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Lecture No-1       Introduction 
 
– Calculus is the mathematical tool used to analyze changes in physical quantities. 
– Calculus is also Mathematics of Motion and Change. 
– Where there is motion or growth, where variable forces are at work producing 
acceleration, Calculus is right mathematics to apply. 
 
Differential Calculus Deals with the Problem of Finding 
 
(1)Rate of change. 
(2)Slope of curve. 
 
Velocities and acceleration of moving bodies. Firing angles that give cannons their 
maximum range. The times when planets would be closest together or farthest apart. 

 
Integral Calculus 
Deals with the Problem of determining a Function from information about its rates of 
Change. 
Integral Calculus Enables Us 
(1) To calculate lengths of curves. 
(2) To find areas of irregular regions in plane. 
(3) To find the volumes and masses of arbitrary solids 
(4) To calculate the future location of a body from its present position and knowledge of 
the forces acting on it. 
 
Reference Axis System 
Before giving the concept of Reference Axis System we recall you the concept of real 
line and locate some points on the real line as shown in the figure below, also remember 
that the real number system consist of both Rational and Irrational numbers that is we can  
write set of real numbers as union of rational and irrational numbers. 
 

 
 
Here in the above figure we have locate some of the rational as well as irrational numbers 
and also note that there are infinite real numbers between every two real numbers. 
Now if you are working in two dimensions then you know that we take the two mutually 
perpendicular lines and call the horizontal line as x-axis and vertical line as y-axis and 
where these lines cut we take that point as origin. 
Now any point on the x-axis will be denoted by an order pair whose first element which is 
also known as abscissa is a real number and other element of the order pair which is also 
known as ordinate will has 0 values. 
Similarly any point on the y-axis can be representing by an order pair. Some points are 
shown in the figure below. Also note that these lines divide the plane into four regions, 
First ,Second ,Third and Fourth quadrants respectively. We take the positive real numbers 
at the right side of the origin and negative to the left side, in the case of x-axis. Similarly 
 for y-axis and also shown in the figure. 
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Location of a point  
Now we will illustrate how to locate the point in the plane using x and y axis. Draw two 
perpendicular lines from the point whose position is to be determined. These lines will 
intersect at some point on the x-axis and y-axis and we can find out these points. Now the 
distance of the point of intersection of x-axis and perpendicular line from the origin is the  
X-C ordinate of the point P and similarly the distance from the origin to the point of 
intersection of y-axis and perpendicular line is the Y-coordinate of the point P as shown 
in the figure below. 
 
 
 

 
 
 
 
In space we have three mutually perpendicular lines as reference axis namely x ,y and z 
axis. Now you can see from the figure below that the planes x= 0 ,y=0 and z=0 divide the 
space into eight octants. Also note that in this case we have (0,0,0) as origin and any point 
in the space will have three coordinates.   
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Sign of co-ordinates in different octants 
First of all note that the equation x=0 represents a plane in the 3d space and in this plane 
every point has its x-coordinate as 0, also that plane passes through the origin as shown in 
the figure above. Similarly y=0 and z=0 are also define a plane in 3d space and have 
properties similar to that of x=0.Such that these planes also pass through the origin and 
any point in the plane y=0 will have y-coordinate as 0 and any point in the plane z=0 has 
z-coordinate as 0. Also remember that when two planes intersect we get the equation of a 
line and when two lines intersect then we get a plane containing these two lines. Now 
note that by the intersection of the planes x=0 and z=0 we get the line which is our y-axis. 
Also by the intersection of x=0 and y=0 we get the line which is z-axis, similarly you can 
easily see that by the intersection of z=0 and y=0 we get line which is x-axis. 
Now these three planes divide the 3d space into eight octants depending on the positive 
and negative direction of axis. 
The octant in which every coordinate of any point has positive sign is known as first 
octant formed by the positive x, y and z –axis. Similarly in second octant every points has 
x-coordinate as negative and other two coordinates as positive correspond to negative x-
axis and positive y and z axis. 
Now one octant is that in which every point has x and y coordinate negative and z-
coordinate positive, which is known as the third octant. Similarly we have eight octants 
depending on the sign of coordinates of a point. These are summarized below.     
 
First octant  (+, +, +) Formed by positive sides of the three axis.  
Second octant  (-, +, + ) Formed by –ve x-axis and positive y and z-axis. 
Third octant  ( -,  -, +) Formed by –ve x and y axis with positive z-axis. 
Fourth octant  ( +, -, +) Formed by +ve x and z axis and –ve y-axis. 
Fifth octant  (+, +, -) Formed by +ve x and y axis with -ve z-axis. 
Sixth octant  ( -, +, -) Formed by –ve x and z axis with positive y-axis. 
Seventh octant  ( -,  -, -) Formed by –ve sides of three axis. 
Eighth octant  ( +, -, -) Formed by -ve y and z-axis with +ve x-axis. 
 
(Remember that we have two sides of any axis one of positive values and the other is of 
negative values) 
Now as we told you that in space we have three mutually perpendicular lines as reference 
axis. So far you are familiar with the reference axis for 2d which consist of two 
perpendicular lines namely x-axis and y-axis. For the reference axis of 3d space we need 
another perpendicular axis which can be obtained by the cross product of the two vectors, 
now the direction of that vector can be obtained by Right hand rule. This is illustartaed 
below with diagram.      
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Concept of a Function 
Historically, the term, function, denotes the dependence of one quantity on other quantity. 
The quantity x is called the independent variable and the quantity y is called the 
dependent variable. We write y = f (x) and we read y is a function of x. 
The equation  y = 2x defines y as a function of x because each value assigned to x 
determines unique value of y. 
 
Examples of function 
– The area of a circle depends on its radius r by the equation A= πr2 so, we say that 
A is a function of r. 
– The volume of a cube depends on the length of its side x by the equation V= x3 so, 
we say that V is a function of x. 
– The velocity V of a ball falling freely in the earth’s gravitational field increases 
with time t until it hits the ground, so we say that V is function of t. 
– In a bacteria culture, the number n of present after one day of growth depends on 
the number N of bacteria present initially, so we say that N is function of n. 
 
Function of Several Variables 
Many functions depend on more than one independent variable.  
 
Examples 
The area of a rectangle depends on its length l and width w by the equation   
 A = l w , so we say that A is a function of l and w. 
The volume of a rectangular box depends on the length l, width w and height h by the 
equation   
 V = l w h so, we say that V is a function of l , w and h. 
The area of a triangle depends on its base length l and height h by the equation 
  A= ½ l h, so we say that A is a function of l and h. 
 The volume V of a right circular cylinder depends on its radius r and height h by the 
equation V= πr2h so, we say that V is a function of r and h.  
 
Home Assignments: 
   In the first Lecture we recall some basic terminologies which are 
essential and prerequisite for this course. You can find the Home Assignments on the last 
page of Lecture # 1 at LMS.
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Lecture No-2       Values of functions: 
 
Consider the function f(x) = 2x2 –1, then f(1)  =  2(1)2 –1 = 1, f(4)  =  2(4)2 –1 = 31,  
f(-2) =  2(-2)2 –1 = 7 

f(t-4) =  2(t-4)2 –1= 2t2 -16t + 31 
These are the values of the function at some points. 
Example 
 Now we will consider a function of two variables, so consider the function 
f(x,y) =x2y+1 then f(2,1) =(22)1+1=5, f(1,2) =(12)2+1=3, f(0,0) =(02)0+1=1, 
 f(1,-3) =(12)(-3)+1=-2, f(3a,a) =(3a)2a+1=9a3+1, f(ab,a-b) =(ab)2(a-b)+1=a3b2-a2b3+1 
These are values of the function at some points. 
Example: 
 Now consider the function 3( , )f x y x xy= + then 

(a) 3 3(2, 4) 2 (2)(4) 2 8 2 2 4f = + = + = + =  

(b) 2 3 2 3 3( , ) ( )( ) 2f t t t t t t t t t t= + = + = + =  

(c) 2 3 2 3 3( , ) ( )( ) 2f x x x x x x x x x x= + = + = + =  

(d) 2 2 3 2 2 3 3 2(2 ,4 ) 2 (2 )(4 ) 2 8 2 2f y y y y y y y y y= + = + = +  
Example: 
 Now again we take another function of three variables 

2 2 2( , , ) 1f x y z x y z= − − − Then 

2 21 1 1 1 1(0, , ) 1 0 ( ) ( )
2 2 2 2 2

f = − − − =  

Example: 
              Consider the function f(x,y,z) =xy2z3+3 then at certain points we have 
   
f(2,1,2) =(2)(1)2(2)3+3=19, f(0,0,0) =(0)(0)2(0)3+3=3, f(a,a,a) =(a)(a)2(a)3+3=a6+3 
f(t,t2,-t) =(t)(t2)2(-t)3+3=-t8+3, f(-3,1,1) =(-3)(1)2(1)3+3=0 
Example:  

                   Consider the function f(x,y,z) =x2y2z4 where x(t) =t3 y(t)= t2and z(t)=t 
     
(a) f(x(t),y(t),z(t)) =[x(t)]2[y(t)]2[z(t)]4=[ t3]2[t2]2[t]4= t14    

(b) f(x(0),y(0),z(0)) =[x(0)]2[y(0)]2[z(0)]4=[ 03]2[02]2[0]4= 0   
Example: 
  Let us consider the function f(x,y,z) = xyz + x then 

f(xy,y/x,xz) = (xy)(y/x)(xz) + xy = xy2z+xy. 
Example: 
  Let us consider g(x,y,z) =z Sin(xy), u(x,y,z) =x2z3 , v(x,y,z) =Pxyz, 

( , , ) xyw x y z
z

= Then. 

g(u(x,y,z), v(x,y,z), w(x,y,z)) = w(x,y,z) Sin(u(x,y,z) v(x,y,z)) 
Now by putting the values of these functions from the above equations we get 

g(u(x,y,z), v(x,y,z), w(x,y,z)) = xy
z

 Sin[(x2z3)( Pxyz)] = xy
z

 Sin[(Pyx3z4)]. 
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Example: 
Consider the function g(x,y) =y Sin(x2y) and u(x,y) =x2y3 v(x,y) =π xy Then 

g(u(x,y), v(x,y)) = v(x,y) Sin([u(x,y) ]2 v(x,y))  
By putting the values of these functions we get 

g(u(x,y), v(x,y)) =π xy Sin([x2y3]2 π xy) = π xy Sin(x5y7 ). 
 

Function of One Variable 
A function f of one real variable x  is a rule that assigns a unique real number f( x )  to 
each point x in some set D of the real line. 
 
Function of two Variables 
A function f in two real variables x and y, is a rule that assigns unique real number 
 f (x,y) to each point (x,y) in some set D of the xy-plane. 
 
Function of three variables: 
A function f in three real  variables x, y and z, is a rule that assigns a unique real number f 
(x,y,z) to each point (x,y,z) in some  set D of three dimensional space. 
 
Function of  n variables: 
A function f in n variable real  variables x1,x2, x3,……, xn, is a rule that assigns a unique 

real number w = f(x1, x2, x3,……, xn) to each point (x1, x2, x3,……, xn) I n some set D of 
n dimensional space. 
 

Circles and Disks: 
 

 
 

 
PARABOLA 

 

 
 

Parabola y = -x2 
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General equation of the Parabola opening upward or downward is of the form  
y = f(x) = ax2+bx + c. Opening upward if a > 0. Opening downward if a < 0. 
x co-ordinate of the vertex is given by x0 = -b/2a. So the y co-ordinate of the vertex 
 is y0= f(x0) axis of symmetry is x = x0. As you can see from the figure below 

                          
 
Sketching of the graph of parabola y = ax2+bx + c 
Finding vertex: x – co-ordinate of the vertex is given by x0= - b/2a 
So, y – co-ordinate of the vertex is y0= a x0

2+b x0 + c. Hence vertex is V(x0 , y0). 
 
Example:  Sketch the parabola   y = - x2 + 4x 
Solution: Since a = -1 < 0, parabola is opening downward. Vertex occurs at  
x = - b/2a = (-4)/2(-1) =2. Axis of symmetry is the vertical line  x = 2. The y-co-ordinate 
of the vertex isy = -(2)2 + 4(2) = 4. Hence vertex is V(2 , 4 ). The zeros of the parabola 
(i.e. the point where the parabola meets x-axis) are the solutions to  -x2 +4x = 0  so x = 0 
and x = 4. Therefore (0,0)and (4,0) lie on the parabola. Also (1,3) and (3,3) lie on the 
parabola. 

Graph of y = - x2 + 4x 

 
Example  y =  x2 - 4x+3 
Solution: Since a = 1 > 0, parabola is opening upward.Vertex occurs at 
 x = - b/2a = (4)/2 =2.Axis of symmetry is the vertical line  x = 2. The y co-ordinate of the 
vertex is y = (2)2 - 4(2) + 3 = -1.Hence vertex is V(2 , -1 )The zeros of the parabola (i.e. 
the point where the parabola meets x-axis) are the solutions to  x2 - 4x + 3  = 0,  so 
 x = 1 and x = 3.Therefore (1,0)and (3,0) lie on the parabola. Also (0 ,3 ) and (4, 3 ) lie on 
the parabola. 
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Graph of y =  x2 - 4x+3 

 
 

Ellipse 

 
 

Hyperbola 
 

 
Home Assignments: 
In this lecture we recall some basic geometrical concepts which are prerequisite for this 
course and you can find all these concepts in the chapter # 12 of your book Calculus By 
Howard Anton. 
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Lecture No-3       Elements of three dimensional geometry 
 
Distance formula in three dimension 
 
Let 1 1 1( , , )P x y z and 2 2 2( , , )Q x y z  be two points such that PQ is not parallel to one of the 

coordinate axis Then 2 2 2
2 1 2 1 2 1( ) ( ) ( )PQ x x y y z z= − + − + − Which is known as Distance 

fromula between the points P and Q. 
 
Example of distance formula 
 
 
 
 
 
 
 
 
 
Mid point of two points 
 If R is the middle point of the line segment PQ, then the co-ordinates of the middle 
points are 
x= (x1+x2)/2  ,        
y= (y1+y2)/2  ,       
z= (z1+z2)/2   
 
Let us consider tow points A(3,2,4) and B(6,10,-1) 
Then the co-ordinates of mid point of AB is 
 
[(3+6)/2,(2+10)/2,(4-1)/2]  
= (9/2,6,3/2) 
 
Direction Angles 
 
 
 
 
 
 
 
 
 
Direction Ratios 

Cosines of direction angles are called direction cosines 
Any multiple of direction cosines are called direction numbers or direction ratios of 
the line L. 

 
Given a point, finding its Direction cosines 
 
 

  
  

 

         
Let us consider the points A (3, 2, 4), B (6, 10, −1),  
and C  (9, 4, 1)  
Then  
| AB |  =     (6 − 3 ) 2  + (10 −  2)2  + (− 1 − 4)2

  = 98  = 7 2  
| AC  |   =    (9 −  3 ) 2  + (4 −  2 ) 2  + (1 − 4)2

  = 49  = 7 
| BC  |  =  (9 − 6 ) 2  + (4 −  10 )2  + (1 + 1)2

 = 49 = 7 

 

The direction angles α β , γ  of  a line are defined as 
    α   =   Angle between lineand the positive x-axis 

    β   =   Angle between line and the positive y-axis 
    γ   =   Angle between lineand the positive z-axis. 
  By definition, each of these angles lies between 0 and π. 
  

y-axis 
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Direction angles of a Line  
 
 
 
 
 
 
 
 
 
 
 
 
 
The angles which a line makes with positive x,y and z-axis are known as Direction 
Angles. In the above figure the blue line has direction angles as α,�and�which are the 
angles which blue line makes with x,y and z-axis respectively.  
 
Direction cosines: 
   Now if we take the cosine of the Direction Angles of a line then we 
get the Direction cosines of that line. So the Direction Cosines of the above line are given 
by 
 

 
Direction cosines and direction ratios of a line joining two points 
 
•For a line joining two points P(x1, y1, z1) and Q(x2, y2, x2) the direction ratios are  
 

 cos  α  = OP  = x
 

2 + y
 

2 + z
 

2  

Similarly, 

 
 cos  β   = 

y
OP  = 

y

x
 

2 + y
 

2 + z
 

2  

 
 cos  γ   = 

z
OP  = 

z
x

 

2 + y 

2 + z
 

2  

 

P(x,y) 

α 
x 

y
r 

β 

c os 2   α     + cos 2 β  +  cos 2 γ   =  1 .  

From triangle we can 
write 

cos α = x/r 
cos β = y/r 

x-axis O 

xx
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    x2 - x1, y2 - y1, z2 - z1   and the directions cosines are 2 1 2 1 2 1x  - x  y  - y  z  - z, and
PQ PQ PQ

. 

Example               For a line joining two points P(1,3,2) and Q(7,-2,3) the direction ratios 
are  
                 7 - 1, -2 – 3 , 3 – 2 
                  6  ,     -5   ,     1 
   and the directions cosines are  
         6/√62  ,     -5/√62 ,     1/ √62    
In two dimensional space the graph of an equation relating the variables x and y  is the set  
of all point  (x, y) whose co-ordinates satisfy the equation. Usually, such graphs are 
curves.                  In three dimensional space the graph of an equation relating the variables 
x, y  
and z  is the set  of all point  (x, y, z) whose co-ordinates satisfy the equation.  
Usually, such graphs are surfaces. 
                                   
Intersection  of two surfaces 
 
•Intersection  of two surfaces is a curve in three dimensional space.   
•It is the reason that a curve in three dimensional space is represented by two equations 
representing the intersecting surfaces.  
Intersection  of Cone and Sphere 
 
 
 
 
 
 
 
 
Intersection of Two Planes 
If the two planes are not parallel, then they intersect and their intersection is a straight 
line. Thus, two non-parallel planes represent a straight line given by two simultaneous 
linear equations in x, y and z and are known as non-symmetric form of equations of a 
straight line. 
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Planes parallel to Co-ordinate Planes 
 
 
 
 
 
 
 
 
 
 
 
General Equation of Plane 

Any equation of the form  
ax + by + cz + d = 0  

where a, b, c, d are real numbers,represent a plane. 
 

Sphere 
 
 
 

x = 0, y = 0 Consists of all points of the form (0, 0, z) z-axis 

 z = 0, x = 0 Consists of all points of the form (0, y, 0) y-axis 

 y = 0, z = 0 Consists of all points of the form (x, 0, 0) x-axis 

 x = 0 Consists of all points of the form (0, y, z) yz-plane 

 y = 0 Consists of all points of the form (x, 0, z) xz-plane 

 z = 0 Consists of all points of the form (x, y, 0) xy-plane 

EQUATIONDESCRIPTION REGION 



3-Elements of three dimensional geometry                                                                                                   VU 

 
© Copyright Virtual University of Pakistan 

15

 
 
 
 
 
 
 
Right Circular Cone 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Horizontal Circular Cylinder 
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Horizontal Elliptic Cylinder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Overview of Lecture # 3 

 
Chapter # 14  
             Three Diamentional Space   
 Page # 657 
          
            Book  CALCULUS by HOWARD ANTON 
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Lecture -4                  Polar co-ordinates 
 
You know that position of any point in the plane can be obtained by the two 
perpendicular lines known as x and y axis and together we call it as Cartesian coordinates 
for plane. Beside this coordinate system we have another coordinate system which can 
also use for obtaining the position of any point in the plane. In that coordinate system we 
represent position of each particle in the plane by “r” and “θ ”where “r” is the distance 
from a fixed point known as pole and θ  is the measure of the angle. 
 

 
“O” is known as pole. 
 
Conversion formula from polar to Cartesian coordinates and vice versa 
 

 
From above diagram and remembering the trigonometric ratios we can write x = r cos θ,  
y = r sin θ. Now squaring these two equations and adding we get, 
 

x2 + y2 = r2  
 

Dividing these equations we get 
y/x = tanθ 

 
These two equations gives the relation between the Plane polar and Plane Cartesian 
coordinates. 
 
Rectangular co-ordinates for 3d 
 
Since you know that the position of any point in the 3d can be obtained by the three 
mutually perpendicular lines known as x ,y and z – axis and also shown in figure below, 
these coordinate axis are known as Rectangular coordinate system.   
  

P (r, θ) 

O Initial rayθ
 

P(x, y) =P(r, θ ) 

θ 

r 

x 

y 



4-Polar Coordinates                                                                                                                                      VU 

 
© Copyright Virtual University of Pakistan 

18

 
 
Cylindrical co-ordinates 
 
Beside the Rectangular coordinate system we have another coordinate system which is 
used for getting the position of the any particle is in space known as the cylindrical 
coordinate system as shown in the figure below. 
   
 

 
 
 
Spherical co-ordinates 
 
Beside the Rectangular and Cylindrical coordinate systems we have another coordinate 
system which is used for getting the position of the any particle is in space known as the 
spherical coordinate system as shown in the figure below. 
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Conversion formulas between rectangular and cylindrical co-ordinates 
 
Now we will find out the relation between the Rectangular coordinate system and 
Cylindrical coordinates. For this consider any point in the space and consider the position 
of this point in both the axis as shown in the figure below. 

 

 
In the figure we have the projection of the point P in the xy-Plane and write its position in 
plane polar coordinates and also represent the angle θ now from that projection we draw 
perpendicular to both of the axis and using the trigonometric ratios find out the following 
relations. 

 

 

 
 
 
Conversion formulas between cylindrical and spherical co-ordinates 
 
Now we will find out the relation between spherical coordinate system and Cylindrical 
coordinate system. For this consider any point in the space and consider the position of 
this point in both the axis as shown in the figure below. 
 

 
First we will find the relation between Planes polar to spherical, from the above figure 
you can easily see that from the two right angled triangles we have the following 
relations. 

 (ρ,θ,φ ) →(r, θ, z) 

r = x2+y2,    tanθ =  
y
x ,       z = z 

x = rcosθ,      y = rsinθ,        z = z 

(r, θ, z) →(x, y, z) 
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Now from these equations we will solve the first and second equation for ρ and φ. Thus 
we have  

 
 

Conversion formulas between rectangular and spherical co-ordinates 
 

(ρ, θ, Φ) → (x, y, z) 
Since we know that the relation between Cartesian coordinates and Polar coordinates are 

 
x = r cos θ,  y = r sin θ and  z = z .We also know the relation between Spherical and 
cylindrical coordinates are, 
 

 
Now putting this value of “r” and “z” in the above formulas we get the relation between 
spherical coordinate system and Cartesian coordinate system. Now we will find 

 
( x, y, z) → ( ρ, θ, Φ) 

 

x2  + y2 +z2  =   (ρsin Φ cos θ)2 +  (ρsin Φ sin θ)2 + (ρ cos Φ)2 

          =  ρ2{sin2Φ(cos2θ + sin2θ) +cos2Φ)} 

  =  ρ2(sin 2Φ + cos2Φ)2 =  ρ2 

 
 

 

Tanθ = y/x    and Cos Φ =  
 
Constant surfaces in rectangular co-ordinates 
 
The surfaces represented by equations of the form  

 
x = x0, y = y0, z = z0  

 
where xo, yo, zo   are constants, are planes parallel to the xy-plane, xz-plane and xy-
plane, respectively. Also shown in the figure 

z
x2  + y2 +z2

      

ρ = x2  + y2 +z2  

r = ρ sinφ ,  θ = θ,   z = ρ cos φ 

r = ρ sinφ ,  θ = θ,   z = ρ cos φ 

ρ = r2+z 2  θ = θ,    tan φ = 
r
z  

(r, θ, z) → (ρ,θ,φ ) 
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Constant surfaces in cylindrical co-ordinates 
 
The surface r = ro is a right cylinder of  radius ro centered on the z-axis. At each point  
(r, θ, z) this surface on this cylinder, r has  the value r0 , z is unrestricted and  

0 ≤ θ < 2π. 
 

The surface θ = θ0 is a half plane attached along the z-axis and making angle θ0 with the 
positive x-axis. At each point (r, θ, z) on the surface ,θ has the value θ0, z is unrestricted 
and r ≥0. The surfaces z = zo is a horizontal plane. At each point (r, θ, z) this surface z 
has the value z0 , but r and θ are unrestricted as shown in the figure below. 

 
Constant surfaces in spherical co-ordinates 
 
The surface ρ = ρo consists of all points whose distance ρ from origin is ρo. Assuming 
that ρo to be nonnegative, this is a sphere of radius ρo centered at the origin. The surface 
θ = θ0 is a half plane attached along the z-axis and making angle θ0 with the positive x-
axis. The surface Φ = Φ0 consists of all points from which a line segment to the origin 
makes an angle of Φ0 with the positive z-axis. Depending on whether 0< Φ0 < π/2 or 
 π/2 < Φ0< π, this will be a cone opening up or opening down. If Φ0 = π/2, then the cone 
is flat and the surface is the xy-plane.  
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Spherical Co-ordinates in Navigation 
 
Spherical co-ordinates are related to longitude and latitude coordinates used in navigation. 
Let us consider a right handed rectangular coordinate system with origin at earth’s center, 
positive z-axis passing through the north pole,and x-axis passing through the prime 
meridian. Considering earth to be a perfect sphere of radius ρ = 4000 miles, then each 
point has spherical coordinates of the form (4000,θ,Φ) where Φ and θ determine  the 
latitude and longitude of the point. Longitude is specified in degree east or west of the 
prime meridian and latitudes is specified in degree north or south of the equator. 
 
Domain of the Function 

 
• In the above definitions the set D is the domain of the function.  
• The Set of all values which the function assigns for every element of the domain 

is called the Range of the function. 
• When the range consist of real numbers the functions are called the real valued 

function. 
 
NATURAL DOMAIN 
 
Natural domain consists of all points at which the formula has no divisions by zero and 
produces only real numbers. 

 
Examples 
 
Consider the Function 2y xϖ = − . Then the domain of the function is  

 y ≥ 2x Which can be shown in the plane as 
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and Range of the function is [ )0,∞ . 

 
Domain of function w = 1/xy is the whole xy- plane Excluding x-axis and y-axis, because 
at x and y axis all the points has x and y coordinates as 0 and thus the defining formula 
for the function gives us 1/0. So we exclude them. 
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Lecture No-5         Limit of Multivariable Function 
 
 

 
Domains and Ranges 

 
Examples of domain of a function 
 

 
 
 
As shown in the figure 
 
 
 
 
 

 

Functions Domain Range

  

 = x 2 + y 2 + z 2  
Entire space [0, ∞ )  

ω  = 
1 

x 2  + y 2 + z 2 
    (x,y,z) ≠  (0, 0, 0) (0, ∞ ) 

ω  = xy  lnz   
Half space z > 0 ( − ∞ , ∞ ) 

ω 

Domain of f is the region in which -1 ≤ x +y ≤ 1 

y-axis
x =1 x = -1 

y  = 1 

y  = -1 

x-axis 

-1 ≤ x +y ≤ 1 

f(x , y) = xy 
 y  -  1 

    Domain  of f consists of region  in xy plane 
  where 

   y

 

 

≥ 1

 

f (x,y)= sin -1(x+y)   

f ( x ,  y )  =  
    x   

2 + y2  - 
  4 

      

Domain 
  of f consists of region 

 

 in xy plane 
    where 

   x  
2 +  y  

2≥ 
    4
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f(x, y) = lnxy  
Domain of f consists of region lying in first and third quadrants in xy plane as shown in 
above figure right side. 
 
 
 
 
 
 
 

 
Domain of f consists of region in xy plane  x 2  ≤ 4 ,- 2 ≤ x ≤2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Domain of f consists of region in three dimensional space occupied by sphere centre at  
(0, 0, 0) and radius 5. 
 

 
f(0,0) is not defined but we see that limit exits. 
 
 
 
 
 

f (x ,  y )  =  
x 3  +  2 x 2 y  -  x y  -  2 y 2

x   +  2 y   

f(x, y) =  4 - x2 

y2 + 3    

 

 

                f(x, y,z) =e xyz
 

    

Domain 
 of f consists of region 

  

  of three  dimensional space 
  

  

y
x = 2x = -2

f ( x ,  y , z )  =  25 -  x2  -   y 
2 - -  z 

2       
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Approaching to (0,0) 
through 
x-axis 

 
f (x,y) 

Approaching to (0,0) 
through 
y-axis 

 
      f (x,y) 

(0.5,0) 0.25 (0,0.1) -0.1 

(0.25,0) 0.0625 (0,0.001) -0.001 

(0.1,0) 0.01 (0,0.00001) 0.00001 

(-0.25,0) 0.0625 (0,-0.001) 0.001 

(-0.1,0) 0.01 (0,-0.00001) 0.00001 

 
Approaching to (0,0) through 

y = x 
f (x,y) 

(0.5,0.5) -0.25 

(0.1,0.1) -0.09 

(0.01,0.01) -0.0099 

(-0.5,-0.5) 0.75 

(-0.1,-0.1) 0.11 

(-0.01,-0.01) 0.0101 
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Example 
 

 
f(0,0) is not defined and we see that limit also does not exit. 
 
Approaching to 
(0,0) through 
x-axis (y = 0) 

 
f (x,y) 

Approaching to 
(0,0) through 

y = x 

 
f (x,y) 

( 0.5,0 ) 0 ( 0.5,0.5 ) 0.5 

( 0.1,0 ) 0 ( 0.25,0.25 ) 0.5 

( 0.01,0 ) 0 ( 0.1,0.1 ) 0.5 

( 0.001,0 ) 0 ( 0.05,0.05 ) 0.5 

( 0.0001,0 ) 0 ( 0.001,0.001 ) 0.5 

( -0.5,0 ) 0 ( -0.5,-0.5 ) 0.5 

( -0.1,0 ) 0 ( -0.25,-0.25 ) 0.5 

( -0.01,0 ) 0 ( -0.1,-0.1 ) 0.5 

( -0.001,0 ) 0 ( -0.05,-0.05 ) 0.5 

( -0.0001,0 ) 0 ( -0.001,-0.001 ) 0.5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
lim

(x,y) → (0,0)
 

xy
x2 + y2  = 0 (along y = 0) 

 
lim

(x,y ) → (0,0)
 

xy
x2 + y2  = 0.5 (along y = x) 

 
lim

(x,y ) → (0,0)
 

xy
x2 + y2  does not exist. 

f (x,y) = xy
 x2+y2  

 

  Example   
  lim

( x ,   y )   →  (0,  0 )
  xy 
x 2  + y 2   

 Let ( x , y ) approach (0, 0) along the line y = x. 

f (x , y ) = 
xy 

x 2  + y 2   = 
x   .   x 

x 2  + x 2   = 
1

1 + 1
 x ≠ 0.

  = 
1 
2 
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We can approach a point in space through infinite paths some of them are shown in the 
figure below. 
  
 
 
 
 
 
 
 
 
 
Rule for Non-Existence of a Limit 
 
If in 
 
 
We get two or more different values as we approach (a, b) along different paths, then 
 
 

 
does not exist. 

The paths along which (a, b) is approached may be  straight lines or plane curves through 
(a, b). 
 
 
 
Example  
 
 
 
 
 
 
 
 

Lim(x, y) →  (a, b) f(x, y)  

Let (x , y ) approach (0, 0) along   
the line y  = 0.   

f (x , y ) = 
x. ( 0 ) 

x 2  + (0 )2  = 0   ,     x ≠ 0 .   

Thus f (x, y) assumes two different 
values as (x,y) approaches (0,0)   
along two different paths.  

lim 
(x,   y)  →   (0 ,  0 )

    f (x, y ) does not exist. 

  

x 

(x0,y0) 

(xy) 

Lim ( x ,   y ) →   ( a ,   b )   f ( x , y) 

 Lim 
(x , y )  →  (2 , 1 )

  x 3 + x 2 y − x −  y 2

x + 2 y

=   
Lim 

( x , y )   →  (2 , 1 ) 
 (x 3 + 2 x 2 y − xy −  2 y 2 )

 Lim 
( x , y )   →  (2 , 1 ) 

 (x + 2 y )

y 
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Example 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
RULES FOR LIMIT 
 
If   

0 0 0 0
1 2( , ) ( , ) ( , ) ( , )

lim ( , ) lim ( , )
x y x y x y x y

f x y L and g x y L
→ →

= = Then 

 
(a)   

0 0
1( , ) ( , )

lim ( , )
x y x y

cf x y cL
→

=       (if c is constant) 

         
(b)    

0 0
1 2( , ) ( , )

lim { ( , ) ( , )}
x y x y

f x y g x y L L
→

+ = +       

 
                

0 0
1 2( , ) ( , )

lim { ( , ) ( , )}
x y x y

f x y g x y L L
→

− = −  

 (d)           
0 0

1 2( , ) ( , )
lim { ( , ) ( , )}

x y x y
f x y g x y L L

→
=  

 (e)   
0 0

1

( , ) ( , )
2

( , )lim
( , )x y x y

Lf x y
g x y L→

=     (if L2 = 0)  

   
0 0( , ) ( , )

lim
x y x y

c c
→

=    (c a constant), 
0 0

0 0( , ) ( , )
lim

x y x y
x x

→
= ,

0 0
0 0( , ) ( , )

lim
x y x y

y y
→

=  

                        
    Similarly for the function of three variables. 
 
 
 

since | cos θ sin θ |  ≤   1 for all value of θ. 

We set 
  x = r cos θ ,  y = r sin θ  

= r  cos θ  sin θ ,  for r  > 0   

=  
Lim 

( x , y)  →  ( 2 , 1 ) 
 (x3 + 2 x2 y − x −  y2 )

 Lim 
( x , y)   →  (2 , 1 ) 

 (x + 2 y )

Lim ( x ,   y )   →   ( 0,0,0 ) 
  xy 

x 
2 +  y 

2

then   
x

x 
2 + y 

2
   =  

r  cos  θ  .  r  sin  θ 

r 
2 cos2 θ  +  r 

2 sin2 θ 

 

Since     r  = x 
2 +  y 

2   ,   r   →  0 as ( x ,  y )  →  (0, 0),     

  Lim ( x ,   y ) 
  →   ( 0 ,  0)

x
x 

2 + y 
2  =  Lim r →  0r cos θ sin θ  = 0, 
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Overview of lecture# 5 
 
In this lecture we recall you all the limit concept which are prerequisite for this course 
and you can find all these concepts in the chapter # 16   (topic # 16.2)of your Calculus By 
Howard Anton. 
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Lecture No -6                 Geometry of continuous functions 
 
Geometry of continuous functions in one variable or Informal definition of 
continuity of function of one variable. 
 
A function is continuous if we draw its graph by a pen then the pen is not raised so that 
there is no gap in the graph of the function 
 
Geometry of continuous functions in two variables or Informal definition of 
continuity of function of two variables. 

 
The graph of a continuous function of two variables to be constructed from a thin sheet of 
clay that has been hollowed and pinched into  peaks and valleys without  creating tears or 
pinholes. 
 
Continuity of functions of two variables 

A function f of two variables is called continuous at the point (x0,y0) if 
 

1.    f (x0,y0) if defined. 

2. 
0 0( , ) ( , )

lim ( , )
x y x y

f x y
→

 exists.             

      3.
0 0( , ) ( , )

lim ( , )
x y x y

f x y
→

  =  f (x0,y0).  

The requirement that f (x0,y0) must be defined at the point (x0,y0) eliminates the 
possibility of a hole in the surface z = f (x0,y0) above the point (x0,y0). 
 
Justification of three points involving in the definition of continuity. 
(1) Consider the function of two variables 2 2 2 2ln( )x y x y+ +  now as we know that the 
Log function is not defined at 0, it means that when x = 0 and y = 0 our function 

2 2 2 2ln( )x y x y+ +  is not defined. Consequently the surface 2 2 2 2ln( )z x y x y= + + will 
have a hole just above the point (0,0)as shown in the graph of 2 2 2 2ln( )x y x y+ +   

 
 
(2) The requirement that 

0 0( , ) ( , )
lim ( , )

x y x y
f x y

→
exists ensures us that the surface z = f(x,y) of 

the function f(x,y) doesn’t become infinite at (x0,y0) or doesn’t oscillate widely. 
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Consider the function of two variables
2 2

1
x y+

 now as we know that the Natural domain 

of the function is whole the plane except origin. Because at origin we have x = 0 and y =0 
in the defining formula of the function we will have at that point 1/0 which is infinity. 

Thus the limit of the function 
2 2

1
x y+

 does not exists at origin. Consequently the 

surface 
2 2

1z
x y

=
+

will approaches towards infinity when we approaches towards  

origin as shown in the figure above.  
 

 
 

(3) The requirement that 
 

0 0( , ) ( , )
lim ( , )

x y x y
f x y

→
  =  f (x0,y0)  

 
ensures us that the surface z = f(x,y) of the function f(x,y) doesn’t have a vertical jump or 
step above the point (x0,y0). 
 
Consider the function of two variables 
 

0 0 0
( , )

1
if x and y

f x y
otherwise

≥ ≥⎧
= ⎨

⎩
  

 
now as we know that the Natural domain of the function is whole the plane. But you 
should note that the function has one value “0” for all the points in the plane for which 
both x and y have nonnegative values. And value “1” for all other points in the plane. 
Consequently the surface  
 

0 0 0
( , )

1
if x and y

z f x y
otherwise

≥ ≥⎧
= = ⎨

⎩
has a jump as shown in the figure  

 
 



6-Geometry of continuous functions                                                                                                             VU 

 
© Copyright Virtual University of Pakistan 

33

 
 

 
 

Example 
Check whether the limit exists or not for the function  
 
 
 
Solution: 

First we will calculate the Limit of the function along x-axis and we get                           
2

2( , ) (0,0)
lim ( , ) 1

0x y

xf x y
x→

= =
+

(Along x-axis) 

Now we will find out the limit of the function along y-axis and we note that the limit 

is
2

2( , ) (0,0)
lim ( , ) 1

0x y

yf x y
y→

= =
+

(Along y-axis). Now we will find out the limit of the 

function along the line y = x and we note that
2

2 2( , ) (0,0)

1lim ( , )
2x y

xf x y
x x→

= =
+

(Along y = x) 

It means that limit of the function at (0,0) doesn’t exists because it has different values 
along different paths. Thus the function cannot be continuous at (0,0). And also  note that 
the function id not defined at (0,0) and hence it doesn’t satisfy two conditions of the 
continuity. 
 
Example 
Check the continuity of the function at (0,0) 
 

 
 

Solution: 
  First we will note that the function is defined on the point where we have 
to check the Continuity that is the function has value at (0,0). Next we will find out the 

Limit of the function at (0,0) and in evaluating this limit we use the result 
0

sinlim 1
x

x
x→

=  

and note that 

⎪⎩

⎪
⎨
⎧

=

≠
+

+
=

)0,0(),(1

)0,0(),()sin(
),( 22

22

yxif

yxif
yx

yx
yxf

2

2 2( , ) (0,0)
lim ( , )

x y

xf x y
x y→

=
+
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CONTINUITY OF FUNCTION OF THREE VARIABLES 
A function f of three variables is called continuous at a point (x0,y0,z0) if  
 

1.   f (x0,y0,z0) if defined. 
2.  

0 0 0( , , ) ( , , )
lim ( , , )

x y z x y z
f x y z

→
 exists; 

3
0 0 0( , , ) ( , , )

lim ( , , )
x y z x y z

f x y z
→

=  f(x0,y0,z0). 

 
EXAMPLE 
  Check the continuity of the function 

2 2

1( , , )
1

yf x y z
x y

+
=

+ −
 

Solution: 
  First of all note that the given function is not defined on the cylinder 

2 2 1x y+ − = 0 .Thus the function is not continuous on the cylinder 2 2 1x y+ − = 0 
And continuous at all other points of its domain. 

 
RULES FOR CONTINOUS FUNCTIONS 
(a) If g and h are continuous functions of one variable, then f(x, y) = g(x)h(y) is a 
continuous function of x and y 
(b) If g is a continuous function of one variable and h is a continuous function of two 
variables, then their composition f(x, y) = g(h(x,y)) is a continuous function of x and y. 

A composition of continuous functions is continuous. 
A sum, difference, or product of continuous functions is continuous. 
A quotient of continuous function is continuous, expect where the denominator is zero.  
 
EXAMPLE OF PRODUCT OF FUNCTIONS TO BE CONTINUED 

 
 
CONTINUOUS EVERYWHERE 

 
A function f that is continuous at each point of a region R in 2-dimensional space or 
3-dimensional space is said to be continuous on R. A function that is continuous at 
every point in 2-dimensional space or 3-dimensional space is called continuous 
everywhere or simply continuous.  

 

In general, any function of the form
f(x, y) = Axmyn (m and n non negative integers) 

is continuous because it is the product of the 
continuous functions Axm and yn. 

The function f(x, y) = 3x2y5 is continuous 
because it is the product of the continuous 

functions g(x) = 3x2 and h(y) = y5. 

 
lim

(x,y )
 
→ (0,0)

 f(x,y) = lim
(x,y ) → (0,0)

 
Sin(x2 + y2)

x2 + y2  

=1 = f(0, 0) 

This shows that f is continuous at (0,0) 
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Example: 
   
(1)f (x,y) = ln(2x – y +1) 
The function f is continuous in the whole region where 2x > y-1, y < 2x+1.And its region 
is shown in figure below. 

y < 2x+1

 
 

(2)
1( , ) xyf x y e −=  

The function f is continuous in the whole region of xy-plane. 
(3) 1( , ) tan ( )f x y y x−= −  
The function f is continuous in the whole region of xy- plane. 

(4) ( , )f x y y x= −  
The function is continuous where x ≥ y  
 
 

y
x ≥ y 

 
 

 
 
Partial derivative 
Let f be a function of x and y. If we hold y constant, say y = y

0 and view x as a variable, 

then f(x, y
0
) is a function of x-alone. If this function is differentiable at  

x = xo, then the value of this derivative is denoted by  fx(xo , y
0
) and is called  the  Partial 

derivative of f with respect  of x at the point (xo , y
0
) . 

Similarly, if we hold x constant, say  x = x0   and view y as a variable, then  f (x0 , y ) is a 

function of y alone. If this function is differentiable at y = y0, then  the value of this 

derivative is denoted by  fy (x0 , y0) and is called  the  Partial derivative of f with respect  

of y at the point (x0 , y0)  
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Example 
                   3 2( , ) 2 2 4f x y x y y x= + +  

 
Substituting x = 1 and y = 2 in these partial-derivative formulas yields. 

 
 
Example 
 

 
Example  

2 2( , )z f x y x sin y= =  
Then to find the derivative of f with respect to x we treat y as a constant therefore 

                       22 sinx
z f x y
x

∂
= =

∂
 

Then to find the derivative of f with respect to y we treat x as a constant therefore 
2

2

2sin cos

sin 2

y
z f x y y
y

x y

∂
= =

∂

=
 

Example 

                     
2 2

ln x yz
x y

⎛ ⎞+
= ⎜ ⎟+⎝ ⎠

 

By using the properties of the ln we can write it as 

 

 
 

Similarly, (or by symmetry) 
∂z
∂y = 

y2 + 2xy − x2

(x2 + y2)(x + y)  

z = ln(x2 + y2) − ln (x + y) 
∂z
∂x = 

1
x2 + y2 . 2x − 

1
x + y 

    = 
2x2 + 2xy − x2 − y2

(x2 + y2)(x + y)   

    = 
x2 + 2xy − y2

(x2 + y2)(x + y)  

Z = 4x2 - 2y + 7x4y5 

44

53

352

288

yx
y
z

yxx
x
z

+−=
∂
∂

+=
∂
∂

fx (1, 2) = 6(1)2(2)2 + 4  = 28 
fy (1, 2)  = 4(1)3(2) + 2  = 10 

Treating y as a constant and differentiating  
with respect to x, we obtain 
 fx (x, y)  =  6x2y2 + 4 
Treating x as a constant and differentiating  
with respect to y, we obtain 
 fy (x, y) =  4x3y + 2 
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Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 

 
 
 
 
Example 

 

 
 
 
 

 
 

∂w
∂x  = 2x  – yz 

∂w
dy  = 6y - xz 

dw
dz  = 8z - xy 

w = x2 +3y2+4z2-xyz 

z = cos(x5y4) 

)()sin( 4545 yx
x

yx
x
z

∂
∂

−=
∂
∂

 

          
)sin(5 4544 yxyx−=  

)()sin( 4545 yx
y

yx
y
z

∂
∂

−=
∂
∂

 

          
)sin(4 4535 yxyx−=

4 3

4 3

4 3 3 4

4 3 3 3 3

4 3 3 3

sin( )

sin( )

sin( ) sin( ) ( )

cos( ) sin( )4

cos( ) sin( )

z x xy
z x xy
x x

x xy xy x
x x

x xy y xy x
z x y xy xy
x

=
∂ ∂ ⎡ ⎤= ⎣ ⎦∂ ∂

∂ ∂⎡ ⎤= +⎣ ⎦∂ ∂
= +
∂

= +
∂

4 3

4 3 3 4

4 3 2 3

5 2 3

sin( )

sin( ) sin( ) ( )

cos( ).3 sin( ).0
3 cos( )

z x xy
y y

x xy xy x
y y

x xy xy xy
x y xy

∂ ∂ ⎡ ⎤= ⎣ ⎦∂ ∂
∂ ∂⎡ ⎤= +⎣ ⎦∂ ∂

= +

=
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Lecture No -7           Geometric meaning of partial derivative 
 
Geometric meaning of partial derivative 

z = f(x, y) 
Partial derivative of f with respect of x is denoted by  
 
 

 
 
Partial derivative of f with respect of y is denoted by 
 
 
 
 
Partial Derivatives 
Let z = f(x, y) be a function of two variable defined on a certain domain D. 
For a given change ∆x in x, keeping y as it is, the change ∆z in z, is given by 
                            
                            ∆z = f (x + ∆x, y) – f (x, y) 
If the ratio 

 
approaches to a finite limit as ∆x →0, then this limit is called Partial derivative  of f with 
respect of x. 
Similarly for a given change ∆y in y, keeping x as it is, the change ∆z in z, is  given by  

 ∆z = f (x , y + ∆y) – f (x, y) 
If the ratio 

 
 
approaches to a finite limit as ∆y →0, then this limit is called Partial derivative  of f with 
respect of y. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Δz
Δy  = 

f(x , y+ Δy) − f(x, y)
 Δy   

  Δ z
Δ x

    =  f(x + Δ x, y)−f(x, y)
Δ x

∂  z 

∂  x
    or  fx  or 

∂  f 
∂  x

  
  

∂  z 

∂  y
    o r fy   or 

∂  f 

∂  y 
  ,   

Geometric Meaning of Partial Derivatives
Suppose z  = f ( x , y ) is a function of two variables.The
graph of  f  is a surface. Let P  be a point on the graph

( xo, y o , f ( x o , yo ) ) . If a point starting 
from P ,   changes its position on the surface such that 

  constant, then the locus of this point is the curve 
z= f (x, y ) and    y = constant.On this curve,

∂   z 
∂   x 

  is derivative of z = f ( x , y )   with respect tox with y constant.

Thus ∂   z 
∂   x 

  = slope of the tangent to this curve at P

y

intersection of 

with coordinates 

remains 

of
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As shown in the figure below (left) Also together these tangent lines are shown in figure 
below (right). 

 
 
Partial Derivatives of Higher Orders  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 

Similarly,  
tangent at  to the curve of 

intersection of   z  = f (x , y )   and x   = constant. 
P 

  ∂   z 
∂   y   is the gradient of the 

 

  ⎝ ⎜ 
⎛ 

⎠ ⎟ 
⎞ 

  
∂   f
∂   y    =  

∂ 2f
∂ y 2  =  

∂
∂ y (fy)  =  (fy)y  =  fyy = fy 2  

  Thus, there are four second order partial derivatives for a  
function z =  f( x ,  y ). The partial derivatives fxy  and fyx  are called  mixed  
second partials  and  are not equal  in general. Partial derivatives of  
order more than two can be defined in a similar manner.

z  = arc sin 
⎝ 
⎜ 
⎜ 
⎛ 

⎠ 
⎟ 
⎟ 
⎞ 

  x
y
 . ∂   z 

∂   x 
    =    

1 

1  −   
x 2 

y 2 

 .  
1 
y 
  =   

1

y2 − x 2

∂   z 
∂   y 

    =     
1 

1  −   
x 2 

y 2 

 .  
−   x 
y 2   =   

− x 

y y2 − x 2

∂   2 z 
∂   y ∂   x 

    =  
∂ 

∂   y
  
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞   

  ∂   z 
∂   x 

      =   
−  1
2 (y2 − x 2)− 3/2.2y

  

=
− y

(y2 − x 2)3/2

The partial derivatives  f x  and fy of a function f of two variables x  and  
y , being functions of  x  and y, may possess derivati ves. In such cases,  
the  second order  partial derivatives are defined as below.

    
∂ 

∂  x   ⎝ 
⎜ ⎛ 

⎠ ⎟ 
⎞ 

  
∂   f
∂   x   

  =   ∂
2f

∂ x2  =  
∂

∂ x (fx)  =  (fx)x   =  fxx  = fx
2

    
∂ 

∂  y   ⎝ 
⎜ ⎛ 

⎠ ⎟ 
⎞ 

  
∂   f
∂   x   

  =   ∂ 2f
∂ y∂ x  =  

∂
∂ y (fx)  =  (fx)y  =  fxy

    
∂ 

∂  x   ⎝ 
⎜ ⎛ 

⎠ ⎟ 
⎞ 

  
∂   f
∂   y   

  =   ∂ 2f
∂ x∂ y =  

∂
∂ x (fy)  =  (fy)x  =  fyx

    
∂ 

∂  y 
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Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Laplace’s Equation 
 
For a function w = f(x,y,z) 
 
 
 
 
 
 
 
 
 

∂     2 z 
∂   x   ∂   y   =   

∂
∂ x   ⎝ 

⎜ ⎛ 
⎠ 
⎟ ⎞   

  ∂   z 
∂   y

        

    =   − 1 

y y2   −  x2   −  
x
y  

⎣
⎢
⎡

⎦
⎥
⎤x

(y2 − x2)3/2  

  =   −
 y2  + x2   −  x 2 

y(y 2   −   x2 )3/2   = − y
(y2 − x2)3/2 

Hence    

∂     2 z 
∂   x  ∂   y

    = 
∂     2 z 

∂ y  ∂   x     

xyeyxy x f += cos),(
xye y 

x 

f 
+ = 

∂ 

∂ 
cos 

   
  

xey
x 

f 
y x y 

f 
+−=⎟ 

⎠ 
⎞ 

⎜ 
⎝ 
⎛ 

∂ 

∂ 

∂ 

∂ 
=

∂ ∂ 
∂ sin

2 

 

xye
x 

f 
x x 

f 
= ⎟ 

⎠ 
⎞ 

⎜ 
⎝ 
⎛ 

∂ 

∂ 

∂ 

∂ 
=

∂ 

∂ 
2 

2 

 
  

f(x, y) = x cosy + y e x  

∂ f 

∂ y 

   =  −  x siny + ex  

∂ 
2 f 

∂ x ∂ y 

 =  −  siny + ex  

∂ 
2 f 

∂ y 
2 
   =  

∂ 

∂ y 

    

⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ ∂ f 

∂ y 

   = -x cos y 

    
 The equation  

∂   
2f

∂ x2
 + 

∂ 2f
∂ y2 ∂ 2f

∂  z2
  = 0    

   

is called Laplace’s equation .
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Example  
 
 
 
 
 
 
 
 
 
 
 
Adding both partial second order derivative, we have  
 
 
 
 
 
Euler’s theorem  
The mixed derivative theorem 
 
If f(x,y) and its partial derivatives fx, fy, fxy and fyx are defined throughout 

an open region containing a point  (a, b) and are all continuous at (a, b), then   
 

fxy(a , b) = fyx (a , b) 

Advantage of  Euler’s theorem 
 

 
 
 
The symbol ∂2w/ ∂x ∂y tell us to differentiate first with respect to y and then with respect 
to x. However, if we postpone the differentiation with respect to y and differentiate first 
with respect to x, we get the answer more quickly.  
 
 
                                                              
 
 
 
 
 
Overview of lecture# 7 
Chapter # 16   Partial derivatives  
Page #  790   Article # 16.3 
 
 
 

 

  f ( x , y ) = ex  sin y  + e y cos x ,
∂ f 
∂ x       =     e x  sin y   −   e y  sin x   

∂   
  
2f 

∂   x2     =     ex  sin y  −  e y   cos x  

∂f 
∂y    = ex cosy + e y  cosx  

∂
2 f 

∂y 2  = -e xsiny +e
y 
 cosx   

∂ 
    
2 f 

∂   x2   + ∂   
  
2 f 

∂   y 2   =   ex sin y −  ey cos x    

      −  e x sin y + eycos x =0

12 +
+= 

y 
exy w 

y 

1
2

=
∂∂

∂
xy

w
y

x
w =

∂
∂
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Lecture No- 8         More About Euler Theorem Chain Rule 
 

 
Order of differentiation 
For a function 
 

 
 
 
If we are interested to find                , that is,  differentiating in the order firstly w.r.t. x 
and then  w.r.t. y, calculation will involve many steps making the job difficult. But if we 
differentiate this function with respect to y, firstly and then with respect to x secondly 
then the value of this fifth order derivative can be calculated in a few steps. 
 
 
 
 
 
EXAMPLE 

 
 
 
 
 
 
 
 
 
 
 
 

In general, the order of differentiation in an nth order partial derivatice can 
be change without affecting the final result whenever the function and all its 
partial derivatives of order ≤ n are continuous. For example, if f  and its 
partial order derivatives of the first, second, and third orders are continuous 
on an open set, then at each point of the set,  
 

yyxyxyxyy fff ==
 

 
or in another notation. 

 

2

33

2

3

yx
f

yxy
f

xy
f

∂∂
∂

=
∂∂∂

∂
=

∂∂
∂

yx
yxyxf

−
+

=),(
 

2)(

)()()()(
),(

yx

yx
x

yxyx
x

yx
yxfx −

−
∂
∂+−+

∂
∂−

=

                  
2)(

)1)(()1)((
yx

yxyx
−

+−−
=

 

                  
2)(

2
yx
y

−
−

=
 

f (x,y) = y2x4ex + 2
∂ 5f 

∂y 3 ∂x2  

03 2 

5 
=

∂∂
∂

y x 

f

2) ( 

) ( ) ( ) ( ) ( 

) , ( 
y x 

y x 
y

y x y x 
y

y x 

y x f y − 

− 
∂ 

∂ + − + 
∂ 

∂ − 

= 

                   
2 ) ( 

) 1 )( ( ) 1 )( ( 

y x 

y x y x 

− 

− + − − 
= 

 

                   
2 ) ( 

2 

y x 

x 

− 
= 
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EXAMPLE 
 
 
 
 
 
 
 
 
 
EXAMPLE 
 

 

 
 

 
 

 
 
 
 
 
Example 

 
 

 
 

)sin(),( 3 xyxyxf y −=
 

)sin()(),( 2
3

2
1

2
1 ππ −=yf

 

8
1−=

)cos(),( 2 xyxyxf =
 

      
)sin()cos(2),( 2 xyyxxyxyxfx −=

 

)2sin()()2
1()2cos()2

1(2),2
1( 2 ππππ −=xf

                                 4
π−=

 

xyxy
y yexexyxf 32),( +=

 

                          
)1(2 xyex xy +=

 

)]1)(1(1[)1)(1()1,1( )1)(1( += ef y  

                       e2=  

xyyexyxf 2),( =

xyxy
x eyxxyeyxf 222),( +=

 

                          
)2( xyxyexy +=

 

    
)]1)(1(2[)1)(1()1,1( )1)(1( += ef x  

                          e3=

xyyexyxf 2),( =

xye x y x f 
y sec), ( 33 += 

−
 

xyexyxf 
x

xx ye xyxf 

y
y

y
x 

sec3 ) , ( 

2
1tansec3 ) , ( 

23 

3 2 

+ − = 

+ = 

−

− 
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EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chain Rule in function of One variable 
 
Given that w= f(x) and x = g(t), we find                     as  follows: 
 
From w = f(x), we get 
 
From x = g(t), we get   
 
Then 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5)234 ( zyx w +− = 

              

4) 2 3 4 ( 20 z y x 
x 

w + − = 
∂ 

∂ 

          

3
2 

) 2 3 4 ( 24 z y x 
x y 

w + − − = 
∂ ∂ 

∂ 

    

3

 
x y z 

w  =−1440(4x−3y+2z)2
 

∂ ∂ ∂ 

∂ 

) 2 3 4 ( 5762 

4

z y x 
x y z 

w + − − = 
∂ ∂ ∂ 

∂ 

 

dw
dt

dw
dx

dx
dt

 dw 

dt
 = 

 dw 

dx 

   d x
dt

  

w = x + 4 , x = Sint  
By Substitution  
w = Sint + 4  
dw
dt 

   = Cost   

w = x + 4  ⇒  dw
dx

   = 1  

 x = Sint  ⇒  dx
dt 

   = Cost

By Chain Rule  
dw
dt 

   = 
dw
dt

    ×   
dx
dt

   = 1 . × Cost = Cost
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w = f(x,y),  x  = g(t), y = f(t)  
 
 
 
 

 
 
 
EXAMPLE BY SUBSTITUTION 
 

 
 

Chain rule in function
of one variable 

w = xy
x = cost, y = sint 

w = cost sint 

= 
1
2  2 sint cot 

= 
1
2  sin2t 

dw
dt  = 

1
2  cos2t.2 

= cos 2t 

 

x y

t 

 

 

w
x

∂
∂

w
y

∂
∂

dx
dt

dy
dt

dw w dx w dy
dt x dt y dt

∂ ∂
= +

∂ ∂

Independent variables

Dependent variable w = f(x,y)

Intermediate variables

y is a function of u, u is a function of v
v is a function of w, w is a function of z 

z is a function of x. Ultimately y is function of x 

so we can talk about 
dy
dx  

and by chain rule it is given by  
dy
dx = 

dy
du 

du
dv 

dv
dw 

dw
dz  

dz
dx  
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EXAMPLE 
 
 
 
 

 
 

 
 
 
 
 
 
 
EXAMPLE 
 

 
 
 
 
 
 
 
 
EXAMPLE 
 

 
 
 
 

 z  =  3x2 y3

 x = t4  ,  y  =  t2 
∂z
∂x = 6xy3

,  
 ∂z
∂y = 9 x2y2 

dx
dt   = 4t3,

     dy
dt   = 2t 

dw
dt   = 

∂w
∂x   

dx
dt   + 

∂w
∂y  

dy
dt   

dx
dt  = − sint, 

z = 1 + x - 2xy 
4  

x = ln  
y = t  

∂z
∂x

  = 1

2 1 + x - 2xy 
4
       

∂z
∂y

  = 1

2 1 + x - 2xy 
4
 .(- 8xy 3) = 

- 4xy 
3

1 + x - 2xy 
4

dx 

dt 
 = 1

t
 ,       

d
dt

  =  

, cos ,and sinw xy x t y t= = =
∂ w 

∂ y 
   = x      ∂ w 

∂ x 
 = y  

dy 

dt 
  =   cost,

(sin )( sin ) (cos )(cos )t t t t= − +
t t t 2 cos cos - sin 

2 = + = 

dz 

dt 
    =    

∂ z 

∂ x 
    dx 

dt 
   +  

∂ z 

∂ y 
     dy 

dt 
    

       =   (6xy 3 ) (4t 3 ) + 9x 2 y 2  (2t)   
       =   6 (t 4 ) (t 6 ) (4t 3 ) + 9 (t 8 ) (t 4 ) (2t)  
       =   24 t 13  + 18t 13  = 42t 13  

2 
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EXAMPLE 
 
 
 
 
 
 
 
w = f(x,y,z), x  = g(t) ,y = f(t), z = h(t)  
 

 
 
 
 
Overview of Lecture#8 
 
Chapter # 16  
 Topic # 16.4 
 Page #   799                    Book Calculus  By Haward Anton  

 

w = f(x,y,z)

y z

t 

w
x

∂
∂ w

y
∂
∂

w
z

∂
∂

dx
dt

dy
dt

dz
dt

Independent variables 

Dependent variable

 

dz 
dt 

  =     
∂ z 
∂ x 

    dx 
dt 

   +  
∂ z 
∂ y 

   . 
dy 
dt 

    

      =   
 1 – 2y4    

2  1 + x  -  2xy4 t 
    1 

t 
    -   

4xy 3

1 + x  -  2xy4
 . 1

     =    
1 

1 + x  -  2xy 4
  
⎣ 
⎢ 
⎡ 

⎦ 
⎥ 
⎤  1–

4
   

2t 
   -   4xy3

     =    
1 

1 + lint  -  2  ( lnt )  t 4 
     

⎣ 
⎢ 
⎡ 

⎦ 
⎥ 
⎤ 1-2t4   

2t 
   -   4 (lnt) t3

    =    
1 

1 + lnt  -  2t 4  lnt
     

⎣ 
⎢ 
⎡ 

⎦ 
⎥ 
⎤ 1 

2t  - t
3      -  4t 3  lnt  

z  =  ln (2x 2 + y)  
x  =  t , y  =  t

2/3

∂z
∂x

   =  
1

2x 2 + y 
.  4x  =  

4
2x 2 + y

∂z
∂y

   =  
1

2x 2  + y 
,  

dx 
dt 

   =  
1
2
  1

t
 ,

dy 
dt  =  

2
3  t 

-1/3
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Lecture No - 9         Examples 

 
First of all we revise the example which we did in our 8th lecture. 
Consider w = f(x,y,z) Where   
  x  = g(t), y = f(t), z = h(t)  
Then 

 
 

Example: 
 

 
 
Consider 

w = f(x),  where x = g(r, s). Now it is clear from the figure that “x” is 
intermediate variable and we can write. 

 
 and 
 
Example: 
 

  
 
 

w = Sin x + x2,   x = 3r + 4s 
dw
dx   = Cosx + 2x 

∂x
∂r   = 3            

∂x
∂s  = 4 

∂w
∂r   = 

dw
dx   . 

∂x
∂r   

       = (Cosx + 2x) . 3 
       = 3 Cos (3r+4s) + 6 (3r + 4s) 
       = 3 Cos (3r + 4s) + 18r + 24s 
∂w
∂s  = 

dw
dx   . 

∂x
∂s  

      =  (Cosx + 2x) . 4 
      = 4 Cosx + 8x 
      =  4 Cos (3r + 4s) + 8 (3r + 4s) 
      =  4 Cos (3r + 4s) + 24r + 32s 

w = x2 + y + z + 4 
x = et,          y = cost,       z = t + 4 
∂w
∂x   = 2x,    

∂w
∂y   = 1,       

∂w
∂z   = 1 

dx
dt   = et ,    

dy
dt  = −Sint,   

dz
dt   = 1 

dw
dt   = 

∂w
∂x   

dx
dt  + 

∂w
∂y   

dy
dt   + 

∂w
∂z   . 

dz
dt   

       =  (2x) (et) + (1) . (− Sint) + (1) (1) 
       =  2 (et) (et) − Sint + 1 
       =  2 e2t − Sint + 1 

dt
dz

z
w

dt
dy

y
w

dt
dx

x
w

dt
dw

∂
∂+

∂
∂+

∂
∂=

Dependent variable

w = f(x)

Intermediate variables 

dw
dx

x 

x
r

∂
∂

x
s

∂
∂

 s 

w dw x
r dx r

∂ ∂
=

∂ ∂
w dw x
s dx s

∂ ∂
=

∂ ∂
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Consider the function w = f(x,y), Where  x = g(r, s), y = h(r, s) 
  
 
 
 
 
 

w
y

∂
∂

 

  
   
 
 
 
 
  
   
 
       
 

    
 
Similarly if you differentiate the function “w” with respect to “s” we will get 

 
 
 
And we have  
 

 
 
 

∂w
∂s  = 

∂w
∂x  

∂x
∂s + 

∂w
∂y  

∂y
∂s  

∂ w
∂ r  =  

∂ w
∂ x  

∂ x
∂ r  +  

∂ w
∂ y  

∂ y
∂ r   

Dependent variable w = f(x,y) 

w
x

∂
∂

x 
Intermediate  variables y 

r 
s r r 

x
r

∂
∂ x

s
∂
∂

y
r

∂
∂

y
s

∂
∂
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Consider the function w = f(x,y,z), Where x = g(r, s), y = h(r,s), z = k(r, s) 
 
 
 
 
 
 
 
    
  
 
    
 
   
   
 
 

 
 

Thus we have 

 
Similarly if we differentiate with respect to “s” then we have, 

 
Example: 
  Consider the function   
First we will calculate  
 
 
 
 
Now as we know that By putting the values from above 
we get 
 
 
 
 
Now  
 
 
So we can calculate 
 

  
 
 
 

∂w
∂s  = 

∂w
∂x  

∂x
∂s + 

∂w
∂y  

∂y
∂s + 

∂w
∂z  

∂z
∂s  

∂w
∂r  = 

∂w
∂x  

∂x
∂r  + 

∂w
∂y  

∂y
∂r + 

∂w
∂z  

∂z
∂r  

Dependent variable w = f(x,y,z) 

x z intermediate variables y 

r 

x
r

∂
∂

x
s

∂
∂

s 

y
r

∂
∂

r 
p 

y
s

∂
∂

r s 

z
r

∂
∂

z
s

∂
∂

Independent variables 

22 ,w x y z= + + ,rx
s

= 2 ln ,y r s= + 2z r=

 1w
x

∂
=

∂
 2w

y
∂

=
∂

2w z
z

∂
=

∂
1 x

r s
∂

=
∂

2y r
r

∂
=

∂
 2z

r
∂

=
∂

   w w x w y w z
r x r y r z r

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

1(1) (2)(2 ) (2 )(2)w r z
r s

δ
δ

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

1 4 (4 )(2)r r
s

= + +
1 12r
s

= +

2 x r
s s

∂
= −

∂
1 y

s s
∂

=
∂

0z
s

∂
=

∂

   w w x w y w z
s x r y r z r

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

2

1(1) (2) (2 )(0)r z
s s

⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2

2 r
s s

= −
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Remembering the different Forms of the chain rule: 
The best thing to do is to draw appropriate tree diagram by placing the dependent variable 
on top, the intermediate variables in the middle, and the selected independent variable at 
the bottom. To find the derivative of dependent variable with respect to the selected 
independent variable, start at the dependent variable and read down each branch of the 
tree to the independent variable, calculating and multiplying the derivatives along  
the branch. Then add the products you found for the different branches.  
 

 
 

 

 
 

 

 
Example: 
 

 
Taking “ln” of both sides of the given equation we get  
 
Now Taking partial derivative with respect to “r, s , u , and t” we get 
 
 , , and 
 
 
 

 
⎝
⎜
⎛

⎠
⎟
⎞∂ω

∂x  , 
∂ω
∂y  …… 

∂ω
∂υ

      and     
⎝
⎜
⎛

⎠
⎟
⎞∂x

∂p , 
∂y
∂p …… 

∂υ
∂p   

Derivatives of ω with
respect to the
intermedaite variables

         
Derivatives of the intermedaite

 
variables with respect to the
selected independent variable

 

The other equations are obtained by 
replacing p by q, …, t, one at a time.  
 One way to remember last equation 
is to think of the right-hand side as 
the dot product of two vectors with 
components. 

 
∂ω
∂p   = 

∂ω ∂x
∂x ∂p   + 

∂ω ∂y
∂y ∂p   + …… + 

∂ω ∂υ
∂υ ∂p  .  

S uppose ω  =  f ( x, y, … ., υ ) is a  
d iffe re nt iab le func t io n o f the  
var iab les x,  y, … ..,  υ  (a fin ite  
set) a nd  the x, y, … , υ  are  
d iffe re nt iab le funct io ns o f p , q ,  , t  
(ano ther fin ite set ). T he n ω  is a  
d iffe re nt iab le func t io n o f the  
var iab les p  thro ugh t a nd  the  
part ia l der ivat ives o f ω  w ith  
respect to  the se var iab le s are  
g ive n b y eq uat io ns o f the form  

The Chain Rule for Functions 
of Many Variables 

ln( )r s t uw e e e e= + + +

w r s t ue e e e e= + + +

w r r w
r re w e w e −= ⇒ = w s s w

s se w e w e −= ⇒ =
w u u w

u ue w e w e −= ⇒ =

w t t w
t te w e w e −= ⇒ =
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Now since we have                   Now Differentiate it partially w.r.t. “s” 
 
 
 
 (Here we use the value of sw  ) 
 
 
 
Now differentiate it partially w.r.t. “t” and using the value of tw  we get, 
  
 
 
 
 
 
Now differentiate it partially w.r.t. “u” we get, 

                                  
32 ( 3 )r s w

rstu uw e w+ −= − and by putting the value of uw , we 
get, 

                                 

3

4

6 ( )

6

r s t w u w
rstu

r s t u w
rstu

w e e

w e

+ + − −

+ + + −

= −

= −  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

r w
rw e −=

( )r w
rs sw e w−= −

r w s we e− −= −
2r s w

rsw e + −= −

2 ( 2 )r s w
rst tw e w+ −= − −

32 r s t w
rstw e + + −=

22 r s w t we e+ − −=
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Lecture No -10          Introduction to vectors 
Some of things we measure are determined by their magnitude. But some times 

we need magnitude as well as direction to describe the quantities. 
For Example, To describe a force, We need direction in which that force is acting 
(Direction) as well as how large it is (Magnitude). 
Other Example is the body’s Velocity; we have to know where the body is headed as well 
as how fast it is. 
Quantities that have direction as well as magnitude are usually represented by arrows that 
point the direction of the action   and whose lengths give magnitude of the action in term 
of a suitably chosen unit. 
A vector in the plane is a directed line segment.       

B            
                                           v

r  
 
                     A 

v AB=
r uuur  

Vectors are usually described by the single bold face roman letters or letter with an arrow. 
The vector defined by the directed line segment from point A to point B is written as  AB 
. 
Magnitude or Length Of  a Vector :   
Magnitude of the vector v

r
 is denoted by   

  
  v
r

     =  AB    is the length of the line segment AB 
 
Unit vector  
 Any Vector whose Magnitude or length is 1 is a unit vector. 

 
Unit vector in the direction of vector v

r
 is denoted by v$ . 

and is given by 

                                     vv
v

=
r

$                                                    

 
Addition Of Vectors 
 
  
 
         

 O  a
r
 

This diagram shows three vectors, in  two vectors one vector OA
uuur

 is connected with tail of 
vector AB

uuur
. The tail of third vector OB

uuur
 is connected with the tail of OA and head is 

connected with the head of  vector AB
uuur

.This third vector is called Resultant vector. 
 

B

A 

b
r

      r 
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The resultant vector can be written as 
r = a + b                           

Similarly

 
 
Equal  vectors 
   Two vectors are equal or same vectors if they have same 
magnitude and direction. 
 
 
 
 
Opposite  vectors 
   Two vectors are opposite vectors if they have same magnitude and 
opposite direction. 
 
 
 
 

Parallel vectors 
Two vector are parallel if one vector is scalar multiple of the other. 
 

                  where λ is a non zero scalar. 
 

a 
b 

c 

d 
e 

f 

A B 
r 

C 

D
E 

F 

O 

r = a + b + c + d + e + f 

a

a

a

-a

ab λ=
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r = x i+ y j + z k 

Addition and subtraction of two vectors in rectangular component: 
 
 
 
 
 
 
I th component of first vector is added (subtracted) to the ith component of second vector, 
jth component of first vector  is added (subtracted) to the jth component of second vector, 
similarly kth component of first vector  is added (subtracted) to the kth component of 
second vector, 
Multiplication of a vector by a scalar 
 
 
 
 
 
 
 
Any vector a can be written as  

      
Scalar product 

Scalar product (dot product) (“a dot b”) of vector a and b is the 
number 

                              a.b = |a| |b| cos θ. 
where θ is the angle between a and b. 
In word, a.b is the length of a times the length of b times the cosine of the angle between 
a and b. 
 
Remark:- 

a.b = b.a 

Let  a = a1i + a2j + a3k
and   b = b1i + b2j + b3k 
  a + b = (a1i + a2j + a3k) + (b1i + b2j + b3k) 
           = (a1 + b1 )i +  (a2 + b2 )j + (a3 + b3)k 
   a - b = (a1i + a2j + a3k) - (b1i + b2j + b3k) 
           = (a1  - b1 )i +  (a2 -  b2 )j + (a3 -  b3)k 
 

a 2a 3a -2a 

aaa ˆ=
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This is known as commutative law. 
 
Some Results of Scalar Product 
                           

  a.b = |a| |b| cos θ. 
1.  a     b If   

This means that if a is perpendicular to b. 
Then     a.b=0 
Also 
 i.j= 0 = j.i   
j.k= 0 =k.j  
 k.i= 0 =i.k 

 
2. If  a       b 

That  means a is parallel to b. 
Then 
                a.b        a     b 

                 if we replace b by a then 
  a.a =    a      a   
   

a.a =    a 
 
a         a.a 
 
so    i.i=j.j=k.k=1 
 

 
 
Example 

   

If a  = 3 k  and  b  = 
 2 i 

  +  2 
 k 

 ,  

then 
  

a .  = | a | | b | cos θ 
  

  = (3) (2) cos 
π 

4 

  

  = 6 .  
2 

2 

  = 3   2  . 
 

  

⊥ 

|| 

 = | | | |

 | | | | 

  | | 
2 

|  = | 



11-The triple scalar or Box product                                                                                                             VU 

 
© Copyright Virtual University of Pakistan 

57

 
  

EXPRESSION FOR a.b IN COMPONENT FORM 
 
 
 
 
 
 
 

In dot product ith component of vector a will multiply with ith component of vector b , 
jth component of vector a will multiply with jth component of vector b and 
kth component of vector a will multiply with kth component of vector 
b

 
 
 
 
 
 
 
Example 

 
 

a and b are perpendicular if and only if  a.b = 0. 
This has two parts If “a” and “b” are per perpendicular then a.b=0. And if a.b=0 “a” and 
“b”  will be perpendicular. 

Perpendicular (Orthogonal) Vectors

A n g le  B e t w e e n  t w o  v e c t o rs  

a = i  −  2j  −  2k and b = 6i + 3j + 2 k.  
 a.b  = (1)(6) + ( − 2)(3)   +  ( −  2) (2)    
           = 6  −  6 − 4 =  −  4
| a | =  (1 )2  +  ( −  2 )2  + (− 2)2  =  9    = 3  

| b | =  ( 6 ) 
2  +  (  3 )2 +  (  2 ) 

2 =  49    = 7   

θ  = cos 
- 1    

⎝
⎜
⎛

⎠ 
⎟ 
⎞  a.b 

| a || b | 
  

= cos 
- 1  

⎝
⎜
⎛

⎠ 
⎟ 
⎞ −  4 

(3 )  (7 ) 
  = cos-1 

⎝
⎜
⎛

⎠
⎟
⎞

−  
4

21 
 ≈  1.76 rad

   a  =  a 1 i +  a 2 j +  a 3 k     and  
   b  =  b 1 i +  b 2 j +  b 3 k  
a .b  =  (a 1 i +  a 2 j +  a 3 k ) . (b 1 i +  b 2 j +  b 3 k ) 
      =  a 1 i . (b 1 i +  b 2 j +  b 3 k ) +  a 2 j . (b 1 i +  b 2 j +  b 3 k ) 
           +  a 3 k . (b 1 i +  b 2 j +  b 3 k ) 
      =  a 1 b 1 i . i +  a 1 b 2 i.j +  a 1 b 3 i . k  +  a 2 b j . i +  a 2 b 2 j . j 
           +  a 2 b 3 j . k  +  a 3 b 1 k  . i +  +  a 3 b2 k  . j +  a 3 b 3 k  . k  
     =  a 1 b 1 (1 ) +  a 1 b2 (0 ) +  a 1 b 3  (0 ) +  a 2 b1 (0 ) +  a 2 b 2  (1 )  
  +  a 2 b 3 (0 ) +  a 3 b1 (0 ) +   +  a 3 b 2 (0 ) +  a 3 b3 (1 ) 
     =  a 1 b 1  +  a2 b 2  +  a3 b3  

The angle between two nonzero  

vectors  a  and  b  is  

θ  = cos 
- 1   

⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞  a. b 

| a || b | 
   

Since the values of the arc 
i

 

lie in [0,  π ], above equation  automatically  

gives the angle made by a  and  b .  
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Vector Projectio 
Consider the Projection of a vector b on a vector a making an angle θ with each other 

 
From right angle triangle OCB 
COS    =Base / hypotenuse 
 
COS    = 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 

O C 

B 

a 

b 

θ 
A 

|
→ 

OC| = | b  | Cosθ   

= 
| b| |a | Cos θ

|a|       

= b.a
| a |    = b .   a 

|a |    

= b .   a|a|  
     

        

  

 θ 

 θ  

| OC | 
→ 

| b |

The number | b | cos  θ  is called the scalar 
component of B in the direction of a . 

s ince   | b | cos θ  = B.  
a 

| a | ,   

we can find the scalar component by  

“ dotting ”   b  with the  direction  of a

Vector Projection of    b  = 6 i  + 3 j  + 2 k   

onto  a  =  i  - 2 j   −  2 k    is   

a  b =  
b . a 

a . a 
  a    

  =  
6  −  6  −  4 

1 + 4 + 4 
   ( i   −  2 j   −  2 k )   

  =   −   
4 

9 
  ( i   −  2 j   −  2 k )    

  =  
4 

9 
  i  +  

8 

9 
 j  +  

8 

9 
  k .   

proj 
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Right-hand rule 

 
 
 
 
 
We start with two nonzero nonparallel vectors A and B .We select a unit vector n  
Perpendicular to the plane by the right handed rule. This means we choose n to be the 
unit vector that points the way your right thumb points when your fingers curl through the 
angle 0 from A to B . 
The vector A*B is orthogonal to both A and B. 
 
 
Some Results of Cross Product 
 

T h e  C ro s s  P r o d u c t o f   
T w o  V e c to r s in  S p a c e  

T he scalar component  

the direction of a   

| b |cos θ  =  b  .  
a
| a | 

   = (6 i  + 3 j  + 2 k ).  
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 1 

3 
 i  −  

2 

3 
 j  −  

2 

3 
 k   

= 2  −  2  −   
4 

3 
   =  −   

4 

3 
  .   

Consider  t wo nonzero vectors a  
and b  in space.   T he vec t or 
product a  ×   b  (“ a  cross b ” ) to be 
the vector   
a   ×   b  = (| a | | b | sin θ ) n    
where n  is a vector determined 
by right hand rule.  

 of b in  
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The Area of a Parallelogram 
 

 
 
 
 
 
 

j 

k 

a  ×  b  =  |a | |b | Sin θ  n̂  
If a  ||b   
then    a  ×  b  =  0  
So   a  ×  a  =  0  
i  ×  i   =  j  ×  j  =  k  ×  k  =  0  
If  a  ⊥  b   
then  a  ×  b  =  |a | |b | n̂  
 i  ×  j  =  k ,    j  ×  i  =  −  k  
 j  ×  k  =  i ,   k  ×  j  =  −  i  
 k  ×  i  =  j    i  ×  k   =   −  j  
N o te  tha t th is p roduc t is no t 
com m uta tive . 

i 

Because n is a unit   

the ma gnitude of a  × 
  b  is 

  

| a   × 
  b | = | a | | b | |sin θ | | n |  

  

             =  |A| | b | sin θ 
     

This is the area of the 
ll l

 

determined by a  and  b     

| a | being the base of the 
ll l

 

and | b | |sin θ | the 
h i h
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a × b from the components of a and b 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: 
  Let   

a = 2i + j + k and  b = − 4i + 3j + k . Then  

2 1 1
4 3 1

i j k
a b× =

−
 

(1 3) (2 4) (6 4)a b i j k× = − − + + +  
2 6 10a b i j k× = − − +  is the required cross product of a and b. 

  
 
 
 
 
 
Over view of Lecture # 10 
Chapter# 14 
Article # 14.3, 14.4    
Page # 679 
 
 

Suppose   
a  = a 1 i  + a 2 j  + a 3k ,   
b  = b 1 i  + b 2 j  + b 3k .   
a   ×   b   =  (a 1 i  + a 2j  + a 3 k )  ×  (b 1 i  + b 2j  + b 3k )  

  =  a 1 b 1 i   ×  i  + a 1 b 2 i   ×   j  + a 1b 3i  ×  k  

        + a 2 b 1j  ×   i  + a 2 b 2 j   ×   j  + a 2b 3j  ×  k  

        + a 3 b 1k  ×   i  + a 3 b 2 k   ×   j  + a 3b 3k  ×  k  

  = (a 2 b 3   −  a 3 b 2 ) i   −  (a 1 b 3   −  a 3b 1) j   

       + (a 1 b 2  −  a 2 b 1 )  k .   
a  = a 1 i  + a 2 j  + a 3 k , 

  

b  = b 1 i  + b 2 j  + b 3 k . 
  

a   × 
  b  = 

  

⎪ 
⎪ 
⎪ 
⎪ 

⎪ 
⎪ 
⎪ 
⎪ 

  i     j     k 

a 1 
      a 2 

      a 3 

b 1 
      b 2 

      b 3 
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Lecture No -11          The Triple Scalar or Box Product 
 
The product (a×b) . c is called the triple scalar product of a, b, and c (in that order).  
As | (a×b).c | = |a×b| |c| |cos θ| 
the absolute value of the product is the volume of the parallelepiped (parallelogram-sided 
box) determin-ed by a,b and c 

 
By treating the planes of b and c and of c and a as he base planes of the parallelepiped 
determined by a, b and c 
we see that 
                   (a * b).c = (b×c).a=(c×a).b 
Since the dot product is commutative,   ( a ×b).c =a.(b×c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
When we solve a.(b×c) then answer is -23 . if we get negative value then  Absolute value 
make it positive and also volume is always positive. 

 a = a1i + a2j + a3k,
 b = b1i + b2j + b3k. 
 c = c1i + c2j + c3k. 

a . (b × c) = a.
⎪
⎪
⎪

⎪
⎪
⎪ i       j       k

 
a1     a2     a3
b1     b2     b3

  

   = a . ⎣
⎡

⎦
⎤

⎪
⎪

⎪
⎪b2     b3

c2     c3
 i - ⎪

⎪
⎪
⎪b1     b3

c1     c3
 j + ⎪

⎪
⎪
⎪b1     b2

c1     c2
k   

   =  a1 ⎪
⎪

⎪
⎪b2     b3

c2     c3
 − a2 ⎪

⎪
⎪
⎪b1     b3

c1     c3
 + a3 ⎪

⎪
⎪
⎪b1     b2

c1     c2
  

   =  
⎪
⎪
⎪

⎪
⎪
⎪ a1     a2     a3

 
b1     b2     b3
c1     c2     c3

  

a  =  i  + 2 j   −   k ,    b  =  −  2 i  + 3 k ,   c  = 7 j  −  4 k .  

a .( b × c )   = 
⎪ 
⎪ 
⎪ 
⎪ 

⎪ 
⎪ 
⎪ 
⎪    1   2    − 1 

−  2   0    3 
   0   7    − 4 

 

     =   
⎪ 
⎪ 
⎪ 

⎪ 
⎪ 
⎪ 0    3 

7   − 4 
− 2 

⎪ 
⎪ 
⎪ 

⎪ 
⎪ 
⎪ − 2    3 

  0   − 4 
 − 

⎪ 
⎪ 
⎪ 

⎪ 
⎪ 
⎪ − 2    0 

  0    7 
 

                =   −  21  −  16 + 14   
     =  −  23   
Th e volume is   
  | a  .( b   ×   c )| =  23.  
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Gradient of a Scalar Function 
 
 
 
 
 
 

 
      “del operator” is a vector quantity. Grad means gradient. Gradient    is also vector 
quantity.        is vector and      is scalar quantity, Every component of        will operate 
with the     . 
 
Directional Derivative 
 

 
Remarks (Geometrical interpretation) 
 
 
 
 
 
 
 
 
 
 
Example 

gradiant φ is a vector operator 
defined as  

grand φ = 
⎝
⎜
⎛

⎠
⎟
⎞i 

∂
∂x + j 

∂
∂y + k 

∂
∂z   φ 

           =  ∇ φ, 

       ∇ ≡ i 
∂

∂x   + j 
∂

∂y  + k 
∂
∂z , 

∇ is called “del operator” 

∇ ≡   i   
∂
∂ x

   + j   ∂
∂ y

+ k ∂
∂z ,

∇ is called “del operator”
Gradient  φ  is a vector operator 
defined as  

grad φ  = 
⎣ 
⎢ 
⎡ 

⎦
⎥
⎤i ∂ 

∂x  + j ∂
∂y + k ∂

∂z
 φ 

           = ∇  φ   ,   

∇
φ ∇φ ∇ φ

If f(x,y) is differentiable at (x 0,y0), 
and if u  = (u 1, u 2 ) is a unit vector, 
then the directional derivative of f at 
(x0 , y 0 ) in the direction of u is 
defined by  
D uf(x0 ,y 0 ) = f x(x0 ,y 0 )u1  + f y (x0,y0)u2 
It should be kept in mind that there 
are infinitely many directional 
derivatives of z = f(x,y)  at a point
(x0 ,y 0 ), one for each possible choice
of the direction vector u     

The directional derivative D u f(x0,y0) 
can be interpreted algebraically as
the instantaneous rate of change in
the direction of u  at (x 0 ,y0 ) of 
z=f(x,y) with respect to the distance 
parameter s described above, or 
geometrically as the rise over the run
of the tangent line to the curve C at 
the point Q0  
  



11-The triple scalar or Box product                                                                                                             VU 

 
© Copyright Virtual University of Pakistan 

64

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
fx  means that function f(x,y) is differentiating partially with respect to x and 
fy  means that function f(x,y) is differentiating partially with respect to y. 
 
Example 
 

 
Remarks 
 
 
 
 
 
 
 
 
 
 
Example 
 

f ( x ,y )  =  3 x 2 y  
fx ( x , y )  =  6 x y ,   fy ( x , y )  =  3 x 2   

s o  t h a t  
fx ( 1 , 2 )  =  1 2 ,   fy ( 1 , 2 )  =  3  

T he directional derivative of   
f(x,y) = 3x 2 y at the point (1, 2) in the 
direction of the vector a = 3i + 4j.  
  

a = 3 i +4j  
^ a = 

a 
||a ||

   = 
1

25 
   (3i  + 4j )   

  = 
3
5
  i  + 

4
5
  j   

Du f ( 1,2) = 12 
⎝
⎜
⎛

⎠
⎟
⎞3

5
  + 3 

⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 4 

5 
      

    = 
48
5

    

 
Note:
Formula for the directional 
derivative can be written in the 
following compact form using the 
gradient notation

Duf(x, y) = ∇f(x, y) . û
The dot product of the gradient of f
with a unit vector û produces the 

Formula for the directional 
derivative can be written in the 
following compact form using the 
gradient notation

Duf(x, y) = ∇f(x, y) . û
The dot product of the gradient of f
with a unit vector û produces the 

f(x, y) = 2x 
2  + y 

2 ,       P 0  ( −  1, 1)  

 
    u  = 3 i   −  4 j   

      | u | =   3 2  +  ( −  4 ) 2    = 5     

        ̂  u  =  
3 

5 
  i   −   

4 

5 
  j   

f x   =  4x   f x  ( −  1 , 1)  =  −  4   
f y  = 2y     f y  ( −  1, 1) = 2   
D u f ( - 1, 1 ) = f x ( - 1, 1 )u 1  + f y ( - 1, 1 )u2   

           =   −   
12 

5 
    −   

8 

5 
   =  −  4   

Another example, In this example we have to 
find directional derivative of the function 

2 2( , ) 2f x y x y= +  at the point P0(-1,1) in 
the direction of u = 3i – 4j. To find the 
directional derivative we again use the  
above formula 

If u  = u 1 i  + u2 j is a unit vector 
making an angle θ with the positive 
x - axis, then  
u 1 = cos θ    and  u 2 = sin θ  
D u f(x 0 ,y 0 )=f x (x 0 ,y 0 )u 1 + f y (x 0 ,y 0 )u 2  
can be written in the form  
D u f(x 0 ,y 0 ) = f x  (x 0 ,y 0 ) cos θ + f y (x 0 ,y 0 ) sin θ   



11-The triple scalar or Box product                                                                                                             VU 

 
© Copyright Virtual University of Pakistan 

65

 
 

 
 
Gradient of function 
 
 
 
 
 
Directional Derivative 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 

f(x,y) = exy  
fx(x.y) = yexy,     fy (x, y) = x exy 
fx (− 2,0) = 0,    fy (2,) = − 2 

Duf(− 2, 0) = fx (− 2, 0) cos 
π
3 + fy(− 2, 0) sin 

π
3  

          = 0 
⎝
⎜
⎛

⎠
⎟
⎞1

2  + (− 2) 
⎝
⎜
⎛

⎠
⎟
⎞3

2   

        = −  3   

T he  d ire c t io na l d e r iva t ive  o f  e x y a t 
(− 2 ,0 )  in  t he  d ire c t io n  o f  t he  u n it  
ve c to r  u  t ha t m a k e s  a n  a n g le  o f π /3  
w it h  t he  p o s it iv e  x - a x is .  

If  f  is a function of x and  

then the gradient of 
f

 is defined 
b 

∇ f (x, y) = f x (x, y) i  + f y (x, y) j 
  

Formula for the directional  derivative can be written in the following compact form
 using the  gradient 

Du f(x, y)  = ∇ f(x, 

 
y). ̂u

The dot product of the gradient f
with a unit û produces 
directional derivative of f in 
direction u. 

f(x,y) = 2xy− 3y 
2 ,  P0  (5,5)

u  = 4i + 3j    |u| = 4 2  + 32    = 5 
û  = 

u 
|u |   = 

4 
5   i + 

3 
5   j  

  f x = 2y,   fy = 2x − by 
  f x  (5, 5 ) = 10,   fy (5,5) = − 20 
  ∇f = 10i − 20 j  
 D uf(5,5) = ∇f . û   

       =  10 
⎝ 
⎜ ⎛ 

⎠ 
⎟ ⎞ 4 

5   − 20 
⎝ 
⎜ ⎛ 

⎠ 
⎟ ⎞ 3 

5    

     = − 4 

,In this example  we have to find directional 
derivative of the function 

2( , ) 2 3f x y x y y= −  at the point P0(5,5) in 
the direction of u = 4i + 3j. To find the 
directional derivative we again use the  
above formula 
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EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Properties of Directional Derivatives 
 
 
 
 
 
 
 
                                        
 
 
 
 

The gradient of f at (2, 0)  
 ∇f (2,0  = x (2, 0) i + y (2, 0) j 
           = i + j 
The derivative of f at 0) in the 
direction of a is  
( uf) (2,0  = ∇f (2,0 .  

    = j)
⎝
⎜⎛

⎠
⎟⎞

3
5
 i − 4

5
 j   

        3
5 − 8

5
 = −  

^ u = 
a 
| a | 

  = 
3 
5 
  i  −   

4 
5 
  j.

f x  ( x,y )   =   e y− y sin (xy)  
f y (x,y)  = xe y−xsin(xy)  
The partial derivatives of f   
at (2, 0) are   
f x  (2,0)  =   e 0   −  0   = 1   
f y (2,0)  =   2e 0 −2. 0  =   2  

Directional derivative of the function
f(x, y) = xe y+cos (xy) at the point 
(2,0) in the direction ofa = 3 i   − 4j.

D uf = ∇f . ^ u  = | ∇f| cos θ
1.   The function f increases most θ

 ∇f. That is, at each point P in its domain, f 
∇ f at P.

   
  

Du f = | ∇ f| cos(0) = |∇ f|.

rapidly when cos

direction of the gradient vector

= 1, or when u
^ 

is the direction of 
increases most rapidly in the 

The derivative in this direction is 

2.     Similarly,   f  decreases most f.
The derivative in this direction is

  D u f=| ∇ f| cos ( π ) = −  | ∇ f|.

rapidly in the direction of ∇−

3.     Any direction ̂  u orthogonal of

zero change   in f becausese θ then equals π /2 and
  

  D u f=| ∇f| cos ( π /2)=| ∇f|.0=0

the gradient is a direction of 
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f (x, y) =
x 2 

2
   + 

y 2 

2
    

a)     The direction of rapid change .
  
  The function increases most rapidly in the direction of ∇f at 

(1,1). The gradient is 
  

  ( ∇f) (1,1)  = (x i + yj ) (1,1)  = i  + j.

its direction is   

  ^ u  =
i  + j 
|i  + j | 

    

    =
i  + j 

( 1) 2  + ( 1) 2 
 

    = 
1 

2
  i + 

1

2
  j.   

b) The directions of zero change
  The directions of zero change at 

  

    

 ^ n = −  

1
2

i + 

1
2

j  

  

and  −   ̂  n = 
1

2 
  i −

1

2
j.

(1,1) are the directions orthogonal to ∇ f.
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Lecture No -12           Tangent planes to the surfaces 
 
Normal line to the surfaces 
 
If C is a smooth parametric curve on three dimension, then tangent line to C at the point 
P0 is the line through  P0 along the unit tangent vector to the C at the P0.The concept of a 
tangent plane builds on this definition. 
 
 If P0(x0,y0,z0) is a point on the Surface S, and if the tangent lines at P0 to all the 
smooth curves that pass through P0 and lies on the surface S all lie in a common plane, 
then we shall regards that plane to be the tangent plane to the surface S at  P0. 
 
Its normal (the straight line through P0 and perpendicular to the tangent) is called the 
surface normal of S at P0. 
 
 Different forms of equation of straight line in two dimensional space 
 

1. Slope intercept form of the Equation of a line. 
y = mx + c 

            Where m is the slope and c is y intercept. 
 
2.Point_Slope Form 
 
Let m be the slope and 0 0 0( , )P x y be the point of required line, then 

    y – y0 = m (x – x0) 

3.   General Equation of straight line 
Ax + By + C = 0 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parametric equation of a line 

m   = slope of line = 
Rise
Run    = 

b 
a     

y −  y 0  = b 
a   (x − x 0)  

Run 

Rise 
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Parametric equation of a line in two dimensional space passing through the point (x0, y0) 

and parallel to the vector ai + bj is given by  
 
x = x0 + at,        y = y0 + bt 
Eliminating t from both equation we get 
 
 
 
 
 
Parametric vector form: 
    r(t) = (x0 +at) i +(y0 +bt) j, 
 
Equation of line in three dimensional 
 
Parametric equation of a line in three dimensional space passing through the point (x0, 

y0, z0) and parallel to the vector ai + bj + ck is given by  

x = x0 + at,        y = y0 + bt,   z = z0 + ct 
Eliminating t from these equations we get 
 

 
EXAMPLE 
Parametric equations for the straight line through the point A (2, 4, 3) and parallel 
to the vector  v = 4i + 0j – 7k . 

x0 = 2, y0 = 4, z0 = 3  

                    and a = 4, b = 0 , c = - 7.  
The required parametric equations of 
the straight line are 

x = 2 + 4t,  
y = 4 + 0t, 
z = 3 – 7t 

 
Different form of equation of curve 
Curves in the plane are defined in different ways 
 
Explicit form:  
   y = f(x) 
          
 
  
 
 

x − x0

a   = 
y − y0

b   = 
z − z0

c   

x − x 0 
a    = y − y 0 

b   

y − y 0  = b 
a   (x − x0)  
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Example 
 
 
 
Implicit form:   
  F(x, y) = 0 

Example 
] 
 
 
Parametric form:   
                                 x= f(t) and y = g(t) 
Example 
 
 
 
 
 
 
 
Parametric vector form:  
    r(t) = f(t) i +g(t) j,   a ≤ t ≤ b. 

 
 
 
Equation of a plane 
 
A plane can be completely determined  
if we know its one point and  
direction of perpendicular  
(normal) to it. 
 
Let a plane passing through the point P0 (x0, y0, z0) and the direction of  
normal to it is along the vector  
                                  n = ai + bj + ck 
Let P (x, y, z) be any point on the plane then the line  lies on it so that n 
⊥ 0P P  (⊥ means perpendicular to ) 
 
 
 
 

y =   9 - x2  ,               -3 ≤ x ≤ 3.

x 
2  + y 

2  =   9 ,               - 3  ≤  x ≤ 3,     0 ≤ y ≤ 3

   x = 3cos θ ,          y = 3sinθ,       0 ≤ θ ≤ π
x = 3 cos θ,   y = 3 sinθ  
x 

2 + y2  = 9 cos2θ + 9sin2θ
=  9(Cos2θ + Sin2θ)

x 
2 + y2  = 9

:
r  ( t) = 3 cos θ i + 3 sinθj, 0 < θ < π.

→ P 0 P  = (x −  x0 )   i   + ( y − y 0 )   j  + (z −  z 0) k 

n . → P 0P  = 0   
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  REMARKS 
 
Point normal form of equation of plane is  
                a (x – x0) + b (y – y0) + c (z – z0) = 0 

We can write this equation as  
               ax + by + cz – ax0 – by0 – cz0 = 0  

               ax + by + cz + d = 0  
where  d = – ax0 – by0 – cz0  

Which is the equation of plane 
 
EXAMPLE 
 
An equation of the plane passing through the point (3, - 1, 7) and perpendicular to the 
vector n = 4i + 2j - 5k. 
A point-normal form of the equation is 

4(x – 3) + 2 (y + 1) – 5 (z – 7) = 0 
4x + 2y – 5z + 25 = 0 

Which is the same form of the equation of plane ax + by + cz + d = 0 
 
 
    
 
 
 
 
 
 

Here we use the theorem ,let a and b be two 
vectors, if a and b are perpendicular then 
a.b=0  so n and 0P P  are perpendicular vector so  
n.P0P=0 

a   (x −  x0)   + b (y −  y0)  + c (z −  z0) = 0 
 

is the required equation of the plane

The general equation of straight line 
is   ax + by + c = 0   
Let (x1 , y 1 ) and (x2 , y 2 ) be two points 
on this line then  
ax1  + by1  + c = 0 
ax2  + by2  + c = 0 
Subtracting above equation  
a(x2   − x1 ) + b (y2 −  y 1 ) = 0   
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Here we use the definition of dot product of two vectors. 
 
 
 
 
 
 
 
 
 
 
 
Gradients and Tangents to Surfaces 
f (x, y) = c 
z = f(x,y),  z  =  c 
 
 
 
 
 
 
 
 
 

 

d
dt f (g(t), h(t)) = 

d
dt ( c ) 

The general equation of plane is 
ax + by + cz + d = 0 
For any two points (x1, y1, z1) and 
(x2, y2, z2) lying on this plane we 
have 
ax1 + by1 + cz1 + d = 0 (1) 
a x2 + by2 + cz2 + d = 0 (2) 

v = (x2 − x1)i + (y2 − y1)j  
is a vector in the direction of line 
φ(x, y)  = ax + by 
φx = a,        φy = b 
∇φ = ai + bj  = n 
∇φ . r = 0 
Then n and v are perpendicular  

Subtracting equation (1) from (2) 
have 

  

a (x 2 − x 1 )+b (y 2 − y1 ) + c (z2 
 −  z 1 ) = 0 

 

(a i  + b j  + c k ) . [ (X2-X1) i+(Y2-Y1) j +(Z2-Z1) k       

  

]      

φ = ax + by + cz  
φx  = a, φy  = b, φz  = c
∇φ = ai  + bj + ck  
Where v = (x2  − x1 )i    
  

  +(y2 −y1)j + (z 2 − z 1)k

∇φ  is always normal to the plane.

If a differ entiable function f(x,y) has 
curve having parametric equation

x   = g(t),   y = h(t),  r = g(t) i + h (t)j
d ifferentiating  both sides of this
equation  with respect to t leads to the 
equation   

a constant value c along a smooth 
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Tangent Plane and Normal Line 
 
Consider all the curves through the point  
P0(x0, y0, z0) on a surface f(x, y, z) = 0. The plane containing all the tangents to these 
curves at the point P0(x0, y0, z0) is called the tangent plane to the surface at the point 
P0. 
The straight lines perpendicular to all these tangent lines at P0 is called the normal line to 
the surface at P0 if fx, fy, fz are all continuous at P0 and not all of them are zero, then 
gradient f  (i.e fxi + fyj + fzk) at P0 gives the direction of this normal vector to the surface 
at P0. 

 
 
Tangent plane 
 
 
 
 
 
 
EXAMPLE 
 
 
 
 
 
Equations of Tangent Plane to the surface  

  ∂ f 
  ∂ x 

  dg 

dt  + 
∂ f 
  ∂ y 

  dh 

dt 
  = 0   Chain Rule  

    
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ ∂ f 

  ∂ x 
  i  + 

∂ f 
  ∂ y 

  j   . 
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ dg 

dt i + 
dh 

dt j 
 = 0  

  ∇ f.  

d r 

dt 
 = 0 

  

∇ f is  normal to the tangent vector d r/ dt,   
 so it is normal to the curve  through (x 0, y 0) .  

Let P0  (x0, y 0 , z 0 ) be any point on the Surface  
f(x,y,z) = 0. If f(x,y,z) is differentiable  

at po(x0 ,y0,z0)  then the tangents plane at the  
point P0   (x0 ,y 0,z0 ) has the equation  

9x2  + 4y 
2  −  z 

2  = 36  P (2,3,6).
f(x,y,z) = 9x 

  2  + 4y 
2 − z 

2 − 36 

f x  =  18x,  f y  =  8 y, fz = − 2z
f x  (P) = 36,    f y  (P) = 24, fz (P) = -12  
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through P is 
 
36(x – 2) + 24(y – 3) –12(z – 6) = 0 
3x + 2y – z – 6 = 0 
 
EXAMPLE 
 

                                                                                
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  z = x cos y  −  ye 
x       (0,0,0).  

  cos y  −  ye 
x  – z = 0   

  f (x,y,z) = cos y −  ye 
x  – z   

f x (0,0, 0) = (cos y  −  yex) (0,0)  = 1  −  0.1 = 1  

f y (0,0, 0) = ( −  x sin y  −  e 
x ) (0,0)  = 0  −  1 =  −  1.  

    f z (0,0, 0) =  - 1   

The tangent plane is 
h f

  

f x (0,0,0)(x   −   0)+f y  (0,0,0)(y   −   0)   +   f z (0,0,0)(z− 0)=0  

  1 (x − 0) − 1 (y − 0) − 1 (z − 0) = 0,   
    x  −  y  −  z = 0.   
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Lecture No -13            Orthogonal Surface 

 
In this Lecture we will study the following topics 
 

• Normal line 
• Orthogonal Surface 
• Total differential for function of one variable  
• Total differential for function of  two variables 

 
 
 
 
 
 
 
 
 
Here fx means that the function f(x,y,z) is partially differentiable with respect to x And 
fx(P0) means that the function f(x,y,z) is partially differentiable with respect to x at the 
point P0(x0,y0,z0) 
 
fy means that the function f(x,y,z) is partially differentiable with respect to y And fy(P0) 
means that the function f(x,y,z) is partially differentiable with respect to y at the point 
P0(x0,y0,z0) 
 
Similarly 
 
fz means that the function f(x,y,z) is partially differentiable with respect to z And fz(P0) 
means that the function f(x,y,z) is partially differentiable with respect to z at the point 
P0(x0,y0,z0) 
 
EXAMPLE 

 
Find the Equation of the tangent plane and normal of the surface f(x,y,z)= x2+y2+z2-4 at 
the point P(1,-2,3)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Normal line

Let P0  (x0 ,y0 ,z0 ) be any point on the surface
o   P  (x 0 ,y 0 ,z 0) 

f(x,y,z)=0 If f(x,y,z) is differentiable at
then the normal line at the point P(xo ,y0 0 ,z ) 0 has the equation

x   =  x 0 +f x (P 0 )t,       y  =  y0+fy(P 0)t,  z = z0+fz(P 0 )t   

f(x,y,z) = x 
2 +y2+z2 − 14

P (1, − 2, 3).
f x = 2x,   f y   = 2y,  fz = 2z 

f x (p0) = 2,     f y  (P 0 ) = − 4,  fz (P0) = 6 

Equation of the tangent p lane  
 

to the surface at P  is
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EXAMPLE 
Find the equation of the tangent plane and normal plane 
 
 
 
 
 
 
 
 
Equations of Tangent Plane to the surface through P is 
 
 
 
 
 
 
 
 
 
 
Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2(x  −  1)  −  4 (y + 2) + 6 (z  −  3) = 0   

x   −  2y + 3z −  14 = 0  

Equations of the normal line of   the  

surface through P are  

x  −  1 

2 
   =  

y + 2 

−  4 
  =  

z  −  3 

6 
  

x  −  1 

1 
   =  

y + 2 

−  2 
  =  

z  −  3 

3 
  

4x 
2−y2 + 3z 

2 = 10   P (2, − 3,1) 

f(x,y,z) = 4x 
2 − y 

2 + 3z 
2 − 10 

fx = 8x,           fy = − 2y,       fz = 6z 

fx (P) = 16,  fy (P) = 6,  fz (P) = 6 

 

   
16(x − 2) + 6 (y+3) + 6 (z − 1) = 0 

8x + 3y + 3z = 10 
Equations of the normal line to the  

surface through P are 
x −  2 

16    = 
y + 3

6  = 
z − 1

6   

x −  2 
8    = 

y + 3
3  = 

z − 1
3   

z = 
1 
2 
   x 7 y -2  

f(x,y,z) = 
1 
2 
   x 7  y -2  –  z 

f x = 
7 
2 
   x 6.y -2,

  f y  = - x 7.y -3,      fz = -1 

f x (2, 4, 4) = 
7 
2 
   (2)6  (4)-2 = 14

fy  (2, 4, 4) = − (2)7  (4)-3 = − 2
fz (2, 4, 4) =-1   

Equation of Tangent at (2, 4, 4) is given by
fx (2,4,4)(x −2)+ fy  (2,4,4)(y−4)+ fz (2,4,4)(z−4) = 0

14 (x −  2) + (−  2) (y− 4) − (z − 4) = 0
14x −  2y − z − 16 = 0

The normal line has equations
x = 2 +f x (2,4,4) t,  y = 4 +f y (2,4,4)  t, z = 4+fz(2,4,4)t   

x = 2 + 14t,   y = 4 −  2t,  z = 4 − t



13-Orthogonal surfaces                                                                                                                                VU 

 
© Copyright Virtual University of Pakistan 

78

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 
Show that given two surfaces  are orthogonal or not 

 
Since they satisfied the condition of orthogonality so they are orthogonal. 
 
Differentials of a functions 
 
 
 
 
 
 
 
 
 
 
 

f(x,y,z) = x2 + y2 + z − 16  (1) 
g(x,y,z) = x2 + y2 − 638     (2) 
Adding (1) and (2) 

x2 + y2 = 
63
4   , z = 

1
4            (3) 

fx = 2x,     fy = 2y     fz = 1  
gx = 2x,    gy = 2y    gz = − 63 
fxgx + fygy + fzgz 
= 4 (x2 + y2) − 63     using (3) 
fx gx + fy gy + fzgz 

= 4 
⎝
⎜
⎛

⎠
⎟
⎞63

4   − 63 = 0 

SURFACES ORTHOGONAL 

l   
 
  

Said 

  
  

common to them.
They are to intersect orthogonally 

at every point 

CONDITION FOR ORTHOGONAL SURFACES

Two surfaces are said to be orthogonal at a point of their intersection if their normals 
at that point are orthogonal. if they are orthogonal 

Let  (x, y, z) be any point of  intersection  of 
 

f  (x, y, z) = 0---- (1) 
and  g (x, y, z) = 0 -----(2) 

Direction ratios of a line  normal to (1) are f x, fy , fz
 

 
 x, g y , g z   

The two normal lines are  orthogonal if and only if
 

f x g x  + f y g y  + fzgz = 0 

Similarly, direction rations of a line normal to (2)
are g

For a function y = f(x) 

dy = f 
/

(x) d x
is called the differential of functions f(x)

d x the differential  of x is the same as 
  

i.e. dx = ∇ x where as dy the
differential of y is the approximate change in the

  
value of the functions

 
w hich 

is different from the actual change ∇y in the value of the functions.
 

the actual change in x
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EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Distinction between the incrementn Δy and the differential dy

Approximation to the curve

If f  is differentiable at x , then the 
at x  is a reasonably good approximation

 near x0. Since the tangent line passes

 

0

tangent line to the curve y = f(x)  
0  to the curve y = f(x) for value of x

through  the point (x0, f(x0)) and has  
its equation is

y   − f /(x0) = f(x0)(x − x0)  or 
y = f(x 0 ) + f/(x0) (x − x0) 

slope f/(x0), the point-slope form of  
  

f(x) =  x     
x = 4 and dx =Δx = 3  y = 3   

Δ y = x + Δx     −   x    
=  7       −    4       ≈  .65 

If y =  x   , then 
dy 
dx    = 1 

2 x 
     so  dy =1

2 x
  dx  

= 1 
2 x 

   (3) = 3 
4    = .75 
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EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Using differentials approximation 

for the value of cos 61 °.
Let y = cosx and x = 6 0°
then dx = 61° − 60° = 1°

Δy  ≈ dy  =  −  sinx dx = − sin60° (1°)

=  
3 

2 

 
⎝
⎜
⎛

⎠
⎟
⎞1

180 π

Now y = cos x 
y+Δ y   =   cos (x+Δx) = cos (x+dx)  

=  cos (60°+1°)=cos61° 
cos61°   =   y+ Δ y = cosx + Δy  

≈ cos60°  −  
3

2   
⎝
⎜
⎛

⎠
⎟
⎞1

180 π   

cos61 °  ≈   
1 
2     − 

3
2   

⎝
⎜
⎛

⎠
⎟
⎞1

180 π   

= 0.5 − 0.01511 = 0.48489  
cos61°  ≈ 0.48489 

 
of the box is 8.5 inches with 

±
 

0.3 inches
. 

  
Let x and h be the width and the height  
of the box respectively, then its volume  

V is given by 
V = x2h 

a possible error of 
A box with a square base has its hei ght twice is width.  If the  

 width 

Since h = 2x, so (1) take the form 
V = 2x3 

dV = 6x2 dx 
Since x = 8.5, dx = ±0.3, so 

putting these values in (2), we have 
    dV = 6 (8.5) 2 (±0.3) = ± 130.05 

This shows that the possible error in the  
volume of the box is ±130.05. 

TOTAL DIFFERENTIAL 

If we move from (x0 , y0 ) to a point 
resulting differential in f is

 df = fx (x 0 , y 0) dx + fy (x0, y0) dy 

This change in the linearization of 
 

(x0  + dx, y0  + dy) nearby, the   
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EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
Which is exact Change 
 
 
 
 
EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Area = xy
x = 10, y = 8  Area = 80 
x = 10.03 y = 8.02   Area = 80.4406 
Exact Change in area = 80.4406 − 80 
   = 0.4406 

EXACT CHANGE 

f is called the total differential of f. 

A rectangular plate expands in such  
 10 to 10.03 and its breadth  changes from 8 to 8.02.

 
Let x and y the length and  
breadth of the rectangle  

respectively, th en its area is 
A = xy 

dA = A x  dx + A y dy = ydx + xdy 
By the given conditions  

x = 10,   dx = 0.03,   y = 8, dy = 0.02. 
dA = 8(0.03) + 10(0.02) = 0.44 

a way that its length changes from 

 
 

 
 

proximately

. V = xyz

 
dV = V xd  x + Vydy + Vzdx 

dV = yzdx + xzdy + zydz   (1)
 

The volume of a rectangular parallelepiped is given by the formula V = xyz. If this solid 
is compressed from above so that z is decreased by 2% while x and y each is 
increased by 0.75% ap

d x =
0.75 
100   x, dy = 

0.75
100  y, dz= − 

2
100  z 

Putting these values in (1), we have 

dV = 
0.75 
100   xyz+

0.75 
100  xyz − 

2
100 xyz  

= −  
0.5 
100   xyz = − 

0.5
100 V 

This shows that there is 0.5 %  
decrease in the volume. 
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EXAMPLE 
 

 
 

 
 

 
 
 

 
 

 

dΔ=
1
2 4 sin 30°(0.1)+

1
2 9 sin 30°(0.08) 

+ 
1
2  36cos 30° 

⎝
⎜
⎛

⎠
⎟
⎞π

3600  

dΔ=2
⎝
⎜
⎛

⎠
⎟
⎞1

2 (0.1)+
1
2 

⎝
⎜
⎛

⎠
⎟
⎞1

2  (0.08) 

+18 
⎝
⎜
⎛

⎠
⎟
⎞3

2 ⎝
⎜
⎛

⎠
⎟
⎞3.14

3600  = 0.293 

% change in area = 
0.293

Δ
  × 100  

= 
0.293

9   × 10 = 3.25% 

By the given conditions 
a = 9, b = 4, C = 30°, 

da = 9.1 − 9 = 0.1,  
db = 4.08 − 4 = 0.08 

dC = 30°3′ − 3′ = 
⎝
⎜
⎛

⎠
⎟
⎞3

60
°
  

= 
3

60  × 
π

180  radians 

Putting these values in (1), we have 

Δ = 
1
2  ab sin C 

dΔ = 
∂
∂a  

⎝
⎜
⎛

⎠
⎟
⎞1

2 ab sin C  da + 
∂

∂b  
⎝
⎜
⎛

⎠
⎟
⎞1

2 ab sin C  db 

+ 
∂

∂C  
⎝
⎜
⎛

⎠
⎟
⎞1

2 ab sin C  dC 

dΔ = 
1
2  b sin Cda + 

1
2  a sin C db  

+ 
1
2  ab cos CdC 

A formula for the area Δ of a triangle is  

Δ = 
1
2  ab sin C. Approximately what error is  

made in computing Δ if a is taken to be 9.1  
instead of 9, b is taken to be 4.08 instead of  
4 and C is taken to be 30°3/ instead of 30°. 
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Lecture No -14            Extrema of Functions of Two Variables 
 
In this lecture we shall fined the techniques for finding the highest and lowest points on 
the graph of a function or , equivalently, the largest and smallest  values of the function. 
  
The graph of many functions form hills and valleys. The tops of the hills are relative 
maxima and the bottom of the valleys are called relative minima. Just as the top of a hill 
on the earth’s terrain need not be the highest point on the earth , so a relative maximum 
need not be the highest point on the entire graph . 
 
Absolute maximum 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              
    The function f  is said to have a relative (local ) maximum at some point (x0,y0) of its 
domain D if there exists an open disc K centered at (x0,y0) and of radius r  
 
 
                                                      With                such that 
 
 
 
 
 
 
 

 f  of two variables on a subset  

 

of  R 
2

 value on  D  if there is some point  

f  ( x 0 ,  y 0 )  >  f  ( x ,  y ) for all ( x ,  y )  ∈  D 

f  ( x 0 ,  y 0 ) is the  absolute  maximum  

x ( 0,  y ) of  0  such that D value of  f  on  D 
A function   is said to have an  D absolute (global)  
maximum 

In such a case  

Relative extremum and absolute extremum

If f has a relative maximum or a relative
relative extremum at (x 0 ,y 0 ), and if f has an

(x0 ,y 0 ), then we say that f has an absolute

minimum at (x0
, y 0), then we say that f has a 

absolute maximum or absolute minimum at 

extremum at (x 0,y0   ).

Absolute minimum 

A function f of two variables on a subset D of R
2

minimum  value on D  if there is some point 

 ( )  ( ) for all ( ) 
In such a case  ( ) is the absolute minimum value of f  on D .f x0 , y 0 

 is said to have an absolute (global) 

(x0, y 0 D   ) of  such that

f x 0 , y0 ≤  f x, y x, y ∈ D.

Relative (local) minimum 

R elative (local) maximum

K ={( x , y ) ∈ R 2 : (x − x0)2 + ( y − y0)2 < r2 } 
K ∈ D

f(x0,  y 0)  ≥ f  (x, y)  for all (x, y ) 
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Extreme Value Theorem 
 
If f (x, y) is continuous on a closed and bounded set R, then f has both 
an absolute maximum and on absolute minimum on R . 
 
Remarks  
If any of the conditions the Extreme Value Theorem fail to hold, then there is no 
guarantee that an absolute maximum or absolute minimum exists on the region R. 
Thus, a discontinuous function on a closed and bounded set need not have any absolute 
extrema, and a continuous function on a set that is not closed and bounded also need not 
have any absolute extrema. 
 
Extreme values or extrema of f 
 
The maximum and minimum values of f are referred to as extreme values of extrema of f 
.Let a function f of two variables be defined on an open disc  
 
 
 
 
                            Suppose 
 
If  f has relative extrema at (x0,y0),then  
                                           
 
  

The function  f is said to have a relative (local) minimum at some point

( x 0 , y 0 ) of D  if there exists an open disc centred at (x0, y0) and of radius K
r K   ⊂ D    with such that

f  ( x0, y 0 ) ≤  f  (x, y) for all (x, y) ∈ K. 

K x, y x − x0)2 y − y0)2 r2 = {( ): (  + ( < }. 

f x ( x0, y
0

fy
( x 0 , y0) and ) both exist on K 

f x (x 0, y0 )  = 0 = fy(x0, y0).
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Saddle Point 

 
A differentiable function f(x, y) has a saddle has a saddle point (a, b) if in every 

open disk centered at (a, b) there are domain points  (x, y) where f (x, y) > f (a, b) and 
domain points (x, y) where f (x, y) < f (a, b). The corresponding point (a, b, f (a, b)) on 
the surface z = f (x, y) is called a saddle point of the surface 

 
Remarks 
 
Thus, the only points where a function f(x,y) can assume extreme values are critical 
points and boundary points. As with differentiable functions if a single variable, not every 
critical point gives rise to o a  local extremum. A differentiable function of a single 
variable might have a point of inflection. A differentiable function of two variable might 
have a saddle point. 
 
EXAMPLE 
 
Fine the critical points of the given function 

 

 
 
 
 
 

Substituting the value of x from (2) into (1),
we have 

y4

a2 − ay =  0 

y(y3 − a3) = 0 
y=  0,           y= a 

and so 
x  = 0,   x= a. 

The critical points are (0, 0) and (a, a).

f (x, y) = x3 + y3 − 3axy, a > 0. 
fx, f y exist at all points of the domain of f. 

fx  = 3x2 − 3ay, fy  = 3y2 − 3ax 
For critical points fx = fy  = 0. 
Therefore,  x2 − ay = 0 (1) 

and   ax − y2 = 0  (2) 
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Overview of lecture # 14 
 
Topic                                                                         Article #                         page # 
 
Extrema of Functions of Two Variables                    16.9                                 833    
 
Absolute maximum                                                     16.9.1                             833    
 
Absolute manimum                                                     16.9.2                             833  
 
Extreme Value Theorem                                            16.9.3                            834 
 
 
Exercise set    Q#1,3,5,7,9,11,13,15,17                          841     
 
   
Book 
 
                           CALCULUS  by HOWARD ANTON 
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Lecture No -             15 Example 
 
EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Example 
 
 
 
 
 
 
 

 
 

f ( x , y) = x 
2  + y2

f x ( x , y )  = x 
x 2  + y 2 

   

f y (x , y) = 
y 

x 2  + y 2
   

The partial derivatives exist at all points of
in the domain of f . Thus (0, 0) is a critical

  

the domain of except at the origin which is f
point of f 

Now  f x(x, y) = 0 only if x = 0 and

  

f y( x , y )  = 0 only if y = 0

The only critical point is (0,0) and f(0,0)=0  

Since f  (x , y ) ≥ 0 for all (x, y), f (0, 0) = 0 is the absolute minimum value of f .

z  = f(x, y) = x 2 + y2  (Paraboloid)
fx   (x, y) = 2x,  f y (x, y) = 2y
when fx  (x, y) = 0,  fy (x, y) = 0
we ha ve  (0, 0) as critical point.
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EXAMPLE 
 
 
 
 
 
 

 
EXAMPLE 
 
 
 
 
 
 

 
 
EXAMPLE 

 
The point (0,0) is critical point of  f  because the partial derivatives   do not both exist.  It 
is evident geometrically that   fx(0,.0) does not exist because the trace of the cone in the 
plane y=0 has a corner at the origin. 
 
 
 
 
 
 

f(x, y) = x2 + y2  
fx = 

x

 x2 + y2  
  fy = 

y

 x2 + y2  
  

z  = g(x, y) = 1 −  x 
2  −  y2 (Paraboloid)

g x   (x, y) = −  2x,  g y  (x, y) = − 2y
when gx (x, y) = 0 ,  g y  (x, y) = 0
we h a ve (0, 0) as critical point.

z   = h(x, y)=y2− x2 
  (Hyperbolic paraboloid)

hx   (x, y) = −  2x,   hy  (x, y) = 2y
when hx  (x, y) = 0 ,   h y  (x, y) = 0
we ha ve  ( 0, 0) as critical point.

The fact that f x   (0,0) does not exist canalso be seen algebraically by noting 
that fx (0,0) can  be interpreted as thederivative with respect to x of the function 

f (x, 0) = x2 + 0  = |x|  at x = 0.
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The Second Partial Derivative Test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
REMARKS 
If a function f of two variables has an  absolute extremum (either an absolute maximum or 
an absolute minimum) at an interior point of its domain, then this extremum occurs at a 
critical  point. 
 
EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

But |x| is not differentiable at x = 0, so f x(0,0) does not exist. Similarly, 
(0,0) does not exist. The function ff y has a relative minimum at the critical 

point (0,0).

Let f  be a function of two variables with continuous second order partial derivatives 

in some circle centered  at a critical point (x0, y0), and let  

D = f xx (x0 , y 0) fyy(x0, y0) −  f 2
xy(x0, y0)

  fxx 0,y0(a) If D > 0  and (x ) > 0 , then f has a 
0,y0  relative minimum at (x ).

(b)  If D > 0 and fxx(x0,y0) < 0 , then f has a
relative maximumat (x0,y0).

(c)   If D < 0 , then f has a saddle point at 
(x0,y 0 ).   

(d)  If D = 0 , then no conclusion can be
drawn.  

f(x,y) = 2x 2 − 4x + xy2 − 1
f x (x, y)   = 4x− 4 + y2,         fxx (x, y)  = 4
f y  (x, y)   = 2xy,        fyy (x, y)  = 2x

f xy  (x, y)  = fyx (x, y) = 2y
  For critical points, we set the first partial derivatives equal to zero. Then  

4x − 4 + y2 = 0     (1)  
     

  
and 2xy  =  0    (2)

 we have  x = 0   or   y = 0

x = 0, then from (1), y = ± 2. 
 y = 0, then from (1), x = 1.
 

Thus the critical points are (1,0), (0, 2), (0, − 2). 
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EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We check the nature of each point. 

f xx(1,0) = 4,  

f yy (1, 0) = 2,  

f xy  (1, 0) = 0  

D= f xx (1, 0).f yy  (1, 0)  -  [f xy  (1, 0)] 
2  

        = 8 > 0    
and f xx  (1, 0) is positive. Thus f has a  

 
relative minimum at (1, 0). 

f xx  (0, 2) = 4,
f yy  (0, 2) = 0,
f xy  (0, 2) = 4

D= fxx (0, 2).fyy  (0, 2) - [fxy (0, 2)]2
    = − 16 < 0.  
Therefore, f has a saddle point at (0,2).

f xx(0,−2) = 4,
f yy (0,−2) = 0,
fxy (0,−2) = −4

D= fxx (0, − 2).fyy (0, − 2) - [fxy (0, − 2)]2

   = − 16 < 0.  

f(x,y) =  e-(x2+y2+2x)

f x (x, y)=−2 (x+1)e
-(x2+y2+2x),

f y(x, y) = − 2ye
-(x2+y2+2x)

For critical points
fx (x,y) = 0,    x + 1 = 0,   x = − 1  and

fy (x, y) = 0,   y = 0
Hence critical point is (−1,0).

f xx (x,y) = [( −  2x  −  2) 
2  −  2]e 

-(x2+y2+2x)  

f xx ( − 1, 0) = - ,  
f yy (x,y) = [4y 

2  −  2]e 
-(x2+y2+2x)  

f yy  ( −  1, 0) = -  

f xy (x,y) =  −  2y ( −  2x  −  2)e 
-(x2+y2+2x)  

f xy ( −  1, 0) = 0  

D = f xx ( − 1,0) f yy( − 1, 0)  −  f 
2
xy ( −  1, 0)  

= (-2e ) (-2e ) > 0  

This shows that f is maximum at (  −  1, 0).  

Therefore, f has a saddle point at (0,  2).−
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EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f(x,y) = 2x4 + y2 − x2 − 2y
f x (x, y) = 8x 3   − 2x,  fy(x, y) = 2y − 2 

f xx (x, y) = 24x 2   − 2,         f yy(x,y) = 2,   
  fxy (x, y) = 0  
For critical points  

f x (x, y) = 0,  
2x (4x2   − 1) = 0,  x = 0,1/2,-1/2 

f y (x, y) = 0,  
2y −  2 = 0,   y = 1 

Solving above equation we have the critical 

points (0,1), 
⎝ 
⎜ 
⎛ 

⎠
⎟
⎞

−  12  , 1
⎝
⎜
⎛

⎠
⎟
⎞1

2 , 1 .
f xx  (0,1) = − 2,   fyy (0, 1) = 2,
f xy  (0, 1) = 0  
D = fx(0, 1) fyy (0, 1) − f2

xy (0, 1)
= ( − 2)(2) −  0 = −4 < 0
This shows that (0, 1) is a saddle point.

f xx 
  
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 

 1 

2 
  ,  1   = 4,    f yy   =  

⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 

 1 

2 
 ,  1  = 2  

f xy 
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 1 

2 
 ,  1   = 0   

D = f xx 
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 1 

2 
, 1  f yy 

⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 1 

2 
, 1  − f 

2
xy

⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 

−  1 

2 
, 1   

  = (4) (2)  −  0 = 8 > 0  

f xx 
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 1 

2 
, 1  = 4 > 0, so  f  is minimum at 

⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 1 

2 
, 1 .  
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Example 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Over view of lecture # 15   Book   
                             Calculus  by HOWARD ANTON 
 
Topic #        Article #                        Page # 
Example         3                                     836 
Graph of  f(x,y)        16.9.4          836 
The Second Partial Derivative Test         16.9.5          836 
Example         5                                     837 
 
 

Locate all relative extrema and
saddle points of 

f (x, y) = 4xy − x4 − y4. 
fx(x, y) = 4y − 4x3,     fy (x, y) = 4x − 4y3 
For critical points 

fx (x, y) = 0 
 4y − 4x3 = 0  (1) 
 y = x3 

fy (x, y) = 0 
 4x − 4y3 = 0  (2) 
 x = y3 

Solving ( 1 ) 
  and (2 ), we have the  

critical points (0,0), (1, 1),(− 1,  − 1).  
 

Now f xx  (x, y) =  −  12x 
2 , 

  f xx (0, 0) = 0 
 

f yy  (x, y) =  −  12y 
2 , 

     
f yy  (0,0) = 0 

 

f xy  (x, y) = 4,  
    f xy (0, 0) = 4 

 

D = f xx  (0,0) f y  (0,0)  −  f 
2 
xy (0,0)   

 

  =  (0) (0)  −  (4) 
2 =      - 16  <  0

This shows that (0,0) is the saddle point. 
 

f xx  (x, y) = − 12x2 ,         f xx  (1,1) = − 12 < 0
f yy  (x,y) = − 12y2 ,         f y  (1,1) = − 12
f xy  (x, y) = 4,   fxy  (1,1) = 4
D = fxx (1,1) fyy (1,1) − f 2 xy (1, 1) 
  = ( − 12) (− 12) −  (4) 2 = 128 > 0
This shows that f has relative maximum at 
(1,1). 

f xx  (x,y) =  − 12x 
2 ,   f xx  ( − 1,  − 1)  =  −  12 < 0  

f y  (x, y) =    −    2y 
2 ,   f y  ( − 1,  − 1) =  −  12  

f xy  (x, y) = 4,   f xy  ( −  1,  −  1) = 4  

D=f xx  ( − 1, − 1) f yy  ( − 1, − 1) − f 
2

xy( − 1, − 1)   

  = ( −  12) ( −  12)  −  (4) 
2 = 128 > 0  

This shows that f has relative maximum 
( − 1,  −  1).   
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Lecture No -16           Extreme Valued Theorem 
 
EXTREME VALUED THEOREM 
If the function f is continuous on the closed interval [a, b], then f has an absolute 
maximum value and an absolute minimum value on [a, b] 
 
Remarks 
An absolute extremum of a function on a closed interval must be either a relative 
extremum or a function value at an end point of the interval. Since a necessary condition 
for a function to have a relative extremum at a point C is that C be a critical point, we 
may determine the absolute maximum value and the absolute minimum value of a 
continuous function f on a closed interval [a, b] by the following procedure. 
 
1.  Find the critical points of f on [a, b]  and the function values at these critical. 
2.  Find the values of f (a) and f (b). 
3. The largest and the smallest of the above calculated values are the absolute maximum                
value and the absolute minimum value respectively 
   
Example 
Find the absolute extrema of  
  
 f(x)= x3+  x2-x+1         on     [-2,1/2] 
Since f is continuous on [-2,1/2],  the extreme value  theorem is applicable. For this  
 
           f /(x) =3 x2+2x-1  

This shows that f(x) exists for all real numbers, and so the only critical  numbers of f will 
be the values of x for which f (x)=0.          . 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Setting f  
/ 
(x) = 0, we have   

(3x −  1) (x + 1) = 0   
from which we obtain  

x = −  1   and    x = 
1 
3     

The critical points of f are −  1 and  
1
3 ,  

 closed interval (-2, 
1 
2  )  We find the function 

 

points of the interval, which are given below.

 

and each of these points is in the given 
values at the critical points and at the end 

f( −  2) =  −  1,  f ( −  1) = 2,      
 
 

    

f 
⎝ 

⎛ 

⎠ 
⎟ 
⎞ 1 

3 
   =  

22 
27 

  ,  f  
⎝ 
⎜ 
⎛ 

⎠ 
⎟ 
⎞ 1 

2 
  =  

7 
8 

    

The  ab solute maximum value of f on (-2, 
1
2 ) is therefore 

2, which occurs at  −  1, and the absolute min. value of f on  

( - 2,  
1 
2   )  is  −  1, which occurs at the left end point −  2.  

Find the absolute extrema of 
− 
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so that the absolute extrema occur either at 2 or at one of the end points of the interval. The 
function values at these points are given below. 
  
f(1) = 1  ,   f(2) = 0,           f(5)= 
From these values we conclude that the absolute minimum value of  f on  [1,5] is 0, 
occurring at 2, and the absolute maximum value of f on [1, 5] is 3      9  ,occurring at 5.    
   
 
 
 
 
 
 
 
 
 
 
 
 
                                          
The absolute maximum value is 9   assumed at x = 3; the absolute minimum is 0, assumed at  
x = 0. 
 
How to Find the Absolute Extrema of a Continuous Function f of Two Variables on 
a Closed and Bounded Region R.  
 
Step 1. 
            Find the critical points of f that lie in the interior of R. 
Setp 2. 
 Find all boundary points at which the absolute extrema can occur, 
Step 3. 
 Evaluate f(x,y) at the points obtained in the previous steps. The largest of these 
values is the absolute maximum and the smallest the absolute minimum. 
 
 
 
 
 
 
 

    f (x) = (x   2) 2/3   on [1, 5].  

Since f is continuous on [1. 5],  the extreme- value  t theorem is applicable.   

Differentiating f with respect to x, we get 

   f 
/ 
(x) =  

2 

3  ( x  −  2 ) 
1/3 

 

There is no value of x for which f  (x) = 0.  
/

However, since f (x) does not  
/

exist at 2,  
we conclude that 2 is a critical point of f, 

3
9   

  Find the absolute extrema of   
    h(x) = x 2/3  on [− 2, 3].   

  h /(x) = 
2 
3   x - 1/3 = 

2
3x1/3    

    h /(x)  has no zeros but is undefined at x = 0. 
    The values of h at this one critical point 
    and at   the endpoints x =−  2 and x = 3 are 
    h(0) = 0 
    h (−  2) = (−  2)2/3 = 41/3

  
  h(3) = (3)2/3 = 91/3.   

1/3
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Find the absolute maximum and minimum value of 
f(x,y) = 2 + 2x +2y-x2-y2  

On the triangular plate in the first quadrant bounded by the lines x=0,y=0,y=9-x  
Since f is a differentiable, the only places where f  can assume these values are points 
inside the triangle having vertices at O(0,0), A(9,0)and B(0,9) where fx = fy=0 and points 
of boundary. 
 
 
 
 
 
 
 
 
 
 
                   O 
                    
 
For interior points: 
   
 We have fx=2-2x=0  and   fy=2-2y=0  
yielding the single point (1,1) 
  
For boundary points we take take the triangle one side at time :  

1. On the segment OA, y=0 
            U(x) = f(x, 0)=2+2x-x2 

may be regarded as function of x defined  on the closed interval 0≤x≤9 Its extreme 
values may occur at the endpoints x=0 and x=9 which corresponds to points (0, 0) and   
(9, 0) and U(x) has critical point where  
  

U/(x) = 2-2x=0  Then x=1 
On the segment OB, x=0 and  

V(y)=f(0,y)= 2+2y-y2 

Using symmetry of function f, possible points are (0,0 ),(0,9) and (0,1) 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 

B ( 0, 9) 

.(9/2,9/2) 

A( 9,0)  

x = 0 

.(1,1) 
y = 9 - x 

y = 0 

3. T he interior points of AB. 
With y = 9 - x, we have   
f (x,  y) = 2+2x+2(9 - x) – x2–(9- x)2

W(x) = f(x, 9 - x)  = -   61 +18x – 2x2

Setting w′(x)= 18 -4x = 0, x = 9/2.
At this value of x, y =   9 – 9/2

Therefore we have (
9
2,   9 

2   ) as a critical point.
  

  
  

  
(x, y)    

 (0,0)  
  

 (9,0)  (1, 0) ⎝
⎜⎛

⎠
⎟⎞

9
2 ,

9
2

  
f(x,y)  

  
2  

  
−61 3 −

41
2
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The absolute maximum is 4 which f assumes at the point (1,1) The absolute minimum is  
-61 which f assumes at the points (0, 9) and (9,0)  
 
EXAMPLE 
Find the absolute maximum and the  absolute minimum values of  
  f(x,y)=3xy-6x-3y+7  
on the closed triangular region r with the vertices (0,0), (3,0) and (0,5) . 
  

 
 
Thus, (1, 2) is the only critical point in the interior of R. Next, we want to determine the 
location of the points on the boundary of R at which the absolute extrema might occur. 
The boundary extrema might occur. The boundary each of which we shall treat 
separately. 
 
i)The line segment between (0, 0) and (3, 0):  
 
On this line segment we have y=0 so (1) simplifies to a function of the single variable x, 
 
 
 
This function has no critical points because u/(6)=-6 is non zero for all x . Thus, the 
extreme values of u(x) occur at the endpoints x = 0 and x=3 , which corresponds to the  
points (0, 0) and (3,0) on R 
 

ii) The line segment between the (0,0)  and (0,5) 
 

On this line segment we have x=0 ,so single variable y,  
 
                                                                                    5                                    
 

This function has no critical points because v/(y)=-3 is non zero for all y.Thus ,the 
extreme values of v(y) occur at the endpoints y = 0 and y=5 which correspond to the point 
(0,0) and (0,5) or R 
 

 

f(x, y) = 3xy − 6x − 3y + 7
fx(x, y) = 3y − 6,    fy(x, y) = 3x−3 
For critical points 
fx (x, y) = 0 
3y − 6 = 0 
y = 2 
fy(x, y) = 0 
3x − 3 = 0 
x = 1 

  

  
(x, y)  

  
 (0, 9)   (0,1) (1,1)

  
f(x,y)  

  
− 61   3 4

  

u (x)=f(x, 0) =  −  6x + 7, 0 < x < 3

v(y) = f (0, y) =  −  3y + 7,  0 < y <
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iii) The line segment between (3,0) and (0,5) 
In the XY- plan , an equation for the line segment  

 
so (1) simplifies to a function of the single variable x, 

 
 
 
 
 
 
 
 
 
This shows that x =7/5 is the only critical point of w. Thus, the extreme values of w occur 
either at the critical point x=7/5 or at the endpoints x=0 and x=3.The endpoints 
correspond to  the points (0, 5) and (3, 0) of R, and from (6) the critical point corresponds 
to [7/5,8/3] 
 

 
Finally, table list the values of f(x,y) at the interior critical point and at the points on the 
boundary where an absolute extremum can occur. From the table we conclude that the 
absolute maximum value of f is f(0,0)=7 and the absolute minimum values is f(3,0)=-11. 
 
OVER VIEW: 
  Maxima and Minima of functions of two variables. Page # 833 
Exercise: 16.9 Q #26,27,28,29. 
 

 
 
 
 
 
 
 
 
 
 
 

 
(x, y) 

 
 (0, 0) 

 
 (3, 0) 

 
 (0, 5) ⎝

⎜
⎛

⎠
⎟
⎞7

5 , 
8
3   

 
 (1, 2) 

 
f(x,y) 

 
7 

 
− 11 

 
− 8 − 

9
5   

1 
 

  
     

  

    
  

y =  − 
  5 

3
  x + 5, 0  <  x  <  3 

 

w(x) = f (x,  − 
  5 

3
  x + 5)  

  

  =  −  5x 
2 + 14x  −  8,   0  <  x  <  3 

 

w ′ (x) =  −  10 x + 14 
  

w ′ (x) = 0 
  

10x + 14 = 0 
  

x =  
7 

5 
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Lecture No -17               Examples 
 
EXAMPLE 
Find the absolute maximum and minimum values of f(x,y)=xy-x-3y on the closed 
triangular region R with vertices (0, 0), (0, 4), and (5, 0). 
 
 
 
 
 
 
 
 
Thus, (3, 1) is the only critical point in the interior of R. Next, we want to determine the 
location of the points on the boundary of R at which the absolute extrema might occur. 
The boundary of R consists of three line segments, each of which we shall treat 
separately. 
(i)  The line segment between (0, 0) and (5,0) 
On this line segment we have y = 0, so (1) simplifies to a function of the single variable x, 
 
  
The function has no critical points because the u/(x)=-1 is non zero for all x.Thus,the 
exteme values of u(x) occure at the endpoints x=0 and x=5 , which corresponds to the 
points (0,0) and (5,0) of R. 
 
ii) The line segment between (0,0) and (0,4) 
 On this line segment we have x = 0, so (1) simplifies to a function of the single variable 
y,  
 
 
This function has no critical points because v/ (y)= -3 is nonzero for all y. Thus, the 
extreme values of v(y) occur at the endpoints y =0 and y=4 ,which correspond to the point 
(0,0) and (0,4) or R. 
 
iii) The line segment between (5,0) and (0,4) 
In the xy-plan, an equation is  
 
                                      
so (1) simplifies to a function of the single variable x, 
 

2

4( ) ( , 4)
5

4 4( 4) 3( 4)
5 5

4 27 12
5 5

w x f x x

x x x x

x x

 =  −  + 

         = −  +  −  − −  + 

        = − +  −

 

  f (x,y) = xy  −  x  −  3y 
  (1) 

 

f x  (x, y) = y  −  1, 
  f y  (x, y) = x  −  3 

 

For critical points 
 

f x  (x, y) = 0, 
  y 

  −  1 = 0 
  

    y = 1 
     (2) 

 

f y  (x, y) = 0, 
  3x  −  3 = 0 

  

    x = 3 
     (3) 

 

 
u (x) = f (x, 0) =  − - x,   0 < x < 5 (4)

v(y) = f (0, y) =  −  3y, 0 < y < 4.       (5)  

= −   4 

5 
x+ 4, 0 < x < 5     (6)  y 
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8 27( )
5 5

27( ) 0
8

w x x

by w x we get x

′ = − +

′ =  ,     = 
 

 

This shows that 27
8

x  =  is the only critical point of w. Thus, the extreme values of w 

occur either at the critical point 27
8

x  =  or at the endpoints x = 0 and x = 5. The endpoints 

correspond to the points (0, 4) and (5, 0) of R, and from (6) the critical point corresponds 

to 27 13,
8 10

⎡ ⎤
⎢ ⎥⎣ ⎦

 

 
( , )x y  (0, 0) (5, 0) (0, 4) (27/8, 13/10) (3, 1) 

( , )f x y  0 -5 -12 -231/80 -3 

 
 

 
Finally, from the table below, we conclude that the absolute maximum value of f is 
 f (0,0) = 0 and the absolute minimum value is  (0, 4)f  =-12 
 
Example 
Find three positive numbers whose sum is 48 and such that their product is as large as 
possible 
Let x,y and z be the required numbers, then we have to maximize the product 
                             f(x,y)=xy(48-x-y) 
Since 
  fx=48y-2xy-y2

    ,  fy=48x-2xy-x2 
solving  
  fx =0    ,                 fy=0 
we get   x=16, y=16, z=16   
Since    x+y+z=48 
 
 
 
 
 
 
For x = 16, y = 16 we have z = 16 since x + y + z = 48 
Thus, the required numbers are 16, 16, 16. 
 
 
Example 
Find three positive numbers whose sum is 27 and such that the sum of their squares is as 
small as possible 
 

f xx (x,y ) =  -  2y,        f xx (16, 16 ) =  - 32 < 0  

f xy (x, y ) = 48 - 2x - 2y,       f xy (16, 16 ) =  - 16  

f yy (x, y ) =  - 2x,         f yy (16, 16 ) =  - 32  

D=f xx (16,16 )f y7y (16,16 ) − f 
2 

xy (16,16 )   
  = ( −  32) ( −  32)  −  (16) 

2  = 768 > 0  
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Example 
 

Find the dimensions of the rectangular box of maximum volume that can be 
inscribed in a sphere of radius 4. 
Solution: 

The volume of the parallelepiped with dimensions x, y, z is  
V = xyz 

Since the box is inscribed in the sphere of radius 4, so equation of sphere is 
 x2+ y2+ z2= 42  from this equation we can write 2 216z x y= − − and putting this value of 

“z” in above equation we get 2 216V xy x y= − − .Now we want to find out the 
maximum value of this volume, for this we will calculate the extreme values of the 
function “V”. For extreme values we will find out the critical points and for critical points 
we will solve the equations Vx=0 and Vy=0 .Now we have 

2 2

2 2

2 2 2 2

2 2 2 2

2 2 2 2

( 2 )16
2 16

2 16 2 160 0
16 16

2 16 0 2 16......................( )

x

x x

xy xV y x y
x y

x y x yV y Now V y
x y x y

x y x y a

−
= − − +

− −

⎧ ⎫ ⎧ ⎫− − + − − +⎪ ⎪ ⎪ ⎪⇒ = = ⇒ =⎨ ⎬ ⎨ ⎬
− − − −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⇒ − − + = ⇒ + =

 

Similarly we have   
2 2

2 2

2 2 2 2

2 2 2 2

2 2 2 2

( 2 )16
2 16

2 16 2 160 0
16 16

2 16 0 2 16......................( )

y

y y

xy yV x x y
x y

x y x yV x Now V x
x y x y

x y x y b

−
= − − +

− −

⎧ ⎫ ⎧ ⎫− − + − − +⎪ ⎪ ⎪ ⎪⇒ = = ⇒ =⎨ ⎬ ⎨ ⎬
− − − −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⇒ − − + = ⇒ + =

 

Let x, y, z be the required numbers, then 

we have to   
f(x,y) = x 

2  + y 
2  + z 

2     

     = x 
2  + y 

2  + (27  −  x  −  y) 
2  

                Since x+y+z             = 27  
f x  = 4x+2y − 54,       f y  = 2x+4y − 54,    
f xx  = 4,    f yy  = 4,    f xy  = 2   

Solving  
  f x  = 0, 

        f y  = 0 
  

W e  get  
  x = 9,  y = 9, 

   z = 9 
  

 Since   x + y + z  =  27 
  

D =  f xx  (9, 9) f yy (9, 9) − [f xy  (9, 9)] 
2   

  = (4) (4) −  2 
2 =12 > 0 

  

This shows that f is minimum  

 x = 9, y = 9, z = 9, so the required   

numbers are  
  9, 9, 9. 
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Solving equations (a) and (b) we get the 4 4
3 3

x and y= =  

Now 
2 2

3
2 2 2

(2 3 48)

(16 )
xx

xy x yV
x y

+ −
=

− −
(We obtain this by using quotient rule of differentiation) 

4 4 16( , ) 0
3 3 3xxV = − p  

Also we have to calculate 
2 2

3
2 2 2

(3 2 48)

(16 )
yy

xy x yV
x y

+ −
=

− −
and 4 4 16( , ) 0

3 3 3yyV = − p Also note 

that 4 4 8( , )
3 3 3xyV = − Now as we have the formula for the second order partial 

derivative is 2. ( )xx yy xyf f f− and putting the values which we calculated above we note 

that 24 4 4 4 4 4 320( , ). ( , ) ( ( , )) 0
33 3 3 3 3 3xx yy xyf f f− = + f Which shows that the 

function V has maximum value when 4 4
3 3

x and y= = . So the dimension of the 

rectangular box are 4 4 4,
3 3 3

x y and z= = = . 

Example 
A closed rectangular box with volume of 16 ft3 is made from two kinds of materials. The 
top and bottom are made of material costing Rs. 10 per square foot and the sides from 
material costing Rs.5 per square foot. Find the dimensions of the box so that the cost of 
materials is minimized 
 
 Let x, y, z, and C be the length, width, height, and cost of the box respectively. Then it is 
clear form that 
  C=10(xy+xy)+5(xz+xz)+5(yz+yz)---------------(1) 
  C=20xy+10(x+y)z 
The volume of the box is given by  
  xyz=16----------------------------------(2) 
 
 
 
 
 
  
 
 

Putting the value of z from (2) in 
(1), we have 

  

C = 20xy + 10 (x + y)  
16 

xy 

    

C = 20 xy +  
160 

y 

   +  
160 

x 

    

C x =20y - 
160 

x 
2 

  ,  C y  = 20x  − 
  160 

y 
2 
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Cxx(2,2) Cyy(2,2) – C2

xy(2,2) =(40)(40)-(20)2=1200>0 
 
This shows that S has relative minimum at x = 2 and y = 2. Putting these values in (2), we 
have z = 4, so when its dimensions are 2 ×2 ×4. 
Example 
 

Find the dimensions of the rectangular box of maximum volume that can be 
inscribed in a sphere of radius a. 
Solution: 

The volume of the parallelepiped with dimensions x, y, z is  
V = xyz 

Since the box is inscribed in the sphere of radius 4, so equation of sphere is 
 x2+ y2+ z2= 42  from this equation we can write 2 2 2z a x y= − − and putting this value of 

“z” in above equation we get 2 2 2V xy a x y= − − .Now we want to find out the 
maximum value of this volume, for this we will calculate the extreme values of the 
function “V”. For extreme values we will find out the critical points and for critical points 
we will solve the equations Vx=0 and Vy=0 .Now we have 

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

( 2 )
2

2 20 0

2 16 0 2 ......................( )

x

x x

xy xV y a x y
a x y

x y a x y aV y Now V y
a x y a x y

x y x y a a

−
= − − +

− −

⎧ ⎫ ⎧ ⎫− − + − − +⎪ ⎪ ⎪ ⎪⇒ = = ⇒ =⎨ ⎬ ⎨ ⎬
− − − −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⇒ − − + = ⇒ + =

 

Similarly we have   

Cxx (x, y) = 
320
x3   

Cxx (2, 2) = 
320
8  = 40 > 0 

Cyy (x, y) = 
320
y3   

Cyy (2, 2) = 
320
8   = 40 

Cxy (x, y) = 20 
Cxy (2, 2) = 20 

For critical points 
Cx = 0 

20y − 
160
x2  = 0  and  Cy = 0 

20x − 
160
y2   = 0 

Solving these equations, we have  
x = 2, y = 2. Thus the critical point 
is (2, 2). 
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2 2 2

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

( 2 )
2

2 20 0

2 0 2 ......................( )

y

y y

xy yV x a x y
a x y

x y a x y aV x Now V x
a x y a x y

x y a x y a b

−
= − − +

− −

⎧ ⎫ ⎧ ⎫− − + − − +⎪ ⎪ ⎪ ⎪⇒ = = ⇒ =⎨ ⎬ ⎨ ⎬
− − − −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⇒ − − + = ⇒ + =

 

Solving equations (a) and (b) we get the 
3 3

a ax and y= =  

Now 
2 2 2

3
2 2 2 2

(2 3 3 )

( )
xx

xy x y aV
a x y

+ −
=

− −
(We obtain this by using quotient rule of differentiation) 

2

( , ) 0
3 3 3xx

a a aV = − p  

Also we have to calculate 
2 2 2

3
2 2 2 2

(3 2 3 )

( )
yy

xy x y aV
a x y

+ −
=

− −
and 

2

( , )
3 3 3yy

a a aV = − Also note 

that 2( , )
3 3 3xy

a a aV = − Now as we have the formula for the second order partial 

derivative is 2. ( )xx yy xyf f f− and putting the values which we calculated above we note 

that 
2

2 20( , ). ( , ) ( ( , )) 0
33 3 3 3 3 3xx yy xy

a a a a a a af f f− = + f Which shows that the 

function V has maximum value when 
3 3

a ax and y= = . So the dimension of the 

rectangular box are ,
3 3 3

a a ax y and z= = = . 

Example: 
  Find the points o the plane x + y + z = 5 in the first octant at which  
f(x,y,z) = xy2z2 has maximum value. 
Solution: 
 Since we have f(x,y,z) = xy2z2 and we are given the plane x + y + z = 5 from this 
equation we can write x = 5 – y – z . Thus our function “f’ becomes 
f((5 – y – z),y,z) = (5 – y – z )y2z2 Say this function u(y,z) That is u(y,z) = (5 – y – z )y2z2 

Now we have to find out extrema of this function. On simplification we get  
u(y,z) = 5 y2z2 – y3z2 – y2z3  

 
On solving above equations we get    – 10 + 5z = 0 ⇒z = 2 and 10 –  3y – 4 = 0 ⇒y = 2 

uy = 10yz2−3y2z2−2yz3 
    = yz2(10 − 3y − 2z) 
uz = 10y2z − 2y3z − 3y2z2 
     =  y2z (10 − 2y − 3z) 
uy = 0,        uz = 0 
 y = 0 ,         z = 0 
   10 − 3y − 2z = 0 
     10 − 2y − 3z = 0 
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Example: 

Find all points of the plane x+y+z=5 in the first octant at which f(x,y,z)=xy2z2 has 
a maximum value. 
 

 
   
  
 
 
  
 

 
Hence “f” has maximum value when x = 1 and y = 2. Thus the points where the function 
has maximum value is x = 1,y = 2 and z = 2. 

 
 
 
 
 
 
 
 
 

fxx=−y2 (5−3x−y) − 3y2 (5−x−5) 
fxy=2y (5−x−y)(5−3x−y)−y2 (5−3x−y) 
  − y2 (5 − x − y) 
fyy=2x(5−x−y)(5−x−2y)−2xy(5−x−2y)  
 − 4xy (5 − x − y) 
fxx (1, 2, 2) = − 24 < 0 
fyy (1, 2, 2) = − 16  
fxy (1, 2, 2) = − 8 
fxx fyy − (fxy)2 = (−24)(−16)−(−8)2  
  = 320 > 0 

D = uyy uzz − (uyz)2 
=  (− 24) (− 24) − (− 16)2 
=  576 − 256 
=  320 > 0 
For y = 2 and z = 2  
We have x = 5 − 2 − 2 = 1 

uyy = 10z2 − 6yz2 − 2z3 
uzz = 10y2 − 2y3 − 6y2z 
uyz = 20yz − 6y2z − 6yz2 
at 
y = 2,   z = 2 
uyy (2,2) = 40 − 48 − 16 = − 24 < 0 
yzz(2,2) = 40 − 16 − 48 = − 24 
uyz (2,2) = 80 − 48 − 48 = − 16 

f (x,y,z) = xy 
2 z 

2  = xy 
2  (5  −  x  −  y) 

2     

     Since  x+y+z = 5   
f x  = y 

2 (5 − 3x − y)(5 − x − y),  
f y  = 2xy(5 − x − 2y) (5 − x − y)   
Solving  f x  = 0, f y  = 0 , we get   
x = 1, y = 2, z = 2   ∴   x + y + z = 5   
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Lecture No -18            Revision of Integration 
 
Example: 

  Consider the following integral
1

2

0

( )xy y dx+∫ Integrating we get 

                                                 

1 1 1
2 2

0 0 0
1 12 3

2

0 0
1

2 2

0

( )

1( )
2 3 2

1( ) ( )
2

xy y dy x ydx y dx

y yx y y

xy y dx y y

+ = +

= + = +

⇒ + = +

∫ ∫ ∫

∫

  

 
Example: 

  Consider the following integral
1

2

0

( )xy y dy+∫ Integrating we get 

                                                

1 1 1
2 2

0 0 0
1 12 3

0 0
1

2

0

( )

1 1( )
2 3 2 3

1( )
2 3

xy y dy x ydx y dx

y yx x

xxy y dx

+ = +

= + = +

⇒ + = +

∫ ∫ ∫

∫

 

Double Integral 
 
Symbolically, the double integral of two variables “x” and “y” over the certain region R 
of the plane is denoted by ( , )

R

f x y dxdy∫∫ .    

Example: 
  Use a double integral to find out the solid bounded above by the plane  
Z = 4 – x – y and below by the rectangle { }( , ) : 0 1,0 2R x y x y= ≤ ≤ ≤ ≤  
Solution:  

We have to find the region “R”out the volume “V” over that is,  
                                            (4 )

R

V x y dA= − −∫∫  

And the solid is shown in the figure below. 
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2 1

0 0

(4 ) (4 )
R

V x y dA x y dxdy= − − = − −∫∫ ∫ ∫  

12 1 2 2

0 0 0 0

(4 ) 4
2

x

x

xx y dxdy x xy dy
=

=

− − = − −∫ ∫ ∫ After putting the upper and lower limits we get 

22 2

0 0

7 7
2 2 2

yy dy y⎛ ⎞− = −⎜ ⎟
⎝ ⎠∫ again after putting the limits we get the required volume of the 

solid (4 ) 5
R

V x y dA= − − =∫∫ . 

Example: 

  Evaluate the double integral 
1 1

2

0 0

( )xy y dxdy+∫ ∫  

Solution: 
  First we will integrate the given function with respect to “x’ and our 

integral becomes
1 11 1 1 2 3

2

0 0 0 0 0

( )
2 3
y yxy y dydx x dy

⎛ ⎞
⎜ ⎟+ = +
⎜ ⎟
⎝ ⎠

∫ ∫ ∫  

and after applying the limits we have, 
1 1 1

2

0 0 0
11 1 2

2

0 0 0

1( ) int
2 3

1 1 7( )
4 3 4 3 12

xxy y dydx dy egrating we get

x xxy y dydx

⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

+ = + = + =

∫ ∫ ∫

∫ ∫
 

 
Iterated or Repeated Integral 

The expression ( , )
d b

c a

f x y dx dy
⎡ ⎤
⎢ ⎥
⎣ ⎦

∫ ∫ is called iterated or repeated integral. Often the brackets 

are omitted and this expression is written as 

( , ) ( , )
d b d b

c a c a

f x y dxdy f x y dx dy
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∫ ∫ ∫ ∫ Where we have ( , )
b

a

f x y dx∫ yields a function of “y”, 

which is then integrated over the interval c y d≤ ≤ . 

Similarly ( , ) ( , )
b d b d

a c a c

f x y dydx f x y dy dx
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∫ ∫ ∫ ∫ Where we have ( , )
d

c

f x y dy∫ yields a function 

of “x”which is then integrated the interval a x b≤ ≤ . 
Example: 

  Evaluate the integral 
1 2

0 0

( 3)x dydx+∫ ∫ . 

Solution:  
Here we will first integrate with respect to “y” and get a function of “x” then we 

will integrate that function with respect to “x” to get the required answer. So 
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1 2 1
2

0
0 0 0

( 3) ( 3)x dydx x y dx+ = +∫ ∫ ∫ and after putting the limits we 

get,
11 1 2

2

0
0 0 0

( 3) 2( 3) 2 3
2
xx y dx x dx x+ = + = +∫ ∫ and the required value of the double integral 

is
1 2

0 0

1( 3) 2( 3) 7
2

x dydx+ = + =∫ ∫ . 

Now if we change the order of integration so we get 
2 1

0 0

( 3)x dxdy+∫ ∫ Then we 

have
12 1 2 22

2

0
0 0 0 00

7 7( 3) ( 3) 7
2 2 2
xx dxdy dy dy y+ = + = = =∫ ∫ ∫ ∫ .Now you note that the value of 

the integral remain same if we change the order of integration. Actually we have a 
stronger result which we sate as a theorem. 
Theorem: 
Let R be the rectangle defined by the inequalities a < x < b and c < y < d. If f(x, y) is 

continuous on this rectangle, then ( , ) ( , ) ( , )
d b b d

R c a a c

f x y dA f x y dxdy f x y dxdy= =∫∫ ∫ ∫ ∫ ∫ . 

Remark: 
 This powerful theorem enables us to evaluate a double integral over a rectangle by 
calculating an iterated integral. Moreover the theorem tells us that the “order of 
integration in the iterated integral does not matter”.  
Example: 

Evaluate the integral
ln 2 ln3

0 0

x ye dxdy+∫ ∫  

Solution: 
 First we will integrate the function with respect to “x”. Note that we can write 

x ye + as .x ye e  So we have,
ln3ln 2 ln 2

0 00

(3 1)y x ye e dy e dy= −∫ ∫ Here we use the fact that “e” and 

“ln” are inverse function of each other. So we have ln3 3e = .Thus we get, 
ln3ln 2 ln 2

ln 2

0
0 00

2 2 2(2 1) 2 .y x y ye e dy e dy e is the required answer= = = − =∫ ∫  

 
Example: 

Evaluate the integral
ln3 ln 2

0 0

x ye dydx+∫ ∫ (Note that in this example we change the 

order of integration) 
Solution: 
 First we will integrate the function with respect to “y”. Note that we can write 

x ye + as .x ye e  So we have,
ln 2ln3 ln3

0 00

(2 1)x y xe e dy e dy= −∫ ∫ Here we use the fact that “e” and 

“ln” are inverse function of each other. So we have ln 2 2e = .Thus we get, 
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ln 2ln3 ln3
ln3

0
0 00

(3 1) 2 .x y x xe e dx e dy e is the required answer= = = − =∫ ∫  

Note that in both cases our integral has the same value. 
 
Over view: 
  Double integrals  Page # 854-857 
  Exercise Set 17.1 (page 857): 1,3,5,7,9,11,13,15,17,19 
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Lecture No -19              Use Of Integrals 
 
Area as anti-derivatives 
 
 
 
 
 
 
 
 
volume as anti-derivative 
 
 
 
 
 
 
 
 
0 ≤ x ≤ 2,   0 ≤ y ≤ 3,   0 ≤ z ≤ 5 
Volume = 2 x 3 x 5 = 30 
The following results are analogous to the result of the definite integrals of a function of 
single variable. 
 
 
 
 
 
 
 
 

 
Use double integral to find the volume under the surface z = 3x3 +3x2y and the rectangle 
{(x,y):1≤ x ≤ 3, 0≤ y ≤ 2}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Use double integral to find the volume of solid in the first octant enclosed by the surface z 
= x2 and the planes  x=2, y =0, y = 3 and z = 0 

∫ 
4
0 2x  d x = |x2   |

4
  
0   

    = (4)
2 

  = 16     

x-axis 

y-axis (4,8) 

8

4

Area of triangle =1/2 base x altitude 
                  = ½ (4) (8) = 16 
 

Volume = ∫
2 

0 ∫ 
3   

0 5   d y d x   

  = ∫
2 

0 | 5y | 
3

0
d x = ∫

2 

0 15  dx 

  = | 15x   | 
2 
  
0
= 30   

∫ ∫
R
cf(x,y)d xdy  

=c  ∫∫
R 
f(x,y)dxdy ( c a    constant )

∫ ∫
R

[f(x,y)  +   g(x,y)]  d xdy   
=   ∫ ∫

R f(x,y)  dxdy   + ∫ ∫
R g(x, y)  dxdy  

∫ ∫
R [f (x,y)  −   g(x,y)]  dxdy   

  =   ∫ ∫
R f(x,y)   dxdy   − ∫ ∫

R g(x,  y)  dxdy  

V olume = ∫ 
2 
0 ∫ 

3   
  1 ( 3x3 + 3x2y) dx dy 

  = ∫ 
2

0 | 
3x 4 

 4    +x
3y |

3

 
1
dy

  = ∫ 
2

0 [  
3 (3 )4

 4     − 34 + (3)3y − y] dy

  = ∫ 
2

0 [60 +26 y] dy

  = | 60y +13 y
2 |

2

 
0
= 172
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If f(x,y) is nonnegative on a region R, then subdividing R into two regions R1 
and  R2  has the effect to subdividing the solid between R and z= f(x,y) into two solids, the 
sum of whose volumes is the volume of the entire solid  
 
 
 
 
 
 
 
 
 
 
 
How to compute cross sectional area 
For each fixed y in the interval c ≤ y ≤ d, the function f(x,y) is a function of x alone ,and 
A(y)may be viewed as the area under the graph of this function along the interval a<x<b, 
Thus  
 
 
 
 
 
 
 
 
 
 
 
Similarly the volume of the side S can also be obtained using sections perpendicular to 
the x-axis 
 
 
Where A(x) is the area of the cross section perpendicular to the x-axis taken at the point 
x. 
 

Volume = ∫ 
2 

0 
∫
3

0 x 
2 d ydx

= ∫
2 

0 | x
2 y |

3

0
d x = ∫

2

0 [3x2] dx

= | x3 |
2

0
= 8 

∫ ∫ 
R 
f (x, y) dA = ∫ ∫ 

R 1 
f(x, y) dA+ ∫ ∫

R2
f (x,  y)dA

The volume of the solid S can   

also be obtained using cross 
  

sections perpendicular to the y - axis.  

Vol (S) =  ∫ 

d 

c 
A(y) dy     (1)  

Where A(y) represents the area of the cross  

section perpendicular to the y - axis taken at 
  

the point y 

A (y) = ∫
b 

a f (x, y) dx  

Substiuting this expression   
in (1) yields.   
  

Vol (S) = ∫
d 

c   ⎣ 
⎢ 
⎡ 

⎦ 
⎥ 
⎤ 

∫
b 

a f (x ,  y ) dx  dy     

    = ∫ 
d 

c ∫
b

a  f(x, y) dx dy  

∫ ∫R f(x,y)dA   ≥  0 if f(x,y) ≥  0 on R  

  ∫ ∫R f(x,y)dA   ≥   ∫ ∫R cg(x,y)dA   

     if f(x,y)  ≥  g(x,y) 

Vol (S) =  ∫ 

b 

a 
A(x)   (3)  
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For each fixed x in the interval a ≤ x ≤ b the function f(x,y) is a function of alone, so that 
the area A(x) is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Double integral for non-rectangular region 
 
Type I region is bounded the left  and right by the vertical lines x=a and x=b and is 
bounded below and above by continuous curves y=g1(x) and y=g2(x) where  
                                   g1(x) ≤ g2(x)  for a≤ x  ≤   b 
If R is a type I region on which f(x, y) is continuous, then  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By the method of cross section, the volume of S is also given by 
 

A(x) =  ∫ f(x,y)dy 

 

d 

Su bstituting this expression in    
(3) yields  

Vol (S) = ∫ 
b

a
 ⎣
⎢
⎡

⎦
⎥
⎤

∫ 
d 

c f (x ,  y ) dy  dx 

      = ∫ 
b

a 
∫
d 

c f(x,y) dy dx   (4) 

From eq (2) and eq (4) we have   

∫ ∫ 
R 

f   (x,y) dA = ∫ 
d 

c
∫
b

a f(x,y)  dx   dy   

    =∫ 
b 

a 
∫
d

c f(x,y)  dy dx   

∫ ∫
R
f(x,y)dA =  ∫ 

b  g2(x) 

a 
∫
g 
1(x )

f(x,y)dydx  (1)
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where A(x) is the area of the cross section at the fixed point x this cross section area 
extends from g1(x) to g2(x)  in the y-direction, 
 
 
 
 
 
 
 
 
 
 
 
Type II region is bounded below and above by horizontal lines y=c and y=d and is 
bounded in the left and right by continuous curves x=h1(y) and x=h2(y) satisfying  
h1(y) ≤  h2(y) for for c≤ y  ≤  d. 
. If R is a type II region on which f (x, y) is continuous, then 
 
 
 
 
Similarly, the partial definite integral with respect to     f(x,y) is evaluated by 
holding x fixed and integrating with respect to y. 
An integral of the form                     produces a function of x. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vol (S)  = ∫
b
a  A (x) dx (2)

so , A(x) = ∫
g2(x)

g1(x)f(x, y) dy

Substituting this in ( 2) we obtain

Vol (S) = ∫
b

a 
∫
g2(x)

g1(x)f(x, y) dy dx

Since the volume ofS is also given by

∫∫
R
f(x, y) dA = ∫

b

a 
∫
g2(x)

g1( x)f (x, y) dy dx

∫ ∫
R 
f(x,y)dA=∫ 

d 

c ∫
h 2 ( y )
h 1 (y ) f(x,y)dx dy 

d

c
∫
d

c  f (x, y) dy
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Lecture No -20      Double integral for non-rectangular region 
 
Double integral for non-rectangular region 
Type I region is bounded the left and right by vertical lines x=a and x=b and is bounded 
below and above by curves y=g1(x) and y=g2(x) where g1(x) ≤   g2(x)    for a≤  x≤ b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Type II region is bounded below and above by the horizontal lines y=c and y=d  and is 
bounded on the left and right by the continuous curves x= h1(y) and x=h2(y) satisfying 
h1(y) ≤   h2(y)    for c≤  y≤ d 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Write double integral of the function f(x,y)on the region whose sketch is given 
 
 
 
 
 
 
 
 
 
 
Write double integral of the function f(x,y)on the region whose sketch is given 

∫ ∫ 
R 
f(x, y) dA = ∫ 

b

a ∫
g2(x)

g1(x) f (x, y) dy dx

 y = g2(x) 

y = g 1(x) 

a b 

 ∫ ∫ 
R 
f(x,y) dxdy = ∫

d

c ∫
h2(y)

h1(y) f(x,y)dx dy   

x =h1(y)

c

d

x=h2(y) 

∫
ln 8 

1
∫

ln y

0 
 f(x,y) dx  

∫
ln (ln 8) 

0
∫

ln8 

e x
 f(x,y)  y  
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EXAMPLE 
 
Draw the region and evaluate an equivalent integral with the order of integration reversed 
 

 
 
The region of integration is given by the inequalities  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 
                                                           The integral is over the region 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∫ 

1 

0 ∫
y2 

0  f(x,y) dx dy

∫ 
1 

0 ∫ 
1 

  
√ x  f (x, y) dy dx  

∫ 

2 

0 
∫ 

2x 

x 
2  (4x + 2) dy dx 

 

x 
2  ≤ 

 y 
 ≤ 

 2x and 0  ≤  x  ≤  2. 
  

 

    ∫ 
4

0 
∫

√ y 

y/2 
 (4x + 2) dx dy.   

  =   ∫
4 

0 
| 2x 2 + 2x| 

√ y 

y/2 
  dy   

  = ∫
4 

0 
  
⎣⎢
⎢⎡

⎦⎥
⎥⎤2y + 2 y   −  

y 
2   −  y   dy 

  = 
⎪ ⎪ ⎪ ⎪ 

⎪⎪
⎪⎪y 2 + 

4 
3  y

3/2   −   
y 3 

6   −  
y 2 

2 

4

0
  

  = 
⎣ ⎢ ⎢ ⎡ 

⎦⎥
⎥⎤16 + 

4
3 (4 )3/2  −  

(4 )3 

6   − 8   

  =  16 + 
4 
3  (8) −  

64 
6   −  8   

  

= 8

  

Evaluate   I  =  ∫
4

0
∫

2

 y
 y cos x 

5 dx dy 0  <  y  <  4,    x = y

 and x = 2 

I =  ∫
2

0
∫

x2

0
 y cos x5 dy dx

x = 2 

y = 4 (2,4) 

x = √y

O

x = 2

y = 4 (2,4)

x = 2

y = 4 (2,4)y = 4 (2,4)

y =x2

O  
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Evaluate  
 
The integral cannot be evaluated I the given order                                                     We 
shall change the order of integration. The region R which integration is performed  
is given by  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  =   ∫ 

2 

0 
  
⎣ 
⎢ 
⎢ 
⎡ 

⎦ 
⎥ 
⎥ 
⎤ y 

2 

2 
 cos  x 

5 
x 2 

0 

   dx   

  =   ∫ 

2 

0 
  x 

4 

2 
   cos x 

5  dx   

  =   
1 

10 
  ∫ 

2 

0 
 cos x5 . (5x4) dx  

  =  
⎣ 
⎢ 
⎢ 
⎡ 

⎦ 
⎥ 
⎥ 
⎤ 1 

10 
 sin x 

5 
2 

0 

   =  
1 

10 
   sin 32  

I  =  ∫ 

1/2 

0 
∫ 

1

2x  e 
y 2 

 dy dx   

since e 
y2

 has no antiderivative.  

0  <  x  <   1 

2 
  ,  y = 2x  and  y  = 1  

1/2

1 y = 2x Or  x = y/2

O

This region is also enclosed by   

x = 0,    x =  
y 

2 
   and  0  <  y  <  1   

Thus   

  I =  ∫ 

1 

0 
∫ 

y/2 

0 e 
y 2 

 dx dy   

    =   ∫ 

1 

0 
  y 

2 
   e 

y 2  dy   

  =  
⎣ 
⎢ 
⎢ 
⎡ 

⎦ 
⎥ 
⎥ 
⎤ 1 

4 
    e 

y 2 
1 

0 

  =  
1 

4 
  (e  −  1)   

∫
3

1 
∫ 

lnx

0 
x dy dx   

31

y = lnx
(3, ln3)

Reversing the order of
integration  

= ∫
ln3

0
∫ 

3 

e y 
 x dx dy  

= ∫
ln3

0 ⎪ ⎪ ⎪ ⎪ 
⎪ ⎪ ⎪ ⎪ x2

2 

3 

e y 
   dy  = 

1
2  ∫

ln3

0 
 [9 −  e2y] dy
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Over view of Lecture # 20 
 
     Book Calsulus By Howard Anton 
Chapter # !7   Article # 17.2    
Page (858-863)  Exercise set 17.2  

21,22,23,25,27,35,37,38 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 
1
2    

⎪ ⎪ ⎪ ⎪ 

⎪ ⎪ ⎪ ⎪ 
9y −  e

2y 

2

ln3

0
 

= 
1
2    

⎣ ⎢ ⎢ ⎡ 

⎦ ⎥ ⎥ ⎤ 
9 ln3 −   e 2ln3

2 + 
e 0 

2     

= 
1
2    

⎣ ⎢ ⎢ ⎡ 

⎦ ⎥ ⎥ ⎤ 
9 ln3 −   92 + 

1 
2 

    

= 
1
2  [9 ln3 −  4 ]  

= 
9
2   ln3 − 2   
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Lecture No -21                  Examples 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Example 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

=   
−  1 

8 
    ∫ 

4 

0 
 e 

- y 2 
 ( −  2y) dy  

=   −   1 

8 
    | | e 

- y 2   
4 

0 

  =  −  1 

8 
    | | e 

- 16   −  c 
0  

     
 

 
             =   

1 

8 
    

⎝⎜
⎜⎛

⎠⎟
⎟⎞1  −   1 

e 
16 

   

4 (1,4)

y = 4x

y = 4

x = y/4

 

∫
1

0
∫ 

4

4x
e - y 

2 
 dy dx  

Reversing the order of
integration  

∫
4

0
∫ 

y/4 

0 
e - y 

2
 dx dy    

= ∫
4 

| | x e- y 2   
y/4 

0 
  dy = ∫

4

0 
y
4 

   e - y 
2 
 dy

Calculate   

  ∫∫
R 
  sin x

x    dA.

where R is the triangle in the xy- plane bounded by the x-axis ,the line y=x and the line x=1 

We integrate first with respect 
to y and then with respect to x,  
we find   

  ∫ 

1 

0 ⎝ 
⎜ 
⎜ 
⎜ 
⎛ 

⎠ 
⎟ 
⎟ 
⎟ 
⎞ 

∫ 

x 

0 

sin x 

x 
 dy  dx   

  = ∫ 

1 

0 ⎝ 
⎜ 
⎜ 
⎜ 
⎛ 

⎠ 
⎟ 
⎟ 
⎟ 
⎞ 

y  sin x 

x 
  ] 

y=x 

y=0 dx   
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1

0

sin cos(0) 1 0.46x dx= = − + ≈∫  

 
1

0

sin cos(0) 1 0.46x dx= = − + ≈∫  

 
EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
To evaualte this integral , we express is as an equivalent iterated integral with the order if 
integration reversed . For the inside integration, y is fixed and x varies from he line 
 x = y/2 to the line x = 1. For the outside integration, y varies from 0 to 2, so the given 
iterated integral is equal to a double integral over the triangular region R. 
 
To reverse the order of integration, we treat R as a  
type I region, which enables us to write the given  
integral  as 

           
2

2 1

0
2

x

y

e dxdy∫ ∫  

By changing the order of integration we get, 

                            
2

2 1

0
2

x

y

e dxdy∫ ∫   
2

1 2

0 0

x
xe dydx= ∫ ∫  

 
EXAMPLE 
 
Use a double integral to find the volume of the solid that is bounded above by the palne 
Z=4-x-y and below by the rectangle  

 = ∫
1
0 [ex2

y]
2x

y=0
 dx 

 =  ∫
1
0  2xe x2

 dx 

 = ex2 
|
1

0
 = e − 1 

∫ 
2 

0 
∫ 
1 

 y/2
 e x2  dxdy 

  
Since there is no elementary

 y/2
cannot be evaluated by performing 

2 
antiderivative of e

x2
, the integral

∫ 
0 

∫
1

 e
x2

dxdy

the x-integration first.

 

R = {(x,y):0 < x < 1, 0 < y < 2}  
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EXAMPLE  
Use a double integral to find the volume of the tetrahedron bounded by the coordinate 
planes and the plane z=4-4x-2y The tetrahedron is bounded above by  the plane. 

z=4-4x-2y  ------------------(1) 
and below by the triangular region R  

 

 
Find the volume of the solid bounded by the cylinder x2+y2 = 4 and the planes y + z = 4 
and z = 0.                                

 
 
 
 
 
 

The solid is bounded above by the
plane z = 4 − y and below by the
region R within the circle x2 + y2 = 4. 
The volume is given by 
V  =  ∫ ∫

R
 (4 − y) dA 

Treating R as a type I region we obtain

    V = ∫ ∫
R
 (4−4x−2y) dA  

 = ∫
1
0 ∫

2-2x
0  (4 − 4x − 2y) dy dx 

     = ∫
1
0 [4y−4xy−y2]

2-2x
y=0

 dx  

 = ∫
1
0  (4−8x+4x2)dx  

  = 
4
3  

 Thus, the volume is given by 
 V  =  ∫ ∫

R
 (4 − 4x − 2y) dA 

The region R is bounded by the x-axis, 
the y-axis, and the line y = 2 − 2x [set 
z = 0 in (1)], so that treating R as a 
type I region yields. 

V= ∫∫
R
 (4−x−y) dA  

= ∫
2

0
∫

1

0
 (4−x−y) dx dy 

= ∫
2

0
 
⎣⎢
⎢⎡

⎦⎥
⎥⎤4x − 

x2

2  − xy
1

x=0
 dy  

= ∫
2

0 ⎝⎜
⎜⎛

⎠⎟
⎟⎞7

2 − y  dy =  
⎣⎢
⎢⎡

⎦⎥
⎥⎤7

2 y − 
y2

2

2

0

  = 5 

V =  ∫ 

2 

- 2 

  ∫ 

√ 4 - x 2 

- √ 4 - x 2 
 (4  −  y) dy dx    

=  ∫ 

2 

- 2 ⎣ 
⎢ 
⎢ 
⎡ 

⎦ 
⎥ 
⎥ 
⎤ 

4y  −   1 

2 
 y 

2 
√ 4 - x2

y= - √ 4-x 2 
 dx   

=  ∫ 

2 

- 2 
8  4  −  x 

2    dx   
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EXAMPLE 
Use double integral to find the volume of the solid that is bounded above by the 
paraboiled z=9x2 + y2 ,below by the plane z=0 and laterally by the planes  
 x = 0,    y = 0,     x = 3,    y = 2 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 =  ∫
3

0
 
⎝⎜
⎜⎛

⎠⎟
⎟⎞18x2 + 

8
3  dx 

 =  
⎪⎪
⎪⎪

⎪⎪
⎪⎪6x3 + 

8
3 x

3

0
  

 =  6 (27) + 8 
 =  170 

Volume =  ∫
3

0
∫

2

0
 (9x2 + y2) dy dx 

   =  ∫
3

0
 
⎣⎢
⎢
⎡

⎦⎥
⎥
⎤

9x2y + 
y3

3

2

0
  dx 

=  8
⎪⎪
⎪⎪
⎪

⎪⎪
⎪⎪
⎪

 
x 4-x2

2   + 
4
2 sin-1 

x
2

2

-2
  

 =  8| | 2sin-1(1) -2sin-1(-1)   

 = 8[2(
π
 2 ) + 2(

π
 2 )] 

 =8(2π) = 16π 
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Lecture No -22                Examples 
 
EXAMPLE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 
 
Use double integral to find the volume of the wedge cut from the cylinder 4x2+y2=9 by 
the plane z=0 and z=y+3   
Solution:  

Since we can write 94 22 =+ yx as 
2 2

2 1
93

2

x y
+ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

this is equation of 

ellipse. 

Now the Lower and upper limits for “x” are 
2 29 9

2 2
y y

x and x
− − −

= =  

And upper and lower limits for “x” are 3−  and 3  respectively. So the required volume is 

given by  

2

2

9
3 2

3 9
2

( 3)

y

y

y dxdy

−

− − −

+∫ ∫  

  ∫ ∫ 
R 
 xy dA 

  

R is the region bounded by the  Trapezium with the vertices 
 

(1, 3) (5, 3) (2, 1) (4, 1) 
 

A(2,1) B(4,1)

C(5,3)D(1,3)

 

S lope of AD = 
3 − 1 
1 − 2    = − 2   

E quation of line AD   
y   −   1 =   −  2 (x  − 2)  
y −  1 = − 2x + 4 
− 2x = y − 5   

x = −  
y − 5 

2     

Slope of B C = 
3 − 1 
5 − 4    = 2   

Equation of line BC   
y   − 1  = 2 (x − 4)  ⇒ 

 
 y − 1 = 2x − 8 ⇒ 2x = y + 7   ⇒

 
x = 

y + 7
2    

  ∫ 
3

1 
∫

( y+7 ) /2

- ( y - 5) /2 
 xy dx dy   

  

= ∫
3

1
 (3y2 + 3y) dy = ∫

3

1
y | x 2 | 

( y+7 ) /2 

- ( y - 5) /2 
    y dy 

  = 
⎪ ⎪ ⎪ ⎪ 

⎪⎪
⎪⎪y 3  + 

3y 2 
2 

3 1 

    

  

=  (3)3 + 
3 (3 )2 

2   −  1 − 32  =38 
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( )

( )

[ ]

2

2

93
2
9

3 2

3 2 2 2 2

3

3
2 2

3
3 3

2 2

3 3
3 33

2 22

33

3
2

3

3

9 9 9 9
3 3

2 2 2 2

9 3 9

1 9 2 3 9
2

1 2. 9 3 9
2 3

1 . 0 3 9 3 9
3 2

y

y
xy x dy

y y y y
y y dy

y y y dy

y y dy y dy

y y dy

yy dy

−

−
−−

−

−

− −

−−

−

= +

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤= − + −
⎣ ⎦

= − − − + −

= − − + −

= − + − = −

∫

∫

∫

∫ ∫

∫

∫
3

2 1

3

9 27sin ( )
2 2 2

yy π−

−

+ =

 

EXAMPLE 
Use double integral to find the volume of solid common to the cylinders x2+ y2=25 and 
x2+ z2=25 
 

 
 
 
 
 
 
AREA CALCUALTED AS A DOUBLE INTEGRAL 
 
 
However, the solid has congruent cross sections taken parallel to the xy-plan so that 

V  =  area of base x height=area of R.1 = area of R 
Combining this with  (1) yields the area formula   
 
 
EXAMPLE 
Use a double integral to find the area of the region R enclosed between the parabola  
 y = ½ x2 and the line y=2x 
 
 
 
 
 
 

Volume = 8 ∫
5 

0 ∫ 0  
  

√25- x2

25 −  x 2    dy dx  

  = 8 ∫ 

5

0   25 −  x2   |  y | 25-x2

0
   dx  

=  8 ∫ 

5

0  (25 −  x 2 ) dx  

= 8   
⎪ 
⎪ 
⎪ 
⎪ 

⎪ 
⎪ 
⎪ 
⎪ 

25x  −   x 
3 

3 

5 

0 

    =  8  
⎝ 
⎜ 
⎜ 
⎛ 

⎠ 
⎟ 
⎟ 
⎞ 

125  −   125 

3 
    =  8   

⎝ 
⎜ 
⎜ 
⎛ 

⎠ 
⎟ 
⎟ 
⎞ 250 

3 
 =   

2000 

3 
    =  8  

⎝ ⎜ 
⎜ 
⎜ ⎛ 

⎠ ⎟ 
⎟ 
⎟ ⎞ 375 −  125 

3 
  

V  =   ∫ ∫ 
R 
 1 dA =  ∫ ∫ 

R
dA    (1)  

area of R =  ∫ ∫ 
R
dA    (2)  

  

= ∫ 
4 

0
∫ 

2x

  x 2 /2 dy dx  

area of R=
R

dA∫∫  
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EXAMPLE 

     Find the area of the region R enclosed by the parabola y=x2 and the line y=x+2 
 
 
 
 
 
 
 
 
 
 
Exercise Set 17.2 (page 865): 21,22,23,25,27,35,37,38 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  = ∫ 
4

0
  [y ]2x 

y=x2/2 
  dx   

  

=  ∫
4 

0 ⎝ ⎜ ⎜ ⎛ 
⎠⎟
⎟⎞2x − 

1
2 x2  dx =

⎣⎢
⎢⎡

⎦⎥
⎥⎤x2 − 

x3

6

4

0

 = 
16
3   

Treating R as type II yields.  

area of R=∫∫ 
R
 dA   

  

=∫
8 

0 
∫

√   
2y 

y/2 
dx dy 

  = ∫ 

8 

0
[ x] 

√   2x 

y=x2 /2 
  dx

  

=
⎣⎢
⎢⎢
⎡

⎦⎥
⎥⎥
⎤2 2

3  y3/2 −
y2

4

8

0

=
16
3     =   ∫

8 

0 ⎝ ⎜ ⎜ ⎛ 

⎠⎟
⎟⎞2y  − 12 y dy

y = x+2

y = x2

∫ 

2 

- 1 ∫ 

y=x+2 

y=x 2  dy dx  

= ∫ 

2

- 1[y]
x+ 2 

x 2 
 dx   

=     ∫ 

2

- 1  [x + 2 − x2 ]dx  

= 
⎣ ⎢ ⎢ ⎡ 

⎦ ⎥ ⎥ ⎤ x2 

2  + 2x −
x3 

3

2 

- 1 
   = 

9
2 
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Lecture No - 23           Polar Coordinate Systems 

 
POLAR COORDIANTE SYSTEMS 

 
 

 
 
THE POLAR COORDINATES OF A  
POINT ARE NOT UNIQUE.  
 

 
In general, if a point P has polar co-ordinate 
(r, θ ), then for any integer n=0,1,2,3,……. 
(r,θ +n.3600)  and (r,θ +n.3600) 
are also polar co-ordinates of p 
In the case where P is the origin, the line line segment OP reduces to a point, since r = 0. 
Because there is no clearly defined polar angle in this case, we will agree that an arbitrary  
Polar angle θ may be used. Thus, for every θ may be used. Thus , for every θ ,the point 
(0, θ ) is the origin. 
 
NEGATIVE VALUES OF R 
When we start graphing curves in polar coordinates, it will be desirable to allow negative 
values for r. This will require a special definition. For motivation, consider the point P 
with polar coordinates (3, 2250) We can reach this point by rotating the polar axis 2250 
and then moving forward from the origin 3 units along the terminal side of the angle. On 
the other hand, we can also reach the point P by rotating the polar axis 450   and then 
moving backward 3 units from the origin along the extension of the terminal side of the 
angle  
 
 
 

For example, the polar coordinates
(1, 315°),      (1, − 45°),  and  (1, 675°) 
all represent the same point  

The number r is called the  
radial distance of P and θ  
is called a polar angle of P. In  
the points (6, 45°), (3, 225°),  
(5, 120°), and (4, 330°)  
are plotted in polar coordinate  
systems. 

To form a polar coordinate system in a
plane, we pick a fixed point O, called the
origin or pole, and using the origin as an
endpoint we construct a ray, called the polar
axis. After selecting a unit of measurement,
we may associate with any point P in the
plane a pair of polar coordinates (r, θ), 
where r is the distance from P to the origin
and θ measures the angle from the polar axis
to the line segment OP. 

 P(r,θ ) 

O Origin Polar Axis 

                           P(6,450) 

P(3,2250) 

(5,1200) 

(4,3300) 

 
 
     1 
 
 
 

    1 
 
 
 
 

  (1,3150) 

(1,6750) 

(1,-450) 

1
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Since the terminal side of the angle 0180θ +  is the  
extension  of the terminal side other angle θ ,We shall define. 
(-r, θ ) and (r, 0180θ + )  to be polar coordinates for the same point . 
With  r=3 and  θ  =450 in (2) if  follows that (-3, 450)  and (-3, 2250) represent the same 
point. 
 
RELATION BETWEEN POLAR AND RECTANGULAR COORDINATES 
 
 
 
 
 
 
 
 
CONVERSION FORMULA FROM POLAR TO CARTESIAN COORDINATES 
AND VICE VERSA 
 
 
 
 
 
 
 
 
 
 
 
 
Example  
Find the rectangular coordinates of the point P whose polar co-ordinates are (6,1350) 
Solution:  
Substituting the polar coordinates  
r = 6 and  θ =1350   in x = cosθ  and y=sinθ  yeilds 
  
 
 
Thus, the rectangular coordinates of the point P are  ( 
 
 
 

This suggests that the point (3, 225 °)
might also be denoted by ( −  3, 45 °), 
with the minus sign serving to
indicate that the point is on the
extension of the angle’s terminal side
rather than on the terminal side itself.  

P(3,2250) 
Polar Axis 

    Terminal 
        Sides 

P(-3,2250) 
Polar Axis

o
x= rcos θ

r

θ
x

y P(x,y)
P(r,θ)

y = r sinθ

o x
yr

P(x, y) =P(r, θ)

θ

x = r cos θ

y = r sin θ

x2 + y2 = r2

y/ x =tanθ

x

x = 6 cos 135 ° = 6 (−   2 /2)   = − 3 2  
y = 6 sin 135 °  = 6 ( 2 /2)      = 3 2  

− 3 2 , 3 2 )   

P

r = 6 135°



23-polar co-ordinate systems                                                                                                                        VU 

 
© Copyright Virtual University of Pakistan 

126

Example: 
 
Find polar coordinates of the point P whose rectangular coordinates are ( 2,2 3)−  
Solution: 
 We will find polar coordinates (r, θ ) of P such that r >0 and 0 2θ π≤ ≤ . 

 2 2 2 2( 2) (2 3) 4 12 16 4r x y= + = − + = + = =  

12 3 2tan 3 tan ( 3)
2 3

y
x

πθ θ −= = = − ⇒ = − =
−

 

From this we have (-2,2 3 ) lies in the second quadrant of P. All other Polar co-ordinates 
of  P have the form 

2 5(4, 2 ) ( 4, 2 ) , int
3 3

n or n Where n is egerπ ππ π+ − +  

 
LINES IN POLAR COORDIANTES 
 
A line perpendicular to the x-axis and passing through the point with xy  co-ordinates 
with (a,0) has the equation x=a . To express this equation in polar co-ordinates we 
substitute x = r cos θ   ⇒ a = rcos θ   --------(1)  

 

 

 
By substitution x = rcosθ and y = rsinθ in the  
equation Ax +By +C = 0 . We obtain the general polar form of the line,  
 
 
 
 
 

For Any constant θ0, the equation
θ = θ0    (3) 
is satisfied by the coordinates of all 
points of the form P (r, θ0), 
regardless of the value of r. Thus, the 
equation represents the line through 
the origin making an angle of θ0 
(radians) with the polar axis. 

A line parallel to the x-axis that 
meets the y-axis it the point with  
xy-coordinates (0, b)  has the 
equation y = b.  
Substituting y = r sin θ yields. 
r sin θ = b  (2) 
as the polar equation of this line. 
This makes sense geometrically 
since each point P (r, θ) on this line 
will yield the value b for r sin θ 

This result makes sense 
geometrically since each 
point P (r, θ) on this line will 
yield the value a for r cos θ. 

 

r  (A cosθ + B sinθ) + C = 0  
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CIRCLES IN POLAR COORDINATES 
 

 
SOME SPECIAL CASES OF EQUATION OF CIRCLE IN POLAR 
COORDINATES  
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Lecture No -24                Sketching 

 

If a circle of radius a has its center 
on the x-axis and passes through the 
origin, then the polar coordinates of 
the center are either 
(a, 0)   or  (a, π) 
depending on whether the center is to 
the right or left of the origin 

This equation makes sense 
geometrically since the circle 
of radius a, centered at the 
origin, consists of all points  
P (r, θ) for which r = a, 
regardless of the value of θ  

Let us try to find the polar equation 
of a circle whose radius is a and 
whose center has polar coordinates 
(r0, θ0). If we let P(r, θ) be an 
arbitrary point on the circle, and if 
we apply the law of cosines to the 
triangle OCP we obtain 
r2 − 2rr0 cos (θ − θ0) + r2

0
  = a2       (1) 

  

  

A circle of radius a, centered at the 
origin, has an especially simple polar 
equation. If we let r 0  = 0 in (1), we 
obtain r2  = a2  or, since a >  0,   r = a 
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Draw graph of the curve having the equation r = sin θ 
By substituting values for θ at  increments of 0(30 )

6
π  and calculating r , we can construct 

The following  table: 
                             
 
 
 
 
 
 
 
 
 
 

 
hat this is indeed the case may be seen by expressing the given equation in terms of x and 
y. We first multiply the given equation through by r to obtain r2 = r sin θ  which can be 
rewritten as 
 
 
or on completing the square                                    .This is a circle of radius 1\2 centered 
at the point (0,1/2) in the xy-plane. 
 
Sketching of Curves in Polar Coordinates 
 
1.SYMMETRY 
(i) Symmetry about the Initial Line 

   If the equation of a curve remains unchanged when (r,θ ) 
   is replaced by either (r,-θ ) in its equation ,then the curve  
   is symmetric about initial line.  
  
(ii) Symmetry about the y-axis 
  If when (r, θ ) is replaced by either (r,π θ− ) in 
  The equation of a curve and an equivalent equation  
  is obtained ,then the curve is symmetric about the 
  line perpendicular to the initial i.e, the y-axis  
 

 
 
 
 
(ii) Symmetry about the Pole 
If the equation of a curve remains unchanged  

 Note that there are 13 pairs listed in 
Table, but only 6 points plotted in 
This is because the pairs from θ = π 
on yield duplicates of the preceding 
points. For example, (− ½, 7π/6) and 
(1/2, π/6) represent the same point. 
The points appear to lie on a circle.  

θ   
(radians)   

0   π 
6   

π
3  π

2  2 π
3  5 π

6   
r  = sin θ   0   1 

2     
3

2   1  3
2   

1
2    

 
 
 
 
 
 
 θ   

(radians)   
π  7 π 

6   4 π
3  3 π

2  5 π
3  11 π

6  2 π   

r  = sin θ   0  − 1 
2     − 3

2   − 1  
− 3

2   −  12   0   

 

x 2  + y 2  = y   or  x 2 + y2 − y = 0  

x 2  + 
⎝⎜
⎜⎛

⎠⎟
⎟⎞y − 

1
2

2

 = 
1
4  

(r, θ )

(r,-θ)

(r, θ )(r,π-θ)

(r, θ )

( θ )



25-Double intagrals in polar co-ordinates                                                                                                    VU 

 
© Copyright Virtual University of Pakistan 

129

when either (-r, θ ) or is substituted for (r, θ ) 
in its equation ,then the curve is symmetric  
about the pole. In such a case ,the center of  
the curve. 
 

 
 
2. Position Of The Pole Relative To The Curve 
 
See whether the pole on the curve by putting  r=0 in the equation of the curve and solving 
for θ . 
 
3. Table Of Values 
 
Construct a sufficiently complete table of values. This can be of great help in sketching 
the graph of a curve. 
 
II Position Of The Pole Relative To The Curve. 
 
When r = 0 , θ  = 0  .Hence the curve passes through the pole.  
 

 
 
On reflecting the curve in about the x-axis, we obtain the curve. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
CARDIDOIDS AND  LIMACONS 
 

III. Table of Values 
θ 0 π/3 π/2 2π/3 π 

r=a (1−cosθ) 0 a/2 a 3a/2 2a 
As θ varies from 0 to π, cos θ decreases 
steadily from 1 to − 1, and 1 − cos θ 
increases steadily from 0 to 2. Thus, as θ 
varies from 0 to π, the value of  
r = a (1 − cos θ) will increase steadily from 
an initial value of r = 0 to a final value of  
r = 2a. 

 

r = a (1 – cos θ) r = a (1 + cos θ)

r = a (1 + sin θ)r = a (1 – sin θ)

CARDIOIDS
θ = π

r = 2a

C (2a, - π/2)

θ = π

r = 0θ =0, r=0
O

O

O

O

(0 , π/2)

A

D

(0, - π/2)
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r=a+b sin θ,  r = a−bsin θ 
 
r=a+b cos θ, r = a−bcos θ 
 
The equations of above form produce polar curves called limacons. Because of the heart-
shaped appearance of the curve in the case a = b, limacons of this type are called 
cardioids. The position of the limacon relative to the polar axis depends on whether sin θ 
or cos θ appears in the equation and whether the + or − occurs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
LEMINSCATE 
 
If a > 0, then equation of the form 
 
r2 = a2 cos2θ,    r2 = − a2 cos 2θ 
 
r2 = a2 sin 2θ,    r2 = − a2 sin 2θ 
 
represent propeller-shaped curves, called lemiscates (from the Greek word “lemnicos” for 
a looped ribbon resembling the Fig 8. The lemniscates are centered at the origin, but the 
position relative to the polar axis depends on the sign preceding the a2 and whether sin 2θ 
or cos 2θ appears in the equation. 

 
 
 
 
 
 
 
 
 
 
Examp

le 
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r2 = 4 cos 2 θ 
The equation represents a lemniscate. The graph is symmetric about the  
x-axis and the y-axis. Therefore, we can obtain each graph by first sketching the portion 
of the graph in the range 0 < θ < π/2 and then reflecting 
 that portion about the x- and y-axes.The curve passes 
 through the origin when θ = π/4, so the line θ = π/4 is  
tangent to the curve at the origin.As θ varies from 0 to π/4, 
 the value of cos2θ decreases steadily from 1 to 0, 
 so that rdecreases steadily from 2 to 0.For θ in the 
 range π/4 < θ < π/2, the quantity cos2θ is negative,  
so there are no real values of r satisfying first equation.  
Thus, there are no points on the graph for such θ.  
The entire graph is obtained by reflecting the curve  
about the x-axis and then reflecting the resulting curve 
 about the y-axis. 
 
ROSE CURVES 
Equations of the form 
r = a sin nθ and  r = a cos n θ 
represent flower-shaped curves called roses. The rose has n equally spaced petals or 
loops if n is odd and 2n equally spaced petals if n is even  

 
 
 
 
 
 
 
 
 

The 
orientation of the rose relative to the polar axis depends on the sign of the constant a and 
whether sinθ or cosθ appears in the equation.  
 
SPIRAL 
A curve that “winds around the origin” infinitely many times in such a way that r 
increases (or decreases) steadily as θ increases is called a spiral. The most common 
example is the spiral of Archimedes, which has an equation of the form. 
 r = aθ   (θ > 0)    or    r = aθ    (θ < 0) 
In these equations, θ is in radians and a is positive. 
EXAMPLE 
Sketch the curve  r = θ  (θ > 0)  in polar coordinates. 
This is an equation of spiral with a = 1; thus, it represents an Archimedean spiral.  
Since r = 0 when θ = 0, the origin is on the curve and the polar axis is tangent to the 
spiral. 
A reasonably accurate sketch may be obtained by plotting the intersections of the spiral 
with the x and y axes and noting that r increases steadily as θ increases. The intersections 
with the x-axis occur when 
θ  =  0,   π,  2π,  3π, ……. 
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at which points r has the values 
r = 0,  π,  2π,  3π,….. 
and the intersections with the y-axis occur when 

θ  =  
π
2  , 

3π
2  , 

5π
2  , 

7π
2   , …… 

at which points r has the values 

r  =  
π
2  , 

3π
2  , 

5π
2  , 

7π
2   , …… 

Starting from the origin, the Archimedean spirals r = θ (θ > 0) loops counterclockwise 
around the origin. 
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Lecture No -25              Double integrals in polar co-ordinates 
 
Double integrals in which the integrand and the region of integration are expressed in 
polar coordinates are important for two reasons: First, they arise naturally in many 
applications, and second, many double integrals in rectangular coordinates are more 
easily evaluated if they are converted to polar coordinates. The function z = f(r,θ) to be 
integrated over the region R  As shown in the Fig. 
 
 
 
 
INTEGRALS IN POLAR COORDIATES 
When we defined the double integral of a function over a region R in the xy-plane, we 
began by cutting R into rectangles whose sides were parallel to the coordinate axes. These 
were the natural shapes to use because their sides have either constant x-values or 
constant y-values. In polar coordintes, the natural shape is a “polar rectangle” whose sides 
have constant r and θ- values. 
Suppose that a function f (r, θ) is defined over a region R that is bounded by the ray θ = α 
and θ = β and by the continuous curves r = r1 (θ) and r = r2(θ). Suppose also that 
0 < r1(θ) < r2(θ) < a for every value of θ between α and β. Then R lies in a fan-shaped 
region Q defined by the inequalities 0 < r < a and α < θ < β. 
Then the double integral in polar coordinates is given as 

∫ ∫
R
 f (r,θ) dA = 

2

1

( )

( )

( , )
r r

r r

f r drd
θθ β

θ α θ

θ θ
==

= =
∫ ∫  

How to find limits of integration from sketch  
   Step 1. Since θ is held fixed for the first integration, draw a radial line from the origin 
through the region R at a fixed angle θ. This line crosses the boundary of R at most twice. 
The innermost point of intersection is one the curve r = r1(θ) and the outermost point is on 
the curve r = r2(θ). These intersections determine the r-limits of integration. 
   Step 2. Imagine rotating a ray along the positive x-axis one revolution counterclockwise 
about the origin. The smallest angle at which this ray intersects the region R is θ = α and 
the largest angle is θ = β. This yields the θ-limits of the integration. 
EXAMPLE 
Find the limits of integration for integrating f (r, θ) over the region R that lies inside the 
cardioid r = 1 + cos θ and outside the circle r = 1. 
Solution:  
Step 1. We sketch the region and label the bounding  
curves. 
 
Step 2. The r-limits of integration. A typical ray from  
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The origin enters R where r =1 and leaves where  
r =1+cos θ. 

Step 3. The θ-limits of integration. The rays from the  

origin that intersect R run from θ = −
π
2  to θ = 

π
2. 

The integral is    ∫

π/2

-π/2
∫

1+cosθ

1
 f (r, θ) r dr dθ   

=  2 ∫

π/2

0
∫

1+cosθ

1
 f(r, θ)  rdr dθ 

EXAMPLE 
Evalaute  ∫∫

R
 sin θ dA 

Where R is the region ion the first quadrant that is outside the circle r = 2 and inside the 
cardioid r = 2(1+cosθ). 
Solution:  

∫ ∫
R
 sin θ dA=∫

π/2

0
∫
2

2(1+cosθ)

(sin θ) r dr dθ 

=  ∫

π/2

0
 
1
2 r2 sin θ]

2(1+cosθ)

r=2
  dθ 

= 2∫

π/2

0
[(1+cosθ)2sin θ−sinθ]dθ 

=  2 ⎣⎢
⎡

⎦⎥
⎤− 

1
3 (1 + cosθ)3 + cosθ

π/2

0

=  ⎣⎢
⎡

⎦⎥
⎤− 

1
3 − ⎝⎜

⎛
⎠⎟
⎞− 

5
3   = 

8
3  

EXAMPLE 
Use a double polar integral to find the area enclosed by the three-petaled rose r = sin 3θ. 
We calculate the area of the petal R in the first quadrant and multiply by three. 
Solution: 

A = 3 ∫ ∫
R
 dA = 3 ∫

π/3

0
∫
0

sin3θ

r dr dθ = ∫

π/3

0

r2

2 |
sin3θ

0
 dr dθ 

= 
3
2  ∫

π/3

0
 sin2 3θ dθ   = 

3
4  ∫

π/3

0
 (1−cos 6θ) dθ 

=  
3
4  ⎣⎢

⎡
⎦⎥
⎤θ − 

sin 6θ
6

π/3

0
 =  ⎣⎢

⎡
⎦⎥
⎤3

4 θ − 
3
24 sin 6θ

π/3

0

  = 
1
4  π 

 
EXAMPLE 



25-Double intagrals in polar co-ordinates                                                                                                    VU 

 
© Copyright Virtual University of Pakistan 

135

Find the area enclosed by the lemniscate r2 = 4 cos2θ. The total area is four times the 
first-quadrant portion. 

Solution:  

A = 4 ∫

π/4

0
∫
0

√4 cos2θ

r dr dθ=A ∫

π/4

0

4 2

0

2
2

r cos

r

r θ√=

=

⎡ ⎤
⎢ ⎥⎣ ⎦

dθ 

= 4 ∫

π/4

0
2cos 2θ dθ = 4 sin 2θ]

π/4

0
 = 4. 

CHANGING CARTESIAN INTEGRALS INTO POLAR INTEGRALS 
The procedure for changing a Cartesian integral ∫ ∫

R
f(x, y) dx dy into a polar integral has 

two steps. 

Step 1. Substiute x = r cos θ and y = r sinθ, and replace  
dx dy by r dr dθ in the Cartesian integral. 
Step 2. Supply polar limits of integration for the boundary of R. The Cartesian integral 
then becomes 
∫ ∫
R
 f(x,y) dx dy=∫ ∫

G
 f(rcosθ, rsinθ)r dr dθ 

where G denotes the region of integration in polar coordinates. 

 Notice that dx dy is not replaced by dr dθ but by r dr dθ. 
EXAMPLE 

Evalaute the double integral ∫

1

0
∫

√1-x2

0
(x2 + y2) dy dx by changing to polar coordinates. 

The region of integration is bounded by 

0 < y < 1 − x2  and 0 < x < 1 

y = 1 − x2  is the circle  
x2 + y2 = 1,    r = 1 
On changing into the polar coordinates, the given integral is  

∫

π/2

0
∫

1

 0
 r3 dr dθ  = ∫

π/2

0 ⎪⎪
⎪

⎪⎪
⎪r4

4

1

0
 dθ =  ∫

π/2

0

1
4  dθ =  ⎪⎪

⎪
⎪⎪
⎪θ

4

π/2

0
 =  

π
8  

EXAMPLE 

Evaluate  I =  ∫
D
∫ 

dx dy
x2 + y2  by changing to polar coordinates,  

where D is the region in the first quadrant between the circles. 
x2+y2=a2 and x2+y2=b2,  0<a<b 

I  =  ∫

π/2

0
∫

b

a
 
r dr dθ

r2  =  ∫

π/2

0
 [ln r]

b

a  dθ 

0
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=  ∫

π/2

0
 ln ⎝⎜

⎛
⎠⎟
⎞b

a   dθ=  ⎣⎢
⎡

⎦⎥
⎤θ ln ⎝⎜

⎛
⎠⎟
⎞b

a

π/2

0

  = 
π
2  ln ⎝⎜

⎛
⎠⎟
⎞b

a  . 

EXAMPLE 

Evaluate the double integral 
21 1

2 2

0 0

( )
x

x y dy dx
−

+∫ ∫ by changing to polar coordinates. 

The region of integration is bounded by  0 < y < 21 x−  and 0 ≤  x ≤  1 

y = 21 x−  is the circle 2 2x y+ =1, r = 1 
On changing into the polar coordinates, the given integral is  
 

 
1/ 2 1 / 2 / 24

/ 23
0

0 0 0 00

1 1 1 ( / 2) / 8
4 4 4 4
rr drd d d

π π π
πθ θ θ θ π π= = = = =∫ ∫ ∫ ∫  
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Lecture No - 26                     EXAMPLES 

EXAMPLE 

Evalaute I=∫
4

0
∫

√4y-y2

0
(x2+y2)dx dy by changing into polar coordinates. 

The region of integration is bounded by 0<x< 4y − y2  and 0 < y < 4 

Now x = 4y − y2  is the circle x2+y2−4y=0 ⇒ x2 + y2 = 4y.In polar coordinates this 
takes the form   r2 = 4r sin θ,       r = 4 sin θ 
On changing the integral into polar coordinates, we have 

I = ∫
π/2

0
∫

4sinθ

0
 r2 . r dr dθ =  ∫

π/2

0
 64 sin4 θ dθ=  64.

3.1
4.2  . 

π
2 = 12π   (using Walli’s formula) 

 
EXAMPLE  

Evalaute ∫∫
R
 ex2+y2 dy dx.,where R is the semicircular region bounded by the x-axis and 

the curve y = 1 − x2   
In Cartesian coordinates, the integral in question is a nonelementary integral and there is 
no direct way to integrate ex2+y2 with respect to either x or y.  
Substituting x = r cos θ, y = r sinθ, and replacing dy dx by r dr dθ enables us to evaluate 
the integral as 

∫ ∫
R
ex2+y2

dy dx = ∫

π

0
∫

1

0
er2 r dr dθ = ∫

π

0
 ⎣⎢
⎡

⎦⎥
⎤1

2 er2

1

0

 dθ = ∫

π

0
 
1
2 (e−1)dθ = 

π
2  (e − 1). 

EXAMPLE 
Let Ra be the region bounded by the circle x2 + y2 = a2. Define  

∫

∞

−∞
 ∫

∞

−∞
e-(x2+y2)dxdy = lim

a→∞
 ∫ ∫

R
e-(x2+y2)dx dy 

To evaluate this improper integral. 

l=∫

∞

−∞
 ∫

∞

−∞
 exp {− (x2 + y2)} dx dy = lim

a→∞
 ∫ ∫

Da
exp {− (x2+ y2)} dx dy 

=  lim
a→∞

 ∫

2π

0
∫

a

0
exp {− r2}r dr dθ =  lim

a→∞
 ∫

2π

0

1
2 (1 − exp {− a2}dθ =  lim

a→∞
 
1
2 (1 − exp {− a2} θ|

2π

0
 

=  π − lim
a→∞

  
π

exp {− a2}  = π 

 
EXAMPLE     
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Prove that ∫

∞

0
e-t2 dt=

1
2 π. 

l = ∫

∞

-∞
∫

∞

-∞
exp{−(x2+y2)} dx dy=∫

∞

-∞
exp{−y2}[∫

∞

-∞
exp{−x2}dx] dy =  [∫

∞

-∞
exp{−y2}dy][ ∫

∞

-∞
exp{−x2} dx] 

= [∫

∞

-∞
exp{−t2}dt][ ∫

∞

-∞
exp{−t2} dt]  =lim

a→∞
[∫

a

-a
 exp {− t2} dt]

2

= 4lim
a→∞

 [∫

a

0
 exp {− t2} dt]

2

 

Hence we have        4lim
a→∞

 [∫

a

0
 exp{− t2} dt ]= lim

a→∞
∫

a

-a
∫

a

-a
exp{−(x2+y2)}dx dy4lim

a→∞
 [∫

∞

0
exp{-t2}dt]

2 

  = π 

lim
a→∞

 [∫

∞

0
exp{-t2}dt]

2 

  = π/4  ⇒  ∫

∞

0
exp {− t2} dt = 

π
2   

 
THEOREM 
 
Let G be the rectangular box defined by the inequalities  
a < x < b,    c < y < d,          k < z < l 

If f is continuous on the region G, then  ∫∫
G
∫  f(x, y, z) dV = ∫

b

a
 ∫

d

c
 ∫
l

k
 f (x, y, z) dz dy dx  

Moreover, the iterated integral on the right can be replaced with any of the five other 
iterated integrals that result by altering the order of integration. 

= ∫
d

c
 ∫
l

k
 ∫

b

a
 f (x, y, z) dy dz dx = ∫

d

c
 ∫

b

a
 ∫
l

k
 f (x, y, z) dy dx dz= ∫

b

a
 ∫

d

c
 ∫
l

k
 f (x, y, z) dx dy dz 

= ∫
b

a
 ∫
l

k
 ∫

d

c
 f (x, y, z) dx dz dy= ∫

l

k
 ∫

b

a
 ∫

d

c
 f (x, y, z) dz dx dy 

 
 
EXAMPLE 
 
Evalaute the triple integral ∫ ∫

G
∫ 12xy2z3 dV  over the rectangular box G defined by the 

inequalities − 1 < x < 2, 0 < y < 3, 0 < z < 2. 
 
We first integrate with respect to z, holding x and y fixed, then with respect to y holding x 
fixed, and finally with respect to x. 

∫ ∫
G
∫12xy2z3 dV= ∫

2

-1
 ∫

3

0
 ∫

2

0
 12xy2z3dzdydx = ∫

2

-1
 ∫

3

0
 [3xy2z4]

2

z=0
  dy dx = ∫

2

-1
 ∫

3

0
  48xy2 dy dx 

= ∫

2

-1
[16xy3]

3

y=0
dx=∫

2

-1
 432x dx =  216x2 ]

2

-1
  = 648 
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EXAMPLE 
 

Evalaute ∫∫R∫ (x − 2y + z) dx dy dz    Region R :  0 < x , 1,  0 < y < x2,  0 < z < x + y 

= ∫
1

0
∫

x2

0
∫

x+y

0
(x − 2y + z) dz dy dx=  ∫

1

0
∫

x2

0
 ⎪⎪
⎪

⎪⎪
⎪(x − 2y + z)2

2

x+y

0
  dy dx 

=∫
1

0
∫

x2

0 ⎣⎢
⎡

⎦⎥
⎤(x−2y+x+y)2

2  − 
(x−2y)2

2 dy dx = 
1
2  ∫

1

0
∫

x2

0
 (3x2 − 3y2) dy dx=  

3
2  ∫

1

0
 ⎪⎪
⎪

⎪⎪
⎪x2y − 

y3

3

x2

0
  dx 

=
3
2 ∫

1

0 ⎝⎜
⎛

⎠⎟
⎞x4 − 

x6

z  dx = 
3
2  ⎪⎪

⎪
⎪⎪
⎪x5

5  − 
x7

21

1

0
 = 

3
2  ⎣⎢

⎡
⎦⎥
⎤1

5 − 
1

21  = 
8

35  

 
Example: 

Evalaute ∫∫
S
∫ xyzd x dy dz  Where S = {(x,y,z):x2+y2+z2<1, x > 0, y > 0, z > 0} 

S is the sphere x2 + y2 + z2 = 1 .Since x, y, z are al +ve so we have to consider only the 
+ve octant of the sphere. 
Now  x2 + y2 + z2 = 1  . So that   z = 1 − x2 − y2  
The Projection of the sphere on xy plan is the circle x2 + y2 = 1. 
This circle is covered as y-varies from 0 to 1 − x2  and x varies from 0 to 1. 

∫∫
R
∫ xyz dx dy dz=  ∫

1

0
∫

√1-x2

0
∫

√1-x2-y2

0
 xyz dz dy dx =  ∫

1

0
∫

√1-x2

0
xy ⎪⎪

⎪
⎪⎪
⎪z5

2
0

√1-x2-y2

  dy dx 

= ∫
1

0
∫

√1-x2

0
xy ⎝⎜

⎛
⎠⎟
⎞1 − x2 − y2

2   dy dx = 
1
2 ∫

1

0
∫

√1-x2

0
x (y − x2y − y3) dy dx 

= 
1
2  ∫

1

0
 x ⎝⎜

⎛
⎠⎟
⎞y2

2  − 
x2y2

2  − 
y4

4  |
√1-x2

0
 dx= 

1
4  ∫

1

0
x ⎣

⎢
⎡

⎦
⎥
⎤

1−x2−x2 (1−x2)−
(1−x2)

2

2  dx 

= 
1
8  ∫

1

0
(x − 2x3 + x5) dx= 

1
8  ⎪⎪

⎪
⎪⎪
⎪x2

2  − 
x4

2  + 
x6

6

1

0
 = 

1
8  ⎝⎜

⎛
⎠⎟
⎞1

2 − 
1
2 + 

1
6  = 

1
48  
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Lecture No -27        Vector Valued Functions 

 
 
Recall that a function is a rule that assigns to each element in its domain one and only one 
element in its range. Thus far, we have considered only functions for which the domain 
and range are sets of real numbers; such functions are called real-valued functions of a 
real variable or sometimes simply real-valued functions. In this section we shall consider 
functions for which the domain consists of real numbers and the range consists of vectors 
in 2-space or 3-space; such functions are called vector-valued functions of a real variable 
or more simply vector-valued functions. In 2-space such functions can be expressed in the 
form. 
r (t) = (x (t), y (t)) = x (t) i + y (t) j 
and in 3-space in the form 
r (t) = (x (t), y (t), z (t))i+y(t)j+z (t)k 
where x(t), y(t), and z(t) are real-valued functions of the real variable t. These real-valued 
functions are called the component functions or components of r. As a matter of notation, 
we shall denote vector-valued functions with boldface type [f(t), g(t), and r (t) and real-
valued functions, as usual, with lightface italic type [f(t), g(t), and r(t)]. 
 
EXAMPLE 
r (t) = (ln t) i + t2 + 2 j + (cos tπ)k 
then the component functions are  x(t)=lnt,y(t)= t2 + 2,and   z (t) = costπ 
The vector that r(t) associates with t = 1 is  r(1)=(ln 1) i+ 3j +(cos π) k= 3j− k 
The function r is undefined if t < 0 because ln t is undefined for such t. 
 
If the domain of a vector-valued function is not stated explicitly, then it is understood to 
consist of all real numbers for which every component is defined and yields a real value. 
This is called the natural domain of the function. Thus the natural domain of a vector-
valued function is the intersection of the natural domains of its components. 
 
PARAMETRIC EQUATIONS IN VECTOR FORM 
Vector-valued functions can be used to express parametric equations in  
2-space or 3-space in a compact form. 
For example, consider the parametric equations x = x(t),  y = y (t) 
Because two vectors are equivalent if and only if their corresponding components are 
equal, this pair of equations can be replaced by the single vector equation. 
x = x(t),  y = y (t) 
x i + y j  = x (t)i + y (t) j 
Similarly, in 3-space the three parametric equations 
x = x(t),  y = y (t),  z = z (t) 
can be replaced by the single vector equation 
xi + yj + zk = x(t)i + y(t)j + z(t)k 
if we let r = x i +y j     and     r(t) = x(t) i + y(t) j  in 2-sapce  
and let  r = xi + yj + zk  and  r(t) = x(t) i + y(t)j + z(t)k 
in 3-space, then both (2) and (4) can be written as   r = r(t) 
which is the vector form of the parametric equations in (1) and (3). Conversely, every 
vector equation of form (5) can be rewritten as parametric equations by equating 
components on the two sides. 
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EXAMPLE 
Express the given parametric equations as a single vector equation. 
(a) x = t2,   y = 3t  
(b) x = cost,  y = sint,  z = t 
(a)  Using the two sides of the equations as components of a vector yields. 

x i + y j = t2 i + 3t j  
(b)  Proceeding as in part (a) yields 

xi + yj + zk = (cos t)i + (sin t)j + tk 
 
EXAMPLE 
Find parametric equations that correspond to the vector equation 
x i + y j + z k = (t3 + l) i + 3 j + et k 
Equating corresponding components yields. 
x = t3 + 1,   y = 3,   z = et 
 
GRAPHS OF VECOR-VALUED FUNCTOINS 
One method for interpreting a vector-valued function r(t)  
in 2-space or 3-space geometrically is to position the vector 
 r = r (t) with its initial point at the origin, and  
let C be the curve generated by the tip of the vector r 
 as the parameter t varies  
The vector r, when positioned in this way, is called  
the radius vector or position vector of C, and C is called the 
graph of the function r (t) or, equivalently, the graph of the equation r = r (t). The vector 
equation r = r (t) is equivalent to a set of parametric equations, so C is also called the 
graph of these parametric equations. 
 
EXAMPLE 
Sketch the graph of the vector-valued function r(t) = (cos t)i + (sin t)j,  0 < t < 2π 
The graph of r (t) is the graph of the vector equation 
xi+yj = (cos t)i + (sin t)j, 0 < t < 2π 
or equivalently, it is the graph of the parametric equations 
x = cos t,   y = sin t          (0 < t < 2π) 
This is a circle of radius 1 that is centered at the origin with the direction of increasing t 
counterclockwise. The graph and a radius vector are shown in Fig. 
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EXAMPLE 
Sketch the graph of the vector-valued function r(t) = (cos t)i+(sin t)j+2k,  0 < t < 2π 
The graph of r(t) is the graph of the vector equation 
xi+yj+zk=(cost)i+(sint)j+2k, 0<t<2π 
or, equivalently, it is the graph o the parametric equations 
x=cos t,    y = sin t,   z=2 (0 < t < 2π) 
From the last equation, the tip o the radius vecor traces a curve in the plane z = 2, and 
from the first two equations and the preceding example, the curve is a circle of radius 1 
centered on the z-axis and traced counterclockwise looking down the z-axis. The graph 
and a radius vector are shown in Fig. 
 
 
 
 
 
 
 
 
 
EXAMPLE 
Sketch the graph of the vector-valued function r(t) = (a cos t)i + (a sin t)j + (ct)k 
where a and c are positive constant. 
The graph of r(t) is the graph of the parametric equations. 
x = a cos t,   y = a   sin t,   z = ct 
As the parameter t increases, the value of z = ct also increases, so the point (x, y, z) 
moves upward. However, as t increases, the point (x, y, z) also moves in a path directly 
over the circle. x = a  cos t, y = a  sin t  in the xy-plane. The combination of these 
upward and circular motions produces a corkscrew-shaped curve that wraps around a 
right-circular cylinder of radius a centered on the z-axis.  
This curve is called a circular helix. 
 
 
 
 
 
 
 
 
 
 
EXAMPLE 
Describe the graph of the vector equation  r = (− 2 + t)i + 3tj + (5 − 4t)k 
The corresponding parametric equations are x = − 2 + t,  y = 3t,   z = 5 − 4t 
The graph is the line in 3-space that passes through the point (− 2, 0, 5) and is parallel to 
the vector i + 3j − 4k. 
 
EXAMPLE 
The graph of the vector-valued function  r (t) = t i + t2 j + t3 k is called a twisted cubic.  
Show that this curve lies o the parabolic cylinder y = x2, and sketch the graph for t > 0 
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The corresponding parametric equations are  x = t,      y = t2,     z = t3 
Eliminating the parameter t in the equations for x and y yields y = x2, so the curve lies on 
the parabolic cylinder with this equation. The curve starts at the origin for t = 0; as t 
increases, so do x, y, and z, so the curve is traced in the upward direction, moving away 
from the origin along the cylinder. 
 
 
 
 
 
 
 
 
 
GRAPHS OF CONSTANT VECOR-VALUED FUNCTIONS 
If c is a constant vector in the sense that it does not depend on a parameter, then the graph 
of r = c is a single point since the radius vector remains fixed with its tip at c. 
If c = x0i + y0j (in 2-space), then the graph is the point (x0, y0), and if  
c = x0i + y0j + z0k (in 3-space), then the graph is the point (x0, y0, z0). 
 
EXAMPLE 
The graph of the equation r = 2i + 3j − k is the point (2, 3, − 1) in 3-space. 
If r(t) is a vector-valued function, then for each value of the parameter t, the expression 
||r(t)|| is a real-valued function of t because the norm (or length of r(t) is a real number. 
 For example,  
If  r(t) = t i + (t − 1) j 
Then  ||r(t)|| = t2 + (t − 1)2   which is a real-valued function of t. 
 
EXAMPLE 
The graph of  r (t) = (cos t)i + (sin t)j + 2k,  0<t<2π 
is a circle of radius 1 centered on the z-axis and lying in the plane  z = 2.  This circle lies 
on the surface of a sphere of radius 5  because for each value of t  
||r(t)|| = cos2t + sin2t + t  = 1 + 4 = 5  
which shows that each point on the circle is a distance of 5  units from the origin. 
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Lecture No -28           Limits of Vector Valued Functions 
 
 
The limit of a vector-valued functions is defined to be the vector that results by taking the 
limit of each component. Thus, for a function r(t) = x (t)i + y (t)j in 2-space we define. 
lim
t→α

 r(t) = (lim
t→α

 x(t))i + (lim
t→α

 y(t))j 
and for a function r(t) = x(t)i + y(t)j + z(t)k  
in 3-space we define. 
lim
t→α

r(t)=(lim
t→α

x(t))i+(lim
t→α

y(t))j+(lim
t→α

z(t))k 
If the limit of any component does not exist,  
then we shall agree that the limit of r (t) does not exist. 
These definitions are also applicable to the one-sided  
and infinite limits lim

t→α+ , lim
t→α− lim

t→+∞
, and lim

t→−∞
. It follows from (1) and (2) that 

lim
t→α

r(t) = L 
if and only if the components of r(t) approach the components of L as  
t → a. Geometrically, this is equivalent to stating that the length and direction of r (t) 
approach the length and direction of L as t → α  
 
CONTINUITY OF VECTOR-VALUED FUNCTIONS 
The definition of continuity for vector-valued functions is similar to that for real-valued 
functions. We shall say that r is continuous at t0 if  

1. r (t0) is defined; 
2. lim

t→t0
r(t) exists; 

3. lim
t→t0

r(t) = r (t0). 

It can be shown that r is continuous at t0 if and only if each component of r is continuous. 
As with real-valued functions, we shall call r continuous everywhere or simply 
continuous if r is continuous at al real values of t. geometrically, the graph of a 
continuous vector-valued function is an unbroken curve. 
 
DERIVATIVES OF VECOR-VALUED FUNCTIONS 
The definition of a derivative for vector-valued functions is analogous to the definition 
for real-valued functions. 
 
DEFINITION 
The derivative r/(t) of a vector-valued function r(t) is defined by 

r/(t) = lim
h→0

 
r (t+h) − r (t)

h   

Provided this limit exists. 
For computational purposes the following theorem is extremely useful; it states that the 
derivative of a vector-valued function can be computed by differentiating each 
components. 
 
THEOREM 
(a)  If r(t) = x(t)i + y(t)j is a vector-valued function in 2-space, and if x(t) and y(t) are 

differentiable, then 
   r/(t) = x/(t)i + y/(t)j 
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(b) If r(t) = x(t)i + y(t)j + z(t)k is a vector-valued function in 3-space, and if x(t), y(t), 
and z(t) are differentiable, then 

  r/(t) = x/(t)i + y/(t)j + z/(t)k 
We shall prove part (a). The proof of (b) is similar. 
Proof (a):  

r/(t)  =  lim
h→0

r(t + h) − r (t)
h   = lim

h→0
 
[x(t+h)−x(t)]

h i  + lim
h→0

  
[y(t+h) − y(t)]

h  j 

=  x/(t)i + y/(t)j 
As with real-valued functions, there are various notations for the derivative of a vector-
valued function. If r = r (t), then some possibilities are 
d
dt [r(t)], 

dr
dt  , r

/(t), and r/ 

 
EXAMPLE 
Let r(t) = t2i +t3j. Find r/(t) and r/(1) 

r/(t) =  
d
dt [t

2] i +  
d
dt [t

3] j  

 = 2t i  3t2 j 
Substituting t=1 yields 
 r/(1) = 2i+3j. 
 
TAGENT VECTORS AND TANGENT LINES 
GEOMETRIC INTERPRETATIONS OF THE DERIVATIVE. 
Suppose that C is the graph of a vector-valued  
function r(t) and that r/(t) exists and is nonzero 
 for a given value of t. If the vector r/(t) is  
positioned with its initial point at the terminal 
point of the radius vector 
 
DEFINITION 
Let P be a point on the graph of a vector-valued 
 function r(t), and let r(t0) be the radius vector from  
the origin to P 
If r/(t0) exists and r/(t0) ≠ 0, then we call r/(t0) 
 the tangent vector to the graph of r at r(t0) 
 
REMARKS 
Observe that the graph of a vector-valued function can fail to have a tangent vector at a 
point either because the derivative in (4) does not exist or because the derivative is zero at 
the point.If a vector-valued function r(t) has a tangent vector r/(t0) at a point onits graph, 
then the line that is parallel to r/(t0) and passes through the tip of the radius vector r(t0)  
is called the tangent line of the graph of r(t) at r(t0) 
Vector equation of the tangent line is 

r = r (t0) + t r/(t0) 
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EXAMPLE 
Find parametric equation of the tangent line to the circular helix 
x = cost,   y = sint,         z = 1       at the point where t = π/6 
To find a vector equation of the tangent line, then we shall equate components to obtain 
the parametric equations. A vector equation r=r(t) of the helix is 
 
xi + yj + zk = (cost)i + (sin t)j + tk 
 
Thus,  r(t) = (cos t)i + (sin t)j + tk   
⇒r/(t) = (− sin t)i + (cos t)j + k 
 
At the point where t = π/6, these vectors are  

    r ⎝⎜
⎛

⎠⎟
⎞π

6   = 
3

2  i + 
1
2 j + 

π
6 k        and     

   r/
⎝⎜
⎛

⎠⎟
⎞π

6   = − 
1
2 i + 

3
2  j + k 

so from (5) with t0 = π/6 a vector equation of the tangent line is 

r ⎝⎜
⎛

⎠⎟
⎞π

6   + t r/
⎝⎜
⎛

⎠⎟
⎞π

6   =  ⎝
⎜
⎛

⎠
⎟
⎞3

2  i + 
1
2j + 

π
6k  + t ⎝

⎜
⎛

⎠
⎟
⎞

− 
1
2 i + 

3
2 j + k   

Simplifying, then equating the resulting components with the corresponding components 
of  r = xi + yj + zk yields the parametric equation. 

 x = 
3

2   − 
1
2 t ,   y = 

1
2  + 

3
2  t  ,z = 

π
6 + t 

 
EXAMPLE 
The graph of r(t) = t2i + t3j is called a  semicubical parabola 
Find a vector equation of the tangent line to the graph of r(t) at  
(a) the point (0,0) (b)  the point  (1,1) 
The derivative of r(t) is  
r/(t) = 2ti + 3t2j 
(a)  The point (0, 0) on the graph of r corresponds  
to t = 0. As this point we have r/(0) = 0, so there is no 
 tangent vector at the point and consequently a tangent line does not exist at this point. 
(b)  The point (1, 1) on the graph of r corresponds to t = 1, so from (5) a vector equation 
of the tangent line at this point is  r  = r(1) + t r/(1) 
From the formulas for r (t) and r/(t) with t = 1, this equation becomes  
                            r = (i + j) + t (2i + 3j) 
If r is a vector-valued function in 2-space or 3-space, then we say that r(t) is smoothly 
parameterized or that r is a smooth function of t if the components of r have continuous 
derivatives with respect to t and r/(t) ≠ 0 for any value of t. Thus, in  
3-space  r (t) = x(t)i + y (t)j + z(t)k 
is a smooth function of t if x/(t), y/(t), and z/(t) are continuous and there is no value of t at 
which al three derivatives are zero. A parametric curve C in 2-space or 3-space will be 
called smooth if it is the graph of some smooth vector-valued function. 
It can be shown that a smooth vector-valued function has a tangent line at every point on 
its graph.  
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PROPERTIES OF DERIVATIVES 
(Rules of Differentiation).  
In either 2-space or 3-space let r(t), r1(t), and r2(t) be vector-valued functions, f(t) a real-
valued function, k a scalar, and c a fixed (constant) vector. Then the following rules of 
differentiation hold: 
 
d
dt  [c] = 0 

d
dt [kr(t)] = k 

d
dt [r(t)] 

d
dt  [r1(t) + r2(t)]=

d
dt [r1(t)]+

d
dt [r2 (t)] 

d
dt [r1(t)−r2(t)]=  

d
dt [r1(t)] − 

d
dt [r2(t)] 

d
dt [f(t)r(t)] = f(t)

d
dt [r(t)]+r(t)

d
dt [f (t)] 

 
In addition to the rules listed in the foregoing theorem, we have the following rules for 
differentiating dot products in 2-space or 3-space and cross products in 3-space: 
 
d
dt [r1(t).r2(t)] = r1.

dr2
dt  + 

dr1
dt  . r2     (6) 

d
dt [r1(t)×r2(t)]=r1×

dr2
dt  +

dr1
dt  ×r2      (7) 

 
REMARK: 
In (6), the order of the factors in each term on the right does not matter, but in (7) it does. 
In plane geometry one learns that a tangent line to a circle is perpendicular to the radius at 
the point of tangency. Consequently, if a point moves along a circular arc in 2-space, one 
would expect the radius vector and the tangent vector at any point on the arc to be 
perpendicular. This is the motivation for the following useful theorem, which is 
applicable in both 2-space and 3-space. 
 
THEOREM: 
If r (t) is a vector-valued function in 2-space or 3-space and ||r(t)|| is constant for all 
t, then  r(t) . r/(t) = 0 
that is, r(t) and r/(t) are orthogonal vectors for all t.It follows from (6) with  
r1(t)=r2(t)=r (t)   that 
 
d
dt [r(t).r(t)] = r(t).

dr
dt  + 

dr
dt  . r(t) 

or, equivalently, 
d
dt  [||r(t)||]2 = 2r(t) . 

dr
dt  

But ||r(t)||2 is constant, so its derivative is zero. Thus 2r(t).
dr
dt  = 0 that is r(t) . 

dr
dt = 0 

That is the r(t) is perpendicular 
dr
dt  
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EXAMPLE 
Just as a tangent line to a circular arc in 2-space is perpendicular to the radius at the point 
of tangency, so a tangent line to a curve on the surface of a sphere in 3-space is 
perpendicular to the radius at the point of tangency. 
 
To see that  this is so, suppose that the graph of r(t) lies  
on the surface of the sphere of radius k > 0 centered 
 at the origin.For each value of t we have ||r(t)||=k,  

r(t). r/(t) = 0 
which implies that the radius vector r(t) and the 
 tangent vector r/(t) are perpendicular. This completes the argument because the tangent 
line, where it exists, is parallel to the tangent vector. 
 
INTEGRALS OF VECTOR VALUED FUNCTION 
 
(a) If r(t)=x(t)I +y(t) j is a vector-valued function in 2-space ,the we define. 

( ) ( ( ) ) ( ( ) ) (1 )

( ) ( ( ) ) ( ( ) ) (1 )
b b b

a a a

r t dt x t dt i y t dt j a

r t dt x t dt i y t dt j b

= +

= +

∫ ∫ ∫

∫ ∫ ∫
 

 
 
 
 
 
 
 
 
 
 
 
 

2

2

0

2 2

2 3 2 3 2 3 2 3
1 2 1 2 1 2

1 2

( ) 2 3

( ) ( ) ( ) ( )

( ) (2 3 ) ( 2 ) ( 3 )

( ) ( )

tan int

( ) ( )

Let r t ti t j

a r t dt b r t dt

r t dt ti t j dt tdt i t dt j

t C i t C j t i C i t j C j t i t j C i C j t i t j C

WhereC C i C jisanarbitrary vector cons t of egration

b r t dt

= +

= + = +

+ + + = + + + = + + + = + +

= +

∫ ∫

∫ ∫ ∫ ∫

2 2 2 2
2 22 2 2 3 2 3

0 0
0 0 0 0

(2 3 ) ( 2 ) ( 3 ) (2 0) (2 0) 4 8ti t j dt tdt i t dt j t i t j i j i j⎡ ⎤ ⎡ ⎤= + = + = + = − + − = +⎣ ⎦ ⎣ ⎦∫ ∫ ∫ ∫

 

 

(b) If r(t) = x (t) i  + y(t) j + z(t)k is a 
vector - valued function in 
3 - space, then we define.

∫ r (t)dt=(∫x(t)dt )i+ (∫y(t) dt) j +(∫z(t)dt)k         (2a) 
      

∫ 

b 

a
r(t)dt=(∫

b 

a
x(t)dt) i+(∫

b 

a
y(t)dt )j+ (∫

b

a
z(t)dt)k              (2b) 
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PROPERTEIS OF INTEGRALS 

∫ cr(t) dt = c ∫ r (t) dt  (3) 

∫ [r1(t)+r2(t)] dt = ∫ r1(t)dt + ∫ r2(t) dt 
    (4) 
∫ [r1(t)−r2(t)]dt = ∫r1(t) dt−∫r2(t) dt 
    (5) 
These properties also hold for definite integrals of vector-valued functions. In addition, 
we leave it for the reader to show that if r is a vector-valued function in 2-space or 3-

space, then   
d
dt  [∫r(t) dt] = r (t)  (6) 

This shows that an indefinite integrals of r(t) is, in fact, the set of antiderivatives of r(t), 
just as for real-valued functions. 
If r(t) is any antiderivative or r(t) in the sense that R/(t) = r(t), then  

∫r(t) dt = R(t) + C  (7) 
where C is an arbitrary vector constant of integration. Moreover, 

∫
b

a
 r(t) dt = R(t) ]

b

a
  =  R(b) − R(a).  
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Lecture No -29     Change of parameter 

 
It is possible for different vector-valued functions to have the same graph.  
For example, the graph of the function 
r = (3 cos t)i + (3 sin t)j, 0 < t < 2π 
is the circular of radius 3 centered at the origin  
with counterclockwise orientation. The parameter  
t can be interpreted geometrically as the positive 
 angle in radians from the x-axis to the radius vector. 
 For each value of t, let s be the length of the arc  
subtended by this angle on the circle 
 
The parameters s and t are related by 
t = s/3,   0 < s < 6π 
if we substitute this in (10), we obtain a vector-valued function of the parameter s, namely 
r = 3 cos (s/3)i + 3 sin (s/3)j,  0 < s < 6π 
whose graph is also the circle of radius 3 centered at the origin with counterclockwise 
orientation .In various problems it is helpful to change the parameter in a vector-valued 
function by making an appropriate substitution. For example, we changed the parameter 
above from t to s by substituting  t=s/3 in (10).  
In general, if g is a real-valued function, then substituting  t = g(u)  in r(t) changes the 
parameter from t to u.  
 
When making such a change of parameter, it is important to ensure that the new vector-
valued function of u is smooth if the original vector-valued function of t is smooth. It can 
be proved that this will be so if g satisfies the following conditions: 

1. g is differentiable. 
2. g/ is continuous. 
3. g/(u) ≠ 0 for any u in the domain of g. 
4. The range of g is the domain of r. 

If g satisfies these conditions, then we call t = g(u) a smooth change of parameter. 
Henceforth, we shall assume that all changes of parameter are smooth, even if it is not 
stated explicitly. 
ARC LENGTH 
Because derivatives of vector-valued functions are calculated by differentiating 
components, it is natural do define integrals of vector-functions in terms of components. 
EXAMPLE 
If x

/
(t) and y

/
(t) are continuous for a < t < b, then the curve given by the parametric 

equations 
x = x(t),  y = y(t)   (a < t < b)      (9) 
has arc length 

L = ∫
b

a
   ⎝⎜

⎛
⎠⎟
⎞dx

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

dt

2

 dt     (10) 

This result generalizes to curves in 3-spaces exactly as one would expect:  
If x

/
(t), y

/
(t), and z

/
(t) are continuous for a < t < b, then the curve given by the parametric 

equations 
x = x(t),  y = y(t),  z = z(t)  (a < t < b) 
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has arc length 

L = ∫
b

a
   ⎝⎜

⎛
⎠⎟
⎞dx

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dz

dt

2

 dt    (12) 

EXAMPLE 
Find the arc length of that portion of the circular helix  
x = cos t,  y = sin t,   z = t 
From t = 0 to t = π 
The arc length is 

L = ∫
π

0
   ⎝⎜

⎛
⎠⎟
⎞dx

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dz

dt

2

 dt    =  ∫
π

0
 (− sin t)2 + (cos t)2 + 1 dt  

    =  ∫
π

0
 2   dt  =   2   π 

ARC LENTH AS A PARAMETER 
 
For many purposes the best parameter to use  
for representing a curve in 2-space or  
3-space parametrically is the length of  
arc measured along the curve from some 
 fixed reference point. This can be done as follows: 
 
Step 1: Select an arbitrary point on the curve C to serve as a reference point. 
Step 2: Starting from the reference point, choose one direction along the curve to be the 

positive direction and the other to be the negative direction. 
Step 3: If P is a point on the curve, let s be the “signed” arc length along C from the 

reference point to P, where s is positive if P is in the positive direction from the 
reference point, and s is negative if P is in the negative direction. 

 
By this procedure, a unique point P on the curve is determined when a value for s is 
given. For example, s = 2 determines the point that is 2 units along the curve in the 

positive direction from the reference point, and s = − 
3
2  determines the point that is 

3
2  

units along the curve in the negative direction from the reference point. 
Let us now treat s as a variable. As the value of s changes, the corresponding point P 
moves along C and the coordinates of P become functions of s. Thus, in 2-space the 
coordinates of P are (x(x,), y(s)),  and in 3-space they are (x(s), y(s), z(s)). Therefore, in 
2-space the curve C is given by the parametric equations x = x(s),   y = y (s)  
and in 3-space by x = x(s),    y = y(s),  z = z (s) 
REMARKS 
When defining the parameter s, the choice of positive and negative directions is arbitrary. 
However, it may be that the curve C is already specified in terms of some other parameter 
t, in which case we shall agree always to take the direction of increasing t as the positive 
direction for the parameter s. By so doing, s will increase as t increases and vice versa. 
The following theorem gives a formula for computing an arc-length parameter s when the 
curve C is expressed in terms of some other parameter t. This result will be used when we 
want to change the parameterization for C from t to s. 
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THEOREM 
(a)  Let C be a curve in 2-space given parametrically by 
x = x(t) ,   y = y (t) 
where x/(t) and y/(t) are continuous functions. If an arc-length parameter s is introduced 
with its reference point at (x(t0), y (t0)), then the parameters s and t are related by 

s = ∫
t

 
t0
   ⎝⎜

⎛
⎠⎟
⎞dx

du

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

du

2

 du   (13a) 

(b)  Let C be a curve in 3-space given parametrically by 
x = x(t),  y = y(t),  z = z(t) 
where x/(t),  y/(t), and z/(t) are continuous functions. If an arc-length parameter s is 
introduced with its reference point at (x(t0), y(t0), z(t0)), then the parameters s and t are 
related by 

s = ∫
t

 
t0
   ⎝⎜

⎛
⎠⎟
⎞dx

du

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

du

2

 + ⎝⎜
⎛

⎠⎟
⎞dz

du

2

 du  (13b) 

Proof 
If t > t0, then from (10) (with u as the variable of integration rather than t) it follows that 

∫
t

 
t0
   ⎝⎜

⎛
⎠⎟
⎞dx

du

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

du

2

 du   (14) 

represents the arc length of that portion of the curve C that lies between (x(t0), y(t0)) and 
(x (t), y(t)). If t < t0, then (14) is the negative of this arc length. In either case, integral 
(14) represents the “signed” arc length s between these points, which proves (13a). 
It follows from Formulas (13a) and (13b) and the Second Fundamental Theorem of 
Calculus (Theorem 5.9.3) that in 2-space. 

ds
dt = 

d
dt ⎣

⎢
⎡

⎦
⎥
⎤

∫
t

 
t0 ⎝⎜

⎛
⎠⎟
⎞dx

du

2

+⎝⎜
⎛

⎠⎟
⎞dy

du

2

du      =   ⎝⎜
⎛

⎠⎟
⎞dx

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

dt

2

 

and in 3-space 

ds
dt = 

d
dt ⎣

⎢
⎡

⎦
⎥
⎤

∫
t

 
t0 ⎝⎜

⎛
⎠⎟
⎞dx

du

2

+⎝⎜
⎛

⎠⎟
⎞dy

du

2

+⎝⎜
⎛

⎠⎟
⎞dz

du

2

dt  =   ⎝⎜
⎛

⎠⎟
⎞dx

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

dt

2

+ ⎝⎜
⎛

⎠⎟
⎞dz

dt

2

 

Thus, in 2-space and 3-space, respectively, 
ds
dt   =   ⎝⎜

⎛
⎠⎟
⎞dx

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

dt

2

   (15a) 

ds
dt   =   ⎝⎜

⎛
⎠⎟
⎞dx

dt

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

dt

2

+ ⎝⎜
⎛

⎠⎟
⎞dz

dt

2

  (15b) 

 
 
REMARKS: 
Formulas (15a) and (15b) reveal two facts worth noting. First, ds/dt does not depend on 
t0; that is, the value of ds/dt is independent of where the reference point for the parameter 
s is located. This is to be expected since changing the position of the reference point shifts 
each value of s by a constant (the arc length between the reference points), and this 
constant drops out when we differentiate. The second fact to be noted from (15a) and 
(15b) is that ds/dt > 0 for all t. This is also to be expected since s increases with t by the 
remark preceding Theorem 15.3.2. If the curve C is smooth, then it follows from (15a) 
and (15b) that ds/dt > 0 for all t . 
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EXAMPLE 
x = 2t + 1,  y = 3t − 2  (16) 
using arc length s as a parameter, where the reference point for s is the point (1, − 2). 
In formula (13a) we used u as the variable of integration because t was needed as a limit 
of integration. To apply (13a), we first rewrite the given parametric equations with u in 
place of t; this gives 
from which we obtain 
x = 2u + 1,     y = 3u − 2 
dx
du  =  2,    

dy
du  = 3 

we see that the reference point (1,−2) corresponds to t = t0 = 0 

s = ∫
t

 
t0
   ⎝⎜

⎛
⎠⎟
⎞dx

du

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

du

2

 du = ∫
t

 
t0

 13  du =  13u  ]u=t

u=0
  = 13t  

Therefore,  t = 
1
13

  s  

Substituting this expression in the given parametric equations yields. 

x = 2 
⎝
⎜
⎛

⎠
⎟
⎞1

13
s   + 1 = 

2
13

 s + 1 

y = 3 
⎝
⎜
⎛

⎠
⎟
⎞1

13
s   − 2  = 

3
13

 s − 2 

 
EXAMPLE 
Find parametric equations for the circle x = a cos t, y = a sin t  (0 < t < 2π) 
using arc length s as a parameter, with the reference point for s being (a, 0), where a > 0. 
We first replace t by u in the given equations so that   x = a cos u,  y = a sin u 

And   
dx
du  = − a sin u,   

dy
du  = a cos u 

Since the reference point (a, 0) corresponds to t = 0, we obtain  

s = ∫
t

 
t0
   ⎝⎜

⎛
⎠⎟
⎞dx

du

2

 + ⎝⎜
⎛

⎠⎟
⎞dy

du

2

 du  = ∫
t

 
t0

 (− a sin u)2 + (a cos u)2  du  = ∫
t

 
0
a du = au ]u=t

u=0
  = at 

Solving for t in terms of s yields  t = s/a 
Substituting this in the given parametric equations and using the fact that  s = at ranges 
from 0 to 2πa as t ranges from 0 to 2π, we obtain 

x=acos (s/a),  y=a sin (s/a) (0<s<2πa) 
 
Example 
Find Arc length of the curve r (t) = t3i + tj + ½ 6 t2 k, 1 < t < 3 
Here x = t3, y = t, z = ½ 6 t2 
dx
dt  =3t2,  

dy
dt  = 1,  

dz
dt  = 6 t 

Arc length=∫
3

1 ⎝⎜
⎛

⎠⎟
⎞dx

dt
 2
+⎝⎜

⎛
⎠⎟
⎞dy

dt
 2
+⎝⎜

⎛
⎠⎟
⎞dz

dt
2
 dt = ∫

3

1
 9t4 + 1 + 6t2  dt = ∫

3

1
  (3t2 + 1)2  dt 

 =  |t3 + t|
3

1
=  (3)3 + 3 − (1)3 − 1=27 + 3 − 1 − 1 = 28 
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EXAMPLE   

Calculate 
dr
du by chain Rule. 

r = eti + 4e-tj 
dr
dt  = eti − 4e-tj 

dt
du  = 2u 

dr
du  = 

dr
dt  . 

dt
du   =  (eti − 4etj).(2u)  = 2u eu2i −8ue-u2j 

By expressing r in terms of u 
R = eui + 4e-u2

j 
dr
du  = 2u eu2i − 8ue-u2j 
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Lecture No -30            Exact Differential 

If z = f (x, y), then dz = 
∂z
∂x dx + 

∂z
∂y dy 

The result can be extended to functions of more than two independent variables. 

If z = f(x, y, w), dz= 
∂z
∂x dx+

∂z
∂ydy+

∂z
∂w dw 

Make a note of these results in differential form as shown. 
 
Exercise  
Determine the differential dz for each of the following functions. 
1.   z = x2 + y2  
2.   z = x3 sin 2y 
3.   z = (2x − 1) e3y   
4.   z = x2 + 2y2 + 3w2 
5.   z = x3y2 w. 
 
Finish all five and then check the result. 
1. dz = 2 (x dx + y dy) 
2. dz = x2 (3 sin 2y dx + 2x cos 2y dy) 
3. dz = e3y {2dx + (6x − 3) dy} 
4. dz = 2 (xdx + 2ydy + 3wdw) 
5. dz = x2y (3ywdx + 2xwdy + xydw) 
 
Exact Differential 
We have just established that if z=f(x, y) 

dz = 
∂z
∂x dx + 

∂z
∂y dy 

We now work in reverse. 
Any expression dz = Pdx + Qdy, where P and Q are functions of x and y, is an exact 
differential if it can be integrated to determine z. 

∴  P = 
∂z
∂x  and Q = 

∂z
∂y  

Now 
∂P
∂y =

∂2z
∂y∂x and 

∂Q
∂x = 

∂2z
∂x∂y and we know that 

∂2z
∂y∂x  = 

∂2z
∂x∂y  

Therefore, for dz to be an exact differential 
∂P
∂y  = 

∂Q
∂x   and this is the test we apply. 

Example  
dz = (3x2 + 4y2) dx + 8xy dy. 
If we compare the right-hand side with Pdx + Qdy, then 

P = 3x2+4y2  ∴   
∂P
∂y  = 8y 

Q = 8xy        ∴  
∂Q
∂x  = 8y 

∂P
∂y = 

∂Q
∂x       ∴ dz is an exact differential 

Similarly, we can test this one. 
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Example 
dz = (1 + 8xy) dx + 5x2 dy. 
From this we find dz is not an exact differential 
for dz = (1 + 8xy) dx + 5x2 dy 

∴  P = 1 + 8xy   ∴  
∂P
∂y  = 8x 

      Q = 5x2   ∴  
∂Q
∂x   = 10x 

∂P
∂y ≠

∂Q
∂x ∴ dz is not an exact differential 

 
Exercise  
Determine whether each of the following is an exact differential. 
1. dz = 4x3y3dx + 3x4y2 dy 
2. dz = (4x3y+2xy3) dx+(x4+3x2y2) dy 
3. dz=(15y2e3x+2xy2)dx+(10ye3x+x2y)dy 
4. dz=(3x2e2y−2y2e3x)dx+(2x3e2y−2ye3x)dy 
5.  dz=(4y3cos4x+3x2cos2y)dx+(3y2sin4x−2x3 sin 2y) dy. 
1. Yes 2. Yes  3. No 4. No 5. Yes 
We have just tested whether certain expressions are, in fact, exact differentials−and we 
said previously that, by definition, an exact differential can be integrated. But how exactly 
do we go about it? The following examples will show. 
 
Integration Of Exact Differentials 

dz = Pdx+Qdy  where  P=
∂z
∂x  and Q=

∂z
∂y  

∴   z = ∫ Pdx    and also    z = ∫  Qdy 
 
Example 
dz = (2xy + 6x) dx + (x2 + 2y3) dy. 

P = 
∂z
∂x  = 2xy + 6x    ∴  z=∫ (2xy+6x)dx 

∴  z = x2y + 3x2 + f (y) where f(y) is an arbitrary function of y only, and is akin to the 
constant of integration in a normal integral. 
Also 

Q = 
∂z
∂y  = x2 + 2y3   ∴  z = ∫ (x2+2y3) dy 

∴  z = x2y + 
y4

2  + F(x) where F(x) is an arbitrary function of x only. 

 z = x2y + 3x2 + f(y) (i) 

and z = x2y + 
y4

2  +F(x) (ii) 

For these two expressions to represent the same function, then 

 f(y) in (i) must be 
y4

2   already in  (i) 

and   F(x) in (ii) must be 3x2 already in (i) 

∴ z = x2y + 3x2 + 
y4

2   
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Example  
Integrate dz = (8e4x + 2xy2) dx + (4 cos 4y + 2x2y) dy. 
Argue through the working in just the same way, from which we obtain 
z = 2e4x + x2y2 + sin 4y 
Here it is. 
dz = (8e4x + 2xy2) dx+(4 cos4y+2x2y) dy 

P = 
∂x
∂x  = 8e4x + 2xy2 

∴  z = ∫ (8e4x + 2xy2) dx 
∴  z = 2e4x + x2y2 + f(y) (i) 

Q = 
∂z
∂y  = 4 cos 4y + 2x2y 

∴  z = ∫ (4cos 4y + 2x2y) dy 
∴  z = sin 4y + x2y2 + F(x) (ii) 
For (i) and (ii) to agree, f (y) = sin 4y and F(x) = 2e4x 
∴  z = 2e4x + x2y2 + sin 4y 
 
Area enclosed by the closed curve 
 
One of the earliest application of integration is finding  
the area of a plane figure bounded by the x-axis, the curve  
y = f (x) and ordinates at x=x1 and x=x2. 

A1=∫
x2

x1
ydx=∫

x2

x1
f(x)dx 

If points A and B are joined by another curve, y = F(x) 

A2 = ∫
x2

x1
 f(x)dx 

 
 
 
 
 
 
 
 
 
 
 
Combining the two figures, we have 

A=A1−A2       ∴  A=∫
x2

x1
 f(x)dx−∫

x2

x1
f(x)dx 

The final result above can be written in the form 
A ydx= − ∫  
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Example 
 
Determine the area enclosed by the graph of y = x3 and  
y = 4x for x > 0. 
First we need to know the points of intersection. These are 
x = 0 and x = 2 
We integrate in a an anticlockwise manner 
c1: y = x3,  limits x = 0 to x = 2 
c2: y = 4x,  limits x = 2 to x = 0. 

A = −  ∫O y dx = A = 4 square units 

For A = −  ∫O ydx = −⎩
⎨
⎧

⎭
⎬
⎫∫

2

1
x3dx+∫

0

2
4xdx   = −

⎩
⎨
⎧

⎭
⎬
⎫

⎝⎜
⎛

⎠⎟
⎞x4

4

2

0
 + [2x2]

2

0
 = 4 

Example  
Find the area of the triangle with vertices   (0, 0), (5, 3) and (2, 6). 
 
 
 
 
 
 
 
 
 
 

The equation of  OA is y = 
3
5  x,BA is  y = 8 − x, OB is y = 3x 

Then A = −  ∫O y dx 
Write down the component integrals with appropriate limits. 

------------ 

A=−  ∫O ydx=− ⎩
⎨
⎧

⎭
⎬
⎫

∫
5

0

3
5xdx+∫

2

5
(8−x)dx+∫

0

2
3xdx  

The limits chosen must progress the integration round the boundary of the figure in an 
anticlockwise manner. Finishing off the integration, we have 
A = 12 square units 

Where the symbol    ∫ O    indicates that the integral is to be evaluated round the  
 closed bound ary in the positive 
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The actual integration is easy enough. The work we have just done leads us on to consider 
line integrals, so let us make a fresh start in the next frame. 
 
Line Integrals 
If a field exists in the xy-plane, producing a force F on a particle at K, then F can be 
resolved into two components.F1 along the tangent to the curve AB at K. Fa along the 
normal to the curve AB at K. 

 
 
The work done in moving the particle through a small distance δs from K to L along the 
curve is then approximately F1 δs. So the total work done in moving a particle along the 
curve from A to B is given by 

Lim
δ→0

 ∑ Ft δs = ∫Ft ds from A to B 

This is normally written ∫
AB 

 Ft ds where A and B are the end points of the curve,  

or as ∫
C
 Ft ds where the curve c connecting A and B is defined. 

Such an integral thus formed, is called a line integral since integration is carried out along 
the path of the particular curve c joining   A and B. 

∴  I = ∫
AB

  Ft dx = ∫
C
 Ft ds 

where c is the curve y = f(x) between A(x1, y2) and B (x2, y2). 
There is in fact an alternative form of the integral which is often useful, so let us also 
consider that. 
 
Alternative form of a line integral 
It is often more convenient to integrate with respect to x or y than to take arc length as the 
variable. 
If Ft has a component 
P in the x-direction    
Q in the y-direction 
then the work done from K to L can be stated as Pδx + Qδy 
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∴  ∫AB Ft ds = ∫AB (P dx + Qdy) 
where P and Q are functions of x and y. 
In general then, the line integral can be expressed as 

I = ∫
C
 Ft ds = ∫

C
 (P dx + Qdy) 

where c is the prescribed curve and F, or P and Q, are functions of x and y. 
Make a note of these results −then we will apply them to one or two examples. 
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Lecture No -31                  Line Integral 
 
The work done in moving the particle through a  
small distance δs from K to L along the curve  
is then approximately F1 δs. So the total work  
done in moving a particle along the curve from 
 A to B is given by 

Lim
δ→0

 ∑ Ft δs = ∫Ft ds from A to B 

This is normally written ∫
AB 

 Ft ds where A and B are the end points of the curve, or as ∫
C
 Ft 

ds where the curve c connecting A and B is defined.Such an integral thus formed, is 
called a line integral since integration is carried out along the path of the particular curve 
c joining   A and B. 

∴  I = ∫
AB

  Ft dx = ∫
C
 Ft ds 

where c is the curve y = f(x) between A(x1, y2) and B (x2, y2). 
There is in fact an alternative form of the integral which is often useful, so let us also 
consider that. 
 
Alternative form of a line integral 
It is often more convenient to integrate with respect to x or y than to take arc length as the 
variable. 
If Ft has a component ,P in the x-direction ,Q in the y-direction 
then the work done from K to L can be stated as Pδx + Qδy 
 
Example 1 

Evaluate ∫
C
 (x + 3y) dx from A (0, 1) to B (2, 5)  

along the curve y = 1 + x2. 
The line integral is of the form 

∫
C
 (P dx + Qdy) where, in this case, Q = 0 and c  

is the curve   y = 1 + x2. 
 
It can be converted at once into an ordinary 
 integral by substituting for y and applying  
the appropriate limits of x. 

I = ∫
C
 (Pdx+Qdy) = ∫

C
 (x+3y)dx=∫

2

C
 (x+3+3x2)dx 

   =⎣⎢
⎡

⎦⎥
⎤x2

2 +3x+x3
2

0
=16 

Now for another, so turn on. 
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Example 2 

Evaluate I = ∫
C
 (x2 + y) dx + (x − y2)dy from A (0, 2) to B (2, 5) along the curve y = 2 + x. 

I = ∫
C
 (Pdx + Qdy) 

P = x2 +  y = x2 + 2 + x = x2 + x + 2 
Q = x−y2 = x−(4+4x+x2) = − (x2+3x+4) 
Also y = 2 + x   
∴  dy = dx and the limits are x=0 to x=3 
∴  I = − 15 

for I = ∫
2

0
 {(x2+x+2) dx − (x2+3x+4) dx} or  ∫

2

0
 −(2x+2) dx = [−x2  − 2x]

2

0
= − 4 − 4 = − 8 

Example 3 

Evaluate I = ∫
C
 {(x2+2y)dx + xydy} from O(0, 0) to B(1, 4) along the curve y=4x2. 

In this case, c is the curve y = 4x2. 
∴  dy = 8x dx 
Substitute for y in the integral and apply the limits. 
Then I = 9.4 

for  I = ∫
C
 {(x2+2y) dx+xydy} 

y  =  4x2 ∴  dy = 8xdx 
also x2 + 2y = x2 + 8x2 = 9x2;   xy = 4x3 

∴  I=∫
1

0
 {9x2dx+32x4dx}= ∫

1

0
 (9x2+32x4) dx = 9.4 

They are all done in very much the same way.  
Example 4 

Evaluate I = ∫
C
  {(x2 + 2y) dx + xydy} from O(0, 0) to A (1, 0) along the line  

y = 0 and then from A (1, 0) to B (1, 4) along the line x = 1. 
(i)  OA : c1 is the line y = 0    ∴  dy = 0.  
Substituting y = 0 and dy = 0 in the given integral gives. 

IOA = ∫
1

0
 x2 dx = ⎣⎢

⎡
⎦⎥
⎤x3

3

1

0
 = 

1
3  

(ii)  AB: Here c2 is the line x = 1 ∴ dx=0 
∴  IAB = 8 

For IAB = ∫
4

0
 {(1 + 2y) (0) + ydy} = ∫

4

0
  ydy = ⎣⎢

⎡
⎦⎥
⎤y2

2

4

0
 = 8 

Then I = IOA+IAB = 
1
3 +8 = 8

1
3     ∴ I=8

1
3  

If we now look back to Example 3 and 4 just completed, we find that we have evaluated 
the same integral between the same two end points, but along different paths of 
integration.If we combine the two diagrams, we have 
where c is the curve y = 4x2 and c1 + c2 are the lines 
 y = 0 and x = 1. The result obtained were 



31-Line integral                                                                                                                                            VU 

 
© Copyright Virtual University of Pakistan 

163

Ic = 9
2
3  and Ic1+c2 = 8

1
3  

Notice therefore that integration along two distinct  
paths joining the same two end points does not  
necessarily give the same results. 
 
Properties of line integrals 

1. ∫
C
 Fds = ∫

C
  {Pdx + Qdy} 

2. ∫
AB

 Fds = − ∫
BA

 Fds and ∫
AB

 {Pdx+Qdy} = ∫
BA

  {Pdx+Qdy} 

i.e. the sign of a line integral is reversed when the direction of the integration along the 
path is reversed. 
3. (a) For a path of integration parallel to the y-axis, i.e. x = k, dx = 0   

∴  ∫
C
  Pdx = 0    ∴  IC = ∫

C
  Qdy. 

(b)   For a path of integration parallel to the x-axis, i.e. y = k,        dy = 0. 

   ∴ ∫
C
  Qdy=0 ∴ IC=∫

C
 Pdx. 

4.  If the path of integration c joining A to B is divided into two parts AK and KB, then 
 Ic = IAB = IAK + IKB. 

5 .If the path of integration c is not single 
   valued for part of its extent, the path is 
   divided into two sections. 
y = f1(x) from A to K,y = f2 (x) from K to B. 
 
6. In all cases, the actual path of integration involved must be continuous and single-
valued.  
Example  

Evaluate I = ∫
C
 (x + y) dx from A(0, 1) to B (0, − 1) along the semi-circle x2+y2=1  

for x > 0.The first thing we notice is that 
the path of integration c is not single-valued 
For any value of x, y = ±  1 − x2. Therefore, 
 we divided c into two parts 

(i) y =  1 − x2 from A to K 
(ii) y = −  1 − x2 from K to B 

As usual, I = ∫
C
  (Pdx + Qdy) and in this particular case, Q = 0 

∴  I = ∫
C
 Pdx = ∫

1

0
 (x+  1 − x2) dx + ∫

0

1
 (x 1 − x2 ) dx 

      =  ∫
1

0
 (x +  1 − x2 − x+  1 − x2 dx   =  2 ∫

1

0
   1 − x2 dx 

Now substitute x = sin θ and finish it off.  I = 
π
2  
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for I = 2 ∫
1

0
  1 − x2dx  x = sin θ 

∴   dx = cos θ dθ    1 − x2 = cosθ 

Limits : x = 0,   θ = 0;  x = 1,  θ = 
π
2  

∴  I = 2∫
π/2

0
 cos2θdθ = ∫

π/2

0
 (1+cos2θ)dθ=  ⎣⎢

⎡
⎦⎥
⎤θ + 

 sin 2θ
2

π/2

0
 = 

π
2  

Now let us extend this line of development a stage further. 
Example  
Evaluate the line integral  

I =  ∫O  (x2dx − 2xy dy) where c comparises the three sides of the triangle joining O(0, 0), A (1, 0) 
and B (0, 1). 
First draw the diagram and mark in c1, c2 and c3, the proposed 
 directions of integration. Do just that.The three sections  
of the path of integration must be arranged in an  
anticlockwise manner round the figure. 
 Now we deal with each pat separately. 
(a) OA : c1 is the line y = 0  
Therefore,  dy = 0. 

Then I =  ∫O (x2dx − 2xy dy) for this part becomes 

I1 = ∫
1

0
 x2dx = ⎣⎢

⎡
⎦⎥
⎤x3

3

1

0
 = 

1
3  therefore I1 = 

1
3  

(b)  AB : for c2 is the line y = 1 − x  
∴ dy = − dx. 

I2 = ∫
1

0
 {x2dx+2x(1−x)dx}=∫

1

0
 (x2+2x−2x2)dx = ∫

1

0
 (2x−x2) dx=⎣⎢

⎡
⎦⎥
⎤x2 − 

x3

3

1

0
 = − 

2
3  

∴ I2 = − 
2
3  

Note that anticlockwise progression is obtained by arranging the limits in the appropriate 
order. 
Now we have to determine I3 for BO. 
(c) BO:  c3 is the line x = 0 

∴  dx = 0   ∴ I3 = ∫ 0dy = 0  ∴   I3 = 0 

Finally, I = I1+I2+I3 = 
1
3  − 

2
3  + 0 = − 

1
3      ∴   I = − 

1
3  

Example  

Evaluate  ∫O
c

 y dx when c is the circle x2+y2 = 4. 

x2 + y2 = 4 ∴     y = ± 4 − x2   
y is thus not single-valued. Therefore use  
y = 4 − x2  for ALB between  
x = 2 and x = − 2 and  
y = − 4 − x2  for BMA between 
x = − 2 and x = 2. 
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∴  I = ∫
-2

2
 4 − x2 dx+∫

2

-2
 {− 4 − x2 } dx 

       = 2 ∫
-2

2
 4 − x2  dx=−2∫

2

-2
 4 − x2 dx       = − 4 ∫

2

0
 4 − x2 dx. 

To evaluate this integral, substitute x = 2 sin θ and finish it off.  I  =  − 4π 
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Lecture No -32        Examples 

 
Example 

Evaluate I =  ∫O  {xydx+(1+y2)dy} where c is the boundary of the rectangle joining A(1,0), B 
(3, 0), C(3, 2), D (1, 2). 
First draw the diagram and insert c1,c2,c3,c4. 
That give 
Now evaluate I1 for AB; I2 for BC; I3 for CD; 
 I4 for DA; and finally I. 

I1 = 0; I2=4
2
3 ; I3 = − 8  I4 = − 4

2
3 ; I = − 8 

Here is the complete working. 

I =  ∫O {xydx + (1 + y2) dy} 
(a) AB: c1 is y = 0 ∴  dy = 0   ∴ I1 = 0 
(b) BC: c2 is x = 3  ∴  dx = 0 

∴I2 = ∫
2

0
 (1+y2)dy = ⎣⎢

⎡
⎦⎥
⎤y + 

y3

3

2

0
 = 4

2
3     ∴I2 = 4

2
3  

(c) CD : c3 is y = 2 ∴  dy = 0 

 ∴I3 = ∫
1

3
 2xdx = [x2]1

3
 = − 8  ∴I3 = − 8 

(d) DA : c4 is x = 1  ∴  dx = 0 

 ∴ I4=∫
0

2
(1+y2) dy=⎣⎢

⎡
⎦⎥
⎤y + 

y3

3

0

2
=−4

2
3  

Finally I = I1 + I2 + I3 + I4 =  0 + 4
2
3  − 8 − 4

2
3  = − 8 ∴I = − 8 

Remember that, unless we are directed otherwise, we always proceed round the closed 
boundary in an anticlockwise manner. 
Line integral with respect to arc length 
We have already established that 

I = ∫
AB

 Ftds = ∫
AB

 {Pdx+Qdy} 

where Ft denoted the tangential force along the curve c at the sample point K(x,y). 
The same kind of integral can, of course, relate to any function f(x,y) which is a function 
of the position of a point on the stated curve, so that 

I = ∫
C
f(x, y) ds. 

This can readily be converted into an integral in terms of x: 

I = ∫
C
f(x,y)dx = ∫

C
f(x,y) 

ds
dx dx 

where 
ds
dx  = 1 + ⎝⎜

⎛
⎠⎟
⎞dy

dx
2

  

∴ ∫
C
f(x,y) dx=∫

x2

x1
f(x,y) 1+⎝⎜

⎛
⎠⎟
⎞dy

dx
2

 dx------------------  (1) 
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Example 

Evalaute I = ∫
C
(4x+3xy)ds where c is the straight line joining O(0,0) to A (1,2). 

c is the line y = 2x  ∴  
dy
dx  = 2 

∴  
ds
dx  = 1 + ⎝⎜

⎛
⎠⎟
⎞dy

dx
2

 =  5   

∴  I = ∫
x=1

x=0
(4x+3xy)ds = ∫

1

0
(4x+3xy)(  5) dx. But y = 2x 

for  I = ∫
1

0
(4x+6x2)( 5) dx = 2 5 ∫

1

0
(2x+3x2) dx = 4 5  

 
Parametric Equations 
When x and y are expressed in parametric form, e.g. x = y (t), y = g(t), then 
 

 
ds
dt  = ⎝⎜

⎛
⎠⎟
⎞dx

dt
2
 + ⎝⎜

⎛
⎠⎟
⎞dy

dt
2
        ∴  ds = ⎝⎜

⎛
⎠⎟
⎞dx

dt
2
 + ⎝⎜

⎛
⎠⎟
⎞dy

dt
2
 dt 

 

I= ∫
C
f(x,y)ds=∫

t2

t1
f(x,y) ⎝⎜

⎛
⎠⎟
⎞dx

dt
2
 + ⎝⎜

⎛
⎠⎟
⎞dy

dt
2
 ----------------(2) 

 
Example 

Evaluate I =  ∫O 4xyds where c is defined as the curve x = sin t, y = cos t between t=0 

and t=
π
4 . 

We have x = sin t ∴  
dx
dt   = cos t ,  y  =  cos t ∴  

dy
dt   = − sin t 

 ∴ 
ds
dt  = I 

for 
ds
dt = ⎝⎜

⎛
⎠⎟
⎞dx

dt
2
+⎝⎜

⎛
⎠⎟
⎞dy

dt
2
 = cos2t+sin2t =1 

 

∴ I = ∫
t2

t1
f(x,y) ⎝⎜

⎛
⎠⎟
⎞dx

dt
2
+⎝⎜

⎛
⎠⎟
⎞dy

dt
2
 dt 

       = ∫
π/4

0
4 sin t cos t dt  =   2 ∫

π/4

0
sin 2t dt  

       = − 2 ⎣⎢
⎡

⎦⎥
⎤cos 2t

2

π/4

0
      = 1 

 
Dependence of the line integral on the path of integration 
We know that integration along two separate paths joining the same two end points does 
not necessarily give identical results.With this in mind, let us investigate the following 
problem. 
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EXAMPLE 
 

Evaluate I =  ∫O
C

 {3x2 y2 dx + 2x3y dy} between O (0, 0) and A (2, 4) 

(a) along c1 i.e. y = x2 
(b) along c2 i.e. y = 2x 
(c) along c3 i.e. x = 0 from (0,0) to (0,4) and y = 4 from (0,4) to (2,4). 
 (a).First we draw the figure and insert relevant information. 

I = ∫
C
{3x2y2dx + 2x3ydy} 

The path c1 is y = x2 ∴ dy = 2x dx 

∴ I1 = ∫
2

0
{3x2x4dx+2x3x22xdx}= ∫

2

0
(3x6 + 4x6) dx  

∴ =  [x7]2

0
 = 128  ∴  I1 = 128 

 
(b) In (b), the path of integration changes to c2, i.e. y = 2x 
So, in this case,for with  c2, y = 2x  ∴ dy = 2dx 

∴ I2 = ∫
2

0
(3x2 4x2 dx + 2x3 2x2 dx} 

 = ∫
2

0
 20 x4 dx=  4[x5]2

0
 = 128      ∴  I2 = 128 

 
 
(c)  In the third case, the path c3 is split 
x = 0 from (0,0) to (0, 4), y = 4 from (0, 4) to (2, 4) 
Sketch the diagram and determine I3.   
from (0,0) to (0,4) x=0  ∴  dx=0 ∴ I3a=0 
from (0,4) to (2,4) y=4 ∴ dy=0 ∴ I3b=48 

∫
2

0
48x2 dx = 128    ∴  I3 = 128 

 
In the example we have just worked through, we took three different paths and in each 
case, the line integral produced the same result. It appears, therefore, that in this case, the 
value of the integral is independent of the path of integration taken. 
 

 
 
 
 
 
 
 

We have been dealing with I = ∫
C
 {3x2y2dx+2x3ydy} 
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On reflection, we see that the integrand 3x2 y2 dx + 2x3y dy is of the form Pdx+Qdy 
which we have met before and that it is, in fact, an exact differential of the function  

z = x3y2, for 
∂z
∂x  = 3x2 y2 and 

∂z
∂y  = 2x3 y 

This always happens. If the integrand of the given integral is seen to be an exact 
differential, then the value o the line integral is independent of the path taken and depends 
only on the coordinates of the two end points. 
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Lecture No -33         Examples 
 
Example  

Evaluate I = ∫
C
{3ydx + (3x+2y)dy} from A(1, 2) to B (3, 5). 

No path is given, so the integrand is doubtless an exact differential of some function z = f 

(x,y). In fact 
∂P
∂y = 3 = 

∂Q
∂x. We have already dealt with the integration of exact 

differentials, so there is no difficulty. Compare with  

I = ∫
C
{P dx + Q dy}. 

P = 
∂z
∂x  = 3y              ∴  z = ∫ 3ydz=3xy+f(y) --------  (i) 

Q = 
∂z
∂y  = 3x + 2y     ∴ z = ∫(3x+2y) dy = 3xy + y2+F(x)   (ii) 

For (i) and (ii) to agree   f(y) = y2  ;     F(x) = 0 
Hence z = 3xy + y2 

∴I = ∫
C
{3ydx + (3x+2y)dy}=  ∫

(3,5)

(1,2)
d(3xy+y2)=[3xy+y2]

 (3,5)

(1,2)
   = (45+25) − (6+4) = 60 

Example 

Evaluate I = ∫
C
{(x2+yex)dx+(ex+y)dy} between A (0, 1) and B (1, 2). 

As before, compare with ∫
C
 {Pdx+Q dy}. 

P = 
∂z
∂x =x2+yex    ∴ z =

x3

3  + yex+f (y) 

Q = 
∂z
∂y =ex+y     ∴  z = yex + 

y2

2  + F(x) 

For these expressions to agree, 

f(y)  =  
y2

2  ;  F(x) = 
x3

3      Then I  = ⎣⎢
⎡

⎦⎥
⎤x3

3  + yex + 
y2

2

(1,2)

(0,1)
 = 

5
6  + 2e 

So the main points are that, if (Pdx+Qdy) is an exact differential  

(a)  I = ∫
C
(Pdx + Qdy) is independent of the path of integration 

(b)  I =  ∫O
C

 (P dx + Q dy) is zero. 

If I = ∫
C
{P dx + Q dy} and (Pdx + Qdy) is an exact differential, 

 Then  Ic1 = Ic2 
Ic1 + Ic2 = 0 
Hence, the integration taken round a closed curve is zero, 
 provided (Pdx+Q dy) is an exact differential. 

∴ If (P dx + Q dy) is an exact differential,  ∫O (P dx + Q dy) = 0 
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Exact differentials in three independent variables 
A line integral in space naturally involves three independent variables, but the method is 
very much like that for two independent variables. 
dz = Pdx + Q dy + R dw is an exact differential of z = f(x, y, w) 
 

if  
∂P
∂y  = 

∂Q
∂x ;  

∂P
∂w  = 

∂R
∂x  ; 

∂R
∂y  = 

∂Q
∂w  

 
If the test is successful, then 

(a) ∫
C
 (P dx + Q dy + R dw) is independent of the path of integration. 

(b)   ∫O
C

 (P dx + Q dy + R dw) is zero. 

 
Example  
Verify that dz=(3x2yw+6x)dx+(x3w−8y)dy+(x3y+1) dw is inexact differential and hence 

evaluate ∫
C
 dz from A (1, 2, 4) to B (2, 1 3). 

First check that dz is an exact differential by finding the partial derivatives above, when 
 P = 3x2yw + 6x; Q = x3w − 8y; and R = x3y + 1 
∂P
∂y  = 3x2w ; 

∂Q
∂x   = 3x2w  ∴ 

∂P
∂y  = 

∂Q
∂x  

∂P
∂w  = 3x2y ; 

∂R
∂x  = 3x2y  ∴ 

∂P
∂w  = 

∂R
∂x  

∂R
∂y  = x3; 

∂Q
∂w  = x3  ∴ 

∂R
∂y  = 

∂Q
∂w  

∴ dz is an exact differential 

Now to find z. P = 
∂z
∂x  ; Q = 

∂z
∂y ; R = 

∂z
∂w  

∴ 
∂z
∂x =3x2yw+6x ∴  z=∫(3x2yw+6x)dx   = x3yw+3x2+f(y)+F(w) 

∴ 
∂z
∂y =x3w−8x ∴  z = ∫(x3w−8y)dy   = x3yw−4y2+g(x)+F(w) 

 
∂z
∂w =x3y+1 ∴  z = ∫(x3y+1)dw    = y3yw+w+f(y)+g(x) 

 
For these three expressions for z to agree 
 
f(y) = − 4y2; F(w) = w; g(x) = 3x2 
∴   z = x3yw + 3x2 − 4y2 + w 

∴ I = [x3yw + 3x2−4y2+w]
(2,1,3)

(1,2,4)
            

for I = [x3yw + 3x2−4y2+w]
(2,1,3)

(1,2,4)
  = (24+12−4+3)−(8+3−16+4)=36 

The extension to line integrals in space is thus quite straightforward. 
Finally, we have a theorem that can be very helpful on occasions and which links up with 
the work we have been doing. It is important, so let us start a new section. 
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Green’s Thorem 
Let P and Q be two function of x and y that are finite 
 and continuous inside and the boundary c of a region 
 R in the xy-plane.If the first partial derivatives are 
 continuous within the region and on the boundary,  
then Green’s theorem states that. 

∫
R
∫
⎝
⎜
⎛

⎠
⎟
⎞∂P

∂y − 
∂Q
∂x   dx dy = −  ∫O

C
 (P dx+ Q dy) 

That is, a double integral over the plane region R can be transformed into a line integral 
over the boundary c of the region – and the action is reversible. 
Let us see how it works. 
 
EXAMPLE 

Evaluate I =  ∫O
C

 {(2x − y)dx + (2y+x)dy} around the boundary c . the ellipse  

x2 + 9y2 = 16. 
The integral is of the form  

I =  ∫O
C

 {P dx + Q dy)  where P = 2x − y  ∴  
∂P
∂y  = − 1 and Q = 2y + x  ∴  

∂Q
∂x   = 1. 

∴ I =−∫
R
∫
⎝
⎜
⎛

⎠
⎟
⎞∂P

∂y−
∂Q
∂x dxdy=−∫

R
∫(−1−1)dx dy= 2 ∫

R
∫dx dy 

But ∫
R
∫dx dy over any closed region give the area of the figure. 

In this case, then, I = 24 where A is the area of the ellipse  

x2+9y2 = 16 i.e. 
x2

16 +
9y2

16  = 1 

∴  a = 4;  b = 
4
3     ∴  A = 

16π
3        ∴  I = 2A = 

32π
3   

To demonstrate the advantage of Green’s theorem, let us work through the next example 
(a) by the previous method, and (b) by applying Green’s theorem. 
 
Example 

Evaluate I =  ∫O
C

 {(2x+y) dx+(3x−2y) dy} taken in anticlockwise manner round the triangle 

with vertices at O (0,0) A (1, 0) B (1, 2). 

I =  ∫O
C

 {(2x + y) dx + (3x − 2y) dy} 
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(a) By the previous method 
There are clearly three stages with c1,c2,c3. Work through the complete evaluation to 
determine the value of I. It will be good revision. When you have finished, check the 
result with the solution in the next frame.   I  =  2 
 (a)  (i) c1 is y = 0 ∴  dy = 0 

∴  I1 = ∫
1

0
2x dx = [x2]

1

0
 = 1  ∴ I1 = 1 

(ii)  c2 is x = 1  ∴  dx = 0 

∴  I2=∫
2

0
(3−2y) dy=[3y−y2]

0

1
 =2 ∴ I2=2 

(iii) c3 is y = 2x   ∴  dy = 2 dx 

∴ I3 = ∫
0

1
{4x dx + (3x − 4x) 2 dx} 

       =  ∫
0

1
2x dx = [x2]

0

1
 = − 1   ∴ I3 = − 1 

    I = I1+I2+I3 = 1+2+(− 1) = 2    ∴ I = 2 
 
Now we will do the same problem by applying Green’s theorem, so more 
 
(b)  By Green’s theorem 

I =  ∫O
C

 {(2x + y) dx + (3x − 2y) dy} 

P = 2x + y   ∴   
∂P
∂y =1;   

Q = 3x − 2y ∴ 
∂Q
∂x  = 3 

I  =  − ∫
R
∫
⎝
⎜
⎛

⎠
⎟
⎞∂P

∂y − 
∂Q
∂x   dx dy 

Finish it off. I = 2 

For I = − ∫
R
∫(1−3) dx dy=2 ∫

R
∫dx dy = 2A 

        = 2 × the area of the triangle = 2 × 1 = 2 
∴   I = 2 
Application of Green’s theorem is not always the quickest method. It is useful, however, 
to have both methods available. 
If you have not already done so, make a note of Green’s theorem. 
 

∫
R
∫
⎝
⎜
⎛

⎠
⎟
⎞∂P

∂y − 
∂Q
∂x   dx dy = −  ∫O

C
  (P dx + Q dy) 

 
Note: Green’s theorem can, in fact, be applied to a region that is not simply connected 
by arranging a link between outer and inner boundaries, provided the path of integration 
is such that the region is kept on the left-hand side.
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Lecture -34………Examples 
 
Example 

Evaluate the line integral I =  ∫O
C

 {xy dx + (2x − y) dy} round the region bounded by 

the curves y = x2 and x = y2 by the use of Green’s theorem. 
Points of intersection are O(0, 0) and A(1, 1).  
 

I =  ∫O
C

 {xy dx + (2x − y) dy} 

 ∫O
C

 {Pdx+ Qdy}= −∫
R
∫
⎝
⎜
⎛

⎠
⎟
⎞∂P

∂y − 
∂Q
∂x  dx dy 

P = xy  ∴ 
∂P
∂y  = x;  Q = 2x − y  ∴ 

∂Q
∂x  =2 

I = − ∫
R
∫ (x − 2) dx dy =  − ∫

1

0
∫

y=√x

y=x2
(x − 2) dy dx 

= − ∫
1

0
 (x − 2) [ y ]

√x

x2
 dx 

∴  I  =  − ∫
1

0
(x − 2) ( ) x  − x2   dx =  −∫

1

0
(x3/2 − x3 − 2x1/2 + 2x2) dx 

        = − ⎣⎢
⎡

⎦⎥
⎤2

5 x5/2−
1
4x4 − 

4
3x3/2+

2
3x3

1

0
  = 

31
60  

In this special case when P=y and Q= − x   so   
∂P
∂y  = 1   and  

∂Q
∂x   = − 1 

Green’s theorem then states ∫
R
∫{1 − (−1)} dx dy =− ∫O

C
 (P dx+Q dy) 

i.e. 2 ∫
R
∫dx dy = −  ∫O

C
 (y dx − x dy)     =  ∫O

C
  (x dy − y dx) 

Therefore, the area of the closed region  A = ∫
R
∫dx dy = 

1
2  ∫O

C
  (x dy − y dx) 

Example 
Determine the area of the figure enclosed by y = 3x2 and y = 6x. 
Points of intersection : 3x2 = 6x ∴  x = 0  or 2 

Area A = 
1
2   ∫O

C
  (x dy − y dx) 

 
We evaluate the integral in two parts, i.e. 
OA along c1 and  AO along c2 
 

2A=∫
c1

 (xdy−ydx)
(along OA)

 +∫
c2

 (xdy−ydx)
(along OA)

 = I1+I2 

I1: c1 is y = 3x2   ∴  dy = 6x dx 
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∴   I1  = ∫
2

0
(6x2dx − 3x2dx) = ∫

2

0
 3x2 dx = [ x3 ]

2

0
 = 8 ∴  I1 = 8 

 
Similarly, for c2 is y = 6x     ∴  dy = 6 dx 

∴    I2  =  ∫
0

2
(6x dx − 6x dx) = 0 

∴    I2 = 0 
∴    I = I1 + I2 = 8 + 0 = 8    
∴  A = 4 square units 
 
Example 
Determine the area bounded by the curves y = 2x3, y = x3 + 1 and the axis  
x = 0 for x > 0. 
Here it is y = 2x3;  y = x3 + 1;   x = 0 
Point of intersection 2x3 = x3 + 1   ∴  x3 = 1   ∴ x = 1 

Area A = 
1
2  ∫O

C
 (x dy − y dx)  ∴  2A =  ∫O

C
  (x dy − y dx) 

(a)  OA : c1 is y = 2x3  ∴ dy = 6x2 dx 

∴I1=∫
c1

 (xdy −ydx)=∫
1

0
(6x3dx−2x3 dx)        = ∫

1

0
4x3 dx = [ x4 ]

1

0
  = 1  

  ∴ I1 = 1 
(b)    AB: c2 is y = x3 + 1   ∴ dy = 3x2 dx 

∴  I2 = ∫
0

1
 {3x3 dx − (x3 + 1) dx} = ∫

0

1
(2x3 − 1) dx  = ⎣⎢

⎡
⎦⎥
⎤x4

2  − x
0

1
 = − ⎝⎜

⎛
⎠⎟
⎞1

2 − 1  = 
1
2    

∴  I2 = 
1
2  

(c)   BO:  c3 is x = 0 ∴  dx = 0 

I3 =∫
y=0

y=1
(xdy − ydx)=0   ∴ I3 = 0 

∴  2A = I = I1 + I2 + I3 = 1 + 
1
2  + 0 = 1

1
2     ∴ A = 

3
4  square units 

 
Revision Summary         
Properties of line integrals 

• Sign of line integral is reversed when the direction of integration along the path 
is reversed. 

• Path of integration parallel to y-axis, dx = 0   ∴ Ic  =  ∫
c
 Q dy. 

• Path of integration parallel to x-axis, dy = 0   ∴  Ic = ∫
c
  P dx. 

• Path of integration must be continuous and single-valued.                                                             
• Dependence of line integral on path of integration. 
• In general, the value of the line integral depends on the particular path of 

integration. 
• Exact differential 

  If P dx + Q dy is an exact  differential 
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 (a)  
∂P
∂y  = 

∂Q
∂x  

  (b) I = ∫
c
  (P dx + Q dy) is independent of the path of integration 

 (c)  I =  ∫O
C

 (P dx + Q dy) is  zero. 

• Exact differential in three variables. 
 If P dx + Q dy + R dw is an  exact differential 

 (a) 
∂P
∂y  = 

∂Q
∂x  ;   

∂P
∂w  = 

∂R
∂x ; 

∂R
∂y  = 

∂Q
∂w  

 (b) ∫
c
 (P dx + Q dy + R dw) is independent of the path of  integration. 

 (c)   ∫O
C

 (P dx + Q dy + R dw)  is zero. 

• Green’s theorem 

           ∫O
C

  (P dx+Q dy)=− ∫
R
∫

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂P

∂y − 
∂Q
∂x dx dy    and, for a simple closed curve, 

            ∫O
C

  (x dy − y dx) = 2 ∫
R
∫dx dy = 2A  

           where A is the area of the enclosed figure. 
 
Gradient of a scalar function 

Del operator is given by   ∇ = 
⎝
⎜
⎛

⎠
⎟
⎞i 

∂
∂x + j

∂
∂y+ k

∂
∂z    

∇φ = grad φ = 
⎝
⎜
⎛

⎠
⎟
⎞i 

∂
∂x + j

∂
∂y+ k

∂
∂z φ   = i 

∂φ
∂x  + j 

∂φ
∂y  + k 

∂φ
∂z  

 gradφ = ∇φ = 
∂φ
∂x i +  

∂φ
∂y  j + 

∂φ
∂z k 

 
Div (Divergence of a vector function) 
If A = a1i + a2j + a3k  

then    div A = ∇.A = 
⎝
⎜
⎛

⎠
⎟
⎞i 

∂
∂x + j

∂
∂y+ k

∂
∂z .(a1i + a2j + a3k) 

∴ div A = ∇.A = 
∂a1

∂x  +
∂a2

∂y  +
∂a3

∂z   

Note that  
(a)  the grad operator ∇ acts on a scalar and gives a vector 
(b) the div operator ∇. acts on a vector and gives a scalar. 
 
Example  
If A = x2yi − xyzj + yz2k then 

Div A = ∇.A = 2 4( ) ( ) ( )x y xyz yz
x y z

∂ ∂ ∂
− +

∂ ∂ ∂
= 2xy − xz + 2yz 

 
 
 
Example 
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If A = 2x2yi − 2(xy2+y3)j+3y2z2k determine ∇.A i.e. div A. 
A= 2x2yi − 2(xy2 + y3z)j + 3y2z2k 

∇.A= 
∂ax

∂x  + 
∂ay

∂y  + 
∂az

∂z  = 4xy−2(2xy+3y2z)+6y2z=  4xy − 4xy − 6y2z+6y2z = 0 

Such a vector A for which ∇.A = 0 at all points, i.e. for all values of x, y, z, is called a 
solenoid vector. It is rather a special case. 
 
Curl (curl of a vector function) 
The curl operator denoted by ∇×, acts on a vector and gives another vector as a result. 
If A= a1i + a2j + a3k then curl A=∇×A.  

i.e. curl A=∇×A= 
⎝
⎜
⎛

⎠
⎟
⎞i 

∂
∂x + j

∂
∂y+ k

∂
∂z × (a1i + a2j + a3k) 

  = 

⎪⎪
⎪⎪

⎪⎪
⎪⎪

  i            j            k
∂
∂x          

∂
∂y          

∂
∂z

 a1          a2          a3

  

∴ ∇×A= i 
⎝
⎜
⎛

⎠
⎟
⎞∂a3

∂y  − 
∂a2

∂z  +j 
⎝
⎜
⎛

⎠
⎟
⎞∂a1

∂z  − 
∂a3

∂x  + k 
⎝
⎜
⎛

⎠
⎟
⎞∂a2

∂x  − 
∂a1

∂y   

Curl A is thus a vector function.  
 
Example 
If A=(y4−x2z2)i+(x2+y2)j−x2yzk,determine curl A at the point (1,3, −2). 

Curl A = ∇ × A =  

⎪⎪
⎪⎪

⎪⎪
⎪⎪

  i                 j             k

 
∂
∂x              

∂
∂y          

∂
∂z

 y4−x2z2    x2+y2     −x2yz

  

Now we expand the determinant 

∇ × A= i 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂

∂y (− x2yz) − 
∂
∂z (x2+y2)  − j 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂

∂x (− x2yz) − 
∂
∂z (y4 − x2z2)   

+ k 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂

∂x (x2 + y2) − 
∂
∂y (y4 − x2z2)   

∇×A=i{−x2z}−j{−2xyz+2x2z}+k(2x−4y3}.   ∴ At (1, 3, − 2), 
∇×A = i (2)−j (12 − 4) + k (2 − 108)    = 2i − 8j − 106k 
 
Example 
Determine curl F at the point (2,0,3) given that F=ze2xyi+2xycosyj+(x+2y)k. 

In determine form, curl F = ∇ × F =  

⎪⎪
⎪⎪

⎪⎪
⎪⎪

  i                 j             k

 
∂
∂x              

∂
∂y          

∂
∂z

 ze2xy    2xzcosy     x+2y

  

Now expand the determinant and substitute the values for x, y and z, finally obtaining 
curl 
∇ × F = i{2 − 2x cos y}− j{1 − e2xy}+ k ({2z cos y − 2xze2xy} 
∴At(2,0,3)      ∇×F= i(2−4)−j(1−1)+k(6−12)  = −2i−6k = −2 (i + 3k) 
 
 
Summary of grad, div and curl 
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(a) Grad operator ∇ acts on a scalar field to give a vector field. 
(b) Div operator ∇. Acts o a vector field to give a scalar field. 
(c) Curl operator ∇ × acts on a vector field to give a vector field. 
(d) With a scalar function φ (x,y,z) 

 Grad φ = ∇φ = 
∂φ
∂xi+

∂φ
∂y j+

∂φ
∂zk  

(e) With a vector function A=axi+ayj+azk 

     (i) div A = ∇.A= 
∂ax

∂x  + 
∂ay

∂y  + 
∂az

∂z   

     

    (ii) Curl A = ∇ × A =  

⎪⎪
⎪⎪

⎪⎪
⎪⎪

i           j          k
∂
∂x       

∂
∂y       

∂
∂z

ax         ay       az

 

 
Multiple Operations 
We can combine the operators grad, div and curl in multiple operations, as in the 
examples that follow. 
 
EXAMPLE 
If A = x2yi + yz3j − zx3k 

Then div A=∇.A = 
⎝
⎜
⎛

⎠
⎟
⎞i 

∂
∂x + j

∂
∂y+ k

∂
∂z .(x2yi + yz3j − zx3k) 

  = 2xy+z3 + x3 = φ (say) 

Then grad (div A) = ∇(∇.A)   = 
∂φ
∂x i + 

∂φ
∂y j + 

∂φ
∂zk = (2y+3x2)i+(2x)j+(3z2)k 

i.e., grad div A = ∇(∇.A)= (2y+3x2)i+2xj+3z2k 
 
Example 
If φ = xyz − 2y2z + x2z2 determine div grad φ at the point (2, 4, 1). 
First find grad φ and then the div of the result. 
 div grad φ = ∇.(∇φ)  
We have   φ = xyz − 2y2z + x2z2 

grad φ = ∇φ = 
∂φ
∂x i + 

∂φ
∂y j + 

∂φ
∂z k =(yz+2xz2)i+(xz−4yz)j+(xy−2y2+2x2z) k 

∴ div grad φ=∇.(∇φ) = 2z2 − 4z+2x2 
∴ At (2,4,1),   div grad φ = ∇.(∇φ) = 2 − 4 + 8 = 6 

grad φ = 
∂φ
∂x i + 

∂φ
∂y j + 

∂φ
∂z k  

Then div grad φ = ∇.(∇φ)= ⎝⎜
⎛

⎠⎟
⎞i 

∂
∂x + j

∂
∂y+ k

∂
∂z .⎝⎜

⎛
⎠⎟
⎞∂φ

∂x i+
∂φ
∂y j+

∂φ
∂z k =  

∂2φ
∂x2 + 

∂2φ
∂z2 + 

∂2φ
∂z2 

∴div grad φ=∇.(∇φ) = 
∂2φ
∂x2+

∂2φ
∂y2+

∂2φ
∂z2 
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Example 
If F = x2yzi + xyz2j + y2zk determine curl F at the point (2, 1, 1).Determine an expression 
for curl F in the usual way, which will be a vector, and then the curl of the result. Finally 
substitute values.  
Curl curl  F=∇×(∇×F) = i+2j+6k 

For curl F =

⎪⎪
⎪⎪

⎪⎪
⎪⎪

  i             j             k

 
∂
∂x          

∂
∂y          

∂
∂z

 x2yz      xyz2        y2z

 = (2yz−2xyz)i+x2yj+(yz2−x2z)k 

Then Curl Curl F = 

⎪⎪
⎪⎪

⎪⎪
⎪⎪

  i                   j             k

 
∂
∂x                

∂
∂y          

∂
∂z

2yz−2xyz    x2y     yz2−x2z

 = z2i−(−2xz− 2y+2xy)j+(2xy−2z+2xz)k 

∴ At (2, 1, 1),   curl cul F=∇×(∇ × F) = i + 2j + 6k 
 
Two interesting general results  
(a) Curl grad φ where φ is a scalar 

grad φ = 
∂φ
∂x i + 

∂φ
∂y j + 

∂φ
∂z k  

∴ curl grad φ = 

⎪
⎪
⎪

⎪
⎪
⎪i          j           k

∂
∂x        

∂
∂y        

∂
∂z

∂φ
∂x        

∂φ
∂y        

∂φ
∂z

 

= i 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂y∂z − 
∂2φ

∂z∂x  − j 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂z∂x − 
∂2φ

∂x∂z  + k 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂x∂y − 
∂2φ

∂y∂x  = 0 

∴ curl grad φ = ∇ × (∇φ) = 0 
(b) Div curl A where A is a vector. 
 A = axi + ayj + azk 

curl A = ∇ × A=  

⎪⎪
⎪⎪

⎪⎪
⎪⎪

i           j          k
∂
∂x       

∂
∂y       

∂
∂z

ax         ay       az

= i
⎝
⎜
⎛

⎠
⎟
⎞∂az

∂y  − 
∂ay

∂z  − j 
⎝
⎜
⎛

⎠
⎟
⎞∂az

∂x  − 
∂ax

∂z   + k  
⎝
⎜
⎛

⎠
⎟
⎞∂ay

∂x  − 
∂ax

∂y   

Then div curl A = ∇.(∇×A)  = 
⎝
⎜
⎛

⎠
⎟
⎞i 

∂
∂x + j

∂
∂y+ k

∂
∂z  . (∇ × A) 

= 
∂2az

∂x∂y − 
∂2ay

∂z∂x − 
∂2az

∂x∂y +
∂2ax

∂y∂z − 
∂2ay

∂z∂x − 
∂2ax

∂y∂z  = 0 

∴ div curl A = ∇ . (∇ × A) = 0 
(c)  Div grad φ where φ is a scalar. 

grad φ = 
∂φ
∂x i + 

∂φ
∂y j + 

∂φ
∂z k  

Then div grad φ = ∇.(∇φ)= ⎝⎜
⎛

⎠⎟
⎞i 

∂
∂x + j

∂
∂y+ k

∂
∂z .⎝⎜

⎛
⎠⎟
⎞∂φ

∂x i+
∂φ
∂y j+

∂φ
∂z k =  

∂2φ
∂x2 + 

∂2φ
∂z2 + 

∂2φ
∂z2 

∴div grad φ=∇.(∇φ) = 
∂2φ
∂x2+

∂2φ
∂y2+

∂2φ
∂z2 

This result is sometimes denoted by ∇2φ. 
So these general results are 
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   (a) curl grad φ = ∇×(∇φ) = 0 
(b) div curl A = ∇.(∇×A) = 0 

(c) div grad φ=∇.(∇φ)=
∂2φ
∂x2+

∂2φ
∂y2+

∂2φ
∂z2 
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Lecture No -35           Definite Integrals 
 
Definite integral for sinnx and cosnx  ,    0 ≤ x ≤ π/2 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                        

2 2 22

00 0

2
2

0

1 1 sin 2 1 sinsin (1 cos 2 )
2 2 2 2 2 2 4

1
sin

2 2

xxdx x dx x

xdx

π π π

π

π π π

π

== − = − = −

=

∫ ∫

∫

2 2 22

00 0

2
2

0

1 1 sin 2 1 sincos (1 cos 2 )
2 2 2 2 2 2 4

1
cos

2 2

xxdx x dx x

xdx

π π π

π

π π π

π

= + = + = + =

=

∫ ∫

∫

2 2 2 2 2
3 2 2 2

0 0 0 0 0

3 2
3 32

0
0

2 2 2
3 2 2 2

0 0 0

sin sin sin (1 cos )sin sin cos ( sin )

cos 1 1 2cos cos cos 0 cos cos 0 1
3 2 3 2 3 3

cos cos cos (1 sin )cos cos sin (co

xdx x xdx x xdx xdx x x dx

xx

xdx x xdx x xdx xdx x

π π π π π

π
π

π π π

π π

= = − = + −

⎡ ⎤= − + = − + + − = − =⎢ ⎥⎣ ⎦

= = − = −

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫
2 2

0 0

3 2
3 32

0
0

s )

sin 1 1 2sin sin sin 0 sin sin 0 1
3 2 3 2 3 3

x dx

xx

π π

π
π π π⎡ ⎤= − = − − − = − =⎢ ⎥⎣ ⎦

∫ ∫

22 2 2 2
4 2 2 2

0 0 0 0

2 2

0 0

2

0

2
4

0

1 cos 2 1sin (sin ) (1 2cos 2 cos 2 )
2 4

1 1 cos 4 1 3 os 4(1 2cos 2 ) ( 2cos 2 )
4 2 4 2 2

1 3 sin 4 1 3 sin 2sin 2 sin
4 2 8 4 2 2 8

1 3sin
4 2 2

xxdx x dx dx x x dx

x c xx dx x dx

xx x

xdx

π π π π

π π

π

π

π ππ

π

−⎡ ⎤= = = − +⎢ ⎥⎣ ⎦

+
= − + = − +

⎡ ⎤= − + = − +⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫

∫
2

4

0

3 1  sin   
4 2 2

so xdx

π

π
=∫
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------------------------------------------------- 

2 2
5 5

0 0

4 2 4 2sin  and cos
5 3 5 3

xdx xdx

π π

= =∫ ∫  

------------------------------------------------- 

2 2
6 6

0 0

5 3 1 5 3 1sin  and cos
6 4 2 2 6 4 2 2

xdx xdx

π π

π π
= =∫ ∫  

------------------------------------------------- 

2 2
7 7

0 0

6 4 2 6 4 2sin  and cos
7 5 3 7 5 3

xdx xdx

π π

= =∫ ∫  

------------------------------------------------- 

2 2
8 8

0 0

7 5 3 1 7 5 3 1sin  and cos
8 6 4 2 2 8 6 4 2 2

xdx xdx

π π

π π
= =∫ ∫  

------------------------------------------------- 

2 2
9 9

0 0

8 6 4 2 8 6 4 2sin  and cos
9 7 5 3 9 7 5 3

xdx xdx

π π

= =∫ ∫  

------------------------------------------------- 

2 2
10 8

0 0

9 7 5 3 1 9 7 5 3 1sin  and cos
10 8 6 4 2 2 10 8 6 4 2 2

xdx xdx

π π

π π
= =∫ ∫  

 
Wallis Sine Formula 
 
When n is even 
 
 
 
When n is odd 
 

22 2 2 2
4 2 2 2

0 0 0 0

2 2

0 0

2

0

2
4

0

1 cos 2 1cos (cos ) (1 2cos 2 cos 2 )
2 4

1 1 cos 4 1 3 os 4(1 2cos 2 ) ( 2cos 2 )
4 2 4 2 2

1 3 sin 4 1 3 sin 2sin 2 sin
4 2 8 4 2 2 8

1 3cos
4 2 2

xxdx x dx dx x x dx

x c xx dx x dx

xx x

xdx

π π π π

π π

π

π

π ππ

π

+⎡ ⎤= = = + +⎢ ⎥⎣ ⎦

+
= + + = + +

⎡ ⎤= + + = + +⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫

∫
2

4

0

3 1 So     cos   
4 2 2

xdx

π

π
=∫

2

0

1 3 5 7 5 3 1sin . . . . . . .
2 4 6 6 4 2 2

n n n n nxdx
n n n n

π

π− − − −
= − − − − − − − −

− − −∫

2

0

1 3 5 7 6 4 2cos . . . . . . .
2 4 6 7 5 3

n n n n nxdx
n n n n

π

− − − −
= − − − − − − − −

− − −∫
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2 2
11 11

0 0

10.8.6.4.2 10.8.6.4.2sin  and cos
11.9.7.5.3 11.9.7.5.3

xdx xdx

π π

= =∫ ∫  

2 2
12 12

0 0

11.9.7.5.3.1 11.9.7.5.3.1sin  and cos
10.8.6.4.2 2 10.8.6.4.2 2

xdx xdx

π π

π π
= =∫ ∫  

 
Integration By Parts 

. dUUVdx U V dx Vdx dx
dx

⎡ ⎤= − ⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫  

Example  x lnx dx Evaluate ∫  

∫ x lnx dx= lnx ∫  xdx – ∫  [ ∫ x dx. d
dx

(ln x)] dx           (We are integrating by parts) 

      = ln x(
2

2
x )- ∫ (

2

2
x )( 1

x
)dx=(

2

2
x ) ln x- ∫ (

2
x )d x = (

2

2
x ) ln x- 1

2
 (

2

2
x ) 

Example  x sinx dx Evaluate ∫  

 ∫ x sinx dx =x ∫ sin xdx – ∫  [ ∫ sinx dx. d
dx

(x)] dx    (We are integrating by parts) 

                           = x(-cosx)- ∫ (-cosx)(1)dx= -x(cosx ) + ∫ cosx d x = -x(cosx)+sin x 
Line Integrals 
Let a point p on the curve c joining A and B be denoted 
 by the position vector r with respect to origin O. If  q  
is a neighboring point  on the curve with position vector  

r+dr , then PQ  = r 
The curve c can be divided up into many n such small  
arcs , approximating to dr1 , dr2 , dr3 ,………. drp ,…… 

so that 
1

n

p
p

AB dr
=

∑ where drp is a vector representing the element of the arc in both 

magnitude and direction. If dr → 0 ,  then the length of the curve  AB=
c

dr∫   . 

Scalar Field 
If a scalar field V(r) exists for all points on the curve , 

 the 
1

( )
n

p
p

V r dr
=

∑  with dr → 0 ,   defines the line integral 

 of V i.e line integral =  ( ) .
c

V r dr∫  

We can illustrate  this integral by erecting a continuous  
Ordinate to V(r) at each point of the curve ( )

c

V r dr∫  is then represented by the area of the 

curved surface between the ends A and B the curve c. To evaluate a line integral , the 
integrand is expressed in terms of x , y ,z with  dr =dx  + dy j + dz k  
In practice , x , y and are often expressed in terms of parametric equation of  a fourth 
variable (say u), i.e. x = x(u) ; y = y(u) ; z = z(u) . From  these , dx, dy and dz can be 
written in terms of u and the integral evaluate in terms of this parameter u. 
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Lecture No -36          Scalar Field 
 
Scalar Field 
If a scalar field V(r) exists for all points on the curve , 

 the 
1

( )
n

p
p

V r dr
=

∑  with dr → 0 ,   defines the line integral 

 of V i.e line integral =  ( ) .
c

V r dr∫  

We can illustrate  this integral by erecting a continuous  
Ordinate to V(r) at each point of the curve ( )

c

V r dr∫  is then represented by the area of the 

curved surface between the ends A and B the curve c. To evaluate a line integral , the 
integrand is expressed in terms of x , y ,z with  dr =dx  + dy j + dz k  
In practice , x , y and are often expressed in terms of parametric equation of  a fourth 
variable (say u), i.e. x = x(u) ; y = y(u) ; z = z(u) . From  these , dx, dy and dz can be 
written in terms of u and the integral evaluate in terms of this parameter u.  
 
Example 
 
If  V=xy2z , evaluate ( )

c

V r dr∫  along the curve c having parametric equations  

x = 3u; y=2u2 ;z=u3 between A(0,0,0) and  B(3,2,1)    
V=  xy2z = (3u)(4u4)(u3)=12u8 
dr= dxi+ dy j+ dz k  ⇒  dr= 3du i +4udu j +3u2du k 
for x = 3u ; ∴ dx = 3du ; y = 2u2  ∴   dy = 4u du  ; z = u3   ∴  dz =3u2dz 
Limiting : A(0,0,0) corresponds to B(3,2,1) corresponds to u   
A(0,0,0)  ≡  u=0 ;   B(3,2,1) ≡    u = 1 

11 9 10 11
8 2

0 0

u 24 36( ) 12u (3 i +4u j +3u  k)du= 36 48 36 4
9 10 11 5 11c

u uV r dr i j i j k= + + = + +∫ ∫  

Example 
If V = xy + y2z Evaluate ( )

c

V r dr∫  along the curve c defined by  x= t2; y = 2t ; z= t+5 

between A(0,0,5)  and B(4,4,7) . As before , expressing V and dr  in term of  the 
parameter t . 
 
 
 
 
 
 
 
 
 
 
 
 
 

since V=xy+y 2z  
  = (t2 )(2t)+(4t2 )(t+5)  
  = 6t3  + 20t2.   

  
x  =  t2  dx = 2t dt
y = 2t    dy = 2 dt 
z = t+5   dz = dt 

} 
 

∴     dr = dxi + dy j + dzk  
      = 2t dt   i + 2 d t  j + dtk 
∴   ∫

C
  Vdr = ∫

C 
  (6t3 +20t2)(  2t  i  + 2 j+k) dt 
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Limits: A (0, 0, 5)  ≡ t = 0; 
B (4, 4, 7)  ≡ t = 2 

∴ ∫
C
 Vdr = ∫

2

0
 (6t3+20t2)( 2t i +2 j +k) dt 

∫
C
 Vdr = 2 ∫

2

0
 {6t4+20t3)i+(6t3+20t2)j 

 +(3t3+10t2)k}dt. 

=  
8
15  (444i + 290j + 145k) 

 
Vector Field 
If a vector field F(r) exist for all points of the curve c, then for each element of arc we can 
form the scalar product F.dr. Summing these products for all elements of arc, we have 

1

.
n

p
p

F dr
=

∑  

 
 
 
 
 
 
 
 
F= F1 i + F2 j +F3 k 
And   dr = dx i +dy j +dz k 
Then F.dr = (F1 i + F2 j +F3 k).( dx i +dy j +dz k) = 1 2 3(Fdx + F dy +F dz )

c
∫  

Now for an example to show it in operation. 
Example 
If F(r) = x2y i + xz j + 2yz k , Evaluate .

c

F dr∫  between A(0,0,0) and B(4,2,1) along the 

curve c having parametric equations x=4t ; y-2t2; z = t3 
Expressing everthing in terms of the parameter t, we have  
dx = 4 dt ; dy =4tdt ; dz = 3t2 dt 
x2y = (16t2)(2t2) = 32 t 4 
x = 4t   ∴   dx = 4 dt 
xz = (4t)(t3) = 4 t4 
y = 2 t 2 dy = 4t dt 
2yz = (4 t 2)(  t 3) = 4 t 5 
z =  t 3           ∴ dz = 3t2 dt 
F = 32 t 4 i + 4 t4 j – 4  t5 k 
dr = 4dt i  + 4t dt j + 3t2 k 
 
 
 
 
 
 
 

 
 

T he line integral of F(r) fr om A to B 
along the stated curve = ∫

C 
  F.dr.  

In this case, since F.d r is a scalar 
product, then the line integral is a scalar.  
To evaluate the line integral, F and d r 
are expressed in terms of x,y,z, and the 
curve in parametric form. We have 

   
  

Then ∫  F. d r  = ∫  (32t4 i+4t4j− 4t5 k). 
    (4dt  i + 4t dt j  + 3t2 dt k) 

          = ∫  (128t4+16t5 + 12t7) dt 
Limits: A(0,0,0) ≡ t = 0;   
  B (4, 2, 1) ≡  t  =  1   
∫
C
  F. d r = (128t4  + 16t 5   + 12t7)dt  = 

128
5   t5 + 

16
6   t6 + 

12
8   t8 = 

128
5  + 

8
3    +   

3 
2    = 29.76   
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Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If F(r ) = x2y i + 2yzj + 3z2 x k  
Evaluate ∫

C
  F. d r between A(0,0,0) and  B(1,2,3) 

B (1, 2, 3)  
(a) along the straight line  
  c1 from (0, 0, 0) to (1, 0, 0)  
then  c2 from (1, 0, 0) to (1, 2, 0) 
and  c3 from (1, 2 , 0) to (1, 2, 3) 

 

(b) along the straight line c 4 joining  
(0, 0, 0) to (1, 2, 3).   
W e first obtain an expression for F.dr 
which is  
F. d r  = (x2y i + 2yzj + 3z2x k).  

(dx i+ dy j + dz  k)  
F. d r  = x2 y dx + 2yz dy + 3z 2 x dz 

∫ F.d r = ∫ x 2 ydx + ∫2yzdy+∫ 3z 2xdz 
Here the integration is made in three
sections, along c 1 , c 2  and c 3 .   

 (i)  c1 :  y = 0, z = 0,  dy = 0, dz = 0 
    ∴  ∫

C1 
  F. d r=0+0+0 = 0 

(ii)  c2 :  The conditions along c 2 are 
c 2: x = 1, z = 0, dx = 0, dz = 0 

∴   ∫ 
C2

   F.dr = 0 + 0 + 0 = 0  

(iii)  c3 : x = 1,  y = 2,  dx = 0,  dy = 0 

∫
C3 

  F. dr = 0 + 0 + ∫
3

0
 3z 2dz = 27  

Summing the three partial results 

∫
( 1 , 2 , 3) 

( 0 , 0 , 0 )   F.d r = 0 + 0 + 27 = 27   

∴   ∫ 
c 1+c 2+ c 3

 F. d r = 27   

If t taken as the parameter, the parametric equation of c are
  

x = t; y = 2t; z = 3t

   
(0, 0, 0) ⇒   t = 0, (1, 2, 3) ⇒  t = 1 and the limits of t are 

  
t = 0 and t = 1 

F  = 2t 3 i  +   12t2 j  + 27t3 k  
d r  =   dx i +dy j +kdz   = dt   i  + 2dt j +3dt k 

1∫
C4 

  F. d r   = ∫
0
 (2t3+24t2+81t3)dt  

= ∫
0
  (83t3  + 24t 2 ) dt  = ⎣ ⎢ ⎢ ⎡ 

⎦⎥
⎥⎤83 

t4 

4  + 8t3
1

0
 = 

115
4   = 28.75 

   = ∫
1

0   (2t3 i +12t3j+27t3 k). (i+2j+3k) dt 
1
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Example 
Evaluate 

v

F dv∫  where V is the region bounded by the planes x = 0 ,y = 0 , z = 0 and  

2x  + y = 2 , and F = 2z  i +y k. To sketch the surface 2x + y + z = 2, note that 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

So the value of the line integral depends on the path taken between the two end 
points A and B 

  

(a) ∫ F. d r via c1, c2  and c 3  = 27 

(b) ∫ F. d r via c4             = 28.75 

when   z = 0,  2x+y=2  i.e. y = 2 − 2x 
when   y = 0,  2x+z=2  i.e. z = 2 − 2x 
when   x = 0,    y+z=2  i.e. z = 2 − y 
Inserting these in the planes   
x = 0, y = 0, z = 0 will help.   
The diagram is therefore.   
So 2x + y + z = 2 cuts the axes at
A(1,0,0); B (0, 2, 0); C (0, 0, 2). 
Also F = 2zi + yk; 
  z = 2 − 2x − y = 2 (1 −  x) −  y   

∴ ∫vFdV= ∫ 
1

0 ∫0

2 ( 1- x ) 
∫
0

2( 1- x ) - y 
(2xi+y k)dzdydx 

      = ∫ 

1 

0
∫ 
0 

2 ( 1 - x ) 

[z 2 i +yzk ]
z=2 ( 1 - x ) - y 

  z=0 
 dydx

     = ∫ 
1 

0
∫ 

2 ( 1 - x) 

0 {[4(1−x)2 −4(1− x)y+y2]i
    

    ∫ v FdV = 3   (2i  + k )  

+[2(1−x)y−y2]k}dydx

1
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Lecture No -37        Examples 
 
Example  

Evaluate ∫v FdV where F=2i+2zj+yk and V is the region bounded by the planes z = 0, z = 
4 and the surface 
x2+y2 = 9. 
It will be convenient to use cylindrical polar  
coordinates (r, θ, z) so the relevant transformations are 
x = rcosθ; y = rsinθ  z = z; dV=rdrdθ dz 

Then ∫vFdV= ∫∫∫v(2i+2zj+yk)dxdydz 
Changing into cylindrical polar coordinates with  
appropriate change of limits this becomes 

∫v FdV=∫

2π

θ=0
∫

3

 r=0
∫

4

 z=0
(2i+2zj+rsinθk)rdzdrdθ=∫

2π

θ=0
∫

3

 r=0
[2zi+z2j+rsinθzk]

z=0

4
 rdrdθ 

= ∫
2π

0
∫

3

0
(8i+16j+4rsinθk)rdrdθ= 4 ∫

2π

0
∫

3

0
(2ri+4rj+r2 sin θk) drdθ= 4∫

2π

0 ⎣⎢
⎡

⎦⎥
⎤r2i+2r2j+

r3

3 sinθ k
3

0
dθ 

 = 4 ∫
2π

0
(9i+18j + 9 sin θk) dθ= 36 ∫

2π

0
(i+2j+sinθk)dθ= 36 [θi + 2θj − cosθk]2π

0
 

= 36 {(2πi + 4πj − k)−(− k)}=  72π (i + 2j) 
 
Scalar Fields 
A scalar field F = xyz exists over the curved surface S defined by x2+y2= 4 between the 
planes z = 0 and z = 3 in the first octant.  

Evaluate ∫S F dS over this surface. 
We have F = xyz       S: x2+y2−4 = 0,      z = 0 to z = 3  

dS = ^n dS  where ^n  = 
∇S
|∇S|  

Now ∇S = 
∂S
∂x i+

∂S
∂y j+

∂S
∂z k = 2xi+2yj 

|∇S| = 4x2+4y2 =2 x2+y2 =2 4 = 4 

∴ ^n  =   
∇S
|∇S|  = 

xi + yj
2    

∴ dS = ^ndS  = 
xi+yj

2  dS 

∴∫SFdS=∫SF ^ndS= 
1
2 ∫S xyz(xi+yj)dS = 

1
2 ∫S (x2yzi+xy2zj)dS  (1) 

We have to evaluate this integral over the prescribed surface. 
Changing to cylindrical coordinates with r = 2 
x = 2 cos θ; y = 2 sin θz = z;   dS = 2dθdz 
∴ x2yz = (4cos2θ)(2sinθ)(z)= 8 cos2θ sinθz 
xy2z = (2cosθ) (4sin2θ) (z)=8cosθsin2θz 
 

Then result ∫SFdS = 
1
2 ∫S (x2yzi+xy2zj)dS  becomes. 



37-Examples                                                                                                                                                 VU 

 
© Copyright Virtual University of Pakistan 

189

∫SFdS =  
8
2 ∫

π/2

0
 ∫

3

0
 (cos2θsinθi+cosθsin2θj)2zdzdθ=4∫

π/2

0
∫
3

0
(cos2θsinθi+cosθsin2θj)2zdz dθ 

= 4∫
π/2

0
 (cos2θsinθi+cosθsin2θj)z2|30 dθ= 4∫

π/2

0
 (cos2θsinθi+cosθsin2θj)9dθ 

 = 36 ⎣⎢
⎡

⎦⎥
⎤− 

cos3θ
3 i + 

sin3θ
3 j

π/2

0
 = 12 (i + j) 

 
Vector Field 
A vector field F=yi+2j+k exists over a surface S defined by x2+y2 + z2 = 9 bounded by 
 x = 0, y = 0, z = 0 in the first octant, 

 Evaluate ∫S F.dS over the surface indicated. 

dS = ^ndS ;  ^n = 
∇S
|∇S|   

S : x2 + y2 + z2 − 9 = 0 

∇S = 
∂S
∂x i + 

∂S
∂y j+

∂S
∂z k=2xi+2yj+2zk 

∴|∇S|= 4x2+4y2+4z2 =2 x2+y2+z2  = 2 9 = 6 

∴  ^n  = 
1
6  (2xi + 2yj + 2zk)  = 

1
3  (xi + yj + zk) 

∫S F.dS=∫S F. ^ndS=∫S(yi+2j+k).
1
3 (xi+yj+zk)dS= 

1
3  ∫S (xy + 2y + z) dS 

Before integrating over the surface, we convert to spherical polar coordinates. 
x = 3 sin φ cos θ; y=3 sin φ sin θ   z = 3 cos φ;  dS=9sinφdφdθ 

Limits of φ and θ are  φ = 0 to 
π
2 ;  θ = 0 to 

π
2  

∫S F.dS = 
1
3  ∫S (xy + 2y + z) dS 

xy = 3 sinφ cosθ . 3 sinφ sinθ    = 9 sin2θ cosθ 
2y = 2 . 3 sinφ sinθ   =  6 sinφ sinθ 
z   =  3 cosφ 
dS = 9 sinφ dφ dθ 
Putting these values we get 

∴∫S F.dS=
1
3 ∫

π/2

0
 ∫

π/2

0
 (9sin2φsinθcosθ+6sinφsinθ+3cosφ)9sinφdφdθ 

= 9∫

π/2

0
 ∫

π/2

0
 (3sin3φsinθcosθ+2sin2φsinθ+sinφcosφ)dφdθ 

As we know that  

∫
π/2

0
 sin3φ dφ = 

2
3   by Wallis Formula 

also ∫
π/2

0
 sin2 φ dφ = 

1
2  

π
2  

So we get 

∫SF.dS=9∫
π/2

0
 ⎝
⎛

⎠
⎞2sinθcos θ+

π
2 sinθ+

1
2 dθ  = 9 ⎣⎢

⎡
⎦⎥
⎤sin2θ−

π
2cosθ+

θ
2

π/2

0
=  9 ⎣⎢

⎡
⎦⎥
⎤(1 − 0 + 

π
4) − (0 − 

π
2 + 0)   
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=  9  ⎣⎢
⎡

⎦⎥
⎤1 + 

π
4 + 

π
2  = 9 ⎝⎜

⎛
⎠⎟
⎞1 + 

3π
4   

 
 
Example 

Evaluate ∫S F.dS where F = 2yj + zk and S is the surface x2 + y2 = 4 in the first two 
octants bounded by the planes z = 0, z = 5 and y = 0. 
 
S : x2 + y2 − 4 = 0  
 

n̂ = 
∇S
|∇S|  

 

∇S = 
∂S
∂x i + 

∂S
∂y j + 

∂S
∂z k = 2xi + 2yi 

 
∴ |∇S|  =  4x2 + 4y2 = 2 x2 + y2  = 2  4   = 4 

∴  n̂  = 
∇S
|∇S|  = 

2xi + 2yj
4   = 

1
2  (xi + yj) 

∴∫S F.dS = ∫S F. n̂  dS  
 

∫S F.n̂ dS = 
1
2  ∫S (2y2) dS= ∫S y2 dS 

 
This is clearly a case for using cylindrical polar coordinates. 
 x = 2 cos θ;   y = 2 sin θ   z = z; dS = 2dθ dz 

∴   ∫S F.dS  = ∫S y2dS = ∫
S
∫ 4sin2θ2dθdz    = 8  ∫

S
∫ sin2θ dθ dz 

 
Limits: θ = 0 to θ = π;  z = 0 to z = 5 

∫S F.dS=4 ∫
5

z=0
 ∫

π

θ=0
(1−cos 2θ) dθdz   =  4 ∫

5

0
  ⎣⎢
⎡

⎦⎥
⎤θ − 

sin 2θ
2

π

0
 dz= 4 ∫

5

0
  π dz= 4π [z]5

0
= 20π 

 
 
Conservative Vector Fields 

In general, the value of the integral ∫C F.dr between 
 two stated points A and B depends on the particular 
 path of integration followed. If, however, the line 
 integral between A and B is independent of the path 
 of integration between the two end points, then the 
 vector field F is said to be conservative. 
 
 
It follows that, for a closed path in a conservative  
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field, ∫O
C

 F.dr = 0. 

For, if the field is conservative, 

∫C1(AB) F.dr = ∫c2(AB) F.dr 

But ∫c2(BA) F.dr − ∫c2(AB) F.dr 

Hence, for the closed path ABc1
 + BAc2

, ∫O F.dr 

=  ∫C1(AB) F.dr + ∫c2(AB) F.dr= ∫C1(AB) F.dr − ∫c2(AB) F.dr 

= ∫C1(AB) F.dr − ∫c1(AB) F.dr = 0 
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Lecture No -38          Vector Field 
 
Conservative Vector Fields 

In general, the value of the integral ∫C F.dr  
between two stated points A and B depends  
on the particular path of integration followed.  
If, however, the line integral between A and 
 B is independent of the path of integration 
 between the two end points, then the vector field  
F is said to be conservative. 

It follows that, for a closed path in a conservative field, ∫O
C

 F.dr = 0. 

For, if the field is conservative, 

∫C1(AB) F.dr = ∫c2(AB) F.dr   But ∫c2(BA) F.dr − ∫c2(AB) F.dr 

Hence, for the closed path ABc1
 + BAc2

, ∫O F.dr 

=  ∫C1(AB) F.dr + ∫c2(AB) F.dr 

= ∫C1(AB) F.dr − ∫c2(AB) F.dr= ∫C1(AB) F.dr − ∫c1(AB) F.dr = 0 
 
Note that this result holds good only for a closed curve 
 and when the vector field is a conservative field.  
Now for some examples 
 
Example 

If F = 2xyzi + x2zj + x2yk, evaluate the line integral ∫F.dr between A(0,0,0) and B(2,4,6) 
(a) along the curve c whose parametric equations are x = u, y = u2, z = 3u 
(b) along the three straight lines c1:(0,0,0) to (2, 0, 0); c2 : (2, 0, 0) to  
(2, 4, 0); c3: (2, 4, 0) to (2, 4, 6). 
Hence determine whether or not F is a conservative field. 
First draw the diagram. 
 
(a) F = 2xyzi + x2zj + x2yk 
 x = u; y = 2u; z = 3u 
∴ dx = du;   dy = 2udu; dz = 3du. 
F.dr=(2xyzi+x2zj+x2yk).(dxi+dyj+dzk) 
      = 2xyz dx + x2z dy + x2y dz 
Using the transformation shown above, we can now express F.dr in terms of u. 
 for  2xyzdx=(2u)(u2)(3u)du  =  6u4du 
 x2zdy = (u2)(3u)(2u)du  = 6u4du 
 x2ydz = (u2)(u2)3du       = 3u4du 
∴ F.dr = 15u4du 
The limits of integration in u are  u = 0 to u = 2 

∴ ∫C F.dr = ∫
2

0
 15u4du = [3u5]

2

0
 = 96 
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(b) The diagram for (b) is as shown. We consider each straight line section in turn. 

∫ F.dr = ∫(2xyz dx + x2zdy+x2ydz) 
c1: (0,0,0) to (2,0,0); y = 0, z = 0, dy = 0,      dz = 0 

∴ ∫C1
 F.dr = 0 + 0 + 0 = 0 

In the same way, we evaluate the line integral along c2 and c3. 

 ∫C1 F.dr = 0; 

∫F.dr=∫(2xyzdx+x2zdy+x2ydz) 
 
c2: (2,0,0) to (2,4,0);  x = 2,  z = 0, dx=0, dz = 0 

∴ ∫C2
 F.dr = 0+0+0 = 0 ∫C2 F.dr = 0 

 
c3: (2,4,0) to (2,4,6);  x = 2,  y = 4, dx=0,  dy = 0 

∴  ∫C3
 F.dr = 0+0+ ∫

6

0
 16dz=[16z]

6

0
 = 96 ∴  ∫C3

 F.dr = 96 

 
Collecting the three results together 

 ∫c1+c2+c3 F.dr = 0 + 0 + 96   ∴   ∫c1+c2+c3 F.dr = 96 
In this particular example, the value of the line integral is independent of the two paths 
we have used joining the same two end points and indicates that F is a conservative field. 
It follows that 

curl F = 

⎪⎪
⎪⎪

⎪⎪
⎪⎪

i             j            k
∂
∂x         

∂
∂y         

∂
∂z

2xyz     x2z        x2y

 

          = (x2−x2)i−(2xy−2xy)j+(2xz−2xz)k = 0 
∴  curl F = 0 
So three tests can be applied to determine whether or not a vector field is conservative. 
They are 

 (a) ∫O F.dr = 0 
 (b) curl F = 0 
 (c) F = grad V 
Any one of these conditions can be applied as is convenient.  
 
Divergence Theorem (Gauss’ theorem) 
For a closed surface S, enclosing a region V in a vector field F 

 ∫V div F dV = ∫S F.dS 
 
In general, this means that the volume integral  
(tripple integral) on the left-hand side can be expressed  
as a surface integral (double integral) on the right-hand side. 
 
Example 
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Verify the divergence theorem for the vector field  
F = x2i + zj + yk taken over the region bonded by the 
 planes z = 0, z = 2, x = 0, x = 1, y = 0, y = 3. 
dV = dx dy dz 

we have to show that ∫V div F dV = ∫S F.dS 

(a) To find ∫V div F dV      

 div F = ∇.F = 
⎝
⎜
⎛

⎠
⎟
⎞∂

∂xi + 
∂

∂yj + 
∂
∂zk  . (x2i + zj + yk) 

= 
∂
∂x (x2)+

∂
∂y (z)+

∂
∂z  (y)=2x+0+0=2x 

∴  ∫V div F dV=∫V 2x dv=∫∫∫V 2xdzdydx 

∫V div F dV = ∫
1

0
∫

3

0
∫

2

0
2xdzdydx = ∫

1

0
∫

3

0
 [ 2xz]

2

0
 dy dx = ∫

1

0
[2xz]

3

0
dx = ∫

1

0
12x dx=[6x2]

1

0
 = 6 

 (b) to find ∫S F.dS i.e.  ∫S  F.n̂ dS 
The enclosing surface S consists of six separate  
plane faces denoted as  
S1, S2, ….. S6 as shown. We consider each face in turn. 
F = x2i + zj + yk 
(i)  S1 (base): z = 0; n̂ = − k (outwards and downwards) 
∴ F = x2i + yk dS1 = dx dy 

∴ ∫S1
 F. n̂dS = ∫∫S1

 (x2i+yk).(−k)dydx =  ∫
1

0
∫

3

0
(−y) dydx = ∫

1

0
 ⎣⎢
⎡

⎦⎥
⎤− 

y2

2

3

0

dx = − 
9
2  

(ii) S2 (top): z = 2:  n̂=k   dS2=dx dy 

∫S2
 F.n̂dS=∫∫S2

 (x2i+zj+yk).(k)dydx    = ∫
1

0
∫

3

0
y dy dx = 

9
2  

 (iii)     S3 (right-hand end): y = 3; 
  n̂=j dS3 = dxdzj 
  F = x2i + zj + yk 

∴  ∫S3
 F.n̂dS=∫∫S3

 (x2i+zj+3k).(j)dzdx   = ∫
1

0
∫

2

0
z dz dx = ∫

1

0
 ⎣⎢
⎡

⎦⎥
⎤y2

2

2

0

 dx = ∫
1

0
 2 dx = 2 

(iv)  S4 (left-hand end):  y = 0,  n̂ = − j, dS4 = dx dz 

∴  ∫S4
 F.n̂dS = − 2 

for ∫S4
 F.n̂dS=∫∫S4

 (x2i+zj+yk).(−j)dzdx= ∫
1

0
∫

2

0
(− z) dz dx= ∫

1

0
 ⎣⎢
⎡

⎦⎥
⎤− 

z2

2

2

0

 dx  

= ∫
1

0
 (− 2) dx = − 2 

Now for the remaining two sides S5 and S6 . Evaluate these in the same manner, obtaining 

    ∫S5
 F.n̂ dS = 6;         ∫S5

 F.n̂ dS  = 0 
Check: 
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(v) S5 (front): x = 1; n̂ = i    dS5 = dy dz 

∴ ∫S5 F. n̂dS = ∫∫S5
 (i+zj+yk).(i)dy dz= ∫∫S5 1 dy dz = 6 

(vi) S6 (back):  x = 0;  n̂ = −i   dS6=dy dz 

∴ ∫S6 F. n̂dS = ∫∫S6
 (zj+yk).(−i)dy dz = ∫∫S6 0 dy dz = 0 

For the whole surface S we therefore have ∫S F.dS = − 
9
2 + 

9
2+2 − 2+6+0 = 6  

and from our previous work in section (a) ∫V div F dV = 6 

We have therefore verified as required that, in this example∫V div F dV = ∫S F.dS 
 
Stokes Theorem 
If F is a vector field existing over an open surface S and around its boundary closed curve 

C, then ∫S curl F.dS = ∫O
C

 F.dr 

This means that we can express a surface integral  
in terms of a line integral round the boundary curve. 
The proof of this theorem is rather lengthy and is  
to be found in the Appendix. Let us demonstrate its application in the following 
examples. 
 
Example 
A hemisphere S is defined by x2 + y2 + z2 = 4 (z > 0). A vector field  
F = 2yi − xj+xzk exists over the surface and around its boundary c. Verify Stoke’s 
theorem that  

∫S curl F.dS = ∫O
C

 F.dr. 

S : x2 + y2 + z2 − 4 = 0 
F = 2yi − xj + xzk   c is the circle x2 + y2 = 4. 

(a) ∫O
C

 F.dr=  ∫C (2yi − xj + xzk) . (idx + jdy + kdz) 

  = ∫C (2ydx − x dy+xz dz) 
Converting to polar coordintes.x = 2 cos θ; y = 2 sin θ; z = 0 
dx = − 2 sin θ dθ;  dy = 2 cos θ dθ;  Limits θ = 0 to 2π 

∫O
C

 F.dr = ∫
2/π

0
 (4sinθ[(−2sinθdθ]−2 cosθ2cosθdθ = − 4 ∫

2/π

0
(2 sin2θ + cos2θ) dθ 

 = − 4 ∫
2/π

0
 (1 + sin2θ) dθ = − 2 ∫

2/π

0
 (3 − cos 2θ) dθ= − 2 ⎣⎢

⎡
⎦⎥
⎤3θ − 

sin 2θ
2

2π

0
 =−12 π    (1) 

(b)    Now we determine ∫S curl F.dS 

 ∫ curl F.dS = ∫ curl F. n̂dS   
 F = 2yi − xj + xzk 
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curl F = 

⎪⎪
⎪⎪

⎪⎪
⎪⎪

i             j            k
∂
∂x         

∂
∂y         

∂
∂z

2y       −x           xz

 = i(0−0)−j (z−0)+k (−1−2)  = − zj − 3k 

Now n̂= 
∇S
|∇S| = 

2xi+2yj+2zk
4x2+4y2+4z2  = 

xi+yj+zk
2  

Then ∫S curl F. n̂dS = ∫S (−zk−3k).⎝⎜
⎛

⎠⎟
⎞xi + yj + zk

2  dS    = 
1
2  ∫S (− yz − 3z) dS 

x = 2 sinφ cosθ; y = 2 sinφ sinθ; z = 2cos φ  , dS = 4 sin φ dφ dθ 

∴ ∫S curlF.n̂dS=
1
2 ∫

S
∫(−2 sinφ sinθ 2cosφ− 6 cosφ) 4 sinφ dφ dθ 

= − ∫
2π

0
∫

π/2

0
(2sin2 φ cos φ sin θ +3sinφcosφ)dφdθ=−4 ∫

2π

0 ⎣⎢
⎡

⎦⎥
⎤2 sin3φ sinθ

3  + 
3 sin2φ

2

π/2

0
 dθ 

       = − 4∫
2π

0 ⎝⎜
⎛

⎠⎟
⎞2

3 sinθ + 
3
2   dθ = − 12π  (2) 

So we have from our two results (1) and (2) 

 ∫S curl F.dS = ∫O
C

 F.dr 
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Lecture No -39          Periodic Functions 

 
Periodic functions 
A function f(x) is said to be periodic if its function values repeat at regular intervals of the 
independent variable. The regular interval between repetitions is the period of the 
oscillations.    f(x + p) = f(x) 
Graphs of y = A sin nx 

(a) y = sin x The obvious example of a periodic 
function is  y = sin x, which goes through its complete  
range of values while x increases from 0° to 360°. 
 The period is therefore 360° or 2π radians and the amplitude, 
 the maximum displacement from the position of rest. 
y = 5sin 2x 
 The amplitude is 5. The period is 180° and there 
 are thus 2 complete cycles in 360°. 
 
Example 
 

Functions Amplitude Period 
y = 3 sin 5x 3 72° 
y = 2 cos 3x 2 120° 

y = sin 
x
2  1 720° 

y = 4 sin 2x 4 180° 
y = A sin nx 
Thanking along the same lines, the function y = A sin nx  

has amplitude = A; period = 
360°

n   = 
2π
n  ; n cycles in 360°. 

Graphs of y = A cos nx have the same characteristics 
 
Example 
 
 
 
 
 
 
         period = 8 ms   period = 6 ms   period = 5 cm 
Analytical description of a periodic function 
A periodic function can be defined analytically in many cases. 
 
Example 
(a)  Between x = 0 and x = 4,  y = 3,   
        i.e.      f(x) = 3   0 < x < 4 
(b)  Between x = 4 and x = 6,  y = 0, 
        i.e.       f(x) = 0   4 < x < 6. 
So we could define the function by 
 f(x) = 3 0 < x < 4 
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f (x) = 0 4 < x < 6 
f (x) = f (x + 6) 
the last line indicating that the function is periodic  
with period 6 units 
f(x) = 2 − x   0 < x < 3 
f(x) = − 1 3 < x < 5 
f(x) = f(x+5) 

f(x) = 
3x
4   0 < x < 4 

f(x) = 7 − x  4 < x < 10 
f(x) = − 3 10 < x < 13 
f(x) = f (x + 13) 
 
Example 
Sketch the graphs of the following inserting relevant values. 
1. f(x) = 4 0 < x < 5 
 f(x) = 0 5 < x < 8 
 f(x) = f (x + 8) 
 
 f(x) = 3x − x2  0 < x < 3 
 f(x) = f (x + 3) 
 
 f(x) = 2 sin x 0 < x < π 
 f(x) = 0 π < x < 2π 
 f(x) = f (x + 2π). 

 f(x) = 
x2

4   0 < x < 4 

 f(x) = 4 4 < x < 6 
 f(x) = 0 6 < x < 8 
 f(x) = f(x + 8). 
 
 
 
 
 
 
 
Useful integrals 
 
The following integrals appear frequently in our work on Fourier series, so it will help if 
we obtain the result in readiness. In each case, m and n are integers other than zero. 

(a)  ∫

π

−π
sin nx dx = ⎣⎢

⎡
⎦⎥
⎤− cos nx

n

π

−π
 = 

1
n {− cos nπ + cos nπ}= 0 

(b) ∫

π

−π
cos nx dx = ⎣⎢

⎡
⎦⎥
⎤sin nx

n

π

−π
 = 

1
n {sinnπ + sin nπ} = 0 

(c)  ∫

π

−π
 sin2nx dx = 

1
2  ∫

π

−π
(1−cos2nx) dx = 

1
2 ⎣⎢

⎡
⎦⎥
⎤x − 

sin 2nx
2n

π

−π
 = π (n ≠ 0) 
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(d) ∫

π

−π
cos2nx dx = 

1
2 ∫

π

−π
 (1 + cos 2nx) dx = 

1
2 ⎣⎢

⎡
⎦⎥
⎤x + 

sin 2nx
2n

π

−π
 = π  (n ≠ 0) 

(e)  ∫

π

−π
 sin nx cos mx dx = 

1
2 ∫

π

−π
{sin(n+m)x+sin(n−m)x}dx= 

1
2 {0 + 0}= 0  

 from result (a) with n ≠ m  

(f)  ∫

π

−π
 cos nx cos mx dx = 

1
2 ∫

π

−π
{cos(n+m)x+cos(n−m)x}dx= 

1
2 {0 + 0}= 0  

 from result (b) with n ≠ m  
 
Note: 
If n = m, then 

  ∫

π

−π
 cos nx cos mx dx  becomes  ∫

π

−π
cos2 nx dx = π     from (d) above. 

(g) ∫

π

−π
 sin nx sin mx dx = − ½ ∫

π

−π
(− 2) sin nx sin mxdx= −½∫

π

−π
 cos(n+m)x−cos(n−m)xdx 

 = 
1
2 ∫

π

−π
{0 − 0)= 0 from result (b) with n ≠ m  

 
Note: 
 If n = m, then 

 ∫

π

−π
 sin nx sin mx dx  becomes  ∫

π

−π
 sin2 nx dx = π  from (c) above 

 
 
Summary of integrals 

 (a) ∫

π

−π
sin nx dx = 0 , (b) ∫

π

−π
cos nx dx = 0 ,   (c) ∫

π

−π
sin2 nx dx = π (≠ 0) 

(d) ∫

π

−π
cos2 nx dx = π (n ≠ 0)      (e) ∫

π

−π
sin nx cos mx dx = 0 

(f) ∫

π

−π
cos nx cos mx dx = 0  (n ≠ m)   (g) ∫

π

−π
sin nx sin mx dx = 0  (n ≠ m) 

     ∫

π

−π
cos nx cos mx dx = π  (n = m)       ∫

π

−π
sin nx sin mx dx  = π   (n = m) 

 
Note 
 We have evaluated the integrals between − π and π, but, provided integration is carried 
out over a complete periodic interval of 2π, the results are the same.  Thus, the limits 
could just as well be − π to π, 0 to 2π, − π/2 to 3π/2, etc. We can therefore choose the 
limits to suit the particular problems. 
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Fourier series  
Periodic functions of period 2π 
The basis of a Fourier series is to represent a periodic function by a trigonometrical series 
of the form. 
f(x) = A0+c1 sin (x+α1) + c2 sin (2x+α2) +c3 sin (3x+α3)+…+cn sin (nx+αn)+ … 
where A0 is a constant term 
c1, c2, c3….cn denote the amplitudes of the compound sine terms α1, α2, α3….. are 
constant auxiliary angles. 
Each sine term, cn sin (nx + αn) can be expanded thus: 
cn sin (nx + αn) = cn{sin nx cosαn+cos n x sinαn}= (cnsinαn) cos nx + (cncosαn) sin nx 
= ancos nx + bnsin nx 
the whole series becomes. 

f(x) = A0 +  
∞

∑  
n=1

 {an cos nx + bn sin nx} 
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Lecture No- 40            Fourier Series 

As  we know that  A0 +  
∞

∑  
n=1

 {ancosnx + bnsinnx}; 

which can be written as in the expanded from 
A0+(a1cosx+b1sinx)+(a2cos2x+b2sin2x)+ .... + (ancos nx+bnsin nx)+........... 
A0+a1cosx+a2cos2x+.+ancos nx+.. .. +b1sinx+b2sin2x+... bnsin nx+.......... 
 
f(x) = A0+a1cosx+a2cos2x+.+ancos nx+.. ....+b1sinx+b2sin2x+... bnsin nx+... 
 
Fourier coefficients 
We have defined Fourier series in the form    

f(x) =A0 +  
∞

∑  
n=1

 {ancosnx + bnsinnx};  n a positive integer 

 (a) To find A0, we integrate f(x) with respect to x from − π to π. 

∫

π

−π
f(x)dx = ∫

π

−π
A0 dx + 

∞

∑  
n=1

 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∫

π

−π
an cos nx dx+∫

π

−π
bn sin nx dx  = [A0x]

π

−π
 +  

∞

∑  
n=1

 { 0 + 0 } = 2A0π     

2A0 π =  ∫

π

−π
 f(x) dx  

A0 = 
1

2π  ∫

π

−π
 f(x) dx =1/2 a0  ;                       Where a0 = 

1
π  ∫

π

−π
 f(x) dx  

(b) To find an we multiply f(x) by     cos mx and integrate from − π to π. 

∫

π

−π
f(x)cos mx dx = ∫

π

−π
A0 cos mx dx+ 

∞

∑  
n=1

 
⎩
⎨
⎧

⎭
⎬
⎫

∫

π

−π

an cos nx cos mx dx+∫

π

−π

bn sin nx cos mx dx  

∫

π

−π
f(x)cos mx dx = A0 {0} +  

∞

∑  
n=1

 {an (0) + bn (0)}= 0             for n ≠ m 

= 0 + anπ + 0 = anπ   for n = m     

∴  an = 
1
π  ∫

π

−π
 f(x) cos nx dx 

(c)  To find bn we multiply f(x) by sinmx and integrate from − π to π. 

∫

π

−π
f(x)sin mx dx = ∫

π

−π
A0 sin mx dx +

∞

∑  
n=1

 
⎩
⎨
⎧

⎭
⎬
⎫

∫

π

−π

an cosnxsinmx dx+∫

π

−π

bn sin nx sinmxdx  

∫

π

−π
f(x)sin mx dx = A0 {0} +  

∞

∑  
n=1

 {an (0) + bn (0)}= 0                          for n ≠ m 

= 0 + 0 + bnπ = bnπ   for n = m   

∴ bn = 
1
π  ∫

π

−π
 f(x) sin nx dx 
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Result For Fourier Series 

f(x)=
1
2 a0+

∞

∑  
n=1

 {ancosnx+bnsinnx}; 

(a)  a0 = 
1
π ∫

π

−π
 f(x) dx = 2×mean value of f(x) over a period  

(b)  an = 
1
π ∫

π

−π
 f(x) cos nx dx=2×mean value of f(x) cosnx over a period. 

(c)    bn = 
1
π ∫

π

−π
 f(x) sin nx dx = 2 × mean value of f(x) sin nx over a period. 

 In each case, n = 1, 2, 3, …… 
 
Example  
Determine the Fourier series to represent the periodic 
function shown. 
It is more convenient here to take the limits as 0 to 2π. 
The function can be defined as  

f(x) = 
x
2   0 < x < 2π 

f(x) = f(x + 2π)   period = 2π. 
 
Now to find the coefficients 

(a) a0 = 
1
π  ∫

2π

0
 f(x) dx= 

1
π  ∫

2π

0 ⎝⎜
⎛

⎠⎟
⎞x

2  dx = 
1

4π  [x2]
2π

0
 = π 

            a0 = π 

(b) an = 
1
π  ∫

2π

0
 f(x) cos nx dx  

 = 
1
π  ∫

2π

0 ⎝⎜
⎛

⎠⎟
⎞x

2  cos nx dx  

       an = 
1

2π  ∫

2π

0
 x cos nx dx = 

1
2π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫[x sin nx

n ]
2π

0
 − 

1
n ∫

2π

0
sin nx dx =  

1
2π 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

(0 − 0) − 
1
n (0)   

∴ an = 0 

(a)  bn = 
1
π  ∫

2π

0
f(x) sin nx dx     So we now have 

bn = 
1
π  ∫

2π

0

x
2  sin nx dx= 

1
2π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫[−

x cosnx
n ]

2π

0
 + 

1
n ∫

2π

0
cos nx dx = − 

1
2πn  [2π − 0]=  − 

1
n  

 a0 = π;   an = 0; bn = − 
1
n  

Now the general expression for a Fourier series is  

f(x) = 
1
2  a0 + 

∞

∑  
n=1

 {an cos nx + bn sin nx}  Therefore in this case 
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f(x) = 
π
2  +  

∞

∑  
n=1

 {bn sin nx} =  
π
2 +{−

1
1 sinx−

1
2 sin2x−

1
3  sin3x−...}    since an = 0 

f(x) = 
π
2 −{sinx+

1
2 sin2x+

1
3  sin3x+.......} 

Dirichlet Conditions 
If the Fourier series is to represent a function f(x), then putting x = x1 will give an infinite 
series in x1 and the value of this should converge to the value of f(x1) as more and more 
terms of the series are evaluated. For this to happen, the following conditions must be 
fulfilled. 
(a) The function f(x) must be defined and single-valued. 
(b) f(x) must be continuous or have a finite number of finite discontinuities within a 
periodic interval. 
(c)  f(x) and f 

′
(x) must be piecewise continuous in the periodic interval. 

If these Dirichlet conditions are satisfied, the Fourier series converges to f(x1), if  
x = x1 is a point of continuity 
Example 
Find the Fourier series for the function shown. 
 
Consider one cycle between x=0 and x=π. 
The function can be defined by  

 f(x) = 0 − π < x < − 
π
2  

 f(x) = 4 − 
π
2  < x <  

π
2  

 f(x) = 0    
π
2  < x <  π 

 f(x) = f (x + 2π) 

f(x) = 
1
2  a0 +   

∞

∑  
n=1

 {an cos nx+bn sin nx}    

The expression for a0 is a0 = 
1
π  ∫

π

−π
 f(x) dx   This gives 

    a0   = 
1
π 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∫

−π/2

−π
0 dx + ∫

π/2

 −π/2
4dx + ∫

π

π/2
0 dx    = 

1
π  [4x]

π/2

−π/2
=4 

 a0 = 4 

(b)  an = 
1
π  ∫

π

−π
 f(x) cos nx dx =1

π 
⎩
⎨
⎧

⎭
⎬
⎫

∫

−π/2

−π

(0)cosnxdx+∫

π/2

−π/2

 4cosnxdx+ ∫

π

π/2

(0) cosnxdx  = 
1
π 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∫

π/2

−π/2
 4cosnxdx   

= 
4

πn   sin nx | π/2

−π/2
=  

8
πn sin 

nπ
2   

   an = 
8

πn sin 
nπ
2   

Then considering different integer values of n, we have 
If n is even  an = 0 

If n = 1.5, 9….  an = 
8

nπ  
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If n = 3, 7, 11, …. an = − 
8

nπ  

  
(c) To find bn 

 bn = 
1
π  ∫

π

−π
f(x) sin nx dx = 

1
π 

⎩
⎨
⎧

⎭
⎬
⎫

∫

−π/2

−π

(0)sinnxdx+∫

π/2

−π/2

 4sinnxdx+ ∫

π

π/2

(0) sinnxdx   

bn = 
4
π  ∫

π/2

−π/2
sin nx dx    = 

4
π  ⎣⎢

⎡
⎦⎥
⎤− cos nx

n

π/2

−π/2
   = − 

4
nπ  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

cos 
nπ
2  − cos ⎝⎜

⎛
⎠⎟
⎞− nπ

2   = 0   

bn = 0 
 
So with a0 = 4: an as stated above; bn = 0;  
 
The Fourier series is  

f(x) = 2 + 
8
π  {cosx − 

1
3  cos 3x +

1
5  cos5x − 

1
7  cos 7x + …..} 

In this particular example, there are, in fact, no sine terms. 
 
Effect Of Harmonics 
It is interesting to see just how accurately the Fourier series represents the function with 
which it is associated. The complete representation requires an infinite number of terms, 
but we can, at least, see the effect of including the first few terms of the series. 
Let us consider the waveform shown. We established earlier that the function 

f(x) = 0 − π < x < − 
π
2  

f(x) = 4 −  
π
2 < x < 

π
2  

f(x) = 0 
π
2  < x < π 

f(x) = f (x + 2π) 
 
gives the Fourier series 

f(x) = 2 + 
8
π {cos x−

1
3 cos3x + 

1
3  cos 5x − 

1
7 cos 7x + ….} 

If we start with just one cosine term, we can then see the effect o including subsequent 
harmonics. Let us restrict our attention to just the right-hand half of the symmetrical 
waveform. Detailed plotting of points gives the following development. 
 

(1)  f(x) = 2 + 
8
π  cos x 
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(2)  f(x) = 2 + 
8
π  {cosx − 

1
3 cos 3x} 

 
(3)  f(x)=2+

8
π {cos x−

1
3 cos3x + 

1
3 cos5x) 

 
(4) f(x) = 2 + 

8
π {cosx−

1
3 cos3x+ 

1
3 cos5x − 

1
7 cos 7x} 

 
 
As the number of terms is increased, the graph gradually approaches the shape of the 
original square waveform. The ripples increase in number and decrease in amplitude, but 
a perfectly square waveform is unattainable in practice. For practical purpose, the first 
few terms normally suffice to give an accuracy of acceptable level. 
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Lecture No -41       Examples 
 
Example  
Find the Fourier series for the function defined by 
f(x) = − x − π < x < 0 
f(x) = 0 0 < x < π 
f(x) = f (x + 2π) 
 
The general expressions for a0, an, bn are 

a0 = 
1
π ∫

π

−π
 f(x) dx ,    an = 

1
π ∫

π

−π
 f(x) cos nx dx ,      bn = 

1
π ∫

π

−π
 f(x) sin nx dx 

a0 = 
1
π ∫

π

−π
 f(x) dx   = 

1
π ∫

0

−π
(− x) dx + 

1
π ∫

π

0
0 dx   = 

1
π ∫

0

−π
(− x) dx  = 

1
π ⎣⎢

⎡
⎦⎥
⎤− 

x2

2

0

−π
  = 

π
2  

(b)  To find an 

an = 
1
π ∫

π

−π
 f(x) cos nx dx = 

1
π  ∫

0

−π
(−x) cosnxdx + 

1
π ∫

π

0
0 dx = − 

1
π  ∫

π

−π
x cos nx dx 

 = − 
1
π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

[x 
sin nx

n ]
0

−π
 − 

1
n ∫

0

−π
sin nx dx  = − 

1
π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

(0 − 0) − 
1
n⎣⎢
⎡

⎦⎥
⎤− cos nx

n

0

−π
  

= − 
1
π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1

n⎣⎢
⎡

⎦⎥
⎤ cos nx

n

0

−π
 = − 

1
πn2  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⎣⎢
⎡

⎦⎥
⎤ cos nx

n

0

−π
 = − 

1
πn2  [cos 0 − cos nπ] 

= − 
1

πn2  {1 − cos nπ} 

But cos nπ = 1 (n even) and  cos nπ  = − 1  (n odd) 

an      =  − 
2

πn2  (n odd)   and    an  = 0  (n even) 

(c)   Now to find bn  

bn = 
1
π ∫

π

−π
 f(x)sinnxdx  = 

1
π ∫

0

−π
(−x) sin nx dx = − 

1
π  ∫

0

−π
x sin nx dx  

= −
1
π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

[x ⎝⎜
⎛

⎠⎟
⎞−cos nx

n ]
0

−π
 + 

1
n ∫

0

−π
cos nx dx  =−

1
π 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫πcosnπ

n +
1
n ⎣⎢

⎡
⎦⎥
⎤sin nx

n  
0

−π
 =−

cos nπ
n   

  bn = − 
1
n   (n even)   and   bn=  

1
n   (n odd) 

So we have  

a0 = 
π
2 ;  an = 0 (n even)  and an  = − 

2
πn2   (n odd) 

 bn = − 
1
n  (n even)  and bn    = 

1
n   (n odd) 

 f(x)=
π
4 −

2
π  ⎝⎜

⎛
⎠⎟
⎞cosx+

1
9 cos3x+

1
25 cos 5x+...  + ⎝⎜

⎛
⎠⎟
⎞sin x − 

1
2 sin 2x + 

1
3 sin 3x − 

1
4 sin 4x+….   

It is just a case of substituting n = 1, 2, 3, etc. 
In this particular example, we have a constant term and both sine and cosine terms. 
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Odd And Even Functions 
(a)  Even functions 
A function f(x) is said to be even if   f(− x) = f(x)  i.e. the function value for a particular 
negative value of x is the same as that for the corresponding positive value of x. The 
graph of an even function is  therefore symmetrical about the y-axis. 
 
y = f(x) = x2 is an even function  
since 
f(− 2) = 4 = f(2) 
f (− 3) = 9 = f(3)  etc. 
 
 
y = f(x) = cos x is an even function 
since  cos (− x) = cos x 
f(− a) = cos a = f(a) 
 
 
 
(b)  Odd functions  
A function f(x) is said to be odd if  f (− x) = − f(x) 
i.e. the function value for a particular negative value of xis numerically equal to that for 
the corresponding positive value of x but opposite in sign. The graph of an odd function is 
thus symmetrical about the origin. 
 
y = f(x) = x3 is an odd function since 
f(− 2) = − 8 = − f(2) 
f (− 5) = − 125 = − f(5)  etc. 
 
 
y = f(x) = sin x is an odd function  
Since  sin (− x) = − sin x 
 f (− a) = − f(a). 
 
So, for an even function f (− x) = f(x)  
symmetrical about the y-axis 
for an odd function f(− x) = − f (x)   symmetrical about  
the origin. 
 
 

 
odd.      Odd 
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Even        neither 
 
 

 
Even                                               Odd                                                          

      
Products Of Odd And Even Functions 
The rules closely resemble the elementary rules of signs. 
(even)×(even)=(even)  like  (+)×(+)=(+) ;  (odd)× (odd) = (even)        (−)×(−)=(+) ; 
(odd)× (even) = (odd)        (−)×(+)=(−) 
The results can easily be proved. 
 
(a) Two even functions 
Let F(x) = f(x) g(x) where f(x) and g(x) are even functions. 
Then F(− x) = f(− x) g (− x) = f(x) g(x) since f(x) and g(x) are even. 
∴ F(− x) = F(x)  
    F(x) is even 
 
(b) Two odd functions 
Let F(x) = f(x) g(x) where f(x) and g(x) are odd functions. 
Then F(− x) = f(− x) g(− x)   = {− f (x)} {− g(x)}  
since f(x) and g(x) are odd. 
 = f(x) g(x) = F (x) 
∴  F(− x) = F(x) 
     F (x) is even 
Finally 
 
(c)  One odd and one even function 
Let F(x) = f(x) g(x) where f(x) is odd and g(x) even. 
Then F (− x) = f (− x) g(− x)  = − f(x) g(x) = − F (x) 
∴ F (− x) = − F (x) 
    F (x) is odd 
 
So if f(x) and g(x) are both even, then f(x) g(x) is even and if f(x) and g(x) are both 
odd, then f(x) g(x) is even but if either f(x) or g(x) is even and the other odd. Then   
f(x) g(x) is odd. 
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Example 
State whether each of the following products is odd, even, or neither. 
1.  x2 sin 2x          odd     (E) (O) = (O) 
2.  x3 cos x          odd     (O) (E) = (O) 
3.  cos 2x cos 3x      even     (E) (E) = (E) 
4.  x sin nx         even    (O) (O) = (E) 
5.  3 sin x cos 4x      odd     (O) (E) = (O) 
6.  (2x + 3) sin 4x   neither (N) (O) = (N) 
7.  sin2 x cos 3 x       even    (E) (E) = (E) 
8. x3ex                          neither  (O) (N) = (N) 
9. (x4 + 4) sin 2x      odd     (E) (O) = (O) 
 
Two useful facts emerge from odd and even functions.  
(a) For an even function 
 

∫

a

−a
 f(x)dx=2∫

a

0
 f(x) dx  

 
 
 
(b) For an odd function 
 

∫

a

−a
 f (x) dx = 0 

 
 
THEOREM 1 
If f(x) is defined over the interval − π < x < π and f(x) is even, then the Fourier series for 
f(x) contains cosine terms only. Included in this is a0 which maybe regarded as an cos nx 
with n = 0. 
Proof: 

(a)  a0 = 
1
π ∫

π

−π
 f(x)dx   = 

2
π ∫

π

0
 f(x)dx         ∴     a0 = 

2
π  ∫

π

0
 f(x) dx 

(b) an = 
1
π ∫

π

−π
 f(x) cos nx dx.  

But f(x) cos nx is the product of two even functions and therefore itself even.  

an = 
1
π  ∫

π

−π
 f(x) cos nx dx   = 

2
π ∫

π

0
 f(x) cos nx dx.     ∴ an = 

2
π  ∫

π

0
 f(x) cos nx dx 

 (c)  bn = 
1
π  ∫

π

−π
  f(x) sin nx dx 

Since f(x) sin nx is the product of an even function and an odd function, it is itself odd. 

∴  bn = 
1
π  ∫

π

−π
 f(x) sin nx dx = 0. 

∴  bn = 0 
Therefore, there are no sine terms in the Fourier series for f(x).  
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Example 
The waveform shown is symmetrical about the y-axis. The function is therefore even and 
there will be no sine terms in the series. 
 

∴ f(x) = 
1
2 a0 + 

∞

∑  
n=1

 an cos nx 

(a)  a0  = 
1
π ∫

π

−π
 f(x) dx  = 

2
π ∫

π

0
 f(x) dx.=  

2
π ∫

π/2

0
  4 dx  

 = 
2
π  [4x]

π/2

0
 = 4 

(b) an = 
1
π ∫

π

−π
 f(x)cos nx dx  = 

2
π ∫

π

0
 f(x) cos nx dx= 

2
π ∫

π/2

0
 4cosnx dx= 

8
π  ⎣⎢

⎡
⎦⎥
⎤sin nx

n

π/2

0
 

= 
8

πn  sin 
nπ
2   

But sin 
nπ
2   = 0 for n even 

      = 1  for n  1, 5, 9, ….. 
      = − 1  for n = 3, 7, 11, ….  
an = 0   (n even);   

an = 
8

πn  (n = 1, 5, 9, ….); 

an = − 
8

πn  (n = 3, 7, 11 ……) 

(c)  bn = 0, since f(x) is an even function.Therefore, the required series is 

f(x) = 2 + 
π
8 {cos x − 

1
3  cos 3x + 

1
3  cos 5x − 

1
7  cos 7x + ….}  

Theorem 2:  
If f(x) is an odd function defined over the interval − π < x < π, then the Fourier series for 
f(x) contains sine terms only. 
Proof: 
Since f(x) is an odd function 

 ∫

0

−π
 f(x) dx = − ∫

π

0
 f(x) dx. 

(a) a0 = 
1
π ∫

π

−π
 f(x) dx.    

 But f(x) is odd 
∴ a0 = 0 

(b)  an = 
1
π ∫

π

−π
 f(x) cos nx dx 

Remembering that f(x) is odd and cosnx is even, the product f(x) cosnx is odd. 

∴ an = 
1
π ∫

π

−π
 f(x) cosnx dx = 

1
π ∫

π

−π
  (odd function) dx 

∴   an = 0 
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(b) bn = 
1
π ∫

π

−π
 f(x) sin nx dx  

and since f(x) and sin nx are each odd, the product f(x) sin nx is even. 

Then bn = 
1
π ∫

π

−π
  (even function) dx =  

2
π ∫

π

0
 f(x) sin nx dx 

∴  bn = 
2
π ∫

π

0
 f(x) sin nx dx 

So,  
If f(x) is odd function then  a0 = 0;  an = 0;  

bn = 
2
π ∫

π

0
 f(x) sin nx dx i.e. the Fourier series contains sine terms only. 

 
Example 
f(x) = − 6 − π < x < 0 
f(x) = 6 0 < x < π 
f(x) = f(x + 2π) 

 
We can see that this is an odd function;  
a0 = 0 and an = 0 

bn = 
1
π ∫

π

−π
 f(x) sin nx dx. 

f(x) sin nx is a product of two odd functions and is therefore even. 

∴  bn = 
2
π  ∫

π

0
  f(x) sin nx dx  

bn = 
2
π  ∫

π

0
 6 sin nx dx  = 

12
π   ⎣⎢

⎡
⎦⎥
⎤− cos nx

n

π

0
= 

12
π   ⎣⎢

⎡
⎦⎥
⎤cos nx

n

0

π

= 
12
π   [cos 0 − cos nπ] 

=  
12
πn  (1 − cos nπ). 

 bn   = 0  (n even)     bn   = 
24
πn   (n odd) 

So the series is f(x) = 
24
π  {sinx + 

1
3 sin3x + 

1
5 sin5x +….} 

Of course,  
if f(x) is neither an odd nor an even function, then we must obtain expressions for a0, an 
and bn in full. 
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Lecture No -42          Examples 
 
Example  
Determine the Fourier series for the function 
 shown. 
This is neither odd nor even.  
Therefore we must find a0, an and bn. 

f(x) = 
1
2  a0 + 

∞

∑
n = 1

 {an cos nx + bn sin nx} 

f(x) = 
2
π x  0 < x < π 

      =  2 ,   π < x < 2π 

(a) a0 = 
1
π ∫

2π

0
 f(x)dx = 

1
π  

⎩
⎨
⎧

⎭
⎬
⎫

∫
π

0
 
2
π x dx + ∫

2π

π
 2 dx  = 

1
π  

⎩
⎨
⎧

⎭
⎬
⎫

⎣⎢
⎡

⎦⎥
⎤x2

π

π

0
+ [2x]

2π

π
 = 

1
π  {π + 4π − 2π}  

∴  a0 = 3 

(b) an = 
1
π ∫

2π

0
 f(x) cos nx dx = 

1
π  ⎩

⎨
⎧

⎭
⎬
⎫

∫

π

0
 ⎝
⎛

⎠
⎞2

πx  cos nx dx + ∫

2π

π
 2 cos nx dx  

= 
1
π  ⎩

⎨
⎧

⎭
⎬
⎫2

π ∫

π

0
 x cosnx dx + 2∫

2π

π
 cosnxdx = 

2
π  ⎩

⎨
⎧

⎭
⎬
⎫1

π ∫

π

0
 x cosnx dx + 2∫

2π

π
 cosnxdx  

=
2
π 

⎣
⎢
⎡

⎦
⎥
⎤

⎩
⎨
⎧

⎭
⎬
⎫1

π⎣⎡ ⎦⎤
x sin nx

n

π

0

− 
1

πn ∫
2π

0
 sinnxdx  +∫

2π

π
  cosnxdx  = 

2
π 

⎩
⎨
⎧

⎭
⎬
⎫

0 − 
1

nπ ⎣⎢
⎡

⎦⎥
⎤− 

cos nx
n

π

0
 + ⎣⎢

⎡
⎦⎥
⎤sin nx

n

2π

π
  

= 
2
π 

⎩
⎨
⎧

⎭
⎬
⎫1

nπ ⎣⎢
⎡

⎦⎥
⎤cos nx

n

π

0
 =  

2
π2n2  {cos nπ − cos 0}=  

2
π2n2  {cos nπ − 1} 

 an=  0   (n even);  an= 
− 4
π2n2  (n odd) 

(c)  To find bn, we proceed in the same general manner  

bn = 
1
π ∫

2π

0
 f(x) sin nx dx= 

1
π  ⎩

⎨
⎧

⎭
⎬
⎫

∫

π

0
 ⎝
⎛

⎠
⎞2

πx  sin nx dx + ∫

2π

π
 2 sin nx dx  

= 
2
π  

⎩
⎨
⎧

⎭
⎬
⎫1

π ⎣⎡ ⎦⎤
−x cos nx

n

π

0

+
1

πn ∫

π

0
 cosnxdx+∫

2π

π
  sinnxdx     =  

2
π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1

πn (−π cosnπ)+
1

πn⎣
⎡

⎦
⎤sin nx

n

π

0

+⎣
⎡

⎦
⎤− cos nx

n

2π

π

  

  =  
2
π  

⎩
⎨
⎧

⎭
⎬
⎫

−
1
n cosnπ+(0−0)−

1
n (cos 2πn−cosnπ)  =  

2
π  

⎩
⎨
⎧

⎭
⎬
⎫

−
1
n cosnπ+(0−0)−

1
n cos 2πn+

1
n cosnπ  

   = 
2
π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

− 
1
n cos 2nπ  = − 

2
πn  cos 2nπ 

But cos 2nπ  =  1. 

∴  bn = − 
2

πn  

So the required series is  
 

f(x) =
3
2 −

4
π2 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

cosx+
1
9cos3x+

1
25cos5x+…   − 

2
π 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

sinx+
1
2sin2x+

1
3sin3x+

1
4 sin4x…   

 
 
Sum of a Fourier series at a point of discontinuity 
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f(x) = 
1
2 a0 +  

∞

∑  
n=1

 {an cos nx + bn sin nx} 

At x = x1, the series converges to the value f(x1) 
 as the number of terms including increases to 
infinity. 
 A particular point of interest occurs at a point of 
finite discontinuity or `jump’ of the function y = f(x). 
At x = x1, the function appears to have two  
distinct values, y1 and y2. 
 
If we approach x = x1 from below that value, 
 the limiting value of f(x) is y1. 
 
If we approach x = x1 from above that value, the 
limiting value of f(x) is y2. 
 
To distinguish between these two values we write 
 y1 = f(x1 − 0) denoting immediately before x = x1 
y2 = f(x1 + 0) 
denoting immediately after x = x1. 
In fact, if we substitute x = x1 in the Fourier series for  
f(x), it can be shown that the series converges to the 
value  
1
2  {f(x1 − 0) + f(x1 + 0)} = 

1
2  (y1 + y2), the average of y1 and y2. 

Example 
Consider the function  
f(x) = 0 − π < x < 0 
f(x) = a 0 < x < π 
f(x) = f (x + 2π) 

(a) a0 =  
1
π  ∫

π

−π
f(x) dx= 

1
π ∫

π

0
a dx 

 = 
1
π [ax]

π

0
= a 

∴ a0 = a 

(b) an = 
1
π ∫

π

−π
f(x)cos nx dx   = 

1
π ∫

π

0
a cosnxdx = 

a
π  ⎣⎢

⎡
⎦⎥
⎤sin nx

n

π

0
 = 0 

 ∴  an = 0 

  bn = 
1
π ∫

π

−π
f(x)sin nxdx  = 

1
π ∫

π

0
a sin nx dx0= 

a
π  ⎣⎢

⎡
⎦⎥
⎤− cos nx

n

π

0
 = 

a
nπ  (1 − cos nπ) 

  
But cos nπ = 1  (n even)  and cos nπ = -1 (n odd) 

  bn = 0 (n even)  and    bn    =  
2a
nπ   (n odd) 
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 f (x) = 
1
2  a0 + 

∞

∑
n=1

  bn sin nx 

f(x) = 
a
2 + 

2a
π  {sinx + 

1
3 sin3x  + 

1
5  sin5x +....} 

A finite discontinuity, or `jump’, occurs at x = 0. If we substitute x = 0 in the series 
obtained, all the sine terms vanish and we get  
f(x) = a/2, which is, in fact, the average of the 
two function values at x = 0. 
Note also that at x = π, another finite  
discontinuity occurs and substituting  
x = π in the series gives the same result. 
Because of this ambiguity, the function is said 
to be `undefined’ at x = 0, x = π, etc. 
Half-Range Series 
Sometime a function of period 2π is defined over the 
 range 0 to π, instead of the normal − π to π, or 0 to 2π.  
We then have a choice of how to proceed. 
For example, if we are told between  
x = 0 and x = π, f(x) = 2x,  
then, since the period is 2π, we have no evidence  
of how the function behave between x = − π and 
 x = 0. 
If the waveform were as shown in (a), the  
function would be an even function, symmetrical 
 about the y-axis and the series would have only cosine 
terms (including possibly a0). 
 
 
 
On the other hand, if the waveform were as shown in 
 (b), the function would be odd, being symmetrical  
about the origin and the series would have only sine terms. 
Example 
A function f(x) is defined by  
f(x) = 2x    0 < x < π  
f(x) = f(x + 2π) 
Obtain a half-range cosine series to represents the 
 function. 
To obtain a cosine series, i.e. a series with no sine  
terms, we need an even function. 
Therefore, we assume the waveform between  
x = − π and x = 0 to be as shown, making the total graph symmetrical about the y-axis. 
 
Now we can find expressions for the Fourier 
 coefficients as usual. 

       a0 = 
2
π ∫

π

0
 f(x)dx  = 

2
π ∫

π

0
 2xdx = 

2
π [x2]

π

0
  = 2π   

∴  a0 = 2π 
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an = 
1
π  ∫

π

−π
 f(x) cos nx dx   = 

2
π  ∫

π

0
 f(x) cos nx dx 

an = 
2
π ∫

π

0
 2x cos nx dx     = 

4
π ∫

π

0
 x cos nx dx    = 

4
π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⎣⎢
⎡

⎦⎥
⎤x sin nx

n

π

0
 − 

1
n ∫

π

0
  sin nx dx    

=  
4
π  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

(0−0) − 
1
n ⎣

⎡
⎦
⎤− cos nx

n

π

0

 = (
4

πn2) (cos nπ− 1)  

 cos nπ = 1  (n even) and       cos nπ   = −1   (n odd) 

∴ an = 0    (n even)     and  an = − 
8

πn2   (n odd) 

All that now remains is bn which is zero, since f(x) is an even function, i.e. bn = 0 

So a0 = 2π,  an = 0  (n even) and an   = −
8

πn2   (n odd),  

bn = 0.  Therefore 

f(x)=π−
8
π 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

cosx+
1
9 cos3x+

1
25 cos5x+….   

Example  
Determine a half-range sine series to repressent the function f(x) defined by 
f(x) = 1 + x 0 < x < π 
f(x) = f(x + 2π) 
 
We choose the waveform between  
x = − π and x = 0 so that the graph is symmetrical 
about the origin. The function is then an odd 
function and the series will contain only sine 
terms. 

 
∴   a0 = 0 and an = 0 

bn = 
1
π  ∫

π

−π
 f(x) sin nx dx 

bn = 
2
π  ∫

π

0
 f(x) sin nx dx 

bn = 
2
π ∫

π

0
 (1+x)sin nx dx = 

2
π 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⎣⎢
⎡

⎦⎥
⎤(1 + x) 

− cosnx
n

π

0
 +

1
n ∫

π

0
 cosnxdx   

  =  
2
π 

⎩
⎨
⎧

⎭
⎬
⎫

− 
1 + π

n  cos nπ + 
1
n+

1
n ⎣⎢

⎡
⎦⎥
⎤sin nx

n

π

0
  = 

2
π 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1

n − 
1 + π

n  cos nπ = 
2

πn {1 − (1 + π) cos nπ} 

 cos nπ = 1 (n even) and cos nπ =  − 1  (n odd) 

∴ bn= − 
2
n     (n even)  

∴     = 
4+2π

πn    (n odd) 

Substituting in the general expression f(x) = 
∞

∑
x = 1

 bn sin nx   we have 
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f(x)=
4 + 2π

π  {sinx +
1
3  sin3x+

1
5 sin5x+...}− 2 {

1
2 sin 2x+

1
4  sin 4x+

1
6  sin 6x+ ....) 

and the required series obtained 

f(x)=
⎝⎜
⎛

⎠⎟
⎞4

π+2  {sin x+
1
3 sin 3x+

1
5  sin 5x+..}− 2{

1
2 sin 2x+

1
4  sin 4x+

1
6  sin 6x+ .....} 

So knowledge of odd and even functions and of half-range series saves a deal of 
unnecessary work on occasions. 
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Lecture No.-43            Functions With Periods Other Than 2π 
 
So far, we have considered functions f(x) with period 2π. In practice, we often encounter 

functions defined over periodic intervals other than 2π, e.g. from 0 to T, − 
T
2  to 

T
2  etc. 

Functions With Period T 

If y = f(x) is defined in the range − 
T
2  to 

T
2 , i.e. has a period T, we can convert this to an 

interval of 2π by changing the units of the independent  variable. 
In many practical cases involving physical oscillations, 
the independent variable is time (t) and the periodic 
interval is normally denoted by T, i.e. 
 f(t) = f(t + T) 
Each cycle is therefore completed in T seconds and the 
 frequency f hertz (oscillations per second) of the 

periodic function is therefore given by f = 
1
T . If the 

angular velocity, ω radians per seconds, is defined by ω = 2πf, then 

 ω = 
2π
T   and T = 

2π
ω   

The angle, x radians, at any time t is therefore x = ωt and the Fourier series to represent 
the function can be expressed as   

f(t) = 
1
2 a0 + 

∞
∑
x=1

  {anCos nωt +bnSin nωt} 

which can also be written in the form 
  

f(t) = 
1
2  A0+

∞
∑
x=1

  Bn sin (nωt + φn)   n = 1, 2, 3, ..... 

 
Fourier Coefficients 
With the new variable, the Fourier coefficients become: 

f(t) = 
1
2 a0 + 

∞
∑
x=1

  {an cosnωt + bn sinnωt} 

a0 = 
2
T ∫

T

0
f(t) dt   = 

ω
π ∫

2π/ω

0
f(t) dt 

an = 
2
T ∫

T

0
f(t) cos nωt dt = 

ω
π ∫

2π/ω

0
f(t)cos nωt dt 

bn = 
2
T ∫

T

0
f(t) sin nωt dt= 

ω
π ∫

2π/ω

0
f(t)sin nωt dt 

We can see that there is very little difference between these expressions and those that 

have gone before. The limits can, of course, be 0 to T, − 
T
2 to 

T
2 , − 

π
ω  to 

π
ω , 0 to 

2π
ω   etc. 

as is convenient, so long as they cover a complete period. 
 
 
Example 
Determine the Fourier series for a periodic function defined by 
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 f(t) = 2 (1 + t)  − 1 < t < 0 
 f(t) = 0      0 < t < 1 
 f(t) = f (t + 2)   
The first step is to sketch the wave which is. 

 
f(t) = 

1
2  a0+

∞
∑
x=1

  {an cos nωt+bn sin nωt}) 

  T = 2 

a0 = 
2
T ∫

T/2

−T/2
f(t) dt = 

2
2 ∫

1

−1
f(t) dt = ∫

0

−1
 2 (1 + t) dt + ∫

1

0
 (0) dt= [2t + t2]

0

1
 = 1 

∴ a0 = 1 

an = 
2
T ∫

T/2

−T/2
f(t)cosnωtdt = 

2
2 ∫

1

−1
f(t)cosnωt dt= ∫

0

−1
 2 (1 + t) cosnωt dt 

an=2 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⎣
⎢
⎡

⎦
⎥
⎤(1+t)

sin nωt
nω

0

−1
 − 

1
nω∫

0

−1
sinnωtdt   = 2 

⎩
⎨
⎧

⎭
⎬
⎫

 (0−0) − 
1

nω 
⎣
⎢
⎡

⎦
⎥
⎤− 

cos nωt
nω

0

−1
  

= 
2

n2ω2  (1 − cos nω) 

Now T = 
2π
ω    

∴  ω = 
2π
T   = 

2π
2   = π   ∴ an = 

2
n2ω2  (1 − cos nπ) 

∴   an = 0 (n even)   

      =  
4

n2ω2  (n odd) 

Now for bn  

 bn = 
2
T ∫

T/2

−T/2
f(t) sin nωt dt  

bn = 
2
2  ∫

0

−1
2(1+t) sin nωt dt =2 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⎣
⎢
⎡

⎦
⎥
⎤(1+t)

−cos nωt
nω

0

−1
 + 

1
nω∫

0

−1
cosnωtdt    

= 2 
⎩
⎨
⎧

⎭
⎬
⎫

 − 
1

nω + 
1

nω 
⎣
⎢
⎡

⎦
⎥
⎤sin nωt

nω

0

−1
 = 2 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

− 
1

nω + 
1

n2ω2 (sin nω)   

As before ω = π 

∴ bn = − 
2

nω  

So the first few terms of the series give 
 

f(t)=
1
2 +

4
ω2 

⎩
⎨
⎧

⎭
⎬
⎫

cos ωt+
1
9cos3ωt+

1
25cos5ωt+.. − 

2
ω 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

sin ωt+
1
2sin2ωt+

1
3sin3ωt+

1
4sin4ωt..  
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Half-Range Series 
The theory behind the half-range sine and cosine series still applies with the new variable. 
(a)   Even function 
       Half-range cosine series 

y = f(t)  0 < t < 
T
2  

f(t) = f(t + T) 
symmetrical about the y-axis. 
With an even function, we know that bn = 0 

∴   f(t) = 
1
2 a0 + 

∞
∑
n=1

 an cos nωt 

where  a0 =  
4
T ∫

T/2

0
f(t) dt    and an = 

4
T ∫

T/2

0
 f(t) cos nωt dt 

(b)  Odd function 
Half-range sine series 

y = f(t)  0 < t < 
T
2  

f(t) = f(t + T) 
symmetrical about the origin. 
∴ a0 = 0 and an = 0 
 f(t) = 

∞
∑
x=1

 bn sin nωt;   

 bn = 
4
T ∫

T/2

0
f(t) sin nωt dt 

Example 
A function f(t) is defined by  
f(t) = 4 − t,    0 < t < 4. 
We have to form a half-range cosine series to represent 
the function in this interval. 

 
First we form an even function, i.e. symmetrical about the y-axis. 

a0 = 
4
T ∫

T/2

0
f1(t) dt = 

4
8  ∫

4

0
(4 − t) dt= 

1
2  ∫

4

0
(4 − t) dt 

= 
1
2  ⎪⎪

⎪
⎪⎪
⎪4t − 

t2

2

4

0
 = 

1
2  ⎣⎢

⎡
⎦⎥
⎤4 (4) − 

(4)2

2  = 
1
2  [16 − 8]= 

1
2  (8)=  4 

an = 
4
T ∫

T/2

0
f1(t)cos nωt dt = 

4
8  ∫

4

0
(4 − t) cos nωt dt 

Simple integration by parts gives 

an=
1
2 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

− 
2 sin 4nω

nω  − 
1

n2ω2 (cos 4nω − 1)  

But ω = 
2π
T   = 

2π
8   = 

π
4  

∴ an = 
1
2 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

− 
2sinnπ

nω  − 
1

n2ω2 (cos nπ − 1)  

  n = 1, 2, 3, …….. 
sin nπ = 0;   
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cos nπ = 1  (n even);     cos nπ = − 1  (n odd) 
∴  an = 0  (n even)  

      an = 
1

n2ω2   (n odd) 

∴ f(t)=2+
1

ω2 
⎩
⎨
⎧

⎭
⎬
⎫cos ωt+

1
9cos3ωt+

1
25cos5ωt+…      where  ω = 

π
4 . 

Example 
A function f(t) is defined by 
f(t) = 3 + t 0 < t < 2 
f(t) = f(t + 4) 
Obtain the half-range sine series for the 
function in this range. 
Sine series required. Therefore, we form an odd 
function, symmetrical about the origin. 
a0 = 0;    an = 0;    T = 4 
f(t) = 

∞
∑
n=1

  bn sin nωt 

∴ bn = 
4
T ∫

T/2

0
f(t) sin nωt dt= ∫

2

0
 (3 + t) sin nωt dt 

∫
2

0
 (3 + t) sin nωt dt = 

⎪
⎪
⎪

⎪
⎪
⎪(3+t)cosnωt

− n ω

2

0
 − ∫

2

0
 

cos nωt
− nω   dt 

= 
(3 + 2) cos nω2

− nω   − 
3

− nω  + 
1

nω  
⎪
⎪
⎪

⎪
⎪
⎪sin nωt

 n ω

2

0
= 

3
nω  − 

5
nω  cos 2 nω+ 

1
n2ω2 ⎣⎢

⎡
⎦
⎥
⎤sin 2nω

nω  − 0   

But  T = 
2π
ω         ∴   ω = 

2π
T   = 

π
2  

= 
3

nω  − 
5

nω  cos nπ+ 
1

n2ω2 ⎣⎢
⎡

⎦
⎥
⎤sin nπ

nω   

bn = 
1

nω (3 − 5 cos2nω) + 
1

n2ω2 (sin 2nω) 

∴  bn = 
1

nω  (3 − 5cosnπ)+
1

n2ω2 (sin nπ) = − 
2

nω  (n even) 

           = 
8

nω   (n odd) 

 
∴ f(t)=

2
ω⎩

⎨
⎧

⎭
⎬
⎫4sinωt −

1
2sin2ωt+

4
3sin3ωt − 

1
4sin4ωt..  

Half-Wave Rectifier 
A sinusoidal voltage E sin ωt, where t is time, is passed through a half-wave rectifier that 
clips the negative portion of the wave 
Find the Fourier series of the resulting periodic 
functions. 
u(t) = 0 if  − T/2 < t < 0 
      = E sin ωt  0 < t < T/2 

here T = 
2π
ω   
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a0 = 
2
T  ∫

T/2

−T/2
 u(t) dt = 

2
T  ∫

0

−T/2
 0 dt + 

2
T  ∫

T/2

0
 E sin ωt dt= 

2
T  ∫

T/2

0
 E sin ωt dt= 

ω
π ∫

π/ω

0
 E sin ωt dt 

=  
ω
π  E 

⎪
⎪
⎪

⎪
⎪
⎪− cos ω t

ω

π/ω

0

 = 
2E
π   

an = 
2
T  ∫

T/2

−T/2
 u(t) cos n ωt dt = 

2
T  ∫

T/2

 0
 E sin ωt cos n ωt dt = 

ωE
2π   ∫

π/ω

 0
 2 sin ωt cos n ωt dt 

= 
ωE
2π   ∫

π/ω

 0
 [sin (1+n) ωt+sin (1−n) ωt] dt 

If n = 1 then integral on the right is zero 
and if n = 2, 3, …… then we obtain. 

an=
ωE
2π   

⎣
⎢
⎡

⎦
⎥
⎤− 

cos (1+n) ωt
(1+n)ω  − 

cos (1−n) ωt
(1−n)ω

π/ω

0
 = 

ωE
2π   

⎣
⎢
⎡

⎦
⎥
⎤−cos (1+n) π + 1

(1+n)ω  + 
− cos (1−n) π+1

(1−n)ω   

= 
ωE
2πω  

⎣
⎢
⎡

⎦
⎥
⎤−cos (1+n) π + 1

(1+n)  + 
− cos (1−n) π+1

(1−n)   

if n is odd then an = 0 

if n is even then an = 
E
2π  

⎝⎜
⎛

⎠⎟
⎞2

1+n + 
2

1−n  = 
E
2π  

⎣
⎢
⎡

⎦
⎥
⎤2 − 2n + 2+2n

(1+n)(1−n)   = 
2E

(1−n)(1+n)π  

       = 
2E

(1−n2)π  

For bn we have 

an = 
2
T  ∫

T/2

−T/2
 u(t) sin nωt dt = 

2
T  ∫

T/2

 0
 E sin ωt sin nωt dt= − 

ωE
2π   ∫

π/ω

 0
 − 2 sin ωt sin nωt dt 

= − 
ωE
2π   ∫

π/ω

 0
 [cos(1+n)ωt−cos(1−n)ωt] dt 

If  n = 1 

bn = − 
ωE
2π   ∫

π/ω

 0
 [cos 2ωt−1] dt= − 

ωE
2π   

⎪
⎪
⎪

⎪
⎪
⎪sin 2ωt

2ω  − t
π/ω

0
 = − 

ωE
2π   (− π/ω) = E/2 

 
if n ≠ 1 

bn =−
ωE
2π  ∫

π/ω

 0
[cos(1+n)ωt−cos(1−n)ωt] dt= − 

ωE
2π   

⎣
⎢
⎡

⎦
⎥
⎤sin(1+n) ωt

(1+n)ω  − 
sin (1−n) ωt

(1−n)ω

π/ω

0
  

= − 
ωE
2π   

⎣
⎢
⎡

⎦
⎥
⎤sin(1+n) π

(1+n)ω  − 
sin (1−n) π

(1−n)ω  = 0   for  n = 2, 3, 4, ........ 

u (t) = 
1
2  a0 + 

∞
∑
n=2

 an cos nωt 

u(t) = 
E
π  + 

E
2  sin ωt − 

2E
π   

 ⎝⎜
⎛

⎠⎟
⎞1

1.3 cos 2ωt + 
1

3.5 cos 4ωt + ...   
 

Lecture No -44        Laplace Transforms 
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L{e3t} = 
1

s − 3 ;L {t3} = 
3!
s4 ;L{2sin 3t + cos 3t}  = 

s + 6
s2 + 9  

And   -1 3 -1 3 -1
4 2

1 3! 6L { } ; L { } ;L { } 2sin 3 cos3
3 9

t se t t t
s s s

+
= = = +

− +
 

We show that 3
4

3!{ }L t
s

=   For this consider the integral 

3
3 3 3 2 2

0 0
0 0 0

1 3( ) [ ] 3
st

st st st
st

e tL t t e dt t t e dt t e dt
s s se s

∞ ∞ ∞−
∞− ∞ − −−

= = − = +
− −∫ ∫ ∫  

         2
20 0

0 0 0

3 2 3 2 3.2 10 { } { }
sst st

st st ste et te dt te dt t e dt
s s s s s s s s

∞ ∞− −
∞ ∞− − −= + + = = +

− −∫ ∫ ∫  

          3 3 4 4 4 40
0 0

3.2 3.2 1 3.2.1 3.2.1 3.2.1 3!( ) (0 1)st st ste dt e s dt e
s s s s s s s

∞ ∞
∞− − −− − −

= = − = = − = =∫ ∫  

So that 3
4

3!{ }L t
s

=  

 
Laplace  Transform 
The Laplace Transform of a function F(t) is denoted by L{F(t)} and is defined as the 
integral of F(t) ste−  between the limits t=0 and t = ∞  

L{F(t)}=
0

( ) .ste F t dt
∞

−∫  

In all cases, the constant parameter s is assumed to be positive and large enough to ensure 
that the product F(t) ste− converges to zero as t → ∞  , what ever the function F(t). 
In determining the transform of any function , you will appreciate that the limits are 
substituted for t, so that the result will be a function of s.  
Laplace Transform of F(t) = a (constant).  
That is  

0 0

0

L(a)=

{0 1}

st st

st

ae dt a e dt

e a aa
s s s

∞ ∞
− −

−
∞

=

−
= = − =

−

∫ ∫
 

 
Example 
Find the laplace transform of the form ate  that F(t)= ate  where a is a constant.  

( )
( )

0
0 0

( ) [ ]
( )

s a t
at at st s a t eL e e e dt e dt

s a

∞ ∞ − −
− − − ∞= = =

− −∫ ∫  

( )

1 1=   ,     s > a

1 1=    [0  1]=  

s a ts a e

s a s a

−
⎡ ⎤− ⎢ ⎥− ⎣ ⎦

− −
− −

 

 
1{ }atL e

s a
=

−
 

So we already have two standard transforms 
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L{a}= a
s

;   at 1L{e }=  ;
s-a

   

4L{4}=  
s

;   4t 1L{e }=  ;
s-4

 

-5L{-5}=  
s

;   -2t 1L{e }=  ;
s+2

 

Laplace transform is always a function of s. 
 
Complex Numbers Power of i 
Every time a factor 4i occurs , it can be replace by the factor 1, so that the power of i is 
reduced to one of the four results above. 

 
 
 
 
 
 
 
Complex Numbers  

z = 3+ 5 i , is called a complex number where 3 is real part and 5 is imaginary part 
of the complex number. 

In general z = a+ b i , is called a complex number where a is real part and b is 
imaginary part of the complex number. So, 

Complex Number = (Real Part )+ i (Imaginary Part) 
 
Conjugate complex numbers 
For a complex number a + i b , the complex number a - i b is called the conjugate of 
 a + i b. Conjugate complex numbers are identical except the signs in the middle for the 
brackets. 

• (4 + 5 i) and (4 - 5 i) are conjugate complex numbers 
• (6 + 2 i) and (2 + 6 i) are not conjugate complex numbers 
• (5 - 3 i) and (-5 +3 i) are  not conjugate complex numbers 

 
Remember 
The product of complex number by its conjugate is always entirely real. 
(3 + 4 i ) (3 - 4 i ) = 9 + 16 = 25  
(a+ b i ) (a -  bi ) = 2 2a b+   
 
Euler Formaula 
As we know that the series expansion of xe ,cos x and sin x are given as 

2 3 4

1 ..............
2! 3! 4!

x x x xe x= + + + + +  

2 4 6

cos 1 ..............
2! 4! 6!
x x xx = − + − +  

3 5 7

sin ..............
3! 5! 7!
x x xx x= − + − +  

Replace x by (it)  , we get 

i 9  = ( i 4 ) 2 i  = (1) 2 i = 1. i = i
i 20  = ( i 4 ) 5  = (1) 5  = 1   
i 30  = ( i 4 ) 7   i 2  = (1) 7  ( −  1) = 1 ( − 1) = −  1
i 15  = ( i 4 ) 3   i 3  = 1 ( −   i ) = − i
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2 3 4
( ) ( ) ( ) ( )1 ( ) ..............

2! 3! 4!
it it it ite it= + + + + +  

2 3 4 5 6 7
( ) ( ) ( ) ( ) ( ) ( ) ( )1 ( ) ..............

2! 3! 4! 5! 6! 7!
it t i t t i t t i te it= + − − + + − − +  

2 4 6 3 5 7
( ) ( ) ( ) ( ) ( ) ( ) ( )[1 ..............] [ ..............]

2! 4! 6! 3! 5! 7!
it t t t t t te i t= − + − + + − + − +  

where 

cos t  =
2 4 6( ) ( ) ( )1 ..............

2! 4! 6!
t t t

− + − +  

 sin t = 
3 5 7( ) ( ) ( ) ..............

3! 5! 7!
t t tt − + − +  

cos sinite t i t= +  
 
R( ite )= cost           and    I( ite ) = sin t 
 
The Laplace transform of F(t) = sin at  

( )
( )

0 0 0

L(Sin at) = L(I( )) 
( )

1 1(0 1)
( ) ( )

s ia t
iat iat st s ia t ee I e e dt I e dt I

s ia

I I
s ia s ia

∞∞ ∞ − −
− − −

⎧ ⎫⎡ ⎤⎪ ⎪= = = ⎨ ⎬⎢ ⎥− −⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫ ⎧ ⎫

= − =⎨ ⎬ ⎨ ⎬− − −⎩ ⎭ ⎩ ⎭

∫ ∫
  

2 2 2 2 2 2{sin } { } [ ]s ia s aL at I I i
s a s a s a

+
= = +

+ + +
 

∴ 2 2{sin } aL at
s a

=
+

 

We can use the same method to determined to determine L{cos at }. 
Since cos at is the real part of iate , written as R( iate ) 

2 2 2 2 2 2

2 2

{cos } { } [ ]

{cos }

s ia s aL at R R i
s a s a s a
sL at

s a

+
= = +

+ + +

=
+

 

 
The Transform of F(t) = tn where n is a positive integer. 

By the definition n

0

L(t ) = n stt e dt
∞

−∫  integrating by parts 

n 1 1

0
0 0 00

1L(t ) = 
st

n st n n st n st n ste n nt e dt t t e dt t e t e dt
s s s s

∞∞ ∞ ∞−
∞− − − − − −⎡ ⎤

⎡ ⎤= + = − +⎢ ⎥ ⎣ ⎦−⎣ ⎦
∫ ∫ ∫  

0

0 0 0
st

n et
s

∞−⎡ ⎤
∴ = − =⎢ ⎥−⎣ ⎦

          1

0

{ }n n stnL t t e dt
s

∞
− −∴ = ∫ -----------------(1) 

you will notice that 1

0

n stt e dt
∞

− −∫  is identical to 
0

n stt e dt
∞

−∫  except that n is replaced by (n-1) 
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If    1
1

0 0

,n st n st
n nif I t e dt then I t e dt

∞ ∞
− − −

−= =∫ ∫ and the result (1) becomes 

 1n n
nI I
s −=  

This is reduction formula and , if we now replace n by (n-1) we get 

1 2
1

n n
nI I

s− −
−

=  

If  we replace n by (n-1) again in this last result , we have 

 2 3
2

n n
nI I

s− −
−

=  

1 2 3 4
0

1 1 2 1 2 3. . . . . .n st
n n n n n

n n n n n n n n n nSo I t e dt I I I I
s s s s s s s s s s

∞
−

− − − −

− − − − − −
= = = = =∫   

So finally, we have  

0
1 2 3 4 2 1. . . . ............... .n

n n n n nI I
s s s s s s s

− − − −
=  

But 

 0
0

1{ } {1}I L t L
s

= = =  

0 1

1 2 3 4 2 1 !...............n n

n n n n n nI I
s s s s s s s s +

− − − −
= =  

1

!{ }n
n

nL t
s +=  

2 3
2 3 4 4

1 2! 3! 6{ } ; { } ; { }L t L t L t
s s s s

= = = =  

 
Laplace Transform of F(t) = sinh at and F(t) = cosh at. 
 
Starting from the  exponential definitions of sinh at and cosh at 

 1 1. . sinh ( ) cosh ( )
2 2

at at at ati e at e e and at e e− −= − = +  

 We proceed as follow 
 

) ( ) sinha F t at=  
 

( ) ( )

0 0 0 0

1 1 1Sinh at = sinh ( )  ( ) ( )
2 2 2

st at at st at st at st s a t s a tat e dt e e e dt e e e e dt e e dt
∞ ∞ ∞ ∞

− − − − − − − − − += − = − = −∫ ∫ ∫ ∫  

( ) ( )

0 0

2 2 2 2

1 1 1 1 1 1 1(0 1) (0 1)
2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

1 1 2
2 ( )( ) 2

s a t s a te e
s a s a s a s a s a s a

s a s a a a
s a s a s a s a

∞ ∞− − − +⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪= − = − − − = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥− − − + − − − + − +⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭
⎧ ⎫+ − + ⎧ ⎫ ⎧ ⎫= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬− + − −⎩ ⎭ ⎩ ⎭⎩ ⎭

 

 
) ( ) coshb F t at=  
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( ) ( )

0 0 0

( ) ( )

0 0

1 1 1L(cosh at) = L( ( + )) ( )
2 2 2

1 1 1 1 1 1 1(0 1) (0 1)
2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

at at at at st s a t s a t

s a t s a t

e e e e e dt e dt e dt

e e
s a s a s a s a s a s a

∞ ∞ ∞
− − − − − +

∞ ∞− − − +

⎡ ⎤
= + = +⎢ ⎥

⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪= + = − + − = +⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥ ⎢ ⎥− − − + − − − + − +⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎩⎪ ⎪⎩ ⎭

∫ ∫ ∫

2 2 2 2

1 1 2
2 ( )( ) 2

s a s a s s
s a s a s a s a

⎬
⎭

⎧ ⎫+ + − ⎧ ⎫ ⎧ ⎫= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬− + − −⎩ ⎭ ⎩ ⎭⎩ ⎭

2 2L(cosh at) s
s a

⎧ ⎫= ⎨ ⎬−⎩ ⎭
  

 
Several Standard Results  

1

1 !{ } ; { } ; { }at n
n

a nL a L e L t
s s a s += = =

−
 

2 2 2 2{sin } ; {cos }a sL at L at
s a s a

= =
+ +

 

2 2 2 2{sinh } ; {cosh }a sL at L at
s a s a

= =
− −

 

We can , of course, combine these transforms by adding or subtracting as necessary , but 
they must not be multiplied together to form the transform of a product. 
 
Example 

2 2 2

3 6) {2sin 3 cos3 } 2 (sin 3 ) (cos3 ) 2.
9 9 9

s sa L t t L t L t
s s s

+
+ = + = + =

+ + +
 

2 2
2 2

2

2

1 4 3) {4 3cosh 4 } 4 ( ) (3cosh 4 ) 4. 3.
2 16 2 16

7 6 64
( 2)( 16)

t t s sb L e t L e L t
s s s s

s s
s s

+ = + = + = +
− − − −

− −
=

− −
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Lecture No -45            Theorems 
 
Theorem 1    
The First Shift Theorem 
 
The first Shift theorem states that  if   L{F(t)}= f(s) then  L{e(-at) F(t)}= f(s+a) 
The transform L{e(-at) F(t)} is thus the same as L{F(t)} with s everywhere in the result 
replaced by (s+a) 
 
Example 

        2

2L{sin 2t}= 
s 4+

     then    -3t
2 2

2 2L{e  sin 2t}= 
(s+3) 4 6 13s s

=
+ + +

 

Example 

  2 2 4
3

2{ } ; { }tL t L t e
s

= is the same with s replaced by (s-4)  

So  2 4
3

2{ }
( 4)

tL t e
s

=
−

 

Theorem 2   
Multiplying by t 

If   L{F(t)}= f(s)  then { ( ( )} { ( )}dL t F t f s
ds

= −  

Example 2

2L{sin 2t}= 
s 4+

 

And   2 2 2

d 2 4L{t sin 2t} =  -
ds ( 4) ( 4)

s
s s

⎡ ⎤
=⎢ ⎥+ +⎣ ⎦

   

Example ( )2 2 2 2

2 2 2 2 2 2 2

( 9) 2 9 2 9{ cos3 }
9 ( 9) ( 9) ( 9)

s s sd s s s sL t t
ds s s s s

− − − − +⎛ ⎞= − = − = − =⎜ ⎟− − − −⎝ ⎠
 

We could, if necessary, take this a stage further and find 
2 2

2 2 2 3

9 2 ( 27){ cos3 }
( 9) ( 9)

d s s sL t t
ds s s

⎛ ⎞+ +
= − =⎜ ⎟− −⎝ ⎠

 

Theorem Obviously extends the  range of function that we can deal with. So, in general 

 If   L{F(t)}= f(s)  then { ( ( )} ( 1) { ( )}
n

n n
n

dL t F t f s
ds

= −  

Theorem     
Dividing by t 

If   L{F(t)}= f(s)  then     ( ){ } ( )
s

F tL f s ds
t

∞

= ∫   

Example   Determine sin{ }atL
t

 

  2 2{sin } aAs L at
s a

=
+

 

1 1 1
2 2

sin{ } tan ( ) tan ( ) tan ( )
2ss

at a s s aL ds
t s a a a s

π∞∞
− − −⎡ ⎤∴ = = = − =⎢ ⎥+ ⎣ ⎦∫  
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Example      Determine   1-cos 2tL{ }
t

 

As 2

1L{1-cos 2t}=
4

s
s s

−
+

 

Then by Theorem 3, 

2 2
2

s

2
2 2 2

2

1-cos 2t 1 1 1 1L{ } = ( ) ln ln( 4) .2 ln ln( 4)
t 4 2 2 2

1 1 1 1ln ln( 4) ln ln( 4) ln
2 2 2 2 ( 4)

s s

s
s s

s ds s s s s
s s

ss s s s
s

∞ ∞∞

∞∞
∞

⎡ ⎤ ⎡ ⎤− = − + = − +⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= − + = − + = ⎢ ⎥⎣ ⎦⎢ ⎥ +⎣ ⎦ ⎣ ⎦

∫
 

2

2ln ln1 0
( 4)

sWhen s then
s

→ ∞ → =
+

 

1
2 2 22

2 2 2 2
s

1-cos 2t 1 1 4L{ } = ( ) ln ln ln
t 4 2 ( 4) ( 4)

s s s sds
s s s s s

−∞ ⎡ ⎤ ⎡ ⎤ +
− = − = =⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦

∫  

Standard Forms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 1   The First Shift Theorem 
 
If  L{F(t)}= f(s) then  L{e(-at) F(t)}= f(s+a) 
 
Theorem 2  Multiplying by t 

If   L{F(t)}= f(s)  then { ( ( )} { ( )}dL t F t f s
ds

= −  

Theorem 3   Dividing by t 

If   L{F(t)}= f(s)  then     ( ){ } ( )
s

F tL f s ds
t

∞

= ∫  

Provided 
0

( ) .
t

F tLim exists
t→

⎧ ⎫
⎨ ⎬
⎩ ⎭

 

 

 
 F(t)   L {F(t)} = f(s)  
 a  a

s   

 e at  1
s − a  

 

 s in at  a
s2 + a2   

 c os at   a
s2 + a2   

 s inh at  a
s2 − a2  

 

 c osh at  s
s2 − a2  

 

 t n  n!
sn+1   

(n a positive integer) 
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Inverse Transforms 
Here we have the reverse process i.e. given a Laplace transform, we have to find the 

function of t to which it belongs. For example, we know that 2 2

a
s a+

 is the Laplace 

Transform of sin at , so we can now write 1
2 2 sinaL at

s a
− ⎡ ⎤ =⎢ ⎥+⎣ ⎦

 , the symbol L-1 

indicating the inverse transform and not a reciprocal. 
1 2

1
2

1( )
2

( ) cos5
25

ta L e
s

sb L t
s

− −

−

⎧ ⎫ =⎨ ⎬−⎩ ⎭
⎧ ⎫ =⎨ ⎬+⎩ ⎭

 

1

1
2

4( ) 4

12( ) 4sinh 3
9

c L
s

d L t
s

−

−

⎧ ⎫ =⎨ ⎬
⎩ ⎭
⎧ ⎫ =⎨ ⎬−⎩ ⎭

 

But what about 1
2

3
6

sL
s s

− ⎧ ⎫
⎨ ⎬− −⎩ ⎭

 , it happens that we can write 2

3
6

s
s s− −

 as the sum of 

two simpler functions  1 1
2 3s s

+
+ −

 which , of course , makes all the difference , since we 

can now proceed. 1 1 1 2 3
2

3 1 1 2
6 2 3

t tsL L L e e
s s s s

− − − −⎧ ⎫ ⎧ ⎫ ⎧ ⎫= + = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬− − + −⎩ ⎭ ⎩ ⎭ ⎩ ⎭
 

Rules of Partial Fractions 
 

1. The numerator must be of lower degree than denominator. If it is not , then we 
first divide out. 

2. Factorise the denominator into its prime factors. These determine the shapes of the 
partial fraction.  

3. A linear factor (s+a) gives a partial fraction A
s a+

 is a constant to be determined. 

4. A repeated factor   (s+a)2 gives 2( )
A B

s a s a
+

+ +
 

5. Similarly   (s+a)3 gives 2 3( ) ( )
A B C

s a s a s a
+ +

+ + +
 

6. A quadratic Factor ( 2s ps q+ + ) gives  2

Ps Q
s ps q

+
+ +

 

7. Repeated quadratic Factor 2 2( )s ps q+ +  gives  2 2 2( )
Ps Q Rs T

s ps q s ps q
+ +

+
+ + + +

 

So 19
( 2)( 5)

s
s s

−
− +

 has partial fraction of the form 
( 2) ( 5)

A B
s s

+
− +

 and 
2

2

3 4 11
( 3)( 2)

s s
s s

− +
+ −

 

has partial fraction 2( 3) ( 2) ( 2)
A B C

s s s
+ +

+ − −
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Example 

  To determine 1
2

5 1
12

sL
s s

− +⎧ ⎫
⎨ ⎬− −⎩ ⎭

 

a) First we check that the numerator is of lower degree than the denominator. In fact 
this is so. 

b) Factories the denominator 

 2

5 1 5 1
12 ( 4)( 3) ( 4) ( 3)

s s A B
s s s s s s

+ +
= = +

− − − + − +
 

 
We therefore have an identity  
 

2

5 1
12 ( 4) ( 3)

s A B
s s s s

+
= +

− − − +
  

 
which is true for any value of s we care to substitute  
If we multiply through by the denominator ( 2 12s s− − ) we have 
 
5s + 1 ≡  A(s + 3) + B(s  - 4)    
 
We now substitute covenant values for s  
 
i) Let (s -4) =0  that is s = 4 therefore 21 = A(7)  + B(0)  ⇒  A= 3 
ii) Let (s + 3) =0  that is s = -3 therefore B = 2 
 

So    2

5 1 3 2
12 ( 4) ( 3)

s
s s s s

+
= +

− − − +
 

1 4 3
2

5 1 3 2
12

t tsL e e
s s

− −+⎧ ⎫ = +⎨ ⎬− −⎩ ⎭
  

Example     Determined  1
2

9 8
2

sL
s s

− −⎧ ⎫
⎨ ⎬−⎩ ⎭

 

2

9 8{ ( )}
2

sL F t
s s

−
=

−
 

a) Numerator of first degree ; denominator of second degree. 

b) 2

9 8
2 2

s A B
s s s s

−
= +

− −
 

c) Multiply by s(s – 2 )   
∴9 s -8  ≡  A(s - 2) + B (s) 
d)    Put s = 0 
 ∴ -8  ≡  A( - 2) + B (0)   ∴Α = 4 
e) Put s – 2 , i.e. s = 2 
  

∴ 10 = Α ( 0 ) + Β ( 0 ) ∴B = 5 
 

    ∴ -1 2t4 5F(t) = L = 4 + 5e  
s s-2

⎧ ⎫+⎨ ⎬
⎩ ⎭
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Transforms Of Derivatives 
 
Let F/(t) denote the first derivative of  F(t) with respect to t , F//(t) denote the second 
derivative of  F(t) with respect to t, etc. 

Then / -st /

0

L{ F (t)}= e F (t)dt
∞

∫  by definition ,  

Integrating By Parts 
/ -st

0
0

L{ F (t)}= ( ) ( )( e )dtste F t F t s
∞

∞−⎡ ⎤ − −⎣ ⎦ ∫  

 when  t 0, ( ) 0ste F t−→ →  

/ -st

0

L{ F (t)}=- (0) e ( )dtF s F t
∞

+ ∫  

/L{ F (t)}=- (0) L{ F (t)}F s+  
 

// / / /L{ F (t)}=- (0) L{ F (t)}=- (0) - (0) L{ F (t)}F s F s F s⎡ ⎤+ + +⎣ ⎦  
 

// 2 /L{ F (t)}= L{ F(t)}- (0) (0)s sF F+  
 

/// 3 2 / //L{ F (t)}= L{ F(t)}- (0) (0) (0)s s F sF F− −  
 

iv 4 3 2 / // ///L{ F (t)}= L{ F(t)}- (0) (0) (0) (0)s s F s F sF F− − −  
 
 

T a b le  o f  in v e r s e  
t r a n s f o r m s  
S ta n d a r d  t r a n s f o r m s  
 f ( s )  F ( t )   
 a

s   a   

 1
s  +  a   e - a t   

 n !
s n + 1   t n  

( n  a  p o s i t i v e  
i n t e g e r )  

 

 1
s n   t n - 1

( n  −  1 ) !   

( n  a  p o s i t i v e  
i n t e g e r )  

 

 a
s 2  +  a 2   s i n  a t   

 s
s 2  +  a 2   C o s  a t   

 a
s 2  −  a 2   

S in h  a t   

 s
s 2  −  a 2   

C o s  a x   
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Differential Equation And Its Solution 

2 4dx x
dt

− = -----------------(1) 

Its Solution is 2tx = -2 + 3e   , To verify it we find dx
dt

 

26 tdx e
dt

=   then 

2 2

2 2

2 6 2( 2 3 )

6 4 6 4

t t

t t

dx x e e
dt

e e

− = − − +

= + − =
 

So equation (1) is satisfied. Hence 2tx = -2 + 3e  is solution of 2 4dx x
dt

− =  

Example  Solve the differential equation 2 4dx x
dt

− =  given that at t = 0 , x = 1 

Taking Laplace transform as  
4( ( )) 2 ( ( )) (4) ( ( )) 2 ( ( )) (4) ( ( )) (0) 2 ( ( ))d dL x t L x t L L x t L x t L sL x t x L x t

dt dt s
⎡ ⎤ ⎡ ⎤− = ⇒ − = ⇒ − − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

4 4 4 4( 2) ( ( )) (0) ( 2) ( ( )) 1 ( 2) ( ( )) 1 ( 2) ( ( )) ss L x t x s L x t s L x t s L x t
s s s s

+
− − = ⇒ − − = ⇒ − = + ⇒ − =

14 4( ( )) ( )
( 2) ( 2)

s sL x t x t L
s s s s

− ⎡ ⎤+ +
⇒ = ⇒ = ⎢ ⎥− −⎣ ⎦

-----------------------(1) 

First we do the partial fraction of 4
( 2)

s
s s

+
−

 

4
( 2) ( 2)

s A B
s s s s

+
= +

− −
 

 
4 ( 2) ( )s A s B s⇒ + = − + -----------------(2) 

 
Put s = 0  in equation (2)  ; 4 = -2A ;  A = -2 
 
Put s = 2  in equation (2)  ; 6 = B(2) ;   B = 3 

4 2 3
( 2) 2

sSo
s s s s

+ −
= +

− −
 

Equation # (1)  becomes 
1 1 1 24 2 3( ) 2 3

( 2) 2
tsx t L L L e

s s s s
− − −⎡ ⎤+ −⎡ ⎤ ⎡ ⎤= = + = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 
Solution of differential equation by laplace transforms 
 
To solve a differential equation by Laplace transforms, we go through Laplace 
transforms, we go through four distinct stages. 

(a) Re- write the equation in term of Laplace transforms. 
(b) Insert the given initial  conditions. 
(c) Rearrange the equation algebraically to give the transform of  the solution. 
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(d) Determine the inverse transform to obtain the particular solution.   
Solve the equation  

2
3

2 3 2 2 td x d x x e
dt dt

− + =  given that at t = 0 , x = 5 and 7dx
dt

=  
// / 3( ) 3 ( ) 2 ( ) 2 tx t x t x t e− + =  

Given  x ( 0 ) = 5 , x/ ( 0 ) = 7 
( )// / 3( ) 3 ( ( )) 2 ( ( )) 2 ( )tL x t L x t L x t L e− + =  

2 / 2{ ( )} (0) (0) 3{ ( ( )) (0)} 2 ( )
3

s L x t s x x s L x t x L x t
s

− − − − + =
−

 

We rewrite the equation in term of its transforms. 

[ ]
2

3
2 3 2 2 td x d xL L L x L e

dt dt
⎡ ⎤ ⎡ ⎤

⎡ ⎤− + =⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎣ ⎦ ⎣ ⎦

 

2 / 3[ ( ( )) (0) (0)] 3[ ( ( )) (0) ] 2 ( )ts L x t s x x s L x t x L e⎡ ⎤− − − − +⎣ ⎦  

At   t = 0 , x = 5 , 7dx
dt

=  

So x ( 0 ) = 5 , x /( 0 ) = 7 
2 2( ( )) (5) 7 3{ ( ( )) 3(5)} 2 ( ( ))

3
s L x t s sL x t L x t

s
− − − + + =

−
 

2 2( ( )) 3 ( ( )) 2 ( ( )) 8 5
3

s L x t sL x t L x t s
s

− + = − +
−

 

2
2 2 8 24 5 15( 3 2) ( ( ))

3
s s ss s L x t

s
− + + −

− + =
−

 

2 22 8 24 5 15 5 23 24( ( ))
( 1)( 2)( 3) ( 1)( 2)( 3)

s s s s sL x t
s s s s s s

− + + − − +
= =

− − − − − −
 

Making Partial fraction of R.H.S ,  We have 

( ( ))
( 1) ( 2) ( 3)

A B CL x t
s s s

= + +
− − −

 

After solving these we get A= 3 , B = 2 and C = 0 

So 3 2 0( ( ))
( 1) ( 2) ( 3)

L x t
s s s

= + +
− − −

 

 

 
1 1 23 2( ) { } { } 3 2

( 1) ( 2)
t tx t L L e e

s s
− −= + = +

− −
 

 
 
 
 
 
 

3 2( ( ))
( 1) ( 2)

L x t
s s

= +
− −
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