

In the Name of Allāh, the Most Gracious, the Most Merciful

Final-Term Papers Solved MCQs with Reference

- 1. What is the instruction length of the FALCON-A processor?
 - ➢ 8 bits
 - > 16 bits

PG # 91

- ➢ 32 bits
- ➢ 64 bits

2. What is the working of **Processor Status Word** (PSW)?

- > To hold the current status of the processor.
 - _____

PG # 25

- To hold the address of the current process
- > To hold the instruction that the computer is currently processing
- > To hold the address of the next instruction in memory that is to be executed

3. What functionality is performed by the instruction "str R8, 34" of SRC?

- ▶ it will load the register R8 with the contents of the memory location M [PC+34]
- > It will load the register R8 with the relative address itself (PC+34).
- **It will store the register R8 contents to the memory location M [PC+34] PG # 48**
- No operation

4.FALCON-A processor bus has 16 lines or is 16-bits wide while that of SRC is ______ wide. ➢ 8-bits \geq 24-bits ➢ 32-bits PG # 157 ▶ 64-bits 5.op<4..0>:= IR<15..11>: The above RTL instruction presents the _____ of the FALCON-A Instructions. operation code field **PG # 105** ➢ target register field > operand or address index second operand 6. Which one of the following register holds the address of the next instruction to be executed? ➢ Accumulator Address Mask Instruction Register Program Counter **PG # 151** 7. Which one of the following register holds the instruction that is being executed? ➢ Accumulator Address Mask Instruction Register **PG # 152** Program Counter operation is required to change the processor's state to a known, defined value. 8. > Change PG # 194 Reset Update ➤ Halt

\triangleright	Two		
≻	Three	PG # 47	
⊳	Four		
Þ	Five		

10. _____ control signal enable the CON circuitry to operate, and instruct it to check for the appropriate condition (whether it is branch if zero, or branch if not equal to zero, etc.)

- > ECON
- > BCON
- LCON PG # 184
- > VCON
- 11.In which one of the following addressing modes, data is the part of the instruction itself, and so there is no need of address calculation?
 - Direct Addressing Mode
 - Immediate addressing mode
 PG # 40
 - Indirect Addressing Mode
 - Register (Direct) Addressing Mode

12._____ is a technique in which some of the CPU's address lines forming an input to the address decoder are ignored.

Partial decoding

- ➢ Full encoding
- Partial multiplexing
- ➢ Half encoding

13. Every time you press a key, an interrupt is generated; this is an example of

- Hardware interrupt
- Compile time error
- Run time error
- Internal interrupt

14._____ refers to the situation in which all I/O operations are performed under the direct control of a program running on the CPU.

- Direct memory access
- Virtual memory
- Partial decoding
- Programmed I/O PG # 268

15.CPU can exchange data with a peripheral device using ______ technique.

- Memory Contention
- Direct Memory Access
 PG # 269
- Pre-fetching
- Pipelining

There are three main techniques using which a CPU can exchange data with a peripheral device, namely • Programmed I/O

- Interrupt driven I/O
- Direct Memory Access (DMA).

16.----- is the time needed by the CPU to recognize (not service) an interrupt request

Interrupt Latency

- Response Deadline
- ➤ Timer delay
- > Throughput

- 17.In which one of the following methods, does the CPU poll to identify the interrupting module and branch to an interrupt service routine on detecting an interrupt?
 - Multiple interrupt lines
 - Software Poll

PG # 283

- Daisy Chain
- Parallel Priority

18. Which one of the following is a fixed size structure that stores the address of the first instruction of ISR?

Interrupt vector

PG # 277

- Interrupt request
- Interrupt handler
- Boot Sector

19.In Multiple Interrupt Lines approach, a number of interrupt lines are provided between the ______ modules.

- External and Internal
- CPU and I/O

PG # 283

- CPU and Memory
- ➢ Memory and I/O

20.In FALCON-A assembler and simulator (FALSIM), variables are defined by using the ______ directive.

- ▶ .bin
- ≻ <mark>.equ</mark>

PG # 5 & 6

- ➢ .iret
- ▶ .end

21 CPU.	allows a peripheral device to read from and J.	d/or write to memory without intervention by the
>	Programmed I/O	
>		
>		316
~	Polling	
	ng control of the system bus for a few bus cycles is know	own as
>	Bus Scheduling	
>	Cycle Stealing	PG # 317
>	Cycle Transferring	
>	CPU Scheduling	
23.A Har	ard Disk sector has the parts.	
>	Header only	
4		
~		
~	Header, data section and a trailer	PG # 323
24.Raid L	Level is not a true member of the RAID family.	
>	> 0 PG # 330	
	≥ 2	
>		
>	▶ 4	
25.The co	conversion of numbers from a representation in one ba	se to another is known as
4	Radix Conversion PG # 3	333
>	Number Representation	
>	Decimal Representation	

Hexadecimal Representation

26.A __________signal decides whether the input word should be shifted or bypassed.

- Control Read
- Shift/bypass PG # 346
- Control Write
- Control Transfer

27.In Single-Precision Binary Floating Point Representation the size of exponent is _____

> 8-bits

PG # 348

- 11-bits
- ▶ 1-bits
- > 23-bits

28.In Double-Precision Binary Floating Point Representation the size of fraction is _____

- ➤ 23-bits
- > 52-bits

PG # 348

- \triangleright 11-bits
- ▶ 1-bits

29.For a request of data if the requested data is not present in the cache, it is called a _

Cache Miss

PG # 358

- Spatial Locality
- Temporal Locality
- Cache Hit

30.For a request for data, if the data is available in the cache it results in a _____.

- Cache Miss
- Spatial Locality
- Temporal Locality
- Cache Hit PG # 358

31.For write to co	mplete in Write through, the CF	PU has to wait. This wait state is called
> Write	Through	
> Write	Back	
> Write	Allocate	
Write	Stall	PG # 363
32 contains	s permanent pattern of data that	cannot be changed.
≻ RAM		
➢ Hard I	Disk	
> Cache		
> ROM	I	PG # 356
33.In Control Fiel	d of page table, indica	te the availability of page in main memory.
> Access	s Control Bits	
➢ Used I	Bits	
Preser	<mark>nce Bits</mark> P	G # 367
> Redun	dant Bits	
34 are for	med by concatenating the page	number with the word number.
➢ Memo	ry chips	
> Protoc		
> Hazaro	ls	
> Virtua	al addresses	PG # 366

35.In	technique memory	is divided into segments of variable sizes depending upon the requirements.
>	 Multiplexing 	
>		PG # 365
>	Hamming code	
>	Partial decoding	
36	depends upon the average	ge number of calls and the service time taken by a particular server.
>	 Through put 	PG # 380
>	> Latency	
>	 Poisson Distribution 	
>	Response Time	
37	is the maximum rate at	which data can be transmitted through networks.
	Transmission Time	
	Latency	
	Transport Latency	
	Bandwidth	PG # 388
38.The t	me for the message to pass	through the network, except the time of flight is called
>	Transmission Time	PG # 388
>	> Latency	
>	Transport Latency	
>	Bandwidth	
39.In ph glass		r increased and better performance we use which are usually made of
>	 Coaxial Cables 	
>	> Twisted Pair Cables	
>	Fiber Optic Cable	PG # 390
>	Shielded Twisted Pair Ca	bles

40. What does the instruction "ldr R3, 58" of SRC do?

- ▶ it will load the register R3 with the contents of the memory location M [PC+58]
- > It will load the register R3 with the relative address itself (PC+58).
- > It will store the register R3 contents to the memory location M [PC+58]
- No operation

41. What functionality is performed by the instruction "lar R3, 36" of SRC?

▶ It will load the register R3 with the contents of the memory location M [PC+36]

It will load the register R3 with the relative address itself (PC+36). PG # 48

- ➤ It will store the register R3 contents to the memory location M [PC+36]
- No operation

42. What is the instruction length of the FALCON-E processor?

- ➢ 8 bits
- 16 bits
- 32 bits
 PG # 124
- ➢ 64 bits

43.Type A format of SRC uses -----instructions

- two
 PG # 47
- ➤ three
- ➢ four
- ➢ five

44. Which instruction is used to store register to memory using relative address?

- ➢ Id instruction
- Idr instruction
- lar instruction
- str instruction
 PG # 48

45.There are	_ types of reset operations in SRC
≻ <mark>Two</mark>	PG # 195
> Three	
> Four	
> Five	
46.Which one of the fo	llowing is a bi-stable device, capable of storing one bit of Information?

PG # 76

PG # 44

- Decoder
- Flip-flop
- Multiplexer
- > Diplexer

47.Execution time of a program with respect to the processor is calculated as:

- \blacktriangleright Execution Time = IC x CPI x MIPS
- **Execution Time = IC x CPI x T**

 \blacktriangleright Execution Time = CPI x T x MFLOPS

- \blacktriangleright Execution Time = IC x T
- **48**.Which one of the following register stores a previously calculated value or a value loaded from the main memory?
 - Accumulator
 - Address Mask
 - Instruction Register
 - Program Counter

Accumulator

Accumulator is located in CPU. Accumulator stores a previously calculated value or a value loaded from the main memory. Without an accumulator it would be necessary to write the result of each calculation to main memory and read them back. Access to main memory is slower than access to the accumulator which usually has direct paths to and from the ALU.

49.Which one of the following is called 0-address machine?

- General purpose register machines
- ➢ RISC machines
- Accumulator based machines
- Stack based machines
 PG # 31

50. Which one of the following type of error occurs when a character is not available at the beginning of an interval?

- ➢ Framing error
- Parity error
- Over-run error
- Under-run error PG # 240

51. Which one of the following type of error occurs when a 0 is received instead of a stop bit (which is always a 1)?

PG # 240

- Framing error
 - Parity error
- Over-run error
- ➢ Under-run error

52.An interface that is used to connect the computer bus with I/O devices is called _____

> Buffer

 \geq

- **I/O port** PG # 245
- Memory mapping
- Processor

53	Consider Falcon A, with 16 address.	s lines, the total address space is Kbytes.
≻	<mark>2 ^ 16</mark>	PG # 256
\triangleright	2 ^ 10	
≻	2 ^ 6	
۶	2 ^ 8	
	<mark>2¹⁶ = 64 Kbytes.</mark>	
54	is the process of per operation.	riodically checking the status of a device to see if it is ready for the next I/O
≻	Polling	PG # 270
\triangleright	Snooping	
≻	Data Bus Multiplexing	
	Pipelining	
55.	Which one of the following is NO1 device?	Γ a technique used when the CPU wants to exchange data with peripheral
۶	Direct Memory Access	A Call State of the same state
\triangleright	Interrupt driven I/O	
۶	Programmed I/O	
	Virtual Memory	PG # 268
device Prog Inter Direc	e, namely rammed I/O rupt driven I/O ot Memory Access (DMA).	g which a CPU can exchange data with a peripheral
56	Which one is the last instruction of	the ISR that is to be executed when the ISR terminates?
	▶ <mark>IRET</mark>	PG # 278
	≻ IRQ	

- > INT
- > NMI

57. Which one of the following is a fixed size structure that stores the address of the first instruction of ISR?

- Interrupt request
- Interrupt handler
- Boot Sector
- Interrupt vector PG #277

58.Falcon-A Simulator loads a FALCON-A binary file with a ______ extension and presents its contents into different areas of the simulator.

PG # 2

PG 313

- ➢ .bin
- .binfa
- ▶ .fa
- ➤ .asmfa

59.In Direct memory access (DMA), a ______ is needed to control the total activity and to synchronize the transfer of data.

- DMA memory unit
- DMA controller
- Control software
- Programmed I/O

60._____ allows a peripheral device to read from and/or write to memory without intervention by the CPU.

Direct memory access

- > Polling
- Programmed I/O
- ➢ Interrupt driven I/O

61.A component connected to the system bus and having control of it during a particular bus cycle is called

- Address decoder
- > BIOS
- Master component
- Slave component

62. When it is required to read data from a particular location of the disk, the head moves towards the selected track and this process is called_____.

> Seek

PG # 322

PG # 317

- ➢ Encoding
- ➢ Fragmentation
- Defragmentation

63.CRC has ______ overhead as compared to Hamming code.

- ➤ Equal
- ➢ Greater
- Lesser PG # 329
- Absolutely no
- 64._____ is the simplest form for representing a signed number.
 - Sign Magnitude Form
 PG # 330
 - Radix Complement Form
 - Biased Representation
 - Diminished Radix Compliment Form

65.In ______ adder circuit we feed carry out from the previous stage to the next stage and so on.

- Ripple Carry AdderPG # 335
- Carry Look Ahead Adder
- Complement Adder
- ➢ 2's Complement Adder

66	are computed by the ALU and stored in pr	ocessor status register.
Þ	Condition Codes	PG # 344
Þ	Control Signals	
Þ	Flip Flops	
Þ	Multiplexers	
67.In con word		to encode significant, exponent and their sign in a single
>	Decimal Numbers	
>	Binary Numbers	PG # 341
Þ	Octal Numbers	
Þ	Hexadecimal Numbers	
68.In flo	ating point representations is also call Sign Base	ed mantissa.
Þ	Significant	PG # 341
Þ	Exponent	
69.A	signal decides whether the input word sh	hould be shifted or bypassed.
>	Control Read	
		PG # 340
7	Control Transfer	
70.For a	request of data if the requested data is not pre-	sent in the cache, it is called a
>	Cache Miss	PG # 349

- Spatial Locality
- Temporal Locality
- ➢ Cache Hit

Always Replacement	
LFU (Least Frequently Used	l)
Random Replacement	PG # 356
Fragmentation	
In Control Field of page table,	indicate the availability of page in main memory.
Access Control Bits	
Used Bits	
Presence Bits	PG # 356
Redundant Bits	
A set of rules followed by different of	components in a network is called
> Host	
Connectivity	
ConnectivityResource Sharing	
	PG # 373
 Resource Sharing Protocol 	PG # 373
 Resource Sharing Protocol 	
 Resource Sharing Protocol In topology, all the compute 	
 Resource Sharing Protocol In topology, all the compute Bus 	iters are connected in the form of a circle.
 Resource Sharing Protocol In topology, all the compute Bus Ring 	iters are connected in the form of a circle.
 Resource Sharing Protocol In topology, all the compute Bus Ring Mesh Star 	aters are connected in the form of a circle. PG # 381
 Resource Sharing Protocol In topology, all the compute Bus Ring Mesh Star 	aters are connected in the form of a circle. PG # 381
 Resource Sharing Protocol In topology, all the compute Bus Ring Mesh Star 	aters are connected in the form of a circle. PG # 381

76. Which one of the following is the memory organization of EAGLE processor?

- > 2^8 * 8 bits
- 2^16 * 8 bits
- > 2^32 * 8 bits
- > 2^64 * 8 bits

Memory organization is 2^16 x 8 bits. This means that there are 216 memory cells, each one byte long

PG # 120

77. Which one of the following is the memory organization of SRC processor?

- 2^8 * 8 bits
 2^16 * 8 bits
- 2^32 * 8 bits
- > 2^64 * 8 bits

78.___

_____ is a collection of binary digits or bits that the computer reads and interprets.

- Assembly language
- Higher level language
- English language
- Machine language

Click Here For Reference Detail

PG # 46

79.In which one of the following addressing modes, the value to be stored in memory is obtained by directly retrieving it from another memory location?

Direct Addressing Mode

Click Here For Reference Detail

- Immediate addressing mode
- Indirect Addressing Mode
- Register (Direct) Addressing Mode

80. The external interface of FALCON-A consists of a _____address bus and _____a data bus.

- > 8-bit, 8-bit
- 16-bit, 16-bit

Click Here For Reference Detail

- 16-bit, 24-bit
- ▶ 16-bit, 32-bit
- 81. In which of the following instructions the data move between a register in the processor and a memory location (or another register) and are also called data movement?
 - Arithmetic/logic
 - Load/store

PG # 141

- ➢ Test/branch
- ➢ None of the given

82. The ______ instruction is completed once memory access has been made and the memory location has been written to.

PG # 208

- > Store
- > Branch
- ➢ Load
- Control

83. Which type of instructions enables mathematical computations?

Arithmetic \geq

- > Control
- Data transfer
- Miscellaneous

85. For any of the instructions that are a part of the instruction set of the SRC, there are certain ______ required; which may be used to select the appropriate function for the ALU to be performed, to select the appropriate registers, or the appropriate memory location.

- ➢ Registers
- Control signals
- Page # 171
- Memory
- DMA controllers

86. Every I/O port has a unique identifier associated with it, which is called its _____

- AddressPG # 244
- Access point
- Interval Identifier
- Device Driver

87. Partial decoding is an attractive choice in _____

Small system

- Large system
- Medium system
- All of the above

88. Maskable Interrupts are applied to the	pin of the processor.
> INTR	PG # 275
> NMI	
> IRET	
> INT	
89. Non-maskable Interrupts are detected usin	ng the pin of the processor.
> INTR	
> NMI	PG # 275
> IRET	
> INT	
90. In Multiple Interrupt Line, a number of ir	nterrupt lines are provided between the modules.
External and Internal	
➢ CPU and the I/O	Page # 283
➢ CPU and Memory	
➢ Memory and I/O	
91. In recording, bits are encoded in pair	rs so there are only ' $n/2$ ' additions instead of 'n'.
Booth Recording	
Bit-Pair Recording	Page # 343
Fraction Division	
Integer Division	

92	is nonvolatile i.e. it retains the information	mation in it when power is removed from it.
>	RAM	
>	DRAM	
>	ROM	PG # 356

- > SRAM
- 93. Based on the statistical results, the block which has been least used in the recent past, is replaced with a new block. This technique is called _____.

Page # 362

PG # 364

- Always Replacement
- Random Replacement
- LFU (Least Frequently Used)
- Write Allocate

94. _____ acts as a cache between main memory and secondary memory.

- Read Only Memory
- Flash Memory
- Virtual Memory
- ➢ Magnetic Tape

95. ______ is also called traffic intensity and its value must be between 0 and 1.

- ➢ Little's Law
- Poisson Distribution
- Server Utilization

PG # 381

> SPEC

96.What is the instruction length of SRC processor?

- > 8 bits
- ➢ 16 bits
- > 32 bits PG # 134
- ➢ 64 bits

EAGLE	FALCON-A	FALCON-E	SRC
Variable 8 bits or 16 bits			Fixed 32 bits

PG # 76

97. What does the word 'D' in the 'D-flip-Flop' stands for?

- Data
- Digital
- Dynamic
- Double

98.Almost every commercial computer has its own particular ------ language

- assembly language
 PG # 25
- English language
- Higher level language
- ≻ 3GL

99.Which fi	eld of the machine language instruction is the "type of operation" that is to be performed?
> 0	p-code (or the operation code) PG # 33
> C	PU registers
> M	emory cells
> 1/	D locations
100	is/are defined as the time required to process a single instruction.
≻ L	tency & throughput
> L	atency PG # 203
> T	nroughput
≻ H	azards
101. In pipe	lining is increased by overlapping the instruction execution
≻ L	itency
> T	proughput PG # 220
≻ E	xecution time
> C	ock speed
102.Which	of the following register(s) takes input from the ALSU as the address of the memory location to be

accessed and transfers the memory contents on that location onto memory sub-system?

- Instruction Register
- Memory address register
 PG # 151
- Memory Buffer register
- Registers A and C

102 occurs when the exponent	tis too large and can not be represented in the evolution field
	t is too large and can not be represented in the exponent field.
> Underflow	
➢ Overflow	PG # 348
Rounding off	
> Normalize	
104.The is w-bit wide and contains	a data word, directly connected to the data bus which is b-bit wide
memory address register (MAR).	
Instruction Register(IR)	
memory address register (MAR)	
memory Buffer Register(MBR)	PG # 350
Program counter (PC)	
105.Theis m-bits wide and contains me	emory address generated by the CPU directly connected to the m-bit
105.Theis m-bits wide and contains mo wide address bus.	emory address generated by the CPU directly connected to the m-bit
	emory address generated by the CPU directly connected to the m-bit PG # 350
wide address bus.	
wide address bus. memory address register (MAR) 	
 wide address bus. memory address register (MAR) Accumulator register 	
 wide address bus. memory address register (MAR) Accumulator register Program counter register Instruction register 	
 wide address bus. memory address register (MAR) Accumulator register Program counter register Instruction register 106 is a place for safe storage 	PG # 350
 wide address bus. memory address register (MAR) Accumulator register Program counter register Instruction register 106 is a place for safe storage Hard Disk 	PG # 350 e and provides the fastest possible storage after the registers.
 wide address bus. memory address register (MAR) Accumulator register Program counter register Instruction register 106is a place for safe storage Hard Disk Cache 	PG # 350
 wide address bus. memory address register (MAR) Accumulator register Program counter register Instruction register 106 is a place for safe storage Hard Disk 	PG # 350 e and provides the fastest possible storage after the registers.

107	refers to the interconnection of machi	nes in a buildin <mark>g or a c</mark> ampus.	
>	SAN		
Þ	LAN	PG # 387	
>	WAN		
>	MAN		
108. What is the size of the memory space that is available to SRC processor ?			
>	2^8 bytes		
>	2^16 bytes		
4	2 ³² bytes	PG # 46	
>	2^64 bytes		
109. Which operator is used to name registers, or part of registers, in the Register Transfer Language?			
A	=	PG # 66	
>	&		

- ▶ %
- ⊳ ©

110.Which one of the following is the highest level of abstraction in digital design in which the computer architect views the system for the description of system components and their interconnections?

Processor-Memory-Switch level (PMS level)
PG # 22

- Instruction Set Level
- Register Transfer Level
- ➢ None of the given

بہترین تجربہ وہ ہے جس سے نصیحت حاصل ہو

111. Which one of the following design levels is called the gate level?

- Logic Design Level
- Circuit Level
- Mask Level
- \triangleright None of the given

112._____ Instructions usually involve calculating the target address and evaluating a condition.

- > Add
- Branch
- Load
- Store

113. Which of the instruction is used to load register from memory using a relative address?

- ▶ la
- ➢ nop
- ≻ <mark>ldr</mark>
- ➤ str

114.We represent e^ instead of e to show _____

- Sign Magnitude Form
- Radix Complement Form
- Diminished Radix Complement Form
- Biased Representation

PG # 47

PG # 22

115._____ is a combination of arithmetic, logic and shifter unit along with some multiplexers and control unit.

- Computer Bus
- CPU Register
- Flip Flop
 - ALU PG # 347

116.Connection Oriented Communication reserves the _____until the transfer is complete.

Bandwidth

PG # 394

- ➢ Error
- Checksum
- Protocol

117.In Connection-less Communication message is divided into _____

- Tracks
- Sectors
- Platters
- Packets

PG # 394

Note: Give me a feedback and your Suggestion also If you find any mistake in mcqz plz inform me Via Contact us Page on our Site. And tell me your answer with references.

For More Solved Papers By Arslan Visit Our Website: <u>Www.VirtualUstaad.blogspot.com</u>

Winning is not everything, but wanting to win is everything..... Go Ahead..... Best Of Luck !

