described by x'=Ax when A is diagonalizable, the
fundamental set of solutions can be obtained by the methods that we have discussed in
examples 2 and 3.

Suppose that the eigenfunctions for A are

v, .. v et
with vy, ..., vy linearly independent eigenvectors. Let P = [v; ... v,] and let D be the
diagonal matrix with entries A,...,A, so that A = PDP ™. Now make a change of

variable, defining a new function y by

n?

y(t) = P'x(t), or equivalently, x(t) = Py(t)
Substituting these relations into x’= Ax gives
Py'(t) = (PDP)Py(t)
Py’'(t) = PDy(t)
pre multiplying both sideby P
P'Py'(t) = P'PDy(t)
y'(t) = Dy(t) or

y'=Dy
| |4 O 0 v,(®)
0 [0 4 LY. ()
S R o0
o] [0 - 0 A4 ]lYy,(t)

The change of variable from x to y has decoupled the system of differential equations
because the derivative of each scalar function y, depends only on yi. Since y; = 4y,, we

have y, (t) = c,e™, with similar formulas for y,, ..., yn. Thus
ce” C,
yt)=| i |, where | i |=y(0)=P*x(0)=P"x,
c.e™ c,
To obtain the general solution x of the original system, compute
x(t)=Py(t)=[v, -+ v,]y(t)=cyve” +---+cyve™
This is the eigenfunction expansion as constructed in example 2.

Complex Eigenvalues

As we know that for a real matrix A , complex eigenvalues and associated eigen
vectors come in conjugate pairs i.e if Ais an eigenvalue of A thenA will be the 2™
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eigenvalue. Similarly if one eigen vector isv then the other will bev .So there will be two
solutions of x = Ax and they are
x,(t) = ve™, x, (t) = ve™

Here x,(t) = X, (t)

Re(ve™) =2 % () + %0

Im(ve”) =% (- %]

From Calculus

) X2 X"
e =1+ X+—+...+—+...
2! n!

2 n
e“=l+ﬁt+(/u) +...+(/1t) +...
21 n!

If we write A =a+ib
e(a+ib)t = .eibt = (COS bt +isin bt)

So

ve™ = (Rev+ilmv).e* (cosbt +isinbt)

ve™ = Rev.e* cosbt + Rev.e™isinbt +ilmv.e* cosbt — Imv.e* sin bt
ve™ =e*(Revcosbt — Imvsinbt) +ie* (Revsinbt + Imvcosbt)

So two real solutions of x = Ax are

y,(t) = Rex,(t) =[(Rev) cosbt — (Imv)sinbt]e*

y,(t) = Imx, (t) =[(Rev)sinbt + (Imv) cosbt |e*

Example 4

The circuit in figure 4 can be described by the equation

e ol
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Figure 4

Where 1 is the current passing through the inductor L and V. is the voltage drop across
the capacitor C. Suppose R; is 5 ohms, R, is .8 ohm, Cis .1 farad, and L is .4 henry.
Find formulas for i_ and V¢, if the initial current through the inductor is 3 amperes and the
initial voltage across the capacitor is 3 volts.

Solution
From the data given, We can form A as
A{—RZ/L -1/L }
l/C _1/(R1C)
R =5
R,=0.8
C=0.1
L=04

R, /L :-0-%.4:—%0x1y4:>—2
-1/L :—%.4:—1%:—2.5

yc=1 =10
YRC) ="M 01= H5= 2
2 25
A=
[10 —2}
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—2-1

det(A—/II):{ 10

-2.5
—2-1

= (-2-2)2+25
=4+ 2% +44+25
=A% +41+29
put det(A—A1)=0
A2 +41+29=0

i —i
the eigenvalues of A is —2£5i with corresponding eigenvectors v, :{2} and L } The

complex solutions of
x"= Ax are complex linear combinations of

Xl (t) — e(—2+5i)t

-~ and x, (t) = B}e““)t

— e—2t .e5it

X, (t) =| _ |e™(cos5t +isin5t)

By taking real and imaginary parts of x;, we obtain real solutions:

[ —sin5t cos 5t
t) = ey, (t) = e
) _ZCOSSJ %) {ZsinSt}

Since y; and y, are linearly independent functions, they form a basis for the two-
dimensional real vector space of solutions x" = Ax. Thus, the general solution is

—sin5t cosbt
X(t)=c, e +c,| . |e™
2cosbt 2sin 5t

To satisfy x(0) =x, = E} we need sc; and ¢,
el
Gl [+C| =] .|,
2 0| |3
BN
+ =
2c,| |0 3

O+c,=3

Thus 2c,+0=3
c,=3

C, :2:1.5
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X

|

) =c —sin 5t I cos 5t o
*| 2cos5t ?| 2sin5t

—sin5t | cos5t |
=15 e +3 ) e
2cosbt 2sin 5t

[ —1.5sin5te™® | 3cos 5te
| 3cos5te™ 6sin5te™

| —1.5sin5te +3cos5te ™
| 3cos5te™ +6sin5te™
i (t) } ~ [—1.55in 5t +3cos St} o

Ve(t)| | 3cos5t+6sin5t

FIGURE 5 The origin as a
spiral point. &1,

Figure 5 The origin as a spiral point

In this figure, due to the complex eigenvalues a rotation is caused by the sine and cosine
function and hence the origin is called a spiral point. The trajectories spiral inwards as in

this example the real part of the eigenvalue is negative.
Similarly, it is important to note that when A has a complex eigenvalue with positive real

part, the trajectories spiral outwards .And if the real part of the eigenvalue is zero, then
the trajectories form ellipses around the origin.
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Exercise 1

The circuit in given figure can be described by

[v{(t)}_ —(%ej /VRZ)/Cl }ﬁzcl v, (1)
}/chz %ZCZ v, (t)

Wherev, (t) and v, (t) are the voltages across the two capacitors at time t.

0

Suppose that resistor Ry is 1 ohms, R, is 2 ohms, capacitor C; is 1 farad, and capacitor C,
is 0.5 farad, and suppose that there is an initial charge of 7 volts on capacitor C; and 6
volts on capacitor C,. Find formulas for vi(t) and v,(t) that describe how the voltages
change over time.

Exercise 2

Find formulas for the currenti_ and the voltageV, for the circuit in Example 4, assuming
that R, =100hms, R, =0.20hm,C =0.4 farad, L =0.2henry
the initial current is 0 amp, and the initial voltage is 16 volts.
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Lecture 35
Iterative Estimates for Eigenvalues

Eigenvalues and eigenvectors

Let A be an nxn square matrix, A is any scalar value. If there exists a non-zero
vector X , such that it satisfies the equation AX = AX then Ais called the eigenvalue and
X is called the corresponding eigenvector.

ie. if
AX =AX
AX -AX =0
AX -2IX =0
(A-ADHX =0
To find the eigenvalues we have to solve the equation
|A-41|=0
Example 1
. . 1 0
Find the eigenvalues of A= L 2} .
Solution

Y
o SR S 2

|A- 21| =(1-2)(-2-2)
Solving|A-41|=0, we get
@-A)(-2-4)=0
So, either 1—-4)=0o0r (-2-1)=0
so,A=1 A =-2 are the eigenvalues of A.

Power Method

Let a matrix A is diagonalizable, with n linearly independent eigenvectors,
V. ,V,,...V " and corresponding eigenvalues /11 , /12,..%” such that
|4 ]> 4| .. 2|4
Since {v,,v,,...v, }is a basis for R", any vector x can be written as
X=CV, +C,V, +...+CV,
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Multiplying both sides by A, we get
Ax = A(C\V, +C,V, +...4+C.V,)

= A(Clvl) + A(szz) + ""A(Cnvn)
=C,(Av,)+¢,(Av,) +..c,(Av,)

= Cl (ﬂlvl) + C2 (AZVZ) + "'Cn (invn)
Again multiplying by A and simplifying as above, we get

A'x = G (112\/1) +C, (/122\/2) +..C, (ﬂ’nzvn)

Continuing this process we get

A'x = G (ﬂ’lkvl) G (lzkvz) +..C (lnkvn)

AX =G ()W, + €, (4)V,) +..6,(A)V, (k=1,2,..)

(i)" AX=CV, +C, (ﬁ)"vz) +..C, (ﬁ)kvrl (k=12,.)
A A4 4

(4)  Ax >y,
ask - o

Thus for large k, a scalar multiple of A*x determines almost the same direction as the
eigenvector c,v, . Since, positive scalar multiples do not change the direction of the

A

n

Since |/11|>|/12|2...2

vector, A“x itself points almost in the same direction as v, or—v,, providedc, # 0.

Procedure for finding the Eigenvalues and Eigenvectors
Power Method

To compute the largest eigenvalue and the corresponding eigenvector of the system
A(X) = A(X)

Where A is a real, symmetric or un-symmetric matrix, the power method is widely used

in practice.

Procedure

Step 1: Choose the initial vector such that the largest element is unity.

Step 2: The normalized vector v s pre-multiplied by the matrix A.
Step 3: The resultant vector is again normalized.

Step 4: This process of iteration is continued and the new normalized vector is repeatedly
pre-multiplied by the matrix A until the required accuracy is obtained.
At this point, the result looks like
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Here, Y is the desired largest eigenvalue and v s the corresponding eigenvector.

Example 2
18 .8 4 -0.5

LetA= , V=] |and X = . Then A has Eigenvalues 2 and 1, and the
02 12 1 1

eigenspace for A =2 is the line through 0 andv,. For k=0, ..., 8, compute A“x and
construct the line through 0 and A*x . What happens as k increases?

Solution

The first three calculations are
1.8 0.8| -05 -0.1
AX = =
02 1.2 1 1.1
) 1.8 0.8]|-0.1 0.7
A“Xx = A(AX) = =
02 12| 11 1.3

. ) 1.8 0.8]0.7 2.3
A’Xx = A(A°X) = =
02 1213 |17
Analogous calculations complete Table 1.

Table 1 lterates of a Vector

k 0 1 2 3 4 5 6 7 8

iEEEEEEEEE

The vectors x, Ax, A%x,..., Ax are shown in Fig. 1. The other vectors are growing too
long to display. However, line segments are drawn showing the directions of those
vectors. In fact, the directions of the vectors are what we really want to see, not the
vectors themselves. The lines seem to be approaching the line representing the
eigenspaces spanned by v;. More precisely, the angle between the line (subspace)
determined by A“x and the line (eigenspaces) determined by v, goes to zero as k — .
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Figure 1 Directions determined by x, Ax, A%, ..., A’x

The vectors (4,)™ A“x in (3) are scaled to make them converge toc,v,, providedc, #0.
We cannot scale A“x in this way because we do not know A, but we can scale each A“x
to make its largest entry 1. It turns out that the resulting sequence {x, }will converge to a
multiple of v, whose largest entry is 1. Figure 2 shows the scaled sequence for Example
1. The eigenvalue A, can be estimated from the sequence{x } too. When x, is close to an
eigenvector for 4, the vector Ax, isclose to A x, with each entry in Ax, approximately
A, times the corresponding entry in x, . Because the largest entry in x, is 1 the largest
entry in Ax,is close to 4,

Eigenspice

——dultiple of v,

Figure 2 Scaled multiples of X, AX, A’X,..., A'X .
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Steps for finding the eigenvalue and the eigenvector

1. Select an initial vector x, whose largest entry is 1.

2. Fork=01,....
a. Compute AXx,

b. Let x4 beanentry in Ax, whose absolute value is as large as possible.
1
c. Compute X, = (—)AX,

k
3. For almost all choices of x;, the sequence {¢, } approaches the dominant

eigenvalue, and the sequence {x, }approaches a dominant eigenvector.

Example 3
6 5 0
Apply the power method to A= (1 2] with x, = (J . Stop whenk =5, and estimate the

dominant eigenvalue and a corresponding eigenvector of A.
Solution
To begin, we calculate Ax, and identify the largest entry g, in Ax,.

ol

Scale AXO by 1/, to getx,, compute Ax,and identify the largest entry in Ax,

o Hal
ooy S e

Scale Ax, by 1/, to get x,, compute Ax, , and identify the largest entry in Ax, .

1 1| 8 1
X2 = — AXl = — =
I 8/1.8| |.225

6 5|[ 1] [7.125
AX, = = g, =7.125
1 2||.225| |1.450

Scale Ax, by 1/u, to getx,, and so on. The results of MATLAB calculations for the first
five iterations are arranged in the Table 2.

The evidence from the Table 2 strongly suggests that {x, }approaches (1, .2) and {yk}
approaches 7. If so, then (1, .2) is an eigenvector and 7 is the dominant eigenvalue. This

is easily verified by computin A= Li_je st} 7 -7 1
Y Y comptiing 2 11 20l.2] |14] |2
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TABLE 2 The Power Method for Example 2
Kk 0 1 2 3 4 5
X, 0 1 1 1 1 1
1 4 225 .2035 .2005 .20007
Ax, | |5 8 7.125 7.0175 7.0025 7.00036
2 1.8 1.450 1.4070 1.4010 1.40014
U, |5 8 7.125 7.0175 7.0025 7.00036
Example 4
Find the first three iterations of the power method applied on the following matrices
1 10 0
2 4 2| wusex,=|0
01 2 1
Solution
1% Iteration
1 1 0(|0 0+0+0 0
Uu=Ax=2 4 2||0|=|0+0+2|=|2
0 1 2|1 0+0+2 2
Now, we normalize the resultant vector to get
0 0
u=2|=2{1|=qx
2 1
2" Iteration
1 1 0}l0 0+1+0 1
Uu=Ax =12 4 2||1|=/0+4+2|=|6
01 2|1 0+1+2 3
Now, we normalize the resultant vector to get
1]
1l |6
u,=[6|=61|=0q,x,
3) |1
2]
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VU

3rd Iteration

17 | L1400
6

1

U, = AX, = §+4+1 =

oNn -
NP
NN O
N w|h ol

0+1+1

N[ P O
Il

Now, we normalize the resultant vector to _get_

=03X,

N owlh ol
H
o

©lw - %|\1

. N L
Hence the largest eigenvalue after 3 iterations |s?.

The corresponding eigenvector is

®lw ~ Y|~

The inverse power method

1. Select an initial estimate sufficiently close to 4.
2. Select an initial vector x, whose large entry is 1.
3. Fork=0,1, 2,...
Solve (A—al)y, =X, .
Let x4 beanentry in y, whose absolute value is as large as possible.

Computev, =a + (i) :
Hy

Compute X, = (i) Yk
k

4. For almost all the choice of X, , the sequence {v, }approaches the

eigenvalue A of A, and the sequence {x, }approaches a corresponding eigenvector.
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Example 5

It is not uncommon in some applications to need to know the smallest eigenvalue of a
matrix A and to have at hand rough estimates of the eigenvalues. Suppose 21, 3.3, and
1.9 are estimates for the eigenvalues of the matrix A below. Find the smallest
eigenvalue, accurate to six decimal places.

10 -8 4
A=|-8 13 4
-4 5 4

Solution

The two smallest eigenvalues seem close together, so we use the inverse power method
for A—1.91 . Results of a MATLAB calculation are shown in Table 3. Here x, was

chosen arbitrarily, y, = (A-1.91)7"x,, g, is the largestentry in y,, v, =1.9+1/4, , and
o1 = (1 1) Y-

Table 3: The Inverse Power Method

K |0 1 2 3 4

X |1 [0.5736| | [05054] |[0.5004] | [0.50003
1 0.0646 0.0045 | | |0.0003 0.00002
1 T T !

Y, |[445] |[5.0131] |[5.0012] |[5.0001]7 | [5.000006
0.50 | | [0.0442 0.0031| | |0.0002 0.000015
17.76] | [9.9197 | | [9.9949| |[9.9996] | |9.999975

u | 776 [9.9197 9.9949 [ 9.9996 9.999975

v, |203 [2.0008 2.00005 | 2.000004 | 2.0000002

Therefore, we can say that eigenvalue is 2 from the matrix

10 -8 4
A=/-8 13 4
-4 5 4
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Exercise

How can you tell that if a given vector X is a good approximation to an eigenvector of a
matrix A: if it is, how would you estimate the corresponding eigenvalue? Experiment
with

5 8 4 1.0
A=l8 3 -1| And X=|-43
4 -1 2 8.1
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Lecture 36
Revision
Revision of Previous Lectures
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Lecture 37
Revision
Revision of Previous Lectures
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VU

Lecture 38

Inner Product

If u and v are vectors inR" , then we regard u and vas nx1matrices. The transpose

u'is a 1x n matrix, and the matrix product u'v is a 1x1matrix which we write as a

single real number (a scalar) without brackets.

The number u'v is called the inner product of u andv. And often is written as u.v

This inner product is also referred to as a dot product.

ul VlW

uZ VZ
Ifu=| |andv=|

U, | [V,

Then the inner product of u and v is

Vl
V2
[ul U, . . . un]' = UV, +UV, +. UV,
_Vn_
Example 1
2 3
Compute u.v and v.u whenu=|-5andv=| 2]|.
-1 -3
Solution
2 3
u=|-5jandv=| 2
-1 -3
u'=[2 -5 -1]
3
uv=u'v=[2 -5 -1]| 2|=2(3)+(-5)(2)+(-1)(-3)
-3
=6-10+3=-1
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vi=[3 2 -3
2
vu=viu=[3 2 -3]|-5|=3(2)+(2)(-5)+(-3)(-1)
-1
=6-10+3=-1
Theorem
Letu, v and w be vectorsin R" , and let ¢ be a scalar. Then
a. uv=vu

b. (U+Vv).w=uw+vw
c. (cu)v=c(uv)=u.(cv)
d. uu>0 and uu=0 ifandonlyif u=0

Observation
(Cu, +CoU, +...C U )W

= C, (U, W) +¢, (U, w) +...c, (U,.w)

Length or Norm
The length or Norm of v is the nonnegative scalar ||v| defined by

V| = Vv = v 4 v 4,2

M =vv

Note:  Forany scalarc, |lev|=]c||v|

Unit vector
A vector whose length is 1 is called a unit vector. If we divide a non-zero vector

vby its length V||, we obtain a unit vector u as

LoV
v

The length of uis ] = ﬁnvn -1

Definition

The process of creating the unit vector u from v is sometimes called normalizingv,
and we say that u is in the same direction asv . In this case “u ” is called the
normalized vector.

Example 2
LetvV=(1,2,2,0)inR*. Find a unit vector u in the same direction asv .

Solution
The length of v is given by
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V| = Vv = v 4,7 07 4,2
So,
||v||:\/12+22+22+02 —J1+4+4+0=+9=3

The unit vector u in the direction of v is given as

1 1
U=—v==-
M- 3

oON N R
Il
o w|N w|Nw|H

To check that [Ju[| =1

1 2 —2 2 2 2 2 1 4 4
||u||:\/ﬁ:\/(§) +(?) +(§) +(0) :\/§+§+§+0:1

Example 3
Let W be the subspace of R*spanned by X = (%,1) . Find a unit vector Z that is a basis
for W.

Solution

W consists of all multiples of x, as in Fig. 2(a). Any nonzero vector in W is a basis
for W. To simplify the calculation, x is scaled to eliminate fractions. That is, multiply

x by 3 to get
B 2
=13
Now compute ||y||2 =22+3=13)y| = V13, and normalize y to get

o Hmil

See Fig. 2(b). Another unit vector is (—2/«/1_3,—3/\/E).
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(&)

(k)
Figure 2 Normalizing a vector to produce a unit vector.

Definition
For u and v vectors inR", the distance between u andv, written as dist (u,v), is the
length of the vectoru—v. That is

dist(u,v) = |u-v|

Example 4
Compute the distance between the vectors u= (7, 1) and v= (3, 2)

Solution
HEHRHEN
u—v= - = =
1 2 1-2 -1
dist (u,v) = Ju-v|=/(4)° +(-1)* =V16+1=17

Law of Parallelogram of vectors

The vectors, u,vand u—v are shown in the fig. below. When the vector u—v is
added tov, the result isu . Notice that the parallelogram in the fig. below shows that
the distance from u to v is the same as the distance of u—v too.
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x
¥
+ 5 — vt
] 4 u
L | 1 | L] | L [l I
T r [ ] T I I b F I |
1 |
[ I
-
Example 5

If u=(u,u,,u,) andv=(v,v,,Vv,), then

dist(u,v) =|ju—v|=u-v).u-v)

= \/(ul _Vl)z + (uz _Vz)z + (us _Vs)z

Definition
Two vectors in u and v in R" are orthogonal (to each other) if uv=0

Note
The zero vector is orthogonal to every vector in R" because O'v=0forall v inR".

The Pythagorean Theorem

Two vectors u and v are orthogonal if and only if |u +v||2 = ||u||2 +||v||2

Orthogonal Complements
The set of all vectors z that are orthogonal to w in W is called the orthogonal

complement of W and is denoted by wh

Example 6
Let W be a plane through the origin in R?, and let L be the line through the origin

and perpendicular to W. If z and w are nonzero, z is on L, and w is in W, then the line
segment from 0 to z is perpendicular to the line segment from 0 to w; that is, z. w = 0.
So each vector on L is orthogonal to every w in W. In fact, L consists of all vectors
that are orthogonal to the w’s in W, and W consists of all vectors orthogonal to the z’s
in L. That is,

L=W*'andW =L"
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Remarks

The following two facts aboutW -, with W a subspace of R", are needed later in the
segment.

(1) A vector x is in W* if and only if x is orthogonal to every vector in a set that
spans W.

(2) W is a subspace of R".

Theorem 3
Let A be m x n matrix. Then the orthogonal complement of the row space of A is the
null space of A, and the orthogonal complement of the column space of A is the null
space of A': (Row A)* = Nul A, (Col A)* =Nul AT
Proof

The row-column rule for computing Ax shows that if x is in Nul A, then x is
orthogonal to each row of A (with the rows treated as vectors in R"). Since the rows of
A span the row space, x is orthogonal to Row A. Conversely, if x is orthogonal to
Row A, then x is certainly orthogonal to each row of A, and hence Ax = 0. This
proves the first statement. The second statement follows from the first by replacing A
with AT and using the fact that Col A = Row A.

Angles in R? and R?

If u and v are nonzero vectors in either R? or R®, then there is a nice connection
between their inner product and the angle & between the two line segments from the
origin to the points identified with u and v. The formula is

u-v = ul||v]cos ¢ (2)
To verify this formula for vectors in R? consider the triangle shown in Fig. 7, with
sides of length |uf.[v|, and |u-v|. By the law of cosines,
=yl =[ul] +[M" - 2ufv]cos 8
which can be rearranged to produce
1 2 2 2
Jullvlcos & =2 Julf + v\ —Ju—v[| |

1r, 2 2 2 2 )
ZE[ul +Uy +Vy +Vy — (U —Vv,)" = (U, —V,) }:U1V1+U2V2 —u-v

U1, Uz)

L Ju=v]

(V1, V2)

Figure 7 The angle between two vectors.
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Example 7
Find the angle between the vectors u=(1,-1,2), v=(2,10)

Solution
uv=>0~2)+(-H@)+(2)(0)=2-1+0=1
And

=@+ (-D*+(2)? =V1+1+4 =6
V| =27 + @7 +(0) =v/a+1=+5

Angle between the two vectors is given by
Cosg=—
Julv]

Putting the values, we get

cosf = _t 1
V65 /30
1
CoSH =——
V30
1 .
0 =cos " ——=79.48
30
Exercises
Q.1
1 -3
Compute u.v and vu whenu=|5|andv=| 1
3 5
Q.2
Letv=(2,1,0,3)inR*. Find a unit vector u in the direction opposite to that ofv .
Q.3
Let W be the subspace of R*spanned by X = (%,g,g) . Find a unit vector Z that is a
basis for W.
Q4

Compute the distance between the vectors u=(1, 5, 7) and v= (2, 3, 5).

Q.5
Find the angle between the vectors u=(2,1,3), v=(0,2).
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Lecture No.39
Orthogonal and Orthonormal sets

Objectives

The objectives of the lecture are to learn about:

Orthogonal Set.

Orthogonal Basis.

Unique representation of a vector as a linear combination of Basis vectors.
Orthogonal Projection.

Decomposition of a vector into sum of two vectors.

Orthonormal Set.

Orthonormal Basis.

Some examples to verify the definitions and the statements of the theorems.

Orthogonal Set

Let S ={U1, u,,..., up} be the set of non-zero vectors in R", is said to be an orthogonal set

if all vectorsin S are mutually orthogonal. That is
O¢S and u;.u;=oVi= j,i,j=12,.,p.

Example

Show that S :{ul, uz,ug} is an orthogonal set. Where

-1

|
H
I\)N|

u=1|,u,=| 2|and u,=|—-

N~

Solution

To show that S is orthogonal, we show that each vector in S is orthogonal to other. That
IS
u.u;=ovi=j,i j=123.

Fori=1j=2
-1
u.u, =11 2
1] 1
=-3+2+1=0

Which implies u, is orthogonal to u,.

© Virtual University Of Pakistan 460



39-Orthogonal and Orthonormal Sets VU

Fori=1j=3
___1_

3| 2
u.u,=|11| -2
1 7
L2 ]
::§—2+Z
2 2

=0.

Which implies u, is orthogonal to u,.

Fori=2j=3
___1_
-1 2
U, Uy =| 2| =2
1 7
[ 2 ]
:£—4+Z
2 2
=0.

Which implies u, is orthogonal to uj.

Thus S ={u1,u2,u3} is an orthogonal set.

Theorem
Suppose that S ={U1, Uy,.ees Up} is an orthogonal set of non-zero vectors in R" and

W = Span{ul,uz,...,up}. Then S is linearly independent set and a basis for W.

Proof

Suppose
0=cu, +Cu, +...4+CU,.

WhereC,, C,...,C, are scalars.

u,.0=u,.(cy, +cu, +...+C.u,)

0  =u.(qu)+u,.(cuy)+...+u.(cu,)
=C (U .U) +¢, (U, .Uy) +...+ ¢, (u,.uy)

= Cl(ul'ul)
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Since S is orthogonal set, so, u,.u, +...+Uu,.u, =0 but u,.u, > 0.
Thereforec, =0. Similarly, it can be shown that ¢, =¢, =...=¢, =0

Therefore by definition S :{ul,uz,...,up} is linearly independent set and by definition of
basis is a basis for subspaceW .

Example

If S ={u1,u2} is an orthogonal set of non-zero vector in R* . Show that S is linearly
independent set. Where

el

Solution

To show that S={u;,u, } is linearly independent set, we show that the following vector
equation

cu, +c,u, =0.

has only the trivial solution. i.e. ¢, =c, =0.

cu, +¢cu, =0

RN
NN

3, -¢c,=0

¢,+3c,=0

Solve them simultaneously, gives

c,=¢C, =0.

Therefore if S is an orthogonal set then it is linearly independent.

2

Orthogonal basis

Let S:{ul,uz,...,up} be a basis for a subspace W of R", is also an orthogonal basis if S
is an orthogonal set.

Theorem
If S ={u1,u2,---,up} is an orthogonal basis for a subspace W of R". Then each y in W can

be uniquely expressed as a linear combination of u,,u,,...,u . Thatis
Y =Cl +CU, +...+C U,
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Where
y.u;

u;.u;

c, =

Proof

y.U =(cu, +CU, +...+c U ).
= (cU,) .U, +(c,uy). Uy +...+(c u,).u,
=¢ (U, .Uy) +C, (U, Uy) +.+Cp (U .U )

=c,(u,.up).
Since S is orthogonal set, so, u,.u, +...+U.u, =0 but u, .u; > 0.
Hence
u - u y.u
c, =Y ang similarly c, = - c, = =
u, .u, u,.u, u,.u,
Example

The set S ={u1,u2,u3} as in first example is an orthogonal basis for R*. Express y as a
linear combination of the vectors in S. Where
y=[6 1 -8]

Solution

We want to write

y =C,U, +C,U, +C,U,

Where c,,c, and c, are to be determined.
By the above theorem

y.u,
“= u,.u,
6 3
|:1 1
8 1 11
311 3] 11 -
[1 1
1 1
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c, = y.u,
u,.u,
[ 6 -1
1| 2
-8 1 _
_ 1 _ 12:_2
-1 -1 6
21 2
1] 1
And
c, = y.Us
U,.U,
[
61| 2
1(.|-2
8] | 7
_ | 2] _ =383 _ _
—1][-1] 33/2
2 2
-2 |.| -2
T
L 21 2
Hence
y=u, —2u, —2u,.
Example

The set S :{ul, uz,u3} is an orthogonal basis for R®. Write y as a linear combination of

the vectors in S. Where

3 1 1 0
y=/7|,u=-1|u,=/1|and u,=|0

4 0 0 1
Solution

We want to write
y =C,U, +C,U, +C,U,
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Where c,,c, and c, are to be determined.
By the above theorem

3 1
7.1
¢ - y.u _ 4 i _0 | _3-7+0_
u,.u, 1 1 1+1+0
-1].|-1
0] O]
31[ 1]
70 1
¢, = y.u, _[4]] O] :3+7+O:5
u,.u, 1 1 1+1
11
0 0
And
3 0
C3:y.u3: 4 1 :£:4
U,.U, 0 0| 1
0] O
1 1
Hence

y =—2u, +5Uu, +4u,.
Exercise

The set S :{ul, uz,us} is an orthogonal basis for R®. Write y as a linear combination of
the vectors in S. where

17 8]
2 16
y:;,ulz—(l) U, = c and u3=?
-1 §
. 3]
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An Orthogonal Projection (Decomposition of a vector into the sum of two vectors

Decomposition of a non- zero vector y e R" into the sum of two vectors in such a way,
one is multiple of u € R" and the other orthogonal tou . That is

y=y"+12
Where Y" =aU for some scalar & and z is orthogonal tou .

-y 2=y
u
y
Yy =au
z=y-y’
y/\

In the above figure a vector y is decomposed into two vectors z=y—-y“and y" =au.
Clearly it can be seen that z=y—y” is orthogonal to u and y" = uis a multiple ofu .

Since z=y-y" is orthogonal to u.
Therefore

z.u=0
(y-y").u=0
(y—au).u=0
y.u-a(u.u)=0
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Hence
y' = SALYY , which is an orthogonal projection of y ontou.
u.u
And
z=y-y"
_ . y.u isacomponentof y
7w
Example

7 4
Let y:{ } and u:{ }
6 2

Find the orthogonal projection of y onto u. Then write y as a sum of two orthogonal
vectors, one in span {u} and one orthogonal to u.

Solution

Compute

: 4 8
The orthogonal projection of y onto u is 9:—uu:4—ou=2[2}:[4} and the

. ~ |7] |8 -1
component of y orthogonal tou is y—y =[ }{ } ={

70 (8] |1
= |+
The sum of these two vectors is y. That is, {6} {4} [ 2 }
y ¥ (y=9)

This decomposition of y is illustrated in Fig. 3. Note: If the calculations above are
correct, then {y, y — y}will be an orthogonal set. As a check, compute

c o [8] ]2
y-(y—y)=[4}-[2}=—8+8=0
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X2
4
\ L = Span {u}
y-y y
2
U
P T X1
1 8

Figure 3 The orthogonal projection of y on to a line through the origin.

Example
Find the distance in figure below fromy to L.

X2

. L = Span {u}

y =

X1

;

Solution

The distance from y to L is the length of the perpendicular line segment from y to the

orthogonal projection y.
The length equals the length of y—V.

This distance is

Iyl 2= 5
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Example

Decompose y = (-3,-4) into two vectors ¥y and z, where y is a multiple of u =
(-3, 1) and z is orthogonal to U. Also prove that y*.z=0
Solution
It is very much clear that y'is an orthogonal projection of Yy onto U and it is calculated by
applying the following formula

A
g2t

= u
u.u

To+41| 1| 2|1

B+ 4

NP o w

_ -3+3/2 _ B
| -4-1/2|

N | w

I
N |- N|w

Now
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313
A 2 2
yh.z= g
210 2
99
44
=0

Therefore, Y is orthogonal to z
Exercise

Find the orthogonal projection of a vector y = (-3, 2) onto U = (2, 1). Also prove that
y=y"+z, where y"a multiple of U and z is is an orthogonal to U.

Orthonormal Set

Let S :{ul,uz,...,up} be the set of non-zero vectors in R", is said to be an orthonormal set
if S is an orthogonal set of unit vectors.

Example

Show that S :{ul, uz,ug} Is an orthonormal set. Where

_i_ _ i_
J5 0 J5
u=|0 [,u,=-1]andu,= 0 |.
-1 0 2
V5 | | 5.
Solution

To show that S is an orthonormal set, we show that it is an orthogonal set of unit
vectors.

It can be easily prove thatS is an orthogonal set because

u;.u; =0Vi=|,i,j=123.

Furthermore
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2 1
J5 0 J5
u=l0 lu=-1ju= 0 |
-1 0 2
5 | V5]
PRI
V5| |5
u.u,= 0 .| O
-1]|-1
V5] |5
=%+O+%
=1
0 0
u,.u,=|-1.|-1
0 0
=0+1+0
=1
And

Hence
S={u,,U,,Us} is an orthonormal set.

Orthonormal basis

Let S :{ul, u,,..., up} be a basis for a subspace W of R", is also an orthonormal basis if

S is an orthonormal set.

Example
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Show that S ={u1, uz,ug} is an orthonormal basis of R*, where

_ _ -1 _ _
3 —= -1
@wlo| s
u, = %,uzz ? and u, = %
1 —= 7
ml | T
Solution

To show that S :{ul, uz,u3} is an orthonormal basis, it is sufficient to show that it is an
orthogonal set of unit vectors. That is

u.u; =0vi=j,i, j=123.

And

u.u, =1vi=j,i, j=123.

Clearly it can be seen that

u,.u, =0,
u,.u; =0
And

u,.u, =0.
Furthermore
u,.u, =1,
u,.u, =1
And

Ug.u, =1.

Hence S is an orthonormal basis of R?.

Theorem
A MxN matrix U has orthonormal columns if and only if U'U = |

Proof

Keep in mind that in an if and only if statement, one part depends on the other,
S0, each part is proved separately. That is, we consider one part and then prove the other
part with the help of that assumed part.
Before proving both sides of the statements, we have to do some extra work which is
necessary for the better understanding.

Let u,,U,,...,u. be the columns of U. Then U can be written in matrix form as
U=[u u,u,..u,]
Taking transpose, it becomes
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u,
u,
u,
U=
Uy,
u, u;u, Uu, Uity ... UU,
u; usU, UsU, UsUy ... UsU-
Us usU, UsU, UsU, ... U
U'u=|. |([u u, u...u,]=
u- uu, usu, Ui, ... UsU
As uv=Vv'u
Therefore
u,.u, u.u, U.Uy ... UU
u,.u, u,.u, Uu,.Us ... U,.U_
Ug.U; UgU, UglUy ... Ul
U'u=
u,.u, u..u, u._.u, u,.u,
Now, we come to prove the theorem.
First suppose that U'U =1, and we prove that columns of U are orthonormal.
Since, we assume that
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[u.u, U, Uy U]
U,.U, Uy U, Uy Ug ... Uy U
UgUy Ugll, Uglly oo Uglll
U'u=
u,.u, u U, u Us ... u U
[100.. 0]
010 .. 0
001.. 0
000 .. 1]
Clearly, it can be seen that
u.u;=0fori=j 1i,j=12..m
and
u.u;=lfori=j i,j=12,.m
Therefore, columns of U are orthonormal.
Next suppose that the columns of U are orthonormal and we will show that U'U =1.
Since we assume that columns of U are orthonormal, so, we can write
ui.uj:Ofori;tj i,j=12,..m
and
u.u=lfori=j i, j=12,.m
U.U; UpU, Ul .. Ul
U,.Uy UyUy Uyly .. Uyl
Us.U, UgUy Ugly . Ugl
Hence, U'U =
| UpUp U Uy U Uy U U |
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100 ... 0
010 .. 0
001.. 0

000 .. 1
That is

utu =1.

Which is our required result.

Exercise

Prove that the following matrices have orthonormal columns using above theorem.

111 1
B 3[1 _J

2 -2 1
2 |1 2 2

2 1 -2
@) {cos@ sine}

—-sin@ cos@

Solution (1)
Let

u'u=lI

Therefore, by the above theorem, U has orthonormal columns.

(2) And (3) are left for reader.
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Theorem
Let U be an mxn matrix with orthonormal columns, and let x and y be in R". Then
a) |ux| =]
b) (Ux).(Uy)=xy
c) (Ux).(Uy)=0 iff xy=0
Example
12 213
Let U =% 1/v2  -2/3] and X {‘/ﬂ
0 1/3 3
Verify that |Ux||=|||
Solution
Notice that U has orthonormal columns and
12 213
10
UTU {1/\/5 142 0 } U 203 {o J
2/3 -2/3 1/3 0 1/3
N2 213 3
UX:% V2 -2/3 {*ﬂ: 1
0 VL] A
|Ux||=v9+1+1 = J11
| =V2+9 =it
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Lecture No.40
Orthogonal Decomposition

Objectives
The objectives of the lecture are to learn about:

e Orthogonal Decomposition Theorem.
e Best Approximation Theorem.

Orthogonal Projection

The orthogonal projection of a point in R?onto a line through the origin has an important
analogue in R" .
That is given a vector Y and a subspace W in R", there is a vector § in W such that

1) y is the unique vector in W for which y— is orthogonal to W, and
2) ¥ is the unique vector in W closest to y.

o Y

<>

0 »

We observe that whenever a vector y is written as a linear combination of vectors
u,u,,..,u inabasis of R", the terms in the sum for y can be grouped into two parts so

that y can be written as y =z, +z,, where z, is a linear combination of some of the u,’s,

n

and z, is a linear combination of the rest of the u, 's . This idea is particularly useful when
{u,,u,,..,u } is an orthogonal basis.

Example 1

Let {u,u,,..,u } bean orthogonal basis for R® and lety =c,u, +c,u, +...+CUj.
Consider the subspace W= Span{us, u,} and write y as the sum of a vector z, in W and a
vector z, in W .

Solution
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Write
y =CU, +C,U, + C,U; +C,U, + C.Us

4 L)
where z, =cu, +c,u, isin Span of {u1, u,}, and z, =c,u, +c,u, +c.u; is in Span of {us,
Uy, U5}.
To show that z, is inW *, it suffices to show that z, is orthogonal to the vectors in the
basis {uy, u,} for W. Using properties of the inner product, compute

Z,-U, = (Cu; +C,U, +C.U.)-U; =CU,-U; +C,U, -U, +CU. U, =0

since uy is orthogonal to us, ug, and us, a similar calculation shows that z,-u, =0
Thus, z, isinW*.

Orthogonal decomposition theorem
Let W be a subspace of R",then each y in R" can be written uniquely in the form

y=y+2

Where y* eW and zeW*
Furthermore, if  {u,u,..u,} is any orthogonal basis forw, then

U
yA=Clul+C2u2+...+Cnun,wherecj = Y4,
u.u
Proof
z=y-y Y
! * _ .
0 § = proj,Y

Fig: Orthogonal projection of y on to W.

Firstly, we show thaty" eW,zeW™". Then we will show that y=y"+zcan be
represented in a unique way.

Suppose W is a subspace of R"and let {ul, uz,...,up} be an orthogonal basis for
W.

A y.u,
As y" =cU, +C,u,..cu, where ¢, =—

u;.u;

©Virtual University Of Pakistan 478



40-Orthogonal Decomposition VU

Since {ul,uz,...,up} is the basis for W and y” is written as a linear combination of

these basis vectors. Therefore, by definition of basis y" eW.
Now, we will show thatz=y —y* eW ™. For this it is sufficient to show that z L u; for
each j=12,...p.
Let u,eW be an arbitrary vector.
Z.U :(y_yA)-ul

=y.u -y .u

=y.U —(CU, +CU, +...+C U, ). Uy

=Yy.u _Cl(ul'ul) —C2(U2 'ul) _"'Cp(up 'ul)

=y.u —¢(u.u) whereu;.u =0,j=23,..p

y-u

=y.u, — (u,.u,)
171

=y.u-y.u

=0

Therefore, z L u,.

Since u, is an arbitrary vector, therefore z L u; for j=1,2,..p.

Hence by definition of W*,zeW*

Now, we must show that y=y” +z is unique by contradiction.

Let y=y"+z and y=y, +z, where y",y} eW and z,z, eW",

alsoz =z and y" =y, . Since above representations for y are equal, that is
Vi+z=Y+17

= Y-y =z7-z

Let

s=y -y,

Then

S=7,-12

Since W is a subspace, therefore, by closure property
s=y' -y, eW

Furthermore, W™ is also a subspace, therefore by closure property
S=7,-2ew"

Since

seW and seW™. Therefore by definition s L s

That is S. S=0
Therefore

s=y" -y =0

=y =y
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Also
2, =1
This shows that representation is unique.

Example
2 -2 1
Letu=| 5|, u,=1 |,and y=|2
-1 1 3

Observe that {u,,u,} is an orthogonal basis for W=span{u,,u, } , write y as the sum of a
vector in W and a vector orthogonal to W.

Solution

Since y" eW, therefore y" can be written as following:
y" =Cu; +C,U,

_YU LYY,

u, U, 1Jruz.uz e
2 ~2 2 ~2
=i 5 +§ 1 =i 5 +E 1
30 6 30 30
-1 1 -1 1
-2/5 -2
=l 2 |==|10
1/5 1|
1 ~-2/5] [7/5
y—-y'=|2|- 2 |= 0
3| | 1/5 | | 14/5
1
=7/5/ 0
2

Above theorem ensures that y—y” isin W*.
You can also verify by (y—y*).u, =0 and (y—y").u, =0.

The desired decomposition of y is
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1 -2/5 715
y=|2|= 2 |+ O
3 1/5 1415
Example
1 4
Let W=span{u,,u,}, where u, =| -3| and u, =| 2
2 1
2
Decompose y =| —2 | into two vectors; one in W and one in W*. Also verify that these
5
two vectors are orthogonal.

Solution

Let y*eWand z=y-y"  eW".

Since y" eW, therefore y" can be written as following:

yA =CU, +CU,

_YU LYY,

u, U, 1+u2.u2 e
1 4
:g -3 +§ 2
2 ! 1
3
y* =|-3
3
Now
2 3
z=y-y" ' =|-2|-]-3
5 3
-1
z=| 1
2

Now we show that z L y*,i.e. zy" =0
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-1]( 3
2.y = -3
3
=0
Therefore z L y”.
Exercise
1 3
Let W=span{u,,u,}, where u,=| 0 |and u,=| 1
-3 1
6
Write y =| -8 | as a sum of two vectors; one in W and one in W*. Also verify that these
12

two vectors are orthogonal.

Best Approximation Theorem

Let W is a finite dimensional subspace of an inner product space V and y is
any vector in V. The best approximation to y from W is then Proj, i.e for every w (that

IS notProj’ ) in W, we have
”y—ProjvyV” <|ly-w].

Example
1 4 2

Let W=span{u,,u,}, where u,=| -3|, u,=| 2| andy=|-2|. Then using above
2 1 5

theorem, find the distance fromy to W.

Solution
Using above theorem the distance from y to W is calculated using the following formula

|y=Proix]=[y-y
Since, we ha\_/e already calculated

2 3] |1
y-y'=|-2|-|-3|=| 1

5| |3 2
so |y-y|=v6

Example
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The distance from a point y in R"to a subspace W is defined as the distance fromy to the
nearest point in W.

Find the distance fromy to W =span{u,,u, } , where

-1 5
y=|-5|,u=|-2|u,=
10 1 -1

By the Best Approximation Theorem, the distance from y to W is |y—§, where
y = projyy. Since, {u1, Uy} is an orthogonal basis for W, we have

5 1 -1
15 21 1 7

9:%ul+Tu2=E -2 - 2 |=|-8
1 -1 4
-1 -1 0
y—-y=|-5|-|-8|=|3
10 4 6

ly - §/||2 =3*+62=45
The distance fromy to W is 45 = 3/5.

Theorem

If {U,,u,,...,u, } is an orthonormal basis for a subspace W of R", then
Projwy:(y'ul)ul + (y-uz)uz +---(Y'up)up

If U=[u u,..u

then Proj) =UU"y VyinR"

Example

-7 -1 -9
Letu=|1]|u=1]|yYy=

4 -2 6

and W :span{ul,uz} . Use the fact that u; and u, are orthogonal to compute Proj,y .

Solution
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Projwyzﬁul+ Y4, u,
uu, U,
A
66 6 °
-7 -1] [-9
:i 1 1 1 |=| 1|=y
3 4 3 6

In this case,y happens to be a linear combination of u; and u, . Soy is in W. The closest
pointin W toyisy itself.
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Lecture # 41

Orthogonal basis, Gram-Schmidt Process, Orthonormal basis

Example 1
Let W = Span {x1, X2}, where
3 1
X,=|6]and x,=|2
0 2

Find the orthogonal basis {v1, v,} for W.
Solution

Let P be a projection of x, on to x;. The component of x, orthogonal to x; is X, — P,
which isin W as it is formed from x, and a multiple of x;.

Letvy =x; and compute

1 15 3 0
V,=X,—P = xz—X\j'\e v, =|2 T 6(=|0
1 2 0 2

Thus, {v1, v2} is an orthogonal set of nonzero vectors in W, dim W =2 and {vi, v} isa
basis of W.

Example 2

For the given basis of a subspace W = Span {x1, X2},

0 5
X, =|4|and x,=| 6
2 —7

Find the orthogonal basis {vi, v} for W.

Solution

Set v; = X3 and compute
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5 0
vzzxz—xz'v1 v,=| 6 10 4
v, P 20 5
5 0 5
=| 6 1 41=| 4
-7 2 2 -8
0|5
Thus, an orthogonal basis for Wis |4 |,| 4
2||-8
Theorem

Given a basis {x, ..., Xp} for a subspace W of R". Define

X, .V,
Vi=X V=X — v,

VA'A
X3V, X,V
Vs =X — : lVl_ : 2Vz
VAR VA TA
_ XN X, XV
V, =X, — v, — Vy —m v
ViV, VLW, VoaVo,

Then {v4, ...,vp} is an orthogonal basis for W.
In addition
Span {vi, ..., vi}= Span {xi,..., Xk} for 1<k < p

Example 3

The following vectors {x1, X2, X3} are linearly independent

Construct an orthogonal basis for W by Gram-Schmidt Process.
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Solution

To construct orthogonal basis we have to perform the following steps.

Step 1 Letvi=Xx;

Step 2
X, .V,
Letv, = x,——22Lv
2 2 Vl.Vl 1
0 1 -3/4 -3
. 1] 3|1 1/4 1
Since V, =X, =| . |[-=|. |= =
1| 4|1 1/4 1
1 1 1/4 1
Step 3
0 -3 0
0 1 2/3
V, =X, X3V1V1+ 3-V2 v, | = . g +£ _
(VA'AR VATA 1] |4 12| 1 2/3
1 1 2/3
0 0 0
o] |2/3| |-2/3
*Tl1| |2/3] | 1/3
1 2/3 1/3

Thus, {v1, v, v3} is an orthogonal set of nonzero vectors in W.

Example 4

Find an orthogonal basis for the column space of the following matrix by Gram-Schmidt

Process.
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-1 6 6
3 -8
1 -2
1 -4 -3
Solution
Name the columns of the above matrix as X1, X2, X3 and perform the Gram-Schmidt
Process on these vectors.
-1 6 6
B 3 B -8 3
Xl_l y X2 = 2 » X3+ 6
1 -4 -3
Setv; =Xx;
Vo =X — %Y Vi
A'A
6 -1
-8 3
= —3 =
L3
—4 -1
X,V X,V
V3:X3_311 32Vz
Vl'vl V2 'V2
-1 3 -1
|3 13 5(1 | |1
16 | 2[1 | 2|1 | |3
-3 1 -1] |1
=113 -1
3 (|1 -1
Thus, orthogonal basis is : ,
1 1 3
1 -1(]-1
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Example 5

Find the orthonormal basis of the subspace spanned by the following vectors.

Solution

Since from example # 1, we have

3 0
v,=[6], v,=|0
0 2

Orthonormal Basis
3 1//5 0

6|=|2//5 ,uzzivzz 0
0 0 ||V2|| 1

- ty-_L
B\ I

Example 6

Find the orthonormal basis of the subspace spanned by the following vectors.

2 4
x1=|-5land x,=|-1
1 2

Solution

Firstly we find v; and v, by Gram-Schmidt Process as

X,V
V.V,

Setvl = x4 4 2 4 2
v, =|-1 —% -5|=]-1 —% -5
2 1 2 1

Vo =X, = X — Vi
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4 1 6
=|-1|-|-5/2|=|3
2 1/2 3

Now |jv, | = L _ 1 andsince ]| = /30

V54 36

Thus, the orthonormal basis for W is

2/30 | [ 2//6
{HH} _5/30 | | 16
H 1/~/30 || 1/+/6

Theorem

If A'is an m x n matrix with linearly independent columns, then A can be factored as
A =QR, where Q is an m x n matrix whose columns form an orthonormal basis for Col A
and R is an n x n upper triangular invertible matrix with positive entries on its diagonal.

Example 7
1 2 5
-1 1 -4
Find a QR factorization of matrix A=| -1 4 -3
-4
L 2 1 _
Solution

Firstly find the orthonormal basis by applying Gram Schmidt process on the columns of
A. We get the following matrix_Q.

1//5 1/2 1/2 |
~1/-/5 0 0
Q=|-1/5 1/2 1/2
15 -1/2 1/2
1/+/5 1/2 ~1/2
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N N I N
NOWR:QTA= 0 6 _2
0 0 4

Verify that A=QR.

Theorem

If {u,, ..., u }is an orthonormal basis for a subspaceW of R",then

projwyz(y'ul)u1+(y'uz)u2+'”+(y'up)up
If U=1[u u, .. ul,
then proj,y=UU"y VyinR"

The Orthogonal Decomposition Theorem

Let W be a subspace of R" Theneachyin R" can be written uniquely in the form
y=9+z
where wtisinWand zisin

In fact, if {us, ..., up} is any orthogonal basis of W, then

~ -u
y: y 1ul+...+

u, -u, u,-u

andz=y-y .Thevector y iscalled the orthogonal projection of y onto W and is
often written as projy Y.

Best Approximation Theorem

Let W be a subspace of R",y is any vectorin R" and § the orthogonal projection of y

onto W. Then ¥ is the closest point in W to y, in the sense that

for all vin W distinct from V.

ly=9l<ly-v|

The vector y* in this theorem is called the best approximation to y by elements of W.
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Exercise 1

Let W = Span {x1, x2}, where

1 1/3
X1: 1| and x2: 1/3
1 -21/3

Construct an orthonormal basis for W.

Exercise 2

Find an orthogonal basis for the column space of the following matrix by Gram-Schmidt

Process.
-5 1
1 1 1
-1 -5 -2
3 -7 8
Exercise 3
Find a QR factorization of
1 3 5]
-1 -3 1
A= 2 3
5 2
— 5 8 -
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Lecture # 42
Least Square Solution

Best Approximation Theorem

Let W be a subspace of R", y be any vector in R" and § the orthogonal projection of y
onto W. Then ¥ is the closest point in W to y, in the sense that ly=9]<[ly-V|
for all v in W distinct from y

The vector y in this theorem is called the best approximation to y by elements of W.

Least-squares solution

The most important aspect of the least-squares problem is that no matter what “x”* we
select, the vector Ax will necessarily be in the column space Col A. So we seek an x that
makes Ax the closest point in Col A to b. Of course, if b happens to be in Col A, then b is
Ax for some x and such an x is a “least-squares solution.”

Solution of the General Least-Squares Problem

Given A and b as above, apply the Best Approximation Theorem stated above to the
subspace Col A. Let b = proj.,, b

A~

Since b is in the column space of A, the equation Ax =b is consistent, and there is an X
in R" such that

AX=Db Q)
Since b is the closest point in Col A to b, a vector X is a least-squares solution of Ax = b

if and only if X satisfies AX = b.Suchan X inR"is a list of weights that will build b out
of the columns of A.

Normal equations for X

Suppose that X satisfies AX= b. By the Orthogonal Decomposition Theorem the
projection b has the property that b-b is orthogonal to Col A, so b— AX is orthogonal
to each column of A. If aj is any column of A, then a; - (b—AX) =0, and a] (b— AX) =0.

Since each aJT isarowof AT,

AT (b—AR) =0 @)
A'b— ATAZ =0
ATAR = ATb (3)

The matrix equation (3) represents a system of linear equations commonly referred to as
the normal equations for X.
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Since set of least-squares solutions is nonempty and any such X satisfies the normal

equations. Conversely, suppose that X satisfies A" AX = A'b. Then it satisfy that b— AX
is orthogonal to the rows of A" and hence is orthogonal to the columns of A. Since the
columns of A span Col A, the vector b— AX is orthogonal to all of Col A. Hence the
equation b = AX+ (b— AX) is a decomposition of b into the sum of a vector in Col A and

a vector orthogonal to Col A. By the uniqueness of the orthogonal decomposition, AX

must be the orthogonal projection of b onto Col A. That is, AX = b and X is a least-
squares solution.

Definition

IfAismxnandbisinR", aleast-squares solution of Ax=bisan 11X in R" such that

[o- A%|<|b- AX| ¥ xeR"

Theorem

The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions
of the normal equations

ATAX=A"b
Example 1

Find the least squares solution and its error from the following matrices,
4 0

A=|0 2|,b=|0
11

Solution

Firstly we find

4

ATA:{
0

0 17 1

2 { } and
1 5

1

ATb_401 [19
1o 2 1 1
11

L
O N P O >

17 1 19
Then the equation A" AX = A'b becomes a.
1 5| x| |11
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Row operations can be used to solve this system, but since A'A is invertible and2x 2, it

is probably faster to compute (A"A)™" =—

2

Now again as A=

Therefore, X=(A"A)"A'b = 8i4

1[5 -1
84{—1 17
~1)[19] 1[84] [1
17 | [11} B 8_4_168} B M
7 2
b= 0
|
T4
|4
13
(4] [-2
4|=|-4
3] |8

4
Then AX=|0
1
2
Hence b— AX = { 0
11
So

|b— AR|| = y/(-2)? + (-4)? + 82 = /84

The least-squares error is J/84. For any x in R?, the distance between b and the vector Ax

is at least \/Q.

Example 2

Find the general least-squares solution of Ax = b in the form of a free variable with

e

Solution

o O O O b -

o O b O O

P P O O O O
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1100
11111141100 6 2 2 2
. . - 1100001010 2 200
Firstly we find, A" A= = and
001 100|2010 2 020
000011120012 2 0 0 2
1 0 0 1]
- a7
11111 1|-1| |4
110000)0] |4
A'b= =
0 0110 0}2 2
0 000115 6
1

Then augmented matrix for A" AX = ATb is

6 222 4] 100 1 3
2200 -4/ |0 10 -1 -5
2020 2|1]001 -1 -2
2002 6|//000 0 O

The general solution is X, =3—X,,X, =-5+X,,X; =—2+X,, and X4 is free.
So the general least-squares solution of Ax = b has the form

3 -1
. |-b 1
X = ) + X,

0
Theorem

The matrix A" A is invertible iff the columns of A are linearly independent. In this case,
the equation Ax = b has only one least-squares solution X , and it is given by

%=(ATA)ATD

Example 3
Find the least squares solution to the following system of equations.
2 4 6 0
x1
1 -3 0 1
A= x2 |, b=
7 1 4 -2
X3
1 0 5 4
Solution

© Virtual University Of Pakistan 496



42-Least Square Solution VU

As
2 1 7 1
A=|4-3 10
6 0 4 5
2 6
2 1 7 1 55 12 45
. 1 -3 0
AA=|14 -3 1 O =112 26 28
7 1 4
6 0 4 5 45 28 77
1 0 5
Now
0
2 1 7 1 1 -9
Ab=|4 -3 1 0 2:—5
6 0 4 5 12
4
As ATAX=A"b
55 12 45||x1 -9
12 26 28| x2|=|-5
45 28 77 || x3 12
x1 —.676
X2 |=|-776
x3 834
Example 4
Compute the least square error for the solution of the following equation
2 4 6 0
x1
1 -3 0 1
A= X2 |,b=
7 1 4 -2
X3
1 0 5 4
Solution
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2 4 6 2 4 6
x1 —.676
- 11 -3 0 1 -3 0
AX = X2 |= -776
7 1 4 7 4
x3 .834
1 0 5 1 5
[0.548
- 11.652
Ax=
-2.172
1 3.494
As least square error
[&]= b Ax]

is as small as possible, or in other words is smaller than all other possible choices of x.

0] [0548 ] [-0.548
1 | (1652 | |0.652
2| | —2172| 0172
4 | 3494 | |1.494

b—AX=

2 2 2 2 2
lel” =<’ +€,2 + & +e,

Thus, least square error is

€]l =[lb— AR| =+/(-0.548)% +(0.652)? +(0.172)? + (1.494)?

=0.3003+0.4251+.02958+2.23=2.987
Theorem
Given an m x n matrix A with linearly independent columns.Let A = QR be a QR

factorization of A ,then for each b in Rm, the equation Ax = b has a unique least-squares
solution, given by

£=R'Q'b

Example 1
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w B P w

1

. . 1
Find the least square solution for A= 1
1

Solution

First of all we find QR factorization of the given matrix A. For this we have to find out
orthonormal basis for the column space of A by applying Gram-Schmidt Process, we get
the matrix of orthonormal basis Q,

Y2 12 Y2 ]
2 -2 -12
Q= Y Y Y And
/2 -12 12
Y2 12 -2
41 3 5
Y2 12 12 12 2 4 5
. 1 1 0f_
R=Q'A=|1/2 -1/2 -2 12 =0 2 3
v2 —y2 12 -2t 2 o 0 2
11 3 3
3
Y2 12 12 12 c 6
Then Q'b=Yy2 -12 -12 12 2 1= —6
Y2 -1/2 12 -1/2 3 4
2 4 5| x 6
The least-squares solution X satisfies RX=Q'b; thatis, [0 2 3|/ x, |=| -6
0 0 2||x 4
10
This equation is solved easily and yields X =| -6 |.
2

Example 2

Find the least squares solution RX= Qb tothe given matrices,
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3 1 1
A=|6 21,b=|2
0 2 3

Solution

First of all we find QR factorization of the given matrix A. Thus,
have to make

Orthonormal basis by applying Gram Schmidt process on the columns of A,

Letvy =X
1 . 31 10
V,=X,—P = XZ—XZ'V1 v, =|2 b 6(=|0
LV, 45
2 0] |2

Thus, the orthonormal basis are

1((0

Vi Y,
— —>=<121,]0
{”\/1” ”VZ”} 0 1

Thus
L 0 1 2 0
=2 0|and Q' =
Q Q{O J
0 1
3 1]
12 0
NowR=Q'A= 6 2
00 1
0 2

Thus, least squares solution of RX=Q'b is
15 5. |5
X =
0 2 3
. |1
X=
1.8

we
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[Exercise 1
Find a least-squares solution of Ax = b for

1 -6 -1

1 -2
A= , b=

1 1

1 7
Exercise 2
Find the least-squares solution and its error of Ax = b for

1 35 3

110 5
A= , b=

11 2 7

1 3 3 -3
Exercise 3
Find the least squares solution RX=Q"b to the given matrices,

2 1 -5
A=|-2 O|,b=| 8
2 3 1
© Virtual University Of Pakistan 501



43-Inner Product Space VU

Lecture # 43
Inner Product Space

Inner Product Space

In mathematics, an inner product space is a vector space with the additional structure
called an inner product. This additional structure associates each pair of vectors in the
space with a scalar quantity known as the inner product of the vectors. Inner products
allow the rigorous introduction of intuitive geometrical notions such as the length of a
vector or the angle between two vectors. They also provide the means of defining
orthogonality between vectors (zero inner product). Inner product spaces generalize
Euclidean spaces (in which the inner product is the dot product, also known as the scalar
product) to vector spaces of any (possibly infinite) dimension, and are studied in
functional analysis.

Definition
An inner product on a vector space V is a function that to each pair of vectors
uand v associates a real number (u,v) and satisfies the following axioms,

Forall u,v,w in Vand all scalars C:
1) (u,v) =({v,u)

2) U+Vv, W) ={U,w) +{V,w)
3) {cu,v) =c{u,v)
4) uyu) = 0 and uuy = 0 iff u=0

A vector space with an inner product is called inner product space.

Example 1
Fix any two positive numbers say 4 & 5 and for vectors u=(u,,u,) and

v=(v,,v,) in R® set
(u,v)=4uV, +5u,v,
Show that it defines an inner product.

Solution
Certainly Axiom 1 is satisfied, because

(U,v)=4u1vy +5UzV, = 4viU; + 5VaUp =(V,U).
If w=(wy, wy), then
(U+V, W)= 4(u, +V;)W, +5(U, +V,)W,
= 4U,W, + 5U,W, + 4V, W, +5V,w, = (u, W)+ (v, W)
This verifies Axiom 2.
For Axiom 3, we have (cu,v) = 4(cu,)v, +5(cu,)v, = c(4u,v; +5u,v,) =c{u,v)
For Axiom 4, note that (u,u)=4u +5u’ >0, and 4u;+5u; =0 only if u; = u, =0, that
is, if u = 0. Also, (0,0)=0.
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So (u,v>: 4u;vy +5U5v, = 4viup + 5vou, defines an inner product on R%

Example 2
Let A be symmetric, positive definite nxn matrix and let u and v be vectors in R" .

Show that (u,v)=u'Av defines and inner product.

Solution
We check that
(u,v)=u'Av=Uu.Av= Avu
= Alvu = (V‘A)t u=v'Au={v,u)
Also
(uv+w)=u'A(v+w)=u'Av+u'Aw
=(u,v)+{u,w)

And

(cu,v)=(cu) Av=c(u'Av)=c(u,v)
Finally since A is positive definite
(u,uy=u'Au>0 forall u=0
So (u,u)=u'Au=0 iff u=0
So (u,v)=u‘Av is an inner product space.

Example 3
Let to, ..., t, be distinct real numbers. For p and q in Py, define

(p.a)=p)alt) + pt)act) +--+ p(t,)a,)
Show that it defines inner product.

Solution
Certainly Axiom 1 is satisfied, because

(p.9)=p(t)alt,) + p(t)act) +--+ p(t,)a(t,)
=q(t,) p(t,) +q(t) p(t) +---+0(t,) p(t,) =(a, p)
Ifr=r(t,)+rt)+---+r(t,), then
(p+0a,ry=[p(t,)+alt)]rt,)+[ p(t) +a(t)]rt)+---+[p(t,)+act,)]r(t,)
=[p(t)r(ty) + p(t)r(t) +...+ p(t,)r(t,)]+[alt)rt,) +at)rt) +...+q(t)r(,)]

=(p.r)+(a.r)

This verifies Axiom 2.
For Axiom 3, we have

{cp,a) =[cp(ty)]alty) +[cp(t)]alt) +---+[cp(t,)]alt,)

=c[p(ty)alt,) + p(t)alt) +---+ p(t,)act,)]=c(p.q)
For Axiom 4, note that

(p,p) =[p(t,)T’ +[p(t)]* +---+[p(t,)* =0
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Also, (0,0)=0. (We still use a boldface zero for the zero polynomial, the zero vector in
Pn.) If {p, p) =0, then p must vanish at n + 1 points: to, ..., t. This is possible only if p is
the zero polynomial, because the degree of p is less than n + 1. Thus
(p,q) = p(ty)a(t,) + p(t)alt,) +---+ p(t,)a(t,) defines an inner product on Py,

Example 4
Compute (p,q) where p(t)= 4+t q(t) = 5-4t°

Refer to P, with the inner product given by evaluation at -1, 0 and 1 in example 2.

Solution
P(-1)=3,P(0)=4,P@Q)=5

q(-1)=1,q(0)=5,q@1®) =1

(p,q) =P(-1)a(-1) + P(0)q(0) + P()q(1)
=)D +(AB)+(G)D)
=3+20+5

Example 5
Compute the orthogonal projection of g onto the subspace spanned by p, for p and g in

the above example.

Solution
The orthogonal projection of g onto the subspace spanned by p
P(-1)=3,P(0)=4,P1)=5
q(-)=1,9(0)=5,a@) =1
q.p=28 p.p =50
~ q.p 28
=——p=—(4+t
=0p’ o4+
56 14
=—+—t
25 25
Example 6
Let V be P, , with the inner product from example 2 where
t, =0, g:% and t, =1
Let p(t)=12t> and q(t)=2t-1
Compute (p,q) and (q,q)
Solution
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(p.0)=P(0)a(0)+ p( %)+ P(1)a()
~(0)(-1)+(3)(0)+(12)(1) =12

(a,9)=[a(0 ]Z{q %} +[Q(1)]2
=(=1)"+(0) +(1)" =

Norm of a Vector

Let V be and inner product space with the inner product
denoted by <u,v> justasin R" , we define the length or norm of a vector V to be the

scalar
IVl=uv) or V= (uv)

1) A unit vector is one whose length is 1.
2) The distance between u&v is [u—v| vectors u&v are orthogonal if (u,v)=0

Example 7
Compute the length of the vectors in example 3.

Solution
Iof ~(p.2)-[p(0T +| o[ 3] <[P0
=(0)" +(3)" +(12)° =153
ol -+i53

In example 3 we found that

(0.0)=
Hence  [a|=v2

Example 8
Let R* have the inner product of example 1 and let x=(1,1) and y=(5,-1)
a) Find x| |ly|and |<x y>|2 b) Describe all vectors (z,,z,) that are
orthogonal to y.

Solution

a) We have x=(1,1) and y=(5,-1)

And (X, y)=4XY; +5%,Y,
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[X]={x x) =/40)®) +50®
=J4+5=/9=3
IVI=(y. y) = JAB)E) +5(-1)(-D
= 100+5 =+/105

(v =06 ) (xy)
=[4)5) +50)(-D)]
=[20-5]
=[15]" =225

b) All vectors z =(z,,z,) orthogonal to y=(5,-1)
<y,z2>=0
4(5)(z,) +5(-1)(z,) =0
20z, -5z, =0
4z,-2,=0

So all multiples of

1

4
J are orthogonal to y.

Example 9
Le V be P, with the inner product in example 2 involving evaluation of

polynomials at -2,-1,0,1,2 and view P, as a subspace of V. Produce an orthogonal basis

for P, by applying the Gram Schmidt process to the polynomials 1,t &t?.
Solution

Given polynomials 1 t t2 at -2,-1,0,1and 2
Polynomial: 1 t t?
1 -2 4
1 -1 1
Vector of values: |1/, 0 10
1 1 1
1 2 4

The inner product of two polyno_m_ials in V_equa_ls the (standard) inner product of their
corresponding vectors in R°. Observe that t is orthogonal to the constant function 1. So
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take po(t) = 1 and p1(t) = t. For p,, use the vectors in R® to compute the projection of t?
onto Span {po, p1}:
(t?,po) = (1", 1) =4+1+0+1+4=10

< Po> po> =5
(t,p,) =(t,t) = -8+ (-1)+0+1+8=0
The orthogonal projection of t* onto Span {1, t} is % P, +0p,. Thus

p,(t) =t* —2p, (1) =t* -2
An orthogonal basis for the subspace P, of V is:

Polynomial: Po P1 p2
1] [—2] [ 2]
1 -1 -1

Vector of values: |1/, 0 | =2
1 1 -1
_1_ . . L 2 .

Best Approximation in Inner Produce Spaces

A common problem in applied mathematics involves a vector space V whose
elements are functions. The problem is to approximate a function f in V by a function

g from a specified subspace W of V. The “closeness” of the approximation of f
depends on the way ||f —g| is defined. We will consider only the case in which the
distance between f and g is determined by an inner product. In this case the best
approximation to f Dby functions in W is the orthogonal projection of f onto the
subspace W.

Example 10
Let V be P, with the inner product in example 5 and let P,, P, &P,

be the orthogonal basis for the subspaceP,, find the best approximation to

p(t)=5—%t4 by polynomials inP,.

Solution:

The values of po, p1, and p, at the numbers — 2, -1, 0, 1, and 2 are listed
in R vectors in

Polynomial: Po P1 P2

©Virtual University Of Pakistan 507



43-Inner Product Space VU

(1] [—2] [ 2]
1 -1 -1
Vector of values: | 1|, 0 -2
1 1 -1
1] | 2 | 2 ]
The corresponding values for p are: —3,9/2,5,9/2, and -3.

We compute
<p1p0>:8 <p1p1>:0 <p1p2>:_31
<p0’po>:5’ <p2’p2>:14
Then the best approximation in V to p by polynomials in P is
s AP () (Ppy)
p=proj, p= Po + P+ Y
" (P Po)  (Pup) (P by

_8 -31 _ 8 31 (+2
5Pt P =5—3 (" -2).

This polynomial is the closest to P of all polynomials in P,, when the distance between
polynomials is measured only at -2, -1, 0, 1, and 2.

Cauchy — Schwarz Inquality

Forall u,vinV

(uv)l < Jul M

Triangle Inequality

For all u,vinV
Ju+v] < fu +[v]

Ju +v||2 =(u+V,u+v)
=(u,u)+2(u,v)+(v,v)
< [ull” + 2}, V)| + M
<|ull +2Julivi+vI

Ju-+vIf = (Jol + )
= Jusv] =Jul+V

Inner product for C[a,b]
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Probably the most widely used inner product space for applications
is the vector space C[a,b] of all continuous functions on an intervala <t <b, with an

inner product that will describe.

Example 11
For f, g in C[a,b], set

<f,g>=_[: f(t) g(t)dt
Show that it defines an inner product on C[a,b].

Solution

Inner product Axioms 1 to 3 follow from elementary properties of
definite integrals

For Axiom 4, observe that

(f.£)=[ [fOFdt=0

The function [f(t)]? is continuous and nonnegative on [a, b]. If the definite integral of
[f(t)]* is zero, then [f(t)]* must be identically zero on [a, b], by a theorem in advanced
calculus, in which case f is the zero function. Thus <f, f>: 0 implies that f is the zero

function of [a, b].
So (f,g)= '[: f (t)g(t)dt defines an inner product on C[a, b].

Example 12
Compute (f,g) where f(t)=1-3t* and g(t)=t—t’> onv=C[0,1].
Solution
Let V be the space C[ab] with the inner product

(f.9)=[ () g(t)ct
f(t)=1-3t> , g(t)=t-t°
(f.g)=] @-3t)(t-t")dt

_ jol(:%t5 4ttt

1

B ESL BT
2 2 |
=0

Example 13
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Let V be the space C[ab] with the inner product

<f,g>:j: f(t) g(t)dt

Let W be the subspace spanned by the polynomials
R(t)=1,P,(t)=2t-1& Ry (t)=12t>

Use the Gram — Schmidt process to find an orthogonal basis for W.
Solution

Let q1 = p1, and compute
1 1
<p2,q1>:j0 (2t—l)(1)dt=(t2—t)‘o=0

So p2 is already orthogonal to g, and we can take g, = p,. For the projection of ps onto
W, = Span {q1, g2}, we compute

P, 0, ) _[12t 1dt = 4t° =4

0.0, ) Il 1dt_t

{
{
(P5.0,) = [ 1267 (2t ~D)dt = j:(24t3 ~12)dt =
( _1

1 9 _1
Q.0 ) = J, (2t -1*dt =2

. , , 4
Then proj,, P; = <<23 (?l>> 4, + <<§3 22>> 4, = q ]7/3 —-0, =40, +60,
141 242

And 05 = P; —Proj,, p; = p; —4d, — 60,
As a function, qs(t) = 12t — 4 — 6(2t — 1) = 12t* — 12t + 2. The orthogonal basis for the
subspace W is {q1, g2, 93}

Exercises
Let R* have the inner product of example 1 and let x=(1,1) and y=(5,-1)

a) Find x| |ly|and |<x y>|2 b) Describe all vectors (z,,z,) that are
orthogonal to y.

2) Let R* have the inner product of Example 1. Show that the Cauchy-Shwarz
inequality holds for x=(3,-2) and y=(-2,1)

Exercise 3-8 refer to P, with the inner product given by evaluation at -1,0 and 1 in
example 2.
3) Compute {p,q) where p(t)= 4+t q(t) = 5-4t°
4) Compute (p,q) where p(t)=3t-t* q(t) =3 +t°
5) Compute |P||and |gf| for pand g in exercise 3.
6) Compute |P||and |q| for pand q inexercise 4.

7) Compute the orthogonal projection of g onto the subspace spanned by p, for p
and g in Exercise 3.
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8) Compute the orthogonal projection of q onto the subspace spanned by p, for p
and g in Exercise 4.

9) Let P? have the inner product given by evaluation at -3,-1,1, and 3. Let
p, (=1, p()=t, and p,(t)=t"
a)Computer the orthogonal projection of P, on to the subspace spanned by P, and P,. b)
Find a polynomial g that is orthogonal to B, and P, such tha {po, pl,q} is an orthogonal
basis for span {po, P, q} . Scale the polynomial g so that its vector of values at  (-3,-
1,1,3)is (1,-1,-1,1)
10) Let P® have the inner product given by evaluation at -3,-1,1, and 3. Let
p,(t)=1, p()=t, and p,(t)=t"
Find the best approximation to p(t) =t* by polynomials in Span {po, pl,q}.
11) Let p,, p,, p, be the orthogonal polynomials described in example 5, where the
inner product on P, is given by evaluation at -2, -1, 0, 1, and 2. Find the orthogonal
projection of t* onto Span {p,, p,, p, }
12) Compute (f,g) where f(t)=1-3t* and g(t)=t—t° onv=C[0,1].

13) Compute (f,g) where

f(t)=5t—3 and g(t)=t*-t* on v=C[0,1].
14) Compute | f| for fin exercise 12.
15) Compute |[g| for g in exercise 13.

16) Let V be the space C[-2,2] with the inner product of Example 7. Find an
orthogonal basis for the subspace spanned by the polynomialsi,t,t?.
17)

u V.
Let u ={ 1} and v :{ 1} be two vectors in R?. Show that (u,v)=2u,v, +3u,V,
uZ V2

defines an inner product.
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Lecture 44
Application of inner product spaces

Definition

An inner product on a vector space V is a function that associates to each pair of vectors u
and v in V, a real number <u,v> and satisfies the following axioms, for all u, v, w in V
and all scalars c:
1. {u,v)={v,u)

2. (u+v,w)=(u,w)+(v,w)
3. {eu,v)=c(uv)
4 (u,

u)y>0and (u,u)=0 iffu = 0

A vector space with an inner product is called an inner product space.

Least Squares Lines

The simplest relation between two variables x and y is the linear
equationy = S, + g, x. Often experimental data produces points (x,Y,),...,(X,,y,) that
when graphed, seem to lie close to a line. Actually we want to determine the parameters
S, and g, that make the line as “close” to the points as possible. There are several ways
to measure how close the line is to the data. The usual choice is to add the squares of the
residuals. The least squares line is the line y =/, + B, x that minimizes the sum of the
squares of the residuals.

If the data points are on the line, the parameters S, and S, would satisfy the

equations
predicted Observed

value value
ﬂo +ﬂ1X1 =Y
ﬁo +ﬁ1X2 =Y,
ﬂo +ﬁlxn = yn
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We can write this system as

XB=y
[ | Yo
X, Y1
Where X =| ' ,IB:VO} ,y=|"
. . B, .
1 X, | A

Computing the least-squares solution of X g =y is equivalent to finding the # that
determines the least-squares line.

Example 1

Find the equation y = g, + f,x of the least-squares line that best fits the data points
(2, 1), (5,2),(7,3),(8,3).

Solution
XpB=y
1 2 1
1 5 2
Here X = , B= Ao , Y=
1 7 i 3
1 8 3

For the least-squares solution of x5 =y, obtain the normal equations(with the new
notation) :

XTXB=X"y
i.e, compute
1 2
. 1 1 1 111 5 4 22
X' X = =
2 5 7 11 7 22 142
1 8
[1
T 1 112 9
X y: =
2 5 813 57
3
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The normal equations are
4 22| By| | 9
22 142\ g | |57
Hence,

B[4 2277 9
A el
1 [142 —227 9
=Q[—22 4}[57}

1|24 12/7
84/30| |5/14
Thus, the least -squares line has the equation

2
y=—+-—X

Weighted Least-Squares

Let y be a vector of n observations, V,,V,,.., Y,and suppose we wish to

approximate y by a vector Y that belongs to some specified subspace of R" (as discussed
previously that ¥ is written as Ax so that y was in the column space of A).Now suppose
the approximating vector y is to be constructed from the columns of matrix A. Then we
find an X that makes AX =y as close to y as possible. So that measure of closeness is the

weighted error
[y —Wg" =y ~wAg|
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Where W is the diagonal matrix with (positive) w;,...,w, on its diagonal, that is

W, 0 e 0
0 W,
W =
10 C W, |
Thus, Xis the ordinary least-squares solution of the equation
WAX =Wy

The normal equation for the weighted least-squares solution is
(WA)" WAX = (WA)" Wy
Example 2

Find the least squares liney = S, + f,x that best fits the data (-2, 3), (-1, 5), (0, 5), (1, 4),
(2, 3). Suppose that the errors in measuring the y-values of the last two data points are

greater than for the other points. Weight this data half as much as the rest of the data.
Solution

Write X, fandy

1 2] 3
1 -1 5
X =[1 0 ,ﬂ{ﬂO]Fs
1 B A
_1 . _3_

For a weighting matrix, choose W with diagonal entries2,2,2, 1 and 1.
Left-multiplication by W scales the rows of X and y:

2 0 0 0 o2 ~2]]
0 2 0 0 01 -1
wx=0 0 2 0 01 0
o 0 0 1 0|1 1
o o0 0 o0 11 2|
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2 —4] 6 |
2 -2 10
WX =|2 0| ,Wy={10
1 1 4
1 2 3

For normal equation, compute

(WX )TWX {

14
-9

25

} , and (\NX)TWy:{ 59}

34

And solve

I S

B [14 -9 59
Bl -9 25} {—34

B 1 [1169] [4.3
i 5 los

Therefore, the solution to two significant digits is g, =4.3and £, =0.20.

Hence the required line is y =4.3+0.2x
In contrast, the ordinary least-squares line for this data can be found as:

-2
-1

XTX_F 11 1 1}

-2 -1 0 1 2

e
Il
1
o
[EEN
o o
| |
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T 1 1 1 1 1
X'y=
-2 -1 0 1 2

¥

w b O1 O1 W
I

S
A
e
ARkl

Hence the equation of least-squares line is

y=1.0-0.1x
3

}':4.3+.j_t

) ‘_‘___'_{f,..-f

>‘:"-"-‘-‘-——____

- -+ . ,r";

A1 y=4=_[r

1 _:?. ) T -IZ

FIGURE 1 Weighted znd
ordinary least-squares lines.

What Does Trend Analysis Mean?

An aspect of technical analysis that tries to predict the future movement of a stock based
on past data. Trend analysis is based on the idea that what has happened in the past gives

traders an idea of what will happen in the future.
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Linear Trend

A first step in analyzing a time series, to determine whether a linear relationship provides
a good approximation to the long-term movement of the series computed by the method
of semi averages or by the method of least squares.

Note

The simplest and most common use of trend analysis occurs when the points t,,1,...,t,
can be adjusted so that they are evenly spaced and sum to zero.

Example
Fit a quadratic trend function to the data (-2,3), (-1,5), (0,5), (1,4) and (2,3)
Solution

The t-coordinates are suitably scaled to use the orthogonal polynomials found in Example
5 of the last lecture. We have

Polynomial : (TS o p, data:g
1] [-21 [ 2] 3]
1 -1 -1 5

Vector of values: 1], .| =21, 5
1 -1 4
1] [ 2] [ 2] 3]

~  <0,p, > <g,p, > <g,p, >

b= g, Po D, + g9, P b+ g, P, P,

< Pos Py > <Pup> <Py Py >

_0, 1. 7

“5 PP

and p(t)=4-0.1t—0.5(t> - 2)

Since, the coefficient of p, is not extremely small, it would be reasonable to conclude
that the trend is at least quadratic.
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—4;.f_:a -3 -1 1oz o3,
g kY

Above figure shows that approximation by a quadratic trend function
Fourier series

If fisa 27 -periodic function then

f(t) =%+Z(am cosmt+b_sinmt)
m=1

is called Fourier series of f where

2z
a, :l I f (t) cos mt dt and
4 0

1271'
m:-jfmgmmm
72—0

Example

Let C[0,27] has the inner product

2z

<fg>=ju0m0m

0
and let m and n be unequal positive integers. Show that cosmt and cosnt
are orthogonal.

Solution

When m=#n
2z

< cosmt,cosnt >= J' cosmtcosnt dt
0

2z
= % j [cos (mt + nt) + cos(mt —nt) dt
0
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2z

_l[sin(mt+nt)+sin(mt—nt)}
2 m+n m-n
=0

0

Example

Find the nth-order Fourier approximation to the function

f (t) =t onthe interval[0,27].

Solution
We compute
2z 2z
i:l.iftdt:i ltz =
2 2y 27| 2 |,

and for k>0, using integration by parts,

2z 27
a, :ljtcos kt dt :l[izcos kt+lsin kt} =0
Ty |k K

0

2

2
b, :i_[tsin ktdtzi[izsin kt—lcoskt} -2
7Ty 7|k k 0 k

Thus, the nth-order Fourier approximation of f(t) =t is

T —2sint—sin 2t—§sin3t—---—gsin nt
n

The norm of the difference between f and a Fourier approximation is called the mean
square error in the approximation.
It is common to write

f(t) :%+Z(am cosmt +b_sinmt)
m=1

This expression for f (t) is called the Fourier series for f on[0, 2] . The term a, cosmt,
for example, is the projection of f onto the one-dimensional subspace spanned by cosmt .
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Example

Let q,(t) =1, q,(t) =t,and g,(t) = 3t* — 4 .Verify that {q,,d,,q,}is an orthogonal set in
C{-2,2] with the inner product

<f,g >:Tf(t)g(t)dt

Solution:
2
=0

-2

2
<0, >= [1tdt :%tz dt
-2

2
<0,,q, >= [ 132 - 4)dt=(t* - 4p)| =0
-2

2
<0y, 0, >= _[t.(3t2 —4)dt =(%t4 —2t%) =0
-2

2
-2

Exercise

1. Find the equation y = g, + #x of the least-squares line that best fits the data
points (0, 1), (1, 1), (2, 2), (3, 2).

2. Find the equation y = g, + X of the least-squares line that best fits the data
points (-1, 0), (0, 1), (1, 2,),(2, 4).

3. Find the least-squares line y = 5, + 5 x that best fits the data

(-2,0), (-1, 0), (0, 2,),(1, 4),(2, 4), assuming that the first and last data points are

less reliable. Weight them half as much as the three interior points.

4: To make a trend analysis of six evenly spaced data points, one can use orthogonal
polynomials with respect to evaluation at the points t=-5, -3, -1, 1, 3and 5

(a). Show that the first three orthogonal polynomials are

35

3
p(t)=1  p®)=t, and pz(t)zgtz—?

(b) Fit a quadratic trend function to the data
(-5! 1)) (-3! l)l (-1’ 4)) (1l 4)! (3’ 6)’ (5’ 8)
5:  For the space C[0,2z] with the inner product defined by

27

<f,g >:j f(t) g(t)dt

0
(@) Show that sinmtand sinnt are orthogonal when m = n

(b) Find the third—order Fourier approximation to f(t) =2z -t
(c) Find the third order Fourier approximation tocos®t , without performing any
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integration calculations.
6: Find the first-order and third order Fourier approximations to
f(t)=3-2sint+5sin 2t —6cos 2t
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	Example 13   Determine which of the following are subspaces of M22.

	Solution   Let W is the set of all matrices   where a + b +c + d = 0.
	Example 14   Determine which of the following are subspaces of the space  .
	Solution   (i) Let W is the set of all f such that f (x)  0 for all x.
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	Lecture 21
	NULL SPACE
	An Explicit Description of Nul A
	There is no obvious relation between vectors in Nul A and the entries in A. We say that Nul A is defined implicitly, because it is defined by a condition that must be checked. No explicit list or description of the elements in Nul A is given. Howev...
	The Column Space of a Matrix   Another important subspace associated with a matrix is its column space. Unlike the null space, the column space is defined explicitly via linear combinations.
	Theorem 3   The column space of an   matrix A is a subspace of Rm.
	The Contrast between Nul A and Col A
	It is natural to wonder how the null space and column space of a matrix are related. In fact, the two spaces are quite dissimilar. Nevertheless, a surprising connection between the null space and column space will emerge later.
	Solution
	(a) The columns of A each have three entries, so Col A is a subspace of Rk, where k = 3.
	W

	Lecture 22
	Example 8     Check whether the set of vectors
	{-4  + 1 t + 3 t2 ,  6  + 5 t + 2 t2 ,  8  + 4 t + 1 t2} is a basis for P2?
	Solution   The set S = {p1 (t), p2 (t), p3 (t)} of vectors in P2 spans V = P2 if
	c1 p1 (t) + c2 p2 (t) + c3 p3 (t) = d1 q1 (t) + d2 q2 (t) + d3 q3 (t)  (*)
	with q1(t) = 1  + 0 t  + 0 t 2  , q2(t) = 0  + 1 t  + 0 t 2  , q3(t) = 0  + 0 t  + 1 t 2 has at least one solution for every set of values of the coefficients d1, d2, d3. Otherwise (i.e., if no solution exists for at least some values of d1, d2, d3), ...
	c1 (-4 + 1 t + 3 t2) + c2 (6 + 5 t + 2 t2) + c3 (8 + 4 t + 1 t2) =
	d1 (1  + 0 t  + 0 t 2 )  +  d2 (0  + 1 t  + 0 t 2 )  +  d3 (0  + 0 t  + 1 t 2 )
	Rearranging the left hand side yields
	(-4 c1 +6 c2 +8 c3)1  + (1 c1 +5 c2 +4 c3) t + (3 c1 +2 c2 +1 c3) t2 = (1 d1 +0 d2 +0 d3)1 + (0 d1 +1 d2 +0 d3) t + (0 d1 +0 d2 +1 d3) t2
	In order for the equality above to hold for all values of t, the coefficients corresponding to the same power of t on both sides of the equation must be equal. This yields the following system of equations:
	(A)

	We find that c1 = a, c2 = b, c3 = c, and c4 = d so that S spans V.
	The basis S in this example is called the standard basis for M22. More generally, the standard basis for Mmn consists of mn different matrices with a single 1 and zeros for the remaining entries
	Example 10     Show that the set of vectors
	Now let x be any vector in H – say, x = c1v1 + c2v2 + c3v3. Since v3 = 5v1 + 3v2, we may substitute
	The Spanning Set Theorem


	Two Views of a Basis When the Spanning Set Theorem is used, the deletion of vectors from a spanning set must stop when the set becomes linearly independent. If an additional vector is deleted, it will not be a linear combination of the remaining vecto...

	Lecture 23
	Let S = {v1, v2, v3} be the basis for R3, where v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4).
	Solution
	Since S is a basis for R3, Thus
	Example 3
	Find the coordinates vector of the polynomial p = a0 + a1x + a2x2 relative to the basis S = {1, x, x2} for p2.
	Find the coordinates vector of the polynomial p = 5 – 4x + 3x2 relative to the basis S = {1, x, x2} for p2.
	Find the coordinate vector of A relative to the basis S = {A1, A2, A3, A4}
	Solution
	A= c1 A1+ c2 A2+ c3 A3+ c4 A4


	A coordinate system on a set consists of a one-to-one mapping of the points in the set into Rn. For example, ordinary graph paper provides a coordinate system for the plane when one selects perpendicular axes and a unit of measurement on each axis. Fi...
	b1 (= e1) and b2 from Example 1, that is,
	Vector , the coordinates 1 and 6 give the location of x relative to the standard basis: 1 unit in the e1 direction and 6 units in the e2 direction.
	Coordinates in Rn    When a basis B for Rn is fixed, the B-coordinate vector of a specified x is easily found, as in the next example.

	The Coordinate Mapping     Choosing a basis B = {b1, b2 , … , bn} for a vector space V introduces a coordinate system in V. The coordinate mapping   connects the possibly unfamiliar space V to the familiar space Rn. See Figure 5. Points in V can now b...
	V
	Solution

	Lecture 24
	Example 1     The n dimensional set of real numbers Rn, set of polynomials of order n Pn, and set of matrices of order    Mmn are all finite- dimensional vector spaces. However, the vector spaces F (- , ), C (- , ), and Cm (- , ) are infinite- dimensi...
	Example 2
	(a)   Any pair of non-parallel vectors a, b in the xy-plane, which are necessarily linearly independent, can be regarded as a basis of the subspace R2. In particular the set of unit vectors {i, j} forms a basis for R2. Therefore, dim (R2) = 2.
	Bases for Nul A and Col A
	We already know how to find vectors that span the null space of a matrix A. The discussion in Lecture 21 pointed out that our method always produces a linearly independent set. Thus the method produces a b...
	Solution     The null space of A is the solution space of homogeneous system

	The general solution of the given system is
	which shows that the vectors   span the solution space .Since they are also linearly independent,{v1,v2} is a basis for Nul A.
	Procedure
	Basis and Linear Combinations

	Transforming Matrix to Reduced Row Echelon Form:
	The leading entries occur in columns 1,2 and 4 so that {w1, w2, w4} is a basis for the column space of  (B) and consequently {v1, v2, v4} is the basis for column space of (A).

	Subspaces of a Finite-Dimensional Space     The next theorem is a natural counterpart to the Spanning Set Theorem.
	Example 16     Decide whether each statement is true or false, and give a reason for each answer. Here V is a non-zero finite-dimensional vector space.
	Solution


	Lecture 25
	The Row Space    If A is an   matrix, each row of A has n entries and thus can be identified with a vector in Rn. The set of all linear combinations of the row vectors is called the row space of A and is denoted by Row A. Each row has n entries, so Ro...
	Solution     We can find a basis for the row space of A by finding a basis for the row space of any row-echelon form of A.

	A and R may have different column spaces, we cannot find a basis for the column space of A directly from the column vectors of R. however, it follows from the theorem (2b) if we can find a set of column vectors of R that forms a basis for the column ...
	Solution   The space spanned by these vectors is the row space of the matrix
	Solution     We find AT; then we will use the method of example (2) to find a basis for the column space of AT; and then we will transpose again to convert column vectors back to row vectors. Transposing A yields

	Solution
	(a) Since A has 9 columns, (rank A) + 2 = 9 and hence rank A = 7.
	Applications to Systems of Equations
	The Rank Theorem is a powerful tool for processing information about systems of linear equations. The next example simulates the way a real-life problem using linear equations might be stated, without explicit mention of linear algebra terms such a...
	Example 10     Find the rank and nullity of the matrix; then verify that the values obtained satisfy the dimension theorem
	Solution     Transforming Matrix to the Reduced Row Echelon Form:
	Theorem 4     If A is an m x n, matrix, then
	Four fundamental matrix spaces
	If we consider a matrix A and its transpose AT together, then there are six vectors spaces of interest:
	Rank and the Invertible Matrix Theorem     The various vector space concepts associated with a matrix provide several more statements for the Invertible Matrix Theorem. We list only the new statements here, but we reference them so they follow the sta...
	Theorem 6     The Invertible Matrix Theorem (Continued)
	Numerical Note
	Many algorithms discussed in these lectures are useful for understanding concepts and making simple computations by hand. However, the algorithms are often unsuitable for large-scale problems in real life.

	Solution
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	Suppose that x = 3b1 + b2        (2)
	Solution
	Solution

	Example 6
	Solution

	Lecture 27
	Applications to Difference Equations
	Discrete-Time Signals     Let S is the space of discrete-time signals. A signal in S is a function defined only on the integers and is visualized as a sequence of numbers, say, {yk}.
	Linear Independence in the Space S of Signals     To simplify notation, we consider a set of only three signals in S, say, {uk},{vk}and {wk}. They are linearly independent precisely when the equation
	Linear Difference Equations   Given scalars a0, … , an, with a0 and an nonzero, and given a signal {zk}, the equation
	for all k  (3)
	rk+3 – 2rk+2 – 5rk+1 + 6rk = 0       (5)

	Solution Sets of Linear Difference Equations
	Given a1, … , an, consider the mapping T: S  S that transforms a signal {yk}into a signal {wk} given by
	Theorem     If   and if {zk} is given, the equation
	Theorem     The set H of all solutions of the nth-order homogeneous linear difference equation
	Non-homogeneous Equations     The general solution of the non-homogeneous difference equation
	Example 6     Verify that the signal yk = k2 satisfies the difference equation

	Lecture 28
	Fixed Points
	A fixed point of an   matrix A is a vector x in Rn such that Ax = x. Every square matrix A has at least one fixed point, namely x = 0. We call this the trivial fixed point of A.
	Figure 1
	Eigenvalues and Eigenvectors
	In a fixed point problem one looks for nonzero vectors that satisfy the equation Ax = x. One might also consider whether there are nonzero vectors that satisfy such equations as
	To solve this homogeneous equation, form the matrix
	Eigenvalues of Triangular Matrices     If A is an   triangular matrix with diagonal entries a11, a22, …, ann, then   is a triangular matrix with diagonal entries  . Thus, the characteristic polynomial of A is
	Eigenvalues of Powers of a Matrix     Once the eigenvalues and eigenvectors of a matrix A are found, it is a simple matter to find the eigenvalues and eigenvectors of any positive integer power of A. For example, if   is an eigenvalue of A and x is a ...
	A Unifying Theorem     Since   is an eigenvalue of a square matrix A if and only if there is a nonzero vector x such that Ax = x, it follows that  = 0 is an eigenvalue of A if and only if there is a nonzero vector x such that Ax = 0. However, this is ...
	Example 6
	(1) Is 5 an eigenvalue of
	Solution
	(1) The number 5 is an eigenvalue of A if and only if the equation (A- I) x = 0 has a nontrivial solution. Form



	Lecture 29
	The Characteristic Equation
	Theorem 1   Properties of Determinants
	Example 3   (a) Find the eigenvalues and corresponding eigenvectors of the matrix

	Similarity
	Let A and B be two n x n matrices, A is said to be similar to B if there exist an invertible matrix P such that
	P -1AP = B,
	or equivalently,
	A = PBP -1.
	Replacing Q by P -1, we have
	Q -1BQ = A.
	So B is also similar to A. Thus, we can say that A and B are similar.
	Similarity transformation
	The act of changing A into P -1AP is called a similarity transformation.
	Theorem 2
	If n x n matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).
	Application to Dynamical Systems
	Dynamical system is the one which evolves with the passage of time. Eigenvalues and eigenvectors play a vital role in the evaluation of a dynamical system. Let’s consider an example of a dynamical system.
	Solution     The characteristic equation is

	Lecture 30
	Diagonalizing Matrices
	Solution     The characteristic equation of A turns out to be exactly the same as that in example 3 i.e.,

	Example 5     Determine if the following matrix is diagonalizable.
	Matrices Whose Eigenvalues Are Not Distinct
	If an n x n matrix A has n distinct eigen values, with corresponding eigen vectors v1 ,..., v n and if P = [v1 … vn] , then P is automatically invertible because its columns are linearly independent , by Theorem 2 of lecture 28. When A is diagonalizab...
	Theorem 3     Let A be an n x n matrix whose distinct eigen values are  .

	Example 7
	Solution
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	Lecture 31
	Eigenvectors and Linear Transformations
	Figure 3
	Theorem: Diagonal Matrix Representation
	Suppose A = PDP -1, where D is diagonal   n x n matrix. If B is the basis for Rn formed from the columns of P, then D is the B-matrix of the transformation .
	Similarity of Matrix Representations
	The factorization A = PCP -1 is shown in Fig. 5.
	An efficient way to compute a B-matrix P -1AP is to compute AP and then to row reduce the augmented matrix [P     AP] to [I     P -1AP]. A separate computation of P -1 is unnecessary.
	Example 4
	Example 5
	Solution
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	Example 1
	Example 2
	Example 3

	The complex conjugate of a complex vector x in Cn is the vector   in Cn whose entries are the complex conjugates of the entries in x. The real and imaginary parts of a complex vector x are the vectors Re  and Im   formed from the real and imaginary pa...
	Example 4
	Eigenvalues and Eigenvectors of a Real Matrix that Acts on Cn
	Let A be   matrix whose entries are real. Then    If   is an eigenvalue of A with x a corresponding eigenvector in Cn, then

	Example 6
	...
	Figure 2

	,where
	Show that a solution   is unbounded if its initial point is not on the  -axis.
	Change of Variable
	The preceding three examples involved diagonal matrices. To handle the nondiagonal case, we return for a moment to the   case in which eigenvectors of A form a basis   for Rn. Let  , and let D be the diagonal matrix with the corresponding eigenvalues ...
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	Figure 3 The orthogonal projection of y on to a line through the origin.
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